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Abstract
A Study of Non-Equilibrium Phonons in
GaAs/AlAs Quantum Wells
by
Zhenpeng Su

Doctor of Philosophy in Physics
University of California at Berkeley
Professor Peter Y. Yu, Chair

In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs
quantum wells via Raman scattering. We have demonstrated experimentally that by
taking into account the time-reversal symmetry relation between the Stokes and anti-
Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon
occupancy in quantum wells. Using this technique, we have studied the subject of
resonant intersubband scattering of optical phonons. We find that interfaqe roughness
plays an important role in resonant Raman scattering in quantum wells. The lateral size of
the smooth regions in such interface is estimated to be of the order of 100 A. Through a
study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser
excitation, we have found that band nonparabolicity has very little effect on the electron
subband energies even for subbands as high as a few hundred meV above the lowest one.
This finding may require additional theoretical study to understand its origin. We have
also studied phonon confinement and propagation in quantum wells. We show that
Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive
measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the

coherence length of LO phonons in GaAs/Al Ga, ,As quantum wells as a function of the

Al concentration X.
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Chapter I: Introduction

When we talk about hot phonons or non-equilibrium phonons, we usually refer to
phonons created during the relaxation of energetic carriers in solids. For example., when
a voltage is applied to a semiconductor device, electrons in the device will be accelerated
and therefore gain a large amount of kinetic energy. These electrons are often referred to
as hot electrons because if we assume that they reach a quasi-thermal equilibrium among
themselves, then the characteristic temperature of these electrons will be much higher
than that of the surrounding crystal lattice. The imbalance in temperature between the
electrons and the lattice necessarily results in the electrons losing some of their energy to
the lattice, thereby creating phonons. Phonons created in this way will have certain
distribution in momentum space because of the requirement of conservation of energy
and quasi-momentum during the hot electron relaxation process. Therefore phonons of
different wave vectors may have different occupancies. These phonons are clearly not in
thermal equilibrium, so they are often called hot phonons or non-equilibrium phonons.
The relaxation of hot electrons to create hot phonohs is achieved through electron-phonon
interaction, a process which also determines some of the important prpperties of many
devices, like carrier mobility. Because of their relevance to practical device applications,
hot electron relaxation and electron-phonon interaction have attracted a lot of research
interests from both theoreticians and experimentalists [1].

With the availability of picosecond and femtosecond lasers, ultrafast optical

spectroscopy has come to play an important role in the study of electron-phonon
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interactions. Hot electrons can be easily generated via photoexcitation using laser pulses
to mimic the excitation of hot electrons by the electric field in real devices. It has been
known that immediately after they are created, hot electrons can thermalize to reach an
quasi-equilibrium distribution on a time scale of 0.1 picosecond or less. Then the hot
electron gas starts to cool down by emitting hot phonons on a time scale of 0.1
picosecond. These phonons have typical lifetimes of a few picoseconds as a result of
decaying into acoustic phonons. Picosecond and sub-picosecond Raman spectroscopy
using ultrafast lasers has proven to be a very powerful tool in studying hot phonons in
bulk GaAs [2,3]. With the ever increasing use of devices based on semiconductor
quantum wells and superlattices, it is natural to extend the technique of Raman scattering
to study non-equilibrium phonons in these microstructures. However, when compared to
bulk GaAs, quantum wells introduce many new complications and challenges.

The formation of quantum wells modifies both the electron and phonon structure,
it also modifies the electron-phonon interaction. There are three prevailing theoretical
models about the conﬁned longitudinal optical (LO) phonons in quantum wells in the
literature, namely the “slab model” [4], the “guided-mode model” [5] and the “Huang-
Zhu model” [6]. It was found that the electron LO phonon scattering rates depend
strongly on the model used [7]. Therefore it is essential to experimentally test the validity
of these models. ‘In a recent paper, Tsen et al. [8] have suggested that the Huang-Zhu
model is the only one that can successfully explain their experimental result. However,
further experimental tests of this resuit are desirable.

We note that part of the reason that time-resolved Raman scattering has been quite

successful in studying non-equilibrium phonons in bulk GaAs is that it probes phonons
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whose wave vectors lie very close to the peak of non-equilibrium phonon distribution in
momentum space [2]. In semiconductor quantum wells, however, only the component of
wave vector parallel to the layer plane is conserved. This change in the Raman-active
wave vector in quantum wells has a significant impact on Raman scattering. As we will
show later in this thesis, in most cases the Raman-active wave vector lies outside of the
range of those of non-equilibrium phonons. In principle, this means that Raman
scattering is not capable of directly determining the occupancy of non-equilibrium
phonons in quantum wells. However, we will show that intersubband scattering in
quantum wells where the subband separation is close to the one LO phonon energy offers
a unique opportunity to observe non-equilibrium phonons via Raman scattering. We will
investigate this possibility theoretically and experimentally in this thesis.

Another challenge in studying non-equilibrium phonon lies in the resonant Raman
effect. Resonant Raman scattering in quantum wells can greatly enhance the otherwise
weak Raman signal, on the other hand, it was found that because of the resonant effect,
the conventional way used to determine phonon occupancy in bulk GaAs failed in the
case of quantum wells. This has led some researcher to question the ability of Raman
scattering in probing non-equilibrium phonon in quantum wells [9].

Our interest in studying non-equilibrium phonons via Raman scattering is further
stimulated by sofne interesting work reported recently by Kim et a/. [10] on the subject of
propagation and confinement of LO phonons in GaAs quantum wells. These authors
have studied the non-equilibrium occupancy in a series of GaAs/Al Ga, As superlattices

as a function of either the Al concentration or the thickness of the Al,Ga, As barrier.

They found a sudden drop in the measured phonon occupancy when the Al concentration

-~
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or the barrier thickness reaches some critical value. They have interpreted their results as
being due to a transition of the LO phonon from a propagating state to a confined one in
the well. However there is no theoretical underpinning of the assertion that Raman
scattering is capable of determining whether a phonon is confined or propagating. In this
thesis we have attempted to develop a theory which qualitatively explained the
experimental results.

This thesis is organized as follows: Chapter I contains the introduction. In Chapter
I1, we will discuss the basic theory about electron-phonon interaction in quantum wells.
Using the Huang-Zhu model of confined phonon modes, we perform a model calculation
of the occupancy of non-equilibrium phonons generated by intersubband and
intrasubband scattering in quantum wells. In Chapter III we present our experimental
investigation of resonant intersubband scattering of optical phonons. We discuss and
compare our experimental results with the theoretical predictions from Chapter II. In
Chapter IV, we present our experimental investigation of highly excited GaAs/AlAs
quantum wells via photoluminescence. In Chapter V, we present our investigation of the
propagation and confinement of LO phonons in quantum wells. We summarize the

research work in this thesis in Chapter VI.
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Chapter II: Resonant Intersubband Scattering of Optical
Phonons in GaAs/AlAs Quantum Wells - Model Calculations

In this chapter we will study the issue of resonant generation of non-equilibrium
phonons (NOP) via intersubband scattering in quantum wells (QWs) and superlattices
(SLs) from a theoretical point of view. We will perform a model calculation of the
electron-phonon interactions in GaAs/AlAs QWs based on the theoretical model
proposed by Huang and Zhu [1] to obtain the NOP distribution in QWs and to establish a
relationship between the NOP occupancy and the width of the QWs. It was suggested by
Briggs and Leburton [2] that when the separation between two subbands is close to the
energy of the longitudinal optical (LLO) phonons, intersubband scattering will become
important to the relaxation of hot electrons. This is referred to as RISOP (resonant
intersubband scattering of optical phonons). Pictorially this can be visualized as electrons
in an upper subband dropping almost vertically in momentum space to a lower subbana,
thereby creating a large number of small wave vector phonons. This problem is
interesting in that here we have a unique situation where the wave vectors of the NOP are
in a range that cah be probed directly by Raman scattering. This is very different from
most other NOP experiment in the literature. In this chapter we will quantify the
suggestion of Briggs and Leburton. This chapter is organized as follows: we start out by
looking at the effects of quantum confinement on electrons and phonons in QWs; then we
will examine the three prevailing theoretical modelg in the literature for the confined

phonon modes in QWs; following our discussion on the electron-phonon interactions and




the conservation of wave vector in a quasi-two dimensional system and its consequence
on Raman scattering in QWs, we will perform numerical calculations to obtain the NOP
distribution in momentum space due to intrasubband scattering as well as intersubband
scattering in QWSs. Through our model calculation, we separate the effect of intersubband
and intrasubband scattering on NOP, and establish a relationship between the NOP
occupancy due to intersubband scattering and the width of the QWs. This provides a test
ground for our experimental investigation of RISOP which will be presented in Chapter

II.

2.1 Electrons in GaAs/AlAs quantum wells

In order to carry out the model calculation, it is necessary for us to know the
electron and phonon wave functions, and the electron-phonon interaction. In addition we
also need to know how the momentum conservation result and Raman scattering are
modified in QWs. So we begin our discussion by first examining electrons in QWs.

Semiconductor QWs and SLs are artificial microstructures fabricated by growing
alternating layers of two different materials using molecular béam epitaxy (MBE) or
metal-organic chemical vapor deposition (MOCVD) method. Fig. 2-1 shows
schematically a GaAs/AlAs QW band structure. GaAs has a bandgap of around 1.43 eV
at room temperatﬁre while AlAs has a bandgap of around 3 eV. When these two materials
are brought into contact with each other, their conduction and valence bands will aligned

in such a way that the AlAs conduction band is about 1 eV above that of GaAs, and the

AlAs valence band is about 500 meV below that of GaAs (this is often referred to as a




type-I band alignment with a 60-40 band offset in the literature). The AlAs layers serve as
barriers for both electron and hole motions along the growth direction in GaAs.

Motions of electrons in QWs and SLs along the growth direction are usually
described with the envelope function model [3]. In this model the electrons are treated as
particles with an effective mass m* and an envelope wave function ‘¥, (z). The energy
levels E, of the electrons due to quantum confinement can then be calculated by solving

the Schrodinger equation,

h5 d?
[_ Im* dz? +V, (z)]\}ln(z) =E\VY,(z) (2-1)

where V, is the confinement potential whose height is determined by the band offset.
When the potential well is deep, like in the case of GaAs/AlAs QWs, we can approximate
it by an infinitely deep well. Within this approximation the energy levels £, and the

wave functions ‘Pn'(z) are readily found to be:

Rk’ '
E, = , k =nn/ L, n=12.3,-- (2-2)
2m* "
and
v2/ L cos(k,z) n=13,5,...
¥, () =1 2-3)
N2/ L sin(k,z) n=246,...

where £, is the wave vector of the electron along the growth direction, L 1s the width of
QW, and the center of the QW is taken to be z=0. Although this infinite well

approximation gives slightly higher energy levels, we do not expect &, and ‘¥, (z) to be
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far from their actual values for GaAs/AlAs QWs, and the simplicity of their analytic
forms makes them very useful in our model calculations. In order to calculate the electron
energy levels, we use the Ben Daniel-Duke model [3, 4]. In this model, the envelope
functions are chosen to be either sine or cosine functions (depending on the parity) in the

QWs, and they decay exponentially inside the barrier. By requiring ‘¥, (z) and

1 a¥, (z
) —a';z—(—l (the effective mass m* is different in the well and the barrier) to be

continuous at the interface, we have the following equations:

k
cos(tk,L,)- Do 24 sin(2k,L,)=0 for even states, (2-4)
' my kg
i m, ky . 1
cos(; k,L, ) + o sm(2 kL, ) =0 for odd states, (2-5)
mp K,

where A and B stand for GaAs and AlAs layers respectively. After solving for the
electron wave vector £, we can use Eq. (2-2) to calculate the electron energy, replacing
k, with k. The energy levels are found to depend almost exactly on the square of the
sﬁbband index », as in the infinite well case due to the fact that we have a deep QW.
Another popular approach for calculating the electron energy levels in QWs is the one
developed by Bastard based on the Kane model [3, 5, 6].We have also used this model to
calculate the enefgy levels and found that for the first subband the difference in energy
between these two models is less than 1%, and is therefore completely negligible. For

higher subbands, Bastard’s model gives lower energy levels than those of the Ben Daniel-




Duke model. A detailed discussion of the Bastard’s four band model can be found in
reference [3].

One should remember that despite the confinement along the growth direction,
electrons are able to move freely in the plane perpendicular to the growth direction, and

therefore have a free particle-like energy spectrum in the QW plane.

