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Summary 

The S e t t l e d  Bed Fas t  Reactor concept (SBFR) f d a t u r e s  a  

packed bed of f u e l ,  d i r e c t l y  cooled wi th  sodium, which must be 

h igh ly  r e s i s t a n t  t o  consol ida t ion  dur ing  power opera t ion  t o  

avoid r e a c t i v i t y  excursions r e s u l t i n g  from sudden inc reases  i n  

bed s o l i d  f r a c t i o n .  This paper p resen t s  t h e  r e s u l t s  of  an 

experimental  s tudy t o  determine bed s t a b i l i t y .  I n  t h e  exper i -  

mental program, t h e  s t a b i l i t y  of a  packed bed was considered 

acceptable  i f  a  12-g l a t e r a l  shock produced a  change i n  bed 

s o l i d  f r a c t i o n  of  l e s s  than  0.002 (e.g., 0.630 t o  0.632), 

equiva lent  t o  a  10e r e a c t i v i t y  change i n  t h e  SBFR. The exper i -  

mental r e s u l t s  show t h a t  beds s e t t l e d  from f l u i d i z a t i o n  can be 

remotely compacted t o  e x h i b i t  1/6 of t h i s  change when shock 

t e s t e d .  The p a r t i c l e  i n t e r l o c k i n g  e f f e c t  of simulated coolant  

downflow g ives  a  s u b s t a n t i a l  e x t r a  measure of s t a b i l i t y .  

The S e t t l e d  Bed F a s t  Reactor 

The Nuclear Engineering Department of Brookhaven National  

Laboratory has long maintained an a c t i v e  i n t e r e s t  i n  t h e  develop- 

ment o f  l a r g e  power r e a c t o r  systems u t i l i z i n g  mobile fue l .  

Present  emphasis c e n t e r s  on r e a c t o r  concepts which use packed 

beds of f u e l  p a r t i c l e s  t o  combine advantages o f fe red  by t h e  

s o l i d  and t h e  l i q u i d  f u e l  systems. 



I n  t h e  reference  design of a sodium cooled 1000 MWe f a s t  

breeder ,  designated a s  t h e  S e t t l e d  Bed F a s t  Reactor (SBFR), (1) 

t h e  f u e l  i s  fea tured  a s  1/8 in .  s p h e r i c a l  p a r t i c l e s  i n  t h e  form 

of a randomly packed s e t t l e d  bed. The f u e l  bed is  d i r e c t l y  . 

cooled with sodium downflow during per iods  of r e a c t o r  operat ion.  

Fuel  re loading  o r  t r a n s f e r  i s  . f a c i l i t a t e d  by f l u i d i z a t i o n ,  with 

coolant  upflow, during per iods  of  r e a c t o r  shutdown. A number 

of s p e c i a l  problems a r e  introduced with t h i s  concept; however, 

t h e  p o t e n t i a l  advantages o f fe red  by t h i s  type o f  r e a c t o r  appear 

t o  warrant an ag ress ive  approach t o  t h e  inheren t  development 

problems. I n  add i t ion  t o  t h e  advantages of  a h igh  breeding 

r a t i o  (1.7) and s h o r t  doubling t ime (4.7 years )  provided by t h e  

SBFR, t h e  economic s i g n i f i c a n c e  of r e a c t o r  a v a i l a b i l i t y  of  about 

95%, made p o s s i b l e  through t h e  use of  mobile f u e l ,  should be of  

considerable  importance. 

Fuel  Bed S t a b i l i t y  

I n  t h e  SBFR concept, a high degree of  s t a b i l i t y  o f  t h e  

packed f u e l  bed, a s  d i s t ingu i shed  by i t s  r e s i s t a n c e  t o  consolida- 

t i o n ,  i s  required t o  prevent abnormal r e a c t i v i t y  excursions which 

would accompany an excessive inc rease  i n  s o l i d  f r a c t i o n .  

F i r s t  of  a l l ,  t o  e s t a b l i s h  a meaningful p o i n t  of  re ference  

f o r  t h e  s tudy,  s t a b i l i t y  was considered t o  be adequate i f  a 12-g 

l a t e r a l  shock on t h e  .bed conta iner  produced an inc rease  i n  bed 

s o l i d  f r a c t i o n  of  l e s s  than  0.002 ( f o r  example, from 0.630 t o  

0.632). This  magnitude of  shock i s  four  t imes g r e a t e r  than  has 

been used t o  d a t e  i n  t h e  'design c a l c u l a t i o n s  f o r  power p l a n t s  - 
nuclear  .or non-nuclear - i n  earthquake areas .  ( 2 )  An inc rease  

(1) Green, L.,  e t  a l . ,  The S e t t l e d  Bed F a s t  Reactor - 1000 MW(e) 
Reactor Desiqn, Nuc. Appl. ( ~ p r i l  1965). 

