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Abstract

A Study of Short Wave Instability on Vortex Filaments
by

Hong Yun Wang
Doctor of Philosophy in Mathematics

University of California at Berkeley'

Professor Alexandre J. Chorin,-Chair

The numerical stability and accuracy of the vortex method are studied. The effect
of the ordinary differential equations (ODE) solver and of the time step on the numerical
stability is analyzed. Various ODE solvers are compared and a best performer is chosen.
A new constraint on the time step based on numerical stability is proposed and verified
in numerical simulations. It is.shown through numerical examples that empirical rules for
selecting the spatial discretization obtained in simple test problems may not be extended
to more general problems.

The thin tube vortex filament method is applied to the problem of Widnall’s insta-
bility on vortex rings. Numerical results different from previous calculations are presented
and the source of the discrepancies is explained. The long time behavior of the unstable
mode on thin vortex rings is simulated and analyzed.

The short wave instability on vortex filaments is investigated both theoretically
and numerically. It is shown that the short wave instability always occurs on co-rotating
vortex filaments of fixed core structure. Furthermore when they are close to each other,
vortex filaments produce short wave unstable modes which lead to wild stretching and
folding. However, when the inter-filament distance is large in comparison with the core size
of the filaments, unstable modes are bounded by a small fraction of the core size and the
vortex filaments do not create hairpins nor wild stretching. These findings may explain the
smooth behavior of the superfluid vortices.

The formation of hairpin structures on numerical vortex filaments is investigated.

It is shown that the formation of hairpin structures is independent of the ODE solver, of the




time step and of other numerical parameters. The hairpin structures are primarily caused

by short wave instability on co-rotating vortex filaments.
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Chapter 1

Introduction

Tube-like vortex structures occur in many types of flow and are also predominant
in turbulence [15], [21], [24], [25], [50], [51], [52], [64], [65]. The main work of this dissertation
is to study the vortex methods and the short wave instability on vortex filaments of fixed
core structure.

In a three-dimensional, inviscid, incompressible flow, Ybrticity remains confined to
a small fraction of the total volume of the field and a complete simulation scheme for the
flow can be built on the tracking of the vorticity field in Lagrangian coordinates. These
facts make vortex methods particularly attractive [3], [10], [18], [29], [75] [87]. We study
vortex methods by considering numerical stability, accuracg;, ordinary differential equations
(ODE) solver, time step and space step. The evolution of perturbed vortex rings in an
inviscid flow is selected as a model problem for the validation study of the vortex methods.
The choice of this problem was motivated by several reasons. First, vortex rings are very
important building blocks for complicated vorticity configurations and they also arise in a
variety of jet flows of practical interest; second, the same problem has been numerically
simulated by Knio and Ghoniem [57]; third, Widnall et al [96], [95], [97], did a theoretical
stability analysis for vortex rings. The numerical results obtained in the previous study [57]
contain an artifact of the numerics due to an underresolved numerical mesh. The correct
numerical solutions are obtained with a sufficiently refined mesh. We demonstrate that
the choice of spatial step size is problem dependent and thus cannot be determined by an
empirical criterion obtained in a simple test problem. For the thin tube vortex filament
method, various numerical ODE solvers are analyzed and compared. Among these ODE

solvers, the classical fourth order Runge-Kutta method comes out as the best performer. A
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new criterion for selecting the time step is proposed based on a study of numerical stability,
and is verified in numerical simulations.

After the validation study of vortex methods, we investigate short wave instabilities
on co-rotating vortex filaments of fixed core structure. Several cases are examined including
a co-rotating vortex pair, a vortex filament surrounded by many other co-rotating vortex
filaments and a vortex filament in a straining flow induced by a co-rotating vorticity field.
Short wave instability is found to always occur on co-rotating vortex filaments of fixed core
structure. When these vortex filaments are far apart from each other, i.e. the inter-filament
distance is large cox‘npared to the core size, the amplitudes of unstable modes are bounded
by a small fraction of core size and, more important, the vortex filaments do not develop
hairpin structures nor wild stretching. When the vortex filaments are close to each other, i.e.
the inter-filament distance is comparable to or smaller than the core size, unstable modes
grow without bound and the vortex filaments stretch and fold violently. These results of
short wave instability on vortex filaments are derived from a theoretical analysis and are
verified in numerical simulations. In particular, phenomena which are observed in numerical
simulations but are not predicted in the analysis are explained by doing further analysis
with refined models.

Superfluid vortices offer an interesting example where our analysis applies. Super-
fluid vortex filaments behave differently from the classical vortex filaments [31], [37], [38],
[90]. In particular, classical vortex filaments stretch and fold wildly , and form small scale
structures while superfluid vortex filaments remain smooth. It is well known that superfluid
vortex filaments have a very small core size ( ~ O(4) ) and have fixed core structures [37),
[38], [90]. Thus the superfluid vortex filaments are far apart from each other in the sense
that the inter-filament distance is much larger than the core size. Our study of the short
wave instability reveals that when vortex filaments are far apart, the unstable modes are
bounded by a small fraction of the core size and more importantly the unstable modes do
not cause the catastrophic stretching and folding. Therefore the short wave instability is
insignificant for superfluid vortex filaments. This may imply that the tiny core size of the
superfluid vortex filaments is more important in accounting for their non-classical dynamics
than the quantization of circulation. The different behavior of the superfluid vortices and
classical vortices has been explained by Chorin [23], [27], [31], [30], with the use of statistical
theories. Our study of the short wave instability reinforces Chorin’s analysis from a very

different point of view.
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We continue on to study the formation of hairpin structures. In computations with
vortex methods, vorticity blows up and small scale hairpin structures appear [11], [22], [26],
[28]. The coupling of small scales with large scales makes simulations of long time behavior
impractical since the complexity of the flow outstrips the available computer capacity in a
short time. Chorin [26], [28] proposed a hairpin removal algorithm to resolve this problem,
based on a renormalization group procedure. However, the origin of the hairpin structures
had not been shown. We show that the formation of hairpin structures is independent
of the numerical ODE solver, of the time step, of the spatial step and of other numerical
parameters. The formation of hairpin structures is not caused by numerical instability.
Instead it is caused by short wave instability on co-rotating vortex filaments.

The outline of this dissertation is as follows. Chapter 2 gives some mathematical
background on fluid mechanics and introduces vortex methods. In Chapter 3 we review
Widnall’s stability analysis of a vortex ring, which serves as a theoretical foundation for
our analysis of short wave instability. Numerical results obtained by the thin tube vortex
filament method are presented in Chapter 4. The differences between our results and those
in the previous study are pointed out and explained. In Chapigér 5, we focus on numerical
considerations of the thin tube vortex filament method. The selection of the numerical
ODE solver, the time step, and the spatial step is addressed in detail. Chapter 6 is devoted
to the study of short wave instability on vortex filaments of fixed core structure surrounded
by a co-rotating vorticity field. The different behavior of the unstable modes on vortex
filaments which are close to each other and the unstable modes on vortex filaments far
apart is analyzed and numerically simulated. The origin of hairpin structures and of the
wild stretching of numerical vortex filaments is revealed. Finally, in Chapter 7 we summarize
the conclusions of the dissertation.

These conclusions are: neighboring co-rotating vortices induce short wave unsta-
ble modes which lead to stretching and folding; an isolated vortex filament will not create
hairpins or wild stretching; the formation of hairpins on numerical vortex filaments is not
caused by numerical instability, rather, it is caused by the short wave instability on neigh-
boring co-rotating vortex filaments. These results may explain the different behavior of

superfluid vortices and of classical fluid vortices.




Chapter 2

Mathematical Background of Fluid
Mechanics and Vortex Methods

This chapter introduces some mathematical background of fluid mechanics and
gives a short review of vortex methods which are one of the building blocks of this thesis.
We divide this chapter into two parts. In the first section, we introduce Euler’s equations,
the Biot-Savart law and the motion of vortex ring. In the second section, we briefly review
vortex methods [29], [86], [87].

2.1 Euler’s Equations and the Biot-Savart Law

This section summarizes some of the important facts about vortex dynamics.
Following Chorin & Marsden [34], we consider three dimensional, unbounded,
incompressible, inviscid flows. The dynamics of this class of flows is governed by Euler’s

equations, which may be written as

v u=0, (2.2)

where u(x,t) = (u,v,w) is the velocity field, x = (z,y, 2) is the position vector, ¢ is time,
v = (Oz,0y,0;) is the gradient operator, P is pressure and we have assumed the unit
density (p = 1). Equation (2.1) expresses the conservation of momentum while equation

(2.2) is a consequence of incompressibility and the conservation of mass.
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The vorticity w of a flow field is defined as the curl of the velocity u, i.e.,
W=V X u (2.3)

Taking the curl of Euler’s equation (2.1) and using the incompressibility condition (2.2), we

readily obtain Euler’s equations in terms of vorticity in three space dimensions, which read

ow
5 T Vw=(w-vu, (2.4)
or equivalently,
Do _ (- 2.5
Dt~ W Ve (2:5)

where —1‘% denotes the material derivative. Equation (2.5) is also called the vorticity trans-
port equation. In this equation, the term (u - )w is responsible for the convection of the
vorticity w, and the term (w - 7)u corresponds to the rotation and stretching of w.

Now we introduce vortex lines, vortex tubes and vortex filaments. By definition,
a vortex line is a line that is tangent to the vorticity vector w at each of its points. It
follows from the vorticity transport equation (2.5) that vortex lines move with the fluid
(see Chorin & Marsden [34] for a proof). A vortex tube consists of all vortex lines drawn
through a two-dimensional surface S which is nowhere tangent to the vorticity w. A sketch
of a vortex line and a vortex tube are shown in Figure 2.1 and Figure 2.2 respectively. A
vortex filament represents a vorticity field which is nonzero inside a tube-shaped region and
zero outside the region. Usually on any cross-section of a vortex filament, the vorticity field
points in roughly the same direction. The concept of two or more vortex filaments refers
to the vorticity field obtained by superposing the vorticity field represented by each vortex
filament. Thus it makes sense to talk about overlapping vortex filaments.

The circulation of a vortex tube is defined as

r=j£0u-d1, (2.6)

where C is a curve encircling the vortex tube. The circulation I' defined by (2.6) is a
constant independent of the shape and location of the contour C' (Helmholtz’s theorem)
and is also independent of time (Kelvin’s theorem). A related observation is that vortex
tubes cannot terminate in a fluid. Vortex tubes either form loops entirely within a fluid,
extend to infinity, or end at a solid boundary.

Since the vorticity transportation equation (2.5) involves the fluid velocity wu, it is
essential that we determine the velocity u from the vorticity w. To do this; we first find a
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particular divergence free velocity field u satisfying 7 X w = w. Boundary conditions may
be satisfied by adding a potential flow to u.

vortex line

Figure 2.1: A vortex line.

vortex tube

Figure 2.2: A vortex tube.

The vanishing of 7 - u in three dimensional space implies the existence of a vector
potential function ¢ such that

u=vy X ¢, (2.7)
and v-¢=0. | (2.8)
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Consequently .
w=yXxu=-0¢+Y(V-¢)=-00, (2.9)
82 8 o2
where A = (Eﬁ, 592 52 %) is the Laplacian operator.

Equation (2.9) is a Poisson’s equation for ¢. A particula.r solution of equation
(2.9) is given by the convolution of the vorticity w with G(x) = 47rlXI’ the Green’s function
for the Laplace equation A¢ = 0. So

p=Grw= /R Gl —x)w(x)ax. (2.10)
Taking the curl of equation (2.10) yields a particular solution for u:
u=y X¢= /K(x -x) X w(x )dx , (2.11)
where the convolution kernel K(x) is
1 x

Equation (2.11) is called the Biot-Savart law. One can verify that the velocity u given
by equation (2.11) satisfies the equation 7 X u = w and the incompressibility condition
v - u = 0. Furthermore, in the case where the vorticity field w has compact support, the
velocity -u given by equation (2.11) vanishes at infinity. The significance of the Biot-Savart
law lies in the fact that once the vorticity field w has been found, the velocity field u may
be readily obtained. This result is particularly useful for numerical computations of flow
fields using vortex methods which will be introduced in the next section.

' Finally, one can use the Biot-Savart law to evaluate the propagating velocity of a
thin vortex ring. The term “vortex ring” refers to a torus-shaped region of vorticity in a
fluid in which vortex lines form closed loops (see Figure 2.3). The torus-shaped region is
usually called the core of the vortex ring.

We call a vortex ring e thin vortez ring if its core radius is small in comparison
with its ring radius. In the absence of viscosity, a thin vortex ring of ring radius R and core
radius § will move at a constant rate along its axis of symmetry with no change of shape.

The velocity of translation is [60]

r
4nR

where I is the circulation and the constant C depends on the distribution of vorticity within

Up = [m( )+C+ 0(5/3)] (2.13)

the ring. For a constant vorticity distribution, C = —0.25. For a second order Gaussian

vorticity distribution, C = —0.558.

SETRTT T TR

3.3
4
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Figure 2.3: A front-on view of a vortex ring with ring radius R and core radius § .

2.2 YVortex methods

Vortex methods [7], [13], [17], [40], [47], [62], [77), [80], [81], [93] are a type of
numerical method for approximating the solution of the incompressible Euler or Navier-
Stokes equations. In vortex methods, the undérlying discretization is of the vorticity field
rather than the velocity field. This discretization is Lagrangian in nature and usually
consists of a collection of particles which carry concentrations of vorticity with them. The
velocity field is approximately recovered by first evalua.fing the Biot-Savart law based on the
discretized vorticity field and then imposing a pofential flow field to satisfy the boundary
condition. The vorticity field is then evolved in time according to the vorticity transport
equation using the recovered velocity field.

Many incompressible flows at high Reynolds numbers are characterized by regions
of concentrated vorticity embedded in irrotational fluid. If finite difference or finite element
methods are applied to solve the Navier-Stokes equation in velocity-pressure form, the
whole domain of the low has to be covered by numerical grids since the velocity field is not
localized. In the case where the flow is inviscid or has high Reynolds number, the grid size
has to be very small at least in the region where the vorticity field is concentrated so that

the numerically induced grid scale dissipation and dispersion will not change the physical
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properties of the flow. To overcome these numerical difficulties, Chorin [18], [19], [20], [22]
proposed the vortex methods which discretize the equation of fluid motion in vorticity form
rather than in the usual velocity-pressure form. The inviscid motion of the vorticity is
given by the local fluid velocity which in turn is determined from the vorticity field by the
Biot-Savart law and the superposition of a potential velocity field to satisfy the boundary
conditions. This technique has the advantage that the pressure is eliminated from the
number of dependent variables to be computed and the velocity field recovered by the Biot-
Savart law is automatically divergence free. In addition, the vorticity field is represehted
in terms of particles of vorticity, usually referred to as vortex blobs in the two dimensional
case or as vortex segments in the three dimensional case. These particles are generally
called vortex elements, which induce motion on each other. Thus the vortex methods are
adaptive methods in the sense that numerical particles are automatically distributed in the
regions where the vorticity is concentrated. Furthermore, the vortex methods are grid-
free. Thus they have no numerical grid scale dissipation which is often associated with
the finite difference methods and caused by repeatedly mapping the solution back onto
a fixed numerical mesh The representation of the vorticity ﬁ_éld as particles of identical
vorticity distribution at various locations is both mathematically appealing and relatively
straightforward to implement. As a consequence of the Biot-Savart law, the velocity field
is a linear combination of basic velocity functions which are the convolutions of an integral
kernel with the vorticity distribution of particles and hence are identical to each other up
to a shift.

We will restrict ourselves to the study of inviscid flows in three space dimensions.
In the following we first give an introduction to the mathematical formulation of vortex
methods. Then we describe two special kinds of vortex methods: the so-called thin tube
vortex filament method and the standard vortex filament method. The main difference
between them is that the thin tube vortex filament method uses one numerical filament
to approximate the vorticity field and the core of the vortex filament is fixed, whereas
the standard vortex filament method uses many numerical filaments of fixed core structure

which can simulate the evolution of the core structure of the physical vortex filament.

S — crr e - = e e~ e - VDO
; N ) = 3 . s - [
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2.2.1 Mathematical Formulation of Vortex Methods

In this section, we discuss the formulation of vortex methods for three-dimensional
unbounded inviscid flow. Our approach follows the discussion by Chorin [29].

Suppose we approximate the vorticity field w by a collection of vortex lines and,
concentrate the vorticity on these lines. The divergence-free property of w implys that the
flux of vorticity along a vortex line is a constant. Let I'; denote vorticity flux along the i-th
line, then the Biot-Savart law (2.11) becomes

ux) = 3T /along o g KO =X () X ds. (2.14)

This expression is difficult to approximate numerically because the kernel K typically be-
comes singular near the vortex filaments. Thus, if vortex filaments come close together,
they can induce extremely large velocities on one anether.

The basic idea behind vortex methods is to replace the singular kernel K by a
smoother object Ky to limit this singular interaction:

u(x) = E I; /along +th Tine Ks(x—x (s)) X ds. (2.15)

The smooth kernel K is a smooth function which approximates the singular kernel K in the
distribution sense. A large number of smoothed kernels have been constructed, providing
vortex methods of various orders of accuracy. In general, the smoothed kernel K can be
constructed as follows.
Let g(x) be a radially symmetric function such that
1. fg(x)dx=1,
2. [e'z3?z5Pg(x)dx =0, for o5 > 0 (¢ =1,2,3) and oy + a2 + a3 < p,

where p is an integer. Define a narrowly peaked function g; as:

g9s(x) = 5%9(%)- (2.16)

As § goes to zero, function gs converges to the Dirac delta function in the sense of distribu-
tion. Thus, one can define the smooth kernel K as the convolution of the original kernel
K with function gs.

Ks(x) = K # g5(x) = / K(x — ' )gs(x')dx . (2.17)



Chapter 2. Mathematical Background and Vortex Methods ] 11

Clearly, as § goes to zero Kj converges to K in the sense of distributions. In the theory
of vortex methods, g5 is called the vorticity core cutoff function or the core function, and
the subscript § refers to the cufoff radius or numerical core size. Using the fact that g(x)

is radially symmetric, equation (2.17) can be written as

K = [E@x-x)gs(x)ax

K(x)f (%), (2.18)

where f(r) is called the velocity smoothing function and is related to the vorticity core cutoff -
function g(r) as
F (r) = 4nr3g(r). (2.19)

A standard example of an appropriate velocity smoothing function f (r.) is the
fourth-order Beale-Majda smoothing function [10]:

fr)=1+ (gr3 —1)e . (2.20)

The accuracy of the vortex method depends on several factors: (1). the size of
the mesh h used in the discretization of the initial vorticity distribution; (2). the cutoff
radius &; (3). the choice of smoothing function f; and (4). the ODE solver and the time
step used to solve the ordinary differential equations for the particle trajectories. Since the
introduction of smoothed vortex methods, considerable theory has been developed studying
accuracy and convergence as a function of these parameters.

The first proof of the convergence of vortex methods in two space dimensions was
constructed by Hald and del Prete [45]. In their work, several types of smoothed kernels
were considered and short-time convergence was established. In 1979 Hald [43] gave the
proof of long-time convergence of the vortex methods. He analyzed the relation between h,
& and the rate of convergence. He found that if h = §2, then for a certain class of smoothing
functions, the difference between the computed particle trajectories and the exact particle
trajectories is of order O(h?). In other words, as one uses more vortex elements to resolve
an initial vorticity approximation (that is, as h — 0), linking the cutoff radius é to the
number of vortices yields convergence of the position of the vortices to their exact trajecto-
ries. On the basis of Hald’s work, Beale and Majda [8], [9] showed that carefully designed
vortex methods for smooth inviscid flow could provide results of any desired degree of ac-

curacy in both two and three space dimensions. Their three-dimensional vortex method
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updates three-dimensional vortex stretching by computing derivatives along the particle
paths. Their proofs were technical, and much of work that followed was aimed at simply-
ing the arguments. For example, Anderson and Greengard [3] gave a simpler consistency
argument and a convergence proof which takes into account the time step error associated
with the integration along particle trajectories. Hald [44] then showed convergence for
an extremely wide class of two-dimensional methods, requiring only Holder continuity in
the vorticity field, as well as fourth-order convergence for the classical Runge-Kutta tech-
niques for the integration of ordinary differential equations. Proofs of the three-dimensional
method with explicit differentiation were also provided by Beale and Majda [8], [9].

