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A. Specific Aims

This proposal presents an algorithm called maximum likelihood continuity mapping
(MALCOM) which recovers the positions of the tongue, jaw, lips, and other speech
articulators from measurements of the sound-pressure waveform of speech. MALCOM
differs from other techniques for recovering articulator positions from speech in three
critical respects: it does not require training on measured or modeled articulator positions,
it does not rely on any particular model of sound propagation through the vocal tract, and it
recovers a mapping from acoustics to articulator positions that is linearly, not
topographically, related to the actual mapping from acoustics to articulation. The approach
categorizes short-time windows of speech into a finite number of sound types, and
assumes the probability of using any articulator position to produce a given sound type can
be described by a parameterized probability density function. MALLCOM then uses
maximum likelihood estimation techniques to: 1) find the most likely smooth articulator
path given a speech sample and a set of distribution functions (one distribution function for
each sound type), and 2) change the parameters of the distribution functions to better
account for the data. Using this technique improves the accuracy of articulator position
estimates compared to continuity mapping -- the only other technique that learns the
relationship between acoustics and articulation solely from acoustics.

B. Background

Research has demonstrated that, in some cases, speech acoustics (e.g. digitized speech
samples) can be used to recover the positions of the speech articulators (e.g. the tongue &
lips) (Hogden et al., submitted; Ladefoged, Harshman, Goldstein & Rice, 1978; Papcun et
al., 1992). This is an important finding because techniques for recovering articulator
positions from acoustics have several potential applications. For example, computer
speech recognition is performed more accurately when the computer is provided with
information about both articulator positions and acoustics, even when the articulator
positions are estimated from speech (Zlokarnik, 1995). Furthermore, by providing real-
time displays of articulator positions, it may be possible to help teach the hearing impaired
to speak, to provide better foreign language instruction, and surprisingly, to help dyslexics
learn toread. In addition, we may be able to use the relationship between articulator
positions and acoustics to improve speech synthesis and speech coding.

The theory of linear prediction (Markel & Gray, 1976; Wakita & Gray, 1975) shows that,
given certain strict (and at least partially inaccurate) assumptions about the characteristics of
vocal tracts and the propagation of sound through acoustics tubes, we can derive equations
that allow us to recover the shape of the vocal tract from speech acoustics for some speech

- sounds. However, not only is linear prediction theoretically incapable of recovering vocal
tract shapes for many common speech sounds (e.g. nasals & fricatives), but when the
assumptions underlying linear prediction are relaxed to make more realistic models of
speech production, the relationship between acoustics and articulation becomes
mathematically intractable.

Because a simple mathematical formula going from acoustics to articulation has not been
found, some even argue that such a formula can not exist (Schroeter & Sondhi, 1994;
Sondhi, 1979), most techniques for recovering the articulator positions require that we first
learn the mapping from acoustics to articulation from a data set consisting of
simultaneously collected measurements of articulator positions and speech sounds (Hogden
et al., submitted; Ladefoged et al., 1978; Papcun et al., 1992). This approach also has
problems. While it is easy to collect recordings of speech, it is very difficult to obtain
measurements of articulator positions while simultaneously recording speech. In fact, with
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the current technology, it is impossible to measure some potentially important information
about articulator positions (e.g. the three dimensional shape of the tongue) while also
recording speech sounds. This has lead some researchers to use articulatory synthesizers
to create speech sounds, and then learn the mapping from the synthesized speech to the
articulatory model parameters (Atal, Chang, Mathews & Tukey, 1978; Boe, Perrier &
Bailly, 1992; Rahim, Goodyear, Kleijn, Schroeter & Sondhi, 1993; Rahim, Kleijn,
Schroeter & Goodyear, 1991; Schroeter & Sondhi, 1994; Stevens & House, 1955).
However, currently available articulatory synthesizers make many simplifying assumptions
that can lead to marked differences between synthesized and actual speech, and also call
into question the accuracy of the acoustic/articulatory mapping derived from articulatory
models.

One technique for recovering articulator positions from speech sounds, continuity mapping
(Hogden, 1991; Hogden, Rubin & Saltzman, in press; Hogden, Saltzman & Rubin, 1993),
does not require articulator position measurements. Continuity mapping (CM) finds a
mapping from acoustics to articulation using only the information available in recordings of
speech -- eliminating the need to collect articulator position data. Unfortunately, continuity
mapping only recovers topologically accurate information about the articulator positions,
i.e. in comparing two acoustic segments, we can determine which acoustic segment was
created with the tongue further forward, but we can not determine how much further
forward.

