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. ' ,
. LECTURES ON REGGE POLES AND
* THEIR PHENOMENOLOGICAL APPLICATION
IN HIGH-ENERGY PHYSICS

by

R. C. Arnmold ' -

" PREFACE

These lectures will be divided into two parts. In Part One, we
will discuss bound states and scattering from a nonrelativistic, -potential-
theory viewpoint. .Regge poles will be introduced as generalizations of
bound states and scattering resonances. Regge trajectories are discussed
as aids in classifying spectra of complex two-body systems with many bound
or resonance states.- A classification -of presently known, strongly inter-
acting particles and resonances is exhibited to the extent that data on
the -spectrum are presently available.

In Part Two, crossing relations and the Sommerfeld-Watson transform
are employed to discuss the influence of Regge poles on low-momentum-
transfer, high-energy reactions in crossed .channels. Phenomenological
analyses of data from.selected two-body reactions are discussed, and suc-
cesgses and failures of simple Regge-pole models are explicated. Peripheral
models for inelastic reactions are treated as special cases. Finally, a
(presently) semiphenomenological optical-medel framework, including as a
special case the absorptive correction method, is briefly described as an
example .of a more general approach to high-energy reactions in which the:
Regge poles appear as an approximation valid in the empirically  successful-
cases described above.



PART ONE

BOUND STATES, RESONANCES, AND REGGE ROLES
IN NONRELATIVISTIC POTENTIAL THEORY

I. Simple Model Illustrating Regge Trajectories and Signatures

Consider a diatomic molecule, e.g., Ho, with two identical, spin-1/2
nuclei, bound such that a rigid rotator model is a good approximation.
Consider nuclei only, treating electrons as a self-consistent phenomeno-
logical potential. Assume no nuclear-spin dynamical coupling. (See
Landau and Lifshitz.l) There are two nuclear-spin wave functions, S =1
(symmetric) and S = 0 (antisymmetric). Because of the Pauli principle,
only odd & rotational states occur in the first case (2 =1, 3, 5, ...)
and even in the second (£ = 0, 2, 4, ...). The rotational spectrum of
this molecule then consists of two disjoint sequences of emergy levels
(para and orcho), ‘ ’ '

Eél) = By + Hwoﬂ(l + 1), 2~=1, 3, 5, ...;

and

Eéz) =E, + k(2 +1), 2=0, 2, 4, ... .

Note w% is inversely proportional to the moment of inertia, hence in-
versely proportional to (nuclear separation)z. If a small nuclear-spin
coupling is introduced, then the two sequences.will no longer linearly in-
terpo}ate each other, but will be displaced a small amount, e.g.,

Eg>Eq~.

We can plot Ep QsAlg this appears as shown in the'folldwing sketch,
for small &. The large £ part of the curve is the breakdown of rigid-
rotator model, Now observe:

a. There aré obvious, simple, analytic func-
tions E*(R) = Eé + 2(2 + DHwg, which
interpolate between the bound states at
integer 2. Such a function can be inverted

i to give 2(E), called a trajectory.

b. Other trajectories usually exist, with dif-
ferent radial (i.e., vibrational) quantum
number, which have different wg.

i
c. Trajectories will turn over eventually since rotation will pull
the molecule apart if rotation is too energetic.

II. Integral Equation for Scattering Amplitude and Analyticity in % with
General Potentials in NR Schrodinger Equatiomn

When bound states are ﬁresent, we can show that there are such inter-
polating trajectories, which represent bound states when £(E) passes upward



through an integer.- In general, there will be (+) and (-) trajectories due
to the existence of exchange forces, which provide different potentials in
even and odd & states.

Not only bound states, but also scattering resonances may be connected
by a trajectory. To show this, we must make a close connection between
scattering and bound-state solutions of the Schrddinger equation.(SE), and
exhibit smooth behavior.of .SE solutions as & varies.

We will replace SE by an integral equation for the scattering amplitude;
these .unified properties will -be easy to.see, and an approximate. solutlon
(for noninteger % as well as integer) can be exhibited.

Let us consider a two-particle system, bound (E<0) or scattering (E>0)
Put k% = E; then k is real for scatterlng, and imaginary for the bound state.
Angular and radial-wave functions-

Uy (e,

~18

wk(;) = Pl(cos-e)

2=0 r

. The Schrddinger

’ -
- are separated.whenever potential depends only on |r
equation

> > >
(V2 + k2) 9(r) = V(x) ¥(v)
then separates, giving radial.equétions for each 2.