In tandem with these theoretical investigations, many numerical convergence stud-
ies have examined the actual accuracy obtained in practice (for example, see Sethian and
Ghoniem [88]). Later in this thesis, we will present a careful, detailed study of the choice
of time step At and mesh size 2 for the thin tube vortex filament method.

2.2.2 Standard Vortex Filament Method and Thin tube Vortex Filament
Method

For computational purposes, the standard vortex filament method algorithm starts
with approximating the vorticity field w(x,t) by a finite collection of overlapping numerical
vortex filaments L; (i = 1,..., N). Each of the filament L; is approximated by n; segments,
i.e., short, thin, circular cylinders whose axis is tangent at a point to the vorticity vector.
The (z,7)-th segment (the j-th element on the i-th filament, 1 < j < n;, 1 <i < N ) is
represented by a circulation I'; and by two Lagrangian variables x; j, x; j+1 which describe
the centers of the base and top of the segment respectively.

A sketch of a vortex segment is drawn in Figure 2.4 . No segment is allowed to
be longer than a predetermined bound %, in other words, |x; ;41 —x; ;| < h for 1 < j < m;,
1 <7 < N. If the length of a segment exceeds &, the segment is cut into two new segments.
The coordinates of the new segments can be obtained by linear interpolation.

Denote the center of the (7, j)-th vortex segment by

Xij = (xm +Xigp1) | (2.21)

The velocity at a point x can be approximated by
N n;

u(x,f) = —— EZF (ng x) X (xz,.7+1 ',J')f(lng,ja_ xl), | (2.22)

z—l =1
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which is a discrete version of (2.15).

Figure 2.4: A vortex segment.

13

Once the velocity u(x; ;) is calculated from the numerical filament configuration,

one can advance X;; by solving an initial value problem :

—d7 = u(x).

(2.23)

If only one numerical filament is used instead of a collection of overlapping numer-

ical filaments to approximate the vorticity field, the resulting method is called the thin tube

vortez filament method. Later we will employ both the standard vortex filament method

and the thin tube vortex filament method to study short wave instability.

4
{
1
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Chapter 3

Instability of A Vortex Ring

In this chapter, we review some of Widnall’s analysis of vortex ring instability.
This review is important for our study of short wave instability on vortex filaments and our
study of time and spatial discretization of vortex methods, which will be presented in the
following chapters.

The behavior and inherent beauty of vortex rings have fascinated researchers for
a long time (e.g. [48], [63], [69]). In nature, vortex rings are found to occur in various
sizes. Perhaps the most familiar example is the smoke-ring which is produced when smoke
is ejected suddenly through the lips of a smoker. Vortex rings have also been observed in the
wakes of aircrafts. In a laboratory, the usual method of generating vortex rings is to eject
fluid impulsively through some type of orifice into a quiescent fluid. In superfluid helium,
experiments By Rayfield and Reif [78] found that accelerating ions can create quantized
vortex rings.

Part of the fascination of vortex rings stems from their compact and persistent
nature. It was this persistence and their apparent stability that prompted Lord Kelvin to
propose the theory of vortex ring atoms, which explained spectral lines in terms of differ-
ent modes of oscillation of vortex rings. Even though this theory was later superseded, it
inspired much of the early analysis of vortex rings that is still relevant today. The com-
pactness of vortex rings simplifies analytical, numerical and experimental studies. However,
their nature is still complex enough to have provided ample material for research for well
over one hundred years. .

While many studies of vortex rings have been prompted by scientific curiosity,

some studies have been made of technological applications. For example, vortex rings have
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been suggested as a means for extinguishing gas and oil well fires [1] and cavitating vortex
rings, produced by exciting cavitating jets, have been used for underwater cleaning and rock
cutting [14].

The simple and robust nature of vortex rings also makes them ideal as simpler
building blocks in the modeling of more complex flows, including the generation of sound,
mixing in shear layers, and turbulence. Among many interesting arena of vortex rings, we
are concerned with the stability of vortex rings. In this chapter we discuss some of the
features of vortex ring instabilities. First we give a historical review of the study of vortex
ring instabilities. Then we describe the theoretical study of vortex ring instabilities, which
plays a guiding role in the later chapters of this thesis.

3.1 Historical Review of the Study of Vortex Ring Instabili-
ties

Theoretical studies in the late 1800s suggested that wave-like perturbations on vor-
tex rings were stable. Analyses of vortex rings, carried up throu_éh terms of O(6/R), showed
no instability. However, about half a century later, the experimental work of Krutzsch [59]
showing the formation of unstable azimuthal waves on vortex rings brought these findings
into questions. The significance of his observations was not fully appreciated at the time and
it was not until Maxworthy [68] observed a similar azimuthal instability that researchers
began to examine this phenomenon closely.

Maxworthy’s experiments [68] revealed that a stable laminar vortex ring forms
when the Reynolds number (based on the velocity and the diameter of the ring) is less
than 600. Once formed, the ring does not translate with a constant velocity, as might
be expected from inviscid theory, instead the velocity decays (Maxworthy [68], Sallet and
Widmayer [83], and Glezer and Coles [39]). At moderate Reynolds number, experimental
data indicate that a laminar vortex ring may subsequently become “turbulent”.

Since Maxworthy’s observation on vortex ring instabilities, a number of experi-
mental studies have been made of this phenomenon (Widnall and Sullivan [96]; Leiss and
Didden [61]; and Auerbach [5]). A detailed explanation of this phenomenon has gradually
developed as the result of several studies.

In 1973 Widnall and Sullivan [96] investigated the stability of vortex rings both
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theoretically and experimentally. They attempted to explain the instability by considering
the behavior of an inviscid circular vortex filament with a thin core (as §/R — 0). They
examined the behavior of a small perturbation in the induced velocity field of the ring. A
perturbation may grow, die out, or remain unchanged with time. Perturbations of different
wavelengths will have different growth rates. In their analysis Widnall and Sullivan assumed
that the wavelength of the perturbation wave was large in comparison with the core radius
(i.e. k6 << 1, where k is the wave number defined as 27 /wave length), since for long waves,
the self-induced rotation frequency of the sinusoidal wave on a straight vortex filament has
a simple asymptotic formula. Their analysis suggested that a thin vortex ring in an ideal
fluid is almost always unstable to a small wave-like perturbation.

The approach of Widnall and Sullivan [96] had some success in predicting the

amplification rates and mode shape of the instability. Their results were in agreement with
their experimental measurements. They also showed that the number of waves around the
perimeter in the unstable mode depends on the size of vortex core. For a given vortex
core, only one mode is unstable and the wave number of the unstable mode increases with
decreasing core size. Nevertheless, their prediction of the wave number was not accurate.
As Widnall and Sullivan pointed out, the wavelength of the predicted unstable mode is of
the order of the core size and, as.a result, contradicts the assumption of long waves used in
the analysis. .
In order to address this shortcoming in the model of Widnall and Sullivan, Widnall
et al. [95] proposed a new model in which it is possible for the wavelength of the unstable
mode to be comparable with the size of the vortex core. In this modified model, they still
examine the asymptotic limit of a thin core (6/R — 0); however, here the wavelength of
the perturbation is such that ké is of order one, whereas in the previous case k6 << 1 (as
6/R — 0).

The improved model relies on the important observation that the induced velocity
on a displaced portion of the vortex ring due to the rest of the vortex ring is locally like a
stagnation point flow (in the case of a perturbed vortex pair it is an exact stagnation point
flow, however, in the case of a curved filament or ring the flow is only approximately like a
stagnation point flow). This means that the perturbed filament is subject to a local plane
straining. Widnall argued that if the perturbation is aligned with the strain, it will grow.
However, a sinusoidal perturbation on a vortex filament is also subject to rotation due to

its self-induced velocity field. Thus the problem is to find cases where the combination of
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these two effects results in a perturbation which remains aligned with the strain. In their
model, Widnall et al [95] considered one case in which this is automatically true, that is
perturbations for which the self-induced rotation frequency is zero. They found that the
first radial mode can not have a zero rotation frequency, and that it is the higher radial
mode (second or higher) that is responsible for the instability. In their previous work, a
spurious non-rotating first radial mode was predicted by the asymptotic formula for long
waves outside its valid region.

In two subsequent papers Tsai and Widnall [92] and Widnall and Tsai [97] refined
the ideas presented in Widnall et al. [95].

In particular, Tsai and Widnall [92] addressed the effect of the distortion of the
core by the imposed strain. In addition to the modes with zero rotation frequency, two
helical modes of opposite rotation frequency were included in their model. These two
helical waves, when superposed, form a standing wave (the existence of these modes for
a straight filament was pointed out by Moore and Saffman [74]). They also attempted to
justify the assumption that it is the second radial mode that dominates over the higher
radial modes. In this they were unsuccessful — they found tha{;‘ the second and third radial
modes have similar amplification rates.

Widnall and Tsai [97] examined the effect of curvature using matched asymptotic
expansions to order §2 for the frequencies of oscillations. They showed that the effects of
curvature are much smaller than that of strain and therefore the mechanism of Widnall et
al. [95] is basically correct.

The mechanism Widnall and her co-workers used to study short wave instabilities
on a vortex ring is very technical and illustrative. We will use a similar mechanism to study
short wave instabilities on a co-rotating vortex pair and short wave instabilities on vortex
filaments of fixed core structure in a straining flow in Chapter 6. In the following section

we restrict our attention to the study of vortex ring instabilities.

3.2 Vortex Ring Instabilities

In this section we briefly introduce the model for the experimentally observed
instability of the vortex ring, which is subject to perturbations of azimuthal bending waves
whose wavelength is comparable with the core size of the vortex ring. We shall closely follow

the approach presented in Widnall et al. [95] where the short wave instability is studied for
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both the vortex ring and the vortex pair. Instability for both the vortex ring and the vortex
pair is predicted to occur when the waves on the filament have zero self-induced rotation
frequency. This zero rotation frequency does not occur for the first radial bending mode
of a vortex filament. However, it does occur for higher radial bending modes which have
more complex radial structures with at least one node at some radius within the core of the
filament. Here the word “node” i:epresents a radius rp such that the disturbance velocity

vanishes on the circle of radius r = rg.

3.2.1 Vortex Pair Instability

To motivate the more complete stability analysis for the vortex ring, we first
investigate the instability of a thin vortex pair. A thin vortex pair consists of two parallel
vortex filaments of opposite circulation where the core size of each filament is small compared
with the distance between the filaments. As shown in Figure 3.1, axes are taken with z
span-wise, y horizontally outwards and z parallel to the undisturbed straight filament. The
undisturbed pair moves inwards with velocity I'/2xb, where b is the separation between two
unperturbed filaments, and =T is their circulation.

The instability of the vortex pair to bending wave perturbation was first consid-
ered by Crow [35]. Since the flow outside the vortex filament is potential, the stability
calculation can be done by considering the motion of the filaments that results from the
perturbation. To do this, we shift the coordinate system such that the origin coincides with
one of the unperturbed filaments. Figure 3.2 shows a cross section of the vortex pair with
the coordinate system. The vortex filaments move with a velocity that is a combination of
the velocity induced by the other filament and the self-induced rotation € of the sinusoidally
perturbed filament. For short waves, it is the presence of the neighboring filament rather
than the perturbation on that filament that plays the dominant role in the instability. The
presence of the other filament produces a stagnation-point flow in the neighborhood of the
vortex, whereas the velocity induced at the vortex due to short wave perturbation of the
other filament can be ignored.

The velocity at a point (z,y) induced by the other filament is

r 1 Y
u(z,y) = %m [ G+ jl . (3.1)
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Figure 3.1: A perturbed vortex pair of opposite circulation.
Expanding u around (0,0) yields

u(z,y) = 57%3 l _Ob} +$ ! i ] +0(2? + 7). (3.2)
The second term on the right hand side of expression (3.2) is a stagnation point flow. It
represents the velocity of the perturbed vortex at (z,y) relative to the unperturbed vortex
position (0, 0), which is induced by the other filament. The stagnation point flow is sketched
in Figure 3.2

In the local cylindrical (r,8) coordinate system centered at the unperturbed posi-
tion of the vortex filament, this stagnation-point (SP) flow has the following form:

r .
u.(SP) = 527 sin 26, (3.3)
ug(SP) = 2:?7' cos 26, (3.4)

where u,.(SP) is the radial velocity and ug(SP) is the tangential velocity. Therefore, for

the vortex cross-section which is at the position (rg,8p), the velocity due to the stagnation
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D-
)

axis of symmetry

Figure 3.2: A cross-section of the vortex pair.

flow is
T < on '
Uzrg (SP) = -2?5'2-7'0 sin 290, (3.5)
r
Ugq (SP) = %b—z’l'o Ccos 200. (3.6)

In addition to these components of velocity induced by the other filament, the displaced por-
tion of the filament is also subject to its self-induced rotation (SR) around the unperturbed

position (0,0). The self-induced tangential velocity is
ug,(SR) = 112, . (3.7)

where § is the rotation frequency of the perturbation wave. For long waves (i.e. the
wavelength is much larger than the core size ¥§ << 1) on a straight vortex filament with
constant vorticity distribution, the frequency 2 has an asymptotic formula given by Lord
Kelvin [49]
Q= — LR in(=) + 2 4102 — 1] (3.8)
4 k6" 4 ’
where -y is Euler’s constant 0.5772.... For short waves, §2 has to be solved numerically from

a transcendental equation (dispersion relation) and will be discussed later.
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The combination of the stagnation point flow field and the self-induced rotation
gives the total velocity of the vortex cross-section relative to the unperturbed position. We

expect instability to occur when
méinug(SP) < —ug,(SR) < m(;cucue(SP), (3.9)

that is, when the velocity field of the stagnation point flow is sufficient to overcome the self-
induced rotation. The argument goes as follows. When the self-induced rotation velocity
falls between the minimum and maximum tangential velocity of the stagné.tion point flow,
the total tangential velocity will carry the vortex cross-section to a new angle 6', where the
total tangential velocity satisfies uy (SP)+uy (SR) = 0. The new angle 6' should also have
the property that if the vortex is moved away from 6' by a small angle, the total tangential
velocity will force it back to 6'. This is equivalent to

8(ug(SP) + us(SR '
from which it follows that
sin26 > 0. _ (3.11)

Thus we only need to consider the situation where ug,(SP) = —ug,(SR) and sin 26y > 0.
When ug,(SP) = —ug,(SR), the perturbation will diverge along the direction of
= fp with velocity u,,(SP) and the position of the vortex is governed by the ordinary

differential equation
dTo

dt
Integrating equation (3.12) with respect to time, we get

T
= u,.o(S’P) = 5‘7‘_—1)2'7'0 sin 264 > 0. (3.12)

ro(t) = 70(0)e%*t = ro(0)e 3wz 2200t (3.13)

where ¢, = T%;sin 26p. Thus the perturbation diverges along the direction 6y with a

non-dimensional amplification rate

= Sw __
%o = T'/2xb?

For the vortex pair, Widnall et al. [95] noted that &, ~ 0.8 and 6 is somewhat greater than

= sin 26 > 0. (3.14)

45° for the most unstable long waves, whereas &, = 1 and 6§ = 45° for the most unstable
short waves (2 = 0). Here it should be pointed out that for long waves, the velocity at the

vortex filament due to long-wave perturbations of the other filament is not negligible and
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has to be taken into account. For short waves, the condition for the most unstable mode (
2 = 0 ) requires that cos 26y = 0. Thus 6y = 45° and it follows that &, = 1.

From the discussion above, one can see that the self-induced rotation frequency Q
of the sinusoidal waves on a straight vortex filament determines whether or not a mode is
stable, what the growth rate is, and which mode is most unstable. In the next subsection
we shall focus our attention on the dispersion relation which relates Q to wave number and

core size.

3.2.2 Dispersion Relations

We now discuss the dispersion relation of the infinitesimal perturbations of a uni-
form rectilinear vortex filament. '

To proceed, consider a straight circularvortex filament of radius é parallel to the z-
axis. In the cylindfical polar coordinate system (r, 6, z), the components of the unperturbed
velocity field are (0, V(r), W(r)). We consider infinitesimal perturbations (u,,ug, u,), which
satisfy the Euler equations linearized about the unperturbed flow and the incompressibility

constraint. We search for solutions of the form

u = u(r)eiketmi—t) ' (3.15)
ug = v(r)e"(k”"“"-ﬂ*), (3.16)
u, = w(r)eikztmo—at) (3.17)
P = p(r)elk=tmé-at) (3.18)

where P is the pressure. The axial wave number is k. m is the azimuthal wave number,
which must be an integer. The solutions for {2 are the eigenvalues and the corresponding
solutions for (u,v,w, P) are the eigenfunctions.

For a filament of uniform vorticity distribution with zero axial flow, the unper-
turbed velocity field (0, V(r), W(r)) is '

w(r) = 0, ’ (3.19)
Qor, 1< 6

V(r) = {Qoéz/r, s (3.20)

where . .
Qp =T'/2n6? (3.21)

et e = e g e e ot e e ——— - e ———— e o e e e+
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is the angular velocity of the solid body rotation of the unperturbed vortex core. The
dispersion relation which relates Q to k, m and § is the following transcendental equation
(see Moore and Saffman [73]):

2 [B8080) omay] . Kin(H)
-7 [ T8 T g | MR R 6.2
where
g = —Q+m90, (3'23)
B = K49 - %)/d%, (3.24)

Jjm| is the |m|-th order Bessel function of the first kind, and K, is the [m|-th order modified
Bessel function of the second kind.
The nature of the disturbance depends dramatically on the value of azimuthal

wave number m. The deformed core is given by
r = § + Deilketmo-9t) ' (3.25)

If m = 0, the disturbance is axisymmetric and is called bulge wave. For |m| > 2, the
boundary of the vortex core is perturbed, but the core as an entity is not shifted. These
modes are called shape-change waves. For example, when m = 2, by taking the real part
of (3.25), one can see that the core cross-section is deformed into an ellipse which rotates
around z axis. In the case of m = 0 or |m| > 2, we have v = v = 0 at r = 0, and the axis
of the vortex is undisturbed. The modes with |m| = 1 are very special. They are called
the bending modes and are the perturbations we will be concerned with. When |m| = 1,
the axis of the vortex is deformed and the velocity perturbation does not vanish at » = 0.
Again, taking the real part of (3.25) with m = 1 and assuming that D is real, one obtains
a circle with center at 7 = D in the direction § = —(kz — Qt). This is a left-handed spiral
(helical wave). Figure 3.3 shows the core cross-sections before and after the disturbance for
the azimuthal wave number m =0, 1,2, 3,4, 5, respectively.

Now we study the dispersion relation (3.22) for the bending waves, i.e. jm| = 1.
From the symmetry of the equation (3.22), we know that '

Qk;m =1) = Q(~k;m =1) = —Q(k;m = —1). (3.26)
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Figure 3.3: The core cross-sections before and after the perturbation for various azimuthal
wave numbers. The solid curves denote the unperturbed core, the dashed curves denote the
perturbed core.
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Thus there is no loss of generality in taking %k positive and m = 1. Solving g from equation

(3.24), one has
(4022 2Q0kSs
Y=+~ JBor+ e

where s = £1. When s = 1, as a result of equations (3.27) and (3.23), we have Q < Q,

i.e. the rotation € of the disturbance is slower than or even in the opposite direction of

(3.27)

the solid body rotation §2¢ of the unperturbed vortex core. In this case, the disturbance is
called retrograde. If s = —1, it also follows from (3.27) and (3.23) that the disturbance Q
rotates faster than the solid body rotation of the core €y and is called co-grade. For the
co-grade modes, the rotation frequency Q2 is of the same order as £y, which is much larger

than the maximum angular velocity of the stagnation point flow:

T max ug(SP)
Qeo—9rede |, O = g > J —. (3.28)
The inequality (3.28) holds because
max ug(SP) T
d (3.29)

T ~ o
from equation (3.4) and we have assumed that § << b. Since the unstable modes are those
with zero or small rotation frequency (when the self-induced rotation can be overcome by
the stagnation point flow), the co-grade modes are not candidates for unstable modes and
will not be discussed here.