This proposal describes an improvement on the continuity mapping technique that allows
us to more accurately determine the relationship between articulation and acoustics without
ever having to measure articulator positions. This new technique is called maximum
likelihood continuity mapping (MALCOM) because it combines maximum likelihood
estimation techniques with continuity mapping. Because a continuity map will typically be
used as the starting point for the MALCOM algorithm, the following description of
MALCOM starts by describing continuity mapping. Next, the maximum likelihood
approach to improving the continuity map is described. Finally continuity mapping and
MALCOM will be quantitatively compared to demonstrate that MAL.COM recovers
articulator positions more accurately than continuity mapping.

C. Creating Continuity Maps

The essential steps of the CM algorithm are 1) categorize short-time windows of speech
into a finite number of categories -- replacing the speech signal with a sequence of codes
which give the categories associated with the successive windows of speech; 2) estimate
the temporal distances between the codes in the quantized speech; 3) position the codes in a
spatial representation so that the distances between the codes in the spatial representation
are monotonically related to the temporal distances between the codes in the quantized
speech. The purpose behind these steps has been described in the previously referenced
papers so will only be briefly reviewed here.

As stated above, the first step of the continuity mapping algorithm is to replace the speech
signal with a sequence of codes representing the signal. This step is illustrated in Figure 1,
which shows each of three overlapping windows of speech being replaced by a single
number (called a code). The codes tell which sound category each speech window belongs
to. Such a transformation can be performed using any of a number of algorithms. For
example, the space of possible acoustic windows could be evenly divided and each section
of the space could be given a corresponding code. Typically, some sort of spectral
processing (e.g. the cepstrum analysis described in section F1 of this paper) is performed
on each window of speech before the sounds are categorized, and a more efficient




John Hogden 9/23/96

categorization technique, like the frequency-sensitive vector quantization algorithm
described in section F2 below, is used.

Although it is important to keep in mind that the encoding of the speech signal is done
purely on the basis of acoustics -- no articulatory measurements are used -- the continuity
mapping algorithm can be explained more easily by noting that if we had access to
articulator information, we could make a map like Figure 2. The axes of Figure 2
correspond to (computer modeled) positions of the tongue body, so each position in the
figure represents a position of the tongue. Figure 2 is divided into a set of numbered
regions (called isocode regions), in which all the tongue positions in the region labeled 1
produce sounds that get encoded as type 1, all the tongue positions in the region labeled 2
produce sounds that get encoded as type 2, etc.

Notice that Figure 2 is a type of look-up table. For example, if we knew that a sound of
type 1 was being produced, we could conclude that the sound was being produced using
one of the tongue positions in region 1. Without further information, our best guess at the
tongue position that created a sound of type 1 is the centroid of region 1. Thus, from the
information available in Figure 2 we could make a simple table listing each sound type and
the corresponding best guess of the tongue position -- providing a simple way to estlmate
articulator positions from acoustics.

Of course, Figure 2 was constructed using both articulatory and acoustic measurements and
continuity mapping does not use articulatory measurements. Instead, continuity mapping
makes use of the fact that the distances between the regions in Figure 2 can be determined
from acoustics alone. For example, it is possible to determine that region 1 is closer to
region 9 than it is to region 19 even without articulatory measurements. We can draw this
conclusion from the encoded acoustics by noticing that code 1 is frequently seen right
before or after code 9 but is never seen right before or after code 19. The reason for this is
simple: in order for the tongue to move from region 1 to region 19, it has to move through
intermediate regions, but there are no regions between region 1 and region 9. Since code 1
and code 9 are often adjacent in the encoded speech, we can conclude that we only need to
cross one isocode region boundary to get from isocode region 1 to isocode region 9. In
fact, we can calculate the average number of isocode region boundaries we need to cross to
get between any to isocode regions by looking only at the sequence of codes in the encoded
speech acoustics. Thus, we get information about the positions of the regions in Figure 2
from acoustics alone. Based on this reasoning, the second step of continuity mapping is to
make the measurement of the distance between the regions based on the encoded acoustics
signals found in step 1.