For either scattering or bound-state boﬁndary‘conditions, these radial-
wave functions for angular momentum % satisfy

d2u_(k,r) : '
—’l—2+ |:k2 - M] 0,(k,1) = V(x) U, (k,1). (1)
dr

r
The boundary condition (BC) appropriate for scattering (k real) is

2.7
b () > e T T

T

where k is a vector along the incoming beam direction w1th magnitude k, and
f(8) is called the scattering amplitude.

" For bound states, the BC is (with k imaginary)

Nk = f d3;|wk(r)|é <o,

Note that thesé are mutally exclusive conditions.



The -BC's in terms of radial wave functions may be written .’

[ ool

~ for a bound state.of angular momentum £;and

U, (k,r) - o JLkr - om/2)
—_— -J (kr) 2, Ay (k) S

r r

for scatterlng in a state’ of angular momentum %£. The jg term represents the
plane-wave part .(see.below). A complete set of solutions of .the homogeneous
version (V =.0) of (1) are spherical Bessel function Jg(kr), yq(kr), which |
have - -asymptotic behavier as r.»> =, as follows: . T

kr jl(kr) + sin (kr = 2u/2)
‘and ‘

kr yg(kr) > cos (kr - 2n/2). . .
A plane wave, which satisfies the Scattering BC with v =0, hence f = O,his
represented as follows with j, functions only,, :

7) = KT o 2' e1™/2 34 (ix) 2, (cos o).

A purely outg01ng wave .solution . .can also be constructed of the form

i(kr - am/2)
kr -

hgl)(kr) : yl(kr) + 132(krj

Know1ng a complete set of :selutions for the homogeneous version of (1) en- -
ables -us .to construct Green's functions for (1) and to convert (1) to an.
integral equation. .(An alternative to our approach is presented in'Ref. 2.) .

For any BC, we first find a Gi(k;r,rf) such.that-

a2a (k;r,r') N I ' :
- +| k2 _ e+ L) Gz(k r,r ) G(r-- ). ' 2)
dr : r

.(

‘For scatterlng BC, we-then .construct G such that

i(kr - ln/z)

§ e
Gm(k;r,r') > Bz(k) -
) r—)oo’
- r' finite-



Given such a G, we now show that (1) with scattering BC can be replaced
by the -integral equation ;

Uz(g,r) = 3, (k,r) + f0°° dr' G, (ksr,r') V(r') U, (k,x'), : (3)

provided V drops off rapidly enough with increaéing r.

To show that a solution of (3) satisfies scattering BC, it is suff1c1ent
to examine the integral over G, which is

. U (k T)
lim
o ———;———— J (k) |.

This integral just depends. on the BC for G which was specified- correctly
above.

Explicitly, Qe now assert that G can be represented .as
G, (k;r,r') = kj, (kr ) 2 k). | o " | (4)
Q9 A < 9 > ) .
where
"v r_= min(r,r') and r>4= még(r,;').

The BC is obvious. The fact -that G éatisfies (2) is not so obvious; it
is however, easy to see that the left-hand side of (2) vanishes for r # r'.

The representation (4) may be replaced, by using a product formula for
Bessel functions, by the integral representation’

® dq . . ) L
G,(k;r,r') = [ i, (qr) j,(qr'). - . (5)
. 042 - 12 - ¢ % % ' )

Now the scattering amplitude f,(k) is defined by

ei(kr - n/2) o lim Uk(k,r)

r JAN >

- 3y (k)

o

- lim LT dr' 6, (k3r,r') V(r') U, (k,r')

1>

_ lim khél)(gr)'{r dr'jl(k?'? V(r') U, (K,r")

: ‘ ei(kr - am/2). .
v = - -fd dr!';l(kr') V(') U, (k,x').
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n, ’ .5
CE Q') = Vel k') + jo

-Thus,

£,0) = f:»dr 3o (k) V(@) Uglier). R (6) -

This requires the prior computation of Uy. Now we will obtain an integral
equation which yields fy dlrectly without first comput1ng Ug. Define
f (k k') by the formula .

£o(k,k') =-[7 dr gy (kr) V() U (k'50), - (7)

where Uy is the solution of (3). Note then that fz(k) =‘fg(k,k) is the phys-
ical scattering amplitude. We now derive an integral equation for .fy(k,k'),
which we will denote as the off-energy-shell scattering amplitude’

Subsfituting (3) into (7), and using (5), we have

. \ N o0 o . - d
Fo(k,k') = Vo(,k') + [% dr jo(kr) v(r) [Tar' [T — "% |
. | ‘0 0 0 g2 2 - 4¢

Jglar) jo(qr') V(') U (k',r'),
where

%l(k,k') = f” dr 3, (kr) V(r) jz(k'r). B o . .