Taking s = 1, m = 1, and substituting (3.27) into equation (3.22) gives a tran-

scendental Jequation for 3:

1 Jy(B8) + VB8 + (k)2 _ Ky (ké) (3.30)
Bé J1(86) (k6)(B6)2 k6K1(kS) |

The left hand side and the right hand side are sketched as functions of 86 in Figure 3.4, which

shows that for any k&, equation (3.30) has infinite number of roots {(86)n,n = 1,2,3,...}.
Combining equation (3.27) and equation (3.23), one can see immediately that for

any k&, the dispersion relation (3.22) also has infinite number of roots {Q,,n =1,2,3,...},

given by
2Qpkd

V(B8 + (ké)*

~ These roots 2, are the eigenvalues of the linearized Euler equations. They are the rotation
. frequencies of the corresponding eigenfunctions (disturbances) which are called the first
radial mode (n = 1), the second radial mode (n = 2) 'and so on.

Qr=Q—gn =8 —

(3.31)
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Figure 3.4: The left hand side (solid curve) and the right hand side (dashed curve) of
equation (3.30) as functions of 36.

In the long wave limit k6 — 0, the right hand side of equation (3.30) —Fé%glz—;?&)-
is asymptotically (T}ﬁf’ which implies that the n-th root (86), of equation (3.30) converges
to the n-th root j, of Ji(z) = 0. Therefore, as kdé goes to zero, the n-th root Q, of the
dispersion relation given by (3.31) approaches (g, except for the first root §2; which has a
different behavior because the first root j; of Ji(z) is zero. When k6 is small (long waves),
the first root (86); of equation (3.30) is also small and the rotation frequency Q; of the first
radial mode has a simple asymptotic formula which is given below.

For both ké and B6 small, the two terms in equation (3.30) which involve the

Bessel functions J; and Kj can be expanded into the power series:

188 _ 1 1

57,80~ @y~ 2O, (3.32)
—kl_aIIéE:g = (1:5)2 + [1°g(;13) —9]+ O(¥*8%), (3.33)

where v is Euler’s constant as before. Substituting (3.32) and (3.33) into equation (3.30),
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assuming 36 is of the form ¢;(k6) + co(k6)? and solving for ¢; and ¢y, we obtain

B5=3 {k6 ~ Zog( 2+ 5 - fy](kaf} +O(kS5%). (3.34)
Combining (3.34) and (3.27) yields
I )
B=00=9= = o7+ oF
= 200’8’ [1og(%) +5- (3.35)

Equation (3.35) is the asymptotic formula for the rotation frequency of long waves of the
first radial mode [49].
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Figure 3.5: Oscillation frequencies of the first four radial modes on a filament with constant
vorticity.

The rotation frequencies 2 of the first four radial modes on a vortex filament
with constant vorticity are calculated numerically from the dispersion relation (3.22) and
plotted as functions of (k6) in Figure 3.5. It is important to notice that there are non-zero
wave numbers for which the rotation frequency is zero. The zero rotation frequency is not

possible for the lowest radial mode (the wave with wave number equal to zero is not an
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interesting case here), however it does occur for the more complicated higheI: radial modes.
If the rotation frequency 2 is zero, then equation (3.27), together with equation (3.23),
yields

B6 = v/3k6 ' (3.36)
and the value of (k§) can be obtained by solving the equation

1 J;(V3ké) L2 T Ky (k6)
V3k6 J1(V3k8)  3k282 k6 K1(k6)
The values of (k6) corresponding to non-rotating second, third and fourth radial modes are
2.5, 4.4 and 6.2, which can also.be seen from Figure 3.5.
In Figure 3.6 we compare the exact and the asymptotic dispersion relations for

(3.37)

waves on a vortex filament with constant vorticity. It is clear that the asymptotic formula
should not be used for £6 not small ( short waves). In particular, the zero rotation frequency
predicted by the asymptotic formula (3.35) at k6 = 257 = 1.44 is spurious. This is not
surprising, since the predicted k¢ is far away from the valid region of the asymptotic formula
(k6 << 1.)
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Figure 3.6: Comparison of the exact (solid line) and asymptotic (dashed line) dispersion
relations for waves on a vortex filament with constant vorticity.
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Higher radial modes have more complicated radial structure in the sense that they
have at least one node at some radius within the core of the filament. In the first mode,
the inner and outer crests of the disturbance translate in the same direction and thus there
are no nodes within the core. In the second radial mode, the outer and inner crests of the
disturbance translate in opposite directions and thus there is one node in the core.

Figure 3.7 shows the radial velocities at various locations for the first and the
second radial modes. Note that the radial velocity also depends on the angle 8 through
4, = u(r) cos 8. So the radial velocity at 6 -+ 7 is exactly the opposite of that at 6.

(a) (b)

Figure 3.7: Radial velocities at various locations for the first (a) and the second (b) radial
modes. ;

For the vortex pair of constant vorticity distribution, we conclude that the most
unstable waves are those with zero rotation frequency. Short waves of the first radial modes
are always stable. For the second radial mode, the most unstable wave satisfies k6 = 2.5
while for the third radial mode, it occurs at kd = 4.4.

3.2.3 Vortex Ring Instability

The purpose of this subsection is to examine the stability of the vortex ring to

azimuthal bending waves of wavelength comparable to the core size.
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In the limits §/R — 0 and kR — oo, to the lowest order, sinusoidal waves on
a slender bent filament will rotate around the filament at the same frequency as if they
were on a straight filament. Here R denotes a typical radius of curvature of the filament
curve. For short waves on a thin vortex ring, we have k§ ~ O(1) and kR = k6(£) — oo
as % — 0. Hence the self-induced rotation frequencies of short waves on a thin vortex
ring are approximately the roots of the dispersion relation (3.22), which have been shown
as functions of k6 in Figure 3.5. Here the self-induced rotation is due to the velocity
induced by a part of perturbed ring, the length of which is small in comparison with the
circumference of the vortex ring but large in comparison with the wavelength. One can
analyze the vortex-ring instability in the same manner as the vortex-pair instability. That
is to examine whether or not the self-induced rotation can be balanced by the stagnation
point flow at the vortex due to the presence of and the perturbations on the remainder of
the ring. The part of the vortex ring which is responsible for the self-induced rotation and

the remainder of the ring are sketched in Figure 3.8.

Figure 3.8: Thick curve: the part of the filament curve responsible for the self-induced
rotation of the waves around the ring; thin curve: the remainder of the ring.

We expect that for short waves, such as those unstable waves observed on vortex

rinés, the velocities induced at the core boundary due to perturbations on the remainder of
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the ring are negligible. Bliss [12] expanded the velocity field near a vortex filament ring. As
in the vortex-pair instability previously discussed, the terms that are relevant to the vortex
ring instability are the stagnation point flow induced in the neighborhood of the vortex
core by the presence of the ring. From Bliss’s analysis, the radial and tangential velocity

components of this flow are given by

' 3 S8R 4

Ur = " sm29[1n— - —], (3.38)
r 3 8R 5

Up = g 77 €O 20[1n— - —] (3.39)

The velocity field (3.38) and (3.39) for the vortex ring is analogous to the field (3.3) and
(3.4) for the vortex pair. Strictly speaking, due to the presence of the term Inr and the
different constants inside the brackets for u, and wug, the velocity field (3.38) and (3.39) is
not exactly a stagnation point flow. '

To illustrate the essential mechanism in the vortex-ring instability, we consider the
net translational motion of a cylinder of radius 4, representing the vortex core boundary,
displaced in this field. Because of the presence of the logarithm in the velocity field, to
evaluate the net translational velocity, we require that the displacement of the vortex core
boundary be small in comparison with the core radius (this is true for infinitesimal per-
turbations). In the appendix of [95], Widnall et al. showed that the net translation of the
cylinder of radius § perturbed in the “stagnation point” flow (3.38) and (3.39) is given by

r 3 8R 25

Upg = y .R2 47'0 sin 290[ T - 1—2-], (3.40)
r 3 S8R 25 .

Ugy = 735 770 COS 26y [ln 5 33k (3.41)

These expansions are of the same form as the expressions in (3.5) and (3.6) which are used
in the discussion of the vortex-pair instability. i

We now suppose that instability of the vortex ring to short-wave perturbations
around the azimuth occurs whenever the self-induced rotation €2 of the waves can be over-
come by the net translational velocity (3.40) and (3.41). If the self-induced rotation  is
zero, the rotation will stop at 6y = 45°, where ug, = 0, and the vortex will diverge at a
velocity u,, given by (3.40). The growth rate u., is maximized at the angle 6 = 45°.

We take as the condition for instability that 2 = 0 for some k6. From Figure
3.5 it can be seen that zero rotation frequency {2 = 0 is possible only for the second and

higher radial modes. Assuming that the lowest of these modes (i.e. the second mode) is the
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most likely to occur, one can draw the conclusion that the wave number k of the instability
satisfies k6 = 2.5 for a uniform distribution of vorticity in the core. This theoretical result
agrees well with the experimental results of Widnall and Sullivan [96].

In summary, we have reviewed Widnall’s study of vortex ring instabilities. In the

next chapter we will carry out a2 numerical study of the problem.




33

Chapter 4

Numerical Results Obtained with
the Thin Tube Vortex Filament
Method

In this chapter numerical simulations are carried out for the problem of vortex
ring instability. The numerical method used here is the vortex method with one numerical
vortex filament, which is called the thin tube vortex filament method. In this method,
the cross section of the physical vortex filament, with core radius o, is represented by one
numerical vortex filament with core radius § = 0. In effect, the core structure of the physical
vortex filament is fixed. The thin filament approximation of vorticity structures has been
employed before in many numerical simulations. For example, Chorin [22] has used this
method to follow the evolution of a turbulent vortex; Siggia [89] has applied it to simulate
the collapse and amplification of a vortex filament; Pumir and Siggia [76] have used it to
study the existence of solutions to the Navier-Stokes equations. Several years ago, Knio
and Ghoniem [57] investigated the accuracy and convergence of this method by comparing
numerical solutions to analytical results on the propagation and stability of vortex rings.
In this chapter we will modify some of their results.

In the first section we present a static simulation of the velocity of a vortex ring.
The goal of this section is to demonstrate that for a reasonable approximation of the vortex
ring velocity, a certain condition should be satisfied by the spatial discretization.

In the second section, we further show that the criterion discussed in the first sec-
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tion cannot be simply extended to other numerical simulations. We compare our numerical
results with those obtained by Knio and Ghoniem [57] who used a similar method. The
significant differences in the behaviors of the numerical results are evident. In particular,
the neutrally stable (i.e. non-rotating and stable) wave found by Knio and Ghoniem is in-
consistent with Widnall’s stability theory which has been reviewed in the previous chapter.
According to Widnall’s theory, a wave is unstable when the self-induced rotation is balanced
by the stagnation point flow induced by the ring ( i.e. when it is not rotating ). We find
that the neutrally stable wave is actually caused by the underresolved spatial mesh size.
‘With refined meshes, the wave is rotating and stable. Furthermore, contrary to Knio and
Ghoniem’s results, for thin vortex rings the unstable mode does not grow without bound,
instead it exhibits a periodic behavior in time.

The mechanism of the instability and the periodic behavior in time of the unstable
mode is explained in detail in the third section with the help of the dispersion relation for
sinusoidal waves on a vortex filament with fixed core structure. Our analysis supports our
numerical results.

At the end of this chapter, we summarize our work and draw some conclusions.

4.1 Static Simulation of the Velocity of A Vortex Ring

In this section, we use the thin tube vortex filament method to calculate the
translational velocity of an unperturbed vortex ring.

The vortex ring, of rédius R, is divided along its circumference into N vortex
segments, each of length A = (6x); = 2aR/N, i = 1,2,...,N. The core radius o of the
vortex ring is used as the numerical core si;g 6 and the velocity smoothing function is taken

as

3

f(r)=10—-¢"" (4.1)

which has been shown to yield a second order discretization by Beale and Majda [8].
In the absence of viscosity, a thin vortex ring (the inner radius ¢ is small in com-
parison with the outer radius R) propagates at a constant rate along its axis of symmetry.

The velocity of translation is asymptotically [82]

V= % [1og(8—§) + c] , (4.2)
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where T' is the circulation of the ring, and the constant C depends on the distribution of
vorticity within the ring. For the velocity smoothing function given in equation (4.1), in
the limit A — 0, the numerical vorticity distribution is given by

o) = g5 [ o= o, (43)
where g(r) = i‘r(:z) = -4%‘:6_7‘3 (4.4)

represents the vorticity distribution of a vortex element with unit cut-off radius and unit
vorticity. For this vorticity distribution, the constant C in equation(4.2) is —0.50074. For

a second order Gaussian vorticity distribution, C = —0.558.
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Figure 4.1: Comparison of the numerical velocity and the asymptotic velocity of a vortex
ring. Here the “+” denotes the numerical velocity while the solid line denotes the asymptotic

velocity.

The numerical velocity, obtained by summing the velocities induced by all vortex
elements around the ring, is

N (x—xi_i_%) x5xi+% |x — ;1]

r 2
Vnumerical - —-4_71' ; |x — xi-{-%ls f( 3 . )s (4.5)
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wherex;, 1 = %(xi+xi41) is the center of the i-th vortex element and I'6x; +1 is the vorticity

1
carried byzthe i-th vortex element.

In Figure 4.1, we compare the asymptotic velocity of the vortex ring V with
the numerical velocity Vymerical for different values of h/§. The calculation is done
with R =1, T = 1 and o = 0.1. Figure 4.1 shows that when h/§ < 0.5, the numerical
velocity agrees well with the asymptotic velocity; when h/6 > 0.5, the numerical velocity is
inaccurate. '

This numerical experiment of calculating the velocity of a vortex ring indicates that
overlapping between neighboring vortex elements (i.e. h ~ %) is necessary for the accurate
evaluation of V. However, it should be emphasized that h ~ % may not be sufficient to yield
correct results for other problems. As we will see in the following sections, such an empirical

criterion is obviously insufficient for the numerical simulations of vortex ring instability.

4.2 Numerical Simulations of the Instability of Vortex Rings
Subject to Perturbations of Azimuthal Waves.

The purpose of this section is to simulate the growth of small sinusoidal. pertur-
bations on a vortex ring using the thin tube vortex filament method.

We choose the same initial conditions as in [57]. At time ¢ = 0, a cosine wave
perturbation with amplitude ¢ and wave number n is imposed on the circumference of
a vortex ring with radius R. The ring lies on the z-y plane, the z-direction being the
streamwise direction. Let p denote the radial direction in the plane of the ring and 8 be the
azimuthal angle as shown in Figure 4.2. The size of the perturbation varies in the azimuthal
direction as Ap = ecos(nf). In other words, initially the perturbed ring can be described

by the parametric equations:

z = (R + £ cos(nf)) cos(6),
y = (R + & cos(n8)) sin(0),

z=0,

where 0 < 8 < 2.

. We discretize the perturbed ring by dividing it into IV pieces according to azimuthal
angle. Each piece corresponds to an angle A6 = 2x/N in the azimuthal direction. The
length of vortex element h is approximately Af - R (it is exactly A8 - R if the ring is
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unperturbed). This yields a ratio h/§ = %"% In our numerical simulations, the initial
discretization is specified by the ratio h/6. Given a ratio k/§, the number of vortex elements
N is taken as the integer which is closest to 2%(%) / (%) and the increment in the azimuthal

angle Af is 27" The numerical discretization' of the initial condition is given by

z; = (R + e cos(njAf)) cos(j AF),
yj = (R + ecos(njgd)) sin(j AG),

z; =0,

forj=1,2,..,N.

AY

MY

Figure 4.2: The perturbed vortex ring and the coordinate system

Besides the parameter h/§, there is another parameter he,: which affects the nu-
merical representation of the filament during its evolution. When the length of the j-th
vortex element [x;y; — X;| is larger than hcus, to keep a uniform numerical resolution, we

cut the j-th element into two halves of equal length by adding a new point between the
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nodes x; and x;43. The coordinates of the new point are obtained by linear interpolation.
This process is repeated after each time step.

For time integration, a four stage fourth order Runge Kutta method is employed
to advance the filament according to the velocity obtained by summing the contributions
of all vortex elements. The time step is determined by At = 4.06%/T'. The issue of ODE
solver, time step and numerical stability is the major subject of next chapter.

In the following calculations, the radius of the ring is R = 1 and the selected value
of circulation is I' = 1. We start with the core size 6 = 0.1R and the amplitude of the cosine
wave perturbation € = 0.02R. The evolution of the perturbation is analyzed in terms of its
components in the radial and the streamwise directions.

For n < n*, where n* is the wave number of the unstable mode, the perturbation
wave rotates around the unperturbed ring at a frequency 2 which depends on the wave
number n. The trajectory of any point on the perturbed ring, observed relative to the
unperturbed axis of the ring, is an ellipse whose major axis is in the radial direction and
whose minor axis is in the.streamwise direction. The rotation frequency 2, starts low at
small n, increases with » to a maximum, and then decreases as n approaches n*. The sense
of rotation of the perturbation wave is opposite to that of the vortex core rotation. The
amplitudes in the p-direction and z-direction are shown in Figure 4.3 for wave numbers
n = 2, 5, 8, 10, 12, and 13. The calculations are performed with h/§ = 0.05, which is
much smaller than the criterion 2/§ < 0.5 discussed in the first section of this chapter.
We will come back to this issue later on. Figure 4.3 shows that as the wave rotates, the
amplitudes in the p-direction and z-direction fluctuate periodically between a maximum
and a minimum values. The maximum amplitude in the p-direction is the half length of
the major axis of the ellipse traced out by the crest of the perturbation wave, while the
maximum amplitude in the z-direction corresponds to the half length of the minor axis.
These modes (n < n*) are characterized as being stable. We will give a clear definition of
“stable” and “unstable” modes at the end of this section.

At n = n* (for §/R = 0.1, the unstable wavenumber n* = 14), the perturbation
wave first rotates in the same direction as the vortex core rotation. After a while it reverses
its rotation direction, then it reverses the rotation direction the second time and the per-
turbation wave goes back to its original position and starts to repeat the cycle. The net
rotation around the unperturbed ring is not observed. The wave grows initially in both the

radial and streamwise directions. After a while it continues growing in the radial direction
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but decreases in the streamwise direction, then reverses the pattern and starts the cycle
again. This mode is characterized as being unstable. Figure 4.4 illustrates the time evolu-
tion of the amplitudes in the p-direction and z-direction for the unstable mode n = n* = 14
using h/é§ = 0.05.

For the higher values of n, n > n*, the perturbation wave again rotates around
the unperturbed ring at a frequency 2. However, they behave quite differently from the
case where n < n* in that the sense of rotation is now the same as that of the vortex core
rotation and that the rotation frequency §2 grows monotonically with the wave number n.
Another difference is that for n > n* the ellipse traced out by the rotating wave has its
major axis in.the streamwise direction and its minor axis in the radial direction. Figure
4.5 depicts the time histories of the amplitudes in the p-direction and z-direction for wave
numbers n = 15, 16, 17, and 19. In the calculations, the discretization parameter h/§ is
chosen as 0.05. These modes (n > n*) are also characterized as being stable.

In their numerical experiments [57) Knio and Ghoniem obtained a neutrally stable
mode. For §/R = 0.1 and n = 13, their results show that the perturbation wave neither
rotates nor grows and the perturbation ring remains its original shape (see Fig. 3 in [57]).
This conclusion contradicts Widnall’s analysis which predicts that a mode becomes unstable
when the rotation induced by the presence of the ring balances the self-induced rotation of
the wave. Our calculations as plotted in Figure 4.3 show that for /R = 0.1 and n = 13,
the perturbation wave rotates in the opposite direction of the vortex core rotation and is
stable, which matches Widnall’s prediction.

For the unstable mode (n = 14 for §/R = 0.1), Knio and Ghoniem observed that
the wave grows in the streamwise direction and then in the radial direction so that the
total amplitude grows exponentially in time (see Fig. 4 in [57]). Our results in Figure 4.4
show that the wave grows first in both the streamwise and the radial directions, but the
total amplitude does not grow without bound, rather it increases to a maximum and then
decreases to its original value in a periodic fashion.