2.2 Phonons in quantum wells and superlattices

The formation of QWSs and SLs not only changes the electronic band structure, but
also dramatically modifies the phonon modes in these microstructures. Since the acoustic
phonon branch of GaAs and of AlAs overlap with each other, acoustic phonons can freely
propégate from one material to the other as they do in bulk materials. However, the new
periodicity in the microstructure along the growth direction gives rise to a folding of the
Brillouin zone, leading to a folding of the acoustic phonon dispersion curve. Acoustic

phonons whose wavevector ¢ satisfies the following condition
q= k4 m=1929'”’n3 (2'6)

where L is the period of QWs or SL, will be folded back to the zone center (Fig 2-2). This
effect has been amply demonstrated by Raman scattering in QWs and SLs. [7]

Optical phonons in QWs or SLs, on the other hand, behave quite differently from
acoustic phonons. In fact, they behave in a way much similar to confined particles in a
well. We know that confinement of electrons is caused by the bandgap mismatch of the
two materials forming the microstructure, creating potential wells for electrons. Similarly

for optical phonons, if there is no overlap in the phonon dispersion curves of two
10




materials, optical phonons cannot freely propagate from one material to the other. This
results in the confinement of optical phonons within the two materials. For the
GaAs/AlAs QWs we have studied, the zone center longitudinal optical (LO) phonon of
GaAs has an energy of 36.5 meV while the LO phonon energy in AlAs is 44 meV.
Furthermore, the optical phonon dispersion curves of GaAs and AlAs do not overlap (Fig.
2-2). Therefore it can be envisioned that in GaAs/AlAs QWs the wave function of optical
phonons in one material will be heavily damped in the other, leading to confinement of
optical phonons within each individual layer [8]. In the ideal case of a perfect

confinement, each phonon mode can be assigned a wavevector g,, given by

q, = —’Z—g— m=12,...,n, 2-7)

where d is the monolayer thickness, and # is the number of monolayers in the individual
layer.

In addition to the confined phonon modes, the presence of interfaces between
GaAs and AlAs layers introduces new vibrational modes known as the interface modes.
Since these modes decay exponentially away from the interfaces, they have been found
to play a very important role in electron-phonon interaction in thin GaAs/AlAs QWs
(well width < 5nm). However for the samples used in our experiment, the typical well
width is larger tﬁan 15 nm, therefore, contribution from interface modes can be neglected,
and we shall focus on the confined phonon modes only in the rest of this thesis. Interested

readers are referred to reference [9] for a discussion of interface phonons.
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2.3 Macroscopic models of confined phonon modes

Although microscopic lattice dynamics calculation of the motion of atoms in QWs
is possible [10], it is not very convenient to use this method to calculate the physically
measurable quantities like the electron-phonon scattering rates. During the past few
years, much research effort has been.m'ade to find analytical formula for the wave
functions of the confined LO phonon modes. The three most popular macroscopic models.
proposed in the literature so far are the slab model [11], the guided mode model [12], and
the Huang-Zhu model [1]. They differ mainly in their way of handling boundary
conditions. In a recent paper, Knipp and Reinecke have put forward a generalized
method to handle the boundary conditions [13]. Here, however, we will only limit

ourselves to the discussion of the three macroscopic models mentioned above.

2.3.1 The slab model

The slab model is also known as the dielectric continuum model. In this model,
the SL is treated aé a stack of dielectric slabs, and at the boundary of each slab, the
Ma.xwell’s boundary conditions are imposed. Phonon modes derived from this model are
divided into strictly into bulk-like confined modes and extended interface modes. It has

been shown that this is true in the limit of zero phonon dispersion [1]. When phonon

dispersion is taken into account, interface modes are partially mixed with the confined

modes. The slab model was proposed by Fuchs and Kliewer in the 60’s [11], much
earlier than the advent of the SLs, and lately used by a number of researchers. Despite the
discontinuous atomic displacement at the boundary, the slab model embodies most of the

physics needed to describe phonon modes in QWs. The Huang-Zhu model, which we
12




shall actually use to do the model calculation. is just an improved dielectric continuum
model. In the following paragraphs, we will give a brief description of the dielectric
continuum approach.

We consider a SL structure consisting of two polar semiconductors labeled as 1
and 2. It is well known that the long-wavelength optical vibrations in an ionic crystal can
be described by the phenomenological coupled equations proposed by Born and Huang
[14]. Assuming that each layer is characterized by its respective dielectric function
£, (w) , and that the dielectric function is dependent upon frequency, but independent of

wave vector K, then for each layer we have the dielectric function:

2 2
D —W;
slw)=¢,————, i=12 (2-8)
QD — W,

‘where w,,, and w,,, are the longitudinal and transverse optical phonon frequencies. Since

there is no net charge in the QW, we have
V-D=¢(w)V-E=0 (2-9)
where E = —V® is the electric field and ®(r) is the scalar potential and can be written as

&, ,z)= exp(ik,,r, , )(Dm (z). The solutions to Eq. (2-9) can be divided into the bulk-like
confined modes and the interface modes. Interface modes are obtained by requiring
V-E =0 and applying the electrostatic boundary conditions. Here we will only be
interested in the bulk-like confined modes which satisfy ¢ (@) =0, and therefbre have a
frequency of the bulk LO phonon w,,,. For the confined modes in one layer, Eq. (2-9)

also need to be satisfied in the other layer, therefore we have V-E = 0 in the other layer.

13




Using the boundary conditions that D,and E,, are continuous across the interface, one

can show that E vanishes in the other layer, ®is a constant at the interface, and
therefore can be chosen to vanish by a gauge transformation. We see immediately that

other than the requirement that it vanishes at the interface, the choice of a functional form

for @ (z)is infinite. Historically a simple form for @ (z)is chosen to be:

"

cosimm/ L), m=135,...

(4 = 2-10
m (Z) {sm(mzz/ L), m= 2,4,6,... ( )

where the center of the well is taken to be z = 0. Using the above equation, the atomic
displacement u can be evaluated from the fact that it is proportional to the polarization P,
which in turn is proportional to the electric field E. Therefore from the relationship
u<cE=-Vo

we can see that »_ will have a maximum value instead of vanishing at

m?>
the interface, and therefore it is discontinuous at the interface. This is the main drawback

of the slab model.

2.3.2 The guided mode model

To remedy the problem associated with a discontinuity in the atomic
displacements in the slab model, the guided mode model arbitrarily chooses to impose a
mechanical boundary condition by requiring the ionic displacement at the interface to be
zero. This implies thét the electric field and potential vanish in the barrier. The confined

phonons are described by the following potential,

sin(mnz/ L), m=1329,...
®,(2)= (2-11)

cos(mnz/ L), m=2,46,...

14




This approach has been used by Ridley [12]. The assumption of vanishing
displacement at the interface automatically rules out the possibility of any interface
modes. Another major problem of the guided mode model is that it does not satisfy the

electromagnetic boundary conditions.

2.3.3 The Huang-Zhu model

To solve the dilemma of the discontinuity of the ionic displacement and of the
electric potential, Huang and Zhu proposed an improved macroscopic dielectric
continuum model [1]. Through a comparison with the results of their microscopic lattice
dynamics calculations, Huang and Zhu devised a set of analytical equations to
approximate their numerical results. These equations not onlj satisfy the electromagnetic
boundary conditions, but also the continuity of the atomic displacements at the interface.

The electric potentials for the asymmetric modes are given by,

D,.(2)=sin(u,z/ LYy+C,z/ L. m=3,5]7,... (2-12)
and for the symmetric modes,

@, _(zy=cos(mnz/ L)-(-D)"?*, m=246,... (2-13)
where p, and C,, are constants determined by the following two equations:

tan(u,, 7z /2) =y, /2, (2-14)

C, =-2sin(u,z/2). , (2-15)

m

Eq. (2-14) and (2-15) can be easily solved numerically, and one finds,
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My, =2.8606, p, =4918, w4, =6.95,

Uy =8.9548, 1, =10.963, ...
and the corresponding C values are given by,

C;=1.9523, (C;=-1983, (;=1.992,

Co=-1.995, C,;=1.9964, ...
A comparison of the phonon modes derived from the above three models with the exact
microscopic model is shown in Fig. 2-3. As we can see, the Huang-Zhu model is the
closest one to the microscopic model. Furthermore, recent experiments indicate that the
scattering rate and NOP occupancy calculated using the Huang-Zhu model provide the
best fit to the experimental results [15]. In the next section, we shall use this model to

calculate the electron-phonon interaction and NOP distribution in QWs..

2.4 Electron-phonon interaction in GaAs/AlAs quantum wells

It is well established that in polar semiconductors the relaxation of energetic
electrons is achieved predominantly via the Fréhlich interaction, a coupling of the
electrons with the macroscopic electric field created by the motion of ions of opposite

charges. The Fréhlich interaction Hamiltonian is given by [1,16]:

H, =" 22 (D, (Z)[Cxp(iq -r)a,, (q)+exp(-ig-r)a], (q)] (2-16)

g.m a=zt

t
ha

where V is the volume of the QW, «, _(q) and a, (q) are phonon creation and

na

annihilation operators, ¢, (q) =(21,)”"* with I, being
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I =

_1_ 172 2 aa (d(l)mjz
=7 [mdz{q ® +| = . (2-17)

A 1s given by

11
A= 47zezha)w(———-) (2-18)
&, &

@«

g, and g, are the high-frequency and static dielectric constants for GaAs, @, is the
GaAs LO phonon frequency.
If we let |n,k) denotes an electron residing in subband » and having a

wavevector k, then the relevant matrix element in our calculation that corresponds to the

evolution of the combined electron and phonon state from {n,k, N q> to }n' JK'N == 1>

is

nk N, = ( N, +1x l} i:/z_ 2@)G2"| Synre 2-19)

Kn’,k',Nq:tl*HL,p(m) ot

where H,,(m)is the Hamiltonian for phonon mode m, G," ={n'|®,|n)}, and |n) is the

electron wave function given by Eq. (2-3). The explicit form of G2” for the lowest three

subbands can be found in the Appendix.
The rate for the creation and annihilation of NOP with mode number m as a result
of hot electrons relaxation from subband # to subband »’ can be calculated using Fermi’s

golden rule, and is given by the following equation
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Bm) 205 ot s, e, (1)

x8(Eqq—E, +ha)w)—‘<n',k+q, N, -1|H,,(mln.k, N, ) 7 (1= fea)

N
x8(Ey,q ~ E, ~hoo )] -—T-"- (2-20)

where f, is the electron distribution function, t is the phonon lifetime and is on the
order of 10ps. The total rate of change in N, is calculated by summing the above
expression over all phonon modes and over all subbands. If we assume that the electrons
are at quasi-equilibrium obeying a Boltzmann distribution and that f, is much smaller
than unity (which can be justified by the typical electron density we excite in our
experiments), then by combining Eq. (2-17), (2-19) and (2-20), we arrive at the following

equation:

N, (n,n’,m} 3 et [327°m'ct( 1 1)t2(q) exp(— E, /k/;T) wnl?
- - - nc’a)!.() e - o T T }Glﬂ '
a ne\ kT \e, &) q D exp(-E,/k,T)

r

(E,,' - En + Eq + EI,())z
X li(Nq + l)exp(— 4E kT
(E’—E)J+E1/—El())2 Nq
-N . ' L 2-21
‘ ex"( 4E k,T T @-21)

In the above equation, the quasi-equilibrium temperature 7 of the hot electrons is

assumed to change with time as the hot electron gas cools down. Using the Boltzmann
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distribution for a two dimensional electron gas, we can relate 7 and the average energy

<E (t)> of an electron in the following way,

E exp( Ep/k,,T(t))
(E®)=k T(t)+Z ZCXP( E, 1k, T(1))

(2-22)

Since electrons gain or lose energy to the phonon pool, any change of the electron energy

will result in the creation or annihilation of phonons. Therefore, the energy loss rate of

the electrons can be related to the rate of change of the NOP occupancy by the following

equation,

N (1)

AN(NEW))
a

Ny 42 g +E, (2-23)

l()

where N(¢) is the total number of electrons at time ¢, the summation is over all the

phonon modes, and p, is two dimensional phonon density of states. The last term in Eq.

(2-23) is the rate of energy input from the pulsed laser, E; is the initial excess energy of

the electrons. By assuming a standard sech’ type of intensity profile for the laser,
1()=1,sech*(176t/ ) (2-24)

where 7, is the laser pulse width, Eq. (2-23) can then be rewritten as:

AEQ) 5 jéN" @) " (B, —(EQ)) a2,()

a 77zn oL ) a (2-25)

where the electron density », of the two-dimensional electron gas is related to the laser

intensity by the following equation:
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n, @) [_1()dr = f—g(l +tanh(1.761 /7 , )) (2-26)

By solving Eq. (2-21), (2-22) and (2-25) numerically, we can get information about NOP

distribution in time and momentum space.