In general, the relative positions (although not the correct rotation) of any set of points can
be derived if we know the distances between all pairs of points. A well-known algorithm
called multidimensional scaling (MDS) already exists for performing this analysis. In fact,
using a nonmetric variant of multidimensional scaling, we only need ordinal level
information about the interpoint distances, i.e. relative positions of a set of points can be
recovered from distance measurements that have been transformed by any monotonic
function (Kruskal, 1964a; Kruskal, 1964b; Shepard, 1980). Thus, even though the
average distance between the region centroids is only approximately monotonically related
to the distance between the centroids, we can recover the relative positions of the region
centroids by using multidimensional scaling on the distances estimated in step 2.

Figure 3 shows a continuity map made from acoustics produced by allowing the tongue to
move through the positions in Figure 2. To show the relationship between the continuity
map and Figure 2, the continuity map has been rotated and reflected to maximize the
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similarity between the continuity map and the positions of the centroids in Figure 2. The
positions of the codes in Figure 3 are topologically related to the centroids of the regions in
Figure 2 and so give information about the articulator positions, but the continuity map is
non-uniformly scaled compared to the map shown in Figure 2. This non-uniform scaling
is evident in the fact that, in the continuity map, the distance between codes 11 and 18 is
almost the same as the distance between code 18 and 26. However, in the articulator space
plotted in Figure 2, the distance between the centroids of regions 18 and 26 is much smaller
than the distance between the centroids of regions 18 and 11. This type of distortion comes
about because the number of region boundaries between region 18 and 11 is the same as
the number of region boundaries between regions 18 and 26 (namely 1). So the continuity
mapping algorithm, which estimates the distances by the number of region boundaries
crossed, places 18 and 11 closer together than they should be.

D. Maximum Likelihood Continuity Mapping

Because of the distortion in the continuity map, if we use the positions of the codes in the
continuity map to estimate the positions of the articulators from acoustics, the articulator
trajectories will be unrealistic. Actual articulator trajectories move along smooth paths,
with energy below 15 Hz or so (Muller & McLeod, 1982; Nelson, 1977). In contrast, the
continuity map can make a small articulatory distance look like a large distance, and
therefore gives articulatory trajectories that move faster than actual articulators can move.

We can minimize the effect of the continuity map distortion by requiring that the articulator
paths estimated using the continuity map have all their energy below 15 Hz -- like actual
articulator trajectories. One way to smooth the articulator trajectories is to simply use a
low-pass filter. However, assuming that the articulator positions shown in Figure 2 are all
used about equally often, we see that the variance of the articulator positions that produce
sound type 15 is much smaller than the variance of the articulator position that produce
sound type 9. Using a low-pass filter weights all of the articulator mean estimates equally,
even though they vary in accuracy.

Instead of smoothing the paths by low-pass filtering, ideally we would require that the
smooth path stays close to acoustically estimated mean articulator positions when the
variance around the articulator mean is small, but can be further away from the mean
position when the variance around the mean is large. Maximum likelihood estimation
(Duda & Hart, 1973) gives us a way of implementing this requirement. To use the
maximum likelihood approach, we will make the assumption that the articulator positions
used to produce a sound of any given type are distributed in a parameterized probability
density function. For the purposes of illustration, we will explicitly derive the procedure
for multivariate Gaussian distributions parameterized by means and covariance matrices.
However, it should be noted that relatively slight modifications would need to be made in
order to use different classes of probability density functions, such as mixtures of
Gaussians. Given the parameterized probability density functions, our goal will be
twofold: 1) to estimate the parameters used to describe the probability density functions (the
mean and covariance matrix associated with each sound type), and 2) using the mean and
covariance estimates, find the most likely smooth articulatory trajectory given any sequence
of sound types. ,

As will be shown, given any set of estimated means and covariances, we can improve the
estimates of the means and covariance matrices by iteratively repeating three steps. The
first step is to use the current estimates of the means and covariances to find the most likely
smooth articulatory trajectories for a large set of speech samples. The second step is to
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change the estimates of the means and covariances to maximize the probabilities of the
paths estimated in step 1. The third step is to scale the solution to prevent a degenerate
solution in which all the probability densitiy functions have the same mean. Thus, we can
start by using the positions of codes in the continuity map as estimates of the means of the
corresponding Gaussian distributions, set the initial estimates of the covariances to 1, and
then iteratively improve these estimates
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using the maximum likelihood approach described below. Since the technique for finding
the most likely smooth articulatory trajectory is essential for estimating the means and
covariances, we will start by describing the trajectory estimation technique, then describe
how to improve the mean and covariance estimates.