Now the r integral can be carried out in terms of V by 1nvert1ng the
orders of integration; we have then '

dy

e
v, (k,q) dr' j ") V(x') U, (k',r").
raTE AL [ ar' 3g(ar") vr') U (k')

The r' integral now yields fl(q,k'), and we have, finally,
dq

N - ¥ 1 *© Ry 1y
£,k = V (k") + [ e V (k,@) £y (q,k). (8
q° - k'® - ie ~

Notes: 1. In this equation, k' is fixed and is treated as a parameter when
the equation is being. solved. When a solution is obtained, we set
k' = k to obtain the phy31cal partial-wave scattering amplltude

fz(k)

2. TFor bound states, k'2 < 0, so the ie is unimportant; there is no
singularity in the kernel then.

For a simple Yukawa potential V(r) = (ge®Hr)/r, we obtain

n ’ g k2 + g2 + 2 ’ .
2k? 2kq : .



¥

For a superposition of Yukawas, then,

V(r) =

we obtain

¥, 0 = L [T ax g QQ(

k2 +q +)\2)
2k2

- 2kq
+ Now Qg (Z) is an analytic function of £, for & #-1, -2, ..;,‘ﬁhich (see

Appendix A) can be represented as a hypergeometric function. Thus-(8) yields
(in general) solutions fz(k) for (almost all) complex £ values ,- which .coin-

- cide with physical -scattering amplltudes when £ = 0, 1, 2, ... .

III. Formal Solution of Integral Equatlon for Scatterlng Amplltude Bound
States; First- order -Determinantal Approx1mat10n .

In the previous sectlon we have gone as far as one can go with scatter-
ing states without obtaining explicit solutions for' (8). We will now exhibit
a methoed of solution, show that the bound states areée also obtained from the -
solutions of (8), and derlve a rough approximation for the bound-state loca—
tions. This will be used in a spirit similar to the Born approximation, which
is usually taken as a. rough guide to scattering. The.approx1matlon will re--
tain analyticity in £ and thus exhibit Regge trajectories for any potential

- -that can bq-represented as a superposition of Yukawas.

Take ¢ # O for the present. Consider approximating the integral in (8)
by a sum over N discrete q valués {qp}, with weights {w,} for integration°
Then, evaluating k also at these values, we -obtain.(for fixed k') ‘the approx1—
mate equations

. N
£, Gk = V(g k) + ) Jay — 2 el S FLCINY D B €O
m=1 9 - k'4 - ie

forn=1, 2, ..., N, Let: o

. n
. \ . ]
fg(kl,k') Vl(kl’k )
T _ ' . > ¥ '
fg’ = fl(kz’k ) ’ Vg = V,Q(kzyk o,
N o K ‘
.fz(kN,k) VQ(k'N-, )
and K, = -matrix whose (n,m) th éntry+is'the expression in braces { } in

Eq. (9) ‘Note . that Kl (as well as Vy) is analytic in &, in the sense that
all terms in X (and V) are.analytic functions of 2. Then (9) can be written

11
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> > > > >
fl = V2 + Klfz’ or I - Kl)fQ = VQ,. .(9a)
where (Dpn. = 8yn and the matrices I and K are N x N. If (I - Kg) is a non-.
singular matrix, we may invert it and obtain the following solution to (9):

= (T -k (10

fl L
We can then approximate the solution of.(8) arbitrarily well by taking
N->o0 , .

ince the inverse Ml of a matrix M depends 'analytically on .the élements
MlJ, fg will be -analytic in % except for isolated values of % such.that-
det (I’ - Ky) = 0. Let Dyg(k') =.det(I - Kyp). (Recall that k' is a parameter
in Ky.) 'Now we.prove the following: when Dy =-0, and k%2 < 0, a bound state .
exists for these values of 2 and k. -The term "bound state" will be applied .
at the moment for integer (physical) & values. » : :

.To prove thls assertlon, conegider the ‘matrix equation (9a) (for arbl—'
tarily large N). If D #.0, there is a unique solution to (9a); but if D = 0,
(9a) has a solution if-and only if the inhomogeneous term is zero. (This
is a well-known matrlx—theory theorem.) Thus, if D = O, ? satisfies the homo-
geneous equation

+(0) +(0) . - o
B0 = KE. - | - .. an

Passing back (N+é) to the continuous functions, we obtain the following
homogeneous equation analogous to (8):

0 m d ~
£ ke, = [0 —— ¥, 06,0 £ (q,1).
0 q2 - k|2 - ig
Retracing the steps leading to (8) and replacing f( ) by 1ts expression

in terms of wave functions, we find that the associated radlal—wave function
Uso)(k r) must satisfy the homogeneous equation corresponding to (3), or

(0)(k r) = {T dr' Gg(k;r,r') V(r')luéo)(k;r'). ‘ (12)

Now this-wave.function is normalizable; using the BC for Gy for rr=, we-
obtain.

i(kr - am/2)

(9) e
U, (k,1) > C (k) - .