In carrying out the model calculation, we have chosen the laser pulse width to be

Sps, phonon lifetime to be 10ps, typical electron density to be 2x10'° cm™. Due to their
smaller effective mass, most of the excess energy from the excitation photon goes to the
electrons rather than the holes, so we have neglected the contributions from hole
relaxation to the NOP. The initial excess energy of the electrons is set to be 500 meV to
simulate our experimental condition. NOP occupancy is measured Sps after the passage

of the laser pulse. The material parameters used in the calculation are given in Table I.

2.5 Wavevector conservation for Raman scattering and electron relaxation in bulk
materials and quantum wells

Before we proceed with our calculation, let us first examine the difference in
wavevector conservation for bulk GaAs and QWs, and see how it will affect Raman
scattering and NOP generated by hot electron relaxation. For Raman scattering, we need
to define a scattering geometry because it determines the wave vectors of phonons probed
by Raman scattering. As in most NOP experiments, we choose the quasi-backscattering
geometry which is shown schematically in Fig. 2-4. Although the photon is incident on
the sample at the angle of about 45°, due to the large index of refraction of GaAs (n ~
3.5), the wave vector inside the sample is almost perpendicular to the sample surface (so

named quasi-backscattering). This geometry is preferred due to the fact that in order to
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excite hot electrons, photons with energy much higher than the band gap of GaAs are
used, and that these photons are strongly absorbed by GaAs within an absorption depth of
about 200 nm. During the Raman scattering process, energy and quasi-momentum (or
equivalently wave vector) need to be conserved. Hence for a given scattering geometry,
the wave vector of the phonons that participate in Raman scattering can be easily

calculated from the following equations:
KI - K.s = Q ph (2-27)

@~ =Wy, _ . (2-28)
where Q,, is the phonon wave vector. K;” and K|’ are, respectively, the wave vectors of
the incident and scattered photons inside GaAs, and can be related to the corresponding
wave vgctors K; and K| of photons in air via the Snell law. w,, ®, and o, are the
corresponding frequencies. We use 2 eV photons (A = 600 nm) in our experiments, so the
magnitude of the wave vector K of the incident photon is 2n/A ~ 1x10° cm™. For bulk
GaAs as schematically shown in Fig. 2-4 (a), the magnitude of the wave vector Q,, of the
phonon is about 2nK; ~ 7x10° cm™. This value happens to be very close to the peak of the
NOP distribution as calculated by Collins and Yu (Fig. 2-5) [17]. This is the main reason
why Raman scattering has been a powerful tool in studying NOP in bulk GaAs. For GaAs
QWs and SLs (Fig.2-4(b)), the translational symmetry of the crystal lattice is only
preserved in the plane parallel to the QW layers. Therefore only the component of the
wave vector parallel to the QW plane is conserved. Eq. (2-27) should be modified
accordingly to reflected such a change. For our experimental geometry, we find that Q,

is K;sin@ ~ 7x10* cm™. This value is one order of magnitude smaller than the bulk value,
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and we should expect the large difference in the wave vector of phonons probed by
Raman backscattering to have a dramatic impact on Raman scattering efficiency.

Another quantity that is affected by the change of wavevector conservation is the
wave vector of NOP generated by hot electron relaxation. For bulk semiconductors, one
mainly needs to considef intrasubband relaxation of the hot electrons, and it has been
investigated in great details by Collins and Yu [17]. The formation of subbands in QWs
introduces new relaxation channels for the hot electrons, i.e. intersubband scattering.
NOP generated via these two channels have very different wavevector distributions.
Intuitively, one can image that intrasubband relaxation of the hot electrons will produce a
hot phonon distributidn similar to that in bulk materials because it is determined mostly
by the band curvature. On the other hand, intersubband relaxation produces a phonon
distribution that depends strongly on the separation between the two subbands. To better
support the above argument, we apply energy and wave vector conservation to the hot
electron relaxation shown schematically in Fig. 2-6, and we obtain the following results

for intrasubband scattering:

—_g—(m’ka —El,())<Qph// <—_—}5T_'(\[ET+VE1¢ "ELO)’ (2-29)

and for intersubband scattering:

o
h

\/E_\/Ek +A—EI,())<Qph// <—2hl(\/E+VEk +A—E1.0) (2-30)

where E, is the kinetic energy of the hot electrons, E,, and Q,,, are the energy and

wavevector of the LO phonon respectively, and A is the separation between two
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subbands. Assuming that E, ~ 500 meV, we find that Q,, is between 3.5x10° and

Vm‘ (A_EI,()) an
n2E,

1.8x10" cm” during intrasubband scattering, while Q,,, is between d

1.8x10” cm™ during intersubband scattering; It can be clearly seen that when A is close to
E,,, the wave vector of the NOP can be very arbitrarily small. When we combine the
above result with our previous discussion that Raman scattering in quantum wells is only
sensitive to small wave vector phonons, we conclude that for perfect two dimensional
OWs, Raman backscattering is not capable of probing NOP generated by intrasubband
scattering, and that it can probe NOP generated by intersubband scattering only when

the subband separation is close to the LO phonon energy.

2.6 Results of model calculations -- NOP distribution due to intersubband and
intrasubband scattering

In this section we present results of our model calculations. As we pointed out
earlier, all phonon modes and electron subbands should. in principle, be included in the
calculation. However, this is apparently impossible to do numerically. Therefore we need
to make some reasonable apprpximations. Since we have assumed that the electrons obey
the Boltzmann distribution which decays exponentially with the electron energy, we
expect that electfons in a small number of the lowest lying subbands will contribute most
to the creation of NOP. In addition, we have shown in the previous section that only

those subbands whose separation is close to the LO phonon energy will contribute

significantly to the creation of phonons with small wavevector via intersubband




scattering. Hence we will include only the first three subbands in our cglculations. As for
the phonon modes, we have tried including the first five (m = 2,3...6) confined modes,
and the results (Fig. 2-7) show that as the order of the phonon mode increases, their
contribution decreases rapidly. Hence we have only included the first five phonon modes
in our calculations.

The total NOP is a sum of phonons created during intersubband and intrasubband

scattering. The selection rule for phonon modes that can participate in the scattering of

electrons is embodied in Eq. (2-19), specifically, it is determined by G,,'f". Because both
the electron and phonon wave functions have definite parity, it is straightforward to show
that intrasubband scattering of electrons is mediated only by the creation and annihilation
of even parity phonons (m = 2,4,6,...) while intersubband scattering between adjacent
subbands is mediated by odd parity phonons (m = 3,5,7,...). This analysis enables us to

examine the effect of intersubband and intrasubband scattering separately.

Fig.2-8 shows the NOP distribution due to intrasubband scattering calculated for a

190 A QW. QWs with other widths show very similar NOP distribution and will not be

shown here. As we can see from Fig. 2-8, despite the quasi-two dimension nature of
QWs, the distribution of NOP from intrasubband scattering bears a lot of similarity to the
one obtained by Collins and Yu for bulk GaAs (Fig. 2-5). There are two distinct features
in this plot, namely a sharp cut-off in the NOP at phonon wavevector of around 2x10° cm’
' and a peak in the NOP at around 10° cm™. This can be understood from our earlier

discussion about the range of NOP wave vector. Since this range is mostly determined by

the excess energy of the electrons and by the electron dispersion (determined by the
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effective mass of the electron which has the same value of 0.067m, for bulk GaAs and
GaAs QWs), we expect to see similar results. This verifies our argument that
intrasubband scattering does not contribute to the creation of small wave vector phonons.

On the other hand intersubband scattering can produce a significant number of
small wave vector phonons as evidenced in Fig. 2-9. The amount of phonons produced
and their wave vectors depend strongly on the subband separation, or equivalently on the
width of the QWs. Fig. 2-10 shows the NOP distribution due to intersubband scattering
for a number of QWs. When the well width increases from 150 A to 240 A, the
separation between the first two subbands changes from 54.2 meV to 22.4 meV. For
width equal to 180 A the subband separation of 39.5 meV is close to the LO phonon
energy of 36.5 meV. Accordingly the amount of small wave vector phonons in Fig. 2-10
varies with the well width by first increasing, reaching a maximum around 180 A and
then decreasing. To better view the dependence of the NOP occupancy with the width of
the well, wé plot the occupancy of NOP with wave vector equal to 7x10* cm™, which is
the wavevector probed by our Raman scattering geometry, versus the well width. As
shown in Fig. 2-11, the NOP occupancy has a peak around 185 A where the separation of
the first two subbands is resonant with the LO phonon energy, and the widfh of this peak
is about 20 A.

In summéry, we have performed a model calculation of the NOP distribution
generated by hot electron relaxation in GaAs/AlAs QWs using the theoretical model of
confined phonons proposed by Huang and Zhu. We show that while intrasubband

scattering produces a NOP distribution similar to that of bulk GaAs, intersubband
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scattering produces NOP whose distribution depends strongly on the separation of the

subbands (or the width of the QW). When the separation is close to the LO phonori

energy, a large number of small wave vector NOP are generated by the intersubband
scattering. This phenomenon is known as RISOP. These phonons are readily accessible
by Raman scattering because wave vector conservation in QWs and SLs limits Raman
scattering to probing small in-plane wave vector phonons. The experimental

investigation of RISOP will be presented in chapter III.




Appendix of Chapter 11

Using the phonon wave function @, given in Eq. (2-12), (2-13) and the electron wave

function | ») given in Eq. (2-3), we can evaluate G”"used in Eq. (2-19).

m

2 2
L _ _ 2
Gy' =(1mi1) =7 [, dzcos’(m/ D)x @,

0 m=3,5,7,...
5,, - D™ m=246,...
G2 =G =(2|m1) =%[ dzsin(2nz/ L)cos(zz/ L)x @,
16C,, /97 = (24, / 7)cos{ 1, 7/ 2) m=357,..
= x[l/(,um ) (/1,,.‘9)]
0 m=2/4,6,...

2 eLi2 . 9
G2 =(2)mf2) = L -[l,/z dzsin’ Q[ L)x @,

0 m=3,57,...

-0568,, - (-1)" m=24.6,...

2 ¢
G =G =(3m1) = 7 _[II/:Z dzcos(37z / L)cos(zz / L) x @,

0 m=3,57,...

05(8,, + G ) m=2,4,6,...
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m

2
G2 =G =(3m2) = [ dzcos3m/ L)sin@m/ L)x @,
m L L/2

—48C,, /257% +(2u,, / 7)cos(u, 7 1 2) m=3,5,7,...

m

- x[1/(p2 - 1)=1/ (2 - 25)]
0 ‘ m=24,0,...

2 2
33 _ - 2
G? =(3m3)= ; _[m dzcos’(3mz/ L)x @,

0 m=3,57,...

058, , —(-1)"" m=246,...

We can also evaluate /,, given by Eq. 2-17.

m

g’ 0.5[1 - Sir;(: ;ﬁ)} - icﬂ cos{, 7/2)+ (:2‘)2 sin(p,7/2)+C2 / 12}
et () 1+Sin(”"‘”) +4C,, sin(y, 7/2)+C? m=35,7

[ 2 U7 m S A m A

15¢% +05(mzx/ L)* m=2,46,...

\
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Table I

GaAs AlAs

Effective mass of the electron 0.067 m, 0.15m,
Effective mass of the heavy hole 0.377 m, 0.478 m,
High frequency dielectric constant &, 10.9

Low frequency dielectric constant &, 13.3

Band Gap at 300 K 1.425 eV 3.04eV
Band Gapat 77K 1.51eV 3.1 eV
LO phonon energy | 36.5 meV 50 meV




Figure Captions for Chapter 11

Fig.2-1 A schematic diagram for the band alignment of GaAs/AlAs quantum wells.

Fig. 2-2  Phonon dispersion curves for the longitudinal phonons in bulk GaAs (solid
lines) and AlAs (dashed lines). Folded acoustic phonon and confined optical phonon

dispersions in a superlattice are also shown.

Fig. 2-3  The z component of the atomic displacements (u.) and the corresponding

potentials (®(z)) for the first few GaAs-like optical phonon modes in GaAs/AlAs
quantum wells. (a), (b) and (c) are from the macroscopic models and (d) is from the

microscopic calculations. Reproduced from reference [2-10].

Fig. 2-4° A schematic diagram for the quasi-back scattering geometry used in Raman
scattering experiments in the case of (a) bulk GaAs, (b) GaAs/AlAs quantum wells. K
and K, are the wave vectors of incident and scattered photons, q is the wave vector of

phonons. The incident angle & is about 45°. GaAs has an index of refraction » of about

3.5.