In order to determine the origin of these discrepancies between Knio and Ghoniem’s
results and ours, we ran the calculations with the discretization parameter /6 = 0.35, 0.2,
0.1, and 0.05. The amplitudes in the p-direction and the z-direction obtained with various
discretization parameter h/é’s are drawn in Figure 4.6 and Figure 4.7 respectively for wave
number n = 13 and n = 14. It can be seen that the results based on the coarse g&id
h/6 = 0.35 are almost the same as those obtained by Knio and Ghoniem (Fig. 3 and Fig.
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4 in [57]). However, Figure 4.6 and Figure 4.7 also show that when the grid is refined, the
numerical solution changes dramatically. The mode of n = 13 is in fact rotating and stable,
consistent with Widnall’s analysis. The mode of n = 14 grows and decays periodically
in time. It is clear that any conclusions drawn from Figure 4.6(2) and Figure 4.7(a) are
artifacts of the numerics since a sufficient refinement of the mesh invalidates them.

To conclude this section, we want to clarify the definitions of “stable” and “un-
stable” modes mentioned in this section. Note from Figure 4.3, Figure 4.4, and Figure 4.5
that the amplitudes of all modes are bounded. In fact, the absolute boundedness of the
amplitude of a mode is not used here as a rule to judge the stability of a mode. Instead, we
examine whether or not the amplitude of a mode can be bounded by its initial amplitude
multiplied by a constant coefficient. If this is true, we say that the mode is stable; other-
wise the mode is unstable. Numerical simulations were carried out for initial perturbation
amplitudes ¢ = 0.02R, 0.01R, and 0.005R with wave numbers n = 10, 13, 14, and 15,
respectively. The amplitudes vs time for wave numbers » = 10 and n = 13 are plotted in
Figure 4.8 , and those for wave numbers n = 14 and n = 15 are shown in Figure 4.9. The
results indicate that for both n < 14 and n > 14, the total amp}itude of the mode is always
bounded by its initial amplitude multiplied by a constant. For n = 14, the total amplitude
of the mode grows to a maximum of about 0.5, regardless of the amplitude of the initial
perturbation. Thus, the modes of n < 14 or n > 14 are classified as stable, whereas the
mode of n = 14 is classified as unstable.

To fully understand why a mode is stable or unstable, and why the unstable mode
(n = 14, for § = 0.1R) has a periodic behavior rather than growing without bound, we

continue our discussions in the next section.
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Figure 4.3: Evolution of the amplitude of the perturbation for the ring perturbed at
wavenumber n = 2, 5, 8, 10, 12, 13, respectively. The solid line denotes the amplitude
Ap in the radial direction and the dashed line denotes the amplitude Az in the streamwise

direction.
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Figure 4.4: Evolution of the amplitude of the perturbation for the ring perturbed at n = 14.
Notice the periodic behavior of the evolution, which is in contrast with Knio and Ghenoiem’s

result.
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4.3 Dispersion Relation and Stability Analysis for Thin Tube

Vortex Filaments

In this section we try to analyze the evolution of a perturbation wave on a vortex
ring. In particular, we will find out which is the unstable mode, what causes it to grow,
and why the amplitude of the unstable mode goes up and down in a periodic fashion where
the maximum amplitude is bounded by the core size instead of by the initial amplitude.

The analysis is based on the assumptions that (1). the core size § is small compared
with the ring radius; (2). the perturbation wave is a short wave, i.e. k6§ ~ O(1), where k
is the wave number; (3). the amplitude of the perturbation wave is small in comparison
with the ring radius. The motion of the perturbation wave is the superposition of the
self-induced rotation of the wave and the flow caused by the presence of the ring. Under
the above assumptions, the self-induced rotation of a sinusoidal wave on a vortex ring is
approximately that of a sinusoidal wave on a straight vortex filament, and the flow caused
by the presence of the ring is approximately a stagnation point flow.

First, we study numerically the dispersion relation_nof a sinusoidal wave on a
straight thin tube vortex filament, which relates the rotation frequency to the wavenumber
and the core radius. A sinusoidal wave of wavenumber & on vortex filaments of core size 6 is
discretized and the rotation velocity is calculated. The rotation frequency €2 is normalized
with respect to I'/2mé? which is the solid body rotation frequency of a vortex filament of
radius 6 and circulation I' with uniform vorticity distribution. The normalized rotation
frequency is plotted as a function of wavenumber times core size (k§). Figure 4.10 shows
the results for sinusoidal waves of small amplitude (i.e. the amplitude is much smaller
than the wavelength). The interesting region is k6§ ~ O(1), since for a vortex ring the long
waves ké ~ o(1) are outside the valid region of the approach of self-induced rotation plus
stagnation point flow.

The behavior of the perturbation wave can be understood by investigating the
motion of the perturbed filament relative to its unperturbed position. A cross-section of
the perturbed vortex ring with a local coordinate system is shown in Figure 4.11. In the
new local coordinate system, the origin is the position of the unperturbed filament, the

Z-axis is the radial direction and the g-axis is along the axis of symmetry of the ring.
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Figure 4.10: Frequency vs wavenumber.

A stagnation point flow of the form

u5(SP) = —cF cos(20), (4.6)
uz(SP) = —cFsin(20), _ (4.7)

is also sketched in Figure 4.11, where the constant ¢ depends on R, §, and T'.

When the self-induced rotation velocity €27 of the perturbation wave is small
enough such that it can be overcome by the tangential velocity u;(SP) of the stagna-
tion point flow, the stagnation point flow will bring the filament to an angle 6 where the
total rotation veloc.ity is zero and the perturbation wave grows in the radial direction 7 with
velocity uz(SP). This causes instability. For § = 0.1R, the wavenumber corresponding to
the smallest self-induced rotation frequency is k¥ = 14/R, keeping in mind that for a vortex
ring, the wave number must satisfy the condition that an integer number of these waves
can be fit around the ring, i.e. k£ = n/R. When the self-induced rotation velocity QF of the
perturbation wave cannot be balanced by the tangential velocity ug(.S"P) of the stagnation
point flow, the filament will rotate around its unperturbed position. In this case, the am-
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plitude of the perturbation wave fluctuates and is bounded by a constant multiple of the

initial amplitude. Thus the wave is stable.

Az M

N\
Vel S

]

%

Figure 4.11: A cross-section of the perturbed vortex ring (left) with a local coordinate

system (right).

The motion of the filament is the sum of a circular rotation and a stagnation point

flow. The total velocity is given by

uz = —cf cos(20) + QF,

uz = —cf sin(26).
This leads to a system of ODEs for Z and §:

i =—(Q+ )7,
7 =(Q—-c)i.

Solving equations (4.10) and (4.11) with the initial conditions

Z(0) =,
#(0) =0,
we find that
52 g2

(4.8)
(4.9)

(4.10)
(4.11)

(4.12)
(4.13)

(4.14)
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where ¢ is the initial amplitude. In the case of || > ¢, equation (4.14) represents a family
of el]ip'ses corresponding to different initial amplitude €. For Q@ > ¢, the perturbation
wave rotates anti-clockwise (opposite to the vortex core rotation) around the unperturbed
filament. Its trajectory is an ellipse whose major axis is the Z-axis and whose minor axis is
the j-axis. For Q < —c, the perturbation wave rotates clockwise (the same as the vortex
core rotation) on an ellipse with the #-axis as the major axis and the Z-axis as the minor
axis. This result has also been verified by our numerical simulations. The motions of the
perturbation waves with respect to the unperturbed axis of the ring, obtained from the

numerical solutions, are shown in Figure 4.12 for » = 13 and n = 15.

Wavenumbern =13 Wavenumbern =15

Figure 4.12: Trajectories of the waves (n = 13 and n = 15) with respect to the unperturbed
position. All coordinates have been normalized by the initial amplitude.

In the case of || < ¢, equation (4.14) represents a family of hyperbolas with
the initial amplitude ¢ as the independent parameter. The perturbation wave grows on a
hyperbola as long as its amplitude is still small in comparison with the vortex core size. It
is clear that the amplitude of the wave is not bounded by a constant multiple of the initial
amplitude. This can be best seen by considering an initial perturbation of infinitesimal
amplitude. It remains to be explained why the amplitude of the unstable mode grows
to a maximum and then decreases. In Figure 4.10 we showed the dispersion relation of

sinusoidal waves with infinitesimal amplitude. However, the self-induced rotation frequency
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may also depend on the amplitude. For § = 0.1R, the unstable mode has wave number
k = 14/R. For the combinations of k§ = 1.35, 1.375, and 1.4, we studied numerically
the relationship between the self-induced rotation frequency and the amplitude. Figure
4.13 shows the normalized rotation frequencies vs the normalized amplitude, where the
normalized amplitude is defined as amplitude/§. Figure 4.13 indicates that as the amplitude
grows, the rotation frequency also increases. This result can be used to explain the periodic

behavior of the unstable mode.

0.1 T

0.06

0.02

Normalized rotation frequency

095 0.4 0.8
Amplitude / core size

Figure 4.13: Frequency vs perturbation amplitude. —: k6 = 1.4, —o—: ké = 1.375, ——:
ké = 1.35, where k is wave number and § is the core size

The perturbation wave first follows a hyperbola. As its amplitude grows, its self-
induced rotation frequency starts to increase. Hence the total motion of the wave is the
motion along a hyperbola plus an anti-clockwise rotation due to the increased rotation
frequency. When the amplitude becomes comparable to the core size, the added rotation
dominates the motion along hyperbolas. This extra rotation carries the wave above the
Z-axis where the motion along hyperbolas causes a decrease in the amplitude. The family

of hyperbolas and the motions on them are sketched in Figure 4.14(a). The decrease in
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the amplitudes reduces the self-induced rotation of the wave, which in turn slows down the
added rotation. Eventually, the filament goes back to the position where it started with
and begins a new cycle.

Now we check this analysis with numerical simulations. Figure 4.14 (b) shows
the motion of perturbation waves of various initial amplitudes relative to the unperturbed
filament. The trajectories are obtained from the numerical solutions of the unstable mode
n = 14. We see that the wave first follows a hyperbola, then rotates counter clockwise due
to the increase in amplitude and finally follows a hyperbola back to where it started. This is
in good agreement with the analysis. In particular, Figure 4.14(b) shows that the amplitude
goes up to a maximum, then decreases to its original velue. The maximum amplitude is

bounded by a fraction of the core size.

Wavenumbern = 14

0.3 : r . . . 0.3

0.1}

Y

~0.1

"oz _ o4  os 06
X
(a) (b)

Figure 4.14: (a). A family of hyperbolas and the direction of the motion on them, predicted
by the stagnation point flow plus the dispersion relation of sinusoidal waves with small am-
plitude. (b). The motion of perturbation waves, with respect to the unperturbed filament,
obtained in the numerical simulations. —.—: initial amplitude € = 0.26, —: € = 0.1§, —=:
g = 0.055. All coordinates have been normalized by the core size.

More simulations were carried out for various core sizes between § = 0.03R and
6 = 0.20R. The amplitudes in the p-direction and z-direction of the corresponding unstable
mode for each core size are shown in Figure 4.15, Figure 4.16, and Figure 4.17. The
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results presented in these Figures confirm that the maximum amplitude of the unstable
mode is always bounded by a fraction of the core size. Actually the maximum amplitude
is bounded by a smaller fraction of the core size as core size gets smaller. This again
can be explained by the relation between frequency and amplitude shown in Figure 4.13.
The perturbation wave grows initially because the stagnation point flow prevails over the
self-induced rotation. The increase of the amplitude causes an increase in the rotation
frequency. The wave eventually stops growing when the self-induced rotation is strong
enough to counter the stagnation point flow. Recall that the normalized rotation frequency
is 2762 /T times the actual rotation frequency. Hence, for smaller core size, the normalized
rotation frequency only needs to increase by a smaller amount to stop the growing of the
perturbation wave. Translating the increase in the normalized rotation frequency to the
increase in the normalized amplitude (see Figure 4.13), we see that for smaller core size, the
amplitude can only increase to a smaller fraction of the core size before it stops growing.

We also ran VsimulationAs with § = 0.25R. In this case, the unstable mode n = 6
grows without bound and the periodic behavior in time is not observed. This should not be
viewed as an evidence against the prediction of the periodic behavior in time of the unstable
mode, which is based on the analysis of stagnation point flow plus self-induced rotation and
confirmed by numerical simulations for § < 0.2R. The analysis in this chapter and in the
previous chapter is for thin vortex rings. They are valid only for small §/R.

In the numerical simulations up to this point, the initial perturbation wave had
a small amplitude, i.e. the amplitude is small in comparison with the core size (¢ = 0.2,
0.16, or~0.056). To find <>)ut4 the behavior of the large initial perturbation, we also carried
out simulations with § = 0.1R, ¢ = §, n = 14. Figure 4.18 shows the axﬁp]itudes in
the p-direction and z-direction. The perturbation wave grows without bound. Again we
emphasize that this finding does not invalidate the theoretical prediction or the numerical
simulations of perturbation waves with small amplitude. The approximation of the flow field
around the unperturbed ring filament by é stagnation point flow (an asymptotic expansion)
depends on the assumption that the perturbation is small in comparison with the core size.
Also for large amplitude perturbations, the rotation frequency of a sinusoidal wave is not

well defined because the wave will not keep its shape as it rotates.
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Figure 4.15: Comparison of the evolution of the corresponding unstable mode on a vortex
ring for different core sizes. The solid line represents the amplitude in the radial direction
and the dashed line represents the amplitude in the streamwise direction.
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Figure 4.16: Comparison of the evolution of the corresponding unstable mode on a vortex
ring for different core sizes. The solid line represents the amplitude in the radial direction
and the dashed line represents the amplitude in the streamwise direction.
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Figure 4.17: Comparison of the evolution of the corresponding unstable mode on a vortex
ring for different core sizes. The solid line represents the amplitude in the radial direction
and the dashed line represents the amplitude in the streamwise direction.
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Figure 4.18: Numerical result for the large initial perturbation. The solid line represents
the amplitude in the radial direction and the dashed line represents the amplitude in the
streamwise direction.
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4.4 Concluding Remarks

In this chapter we have performed numerical experiments on vortex rings using
the thin tube vortex filament method. Our numerical results were successfully explained by
a theoretical stability analysis similar to that given by Widnall et al [95]. We fixrst obtained
numerically the dispersion relation for sinusoidal waves on a thin tube filament and then
used this in the theoretical analysis to determine the unstable wave number and to explain
the behavior of the unstable mode. In contrast to Knio and Ghoniem’s results, we found
that the amplitude of the unstable mode is bounded by a fraction of the core size and that
stable modes always rotates around the unperturbed axis of the vortex ring. The differences
between their results and ours are due to their under-resolved spatial mesh.

The main conclusions of this chapter can be summarized as follows:

1. For small perturbation amplitudes and small core sizes (6 < 0.20R), the amplitude of
the unstable mode grows to a maximum and then decreases, demonstrating a periodic
behavior in time. The perturbed vortex ring returns to the shape it started with after

a while and then starts a new cycle.

2. For small perturbation amplitudes and small core sizes (§ < 0.20R), there exists
only one unstable mode corresponding to each core size. The unstable wave number
satisfies that an integer number of waves can be fit on the vortex ring and that the

mode has the smallest self-induced rotation frequency.

3. For small perturbation amplitudes and a fixed small core size (§ < 0.20R), the max-
imum amplitude of the unstable wave is independent of the initial amplitude. More .
specifically, no matter how small the initial amplitude is, the perturbation wave even-
tually reaches the same maximum value and then decreases. That is why we label it

“unstable”.

4. For small perturbation amplitudes and small core sizes (§ < 0.20R), the maximum
amplitude of the unstable wave is bounded by a fraction of the filament core size.
Furthermore, the ratio of the maximum amplitude to the core size decreases as the

normalized core size §/R decreases.

5. For large core sizes (e.g. § = 0.25R), the amplitude of the unstable mode grows

without bound and the perturbed vortex ring never recovers its initial configuration.

[EENSE - - e e ——
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6. For large perturbation amplitudes and small core size, the unstable mode grows with-

out bound and the periodic behavior in time is not observed.

In the next chapter we will discuss the effects of the ODE solver and the time step

size on the numerical stability of the vortex method.
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Chapter 5

Numerical Stability, ODE Solver,
Time Step, Spatial Step and

Accuracy

In this chapter we present a careful study of the numerical stability and accuracy
of the thin tube vortex filament method. The goal is to analyze the effect of the choice of
ODE solver, time step, and spatial step on the computed solution. The criteria for selecting
the time integrator and the time step size is obtained. It is based on a theoretical analysis
and then verified by numerical simulations.

In the Fourier analysis of stability of linear numerical methods, the maximum
amplification rate is usually attained by the discrete mode with the highest wave number
on the numerical grid. In most cases, the numerical stability of a method can be predicted
by the behavior of the highest numerical mode. Motivated by this observation, we analyze
the behavior of the highest discrete mode on a straight vortex filament and arrive at a model
equation for this numerical mode. Various Runge-Kutta methods with different time steps
are tested on this model equation and the criteria for the selection of ODE solver and time
step is established. The goal is to control the growth of the highest numerical mode. From
the methods we tested, the classical four stage fourth order Runger-Kutta method turns
out to be the best performer. We find that the restriction on the time step is

At< CZ (5.1)

where At is the time step, I' is the circulation, § is the core size of the vortex filament and C is
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a constant depending on the ODE solver and the cut-off function used in the discretization of
the vortex method. This restriction on the time step works well in the numerical simulations
we have done. If the time step is above the critical value, the numerical solution blows up
very quickly. If the time step is less than the critical value, the numerical solution behaves
well. In addition, we find that it is unnecessary to take the time step much smaller than
the critical value. This approach of suppressing the growth of the highest numerical mode
by selecting a suitable ODE solver and time step size is justified and shown numerically to
have no artificial effect on the physical solution we are simulating.

The selection of spatial step size is problem-dependent. In practice, one needs to
compare the numerical results of coarse and fine grids to determine whether a step size is
small enough. This is the general approach in the numerical simulations of complicated
nonlinear problems.

The outline of this chapter is as follows. In the first section, we start by relating
the stability of a numerical method to the behavior of the highest discrete mode through
examples of Fourier analysis of stability. We then go on to investigate the behavior of the
highest discrete mode on a numerical grid on a straight vortex filament. This is followed
by the derivation of the evolution equation for this numerical mode. In the second section,
various Runge-Kutta type methods are applied to solve this evolution equation and judged
in terms of their ability to control the growth of the highest numerical mode. The restriction
on the time step is obtained and tested in numerical simulations. In the third section, we

consider the effect of spatial step size on numerical solutions.

5.1 Fourier Analysis of Stability and the Highest Discrete
Mode on a Numerical Grid

In this section we first review the Fourier series technique for the stability analy-
sis of linear numerical methods and point out the connection between the behavior of the
highest numerical mode and the stability of a numerical method. Applying this heuristic
principle to the vortex method, we then investigate the evolution of the highest discrete
mode on a numerical grid on a straight vortex filament. An approximate equation is ob-

tained for the highest numerical mode.
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As a starting point, we consider the heat equation in one space dimension

ou &%
Frialew s (5.2)
A simple straightforward finite difference scheme for solving equation (5.2) can be con-
structed as ptl  m . .
At (Az)? )
Solving for u}‘"‘l from equation (5.3) gives the equation
u;-""1 =g + Mujy — 2uf +uj ). (5.4)

Here u} is the approximate value for u(jAz,nAt), Az is the spatial step size, At is the
time step size, and A = At/(Az)2.

The numerical stability of the difference scheme (5.3) can be analyzed by examining
a family of particular solutions of the form

'u';l = p(ﬁ, /\)neijf, (5'5)

where i = 4/—1 and the function p(¢,]) is called the amplification factor (for details,
see lecture notes by Chorin [16], see also the lecture notes by Sethian [85] and Hald [42]).