This shows the integrability of IUI2 at the upper limit if. k2 .<-0. G, is
integrable at r.»~ 0. Thus when Dy(k) = 0, there exists U(o)(k r) such
that ‘

O
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[ ar [0 a0 | <
0 L

and hence  there is a bound state at this k value. ‘

This does not show what happens for k2 > 0; but since X is complex in
such a case it is at least plausible that det(I - K)# 0 if k2 > 0... However,
we can have.Re'Dy(k) = 0 for k%? > 0, and in this case we obtain in general a
scattering resonance at that k value in the gth partial-wave amplitude, as we
show later. I :

. a
Now we show how to develop Dy in a convergent power series in Vj; we
will then obtain a rough approx1mat10n for the solution of (8) by retaining .
only the first-order term in. Vg in Dy (analog of Born approximation).

For ehp11c1t1y solving (8), we need to give an exp11c1t formula for
(1 - Kz)‘ VQ, which can be interpreted. in terms of continuous functlons, as
N + o, For this purpose, we use the following expansion of the inverse of a
matrix in determinants of submatrices (Cramer's rule):

@y = (O deew I ygecy, 0 a3

where M(lj) is the (W - 1) x (N - 1) matrix obtained from M by deletlng
the ith row and the jth column.

We can characterize A(lJ)
of det M with respect to the (i;35)th element of M, as follows:

A(ij) = BM—B- (det M). ) o ' ._ (14)
ij : :

[This can be verified simply in the 2 .x 2 case,

o ‘a b\
M= ), det M = (ad - bc).

c d
The definition of M1J) yields explicitly
det [M(11)] = det My, = Mpy = d, (The aeterminant of alx L "matrix"
det[M(12)] = det My, = My, = c, o is thg value of a.)
det[M(21)] =y,
det[M(22)} 2 4, i

= det(M(lJ)) X (—l)l+J.as a partial derivative .

13
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On the other hand, the formula (14) yields
a0t =4, 202 = ¢, a1 = b, ana - a(22) - 4

in agreement with the:eiplicit results above.] -

For continuous functions, the- dlscrete formula (14) may be generalized
in a . functional derivative notation,

Ak,q) = EET%TES (dec ], ' "" ' (15)

where [det M] is the limit of det M as N.» «, expressed as a’ functlonal of
M(k,q) [for example, a power series 1nvolv1ng integrals over M(k,q)J (We
will not need to use. thls form.explicitly in what follows.)-

Then fz(k) ¢can be written as fQ(kgk), Whgre
] —_ 4 ' 1, 1 1
fl(k,k ) = Nz(k,k )/Dz(k )
or ) ' \
£, = N, (1)/D, ()5 | - (16)

where

0 Y , o . N
N (k') = [T dq a0k,q) Vi (a,k)5 Np () 2 N (k) = [T dq 8(k,0) V,(q,k).

(17)
Thus the solution to (8) may be written;down, provided we can express

Dy as-a functional of Kyg. The bound-state positions (i.e., spectrum), how-
ever, may be.obtained (from zeros of Dy) w1tHout employing any functional

. differentiation.

s
We will express the Nth—order'determinant D as a series in V, such that
the first few terms can be exp11c1tly evaluated -in-the limit N »> «, For this
purpose, the formula |

det M = exp{trace (log M)} ' | . (18)

is employed. The matrix (log.M) is defined by the power-series expansion

' of the function

log(l +.Z)'=Z—7+——-.. . ‘ - .

Thus, if Z is a matrix and I the identity matrix, we define

log(L + 2) = Z - ZZ/2 + Z2Z/3 = v.. .

<«



)

The trace of a matrix M is z Mi,.'
j

The formula (18) may:be'proved simply if we diagonalize M; in this
case, : _
-detM=H)\j
3

where {Xj} are the eigenvalues of M; and“on the other hand .

log X
'log M= -..
‘ ‘log AN
so
trace (log M) = Z log Aj’
3
whence

exp[trace (log M)] =T] Aj = det M,
. j :

as required.