Fig. 2-5 Non-equilibrium phonon distribution generated by hot electrons in bulk GaAs.
Shaded region indicates the wave vectors probed by Raman back scattering. Reproduced

from reference [2-17].




Fig.2-6 A schematic band diagram showing (a) intrasubband and (b) intersubband
scattering of hot electrons. q,,, and q,,, denote the maximum and minimum wave vector

of phonons created by hot electrons with energy E, E,, is the energy of the LO phonon.

Fig. 2-7 Non-equilibrium phonon distribution due to intrasubband and intersubband
scattering for different phonon modes calculated for a 190 A GaAs/AlAs quantum well

using the Huang-Zhu model.

Fig. 2-8  Non-equilibrium phonon distribution due to intrasubband scattering calculated
- for a 190 A GaAs/AlAs quantum well using the Huang-Zhu model. The vertical dashed

line indicates the wave vector probed by Raman back scattering.

Fig. 2-9  Non-equilibrium phonon distribution due to intersubband scattering calculated
for a 190 A GaAs/AlAs quantum well using the Huang-Zhu model. The vertical dashed

line indicates the wave vector probed by Raman back scattering.

Fig. 2-10 Non-equilibrium phonon distribution due to intersubband scattering calculated
for GaAs/AlAs quantum wells of various well widths. The vertical dashed line indicated

the wave vector probed by Raman back scattering.

Fig. 2-11 The occupation number of non-equilibrium phonon at wave vector 7x10* cm™!

generated by intersubband scattering of hot electrons as a function of the quantum well

width. The “resonant” effect is clearly shown to occur around well width 185 A.
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Chapter III: Resonant Intersubband Scattering of Optical
Phonons in GaAs/AlAs Quantum Wells - Experiments

In this chapter we present our experimental investigation of the phenomenon of
resonant intersubband scattering of optical phonons (RISOP) in GaAs/AlAs quantum
wells (QWs). This study involves a time-resolved Raman scattering of non-equilibrium
optical phonons (NOP) generated by electron relaxation in QWs. As we have shown in
our model calculations in Chapter II, RISOP will generate a significant amount of small
wavevector NOP which, in principle, should be easily accessible by Raman scattering.
However, there exists the long standing problem of finding the correct way to measure
NOP occupancy. As noted by other researchers [1], resonant Raman effects in QWs and
superlattices (SLs) make it virtually impossible to determine NOP occupancy using the
conventional technique that has enjoyed great success in studying NOP in bulk materials
[2, 3, 4]. Here we will address this critical issue of how to determine NOP occupancy in
QWs and SLs. This chapter is organized as follows. We first describe our experimental
setup for performing picosecond time-resolved Raman scattering. We then move on to
discuss the relation between Stokes and anti-Stokes cross section, an essential part of this
experiment, and ¢stablish the correct method for measuring NOP in QWs. After testing
the validity of our technique, we apply it to determine the occupancy of NOP generated
by RISOP in QWs. Finally we compare and discuss the experimental results and

theoretical prediction.
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3.1 Experimental setup

Since LO phonons in GaAs/AlAs QWs typically have a lifetime of the order of a
few picoseconds, in order to study any dynamic phenomenon related to phonons,
picosecond or sub-picosecond time resolution is desirable. Fig. 3-1 shows the
experimental setup. An actively modelocked Ar” ion laser from Spectra Physics produces
514.5 nm photon pulses with a pulse width of 200 picoseconds and a repetition rate of
about 80 MHz. We use it to pump synchronously a home-build dye laser by matching the
cavity lengths of the Ar" laser and the dye laser. Typical output from the dye laser is of |
the order of 100 mW (or 1 nJ per pulse) and pulse width is Iabout 5 picosecond.
Rhodamine 6G is used as the active lasing media, and this enables us to tune the laser
wavelength from about 550 nm to 630 nm to study the resonant Raman effect. A beam
splitter is used to send a small fraction of the dye laser output into an autocorrelator to
monitor the laser operation and to measure the pulse width. The remaining output is sent
through a series of Brewster-angle prisms to filter out the spontaneously emitted dye
fluorescence which would otherwise overwhelrﬁ the weak Raman signal. It is then
directed to the sample at an angle of about 45°. Due to the large index of refraction of
GaAs (n ~ 3.5), the beam direction inside the sample is about 80°, this gives us a
scattering geometry very close to backscattering. Both emission and scattered light are
collected by a cémera lens and dispersed with a SPEX 1877D Triplemate spectrometer.
Photoluminescence signal is detected with a cooled GaAs photomultiplier tube using
standard photon counting electronics. Raman signal on the other hand is detected with a

ITT Mepsicron, a multichannel detector, coupled to a position computer.
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We have performed measurements on several GaAs/AlAs multiple QW samples
grown by molecular beam epitaxy (MBE) on [100] substrates. Each sample consists of
about 30 QWs with identical well and barrier width. Fig. 3-2 shows schematically the
QW structure. Samples were attached to the cold finger of a liquid nitrogen dewar.
Experiments were carried out either at room temperature or at liquid nitrogen
temperature. The excitation density was estimated both from the absorption coefficient
and the laser spot size on the sample, and from analyzing the photoluminescence
lineshape as described in Chapter IV. QW widths are important parameters in this
experiment, they are obtained by analyzing the photoluminescence spectra also described

in Chapter IV.

3.2 Relation between Stoke and anti-Stokes Raman cross sections

The conventional way to determine the phonon occupancy N, is to measure the
Stokes and anti-Stokes intensities at the same laser photon frequency. The intensity /(@)

of the Raman peak can be related to phonon occupancy N, and the scattering cross

section o(w) in the following way:

[((w)<c(N, +1)-0(@) (3-1)

[s(@)xN, -0, (o) (3-2)

where S and AS denote Stokes and anti-Stokes respectively. If one assumes that the

scattering cross section does not change dramatically with different photon frequencies,
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which is found to be true for bulk GaAs away from the critical points, then N, can

easily be obtained from Eq. (3-1) and (3-2):

. 1
N

—— 33
¢ I/ -1 3-3)

The above equation has been used successful in determining phonon occupation number
in bulk semiconductofs [2, 4]. However in semiconductor QWs, there are many subbands.
Whenever the incident or the scattered photon energy is close to one of the subbands, one
expects to see strong resonant Raman effect [5], the former one is referred to as the
incoming resonance while the latter is called the outgoing resonance. Although the
resonant Raman effect greatly enhances the signal, it also creates problems in

determining N, . Since the Stokes and the anti-Stokes resonances happen at different
photon energies, o and o, cannot be assumed to be equal, therefore Eq. (3-3) will
give different values of N, for different incident photon energies. The value of N,

obtained in this way is not physically meaningful.
However, Loudon pointed out many years ago that in a system with time reversal
symmetry, the Stokes cross section o (w) and the anti-Stokes cross section o (@)

satisfies the following equation [6]:
os(@)=0,4(w~ ®,) (3-4)

where @, is the phonon frequency. The rigorous proof of the above relation using

quantum mechanics can be found in reference [6]. Here we would like to present a more

intuitive picture. Fig. 3-3(a) show the Stokes scattering process in which a incident
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photon with frequency @ loses part of its energy to create a phonon with frequency o, ,
and is scattered off with frequency @ -, . The time reversal process of this scattering
event is shown in Fig. 3-3(b) in which an incident photon with frequency —w, gains
some energy by annihilating a phonon of frequency @, , and comes out of this scattering

with frequency @ . Note that this process is exactly the anti-Stokes process for an incident
photon with frequency @ —w,. When time reversal symmetry holds, we should have the
relation given by Eq. (3-4).

After we take into account the relationship between Stokes and anti-Stokes cross

sections, Eq. (3-3), is modified to become

1
N =
Y Ig(@) ] (o-w,)-1

(3-5)

In the following section, we will test this relationship in GaAs/AlAs quantum

wells.

3.3 Experimental verification of the relationship between Stokes and anti-Stokes
cross sections

Although this important relationship has been in the literature for a long time,

there has been few tests of it. In a recent paper [7], Ruf et al. measured the resonant

Raman profile of a GaAs/AlAs QW sample at room temperature. They found that only by

taking into account Eq. (3-4), could they get the right value for the thermal phonon

occupancy. Here we will show that Eq. (3-4) can be used not only to determine the
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thermal_ phonon occupancy, but also be used to determine NOP occupancy in quantum
wells.

A typical Raman spectrum we obtained with the multi-channel detector system is
shown in Fig. 3-4. We have combined two spectra of the Stokes and the anti-Stokes
scattering. Laser photon is supposed to be at zero Raman shift. Confined GaAs LO
phonon peak has a Raman shift of about 290 cm™ and a width about 6 cm™. The AlAs
phonon peak is also visible around 400 cm™” on the Stokes side. By varying the laser
photon energy, we obtained a serious of spectra similar to the one shown in Fig. 3-4, and
by plotting the phonon peak intensity versus the incident laser photon energy, we
obtained the resonant Raman profile of the sample.

Fig. 3-5 shows the room temperature resonant Raman profile of a 165 A
GaAs/AlAs QW sample. It can be seen that when the laser photon energy is tuned from
1.95 eV to 2.20 eV, both the Stokes and the anti-Stokes intensities change dramatically,
showing strong resonant effect. The prominent resonant Rainan peak corresponds to the
transition between the sixth electron and heavy subbands, while the transition between
the seventh subbands is responsible for the maximum in the anti-Stokes intensity around
2.17 eV. Clearly if we were to calculate phonon occupancy simply by Eq. (3-3), we
would get a thermal phonon occupancy that depends strongly on the laser photon energy.
However, taking‘ a closer look we find that the resonant profile of the Stokes and anti-
Stokes scattering have very similar line shapes, with the Stokes profile shifted to the high
energy side by exactly one LO phonon energy of 36.5 meV relative the anti-Stokes

profile. This verifies Eq. (3-4). If we shift the two profiles relative to each other by 36.5

meV and muitiply the anti-Stokes intensity by a factor of 3.7, we find that we can lay the
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two resonant profiles right on top of each other (Fig. 3-6). Using Eq. (3-5), we obtain a
phonon occupancy of 0.37. This is quite close to the thermal phonon occupancy of 0.3
calculated from the room temperature. In order to make a more straightforward
comparison, we convert the phonon occupancy into the corresponding phonon
temperature. Since phonons are bosons, they follow Bose-Einstein statistics. Therefore by

using the following equation,

1
N, = ;
Y exp(E,, /KyT)-1

(3-6)

where £, is the GaAs LO phonon energy and K, is the Boltzmann constant and T is
the temperature, we find a phonon temperature of 335 K. This is very close to the room
temperature of 300K. The slight increase in phonon temperature may be attributed to
laser heating of the sample.

Having successfully obtained thermal phonon occupanéy by taking into account
the resohant Raman effect, we want to apply this technique to study NOP in QWs. In this
study, we cooled our sample to liquid nitrogen temperature (T=77K). Since at 77K,
thermal phonon occupancy calculated from Eq. (3-6) is only 0.003, which may be
neglected when compared to the NOP occupancy excited by picosecond laser pulses as
we will show in the following paragraphs. In the actual experiments, we also need to
consider possible contribution to NOP due to laser heating and non-ideal thermal contact
between sample and liquid nitrogen in our simple cryogenic system. These factors can
cause the sample surface temperature to be higher than 77K. Thus the thermally excited

phonon occupancy needs to be subtracted from our measured phonon occupancy.

51




Fig. 3-7 shows the resonant Raman profile of a 195 A QW sample at liquid
nitrogen temperature. Prominent peaks in the resonant profiles corresponds to the
transitions from the sixth and the seventh heavy hole subbands to the corresponding
electron subbands. Again we find that the Stokes and anti-Stokes profiles of the NOP are
shifted from each other by the LO phonon energy in a way similar to that of the thermal
phonons. Using Eq. (3-5), we find a phonon occupancy of 0.08.