Equation (5.5) represents a discrete sinusoidal mode on the numerical grid with wave number

(mod(¢ + 7, 27) — m) /(27 Az) (5.6)
since
(i€ = HEEERIE A7) (5.7)

On a fixed spatial grid, the highest possible wave number of discrete modes is 1/(2Axz).
Substituting (5.5) into (5.4), one obtains immediately

p(€,0) =1—4) sin2(§). (5.8)

The requirement for stability is that the amplification factor p(§,A) be bounded by 1 for
any value of ¢ (i.e. [p(€,\)] < 1). This requirement results in the stability condition A < .
When this condition is violated, the numerical scheme (5.4) is unstable. In this case, it is
interesting to look at the amplification factor p(£, ) and find out which numerical mode
has the maximum amplification rate. In Figure 5.1 (a) we plot the absolute value of the
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amplification factor |p(¢,A)| as a function of £ for A = 3/4. Figure 5.1 (2) shows that the

maximum amplification rate occurs at £ = {y = w. The corresponding unstable mode is
ul = p™(—1). (5.9)

Equation (5.9) represents the discrete mode with the highest wave number on the numerical
grid, whose value is alternately positive and negative. The amplification factor |p(¢, A)| as
a function of ) is shown in Figure 5.1 (b) for the highest numerical mode (5.9). Figure 5.1
(b) illustrates how the stability condition A < 1/2 can be derived from th-e amplification
rate of the highest discrete mode. This is not surprising. As we will see shortly, this is a

common property of many numerical methods.
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Figure 5.1: (2). The amplification factor |p(£, A)| vs £ for A = 3/4. (b). The amplification
factor |p(€, )] vs A for the most unstable mode £ = .

In a similar way, we can examine the numerical stability of the methods for solving
the linear hyperbolic conservation law in one space dimension:
Ou Ou
— +—=0. .
e + p (5.10)

We take two methods as examples, namely, the upwind scheme and the Lax-Wendl:oﬁ'

scheme:
upwind: u;."*'l =uy — AMuj —uj_y), (5.11)

A A2
Lax-Wendroff: u;-"*'l =uj — -2—(u}‘+1 —uj )+ ?(u;-‘_*_l - 2u} +uf ), (5.12)
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where, for hyperbolic conservation laws, A = At/Az.
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Figure 5.2: Upwind scheme: (a). The amplification factor |p(¢,])| vs ¢ for A = 3/2; (b).
The amplification factor |p(£, )| vs A for the most unstable mode £ = .

Substituting (5.5) into (5.11) and (5.12) yields their amplification factors respec-
tively:

upwind:  p(£,A) = (1 — A) + de™¥. (5.13)
Lax-Wendrof:  p(€,)) = 1 — 2)2sin?(¢/2) — iAsin(€). (5.14)

When ) > 1, both methods are unstable. For A = 3/2, we plot their amplification factors
|p(€,A)| vs £ in Figure 5.2 (a) and 5.3 (a) respectively.

For both the upwind scheme and the Lax-Wendroff scheme, the maximum ampli-
fication rate occurs at £ = & = 7. The amplification factors |p(¢, A)| of the highest discrete
mode (5.9) vs ) are shown in Figure 5.2 (b) and Figure 5.3 (b). Again the stability condition
) < 1 is accurately predicted by the amplification rate of the highest discrete mode.

The above examples suggest that the amplification rate of the discrete mode with
the highest wave number on the numerical grid can provide useful insights into the numer-
ical stability. For the linear equations and the linear numerical methods we just considered
above, the stability condition is actually determined by the behavior of the highest numer-
ical mode. Of course, for these numerical methods, the stability condition can be precisely

obtained by rigorous analysis. The important point is that the idea of analyzing the numer-
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Figure 5.3: Lax-Wendroff scheme: (a). The amplification factor |p(¢, )| vs £ for A = 3/2;
(b). The amplification factor |p(¢, A)| vs A for the most unstable mode £ = .

ical stability by examining the highest numerical mode goes beyond these linear problems.
It can be applied to complicated nonlinear problems. Strictly speaking, it has not been
proved that the numerical stability is totally determined by the behavior of the highest
numerical mode. Nevertheless, the stability condition of the highest numerical mode can
be taken, at least, as a necessary condition for the stability of the numerical method. The
situation here is very similar to the approach of judging the numerical stability by the CFL
condition, which theoretically is only a necessary condition but often turns out to be the
precise condition for the stability of the numerical methods.’

We now try to use this approach to analyze the numerical stability of the vortex
method. We consider the discrete mode with the highest wave number for the numerical
grid on a straight thin tube vortex filament. As sketched in Figure 5.4, a straight vortex
filament of core radius § is divided into elements of length h. To ensure the overlapping of
the neighboring elements, we require h < §/2. .At time ¢ = 0, the highest discrete mode
with small amplitude is imposed on the filament in the z-y plane. More specifically, the
initial position of the j-th point is

x(0) = (2;(0),9;(0), 2i(0)) = (jh, (~1)’¢, 0), (5.15)

where ¢ is the amplitude.

By the symmetry of the initial configuration, we know that the perturbation wave
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Figure 5.4: A sketch of the highest discrete mode.

will remain on a plane rotating around the z-axis. From the Biot-Savart integral, it can be
seen that the velocity induced by the entire filament at x; is always perpendicular to the
wave plane. Thus if the ODE system is solved exactly in time, the perturbation wave will
rotate around the z-axis without any growth in its amplitude. Furthermore, the rotating
angular velocity € is time independent, since the perturbation wave keeps its original shape.

These arguments give rise to the following evolution equation for x;(t) = (z;(2), y;(t), 2; (¢))

a:;-(t) = 0,
yi(t) = —Qz(t), (5.16)
z(H) = Qu;(t),

with the initial conditions
z;(0) = jh, :
3i(0) = (=1)e, (5.17)
z;(0) = 0.

The angular velocity € is determined by the amplitude ¢, the length of vortex element A,
the core size §, the circulation T, and the cut-off function f, i.e. Q = Q(e,h,6,T; f). Since
the dimension of Q is 1/time, a rescaling of length will not change 2. After the rescaling
of length L= L /6, which makes the new core size equal to 1, the new amplitude, the new

length of vortex element and the new circulation are

f=¢/6, h=h/s, T=T/s. (5.18)
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Consequently, the angular velocity € can be expressed as
Q= QT ). (5.19)

On the other hand, the angular velocity €2 is proportional to the velocity induced by the

vortex filament, which in turn is proportional to the circulation. Hence
= .= ' _eh
Q=I“F(€,h;f)='6—2F(3',g;f), (5.20)

where F is some function which may depend on &, h and the cut-off function f-

To find out the actual dependence of F' on parameters £, and h, we calculate
F(Ehf)=Q/T for 0 <£<02and 0 < h < 0.4. This region of (¢,&) is a suitable one
for the study of numerical stability, since the unstable mode usually starts with a small
amplitude and the overlapping condition requires that h < §/2.

In Table 5.1 we display the values of F'(¢,A) for different combinations of £ and
k. The cut-off function used in the calculation is f(r) = 1 — e™™. Table 5.1 demonstrates
that F(,h) is approximately a constant function of & and h in the region of interest.

From the above arguments and numerical calculations, we conclude that, for €/ <

0.2 and h/é < 0.4, the angular velocity is given approximately by

T

Q=F-,

(5.21)

where F is a constant determined by the cut-off function f. Table 5.2 lists the values of F
for several cut-off functions.

Substituting (5.21) into (5.16), we get the governing equation for the crest of the
highest discrete mode (y(t), 2(%)):

' r .
= —F — s 0) = s
y' () - 52 z(?), y(0)=¢ (5.22)
z(t) = F = y(t), z(0)=0.
Rescaling the time by £ =1- F6-2I‘ and letting ¢(£) = y(f) + iz(%), we obtain
¢'(8) = i¢(®)- (5.23)

This is the equation that the highest discrete mode satisfies up to a rescaling of time. In
the next section we will compare the performance of various Runge-Kutta type methods on

this model equation.
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Table 5.1: The values of F as a function of & and h.

g 0.200 | 0.100 | 0.050 | 0.020 | 0.010 | 0.005 | 0.002 | 0.001
h F(&, k)

0.400 | | 0.2096 | 0.2122 | 0.2128 | 0.2130 | 0.2130 | 0.2130 | 0.2130 | 0.2130
0.360 | | 0.2098 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.320 | | 0.2100 | 0.2126 | 0.2132 | 0.2134 | 0.2134 | 0.2134 | 0.2134 | 0.2134
0.280 | | 0.2100 | 0.2125 | 0.2131 | 0.2133 | 0.2133 | 0.2134 | 0.2134 | 0.2134
0.240 | |0.2099 | 0.2124 | 0.2131 | 0.2132 | 0.2133 | 0.2133 | 0.2133 | 0.2133
0.200 | | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.160 | | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.120 |- | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.080 | | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.040 | | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.020 | | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.010 | | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.005 | | 0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.002 | |0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132
0.001 | |0.2099 | 0.2124 | 0.2130 | 0.2132 | 0.2132 | 0.2132 | 0.2132 | 0.2132

69
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Table 5.2: The values of F' corresponding to different cut-off functions.

cut-off function f(r) value of constant F
fry=1-¢" F=0213
3 3 _1.3
f(r)=1+ (ET —1)e F =0.426
#(r) = tanh(r3) F=0228
f(r) = tanh(r®) + §L F =0.456
- 2 cosh®(r3) o

5.2 Comparison of Various Runge-Kutta Methods on the
Model Equation ('(t) = i((t)

We have just established that the highest discrete mode satisfies ¢'(£) = i((%).
Caused primarily by numerical noises, the highest discrete mode starts with very small
amplitude. It contributes little to the accuracy of the numerical method as long as its
amplitude remains small. As shown in the previous section, if the time integration is
carried out exactly, the highest discrete mode will rotate around the vortex filament without
growing. The accurate resolution of the highest discrete mode, which usually requires a very
small time step size, is irrelevant to the improvement of the overall accuracy. Thus it is
not worth the computational effort. However, the highest discrete mode plays a vital role
in the numerical stability. If it growé catastrophically under an ODE solver, it will totally
ruin the numerical accuracy. Therefore, when selecting a numerical ODE solver and a time
step size, our first concern is to control the growth of the highest discrete mode.

‘We are now ready to test several Runge-Kutta type methods on the model equation
(5.23), whose exact solution describes a point rotating around the origin on the complex
plane. These methods will be judged not only by their ability to resolve the solution
accurately with a small time step, but also by their ability to yield a bounded numerical

solution when the time step is fairly large. We consider the following Runge-Kutta methods.
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o Forward Euler method (one stage, first order):

Ko = iC"At, (5.24)
(" = (" + K. (5.25)

e Prediction-correction method (two stages, second order):

Ky = i("At, (5.26)
Ky = i(¢™ + Ko)At, (5.27)
P =("+ %(Ko + K3)- (5.28)

e Heun method (three stages, third order)

Ko =iC"At, : (5.29)
Ky =i(C" + %Ko)At, (5.30)
Ky =i(¢"+ gKo)At, (5.31)
"Hl=("+ %(Ko + 3sz. (5.32)

e Classical Runge-Kutta method (four stages, fourth order)

Ko = i¢"At, (5.33)
Ky = (" + s Ko)A, (5.34)
Ky =i(¢"+ %Kl)At, (5.35)
K3 = i((" + K2)At, (5.36)
(= ¢4 %(Ko + 2K + 2K» + K3). (5.37)

o Prince-Dormand fifth order method used in Dopri 5(4) (six stages):

Ky = i("At, (5.38)
1
K =i(™+ -5-K0)At, (5.39)
3 9
Y —_— —_—
Ky = Z(C + 40Ko+ 40K1)At, (5.40)
com . 44 56 32
K="+ 45K0 - 15K1 + 9 Ky)At, (5.41)
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19372 25360 x 64448 212

— s - ———
Ko=i(C"+ 6561 0~ J1g7 K1+ gger K2 729K3)At’ (5.42)
9017 355 46732 49 5103
= y n —— —— —— -_— -
Ks = il(" + 3765 Ko = 33 K1 + o Ko + e Ks — pape Ko, (5.43)

35 500 195 2187 11
n-+1 — /7 Y ol —_— -
¢ "+ 3gafo+ 3B+ 195K ~ Grg Ke g5 (5.44)

Note that the fourth order method used in Dopri 5(4) has seven stages. Thus
the full Dopri 5(4) is a seven-stage method. It has been argued that, for Dopri 5(4), the
last stage (i.e. the seventh stage) of the current time step coincides with the first stage of
the next time step and consequently the Dopri 5(4) is essentially a six-stage method. This
is true if the input of the next time step is exactly the output of the current time step.
However, for the vortex method, a lot of things may happen between the end of the current
time step and the beginning of the next time step. For example, new numerical points are
added where the vortex line has been stretched, in order to maintain a reasonable resélution
in spatial dimensions. Also if the hairpin removal technique is combined with the vortex
method, numerical points are deleted where hairpins have formed. So in practice, Dopri
5(4) is a seven-stage method.

Now define p(At) = ("+1/¢™ as the amplification factor. For the above Runge-
Kutta methods, the amplification factors against time step At¢ are plotted in Figures 5.5,
5.6, 5.7, 5.8, and 5.9 respectively.
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Figure 5.5: Amplification factor of the forward Euler method. ‘
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Figure 5.6: Amplification factor of the prediction-correction method.
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Figure 5.7: Amplification factor of the Heun third order method.
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Figure 5.8: Amplification factor of the classical Runge-Kutta method.
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Figure 5.9: Amplification factor of the Prince-Dormand 5(4) method.
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The amplification factor p(At) is the multiplier by which the numerical solution is
amplified at each time step. For |p(At)| < 1, the numerical solution is actually diminished.
If |p(At)| is well above 1, the numerical solution blows up in a few time steps. This is clearly
unacceptable in numerical simulations and should be avoided by any means necessary.
When |p(At)| is above but very close to 1, the numerical solution will grow exponentially
but at a slow pace. In this case, the numerical solution is theoretically without bound
and will eventually become very large. However, whether this kind of amplification factor
(i.e. |p(At)| is slightly above 1) is acceptable in applications depends on the scale of the
interesting time period of the underlying physical problem. For the simulations of long time
behaviors, it is best to have an amplification factor not larger than 1. In this way, we can
be sure that at least a particular form of numerical noise — the highest discrete mode —
will not grow exponentially.

Let I be the interval of time step At, where the amplification factor p(At) is
bounded by 1. Mathematically the interval I can be expressed as

I= {At | lp(At)] < 1}-. . (5.45)

The size of the interval I gives roughly the largest time step size which could be used if we
do not want the numerical solution to increase. Keep in mind that the numerical solution
here corresponds to the amplitude of the highest discrete mode. We have argued that it
is unnecessary to resolve the highest discrete mode accurately but it is crucial to keep the
amplitude of this mode small. Table 5.3 shows the interval I for various Runge-Kutta
methods. Note that the classical Runge-Kutta method has the largest interval I.

In order to speed up numerical methods, it is desirable to have a time step as large

as the accuracy allows. The time step is generally restricted by

(a) the local truncation error in the time direction, which is the new error associated with

the time discretization in one time step ;

(b) the amplification factor of the previous error, which determines how the error propa-

gates in time.

Often (b) is more restrictive on the time step size than (a). This can be explained by
the following argument. If the local truncation error is large, the total error will grow

linearly at a large rate. When the amplification factor is well above 1, the total error grows
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exponentially and very soon gets out of control. We have already shown that it is the
highest numerical mode that most likely has the maximum amplification factor. So the
interval I plays a central role in determining the time step size. To be able to use a large
time step, we first need to make the interval I as large as possible. Hence we choose the

classical four stage fourth order Runge-Kutta method as our ODE solver.

Table 5.3: The interval I for different ODE solvers.

Numerical ODE solver B The interval I
Euler method - I={0}
Prediction-correction method I={0}
Heun third order method I=10,1.73]
Classical Runge-Kutta method I= [0,2.83]
Prince-Dormgnd 5(4) method I =1[0,0.997]

When an ODE solver is applied to solve the equation ¢'() = i¢(t), in order to
have a non-increasing numerical solution, the time step At has to fall in the interval I, that
Ot < |I). ' ~ (5.46)

2
Taking the rescaling of the time f = ¢- 7

At for solving the governing equation of the highest numerical mode (5.22) should satisfy
2
g
- FT
where F is the constant determined by the cut-off function (see Table 5.2), I is the interval
related to the ODE solver (see Table 5.3), T is the circulation, and § is the core size of

into consideration, we obtain that the time step

At (5.47)

the vortex filament. Expression (5.47) is the-constraint on the time step At of the vortex

method, if we want to keep the highest discrete mode under control. It has to be emphasized
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that this approach of suppressing the highest discrete mode by a careful selection of ODE
solver and time step will not affect the real growth of the physical modes. In a valid
numerical simulation, the wavelength of the physical mode should be large in comparison
with the spatial step size, which is comparable to the wavelength of the highest discrete
mode. In other words, to ‘achieve a reasonable accuracy in spatial dimension, we need to
distribute many numerical points in regions of the characteristic length scale of the problem.

As a result, the physical mode is far away from the highest numerical mode.

5.3 Numerical Verifications

In this section we carry out numerical simulations to verify the restriction on the

time step At obtained in last section
< === .
At < S = At (5.48)

where F is a constant determined by the cut-off function (Table 5.2), I is the A-stable
interval of the ODE solver for the model equation ¢'(t) = i¢ (t),_'I‘-is the circulation and § is
the core size of the vortex filament. We find that the constraint (5.48) agrees very well with
the numerical results. For time step At larger than the critical value At,, the numerical
solution blows up very quickly. For time step At smaller than the critical value Af., the
numerical solution behaves well. A comparison of the result obtained using a time step
slight below the critical value At¢. with the result obtained using a very small time step
suggests that it is unnecessary to take the time step much smaller than the critical value
At.. At the end of this section, we discuss the issue of the spatial step size.

We use the Widnall’s vortex ring instability as a test problem. As in Chapter 4,

we take the initial condition as

z; = (R + e cos(njg)) cos(jAF),
yj = (R + ecos(njg)) sin(j A9),

z; =0,

for j =1, 2, ..., N, where A0 = 2n/N. The circulation is chosen to be I' = 1, the core
size § = 0.1, the perturbation wave number n = 14 and the initial amplitude £ = 0.16.
Initially, the ratio of the distance between two adjacent numerical nodes to the core size
is h/6 = 0.05. As we will see later in this section, this seemingly very small & is needed
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to achieve the numerical convergence in spatial dimensions for this problem. The cut-off
function is the second order one: f(r) = 1.0 — e‘fs. The constant F' associated with this
cut-off function is 0.213, as seen from Table 5.2.

We test two numerical ODE solvers, namely Heun third order method and the
classical fourth order Runge-Kutta method. -For Heun method, the interval I = [0,1.73]
(see Table 5.3). The critical time step Af, is given by equation (5.48) as

2
= '%'fr- — 0.081. (5.49)

At,

We run the simulations with four different time steps. The first choice of time step At = 0.09

is above the critical time step Af., the second choice of time step At = 0.08 is very close

to At., the third choice of time step At = 0.07 is below A¢., and the fourth choice of time

step At = 0.01 is much smaller than A?.. The numerical results obtained by Heun method
using these four time steps are shown in Figure 5.10.

For the classical Runge-Kutta method, the interval I = [0,2.83] (see Table 5.3).

The critical time step At. as predicted by equation (5.48) becomes

_ e '
Dte= 2 =013, (5.50)

The four choices of time step are taken as At = 0.14, At = 0.13, At = 0.12, and At = 0.01.
Figure 5.11 presents the numerical results obtained by the classical Runge-Kutta method
with these time steps. From Figure 5.10 and Figure 5.11, we see that for time steps larger
than or very close to the critical time step Af., the numerical noise grows very quickly
and soon ruins the numerical solution. For time steps below the critical time step Ai., the
numerical noise is under control and the numerical solution converges.