D.1 Finding Most Likely Articulatory Trajectories.
Assume that the distribution of articulator positions that produce sounds quantized by code
¢ is a multivariate Gaussian characterized by the equation:

=l expl—Lx- ()] o) x - (e
PIx1= (e srene] -3 - T sl

Where:

d is the number of dimensions in the articulator space (i.e. the number of
articulators).

U(c) is a vector giving the mean of all the articulator positions used to produce
sounds quantized with vector quantization code c¢. For example, u,(c) may give
the mean lower lip position used to create sounds quantized as code c.

o(c) is the covariance matrix of the multivariate Gaussian distribution of articulator
positions that produce sounds quantized with code c.

X is a vector describing an articulator position.

Assuming that the articulator positions used at different times are independent, an
assumption that will be relaxed by the smoothness constraints discussed below, the

probability of a path through articulator space, X =[x(0) x(1) ... x(n)], given the
observed quantized speech signal, C=[c(0) c(1) ... c(n)],is: -

P[X]= ]i!Pc(t)[X(t)]

If we know the mapping from acoustics to articulation (the (c) and o(c) parameters),
then-it is possible to find the most probable articulator path given a sequence of codes. To
do this we find the X that maximizes P[X], or equivalently, that sets the gradient of

log P[X] to 0. Since

log P[X] =1log Ij P [x(0)]= Zn;‘loch(,)[x(t)]

we write:

Vieg P[X]= Vg logP, , [x(t)] = z:l:Vloch(,)[x(t)]
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If we use f[c(#)] and ofc(z)] to denote the Gaussian distribution parameters that

correspond to the code observed at time ¢, then
The individual components of the summation are:

VlogP,, [x(1)]= V{— log(

<2n>dﬂ|;[c<t>1|“} {350l o 00 -]

=} Hx) et o [ x)- e}

= o”'[e(t){p[c®)] - x(1)}
Thus, the gradient of the probability associated with a path is:

Vieg P[X]=, G“[c(t)]{u[c(t)] - x(t)}
=0
from this it can be seen that the most likely path is:

[u[c(O)] ple®)] .. ,u[c(n)]]

- However, this path is discontinuous, not smooth like actual articulator trajectories. To get
around this problem we consider only those paths that have all their energy below some ‘
cut-off frequency (say 15 Hz, since actual articulator paths have very little energy above 15
Hz). '

The constraint that the path have all of its energy below the cut-off frequency is equivalent
to requiring that the path lie on a hyperplane composed of the axes defined by low
frequency sine and cosine waves. We know from the theory of constrained optimization

(Marsden & Tromba, 1981) that the most probable smooth path is the path for which X
lies on the hyperplane Vlog P[X] is perpendicular to the hyperplane. Thus, the most

probable smooth path is the path for which Vlog P[X] has no components with energy
below the cut-off frequency.

- This can be understood geometrically by recognizing that setting log P[X] = constant
defines an ellipsoid, with Vlog P[X] normal to the ellipsoid. In figure below, the axes of
the space are intended to be the cosine axes used to represent X in the Fourier domain, so
each point in the figure represents a complete path through articulator space. For ease of
exposition, assume that we want the articulator path to have energy at frequency f, but not

at f,. To find the most probable path having no energy at frequency f, we find the point
on the hyperplane -- the cos(27y,¢) axis -- at which the projection of the gradient onto the

cos(2 thlt) axis (and other allowable frequencies) is zero. When the projection of the

gradient is 0, we can not increase the probability of the path without adding components at
higher frequencies.
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In fact, if we start at any point on the cos(27f,t) axis and move in the direction of the

gradient projected onto the cos(27f,7) axis until the projected gradient is 0, we will
eventually end up at the point representing the most probable smooth path.

This suggests the following algorithm for finding the most probable smooth path:

1) low-pass filter the path [,u{c(O)] ple®)] .. ,u[c(n)]] to get an initial estimate of the
most likely smooth path.