To determine the contribution from thermal phonons to the measured phonon
occupancy, we performed a measurement of the density dependence of the phonon

occupancy. Fig. 3-8 shows the measured phonon occupancy N, as a function of electron
density excited by laser pulses. As can be seen, N increases monotonically with hot
electron density. This is consistent with the prediction of Eq. (2-21) in Chapter II, and we
expect that as hot electron density goes to zero, NOP occﬁpancy should go to zero.
However, when we extrapolate the curve in Fig. 3-8 to zero electron density, we get a

non-zero N,. This suggests that N  as-determined is not the true value of NOP
occupancy, it contains contribution from thermal phonons. The extrapolated value of N,

to zero electron density, N, should correspond to the thermal phonon occupancy with no
laser photon hitting the sample. From N; =0.038, we obtained a sample surface
temperature of 130 K. To determine the effect of laser heating, we performed a
measurement with the laser running in continuous mode but with the same amount of
power as in the pulsed mode. We measured a phonon occupancy of about 0.033. This

shows that laser heating is negligible in experiments done at low temperature. In the
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measurement of RISOP to be described in the next section, we will subtract the value

N, from N, determined directly from Eq. (3-5).

3.4 Resonant intersubband scattering of optical phonons -- experiment and
discussions

In the above sections, we have shown how resonant Raman effect can greatly
affect the determination of the occupancy of NOP in QWs. We also demonstrated that by
taking into account the critical relationship between the Stokes and anti-Stokes cross
sections, one can successfully measure the NOP occupancy. In this section, we will use
this technique to investigate RISOP. We have measured the NOP occupancy for a series
of QW samples at liquid nitrogen temperature. The QW widths are determined from PL
measurement to be described in Chapter IV, and are so chosen that they span across the
predicted resonance peak at well width of about 185 A.

Fig. 3-9 shows our experimentally measured NOP occupancy as a function of the
QW width. Also shown on the same plot is the theoretical prediction from our model
calculation. Surprisingly as one can see the value of NOP occupancy measured
experimentally is much lower than that of the prediction. Furthermore, there seems to be
only a slight increase in NOP occupancy as the width of the QW increases, and no
noticeable enhaneement due to RISOP can be found.

The unexpectedly large discrepancy between the prediction from our model
calculation and our experimental results needs to be explained. When we look back at

our model calculation in Chapter II, we see that it is based on the assumption that quasi-
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momentum parallel to the QW plane is conserved during hot electron relaxation process
and during light scattering. If this assumption is relaxed, we would expect deviations
from the theoretical prediction. Here we will examiﬁe the possibility that resonant Raman
scattering can be mediated by interface roughness in our QW samples.

In a recent paper [8] Tatham et. al. showed that when Raman measurement was
done in narrow quantum wells at an energy far away from the resonance, no anti-Stokes
scattering could be observed. This shows the important of resonant Raman effect in
detecting the NOP. Now let us consider an outgoing resonant Raman scattering at some
electron and hole subband edge shown schematically in Fig. 3-10. It can be shown that as
a result of the conservation of energy and quasi-momentum, phonons involved in this
scattering process will have a wave vector ¢, about 4x10° cm™. On the other hand the
change of photon wave vector parallel to the QW plane in quasi-back scattering is about
7x10* em™. The large mismatch of the wave vector (or momentum transfer) means that
this scattering process would, in principle, be forbidden by quasi-momentum
conservation. However, the experimental observation of the resonant Raman effect
suégests that it does take place. Therefore wave vector conservation has to be somehow
relaxed in this case. And the most likely candidates that cause the relaxation of wave

vector conservation are defects or impurities.

The idea of defect mediating resonant Raman scattering has been invoked by a

number of researchers to explained their experimental results [9, 10]. For example, to
explain the NOP observed in their Raman experiment on narrow GaAs/AlAs quantum

wells, Tsen et. al. have suggested that defects may play a role in the resonant Raman




scattering, thereby shifting the wave vector probed by Raman scattering from < 10° cm’
to about 4x10° cm™. However, if we were to choose this wave vector to be the one probed
in our experiment, we should measure a NOP occupancy about 3 to 4 times larger than
what we have observed. This can bé deduced from the NOP occupancy curves in Fig. 2-8,
2-9, 2-10. So this is not likely to be the explanation for our experiment. We believe that a
more likely explanation for the relaxation of wave vector conservation in our resonant
Raman experiment is the interface roughness in GaAs/AlAs quantum wells.

Recent experimental work with scanning electron microscopy (SEM) have
revealed the existence of islands at the interface of GaAs and AlAs layers. Resonant
acoustic phonon scattering [11] has also found interface roughness to be important. These
authors have found the lateral size of the roughness to be around a few hundred A. Due to
interface roughness, q, may not need to be conserved exactly in Raman scattering.
Instead of probing phonons with a single value of q,, we are in fact measuring phonons
within a range of q,. This range is approximately related to the average size d of the
atomically smooth regions as 27 /d. Since NOP with large wavenumber (> 10° cm™)
have a rather small occupancy as can be seen from Fig. 3-11(a), the inclusion of these
phonon in Raman scattering will significantly reduce the measured NOP occupancy N, .
In Fig. 3-12, we show our calculations for several different values of d. As d gets smaller,
more large wave ;fector NOP are probed by Raman scattering, and consequently we find a
smaller N, : Qualitative agreement between experiment and calculation is found for d of

the order of 100 A. Our calculation suggests that interface roughness may be responsible

for the absence of RISOP effects in the NOP measured by Raman scattering experiment.
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In summary, we have shown that by taking into account the relationship between
the Stokes and anti-Stokes scattering cross sections, we can successfully determine the
phonon occupancy in QW and SL from their Resonant Raman profiles. We have used this
technique to investigate the issue of resonant intersubband scattering of optical phonons
by measuring the NOP occupancy. Our experimental results differ significantly from the
theoretical prediction based on model calculations. We discussed this discrepancy in
terms of the breakdown of quasi-momentum conservation caused by interface roughness.
Our results suggest that interface roughness play a very import role in the measurement

the NOP occupancy in quantum well samples.
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Figure Captions for Chapter I11
Fig. 3-1 A schematic diagram of the experimental setup for the time-resolved Raman

measurement.
Fig. 3-2 A schematic diagram of GaAs/AlAs multiple quantum well structure.

Fig. 3-3 A schematic diagram for (a) Stokes and (b) anti-Stokes Raman scattering.

Note that (b) is a time reversal process of (a).

Fig. 3-4 A typical Raman spectrum of GaAs/AlAs quantum wells obtained with our
experimental setup. The GaAs and AlAs confined phonons peaks are at 290 cm™ and 400

cm’', respectively.

Fig. 3-5 Resonant Raman profiles of the Stokes (solid squares) and anti-Stokes (solid
circles) Raman scattering for a 165 A GaAs/AlAs quantum well sample measured at
room temperature. Dashed lines are guides to the eyes. Note that the two profiles have
similar lines shapes, and that the separation between the Stokes and anti-Stokes peaks is

exactly one LO phonon energy.

Fig. 3-6  Resonant Raman profiles of the same sample as in Fig.3-5. However the anti-
Stokes peak has been purposely shifted towards higher energy by one LO phonon energy,

and then multiplied by a factor of 3.7. Using Eq. (3-5) and (3-6), we obtained a thermal

phonon temperature of 335 K, consistent with our expectation.
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Fig. 3-7 Resonant Raman profiles of (a) Stokes and (b) anti-Stokes Raman scattering
of a 195 A GaAs/AlAs quantum well sample measured at liquid nitrogen temperature.
Noting again that the two profiles are quite similar with the Stokes peak position being

one LO phonon energy higher than that of the anti-Stokes peaks.

Fig. 3-8 Phonon occupancy as a function of the hot electron density for a 195 A
GaAs/AlAs quantum well sample at liquid nitrogen temperature. The extrapolation to the

zero electron density reveals a thermal phonon occupancy which should be subtracted off.

Fig. 3-9 Non-equilibrium phonon occupancy as a function of the width of GaAs/AlAs
quantum well. Solid squares are experimental results, open circles are from model

calculations in Chapter II. Lines are meant to be guides to the eyes.

Fig. 3-10 A schematic diagram for the outgoing resonant Raman process at an electron

subband edge.

Fig. 3-11 (a) Non-equilibrium phonon distribution calculated for a 190 A GaAs/AlAs
quantum well sample. The sharp peak is due to intersubband scattering, while the broad
peak is due to intrasubband scattering. (b) An expanded view of the sharp peak in (a).

Vertical dashed line indicates the wave vector probed by Raman scattering experiment.
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Fig. 3-12 Non-equilibrium phonon occupancy as a function of the width of GaAs/AlAs

quantum well calculated for various interface roughness, d is the size of the island. Also

shown are the experimental data (solid squares).
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Chapter IV: Photoluminescence of Highly Excited
GaAs/AlAs Quantum Wells

In this chapter we will examine the emission spectra from GaAs/AlAs quantum
wells under intense picosecond laser excitation. Photoluminescence (PL) is a process
where electrons are excited by photons into the conduction (sub)bands, after relaxing
down to the bottom of the (sub)band, these electrons recombine with the photoexcited
holes to produce photons. Under high intensity excitation, excitons (electron-hole pairs)
will be ionized when the density is on the order of 10" cm?, resulting in the formation of
a dense two-dimensional electron-hole plasma (EHP). At these high electron densities the
interaction among electrons becomes very important. Many-body interactions among
electrons lead to many interesting phenomena like band gap renormalization (BGR) [1]
which have been extensively studied with the PL technique. Also as electron density
increases, the electron Fermi level rises and may cross higher subband levels, this is
known as band filling. As high index subbands get populated, emission from these
subbands appears in the PL spectra. In the following sections we will make use of the
band filling features in the PL spectra from highly excited GaAs/AlAs quantum wells to
deduce the width of the wells. In addition, through a lineshape fitting of the PL spectra,
we can deduce the average electron density. Both the quantum well width and the
electron density are important parameters for the experiment described in Chaéter IIIL.
Another important thing to note is that in our experiment we have observed emission

from subbands a few hundred meV above the bottom of the band. At this energy level,
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band non-parabolicity is expected to be important. Therefore we are able to examine the

effect of band nonparabolicity on the confined electron energy levels.

4.1 Time-integrated photoluminescence from GaAs/AlAs quantum wells under
high intensity excitation

Experiments described in this section were carried out using the setup shown in
Fig.1 of Chapter III.. GaAs/AlAs multiple quantum well samples were held either at room
temperature or liquid nitrogen temperature in an optical cryostat. The output of a
picosecond dye laser was tightly focused onto the sample. Excitation intensity was
changed by a variable neutral density filter. A photomultiplier tube together with the
conventional photon counting electronics is used to acquire the time-integrated emission
spectra.

Fig. 4-1 shows the room temperature PL spectra of a 210 A GaAs/AlAs quantum
well for several electron densities. The determination of the electron densities from
analysis of the PL line shapes will be described in the next section. As we can see that at
electron density 4x10'' cm™ only two peaks are present, with the first peak dominating
over the second one. When the density is increased, the relative strength of these two

peaks changes, and the second one eventually becomes the dominant one. This is mostly

due to the staircase type of density of state of the two-dimensional electrons in quantum

wells. Upon further increasing the electron density, a third higher energy peak gradually
gains strength, and when n = 6.1x10'? cm™, we observe as many as five peaks in the PL

spectrum. This is an indication of strong band filling effects as higher subbands become




populated. The width of the spectra is mainly determined by the Fermi energy of the
electrons, which in turn is determined by the electron density.

Another prominent feature in Fig. 4-1 is that with increasing electron density, the
low energy edge of the spectrum moves toward lower energy by about 20 meV, showing
the effect of BGR. However one notices that the positions of the PL peaks for different
electron densities remain essentially unchanged. This is consistent with earlier PL studies
of different highly excited quantum well structures reported in the literature [2,3]. Due to
BGR, one would expect to see a PL peak at the reduced band gap. However Cingolani et.
al. have shown in a spatially resolved PL experiment that this phenomenon is due to the
spectral superposition of different radiative recombination processes originating from
different lateral regions of the sample where actual carrier densities differ strongly [4]. So
even though many body interaction greatly affects the high intensity PL spectra, we can
still safely regard the PL peak position as the exciton transition energy.

Fig. 4-2 shows the time-integrated PL spectra of a 165 A GaAs/AlAs quantum
well. One can see that the effects of BGR and band filling are quite similar to those in the
210 A quantum well sample although the PL peak positions are quite different. The
maximum width of the spectrum, determined by the electron density and limited by our
laser power, are also similar (about 250 meV) in these two cases. PL spectra measured at
low temperaturé also display pronounced band filling and BGR effects. A typical PL
spectrum under high intensity excitation at liquid nitrogen temperature is shown in Fig. 4-
3 for (a) a 210 A, (b) a 165 A GaAs/AlAs quantum well. Compared with the room

temperature PL spectra, peak intensity increases by several order of magnitude, and peak
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width also becomes much smaller. This is likely due to enhancement of exciton formation

at low temperature {5].