( 2  ~ u c l e o n i c s ,  Vol. 23, No. 5, May 1965, p. 21 .  



i n  s o l i d  f r a c t i o n  o f  0.002 (corresponding t o  an average decrease 

i n  bed depth of  only  1/32 in .  f o r  a 1 - f t  deep bed) 'would r e s u l t  

i n  a r e a c t i v i t y  inc rease  of  about lo$. Such an inc rease  would 

be wi th in  t h e  c o r r e c t i o n  c a p a b i l i t y  of t h e  r e a c t o r  c o n t r o l  and 

p r o t e c t i o n  systems. 

Bed Compaction Method 

I n  t h e  SBFR, t h e  r e fe rence  des ign  f e a t u r e s  t h e  f u e l  bed, 

randomly packed, s e t t l e d  from a s t a t e  of  f l u i d i z a t i o n .  It was 

found t h a t  beds s e t t l e d  from a s t a t e  of  f l u i d i z a t i o n  always re- 

qui red  some i n i t i a l  compaction i n  o rde r  t o  achieve s t a b i l i t y  

according t o  t h e  above c r i t e r i o n .  Consequently, it was necessary 

t o  develop a p r a c t i c a l  means f o r  i n i t i a l l y  compacting t h e  bed be- 

f o r e  a t e s t  of  s t a b i l i t y  would be meaningful. For t h i s  purpose, 

hydraul ic  pu l s ing  was used t o  impart very small  up-and-down 

motions t o  t h e  bed, pe rmi t t ing  some l o c a l  r epos i t ion ing  o f  

p a r t i c l e s .  Only s h o r t  per iods  of  pu l s ing  a r e  necessary t o  ob- 

t a i n  an apprec iable  degree of  bed compaction. 

Puls ing  w a s  accomplished by means of  a motor-driven b a l l  

valve s u i t a b l y  modified f o r  continuous b a l l  r o t a t i o n .  The time 

f o r  t h e  valve t o  move from a closed p o s i t i o n  t o  success ive  open 

and closed p o s i t i o n s  was 0.5 seconds, and t h e  valve remained 

closed f o r  0.2 seconds. Under t h e  pu l s ing  condi t ions ,  f o r  t h e  

drag  fo rces  t o  be s u f f i c i e n t  t o  l i f t  t h e  bed, t h e  upward flow 

through t h e  bed had t o  exceed t h a t  required f o r  i n c i p i e n t  

f l u i d i z a t i o n  by about 50°/0. Acceptable puls ing  could be  achieved 

f o r  a range of valve and 'flow condit ions.  I n  t h e  course of  t h e  

s tudy it, i s  found t h a t  t h e  compaction e f f e c t  of  pu l s ing  was 

enhanced by t h e  a c t i o n  of  a gas cushion e s t a b l i s h e d  above t h e  



bed. The gas was compressed during t h e  upflow period and served 

t o  a c c e l e r a t e  bed motion during t h e  downflow period.  The p a r t i c -  

u l a r  p ip ing  arrangement used i n  t h e  i n v e s t i g a t i o n  is  schemat ica l ly  

presented i n  Fig. 1. The puls ing  equipment used i n  t h e  l abora to ry  

i s  shown i n  Fig. 2. A l t e r n a t i v e l y ,  t h e  down-pulse might be induced 

by means of  a  four-way r o t a t i n g  valve without  a  gas' cushion, 

schemat ica l ly  shown i n  Fig. 3. 

Qolid Frac t ion  Measurement 

Of prime importance i n  t h i s  s tudy w a s  t h e  development of a  

means of  measuring very small  changes i n  over -a l l  packed bed s o l i d  

f r a c t i o n  r e s u l t i n g  from a dis turbance.  For t h i s  purpose, a  volu- 

met r ic  displacement method was used t o  measure smal l  changes i n  

o v e r - a l l  volume of t h e  packed bed. The measurement appara tus ,  

c a l l e d  a  membrane cap, i s  shown i n  Fig. 4. 

The membrane cap assembly, which i s  handled a s  a  u n i t ,  was 

machined from a t h i c k  Luci te  d i s c  t o  provide a  shallow dome-shaped 

c a v i t y  bounded on t h e  bottom by a  rubber membrane and te rminat ing  

a t  t h e  apex i n  a  b u r e t t e  tube.  With t h e  cap i n  p lace  on t o p  of  

t h e  test  s e c t i o n ,  t h e  c a v i t y  i s  f i l l e d  with a  measured q u a n t i t y  

of  water and a  p a r t i a l  vacuum i s  es tab l i shed  i n  t h e  bed below 

( a f t e r  d ra in ing  t h e  water from t h e  b e d ) ,  t h u s  causing t h e  rubber 

membrane t o  conform t o  t h e  t o p  of t h e  bed (shown i n  Fig. 5) .  