2) find the gradient of the log probability of the smooth path.
3) low-pass filtered the gradient.

4) add the low-pass filtered gradient times some small constant to the path to get a better
estimate of the most likely smooth path

5) repeat steps 2 - 4 until the algorithm converges.

There are also a variety of standard numerical algorithms that can be used to maximize
functions. Using one of these algorithms can speed up the process of finding the most

11
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likely smooth path. One of these techniques, the conjugate gradient algorithm, is used in
the current implementation.
D.2 Improving the Mean and Covariance Estimates

Now that we have a technique for finding the probability of a path through articulator
space, as well as a technique for finding the most likely smooth path, it is possible to

estimate the model parameters, u(c) and o(c).

Let n, be the number of codes used to quantize the speech in utterance u.

Let N be the number of utterances

Let C,=[c,(0) c,(1) .. c,(n,)] bethe sequence of codes used to quantize the speech
in utterance u. :

Let XV =[x,(0) x,(1) .. x,(n,)]bean estimate of the path through articulator space

used to produce the sounds of utterance u. The i is used to indicate the path found by
iteration i of the algorithm described below.

Let @ be the set of ¥ (c) and 6'”(c) parameters for all c. Once again, i is used to
indicate how many iterations of the algorithm have been run.

Let P[Xff’ Cu,<I>(i)] be the probability of the smooth path X given C, and @Y.

The likelihood of all the paths is given by:

N
L =] P[ng’)]cj,q)("’]
j=1

To get the best estimate of @9, we need to start with a reasonable estimate of @ and then
improve the estimate with the algorithm given below. A continuity map can be used to get
a reasonable first estimate of the means, and identity matrices can be used as initial
estimates of the covariance matrices.
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L(7) can be maximized by iteratively repeating three steps:
1) find X0 such that P[X¢*|C,, @] is maximized for all u.

Notice that the technique for doing this has already been described in section D.1 and that
step 1 will increase L(i) because each of the terms in the product will either increase or stay
the same.

. N .
2)  find ®“ to maximize Hp[xg.'“)

=

st (I)(i+l)]

Step 2 can be done simply by re-estimating the means and variances using the estimated
smooth paths as the articulator data, as in:

sz"(ty
(i) _ VYutic, ()=
pOm =it

where K is the total number of times code k is used to quantize speech sounds. This is the
standard equation used to calculate means. The covariances can also be calculated using the
standard equation.

3) to prevent the degenerate solution in which all the means are identical, set
the variance of the means to 1.

E. Testing Materials

In order to determine how well MALCOM recovered articulator positions compared to CM,
we recorded speech produced by a Swedish speaker at the same time the speaker's tongue,
jaw, and lip positions were being measured. Although articulator measurements were
made, the articulator measurements were not used for determining the mapping from
acoustics to articulation. Both the CM and MALCOM techniques recover the mapping
between acoustics and articulation from acoustics signals alone. The articulator
measurements were only made to allow a comparison between recovered articulator
positions and actual articulator positions.

- E.1_Speech Samples

The speaker produced utterances containing two vowels spoken in a /g/ context with a
continuous transition between the vowels, as in /guog/. The vowels in the utterances are all
pairs of 9 Swedish vowels (/V/, /e/, /ce/, /al, lo/, fu/, and the front rounded vowels /y/, /',
and /P/), as well as the English vowel /E/, for a total of 90 utterances (Fant, 1973). The
data set includes 180 productions of /g/ and 18 productions of each vowel, since each
vowel was produced before and after each of the other 9 vowels.

E.2 Acoustic Data

The speech sounds produced by the speaker were digitized using the Haskins Laboratories
speech processing system (Whalen, Wiley, Rubin & Cooper, 1990). The speech was

13
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sampled at 20 kHz with 12 bits/sample accuracy, after filtering out frequencies above 10
kHz and pre-emphasizing.

The boundaries of each token were found by examining the sound pressure versus time
waveform. For the studies reported here, an effort was made to include as much of each
token's acoustic signal as possible, even the very low amplitude portions of the acoustic
signal corresponding to /g/ closure. The average token length is 833 ms.