4.2 Determination of the electron density in quantum well from its PL spectrum
In this section we will deduce the average electron density through a lineshape
fitting of the PL spectra. Considering the recombination of electrons and holes from a

pair of subbands, the PL spectrum from this recombination is given by [5]:
I(E) < [dk [dK,f.(1~1,)8(E. - E, - E)3(k, ~k,) @4-1)

where k. and k,, E. and E,, f; and f, are the wave vectors, energies and the Fermi
distribution functions for the electrons and holes respectively. Eq. (4-1) assumes k-
conservation during the recombination process, and it has been shown to be valid for
recombination at room temperature by Christen er al. [5] through a comparison of
experimental and theoretical line shapes of the PL spectra of GaAs QWs. At low
temperature they found evidence of non-k-conservation recombination and attributed it to
the lateral localization of excitons in potential fluctuations caused by interface roughness.
Therefore Eq. (4-1) should be applicable to our room temperature PL spectra. After

integrating over k, Eq. (4-1) can be reduced to:

HE) ~ S(E ~E e+ E1-f(-¢.)] (4-2)

where 9(E)is a step function describing the two-dimensional electron density of states,

E, is the band gap, ¢,,, is the reduced electron and hole energy, and it is given by:




My

gc(v) =

[2-E,] 4-3)

m,+m,

where m, and my, are the effective masses of the electrons and holes respectively. The
total PL spectrum is then a sum of all the possible transitions weighted by the respective

oscillator strength M, associated with each transition:

P(E) =2 M,1(E) (4-4)

In carrying the ‘lineshape fitting using Eq. (4-4), we have made the following
approximations. First, since the photoexcited holes are known to thermalize rather
quickly with the lattice [6], we have assumed a Boltzmann distribution for the holes. This
can be used to explain the sharp fall off in the intensity of the high energy tail of the PL
spectra at low temperature as shown in Fig. 4-3. Secondly, we only consider
récombination of electrons with heavy holes, since this is the most dominant process [2,
3]. Thirdly, to better fit the low energy edge of the PL spectra, we have broadened density
of states for each level from a simple step function by a Lorentzian as schematically
shown in Fig. 4-4. A discussion of the broadening of PL peaks can be found in
references {5, 7]. We note that choosing a broadened density of states does not affect the
width of the PL spectra appreciably as the width is mostly determined by the electron
density. Finally the oscillator strength M, are treated as adjustable parameters. This is
because the PL spectra we measured are time-integrated. They can be viewed as a
superposition of many spectra taken at different time delay after the laser pulse. Use of

pulsed laser excitation means that the electron density is time dependent. In addition, as

Cingolani et al. have shown, the high electron density at small time delay will create a
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large Fermi pressure for the EHP to expand, which in turn reduces the electron density
[4]. Since the PL spectra are highly dependent upon the electron density, spectra taken at
different time delay will have different line shapes. This has been confirmed by time-
resolved PL measurement with a steak camera [8]. The high-energy tail mainly comes
from emission at early time while the low energy part contains more emission at long
delay time. Therefore it is almost impossible to deduce the exact oscillator strength
associated with each transition from the time-integrated spectral. So we use instead the

relative strength A/, of the transition as adjustable parameters in our fitting.

The dashed line in Fig. 4-5 show a fit to a PL spectra of the 165 A quantum wells
using Eq. 4-4. There are four subband levels involved, the calculated curve fits the
experimental data quite well. The electron density obtained from this curve-fitting is
5.8x10" cm 2. We notice that the above fitting method generally works well for spectra
obtained at high electron densities. For spectra obtained at low electron density (<10"
cm?) or at low temperature, the quality of the fit actually deteriorates. This is likely to be
due to the fact that at low electron density or at low temperature, exciton effects on the

emission spectra have to be included, and the aforementioned theory breaks down.

4.3 Determination of the width of the quantum well from its PL spectrum

Our discussions in section 4.1 have shown that the PL peak positions correspond
to the transition energy between electron and hole subbands. These peak positions can be
used to calculate the confined energy levels. Through comparison with model

calculations of the electron energy levels described in Section 2.1 of Chapter II, we can
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deduce the width of the quantum well. Fig. 4-6 shows the plot of the PL peak positions
versus the subband index for three different quantum well samples measured at room
temperature or liquid nitrogen temperature. We found that fits of the peak positions to a
quadratic dependence on the subband index » yielded the best result. PL peak positions

are well described by the following equation:
E =E,+Axn’ (4-5)

We note that £ here is not the true band gap of GaAs. Miller et. al. have shown via PL
excitation spectroscopy that the PL peaks of highly excited quantum wells correspond to
transitions from the electron subbands to the first heavy hole subband [9]. In this context
E, is the bulk band gap plus the confinement energy of the first heavy hole level (for
quantum well width around 180 A, the confinement energy of the heavy hole is about 2
meV), and A is the confinement energy of the first electron level.

We have also noticed that the quadratic dependence of the subband levels on the
subband index also worked éxtremely well on the peak positions taken from the PL
spectra for the highly excited GaAs/Al Ga, As and InGa, As/InP quantum wells in
references [2, 3]. Typical error is less than 1%. As a result of this curve-fitting, we

obtained two important parameters, namely the bulk GaAs band gap £, (after subtracting

off 2 meV from E,) and the first electron subband energy level A. One can see that the

value of A obtained for the three samples from fitting the room temperature data are quite
consistent with those obtained from fitting the liquid nitrogen temperature data. As we

have mentioned in Chapter II, the first subband level calculated using the Ben-Daniel

Duke model (parabolic approximation) or the Bastard model (non-parabolic
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approximation) yields essential the same value. By using the Ben-Daniel Duke model we
found that the widths of the three quantum well samples are 165, 195 and 210 A

respectively. The band gap energy E, = 1.430 eV at room temperature and £, = 1.509 eV

at liquid nitrogen temperature are in very good agreement with the values of 1.425 eV
and 1.510 eV quoted in the literature.

The quadratic dependence of the subband levels on the subband index is
consistent with the fact that we have a deep quantum well. However, when the electron
energy is a few hundred meV above the bottom of the band, one may expect to see the
effect of band non-parabolicity. A plot showing the comparison between calculations
using parabolic band approximation and the Bastard model [10] is shown in Fig. 4-7.
Clearly, the parabolic band approximation agrees very well with our experimental results
while the Bastard model gives a much lower energy level for high index subbands (the
difference can be as large as 50 meV). There are some studies in the literature about the
effect of band non-parabolicity on the subband levels [10, 11], and an energy dependent
effective mass associated with the band non-parabolicity is often used in the calculation
whi;h results in lower subband levels than those obtained with parabolic band
approximation. These studies often focused on low index subbands of quantum wells
with small well widths where the separation between subbands are relatively large and
- non-parabolicity is expected to have a more pronounced effect, however there is
considerable spread among the results [12]. Our ﬁ‘nding that band non-parabolicity has

little effect on the subband levels requires further theoretical investigation into this

subject.




In summary we have studied the PL spectra under high intensity excitation in
GaAs/AlAs quantum wells. These spectra reveal strong band filling and band gap
renormalization. Despite the many body interactions, PL i)eak positions still correspond
to the transitions between electron and hole subbands. The position of the PL peaks can
be well described by a quadratic dependence on the subband index. even for electron
energy as high as about 250 meV above the bottom of the first subband. Band non-
parabolicity seems to play a minimum role in determining the confined electron energy
levels. Through curve-fitting, we have determined the average electron areal density and
the width of the quantum wells both of which are important parameters for our
experimental investigation of the non-equilibrium phonons in quantum wells described in

Chapter II1.
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Figure Captions for Chapter IV
Fig. 4-1 Time-integrated photoluminescence spectra of a 210 A GaAs/AlAs quantum
well measured at room temperature for various electron densities. The electron densities
are obtained from curve-fitting described in the text. PL peaks correspond to exciton

transitions in the quantum well.

Fig. 4-2 Time-integrated photoluminescence spectra of a 165 A GaAs/AlAs quantum

well measured at room temperature for various electron densities.

Fig. 4-3  Time-integrated photoluminescence spectra under high intensity excitation of
(a) a 210 A GaAs/AlAs quantum well; (b) a 165 A GaAs/AlAs quantum well measured at

liquid nitrogen temperature.

Fig. 4-4 A schematic diagram of the broadened density of states (solid line) used in the
lineshape fitting. This is similar to an energy level broaden by a Lorentzian function. The
step-function like density of state for an ideal two-dimensional electron gas is shown in

dash line.

Fig. 4-5 A time-integrated photoluminescence spectrum of a 165 A GaAs/AlAs
quantum well measured at room temperature. The dashed line is the result of a theoretical

curve-fitting based on Eq. (4-4). The average areal electron density obtained from the

fitting is 5.8x10'* cm™.




Fig. 4-6 A plot of the photoluminescence peak positions versus the subband index for
three different GaAs/AlAs quantum Wells; (a) Measurement done at liquid nitrogen
temperature, (b) measurement done at room temperature. Symbols are experimental data,
solid lines are quadratic fits to the data. The gap energy E, and the confinement energy
A for the first subband obtained from fitting are also shown in the plot. Data measured at
different temperature show good consistency. Quantum well widths are obtained by
comparing the value of A with the results of model calculation described in section 2.1 of

Chapter II.

Fig. 4-7 A comparison between the energy levels calculated using different models for
(a) a 195 A GaAs/AlAs quantum; (b) a 165 A GaAs/AlAs quantum well. Symbols are
experimental data, solid lines are from a parabolic band approximation, dashed lines are

from the Bastard’s four band model.
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Chapter V: Probing Optical Phonon Propagation in
GaAs/AlLGa, ,As Quantum Wells via
Non-Equilibrium Phonon Populations

In this chapter we will examine the issue of confinement and propagation of
optical phonons in GaAs/Al Ga, As quantum wells. Recently, Kim et al. [1-3] have
studied NOP occupancy in a series of GaAs/Al, Ga, , As quantum wells as a function of
either the Al fraction x or the thickness of the barrier (L,), and they found a sudden
increase in NOP population when x < 0.3 or when the barrier is thinner than 10 A. Kim
and co-workers have interpreted these results as due to a sudden transition of the optical
phonons in the well from a confined state to a propagating state. These experimental
results have stimulated much theoretical interest in the issue of phonon confinement and
propagation in quantum wells [4-7]. However, there appear to be no theoretical
underpinning of the NOP techniqﬁe in determining whether a phonoﬁ is confined or
propagating. Here, we perform a model calculation of the NOP distribution, and examine
quantitatively the consequences of phonon confinement and propagation on the NOP
population observed by Raman backscattering experiments. We argue that the relaxation
rates of energetic hot electrons in quantum wells and superlattices are essentially the
same as in bulk samples. We can then perform analytical calculations to relate the
coherence length of LO phonons in the growth direction to the observed NOP population.

We then analyze the NOP experiments by Kim et al.. Using this model, we show that the

coherence length of the LO phonons is a sensitive function of x. Therefore, whether LO




phonons are localized within a quantum well or can penetrate into adjacent wells depends

very much on the structural parameters of the samples.

5.1 Wave vector of confined and propagating LO phonons probed by Raman
scattering

Let us begin our discussion by defining the back-scattering geometry in most
NOP experiment, which is schematically shown in Fig. 5-1 along with a schematic
picture of the wave function for the Raman-active LO phonon. We have shown in
Chapter II that in such a scattering geometry, Raman scattering probes only phonons with
Q. ~ 7x10° cm™ in bulk GaAs due tb quasi-momentum conservation. Since this happens
to be very close to the peak of the NOP distribution for bulk GaAs, one usually measures
a relatively large NOP occupation number as predicted by theory. On the other hand,
quasi-momentum éonservation along the quantum well plane direction dictates that
Raman back-scattering will be able to probes only phonons with Q, < 10° cm™ in
GaAs/AlAs quantum wells. And from our model calculations in Chapter II, we know that
there 1s no NOP in this wave vector range except in the case when the separation of two
subbands is close to the LO phonon energy, and resonant intersubband scattering of
optical phonons (RISOP) becomes possible. So in principle one does not expect to
measure any NOi’ in quantum wells via Raman back-scattering. However, as we have
discussed in Chapter III, the breakdown of quasi-momentum conservation caused by
defect or impurity may allow resonant Raman scattering to probe a much wider range of

in-plane phonon wave vectors, allowing one to measure a small NOP occupancy.
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Following this argument, we can see that when the observed NOP occupancy drops
precipitously, it may be suggestive of a transition from a three dimensionally propagating
phonon mode to a confined phonon mode of two dimensional nature. The above
discussion only applies to the two extreme cases of pure 3-D and 2-D, and there is no
theory that can accurately describe the transition region. In order to bridge the transition
from a propagating mode to a confined mode, what we will do here is to start out from
the 3-D extreme and assume that the propagating phonon modes have an infinite spatial
extent. Then we introduce a coherence length £ to describe a phonon wave packet of
finite size. By changing the coherence length or the size of the wave packet, we try to
simulate the transition from a propagating to a confined mode. We will examine how the
NOP occupancy is affected by the phonon coherence length &.