Returning to the case M = I - K, we obtain-

:DZ = exp{trace[log (I - K)]}
2 3 :
= exp(— trace K + trac; LS tracg K + ...> . . ’ ‘

Expanding the exponential in power series (in the strength of the poten-
tial), we obtain then

Dz =1 - trace K + %a[(trace K)2 - trace K2] - ... .- ‘. (19)

' N
If we keep only the lowest order in V, this becomes

D2 = 1 - trace K
N V(q,,q.)
=1 - 2 w J_J .
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Returning now to continuous functions (N > =), apdtsetﬁing k' = k,. we
obtain L
N o dq v ' . ) S
D (k) =1~ - Vv (qsq) . . LT L (20

This is ‘called the FIRST-ORDER DETERMINANTAL APPROXIMATION (for D),
" abbreviated FODA.

If we put k2 = -E < 0, then the'bound—state'energies.E_are such that
(in the FODA) :

V(0 = 1. o o

If we define E(L) such that this equation is satlsfled whenever
' EA= E(L), then this detines a Kegge trajectory (in FODA) .

Remarks

1. The solution of (8) obtained by the formula (16) together with the
series (19), .is known as the Fredholm solution for (8); the use of
D as glven by (19) is known in potent1a1 theory as the determinantal
method.3>" This was developed by Brown et gl for complex %.

2. For Yukawa potentials, (20) cannot be evaluated in terms of simpie
tabulated functions.. lHowever, some peneral properties of bound
states can be immediately deduced from (20), as we will'see’later.,

3. The coulomb scattering amplltude can be obtalned by -considering the
limit u - 0. However, this is a delicate limit, and although the
coupling strength may be small, the series (19) does not converge
rapidly for small binding energy; thus the FODA can, at best, yield

- a crude result for the most deeply bound states.

The corresponding approximatioh for fg now is obtained by using

\J

(ij) :‘ 1 ‘—_
877 = 8y k) =

3 .
K. det(I = K)
1]

and passing to the continuous limit, where det(I - K) = D is evaluated in
FODA; we have then

= det (I - K) & 1‘— trace . X = 1 - z K |,
mm

so that_

(i3) _ __3 _ _Jlifi=30_ .
AT = aiﬁ;(% ) Km%) Yo if 143" %i5°



yielding, from (17),
N.. - Nz(ki’kj)

"
' = . L
Sij z Glm l j) ' V,Q,'(ki’kj)’

m.
or, passing to the continuous limit,

1 2 v 1 ' .
N, (k') = Vo (k') . ) | | @y

Thus the FODA result for fl(k), using (20) -and (21), can bé'Written'

where By (k) = Vz(k k) is the Born approximation. Recall that this function
is analytic in & and provides an interpolation between bound states (k2 < 0)
and scattering amplitudes (k24> 0)-.

Further manipulations with the expressions (14) and (15) yleld the re- -

sult that the exact £, can be written in similar form,

N, (k) -
£, (k) =T);(T)’ (23a)
with D given by
. fm dq NQ(Q) . : o
De(k) =1 -] —5———, (23b).
. T g2 - k2 - e

where Nl(k) is a real function for k2 > 0, analytic in %.

Accepting this, or relying on (22) as a gulde we can now show that a
zero of Re Dy(k) for k2 > 0 and integer 2 corresponds to a scattering reso-
nance in the &th partial wave.

The phase-shift representation of fg is

eiéz(k) sin Gl(k)

£ - — _ (218,00

- - 1)/2ik. ‘ (24)

Thus Gz(k) is the phase of f . When §g = ﬂ/2 we obtain a resonance; this

means Re f, = 0. But Re fy = 0 means Re f=1 = 0; and since Ny is real, for
k? > 0, we find the condition for a resonance is

Re D,y (k) = 0, k% >.0. - S (25)

17
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For Regge-pole discussion for small |B2|, see . Appendix 'B.

IV. Regge Poles and Trajectories; Signature

Now we.can ‘exhibit the poles of fk(k), in the complex A variable. These
are called Regge poles; their location varies with k (or E), and their path in
the complex A plane is called a Regge trajectory,

Assuming for the moment that some bound states occur, consider the most
tightly bound one, with energy E, and angular momentum £; (e.g., %2;.= 0 if
the lowest bound state.is S wave). .

Then, since D) is simultaneously analytlc in A ‘and E, an analytic func- !
tion A; (E) exists such that

(1) Dy, (E) =0

2y A(Ey)

.