E.3 Articulatory Data

Articulator positions were measured using a three-transmitter electromagnetic midsagittal
articulometer (EMMA) like that described by Perkell et al. (Perkell et al., 1992). The
EMMA system consists of three transmitter coils mounted on a plastic frame which is
placed on the subjects head, and receiver coils that can be glued to the articulators. Each of
the transmitters produces an alternating electromagnetic field but the frequency of
oscillation is different for each coil. The positions of the coils can be inferred from the
voltages induced in them by the transmitter coils, since the induced voltage varies with the
distance between the transmitters and the receivers. :

The voltage induced in a receiver coil is also function of the alignment of the receiver coil
with respect to the electromagnetic fields produced by the transmitters, such that rotating
the receiver coils can cause errors in the coil positions measurements. Because the tongue
tilts during some articulations (Stone & Lele, 1992) the positions of the receiver coils glued
to the tongue cannot be determined as accurately as those glued to the jaw and lips, which
are less likely to tilt. Perkell et al. (1992) estimate that the receiver coils positions can be
measured within about 0.5 mm for lip and jaw positions, and within about 1.0 mm for
tongue placements.

Articulator position measurements were made 625 times per second. To decrease
measurement noise, the measured articulatory trajectories were smoothed using a low-pass
filter to remove frequencies above 20 Hz. Notice that a 20 Hz cut-off frequency is 5 Hz
higher than needed to insure that the articulator motions are accurately measured, leaving
room for error, but is also low enough to eliminate most random noise.

Receiver coils were placed on the tongue tip (TT), tongue dorsum (TD), tongue body (TB),
tongue rear (TR), lower lip (LL), upper lip (UL), jaw (JA), upper incisors, and the bridge
of the nose. The approximate placements of the receiver coils are displayed in Figure 5.
The coils on the nose and upper incisors were used for correction of head movements.

Two receivers attached to a plate were used to record the occlusal plane by having the
subject bite down on the plate while recording. All data were subsequently corrected for
head movements, and then rotated and translated to bring the occlusal plane into
coincidence with the x axis. Fourteen parameters, the x and y positions of the receivers on
the tongue, jaw, and lips, were used to describe each articulator configuration.

Notice that articulator motions with energies below 15 Hz can be completely described by
specifying the articulator positions 30 times/second (Oppenheim, Willsky & Young, 1983).
Therefore, by multiplying the total duration of the data set by 30 we determine that the
receiver coil positions can be described by approximately 2,250 14-dimensional vectors,
where each vector gives the x and y positions of each of the seven coils.
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F. Continuity Mapping

Below, I describe the processing steps used to make a continuity map. The maps created
using this technique are used to initialize MAL.COM and to allow me to compare CM to
MALCOM. In particular, I describe how the speech signals collected for the test were
processed to facilitate good categorization of the speech windows. I also describe how the
speech windows were categorized and how to estimate the distances between any two
codes in an encoded speech signal. These techniques comprise the best know way to make
an continuity map.

F.1 Acoustic Processing

Vocal tract transfer functions were estimated 625 times per second (one transfer function
calculated at each time the articulator positions were measured) from 32 cepstrum
coefficients of the corresponding 25.6 ms, Hamming windowed portion of the speech
signal. Using cepstrum coefficients obtained by similar procedures to re-synthesize sounds
results in "very high quality, natural sounding speech” (Oppenheim, 1969; Quartieri, 1979)
-- suggesting that the cepstrum coefficients retain much of the information in the speech
signal. To reduce the computational load, only frequencies below 5 kHz were used for
further analysis. The result of the preprocessing was a sequence of smoothed spectral
slices of the acoustic speech signal, with each slice represented by a vector composed of
128 energy measurements. The spectral slices were then normalized by setting the total
energy of each slice to one. '

F.2 Vector quantization of the acoustic signals

The spectral slices (hereafter called acoustic vectors) were categorized using vector
quantization (VQ) (Linde, Buzo & Gray, 1980). The categorization is performed by
finding the shortest Euclidean distance between the acoustic vectors and each of a small set
of numbered reference vectors (a full set of numbered reference vectors is called a
codebook). If an acoustic vector is found to be closest to reference vector 13, for example,
it is said to belong to category 13. The number of the reference vector, “13” in this case, is
often called a code, so a vector belonging to sound category 13 is quantized by replacing it-
with code 13. Equivalently, we say that the vector is encoded by code 13. We also use the
word decode to mean that code 13 in an encoded speech sample is being replaced by
reference vector 13.