We first consider the wave function of a propagating optical phonon mode (also
referred to as a folded optical phonon mode in the literature) which would be valid for
superlattices with ultrathin barriers or Ga Al As barriers with low Al concentration. The

Bloch function of the phonon mode is given by:
Y, = exp(igz)u, (z) (5-1)

where u, 1s a periodic function with periods equal to L +L, L and L, being,
respectively, the well and barrier widths. The wave vector @ of the Raman-active modes

in this case is determined by both the bulk property and the period of the superlattice:

=Q, +2mr/(L, +L,) (5-2)
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where m =0, 1, 2..., and Q, is the wave vector of the Raman-active phonons in bulk
GaAs as defined by the scattering geometry. The strongest Raman peak will have Q,
corresponding to m = 0 and hence Q is essentially the same as in bulk GaAs. In other
words when optical phonons can propagate in a superlattice, the wave vector of the
strongest mode probed by Raman scattering is essentially the same as in bulk GaAs. This
is shown more clearly in Fig. 5-2 where the solid curve is a schematic wave function of a
Raman-active propagating optical phonon mode in a superlattice. Notice that the
dominant Fourier component for this wave function occurs at O, =2z/4,. When
compared with the corresponding phonon wave function in the bulk in Fig. 5-1 one sees
that phonons of essentially similar wave vectors are probed by Raman scattering in
superlattices and in the bulk.

When the phonon starts to change from a propagating mode to a localized méde
(Fig. 5-3), phonon wave function will no longer be infinitely extended, instead it will
form a wave packet of finite size. The spatial confinement of the phonon wave function
results in a spread of wave vector around Q,. The more the phonon is localized, the
smaller the wave packet, then larger is the spread in its wave vectors. Therefore Raman
scattering will not just be probing one single phonon wave vector, but a range of wave
vectors around Q_o in this case. As we shall see in the following sections, this will have an
important consequence on the NOP occupancy measured by Raman scattering, and hence

the ability of NOP as a probe of the spatial extent of LO phonons.

5.2 Maodel calculations of non-equilibrium phonon distributions in bulk GaAs
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To decide whether the NOP can be a sensitive tool to determine the spatial extent
of the LO phonons, we need to know first the distribution of NOP generated by hot
electron relaxation. We know that in quantum wells with lérge well width, phonons will
only be weakly confined, and as the well width increases, the constraint on the phonon
propagation will gradually disappear, and we should be gradually approaching the bulk
limit. In principle, we can use the models in Chapter II to calculation the NOP. However,
for well width approaching infinity, the subbands are closely spaced. To include all of
them in the calculation is computationally impossible. On the other hand, we know that in
this extreme quantum wells should behavior like a bulk material. Therefore, we will start
out by assuming a bulk GaAs NOP distribution for the propagating phonons considered

- here. We can calculate the NOP distribution N, generated by hot electron relaxation in

bulk GaAs in a similar fashion as we did in Chapter II using the following rate equation:

N
= =27/7(Nq FDE M F 1= f K- @DIS(E ., — E +Epp)

2z

2 Nq
-==N, oM, ro[1- FK+QDISE,., - Ef ~E,p) -=t )

q

where |M

qi" is the bulk GaAs electron-LO phonon (Frohlich) interaction matrix

element squared, K, E, and f{K,) are, respectively, the electron wave vector, energy and

distribution function, £,, and 7, are, respectively, the LO phonon energy and lifetime.

Although both electrons and holes are excited by the pump laser, most of the excess

energy of the photon is imparted to the electrons due to their much lighter effective mass
97




and hence we have neglected the hole contribution to N

in Eq. (5-3). In experiments

q

where the NOP population in GaAs is probed at low temperatures within a few ps after
excitation by a pump pulse, the phonon decay term in Eq. (5-3) can be neglected since

7, is about 10 ps long.

In bulk GaAs the Frohlich interaction matrix element | M I is given by the

familiar expression:

[ =2—”—ei(—1——i) B (5-4)

where e is the electron charge, V' is the volume of the crystal, &  and g, are,
respectively, the high frequency and low frequency dielectric constants. We assume that
the excited electron-hole density is <10 cm™ so that screening of the. Frohlich
interaction by the photoexcited electrons is negligible. On the other hand the density is
>10" cm® so that the electron thermalization time is much less than the laser pulse
duration of about 1 ps. By assuming that the electron distribution function can be
approximated by a Boltzmann distribution with temperature 7,, and that there is only
one spherical conduction band, Eq. (5-3) can be integrated to yield:

N, 2E,e*|2z'm*c* 1 1)N, E, N,
==X ———| —Fexp| - 1- (5-5)
a h'c k,T, £, &/ ¢q k,T, N

) €q

In Eq. (5-5) N, is the electron density, %, is the Boltzmann constant, m* is the electron

effective mass, £, and £, are defined as:




2
g, BBl 56

and

h2q2
q = 2m*

E

(53-7)

and N, is the LO phonon population when the electrons and the LO phonons are in

thermal equilibrium :

N, =— (5-8)

eq
E LO }
exp| —— | -1
"( kT,
The generation of NOP via the relaxation of hot electrons cools the electron gas
so that 7, is a function of time, and hence N, also depends on time. The rate equation

for the average energy of an electron (E)=(3/2)k,T, is given by:

E El() dv‘l
ﬁiﬂﬁ:_ - j[ > )quq (5-9)

¢

where D, represents the LO phonon density of states.

Fig. 5-4 shows the NOP distribution obtained by solving simultaneously Eqs. (5-
6) and (5-9) for a bulk GaAs under the assumption that the electrons are excited by a
delta-function pulse in time with initial average electron energy of 0.5 eV. The NOP
distribution is measured at 1 ps after the passage of the excitation pulse. The material
parameters of GaAs going into this calculation can be found in Table I in Chapter IL

There are two important features in Fig. 5-4 that worth noting. First, there is a peak in

99




N, occurring at the value of q ~ 4x10° cm™ which is very close to the value of Q, in
Raman scattering in bulk GaAs. Secondly, N, drops very raﬁidly to zero as the value
of q decreases. This sharp cut-off in N, occurs at q;,~2x10° cm™. The existence of
this cut-off in N, has already been mentioned in Chapter Il and it results from the

conservation of energy and momentum during the electron-LO phonon scattering
process. The value of q,,, is determined by the LO phonon energy and the electron
effective mass m*. We should point out that the NOP distribution in bulk GaAs generated
by the relaxation of a nonequilibrium distribution of electrons has been calculated
previously by Collins and Yu [8]. These authors have assumed a lower electron density
(<10' cm™) so that the electron-electron interaction can be neglected. As a result, their
nonequilibrium electron distribution was represented by a series of delta functions (as
opposed td the Boltzmann distribution assumed in the present calculation) separated from
each other in energy by the LO phonon energy. In spite of this difference their results are

qualitatively similar to ours because the peak in N, and the cut-off atq,;, are both

determined by the band curvature and the LO phonon energy and therefore are not very
sensitive to the electron distribution. Calculations similar to ours but including screening

and other effects have recently been presented by other groups {9, 10].

5.3 Effects of phonon localization on non-equilibrium phonon occupancy observed
in Raman scattering
As we have discussed in Section 5.1, the wave vector probed by Raman

scattering for propagating phonons with infinite spatial extent is the same as that in the
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case of bulk GaAs, therefore we have the largest NOP value as Q, is close to the NOP
peak position. For propagating phonons with a finite spatial extent &, Raman scattering
will probe a range of phonoﬁ wave vectors around @,, and since NOP has certain
distribution in momentum space, probing a range of wave vectors will result in a decrease
in the measured NOP occupancy when NOP of smaller occupancy are included. When
the phonons are localized in quantum wells, the coherence length is equal to well width
L,, so the wave vectors of phonons sampled by Raman scattering is determined mainly by
the well width L, and can be much larger than Q, if L, is small (say on the order of 100
A). When O is much larger than 10° cm™ (the position of the peak in the hot phonon
distribution function), the measured NOP population is expected to be significantly
smaller than that of bulk GaAs.

To quantitatively examine the effect of a finite coherence length on the measured

NOP, we utilize the following relation:

lime 7 =zns(x) (5-10)
f]—)

where 8(x) is the Dirac delta function. Using Eq. (5-10), we can write the NOP observed

by Raman scattering in bulk GaAs as:

<NQ(.>2 J‘Nqé‘(q"Qo)dq (-11)

Then, to introduce a coherence length & for the phonon, we can use the Gaussian function

in Eq. (5-10) to approximate the delta function in Eq. (5-11) and arrive at the result:
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(N, )= % [N,et-a) gq (5-12)

Let us examine the implications of Eq. (5-12). When the coherence length £ goes

to infinity, we recover the bulk limit where only N, is measured . On the other hand,

when the coherence length is determined by the well width L,, the region of wave vectors

probed is a Gaussian centered around Q,, with its full width at half maximum given by

~(loge2)%/Lz, as schematically shown in Fig. 5-5. As a result of this averaging over those

contributions from the relatively large q phonons with small nonequilibrium population,
the measured NOP population would be smaller than that of bulk GaAs. As pointed out
before only the peak of the NOP distribution is probed in the latter case.

The expression in Eq. (5-12) allows the coherence length of the LO phonons to be
related to the NOP population observed by Raman scattering. In real space, Eq. (5-12)

corresponds to making the following approximation for the Raman-active phonon wave

function (W'R), which is the Fourier transform of exp[-&°(¢—0,)*]:

1 ; z’ .
¥, =[Z;£2_:l exp(iQyz) exp(— i j (5-13)

The wave function in Eq. (5-13) has the advantage that it can be applied to both the bulk
propagating phohons and to the confined ones in describing their spatial extent. In
principle, one can further generalize the wave function in Eq. (5-13) to describe a Bloch

wave of a finite spatial extent, as schematically shown in Fig. 5-6, with the following

expression:




1 % . z°
v, { ] exp(lQoz)exp(— Z?]ugo (2) | (5-14)
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Where u, (z) is a periodic function with the periodicity of the superlattice. In the

schematic picture of the phonon wave function shown in Fig. 5-6, we pﬁrposely omit the
phase factor exp(iQ,z). However, as far as NOP is concerned it is difficult to determine
the periodic part of the wave function. In any case we do not expect that using Eq. (5-14)
instead of Eq. (5-13) would change the results appreciably. In particular if Q,& is <<1
then the periodic part is completely negligible. Therefore, from now on we shall
concentrate on the relationship between the NOP population measured and the phonon
coherence length £ wusing Eq. (5-12). This approximation is equivalent to using the
Gaussian wave function in Eq. (5-13) instead of the Bloch wave function in Eq. (5-14).
With the above approximation we can calculate, from the theoretical hot phonon
distribution of Fig. 5-5, the normalized NOP population measured in Raman scattering as
a function of £ . It is assumed that the NOP population is normalized to the value for bulk
GaAs which corresponds to & approaching infinity. The resuits are shown in Fig. 5-7. We
note that the NOP population increases monotonically with &. It goes to zero as &
approaches zero because Raman scattering starts to probe more large wave vector LO
phonons with small occupation numbers. One may say that Fig. 5-7 is the basis for
using the experimental normalized NOP population as a probe of the coherence length or
the spatial extent of the Raman-active LO phonon modes. It should be kept in mind that
the various approximations used in arriving at Fig. 5-7 make it difficult to determine

quantitatively the coherence length. However, if the wave function of the phonon
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involved changes suddenly from that of a propagating wave to a localized one as in an
Anderson Iocalization, we expect a large sudden -decrease in & accompanied by a
corresponding decrease in the NOP population. With this in mind, we shall analyze in
the next section some Raman measurements of the NOP population performed on
GaAs/Al,Ga, , As quantum wells in which the phonon coherence length is varied by
changing the structural parameters, such as the Al concentration in the Al Ga,  As barrier

layers.