Changes i n  bed volume a r e  given d i r e c t l y  by changes i n  volume of 

water ifi t h e  b u r e t t e  tube. The membrane cap, a s  a  u n i t ,  can be 

r e a d i l y  interchanged with a  column extens ion  s e c t i o n  a s  required 

f o r  t h e  f l u i d i z a t i o n  and 'pu l s ing  opera t ions .  

Membrane Cap Ca l ib ra t ion  

The membrane cap was l a r g e l y  u.sed i n  determining very small  

changes i n  bed volume, o r  s o l i d  f r a c t i o n ,  of  a  6-in. diameter by - .  



15-in. deep bed of 1/8-in. s t e e l  spheres.  The volumes of t h e  empty 

con ta ine r ,  t h e  membrane cap, and t h e  1/8-in. s t a i n l e s s  s t e e l  spheres  

making up t h e  bed were measured t o  an accuracy which permit ted 

determinat ions of t h e  over -a l l  bed s o l i d  f r a c t i o n  t o  *.003, e.g., 

-6300 f.003.* By way of c a l i b r a t i o n ,  t h e  e f f e c t  of varying t h e  

d i f f e r e n t i a l  pressure  across  t h e  membrane was determined over  t h e  

range of  10 t o  30 in .  of  Hg. The e f f e c t  of d i f f e r e n t i a l  pressure  

was approximately l i n e a r  between 20 and 30 in .  of Hg and produced 

changes i n  l i q u i d  volume readings on t h e  b u r e t t e  o f  about 0.2 m l  

p e r  in .  Hg. This  e f f e c t  t r a n s l a t e s ,  f o r  a bed of  6500 m l  volume, 

t o  p o t e n t i a l  e r r o r s  i n  s o l i d  f r a c t i o n  determinat ion due t o  in-  

cons tancies  i n  d i f f e r e n t i a l  pressure  of  only  2 p a r t s  i n  100,000 

p e r  in .  Hg. Since t h e  membrane under d i f f e r e n t i a l  pressure  a p p l i e s  

a compressive fo rce  on t h e  bed, it was important t o  determine t h e  

e f f e c t  of t h a t  fo rce  i n  causing any progress ive  inc rease  i n  s o l i d  

f r a c t i o n  a s  a r e s u l t  of  removing and re tu rn ing  t h e  membrane cap a 

number of  times. The maximum increase  i n  s o l i d  f r a c t i o n  f o r  one 

replacement cycle  was 1 p a r t  i n  10,000 and such changes were found 

only  i n  t h e  case of wholly unconsolidated beds. 

Bed s t a b i l i t y  ~ e t e r m i n a t i o n  

The determinat ions of bed s t a b i l i t y  were made on beds o f  

1/8-in. pol ished s t a i n l e s s  s t e e l  spheres ,  6 i n .  i n  diameter x 15 in .  

deep, with a 12-g l a t e r a l  shock generated by a b r a s s  hammer which 

s t r u c k  t h e  bed conta iner  h o r i z o n t a l l y  a t  t h e  end o f  a swing. The 

12-g shock was measured with a p i e z o e l e c t r i c  pickup. 

* A measurement technique of  t h i s  accuracy would be valuable  i n  
pressure  drop experiments across  packed beds s i n c e  t h e  voidage 
i s  an important parameter. A d i f f e r e n c e  of  0.01 i n  s o l i d  f r ac -  
t i o n  could account f o r  about 20% s c a t t e r  i n  e x i s t i n g  pressure  
drop c o r r e l a t i o n s .  



The experimental  r e s u l t s  given i n  Table I and Fig. 7 show 

t h a t  beds s e t t l e d  from f l u i d i z a t i o n  can be compacted by pu l s ing  

s o  t h a t  when subjected t o  a  12-g l a t e r a l  shock, t h e  change i n  

s o l i d  f r a c t i o n  i s  only  about 1/6 o f  t h e  value which i s  considered 

acceptable  f o r  t h e  SBFR. Furthermore, it i s  shown t h a t  t h e  

p a r t i c l e  i n t e r l o c k i n g  e f f e c t  with a  pressure  drop g r a d i e n t  of only 

3  p s i  pe r  in .  depth g ives  a  s u b s t a n t i a l  e x t r a  margin of  s t a b i l i t y  

by a  f a c t o r  of 3 a s  indica ted  by a  reduct ion  i n  r e a c t i v i t y  response 

from 1.5 c e n t s  t o  0.5 cents .  For t h e  proposed SBFR t h e  p ressu re  

drop g rad ien t  would be about 10 ps i / in .  Consequently, a g r e a t e r  

margin of s t a b i l i t y  would be an t i c ipa ted .  I n  add i t ion ,  t h e r e  i s  

evidence t h a t  t h e  response t o  shock is  concentrated i n  t h e  t o p  20% 

of  t h e  bed - a  region with less than  average importance i n  terms 

o f  nuclear  r e a c t i v i t y .  