This A, defines a Regge trajectory, say (1), whlch may y1eld other bound
states,

To find other trajectories, see if there is more than one angular mo-
mentum state, bound or resonant, at a given energy. If so, then there must
be ‘other interesting traJectorles, which pass through the other bound state.
(See also Ahmadzadeh, et .al. 6) 1In the Coulomb case, there are indefinitely
many £ values bound at Tsmall b1nd1ng energy (close to the contlnuum), hence
there are 1nt1n1tely many trajectories that produce physical bound states. 7

A single Regge pole in f,, say A1 (E), can be represented in .the .complex
A plane by

A B(®) , |

[£,(E)]; = ROk . (26)
'where,Bl is the residue.of f; at A > A;. We can express B in .terms of N,
and Dy

B1(E) = N, (E)<k>/[“ A(k)]|A R (27)

= A1 (E)
whefe k2 = E. A

" For later reference we note that [ at least if A;(E) > 0] if BDA/BA is

nonsingular (at A = ) as k2 - 0%, then the -threshold (k2 - 0%) behavior of

B(E) will be the same as the threshold behavior of NAKO)(k)’ and in FODA,

’ A
2
N. (k) = B, (k) = _§_.Q 1 + u2/2k2) > EE_ as k2 » ot
A A 2k2 A U2 .

for a simple Yukawa.potential V(r) = ge-ur/r.
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Putting R = y~*, we obtain

N)\’(k) ————= ~ (kR) 22,
(k2 > 0h

Thus the residues B, have-the behavior

" 2x (0)
Bn(E) ——=8,(0) - (kR) no,

(E~>0")
N
where B,(0) is finite.

By similar reasoning, we can show that “the slope of A(E) is related to
R™2 (but weighted in a more complicated way), as would be expected by simple
rigid-rotator models, where the moment of inertia is proportional to R2. An
alternative derivation of these facts is one of the concerns in the appendix
of Ref. 8. These facts are relevant to a qualitative understanding of. the
the order of magnitudes involved.

If we take all A, linear in E (or E2 in the relativistic case), we ‘can
attempt to put resonances and bound states empirically on trajectories.

The potentials 31 will be, in general, different functions in even and
odd % states, due to exchange contributions (see Section I above). As a
consequence, there will be two sets of trajectories; one set will contribute
to bound states and resonances with £ an even integer, the other to bound
states and resonances with £ an odd integer. We can express this formally by
the word sighature; we say Ap(E) represents an even signature trajectory if,

when A, (E) = even integer, B,(E) # 0, but when XAy (E) = odd integer, B,(E) = O.

Conversely, we say A represents an odd signature trajectory if Bn(E) =
0 (Comment: the definitions of Bp will be different later when signature is
exhibited in terms of even.and odd Regge representations.) when A, (E) =-even
integer.

Here we assumed there were sufficiently many bound states so we can un-
ambiguously classify their trajectories. If there are only one or two bound
states, it is necessary to give a more formal definition. However, we éaq
always think of increasing the potential strength g to get sufficiently many"
bound states, then classifying trajectories, and then continuing back to its
physical .value, thereby retaining the trajectory labelling.

V. Regge Poles in Relativistic Theories; Qualitative Remarks

The general properties (i.e., poles, analytic in &) of the scatltering
amplitude fg(E) we have found are retained if a relativistig'(e,g., Bethe-
Salpeter) equatidn is used to obtain bound states, provided the relativistic
potentials are analytic functions of £, and the relativistic kinematics are
used. This is adequate to show that Regge poles are intrinsically connected
~with the idea of a bound state (at least of two particles), if produced by
a potential with sufficient analytic properties in % of its spherical Bessel

19
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transform, not a nonrelativistic phenomenon. Analyticity in & of the po-
tential y, is connected with the limiting form of V at small distances (pro-

- vided we exclude Coulomb potentials, i.e., bad long-range behavior). 1In

particular, scalar meson exchange, being the relativistic form of a Yukawa
interaction, ‘has the same smooth behavior as in the nonrelat1v1st1c case
with a 31mple Yukawa potential.

The FODA can be extended to relativistic problems, and the formula (22)

‘remains valid when By(q) is the relativistic Born approximation for

eldl sin 62
£ (k) = ——,

With mass u scalar meson exchange, with (Lagrangian field theory) couplihg
censtant g,

lZH . L . Q1 + p2/2x2y, - (28)

2k? s
1/2

B (k) =

where W = (k? + M?) ,» M being the mass of the particles undergoing scatter-
ing or binding. The complete story on the Bethe-Salpeter equatlon w1th scalar
meson-exchange kernel is contained in; Ref. 9.

We will henceforth assume qualitative properties for relativistic bound-
state problems that are contained in (22) with (28) (or a superposition with
different u's) for the Born approximation, except when otherwise noted.

Remarks

1. In a more realistic field-theory model, the potential terms (''Born -
approx.') will be complex above the threshold for three-body, in-
elastic (production)- processes. 'Associated with these thresholds,
Ng¢ will have an imaginary part also, so the phase of Dy w1ll not
coincide with the scattering phase shift.