Equation (5.48) is a very important guideline for selecting a suitable time step
size. The fact that the spatial step size h does not appear in equation (5.48) implies that a
smaller time step is not necessarily required for a smaller spatial step. This is in complete
contrast with the traditional constraint on time step size that At < C - h/u. However, the
core size has a fundamental influence on the numerical stability and thus limits the time
step size. As seen in equation (5.48), the time step size is proportional to the square of the
core size. It follows that the time step has to be very small when the vortex filament is
thin. This could be too restrictive and lead to extremely expensive computations. Other

methods are needed to circumvent this obstacle for very thin vortex filaments.
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Now we examine the effect of the spatial step size on the accuracy. We do not have
a general guide for selecting a suitable spatial step size. As a matter of fact, the empirical
rule obtained by studying a simple model problem cannot be simply extended to other
problems. For example, the choice of h/6 < 0.5 is adequate for calculating the propagation
velocity of a vortex ring, whereas to simulate the Widnall’s vortex ring instability, we have
to use h/§ < 0.05. To pick a suitable spatial step size, we compare numerical results
obtained with different spatial step sizes to determine whether the numerical solution has
converged. Through numerical experiments, we find that different problems require different
step sizes to catch the main features of the physical process. We again use the Widnall’s
vortex ring instability problem to test the spatial step sizes. First we take the perturbation
wavenumber 7 = 2 (a stable mode) and run simulations with the ratio of space step to core
size h/6§ = 0.40, 0.20, 0.10 and 0.05. Figure 5.12 shows the numerical results. Clearly, for
wavenumber n = 2, the numerical solution has already converged for h/§ = 0.40. .Then we
take the perturbation wavenumber n = 14 (the unstable mode) and run simulations with
h/& = 0.20, 0.10, 0.05 and 0.025. As shown in Figure 5.13, for the unstable mode n = 14,

the numerical solution does not converge until h/§ is reduced t_f) 0.05.

~
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Figure 5.10: Heun third order method: Comparison of numerical results for different time
steps.
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Chapter 6

Short Wave Instability On Vortex
Filaments Of Fixed Core Structure

In A Co-rotating Vorticity Field

In this chapter we investigate the short wave instability on vortex filaments of
fixed core structure in a co-rotating vorticity field. The main conclusion is that neighboring
vortices induce short wave unstable modes which lead to stretching and folding and that
an isolated vortex filament will not create hairpins or wild stretching.

We start with a pair of co-rotating vortex filaments. In the previous chapters we
reviewed Widnall’s analysis of the short wave instability on a vortex ring or on an anti-
-parallel vortex pair. In this chapter, using an approach similar to Widnall’s, we construct a
theoretical analysis for the short wave instability on a co-rotating vortex pair. The motion
of a short wave perturbation on a co-rotating vortex pair is governed by the rotation induced
by the vortex filament which carries the wave, and by the velocity field induced by the other
vortex filament. In the stability analysis of waves with small amplitude, only the linear part
of velocity field induced by other filaments is needed. For a co-rotating vortex pair, the
streamlines of the linearized flow are ellipses. If the vortex filament is in a continuous
vorticity field or surrounded by many vortex filaments, the linearized flow is a straining
flow. In the analysis, we find that the short wave instability occurs when the self-induced
rotation is balanced by the linearized flow in the circumferential direction and the radial

component of the linearized flow causes the wave to grow exponentially. The unstable wave
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numbers form an interval which is determined by the ratio of the distance between the two
vortex filaments to the core radius of the filaments. These theoretical predictions are verified
in the numerical simulations. Furthermore, the numerical simulations reveal the long time
behavior of the unstable wave for different separations of the vortex pair. When the ratio of
the separation to the core radius is above 4.0, the amplitude of the unstable mode grows to
a maximum, falls back, thén starts growing and repeats the pattern. The vortex filaments
alternately stretch and contract. No wild stretching is observed. In the case where the ratio
of the separation to the core radius is below 4.0, the unstable mode grows without bound.
The vortex filaments do not return to their original positions. Instead they stretch violently
and develop hairpin-shaped small scale structures.

After the discussion of the co-rotating vortex pair, we extend our analysis to the
case of a single vortex filament in a co-rotating vorticity field. We can show theoretically
that the velocity field induced by a second order Gaussian vorticity distribution, if linearized
around a point and viewed in the reference system attached to that point (moving and
rotating with that point), is a straining flow. Marcus studied the two dimensional evolution
of vortices in a shearing zonal flow [67] and showed that Jupiter’s Great Red Spot is an
example of two dimensional vortex equilibria in nature [66]. Here we study the evolution
of the three dimensional evolution of vortex filaments with fixed core structure. When
the surrounding vorticity field is discretized and represented by a set of numerical vortex
filaments, numerical results indicate that the streamlines of the linearized flow are ellipses.
As the vorticity field is approximated by more numerical vortex filaments, these ellipses
become flatter, and the linearized flow is approximately a straining flow. Again for a vortex
filament surrounded by a co-rotating vorticity field, the instability is driven by the radial
component of the linearized flow while the circumferential component of the linearized flow
is balanced by the self-induced rotation of the wave.

In numerical simulations using vortex methods, the wild stretching of the vortex
filaments and the subsequent formation of the hairpin-shaped fine structures have been
observed by many authors [26], [28], [75]. At the end of this chapter, we show that these
small scale vortex structures are not caused by numerical instability, rather they are related
to the short wave instability described above. The appearance of the hairpin structures
drastically increases the total number of numerical vortex segments, thereby making it
virtually impossible to simulate the long time physical behavior. Currently, the only way
around this obstacle is Chorin’s hairpin removal method [26], [28]. The hairpin removal
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technique keeps the total number of numerical vortex segments at a reasonable level by
removing small hairpins from the numerical solution. The hairpin removal procedure is

justified by renormalization theory [28].

6.1 Short wave instability on a co-rotating vortex pair

The instability of a vortex pair has been investigated by many authors. Crow [35]
studied the long wave and short wave instability for an antiparallel vortex pair. With a
slightly different model and a more accurate calculation of the rotation frequency of the
short wave modes, Widnall, Bliss and Tsai [95] investigated the instability of antiparallel
vortex pairs and vortex rings. Recently Klein, Majda and Damodaran [56] studied the
instability of long wave modes on both antiparallel vortex pairs and co-rotating vortex
pairs. They found that certain long wave modes are unstable on an antiparallel vortex pair
and long wave modes are always stable on a co-rotating vortex pair. However, their study is
based on a simplified model equation which excludes the short wave modes from the study.

In other words, their model equation is valid only for long waves.

In this section we analyze the stability of short wave modes on a co-rotating vortex
pair with constant core structure. We will show that a co-rotating vortex pair always has
short wave instability. Here “short wave” means the wavelength is comparable to the
core radius of the vortex filaments. A perturbation wave is called "unstable” if it grows
exponentially with time. A rigorous definition of stable and unstable modes will be given
in the next section. ‘

A co-rotating vortex pair consists of two parallel vortex filaments of the same
circulation. As sketched in Figure 6.1 and Figure 6.2, at time ¢ = 0, the two undisturbed
straight vortex filaments are on the z-z plane and are parallel to the z-axis. The undisturbed
pair rotates around the z-axis with angular velocity I'/nb%, where b is the separation between

the two unperturbed vortex filaments and I is their circulation.

To better illustrate the evolution of the perturbation wave on the vortex pair, we
let the z-y plane rotate along with the vortex pair such that the vortex pair is stationary
in the reference system defined by the zyz-axes. The stability calculation can be done by
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Figure 6.1: An unperturbed co-rotating vortex pair.

considering the motion of the vortex filaments that results from a sinusoidal perturbation
(Figure 6.3 and Figure 6.4). The vortex filaments move with a velocity that is a combination
of the self-induced rotation £ of the sinusoidally perturbed filament and the velocity induced
by the other filament. For short waves, when we calculate the velocity induced at the vortex
by the neighboring filament, it is the presence of the neighboring filament rather than the
perturbation on the filament that plays the dominant role. The induced velocity can be well
approximated by treating the neighboring filament as unperturbed, and the contribution
due to the short wave perturbation on that filament can be ignored. For simplicity, we
shift the origin of the z-y plane to the unperturbed position of the vortex on the right.
In Figure 6.4 the perturbed position of the vortex on the right represents the amplitude
and the orientation of the sinusoidal wave on the right filament, and the vortex on the left
represents the left filament which is treated as a straight unperturbed filament when we

investigate the evolution of the perturbation on the right filament.
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Figure 6.2: A cross-section of the unperturbed vortex pair.

The velocity at a point (z,y) induced by the left vortex is

r 1 -y r -y
u(m’y)_.—?;(b+w)2+y2[b_;.x}—;ﬁ[%_*_x]' (6.1)

Expanding u around (0, 0) gives |

uaw=§%[ ;}+owﬁwﬁ (6.2)

The first term on the right hand side of equation (6.2) is a linearized flow whose streamlines

form a family of ellipses given by
¥ (6.3)

with « being the free parameter. The linearized flow and its streams are sketched in Figure
6.4. In the cylindrical (7, §) coordinate system which is centered on the unperturbed position
of the right filament, this linearized flow can be written as

u(LF) = %(r sin 26), (6.4)
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Figure 6.3: A perturbed vortex pair of the same circulation.

ug(LF) = 5;%(27' + 7 cos 26), (6.5)

where u,(LF) is the velocity component in the radial direction and ug(LF') is the velocity .

component in the tangential direction. Therefore, for the right vortex whose position is at
(r0,60), the velocity induced by the left vortex is

-T .

Uspg (LF) = W(To Sin 290), (6.6)
-T

Ug, (LF) = ) (27‘0 -+ 7o CcOS 290). (6.7)

In addition to the linearized flow, the displaced portion of the filament is also subject to
its self-induced rotation (SR) around the unperturbed position (0,0). The self-induced
tangential velocity is -

ug(SR) = —r Q, (6.8)

where Q is the rotation frequency of the perturbation wave.
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Figure 6.4: A cross-section of the perturbed vortex pair.

The total velocity of the vortex is the sum of the linearized flow and the self-
induced rotation. Since the tangential velocity of the linearized flow is between —3I'r/2mb?
and —I'r/27b?, instability is expected to occur when

3I'r

I'r
— < up(SR) < Pl

2mb?

(6.9)

In other words, instability happens when the tangential velocity of the linearized flow is
neutralized by the self-induced rotation while the radial velocity of the linearized flow causes
the perturbation wave to grow exponentially (see Figure 6.5). The process takes place in
the following manner. When the self-induced rotation velocity is between I'r/27b? and
3Tr/27b?, the total tangential velocity turns the vortex to a new angle 6, where the total

tangential velocity vanishes. At the new angle 0','one has

(uo(LF) + 0o(SR)) ey =0, (6.10)
(ug(LF) + ug(SR))

and 50

I9=9' < 0- (6-11)
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Substituting (6.5) and (6.8) into the above two expressions, we get

-T , '
%13—2(2 +cos26 ) -Q =0, (6.12)
and % sin26' <0, (6.13)

from which it follows immediately that

T :
ur(LF)lpag = 5orsin2f’ > 0. (6.14)

So at @ = §', the perturbation wave stops rotating but it diverges along the radial direction
6 = 6’ with velocity u.(LF) > 0.

Figure 6.5: A sketch of the motion of the right filament in Fig. 6.4.

Combining equations (6.8) and (6.9), and introducing the dimensionless normal-

——- e
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ized rotation frequency

r
Q=Q/(——= .
0/ (5=, (6.15)
one finds that the instability condition is
_as2 _52
=3 ) < =2 (6.16)

The normalized rotation frequency of a sinusoidal wave on a vortex filament with fixed core
structure is a function of the normalized wavenumber k = k §, where k is the wavenumber

and § is the core radius.

quency
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Y
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2 4
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Figure 6.6: Normalized rotation frequency ) as a function of normalized wavenumber k for
the core vorticity distribution derived from the cut-off function (6.17) .

Figure 6.6 depicts §) as a function of k for sinusoidal waves of small amplitude on

a vortex filament whose core vorticity distribution is derived from the second order cut-off
function

f(r) =1 — exp(—r). (6.17)

This particular dispersion relation is obtained numerically by running simulations using
the vortex method. From Figure 6.6, one can see that for each fixed b/§ > 1, there is
always an interval of normalized wavenumbers % in which the normalized frequency (k)
satisfies the instability condition (6.16). Such an interval contains the unstable modes for
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the corresponding ratio of separation to core size b/8. For example, when b/§ = 5.0, the
interval of the normalized unstable wavenumbers is [1.454,1.606).
We also calculated numerically the dispersion relations for the core vorticity dis-

tributions derived from the following four cut-off functions:

1, r>1
fr) = { oo (6.18)
f(r) = tanh(r®) ' (6.19)
Fr) =1+ GGr ~ D exp(~) (6.20)
£0) = tamb(r) + 51— (6:21)

The cut-off functions (6.17) and (6.19) have been shown by Beale and Majda [10] to give
second-order convergence of the standard vortex method. The cut-off function (6.18) was
used by Anderson and Greengard [4], and Almgren, Buttke and Colella [2] for the numerical
simulations of the vortex ring merger problem. (6.20) and (6.21) are fourth order cut-off
functions based on the corresponding second order ones (6.17) and (6.19) (see Beale and
Majda [10]). Figure 6.7 displays the dispersion relations for the core vorticity distributions
derived from these cut-off functions. Qualitatively these plots are very similar to the one
shown in Figure 6.6. In particular, for all these dispersion functions, the range of normalized
rotation frequency €2 contains the interval [<1,0]. Ifb/6 > 1, the intersection of the interval
[—1,0] and the interval [—35%/b%,—6%/b?] is not empty and the instability condition ( see
equation (6.16) ) '
‘—;”ﬁ < Q(IE) <
is certainly satisfied for some wave modes k. In other words, for b/6 > 1, there always exist

_§?
0

unstable wave modes for a co-rotating vortex pair.

What happens if b/6 is small ? When /6 < 1, the separation is smaller than the
core radius. In this case, when we calculate the velocity at the right vortex induced by the
left one, we cannot simply treat the left vortex as a point vortex. Consequently the angular
velocity of the unperturbed vortex pair, which is also the rotation velocity of our reference
system, is no longer T'/wb?. In the calculation of the linearized flow induced by the left

vortex, the core vorticity distribution needs to be taken into consideration. We did not do
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Figure 6.7: Normalized rotation frequency §) as a function of normalized wavenumber % for
the core vorticity distributions determined by various cut-off functions: (a) cut-off function
(6.18), (b) cut-off function(6.19), (c) cut-off function (6.20), (d) cut-off function (6.21).
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this in equation (6.1) because doing so would have made the calculation complicated, and
it would have been difficult to see the basic mechanism of instability.

To complete the analysis, 'we now derive the general formula for the linearized
flow, which holds for any-b/é.

In the static (non-rotating) reference system, the velocity induced at the right
vortex (z,y) by the left vortex is given by

T 1 [ b—yx } (YOI TR 022

27 (b + )2 + 92 5

ul(“” y) =

where the function fop(r) is the two-dimensional cut-off function corresponding to the
two-dimensional core vorticity distribution. For a straight unperturbed vortex filament,
the two-dimensional core vorticity distribution can be determined by the three-dimensional
cut-off function f(r). Given a three-dimensional cut-off function f(r), the effective two-
dimensional core vorticity distribution is

9(r) = / PP AGEED) dz

—oo Am(r2+422) (6.23)

Consequently, the effective two-dimensional cut-off function is

fio(r) = [ alo)2mpdp
-—[@[maﬂﬂﬁﬁl (6.24)

22+
On the other hand, the angular velocity of the unperturbed vortex pair is

T b
Qpair = o fzn(g)- (6.25)

Equation (6.25) also gives the angular -velocity of our reference system since the reference
system is rotating with the same angular velocity as the unperturbed vortex pair.
Putting the above facts together, one finds that viewed in the rotating reference

system, the velocity induced at (z,y) by the left vortex is

-y
u(m’ y) = ul(“’, y) - Qpair b
stz
2
L 1 Vo+zP+y?, | v T b | —v
S (b ral+yl fan( 5 ) s | T fp(3) | b s (6.26)
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As before, expanding u(z,y) around (0,0), we arrive at the linearized flow

' T fw(é)y
u(x, y) = -2-;.? 6 b b . b + 0(182 + yz)
—(3 f2D(;5') - gfzp(g))x
ef T | ay 24,2
) [ e ] + O(z* + y*°). (6.27)

Here ¢; = fzp(%) and ¢; = 3f2D(‘g) - %fép(g). For b/§ >> 1, we have fop = 1 and
-g f;D(%) = 0, therefore ¢; = 1, ¢z = 3 and equation (6.27) reduces to equation (6.2).
In the cylindrical (r,8) coordinate system, the radial component u,.(LF') and the

tangential component ug(LF') of the linearized flow are

T Cy)—C1

u,.(LF) = —‘2—7-‘%5 T T sin 29, (6.28)
ug(LF) = _27fb2 r (2 ercz & = % cos 26). (6.29)

The maximum and minimum of the tangential velocity of the linearized flow ug(LF') are

r¢; and — rcz. So instability is expected to occur when the self-

T
27b? 2mb?

. . . . T T
induced tangential velocity ug(SR) is between T and e In terms of the

normalized rotation frequency ! defined in (6.15) and the normalized wavenumber % (de-
fined as k = k 6), the instability condition reads

respectively —

2 - 6%
b—2 < Q(k) < -—-C -1;2—
Here we should point out that ¢; and ¢y are independent of (r,0), but they depend on the
cut-off function and the ratio b/é.

—C2 (6.30)

As an example, we examine the case where the two-dimensional cut-off function
is chosen as fop(r) = 1 — exp(—r?). This cut-off function is the two-dimensional analogue
of the three-dimensional cut-off function (6.17) ( see Beale and Majda [10] ). In this case,
the left-hand side of the inequality (6.30) becomes

6 b? b p%.] &°
—C2 gy = {3 [1 - exP(-gg)] 25 EXP(—a—z)} 7 (6.31)
whereas the right-hand side of (6.30) is

62 b .| &2
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Figure 6.8: The unstable region in the (b/6, k) plane for a co-rotating vortex pair.

For each ratio b/8, the interval of unstable normalized wavenumber % can be solved numer-
ically from the dispersion relation and the inequality (6.30). The shaded area of Figure 6.8
marks the region of instability in the (b/6, k) plane. Figure 6.8 indicates that for any value

of b/, there are always unstable wave modes for the co-rotating vortex pair.

6.2 Numerical simulations of short wave instability on a co-

rotating vortex pair

Now we simulate numerically the evolution of small sinusoidal perturbations on a
co-rotating vortex pair using the thin tube vortex filament method. The purpose here is
to verify the theoretical predictions we made in the last section and to study the long time
behavior of the unstable modes.

We choose the initial conditions as follows: A pair of parallel co-rotating vortex
filaments with separation b is placed in the z-z plane with the 2-axis as its line of symmetry.

At time ¢ = 0, a cosine wave perturbation with amplitude ¢ and wave number n is imposed
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on each filament in the span-wise direction. The vortex pair is perturbed in such a way that
the perturbed pair remains symmetric. The size of the perturbation varies in the z-direction

as Az = *+ € cos(nz). In other words, initially the perturbed vortex pair has the form

2@ = _g — e cos(n z) and 2(B) = § + e cos(nz) (6.33)

where the superscript “L” refers to the vortex on the left in the z-y plane at time ¢ = 0,
and the superscript “R” refers to the vortex on the right.