A variation of the frequency-sensitive competitive learning (FSCL) algorithm (Ahalt,
Krishnamurthy, Chen & Melton, 1990) was used to create VQ codebooks. In this
variation, the reference vectors were initialized with small random numbers. After
initialization, the reference vectors were moved to minimize the distortion, or error, that
would be caused by replacing each data vector with the most similar reference vector.

The reference vectors were moved to minimize distortion by iteratively repeating two steps.
In the first step, each data vector is categorized by finding the reference vector which

~ minimizes the value of }

2

distortion= N,y (d,-r,)
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where N, is the number of times the code has already been used to represent data vectors,

d; is the ith element of the data vector, and rgis the ith element of reference vector ¢. The
second step of the learning is to replace each reference vector, r,, by the mean of all the
data vectors (in the training set) that were encoded as c¢. For example, reference vector 1
would be replaced by the mean of all the data vectors that were quantized as code 1.

The N, factor provides a pressure for the codes to be used about equally often. This is
because if a code has not been used many times, the distortion for that code will tend to be
lower, making it more likely that the code will be used in the future. So, if during training,
two codes are equally distant from a data point, then the code which has been used less
often will be chosen to represent the data point. The N, factor is only used during training,
not when quantizing a new data set. As stated above, for quantizing a data set, the smallest
Euclidean distance measure is used to determine which code will replace a segment of
acoustics.

Based one a previous experiment, 256 codes were used to encode the speech data. Using
this number of codes, the centroids of the isocode regions are good estimates of the actual
articulator positions.

F.3 Estimating Distances Between Codes

The second step of the CM algorithm is to estimate the distances between pairs of codes
from the vector quantized speech signal. As described above, essentially we are trying to
estimate the number of isocode region boundaries that must be crossed when traveling
between codes i and j. The method of counting the distances between pairs of codes
described in this paper worked better than previously published methods for this data. To
see how these distance measurements are calculated, notice that the articulatory synthesizer
used to create Figure 2 could produce a signal which would be quantized as: 1,9, 9, 9,
17,22, 1, 9. From this sequence of codes I calculate the minimum number of times I see a
change from one code to a different code between each pair of codes. In the example
sequence, the minimum number of code transitions between code 1 and code 9is 1 -- the
only transition is the change from code 1 to code 9. Notice that, even though there are
three codes between code 1 and code 17, there are only two transitions between code 1 and
code 17 -- the transition from 1 to 9 and the transitions from 9 to 17. Notice also that the
minimum number of transitions between code 1 and code 22 is one -- the fact that code 22
appears before the last example of code 1 is irrelevant. In addition to finding the minimum
number of transitions between codes, we also calculate the number of times we observe
that minimum number of transitions. So in the code sequence given above, the minimum
number of transitions between code 1 and code 9 is one, and there are two times that we
see the minimum number of transitions between code on and code 9 -- once at the
beginning of the sequence and once at the end of the sequence.

Given code sequences corresponding to several utterances, we calculate the minimum
distances between each code pair for each utterance separately, then combine the estimates
using a weighted average. So if we found that, for an utterance, the minimum distance
between code 1 and code 9 was 1, and also found that there were two times within the
utterance when the minimum distance was observed between code 1 and code 9 (like in the
example above), then we would weight the minimum distance between codes 1 and 9 by 2.

F.4 Multidimensional Scaling

The last step in the continuity mapping algorithm is to estimate the relative positions of the
centroids of the isocode regions. I used nonmetric MDS on the distance estimates

17
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calculated in the last section to get a continuity map in which the N vector quantization
codes are placed in a low-dimensional space. The number of dimensions in the space can
be varied; we used spaces with between 1 and six dimensions, inclusive. The distances
between the VQ codes in this space are monotonically related to the number of isocode
region boundaries that must be crossed to travel between the corresponding isocode
regions.

E.5 Evaluating Continuity Mapping

The position of a code in a continuity map should provide information about the mean of
the articulator positions that produce the code. However, the continuity map may be
rotated, reflected, scaled, or topologically transformed in some other way compared to the
actual mean articulator positions. This makes comparisons between continuity maps and
mean articulator positions difficult (which is one reason for using MALCOM instead).