5.4 Discussion of non-equilibrium phonon population in GaAs/Al Ga, ,As quantum
wells

Recently, Kim et al. have studied over 30 GaAs/Al,Ga, As quantum well samples
with a constant well width L, = 100 A and barrier width L, > 20 A but with different
amounts of Al fraction x in the barrier. The NOP population was determined from the
ratio of Stokes to anti-Stokes intensities after correcting the resonant Raman effect and
subtracting the thermal background phonon population. The experimental detaiis have
been described in references [1-3]. Fig. 5-8 shows the NOP populations normalized to the
bulk value (solid circles) as a function of the aluminum fraction x. measured by Kim et
al.. For L,> 20 A the NOP population depends only weakly on L, but more strongly on
x [1]. And each-data‘ point in Fig. 5-8 represents the averaged result of many samples
with different L,'s but with the same nominal x. The striking feature in Fig. 5-8 is that the
normalized NOP population drops quickly to only 0.1 for x between 0.2 to 0.4. This

result was found to be essentially independent of temperature.
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We interpret the sudden decrease in the NOP population in terms of a
corresponding decrease in the coherence length of the LO phonons along the growth
direction. By combining Figs. 5-7 and 5-8 we can obtain a plot of the LO phonon
coherence length & as a function of x. To obtain such a plot we first draw a smooth curve
through the data points in Fig. 5-8 (solid curve) and the resultant & versus X plot is shown
in Fig. 5-9. The main feature to note in Fig. 5-9 is that, for x between 0.2 to 0.4, £ drops
to a small constant value of around 60 A. If the GaAs LO phonons become localized
completely within the quantum well as x exceeds some criﬁcal value then we expect the
coherence length to reduce to the well width of 100 A. Considering the‘simpliﬁcations we
have made, the difference of a factor of ~2 between the value of coherence length
deduced and the well width is not unreasonable. The important point is that Fig. 5-9 does
show the spatial extent of the LO phonon wave function, as deduced from the NOP
experiment, approaches a constant value of the order of magnitude of the well width for
x exce_eding a certain critical value. This is exactly what is expected from a simple
physical picture in which the GaAs phonon wave function can penetrate through the
Al Ga, As barrier when x is small. But as the Al concentration increases the phonon will
be scattered by the Al atoms with smaller masses than the Ga atoms. For x larger than a
certain value the GaAs phonons will be localized inside the well and the coherence length
reduces to the wéll width. Thus we contend that, even given our many simplifications,
the NOP technique is at least capable of distinguishing between an extended phonon
mode and a localized one. In the case of the LO phonons in GaAs/Al,Ga, As quantum

wells this transition from an extended to a localized mode occurs when x is somewhere
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between 0.2 and 0.4. We shall discuss the implications of this result in the following
paragraphs.

We first consider whether the above conclusion regarding the spatial property of
LO phonons in GaAs/Aleal_xAS is consistent with existing theories and experimental
results. Multiple LO phonon peaks in the Raman spectra of GaAs/AlAs quantum wells
have been reported by many authors [11]. It is now generally agreed that these peaks
result from the confinement of the LO phonons, either in the GaAs well or in AlAs
barrier. Both kinds of phonons are strongly confined in their respective layers because of
the large separation in energies between the GaAs and AlAs optical phonon branches. All
the observed GaAs Raman peaks have been explained quantitatively by this confinement
model using the phonon dispersion curves of bulk GaAs. The situation in GaAs/Al,Ga,
(As quantum wells has been complicated by the so-called “two-mode” behavior of optical
phonons in Al Ga, , As. The ’reason is that the energy of the GaAs-like LO phonons in
Al Ga, As lies very close to that of the GaAs LO phonons. It is, therefore, possible that
GaAs LO phonons can propagate through the Al Ga, ,As barriers provided the Al fraction
X in thé barrier is small. However, the important issue of whether the GaAs LO phonons
can propagate through Al Ga, As at a critical value of x has been investigated only by
theoreticians and not yet extensively by experimentalists [4-7]. We note that Kash and
coworkers have investigafed the localization of phonons in Al Ga,  As alloys using the
NOP technique [12]. They also predicted a decrease in the NOP population if the
phonons become localized. They investigated a series of Al,Ga, ,As samples with the Al

fraction x=0.07, 0.11 and 0.24. They found that the NOP population could be observed

even for x=0.24. Hence they concluded that, if there is a transition from propagating
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phonons to localized phonons in Al,Ga, As, this transition occurs at x>0.24. In a
quantum well sample with well width L=500 A. They found that wave vector
conservation is relaxed to the point that forward and backward scattering gi\)'e identical
results. This is consistent with our expectation. Because bulk GaAs LO phonon probed by
Raman back scattering has a wavelength aboﬁt 900 A (Fig. 5-1), a 500 A quantum well
will put some geometrical constraint on the phonon propagation, causing a spread in
phonon wave vector in magnitude comparablé to O, In this case the scattering geometry
becomes relatively unimportant in determine the NOP occupancy. The strong dependence
of the localization properties of the GaAs LO phonons on the Al fraction in the Al Ga,.
(As barrier we deduced from our experiments is also in good qualitative agreement with
some recent theoretical work.

The fact that the onset of the propagating-to-localized transition of the LO
phonons coincides roughly with the direct-to-indirect band gap transition in Al,Ga, ,As as
a function of x also raises the question whether the sudden decrease in the NOP
population with increasing x may be explained by the lowering of the X conduction band
valleys relative to the conduction band minimum at the zone center. If this direct-to-
indirect cross-over of the Al,Ga, ,As band gap is included in our model calculation then
its contribution to the decrease of the NOP popuiation is expected to be less than 50%
rather than by a factor of ten. The effect of intervalley scattering on the efficiency of NOP
generation has been studied in bulk GaAs by Collins and Yu [8]. They found that this
effect reduced the NOP population by only about 30%. Since most of the high energy

electrons excited by the laser pulses which undergo intervalley scattering will eventually

return to the I' valley, most of them will still lose their energies in the I' valley by
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emitting NOP, intervalley scattering is not expected to be important to our model. On the

other hand, the direct-to-indirect bandgap cross over may be related to a second order
phase transition, as has been suggested recently [13]. In this case, one cannot rule out the
possibility that the confined-to-propagating transition of optical phonons in Al Ga,_ As
and the direct-to-indirect transition of thé bandgap may have the same physical origin.

Finally, we can ask what is the accuracy of the value of x we deduced for the
transition from a propagating to a localized state for phonons in GaAs/Al Ga, As
quantum wells. By assuming a bulk-like hot electron relaxation, we tend to overestimate
the NOP, for in quantum wells confinement of electrons can greatly suppress the
generation of small q hot phonons [14, 15]. Therefore, the experimental NOP is expected
to be smaller than the calculated value based on the bulk-like hot electron relaxation
approximation. Hence we probably underestimate the coherence length of the LO
phonons, especially for large vaiues of x. In other words, it is possible that the
propagating to localized transition occurs closer to x=0.4 rather than x=0.2. This result
would be in better agreement with the theoretical results of Fertig and Reinecke [4] who
conclude that optical phonons can be propagating for x as large as 0.4.

In summary, we have studied the confinement and propagation of LO phonons in
GaAs/Al Ga, ,As quantum wells, and developed a simple model to correlate the NOP
population to tﬁe coherence length of the GaAs LO phonons. We argue that the NOP
population can be a sensitive measure of the spatial extent of the LO phonons. Using our
model, we deduced the coherence length of the GaAs LO phonons in GaAs/Al, Ga,,As

quantum wells as a function of the Al fraction x from the experimental NOP population

measured by Kim et al..
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Figure Captions for Chapter V
Fig. 5-1 A schematic diagram of Raman backscattering geometry. k;, and k, are,
respectively, the incident and scattered photon wave vectors outside the sample.
Similarly, k’ and k;’ are incident and scattered wave vectors inside bulk GaAs. The
Raman active LO phonon has a wave vector roughly equal to Q,=2k;’=2nk; (n is the index
of refraction), since k=k, and k;’~k;’. The wave length of the Ramén active LO phonon is

then A,=21/Q,~900 A for the excitation photon energy of 2 eV.

Fig. 52 A schematic diagram of Raman backscattering in GaAs/Al Ga, As with
foldéd or propagating optical phonons (thus corresponding to small x). The Raman active
GaAs LO phonon wave function, which is in the form of exp(iQyz)u(z) (u: periodic
function with period L,+L,), is schematically represented by solid lines. The dominant

Fourier component of this wave function occurs at g=Q,.

Fig. 5-3 A schematic diagram of Raman backscattering in GaAs/Al,Ga, As with
confined or localized optical phonons (thus corresponding to large x). The localized
GaAs LO phonon wave function is schematically represented by solid lines. In this case,
the wave vectors probed by Raman scattering is determined not by GaAs bulk property

and photon energy, but by the well width.

Fig. 5-4 Nonequilibrium LO phonon population at t=1I ps as a function of wave vector

g, assuming delta function excitation at t=0 with 2 eV incident photons. The region of




wave vectors probed by Raman scattering is denoted as a vertical solid line. Inset: same

NOP distribution plotted on a semi-logarithmic scale.

Fig. 5-5 Nonequilibrium LO phonon population at t=1 ps as a function of q, assuming
delta function excitation at t=0 with 2 eV incident photons (solid lines). The Fourier
transform of a Gaussian wave function, F(q) with =100 A, is represented by dotted
lines. In this case, the region of wave vectors probed is much more extended, so that

contributions from small N _'s are significant.

Fig. 5-6 A schematic diagram of the Bloch wave function with a Gaussian envelope

function (Eq. (5-14)). The size of the wave packet is £. For convenience, Q, is set to zero.

Fig. 5-7 Non-equilibrium phonon occupancy as a function of the coherence length &

calculated from the results of Fig. 5-4 and Eq. (5-14).

Fig. 5-8 Experimental non-equilibrium phonon occupancy (solid squares) probed by
picosecond Raman scattering in GaAs/Al Ga, ,As quantum wells as a function of alloy

concentration X. Smooth fit to the data points is represented by the solid line.

Fig. 5-9 Coherence length & deduced from the results of Fig. 5-7 and the analytical fit

of Fig. 5-8, as a function of alloy concentration x in GaAs/Al,Ga, As.
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Chapter VI: Conclusions

In this thesis we have studied non-equilibrium phonons in GaAs/Al Ga, As
quantum wells through model calculations and picosecond time-resolved Raman
scattering and photolunﬁnescerfce experiments. We have investigated three subjects, the
resonant intersubband scattering of optical phonon (RISOP); photoluminescence of
quantum wells under high intensity excitations; and propagation ;md confinement of
optical phonons in quantum wells. In studying RISOP, we have addressed the issue of
whether one can measure the phonon occupancy in quantum wells and superlattices using
the techniqué of Raman scattering. We have shown experimentally that by taking into
account the time-reversal symmetry relationship betweén the Stokes and anti-Stokes
Raman cross sections, one can correct the spurious effect caused by resonant Raman
scattering and successfully determine the phonon occupancy in quantum wells. We
applied our technique to study RISOP in GaAs/AlAs quantum wells. Our results suggest
that interface roughness in quantum wells and superlattices play an important role in the
resonant Raman scattering. The breakdown of quasi-momentum conservation -due to
interface roughness enables resonant Raman scattering to probe a wide range of in-plane
phonon wave vectors. The consequence of this change in the Raman-active phonon wave
vectors is that one will be able to observe non-equiliBﬂum phonon in Raman scattering
which, in the general cases, would not be possible if quasi-momentum is strictly
conserved in Raman scattering. This also means that the chance that one will measure the

enhancement in non-equilibrium phonon occupancy predicted by RISOP when the
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intersubband separation is equal to the LO phonon energy is greatly reduced. Our
experimental results agree with our model calculations based on the Huang-Zhu model
when we choose the size of the smooth regions at the interface to be of the order of 100
A. This size deduced from our ¢xperiment is consistent with the result of recent
experimental work on acoustic phonon scattering in the literature. In our experiments on
the photoluminescence from highly excited GaAs/AlAs quantum wells, we have shown
that band non-parabolicity has little effect on the electron energy levels in quantum wells
with width of about 200 A. The electror. subbands are found to be well described by the
parabolic band approximation even for ensrgy as much as 250 meV above the bottom of
the subband. This surprising finding may require additional theoretical investigation. In
studying the confinement and propagation of optical phonons, we have combined our
model calculation with the experimental results of Kim et al., and shown that Raman
scattering of non-equilibrium phonons can be a sensitive measure of the spatial extent of
the LO phonons, and can be used to detect the transition of phonon r;lode from a
propagating state to a confined state. We have correlated the measured non-equilibrium
phonon occupancy to the coherence length £ of the LO phonons, and deduced & of the
GaAs LO phénons in GaAs/Al, Ga, ,As quantum wells as a function of the aluminum

concentration X.
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