The vortex pair is peﬁodic in the z-direction with a period equal to 27/n or
any integral multiple of 2w /n. For numerical calculations, the period needs to be at least
six times as large as the core radius §. The reason for this will become clear later when
we present the method for calculating the discrete Biot-Savart summation over a periodic
vortex filament. So in our simulations we use the period

AL 630
We discretize the perturbed vortex pair by dividing a period of each filament into IV pieces
according to z coordinate. Each piece corresponds to an increment Az = p/N in the z
direction. The length of each vortex element is approximately Az. More specifically, the

numerical discretization of the initial condition is

a:g-L) = —g — e cos(njAz) $§R) = —g— + € cos(njAz)
yg.L) =0 and ng) =0 (6.35)
z§L) =jAz zj(-R) =jAz

for j=1,2,...,N.
The total velocity at x( B = (x(R) (R) §-R)) is the sum of the contributions from

all vortex elements:

o B B
®) _ (R) J +3 Fr+i
;= Z AT AxIc+l X R). _ (B . 3 £ é ; )
k=-—c0 | . .!.l
(B _ (L) (B) _ (L)
X; |5 1]
(L) 7 k+ k+
+ Z Axk+1 X l (R) (L) 2|3 f( z )
e ® i T Xe+l ‘

d
: Uright -+ Wlefts (6‘36)
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. . . . . R R R R R
whereI' is the circulation, 6 is the core radius, Ax,(c +)% = x! +)1 x§= ), x §c _*_)1 = (x§c +)1 x§ )),
and Ax;f_;_);_ and xg_"*_)l are defined in the same way for the left filament. In the simulations,
2 2
we use the second order cut-off function f(r) = 1 — exp(—73).
In equation (6.36), s is the velocity induced by the right filament and ey, is

the velocity induced by the left one, both of which can be evaluated as follows. We rewrite

Uright 25
N/2 < B _ (R) |x(R) <R N
T (R) b lc+2 el
Uright = z — Ox 1 X f( . )
s ﬁ’_]i* J
<B _ (R)

£ D an®, il

S 4 *r+i |x(R) (R) _|_ Ipe,f
def N/2
= Y [wl(x 1)+ W2(Xk+1 )] (6.37)

k=—N[2+j

where e, is the unit vector in z-direction, wl(xk +1) is the velocity contribution from the

vortex element xg_z'_)l which lies within half period to the point x(R), wz(x,(:_f_)l) is the sum

of contributions from all images of x( ); In [53] Klein and Knio introduced a method to
reduce the infinite summation in Wz(xk +1) to an evaluation of two functions. Here we use
a technique similar to that of Klein and Knio but with a more efficient and more accurate
way of calculating the two functions F' and G which are defined below. For the sake of

(R)1 as x, Ax(R)1 as Ax, and x( ) as xp. Then we get

simplicity, we will write x Erl +1

T T2 Axx (% —%)+(Ax xe,)lp

walx) = dr S [xo —x+1pe,|®
r 1= 1
= —|A - . A—
4ﬂ[ x X (%0 X)pa l§1|_n;=s+le|3

1 i l '
+(Ax X e,) - _—

T 1 1
= [Ax (0 =) = Flay, ) + (Ax x €2) G(al,az)] . (6.38)

where xg = (20, %0, 20), X = (2,¥, 2), and

20—z
ay = P (6.39)
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(zo ~ 2)* + (30 — 9)°

az = p2 (6.40)

F(al,ag) lZﬂ T a1)2 Tl (6.41)
+oo I -

G(a1,a2) = l.—.z:izl (T o ol (6.42)

The functions F(a1,a2) and G(a1,a2) can be evaluated accurately up to the machine error.
In the following we give an efficient algorithm for calculating F' and G.
Let

a = 2d1 (6.43)
b = d+dy (6.44)

‘We can write F as

1
F(dy,ds) ’;1( [+ d1)2 n d2]3/2 (& +d1)Z + d2]3/2)
=3 75[(1 + 2+ k—z)_‘3/ Pp-T+ %)‘3/ 2] (645)
k=1

The power series expansion reads

(1+2)"32 =14 ont + ont? + . + Q™ + ... (6.46)
where
oy = —3/2, (6.47)
—(2k+1
Q1 = ak—(———), k=1,2,.. (6.48)
2k
Hence

b b ‘
A+ Z+ )+ (U= 2+ )™ = 2B+ Bk + Bk o Buk P ] (6.49)

where
Bo =1 ) (6.50)
B = oaib+ona (6.51)
B = a2b2+3asba2+a4a4 (6.52)

...... (6.53)
Brn = 0nCib™a™ + 0n41C2, 10" 1% + ant2Ciapb™ 20 + ... + 2 C2760a%" (6.54)
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It follows that

1
E( [+ d1)2 TGP T (R T )+ )

+ 2Zﬁa( Z k2]+3)+O(N2L+4)

=0 k=N+1

' F(dladZ)

Introducing the notation
I (N p) = Z kp
k=N+1
and using the expansions

(1_-1_—p = 1+ZP(P+1) (p+i—1)(%)i

2k 1_1 i1 2
1,._ ~pp+1)..(p+i-1), 1
)P — _2y
1+ 2k ; 128 ( k)
we have (0+1).(p )
1. 1 p+1)(p+20) 1
)P _ 2041
(1=-gp) 7 -+ 12; @ %
Combining the identity '
1 1 1
—IyP_ yr o ___—p -p
(k= 3)7 - (- 217 = = [ 1+ o)
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(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

1
I(N,p + 2l) + O(W) (6.64)
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Therefore, the function F(d;,d;) can be evaluated using equations (6.55) and (6.64). For
|d1] < 0.5 and |d2| < 0.5, the choice of N = 14 and L = 5§ is suflicient to keep the maximum
relative error bounded by 10715, A

The evaluation of the function G(d;,d2) is similar.

The term u,;q5: is obtained numerically by summing up wy x(R);L and wa(x
g k-+3

(R)
k+§~) ’

The term uyes; can be calculated in a similar way. The filaments are advected in time using
the classical fourth order Runge-Kutta method.

We start by setting the separation b = 1.0, the core size § = 0.1, and the per-
turbation amplitude ¢ = 0.01. Figure 6.9 shows the time evolution of the amplitudes of
perturbations for different wavenumbers; & = 13.70 and k = 14.70 are stable modes whereas
k = 14.10 and k = 14.30 are unstable modes. For k = 13.70, in the reference system which
is rotating along with the vortex pair the linearized flow prevails over the self-induced rota-
tion. The perturbation wave rotates clockwise following the linearized flow. The amplitude
of the perturbation fluctuates due to the fact that the linearized flow is not a perfectly cir-
cular rotation. For k = 14.70, the self-induced rotation dominates the linearized flow. The
perturbation wave rotates counter-clockwise and is driven by th_;e self-induced rotation. For
k = 14.10 and k = 14.30, and actually for any wavenumber % in the interval [13.89,14.31]
of unstable wave numbers for the ratio b/6 = 10.0, the self-induced rotation velocity is
between the minimum and maximum tangential velocity of the linearized flow. Imitially,
the amplitude of the perturbation grows exponentially. After reaching a maxlmum, the
amplitude falls back to where it started, then it rises again and repeats the pattern.

In the above description of the behavior of the stable and unstable modes, several
issues need to be clarified. The first is how to draw a clear distinction between the stable
and unstable modes. From Figure 6.9 one sees that none of the perturbation waves grows
without limit. One may argue that all these perturbation modes should be called stable
modes. The method we use to distinguish instabilities from fluctuations is to compare the
maximum amplitude that the perturbation wave reaches with its initial amplitude. If the
maximum amplitude of the perturbation wave is bounded by a constant multiple of its
initial amplitude, we call it stable. If this is not true, that is, if the perturbation wave
always grows over a certain value no matter how small the initial amplitude is, then we call
it unstable. This is eiactly the sé.me criterion tha.t we used in Chapter 4~ when we simulated
Widnall’s instability on vortex rings.

Figure 6.10 shows the time evolution of the perturbation wave with wavenumber
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k = 13.70 for the initial perturbation amplitudes ¢ = 0.02, ¢ = 0.01, ¢ = 0.005 and
€ = 0.0025. It is clear from Figure 6.10 that as the initial amplitude gets smaller, so
does the maximum amplitude of the perturbation. The perturbation wave is bounded by a
constant multiple of the initial amplitude, where, more precisely, the constant is 2. Hence,
according to the criterion we discussed above, the mode k£ = 13.70 is stable. In Figure 6.11,
we display the time evolution of the perturbation wave with wavenumber k£ = 14.30 for
the initial perturbation amplitudes ¢ = 0.02, € = 0.01, ¢ = 0.005, and € = 0.0025. Figure
6.11 illustrates the typical behavior of an unstable mode. Unlike what we see in the case of .
k = 13.70, the maximum amplitude of the perturbation wave always reaches a certain value
no matter how small the initial amplitude is. As can be seen in Figure 6.11, the maximum
amplitude is roughly 0.45. Thus the mode k = 14.30 is unstable.

The second issue about the perturbation wave is the repeating pattern of the
unstable mode. As shown in Figure 6.11, after reaching a maximum, the perturbation
amplitude decreases until it reaches the initial value and then starts rising again. To explain
this up-and-down behavior of the unstable mode, we need to consider the effect of the
amplitude on the dispersion relation. The dispersion relations _displayed in Figure 6.6 and
Figure 6.7 are for perturbation waves of small amplitude (i.e. the amplitude is small in
comparison with the wavelength). Recall that in Chapter 4, when numerically simulating
the Widnall’s instability of a vortex ring, we studied the normalized rotation frequency as
a function of the amplitude for several wavenumbers. Figure 6.12 shows the plots of the
normalized rotation frequency vs the normalized amplitude for £6 = 1.4, 1.45 and 1.5.
The general conclusion is that for a fixed wavenumber, the normalized rotation frequency
mcreaées as the amplitude increases. In the coordinate system which is rotating with the
vortex pair, the self-induced tangential velocity is ug(SR) = —r%ft, where ) is the
normalized rotation frequency (see equation (6.8) and (6.15)). Therefore in the coordinate
system shown in Figure 6.2, the self-induced rotation velocity ug(SR) decreases as the
amplitude increases. With this principle in mind, we can qualitatively sketch the motion
of the peak of the unstable modes. As illustrated in Figure 6.13, the unstable perturbation
wave starts from its initial position (point A). At point A, § = 7, the tangential velocity
of the linearized flow ug(LF) = —"2';]%5(27” + 7 cos 20) attains its minimum (the tangential
velocity is negative and its absolute value attains the maximum). The self-induced rotation
is not strong enough to counter the linearized flow. Hence the perturbation wave rotates

clockwise and grow slowly in its magnitude due to the radial component of the linearized flow
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u(LF) = —2—75;2- (r sin 20). As the perturbation wave approaches point B, the tangential
velocity of the linearized flow becomes weaker. When it reaches point B, the linearized flow
is balanced in the tangential direction by the self-induced rotation. So, from point B to point
C, the perturbation wave grows exponentially in the radial direction while it is not moving
much in the tangential direction. It would have grown without bound in the radial direction
if the self-induced angular velocity 2 did not depend on the amplitude. However, as the
amplitude increases the self-induced angular velocity decreases. Thus the linearized flow
once again overcomes the self-induced rotation and turns the perturbation wave from point
C to point D. At point D, 8 = «/2, the radial velocity of the linearized flow is zero. Beyond
point D, the perturbation wave continues to rotate clockwise while its amplitude decreases
because the radial velocity of the linearized flow is negative. Eventually it arrives at point
G. At point G, the perturbation wave has rotated an angle of = around the unperturbed
vortex filament and its amplitude is back to its initial value. After another half cycle from
point G to point A, the perturbation wave arrives back at its original position.

Now we continue to examine the evolution of the unstable modes for different
ratios of separation to core radius b/6. We ran simulations _ﬁth b/6 = 10, 9, 8, 7, 6,
5, 4, 3 and 2. The numerical results are shown in Figure 6.14, Figure 6.15 and Figure
6.16. For b/é > 4, the time evolutions of the unstable modes are similar to those shown in
Figure 6.14 (a) where b/6 = 10. The amplitude of the perturbation grows to a maximum,
decreases to its original value and then repeats the pattern. One thing to note is that for
a fixed core radius, as the separation becomes smaller, the perturbation wave can grow to
a larger amplitude. This phenomenon can be seen by comparing the amplitude plots of
the perturbation waves for various separations in Figure 6.14 and Figure 6.15. In the plots
the vertical axis represents the dimensionless quantity: the ratio of amplitude to core size.
Figure 6.14 and Figure 6.15 indicate that the maximum amplitude that the perturbation
wave can reach is given by the product of the core radius and a decreasing function of
b/6. Thus for a co-rotating vortex pair of very thin filaments (i.e. b/ is large), the short
wave instability is not prominent, and the unstable modes are negligible compared with the
scale of the separation. For b/ < 4, the unstable modes behave differently from the case
where b/§ > 4. Although the perturbation wave may not increase monotonically due to its
totation around the unperturbed position of the filament, it does not return to its original
position. In our numerical simulations, we observed that the perturbation wave grows,

bends and becomes non-planar. After that, the thin hairpin structures appear and wrap
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around the filament. Figure 6.16 shows the plot of amplitude vs time with the separation
b = 0.2 and the core size § = 0.1. The amplitude of the perturbation wave grows until it
becomes greater than half of the separation: at this point, the two perturbed filaments get
very close to each other and become tangled together. After that, it is impossible for the
filaments to separate from each other and to return to their original position. Figure 6.17
shows the configuration of the two filaments after they are tangled together. Recall that in
Figure 6.13, we sketched the theoretical explanation for the repeating pattern behaviors of
the unstable modes. One may wonder: DoesA that analysis contradicts the wild behaviors of
the unstable modes observed here for /6 < 4 ? The answer is no. The analysis shown in
Figure 6.13 is based on an extended linear analysis. In that analysis, the amplitude of the
unstable mode is allowed to be comparable to the core radius. However, in that analysis
we also assumed that the amplitude of the perturbation mode is much smaller than the
separation between the filaments so that the motion of the perturbed filament due to the
other filament relative to its unperturbed position is well approximated by a linearized flow.
As the separation decreases, this approximation becomes more and more inaccurate. Thus
the analysis sketched in Figure 6.13 is only good for large ratios j)f separation to core radius.
In particular, when the separation is comparable tro the core size and the amplitude of the
perturbation wave grows to a value comparable to the core size, the two filaments become
tangled together and the linear theory fails in this case. That is why the unstable modes
grow without bound when the two filaments are close to each other. When the two filaments
are far apart, as we already shown in Figures 6.14 and 6.15 the behaviors of the unstable

modes are indeed repeating patterns.
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Figure 6.9: Time evolution of the perturbations of different wavenumbers on a pair of co-
rotating vortex filaments. Dashed line : amplitude in the z-direction (spanwise direction);
Solid line : amplitude in the y-direction. The coordinate system is rotating with the vortex
pair.
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6.3 Short wave instability on a vortex filament immersed in

a co-rotating vorticity field

We now wish to study the short wave instability on a single vortex filament with
fixed core structure immersed in a co-rotating ’vorticity field. We proceed in the same way
as we approached the co-rotating vortex pair in the preceding sections of this chapter.

We shall consider two cases. In case one, a vortex filament is surrounded by a
continuous vorticity field whose vorticity is of the same sign as that of the filament. Here
the surrounding vorticity field is taken as axisfmmetric. The choice of an axisymmetric
vorticity field was motivated by two things. First, an axisymmetric vorticity field simplifies
the analysis significantly. Second, the two dimensional vorticity equilibrium distribution is
locally approximately axisymmetric [31]. In case two, a vortex filament is surrounded by
a discrete vorticity field represented by many co-rotating vortex filaments. In both cases,
the motion of the filament is the combination of the self-induced rotation and the velocity
induced by the surrounding vorticity field. The self-induced rotation frequency is solely
determined by the fixed core structure of the vortex ﬁlament:' and is independent of the
surrounding vorticity field. Hence the only variable which affects the stability or instability
is the property of the velocity field induced by the surrounding vorticity. Near the filament,
the velocity field can be well approximated by its linear part.

6.3.1 A vortex filament embedded in a continuous vorticity field

We proceed to consider the first case where a vortex filament is surrounded by a
continuous vorticity field. Suppose that the vortex filament under consideration is initially
located at ro-= (z9,0) and the surrounding vorticity field is given by w(r) (Figure 6.18).
The velocity field induced by the vorticity field w(r) is

e = ey (V) | 7 9

T

where the function f(r) is defined as

' 1) = [ 2mpulo)dp. (6.66)

e, e - - R -
i B B3 B . ¥, - J S
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Figure 6.18: A vortex filament surrounded by a continuous vorticity field.

The vortex filament rotates around the origin with an angular velocity ﬁf f(zo)-
(1]

In the reference system (Z,%) which is attached to the unperturbed filament as
shown in Figure 6.19, the induced velocity field is

- 1 [ meamz)| 9 1 -9
u(:z:,y): 27([($0+§)2+§2]f( (230 +.’B)2+y2) [mo+§] - ) f(wO)[ ]

0 zo+ T
-t _ m 0 )
__ng f(=e) (2 F(z0) ) [5 ] + O(z* + 7°)
o e[ ] o . o
) T

Near the vortex filament (when # and § are small), the induced velocity field is well ap-
proximated by the linear term on right-hand side of equation (6.67), which represents a
straining flow. In the cylindrical (r,8) coordinate system, this linearized flow is

un(LF) = — 27;3 2 (rsin26), (6.68)
1
ug(LF) = —mcz—l (7 4 7 cos 26). (6.69)
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Figure 6.19: The vortex filament and the coordinate system attached to it.

As we have already discussed in the first section of this chapter, when the tan-
gential velocity of the linearized flow is neutralized by the selfzinduced rqtation, the radial
component of the linearized flow causes the perturbation wave to grow exponentially in a
certain radial direction (Figure 6.20). The maximum of u,.(LF) is 21:—:”(2)611‘. The minimum
of u,(LF) is zero. Instability occurs when the self-induced rotation is between the minimum

and maximum of tangential velocity of the linearized flow, i.e. when

0 < up(SR) < = ar (6.70)
Substituting ug(SR) = —-2-%@(1})7», we find that the instability condition is
Pa (k) < 0 (6.71)
il )

where § is the core size and I' is the circulation of the vortex filament in consideration. From
the dispersion relations shown in Figure 6.6 and Figure 6.7, it is clear that one can always
find wavenumbers which satisfy the instability condition (6.71) since the range of normalized
rotation frequency in the dispersion relations always contains the interval [—1, 0]. Therefore

unstable modes always exist on a vortex filament surrounded by a continuous vorticity field.
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Figure 6.20: A sketch of the motion of a filament surrounded by a continuous vorticity field.

6.3.2 A vortex filament immersed in a discrete vorticity field

In this subsection we discuss the second situation in which a vortex filament is
surrounded by a discrete vorticity field. Here we consider a special case where the vorticity

field to be discretized is a uniform vorticity distribution in a unit circle, that is,

1, <R
w(r) = r= where R=1. (6.72)
0, >R

The vorticity field is discretized as follows: first, Nisyer locations equally spaced
in the radial direction are placed within the circle. A numerical filament is placed at the
center of the circle. The radial location at r = nAr (n = 1,..., Nigyer) has 6n numerical
filaments equally spaced at 8 = j AOn-(j = 1,...,6n). Here Ar = R/(Nigyer + 0.5) and
AG,, = 2w /(6n). The layouts of the numerical filaments on a cross-section are illustrated
in Figure 6.21 for Nigyer = 1, 2, 3, 4, 6 and 8. In Figure 6.21 each solid circle represents a
numerical filament. The center lineqof the corresponding filament passes through the center
of the solid circle. However, the solid circle is for illustration only. It does not describe the

real size of the cross-section of the filament. In fact, the overlapping condition requires that
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the core radius of the filament be large in comparison with the distance between neighboring

filaments. In the discretization, we use the numerical core radius

§ = B/+/Nigger (6.73)

which, as Njayer increases, goes to zero, but at a slower pace than the inter-filament distance
Ar = R/(Njgyer + 0.5). Anderson and Greengard [4], and Almgren, Buttke and Colella [2]
used a similar numerical core radius in their simulations of the vortex ring merger problem.

For this discrete vorticity field, we consider the short wave instability of a vortex
filament at the outermost radial layer. As before, we first attach a coordinate system to the
unperturbed filament. The crucial step in this stability analysis is to calculate the velocity
field around the unperturbed position of the filament, which is caused by the presence of
other vortex filaments. Since the surrounding vorticity field is a discrete one represented by
a set of numerical filaments, an exact expression for the induced velocity field is difficult, if
not impossible, to derive. In this case, the numerical approach is certainly more desirable.
In Figure 6.22 and Figure 6.23, we show the velocity field and streamlines for various values
of the parameter Njyer. In the plots each arrow represents the velocity vector at that
location and the thin solid lines are streamlines. Figure 6.22 and Figure 6.23 indicate
that the streamlines are a family of ellipses. This phenomenon is qualitatively the same
as in the case of a co-rotating vortex pair which we have studied in previous sections (
see equation (6.3) ). However, as Nigyer (the number of radial layers in the discretization)
increases, so does the ratio of the major axis to the minor axis of the ellipses. In the limit of
Nigyer — o0, the streamlines become a family of parallel straight lines and the velocity field
tends to a straining flow. The convergence to a straining flow of the velocity field is best
seen in Figure 6.23 where Nigyer = 16. Recall that the straining flow is exactly what we
observed when the surrounding vorticity field is continuous ( see equation (6.67) ). It is clear
that the two extreme cases are (a) a co-rotating vortex pair where the vortex filament in
consideration is companied by just one filament, and (b) the case where the vortex filament
is surrounded by a continuous vorticity field. No matter whether the surrounding vorticity
field is continuous or discrete, the flow near the filament, if observed relative to the filament,
is rotating clockwise (see Figure 6.4, Figure 6.22 and Figure 6.23). This rotation is in a
direction opposite to the core rotation of the filament. For short wave modes on a filament
with fixed core structure, the self-induced rotation is in the same sense as the core rotation

of the filament. So the rotation part of the velocity field near the filament acts against
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Mayer =4 Nlayer =6 Nlayer =38

Figure 6.21: Layouts of numerical filaments. Here the solid circles are for illustration only.
They do not describe the real size of the cross-section of numerical filaments. In fact, the

overlapping condition requires that the core radius of the numerical filaments be larger than
the inter-filament distance.
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the self-induced rotation. Because of the fact that the minimum tangential velocity of a
straining flow is zero and the fact that the range of normalized frequency of the self-induced
rotation contains the interval [—1, 0], there are always short wave modes whose self-induced
rotation can balance the tangential component of the flow near the filament. When these
two rotations cancel each other out, the short wave perturbation mode stops rotating and
diverges along the radial direction, driven by the radial component of the flow. Thus the
" short wave instability always occurs on a vortex filament immersed in a co-rotating vorticity

field.
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6.4 Short wave instability and the proliferation of vortex

hairpins in three dimensional vortex methods

In the remainder of this chapter we study the wild stretching of the numerical vor-
tex filaments and the subsequent formation of small-scale hairpin structures typically ob-
served in numerical simulations using the vortex method. We will relate this phenomenon to
the short wave instability on a vortex filament surrounded by one or more co-rotating vortex
filaments which we have studied theoretically and numerically in the previous sections.