A s  expected, t h e  response t o  t h e  12-g shock diminished, f o r  

any one bed, a s  t h e  blow t e s t  continued. A s  shown i n  Fig. 8, with 

a  bed pulsed t o  g ive  a  s o l i d  f r a c t i o n  of  0.629 and zero pressure  

drop g rad ien t ,  more than  325 shocks were requi red  t o  produce a  

change i n  s o l i d  f r a c t i o n  which exceeded t h e  acceptable  change of  

0.002. For a  bed with 0.635 s o l i d  f r a c t i o n  and a  pressure  drop 

g rad ien t  of 3  p s i  p e r  in . ,  almost 5000 shocks were requi red  t o  

pruduce the same change. 

Although t h e  experimental  program presented i n  t h i s  paper 

d e a l t  with beds no l a r g e r  than  6  in .  i n  diameter,  no inheren t ly  

d i f f i c u l t  problems a r e  a n t i c i p a t e d  i n  demonstrating s t a b i l i t y  with 

f u l l - s c a l e  beds. 
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Fiqure Captions 

1. Hydraulic Puls ing  Using One 3-Way Rotat ing B a l l  Valye. 

2. Three-Way Rotat ing B a l l  Valve With 44 RPM Driving Motor and 

T h r o t t l e  Valve. 

3 .  Hydraulic Puls ing  Using a 4-Way Plug Valve. 

4. Membrane Cap f o r  Measuring Small Changes i n  So l id  F rac t ion  

of Packed Beds. 

5. Rubber Membrane Pul led Down on Top of  1/8-in. Spheres by a  

P a r t i a l  Vacuum i n  t h e  Bed. 

6. 12-g Shock T e s t  Device With Associated Mechanism f o r  Mult iple  

B:&ows. (Also Shown is t h e  Luci te  Spool Piece Which A l l o w s  

Observation of t h e  Top o f  the Bed During Downflow Operat ion) .  

7. Response t o  One 12-g Shock. 

8,  Cumulative Response t o  12-g Shocks. 

Table Captions 

1. Representat ive S e n s i t i v i t y  t o  a 12-g L a t e r a l  Shock of  

Hydraul ica l ly  Pulsed Beds of 1/8-in, D i a m e t e r  Polished 

S t a i n l e s s  S t e e l  Spheres 15-in. Deep i n  a  6-in. Diameter 

S t e e l  Container. 



Table I 

- .  - -  
Representat ive S e n s i t i v i t y  t o  a  1 2  g L a t e r a l  Shock of Hydraul ical ly  Pulsed Beds of 1/8" 

Giameter Polished S t a i n l e s s  S t e e l  S ~ h e r e s  15" D e e ~  i n  a  6" Diameter S t e e l  con ta ine r .  

2.3 p s i / i n  Downf low 3.. 0 p s i / i n  Downf low 
Zero Downflow Pressure  Gradient Pressure  Gradient  

Equivalent Equivalent Equivalent  
Sol  id SBFR Solid . SBFR So l id  SBFR 
Fraz t ion  Reac t iv i ty  Frac t ion  Reac t iv i ty  ~ r a c t i o n  R e a c t i v i t y  

I n i t i a l  So l id  Frac t ion  Increase  Increase  Increase  Increase  Increase  Increase  

0.60 (as  s e t t l e d  
f r a m  f l u i d i z a t i o n )  0.0047 23.5C 



HYDRAULIC PULSING USING 
ONE 3 - W A Y  ROTATING BALL VALVE 
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HYDRAULIC PULSING USING 
A 4-WAY PLUG VALVE 
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M E M B R A N E  CAP FOR M E A S U R I N G  S M A L L  CHANGES IN 
S O L I D  FRACTION OF PACKED B E D S  

8.6 

NOTE; ALL DIMENSIONS IN INCHES 

Fig. 4 







Fig. 7 



CUMULATIVE RESPONSE TO 12-a SHOCKS 

BED PRESSURE SOLID FRACTION AT 
CURVE PREPARATION DROP GRADIENT START OF SHOCK TEST 

I NONE 0 0.5984 
2 PULSED 0 0.6 2 9 0  
3 PULSED = 3 psi / in .  0.6 2 9 0  
4 PULSED 3 psi/ in. 0 . 6 3 5 1  

THE NUMBER OF SHOCKS WHICH CAUSED A CHANGE 
I N  SOLID FRACTION 0.002 - - 4. ----- ---- 

# -- ( 4700 )"  ---- 
e- 

//- 

I I I I I I I I 
0 1000 2 0 0 0  3000 4000 5 000 - - - -  

CUMULATIVE 12-9 HORIZONTAL SHOCKS 

Fig. 8 