One way to determine whether the positions of codes in a continuity map supply
information about the mean articulator positions is to see whether equations can be
constructed relating code positions to mean positions. Because the continuity map is only
topographically related the mean positions, the equations relating continuity map positions
to mean articulator positions can theoretically be very complex; however, in order for the
mean articulator position estimates to be useful, we hope that the equations are simple. 1
will consider only linear functions of the form:

D

= zaidec +k  with g, =4, -4,
d=1
where:

Al is the mean position of the receiver coil i for sounds of type ¢ as estimated by
the linear equation,

A, is the actual mean position of the receiver coil i for sounds of type c,
D is the number of dimensions in the continuity map,
M, is the position of code ¢ on the d? dimension of the continuity map, and
€, is the error term. |
The other parameters, «;, and k;, are values that will minimize the sum of the squared
error terms. An equation of this form is particularly interesting because, in solving for the

unknown ¢, and k; values, we are finding axes in the continuity map that correspond

most closely to the articulator positions -- essentially compensating for the fact that the
continuity map can be rotated, scaled, of reflected with respect to the articulator positions.

Using standard multiple regression techniques (Neter, Wasserman & Kutner, 1985) we can
find the o, and k; values that minimize the sum of the squared error terms. Multiple
regression also gives a quantitative measure of the extent to which the equation is accurate,
namely, the multiple regression R value. The multiple regression R is the correlations

between A,.c and A, .




John Hogden 9/23/96

Figure 6 shows the multiple correlation r values obtained when trying to relate the positions
of codes in the continuity map to the mean articulator positions of three key articulators --
the tongue rear (x and y positions), the tongue tip (y position) and the upper lip (¥
position). From Figure 6 we see that a four dimensional continuity map is sufficient to
capture much of the information about the mean articulator positions, and that continuity
maps with more than four dimensions do no better than a four dimensional continuity map.

G. MALCOM Implementation

G.1 Implementation

The acoustic processing and frequency sensitive vector quantization techniques used to
implement continuity mapping were also used to implement MALCOM. In fact, the
positions of the codes in the continuity maps were used as the initial estimates of the mean
articulator positions for the MAL.COM,; the one dimensional continuity map was used to
initialize the 1-dimensional maximum hkehhood continuity map, the two-dimensional
continuity map was used to initialize the two-dimensional maximum likelihood continuity
map, etc.

Although the theory behind MALCOM allows articulator mean and covariance values to be
estimated, I have only tried to estimate the mean positions. The covariance matrices are set
to identity matrices.

Instead of using the simple gradient ascent algorithm described in section D.1 to calculate
the most likely smooth articulator paths, I used the conjugate gradient method (Press,
Flannery, Teukolsky & Vetterling, 1988) to perform the maximization. The conjugate

- gradient algorithm requires the user to supply a function that return the gradient of the
function to be maximized. However, in order to make sure that only smooth solutions
were considered, the function returning the gradient actually returned the low-pass filtered
gradient.

G.2 Evaluating Maximum Likelihood Continuity Mapping
The maps generated by MALCOM were evaluated using the same techniques used to

evaluate the continuity maps. Figure 7 show the multiple regression R values obtained for
the maximum likelihood continuity maps.

As with the continuity maps, there is little or nothing to be gained by using more than a
four dimensional solution for this data set. The main different between the maximum
likelihood continuity map and the continuity map is the accuracy of the mean position
estimates. Clearly, the MALLCOM is doing a much better job of recovering the means of
the articulator distributions.
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Estimated vs. Actual Articulator Means
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Est. vs. Act. Mean Articulator Positions
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H. Conclusion

An algorithm that recovers the positions of key articulator from speech acoustics has been
presented. The algorithm does not need articulator measurements at any time during
training and does not make strict assumptions about the propagation of sound through the
vocal tract. The major assumption underlying the technique are that speech sounds
produced sufficiently close together in time must have been created by similar articulator
configuratios because the articulators move continuously (where continuously is meant in
the mathematical sense: articulators do not move from one location to another without
occupying intermediate positions. A second assumption is that the distribution of
articulator psoitions that produce a given sound type is approximately Gaussian. This
technique has been shown to recover the mean articulator positions more accurately than the
only other technique with similar qualities -- continuity mapping. ' '
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