The complexity of small-scale vortex structure in three dimensional vortex methods
has been observed by many authors [26], [28], [75]. In numerical calculations using the vortex
method, after some time the numerical vortex filaments start stretching and folding, first
gradually, and then violently. The total number of vortex segments increases exponentially
(or even faster than that), so it very quickly exceeds the capacity of our computing facilities
and forces us to stop the simulation [28]. The stretching and folding occur even if the
initial configurations of the numerical filaments are parallel rings or parallel straight lines,
for which the stretching and folding are not supposed to appg'ar in exact arithmetics. It
has been pointed out [32] that the spatial chaos (stretching and folding) is gemerated by
the evolution of some unstable modes. However in [32] the cause and the mechanism of the
instability were not explained. In the following we apply the vortex method to a vortex ring
and try to analyze the small-scale structures of the flow produced by the vortex method.
We first show that the stretching and folding of the numerical filaments are indeed caused
by the exponential growth of unstable modes. Then we go on to show that the instability of
these modes is due neither to the numerical instability of the ODE solver we use nor to the
spatial discretization resolution. These unstable modes, initially generated by the numerical
round-off errors, grdw exponentially, driven by the combination of the self-induced rotation
velocity and the velocity induced by the surrounding co-rotating vorticity field. Whether
the surrounding vorticity field is discrete or continuous does not affect the instability.

At time ¢t = 0, the vorticity field to be discretized is represented by a vortex ring
with uniform vorticity distribution inside the core. The radius of the ring is R = 1.0 and the
core radius is 7 = 0.15. The physical vortex ring is replaced by a set of Nsiiament Dumerical
ring-shaped filaments with numerical cut-off core size §. The layouts of the numerical
filaments on.a cross-section of the vortex ring are shown in Figure 6.21 for various numbers

of filament layers in the radial direction. The circulation carried by each numerical filament




Chapter 6. Short wave instability on fixed-core vortex filaments 123

is equal to I'/Nfiiament, where I is the circulation of the vortex ring and for simplicity we
take I' = 1. The numerical filaments are then cut into segments in the azimuthal direction
around the central axis of the ring. To satisfy the overla;;ping condition [3], [8], [9], [41], we
require that the maximum length h of these segments be smaller than the numerical cut-off
core size §. In the calculation we use the second order cut-off function fry=1-¢"

and the classic fourth order Runge-Kutta method to do numerical integration in the time

dimension. To maintain a uniform resolution, if the length of a segment becomes lafger

than 2 h during the calculation, we cut it into two segments of equal length. It is important

to note that the i-th node in the azimuthal direction on a numerical filament is theoretically

equivalent to the j-th node on that same filament under a rotation transformation. Hence,

when exact arithmetics is used (i.e. there is no round-off error), the numerical filaments

should remain as rings. Thus if stretching and folding occurs in the numerical calculation,

it must be due to the accumulation and the magnification of the round-off errors associated

with finite precision arithmetics.

We start with the discretization which has one layer of numerical filaments in the
radial direction as shown in Figure 6.21 with Njgyer = 1. T}ie total number of numeri-
cal filaments is Nfjlament = 7 and initially there are 168 segments on each filament. The
numerical core size is taken as § = 0.15. The maximum length of the segments is approxi-
mately h = §/4. The numerical calculations are carried out using both single precision and
double precision. The stopping criterion is the following: when the number of segments
on any filament is ten times larger than the original number of segments per filament, the
computation is terminated.

Figure 6.24 gives a perspective view of the numerical filaments near the stopping
time. This calculation was done with single precision and with a time step of dt = 0.04.
Figure 6.24 displays the typical configuration of the numerical filaments after the number
of segments has increased drastically. The filaments stretch and fold and the thin hairpin
structures wrap around the filaments. The configuration of the numerical filaments seen
here is very similar to that of a co-rotating vortex pair at the late stage of instability
shown in Figure 6.17. The difference is that we now have seven numerical filaments tangled
together instead of just two. In Figure 6.25 we exhibit two two-dimensional views of the
numerical filaments in the single precision calculation. At time ¢ = 20.0, the unstable modes
have small amplitudes and are still invisible in the plot. Computations were also carried

out using double precision. Figure 6.26 shows two-dimensional views of the numerical
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filaments at time ¢ = 40.0 and ¢ = 64.0. Comparing Figure 6.25 and Figure 6.26, we
find that the unstable modes grow at least exponentially. If the growth were less than
exponential, we would be able to run the calculation for much longer time before we hit
the stopping criterion in the double precision calculation where the round-off error is of the
order 10~ ~ 1016, Note that the round-off error in double precision calculation is much
smaller than the round-off error in single precision calculation which is of the order of 10~7.

We raise three questions: (1). Is the exponential growth of the unstable modes
due to the instability of the ODE solver we use ? (2). Is the exponential growth of the
unstable modes due to the coarse discretization in the spatial dimensions since there are
only seven numerical filaments representing a deformable core ? or (3). Is the exponential
growth of the unstable modes caused by the short-wave instability on a vortex filament
which is surrounded by a co-rotating vorticity field (continuous or discrete) ? The answer
to the first two questions is no and the answer to the third one is yes. We will examine
these questions one by one.

Recall that the ODE solver we use is the classical fourth order Runge-Kutta
method. As we pointed out in Chapter 6 (see Figure 5.8 ar;;i the discussion associated
with it), this ODE solver is stable for small time steps, and whenrit is unstable for large
time steps, its instability gets weaker as the time step is decreased. To answer the first
question, we run the single precision calculations of seven numerical filaments using various
time steps dt = 0.1, 0.04, 0.01 and 0.004. The two-dimensional views of the numerical
filaments obtained in these calculations are presented in Figure 6.27. Not surprisingly, the
four plots in Figure 6.27 obtained with different time steps exhibit very similar structures.
This simply implys that the growth rate of the unstable modes is not affected by the time
step as long as the time step is not too large. Actually, if we select the time step according
to the criterion we established in Chapter 6, then di = 0.1 is a reasonable time step. Rel-
atively speaking, dt = 0.004 is a fairly small time step. The fourth order accuracy of the
ODE solver generally means that the error behaves like O((dt)?) as dt goes to zero. Thus
for the numerical solution obtained with dt = 0.004, one can say that the error associated
with the discretization in the time direction is negligible. Hence the exponential growth of
the unstable modes is not caused by the discretization in the time direction.

To answer the second question, we repeat the single precision calculations with
more numerical vortex filaments. With two layers of filaments in the radial direction

Nigger = 2, the total number. of the numerical filaments is Nfiiament = 19 (see Figure
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6.21 for the distribution of the numerical filaments on the cross-section of the ring). For
Nigyer = 2, we chose the numerical core size § = 0.12. At time ¢ = 0, there are 209 segments
on each filament. The maximum length of the segments satisfies approximately h = §/4.
The top plot of Figure 6.28 shows the two-dimensional view of the numerical filaments at
the stopping time, obtained using 19 numerical filaments. The bottom plot of Figure 6.28
represents a portion of the top plot, giving the detailed structures of the top plot. In the
calculations leading to Figure 6.29, we use even more numerical filaments. The number of
radial layers Nigyer is 3. The total number of the numerical filaments goes up to 37. At time
t = 0, each filament is represented by 235 segments. The total number of vortex segments
in the initial discretization already amounts to 8695 ! Again, the top plot of Figure 6.29
is a two-dimensional view of the numerical filaments at the stopping time and the bottom
plot is a portion of the top plot shown in detail. Figure 6.29, together with Figure 6.28,
indicates that the exponential growth of the unstable modes is not eliminated or reduced
by using a better spatial discretization. The stopping time is actually getting smaller as we
use more numerical filaments. The stopping criterion is that we terminate the calculation
whenever the number of segments on any filament grows by 10_-1;imes. The unstable modes
originate from the round-off errors. At least this is true for vortex rings where the sym-
metry of the initial configuration excludes the possibility of stretching and folding if exact
arithmetics is used. The round-off errors at each numerical point are affected by thousands
if not millions of operations. Thus it is virtually impossible to know the exact values of
these round-off errors or to know the relation between the round-off errors at two numerical
points. People often treat the round-off errors as being produced randomly. If we believe
that there is randomness associated with the starting times and starting amplitudes of the
unstable modes, it is reasonable to expect that the stopping criterion can be reached earlier
for more filaments since only one of those filaments needs to grow by 10 times. This may
account for the smaller stopping time in the case of more numerical filaments.

Now we move on to the third question. The short-wave instability discussed in the
previous sections provides a plausible explanation for the exponential growth of the unstable
modes. This short-wave instability occurs on a vortex filament surrounded by a co-rotating
vorticity field. If the surrounding vorticity field is discrete, the coarsest discretization is just
one point. In that case, we have a co-rotating vortex pair. In sections 1 and 2 of this chapter,
it was predicted theoretically and confirmed numerically that there are always unstable

short-wave modes for a co-rotating vortex pair. In section 3, we showed that this is also true
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for other discrete vorticity distributions and continuous vorticity distributions. The general
process of stretching and folding is the following. At the early stage of the calculation,
the round-off errors generate unstable seeds; i.e., unstable modes with starting amplitudes
comparable to the magnitude of the round-off errors. Then the short-wave instability starts
to manifest itself and the amplitudes of unstable modes increase exponentially. Although
the round-off errors continue to contribute to the unstable modes as the calculation goes
on, this contribution becomes less and less éign.iﬁca.nt compared to the exponential growth
of the unstable modes. At the late stage of the calculation, the hairpin structures appear
and get longer and longer.

Supporting evidence for the above argument comes from the similarity between
the filament configuration of a co-rotating vortex pair shown in Figure 6.30 and the filament
configuration of a vortex ring in Figure 6.31, Figure 6.32 and Figure 6.33. For a co-rotating
vortex pair, two perspective views of one filament at the late stage of instability are given in
Figure 6.30. As for a vortex ring, Figure 6.31 exhibits two perspective views of one numerical
filament at the stopping time, where the vortex ring is represented by 7 numerical filaments.
Figure 6.32 and Figure 6.33 display the configurations of one I.l'umerical filament obtained
in calculations using respectively 19 numerical filaments and 37 numerical filaments. It is
clear from these graphs that they all share the similar structure of long and thin hairpins
wrapping around, which suggests that vortex stretching and folding in the vortex method
is due to the short-wave instability.

The regular pattern as seen in Figure 6.30 for the co-rotating vortex pair and the
irregularity associated with the numerical filament configuration for the vortex ring (Figure
6.31, Figure 6.32, and Figure 6.33) are due to the difference in the initial amplitudes of
unstable modes. For the vortex pair, the initial perturbation is an unstable mode with a
moderately small amplitude (10~2). Since the round-off error of double precision calculation
is of the order of 10715 ~ 10716, the finite initial amplitude of the perturbation mode makes
it dominate over other unstable modes. So there is only one mode visible in Figure 6.30. In
contrast to the vortex pair, for the vortex ring, the initial perturbation is zero. The unstable
modes grow from the noise generated by the round-off errors. Due to the randomness of the
noise and the fact that the unstable spectrum is a continuous region instead of a discrete set,
the filament configuration consists of many unstable modes. Also, as the unstable modes
grow, the evolution of these unstable modes is no longer simply the linear superposition of

each mode’s isolated evolution. Thus the irregularity of the filament configurations shown
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in Figure 6.31, Figure 6.32, and Figure 6.33 is fully expected.
Finally, we conclude this section with a summary. In this section we studied the
occurrence of hairpin structures in three dimensional vortex methods and its relation to the

short-wave instability. We have reached the following conclusions:

e The wild stretching and folding of the numerical vortex filaments is primarily caused
by the short-wave instability which occurs on a vortex filament surrounded by a co-

rotating vorticity field.

o The wild stretching and folding occurs even if the initial configuration of the numerical
vortex filaments is perfectly symmetric (such as vortex rings, straight lines, etc.) where
it should not appear if we were using exact arithmetics. It is the round-off errors that

provide the starting amplitude for the unstable modes.

e The wild stretching and folding is not caused by the ODE solver we use. It cannot be

suppressed or reduced by using a smaller time step.

e Due to the universal presence of the round-off errors, it is very difficult to prevent
the unstable modes from starting. The exponential growth of the unstable modes
cannot be suppressed or reduced by the refinement in spatial dimensions because the

underlying short-wave instability is independent of the spatial discretization.

e Currently Chorin’s hairpin removal method [26], [28] is the only method which reg-
ulates the numerical filaments and enables us to continue the calculation after the

appearance of hairpin structures.
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Figure 6.24: Configuration of the numerical filaments obtained with single precision and
dt = 0.04.
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Figure 6.25: Two-dimensional views of the numerical filaments obtained in the single pre-
cision calculation.

Time = 40.0 Time =64.0

0.5f

1 05 0 05 1
X

Figure 6.26: Two-dimensional views of the numerical filaments obtained in the double
precision calculation.
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Time = 30.0 . Time=32.0

dt =0.01 - dt = 0.004

Figure 6.27: Numerical results obtained in single precision calculations using different time
steps.
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Figure 6.28: Numerical results obtained in the single precision calculation where Njgyer = 2,
Niitament = 19, 6 = 0.12 and di = 0.04.
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Figure 6.29: Numerical results obtained in the single precision calculation where Njgyer = 3,
Nfila.ment = 37, 6 = 0.10 and dt = 0.04.
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Figure 6.30: Two perspective views of one filament in a co-rotating vortex pair.

Figure 6.31: Two perspective views of one filament in 7 numerical filaments which are used
to represent the vortex ring.
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Figure 6.32: Two perspective views of one filament in 19 numerical filaments which are used
to represent the vortex ring.

Figure 6.33: Two perspective views of one filament in 37 numerical filaments which are used
to represent the vortex ring.
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Chapter 7

Conclusions

In this dissertation we have studied vortex methods and short wave instability on
vortex filaments both analytically and numerically.

With the thin tube vortex filament method we carried out simulations of the
instability of vortex rings. We found that the results previously obtained by Knio and
Ghoniem contain an artifact of the numerics; a sufficient reﬁne_inent of the mesh generates
different results. In particular, the neutrally stable (i.e. non-rotating and stable) wave found
in the previous study is inconsistent with Widnall’s stability theory [96], [95], [97], according
to which a wave is unstable when the self-induced rotation is balanced by the stagnation
point flow induced by the ring. We found that the neutrally stable wave in the previous
study is actually caused by the underresolved spatial mesh. With refined meshes, the wave is
stable and rotates around the unperturbed axis of the vortex ring. Furthermore, contrary to
the previous numerical study, on thin vortex rings the unstable mode does not grow without
bound. Instead the unstable mode exhibits a periodic behavior in time and its maximum
amplitude is bounded by a fraction of the core size. These numerical observations have
been successfully explained using the dispersion relation for sinusoidal waves on a vortex
filament with fixed core structure. Our theoretical analysis supports our numerical results.

To fully understand vortex methods [3], [10], [18], [29], [75] [87], we performed a
careful study of the numerical stability and accuracy of the vortex filament method. In this
study, we analyzed the effect of ODE solver, time step, and spatial step on the numerical
solution. On the basis of a theoretical analysis, we found that the classical four stage fourth
order Runge-Kutta method is the best performer among the ODE solvers we studied and

that the constraint on the time step size imposed by the numerical stability is given by
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AtLC ‘;—2 , where At is the time step, I is the circulation, § is the core size of the vortex
filament and C is a constant depending on the ODE solver and the cut-off function used in
the vortex method discretization. This criterion for selecting the time step was confirmed
in numerical simulations.

We investigated the short wave instability on vortex filaments of fixed core struc-
ture. To do so, we first discussed the case of a co-rotating vortex pair and found that
there are always unstable wave modes for a co-rotating vortex pair. We then studied the
short wave instability on a single vortex filament with fixed core structure immersed in a
co-rotating vorticity field, which is either continuous or discrete. Again, we found that éhort
wave instability always occurs for a vortex filament surrounded by a co-rotating vorticity
field. For a co-rotating vortex pair, when the separation between two filaments is compa-
rable with or smaller than the core size, the unstable modes grow without bound and the
vortex filaments stretch violently. When the separation between two filaments is large in
comparison with the core size, the unstable modes grow to a maximum amplitude, go back
to where they started and repeat the cycle; the maximum amplitudes of the unstable modes
are bounded by a small fraction of the core size and therefore are insignificant compared to
the separation. Furthermore, the maximum growth rate of the unstable modes is propor-
tional to the circulation and inversely proportional to the square of the separation. Thus
for a very thin and isolated vortex filament, the unstable modes grow slowly, and even if
the unstable modes grow to their maximum amplitudes, it may be difficult to observe the
unstable modes in experiments since their maximum amplitudes are bounded by a small
fraction of the core size. '

As a direct application, our study of the short wave instability can be used to
explain the smooth behavior of superfluid vortices. It is well-known that superﬂﬁid vortex
filaments behave quite differently from the classical vortex filaments [31], [37}, [38], [90]. In
particular, classical vortex filaments stretch and fold wildly and form small scale structures,
whereas superfluid vortex filaments evolve smoothly. It has been found experimentally that
superfluid vortex filaments have a very small core size ( ~ O(4) ) and have fixed core
structures [37], [38], [90]. Thus the superfluid vortex filaments are far apart from each other
in the sense that the inter-filament distance is much larger than the core size. Our study of
the short wave instability revealed that when vortex filaments are far apart, the unstable

modes are bounded by a small fraction of the core size and more importantly the unstable
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modes do not cause the catastrophic strétching and folding. Therefore, the short wave
instability is negligible for superfluid vortices. This may imply that the tiny core size of the
superfluid vortex filaments is more important in accounting for their non-classical dynamics
than the quantization of circulation. The different behavior of the superfluid vortices and
classical vortices has been explained by Chorin [23], [27], [31], [30], with the use of statistical
theories. Our study of the short wave instability supports Chorin’s analysis from another
point of view.

The similarity between the filament configuration of a co-rotating vortex pair and
the configuration of numerical vortex filaments leaded us to relate the phenomenon of
wild stretching and folding of numerical vortex filaments to the short wave instability on
a vortex filament surrounded by co-rotating vortex filaments. Our numerical simulations
reveal that the wild stretching and folding of the numerical vortex filaments is primarily
caused by the short wave instability which occurs on a vortex filament immersed in a co-
rotating vorticity field. The wild stretching and folding of the numerical vortex filaments
is not due to numerical instability. It cannot be suppressed by reducing the time step
size, using a more accurate ODE solver, or refining the spatial .éliscretization. In numerical
simulations, the wild stretching and folding causes the total number of vortex elements
to grow exponentially, which makes simulations of long time behavior virtually impossible
[11], [22]. Chorin’s hairpin removal method [26], [28] is the only method which can keep
the total number of vortex elements at a reasonable level by constantly removing the small

scale structures from the calculation.
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