2. Qur ohservations on relativistic theories apply specifically to
properties of bound states and resonances and their associated tra-
jectories, but not necessarily to the complete scatterlng amplltude
in a field-theory model. -

VI, Muitiéhaﬁnel Scattering and Factorization of Residues

In practlce, problems in- hlgh—energy phys1cs almost never: are concerned
simply with 51ngle channel reactioens. Even in two—body decay processes,
more ‘than one channel is available for the heavier resonances.; More gener-—
.ally, a bound state or réesonanceé must ‘be con81dered as’ 4. comp051te of (at
least) all the two-body states . that ‘can ex1st with the’ quantum numbers of the
given state. - Thus the p mesonlc state appears experlmentally only through

" dits 2T decay mode, yet it can' in principle be considered as a bound- state of

KK and/or which decays by coupling to the wmw channel. We will see in
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Part Two that such multichannel considerations -for a given bound state or
resonance are important for obtaining a predictive element in the Regge-pole
concept., ' ‘ ' o

Multichannel scatterlng theory (when only two—body, ‘nonrelativistic chan-
nels ‘are involved) can be formulated by using a matrix (in channel 1nd1ces)
generalization of the formalism presented in Sections.II and III above. We
now sketch this generalization and discuss implications of the final results°

Consider N coupled two'body channels. - We ‘can describe the scattering and
transition amplitudes by N cogpled Schrodlnger equations for the N two-body,
scattering-wave functions wJ(r), j= l$ 2, ..., N; using the appropriate BC's,
we can define a scattering matrix FIJ(kl,kJ), which is. a generalization of the
scattering amplitude f(8), and partial-wave scattering matrices (fg)ij, which
are generalizatiens of the partial-wave scattering amplitudes fy. The calcu-
latlon of these amplitudes requires the specification of a generallzed po-
tential matrix V1J(r) whose off-diagonal elements describe transitions between
channels. The Schrddinger equation then is written

d2 , L(L + 1) _ ' ;

We can construct a matrix Green's function Gy for this system of equationms,

and obtain after some manipulation an integral equatien analogous to (8) in-

volving matrices in channel indices; if, for simplicity, we take all channels
to have equal masses, we -obtain

dq
2_k'2__

Folk,k) = Vylekty + [7 - - V(@) Fpla,k") (30)

" .
where Vg is the spherical Bessel transform of the potential matrix V(r). Now
a determinantal method (Fredholm solution) is applicable to (30), and by
analogy with the one-channel case, we can obtain

Fa (k). = N (k) [Dg ()11, (31)
where Ny and Dy have convergent expansions in powers of V.

The poles of fy represent bound states and are obtained by solving the.
equation

det Dy(k) = 0. (32)
(Here -recall that the matrix indices refer to discrete channels.)
The FODA for (31) can be written -

’ . w d -
By Vp(); D) T - [ prae o T, (@. S (33)

1le.
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Assumlng V(r) is short range and not too singular -at the origin, we can
conclude that %2 is analytlc in %, and hence that fy is analytic except for
poles where det Dy(k) = O for some complex A which depends on k. We can ex-
tend the Regge-pole concept then to the multichannel -case without difficulty.

- A-pole [say A, (E)] in the complex A. plane will give a contrlbutlon to f(k) of\

‘the form
| 855 tE)
(£ (B 145 =-7—:—7;Z§3- (34)

(This form is. 1ndependent of ‘kinematics, e.g., whether masses are edqual or
not.).

Now we obtain a new result, known as factorization of'residues, which -
states that for a.given pole (at given E) the channel index’ dependence of Bjj-
can be factorized as follows:

B

1

__=_J | | L
8 8 , . (35)

provided another traJectory does not 1ntercept the glven one at the glven
energy.

The essential observation is the existence of 'a: 51m21e (i. e., llnear)
zero of det D, 1mp11ed by the assumption that only one eigenvalue of

(D)\N>\)—1 = f)\_l

passes through zero at A =:1;. [Nele that detN;\'1 must be well behaved, or
else we would obtain a second-order .pole at A; and

det (DyN,~1) = (det Dy) x (det N,~1)].
ANA A A

If we represént f) .in terms of its elgenvalues On and elgenvectors g(n)
we ‘can write

- (n)* _(n),

The corresponding representation of fxfwill’be

1 (n)* (n)
Egi :‘;j-.

e~

(f)\)ij =

n=1

Now at A > A;, we have seen that .exactly one o, say o], vanishes with a -

.simple zero; thus we: can write, near A,
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a; = ¢(A - A;), other a's nonzero. :

This shows that as A -~ A;, we obtain

-1, (1)* (1)
€177 &5 :
(f>\)ij = Y + terms nonsingular in X at Aj.
%
Identlfying ¢! g(l) § ), with Bi;), we see that we can write
M _ () () |

which proves our assertion.
This kind of factorization is intuitively expected in nuclear-reaction

resonance interpretation, where the resonance has probability amplltude Y4
of formation, ‘and yJ for decay.

VII. ~Known Resonances and Possible Regge Trajectory Classification

To estimate the location of recurrences, it will be assumed that (a) the
A's are linear in S (this is indicated by relativistic models), and (b) the
slope X is of order 1 (Bev)' . The latter is a reasonable value if the
characteristic bound-state radius is of order (2un)’1.

A. Meson States

The lightest states (7,K) are 07; these would require even-signature
trajectories (with negative intrinsic parity). The first recurrences would
be expected to be 27, No such mesons have been established to date;. one
would expect them around 1.5 BeV.

The next lightest states are 17 (p,w) and would suggest odd-signature
trajectories (with positive intrinsic parity). Their recurrences would be 37
mesons around 2 BeV, none of which have been seen to date.

There are some establlshed 2% meson (resonanL) states between 1.2 and
1.5 BeV (£f°, A2, Klqoo, °“) which will require even-signature trajectories
with even intr1n51c parity. They could presumably recur as 4t meson states
near 3.5 BeV. It is also true that if the trajectories are extrapolated down-
ward, one might expect Ot mesons at negative S (imaginary mass).. Such stable
states would, however, violate general requirements of quantum mechanics
(e.g., unitarity) and must not exist. . Thus either (a) trajectories bend up
and never cross integers for 5 < U, or (b) the residues vanish at crossing
points. (In model calculatlons, both phenomena have been observed.)

It is cnnceivable (and actual in some models) that exchange forces are
not very important in the mesonic bound states; in such a case, trajectories
of even and odd signature would be degenerate. This would allow us to place
17 and 2%t states on the same (degenerate pair) trajectory. Empirically, such
a hypothesis is consistent with the slope estimated above and the mass
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differences between the 1- octet (or nonet) and the 2% octet (or nonet). A
more detailed discussion is presented in Ref. 10.

The 1~ and 2% trajectories' interéepts at S = 0 have physical signif-
icance in terms of high-energy forward scattering in the crossed channel, as

we will see in Part Two of these lectures.

B. Béryon States

(Here the trajectories refer to orbital angular momentum; there are
distinct trajectories for even and odd parity states, as well as two sig-
natures.)

We consider first the nonstrange, Y = +1 states.

The lowest mass state here is the nucleon, 1/2F, “Ihrough this J
value, we pass a trajectory of odd signature, positive intrinsic parity.
(Thia can be based on the model of a nucleon as a composite of itself and a
T meson.) This trajectory, with a slope of unity (1 BeV'2), would give a
5/2%, T = 1/2 resonance about 1.9 BeV. There is such a 7N scattering reso-
nance, at 900 MeV pion lab energy, which may lie on this trajectory. In fact,
there is some evidence for a third recurrence,.9/2+ at 2645 MeV.

. Two more pairs of TN resonances are candidates for common trajec-—
tories; [3/2%(1236), 7/21(1924)] (T = 3/2) with an odd-signature, positive-
intrinsic-parity trajectory, and [3/2=(1518), 7/27(2190)] (T = 1/2) with an
odd-signature, negative-intrinsic-parity trajectory. . All three of these tra-
jectories are compatible with an average slope of unity. There are no other
candidates for recurrences at present. (See Fig. 1.)

“te1 (%p RESONANGES) | =y eme—m—

1= 3/2 ———— -
*(+) PARITY
o{-) PARITY -

INDICATES ONLY A LITTLE EVIDENCE.
(1,77)DATA FROM RMP, OCT. 1965 0

EXCEPT: % FROM PHASE SHIFT ANALYSES OF BAREYRE et.al.
J t FROM OTHER SOURCES

By (ARGONNE, MICHIGAN, U.of CHICAGU EXPTS.; .
AND Tip-+=KA ANALISIS) (H,,2) (1,2

Fig. 1

Nonstrange Baryon Reso-
nances and Possible
Trajectories

10 2.0 30 4.0 50 60 70 8.0 90
M2 (Bev?)

These trajectories have additional physical implications for back-

. ward TN scattering, as we shall see in Part Two.

Next we consider the Y = g states: A, E; Yﬁs, and Y?s. There are
two candidates*for recurrences: Y(1815), if-5/27, can belong to the Ay tra-
jectory; and Y7(2065), if 7/2+, can belong to the Y¥(1385)[3/2+] trajectory.
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Finally, turning to the Y = -1 states (Z and £*), we find one p0531b111ty
if £%(1933) is T = 1/2 and 5/2%, it can be a recurrence of E.

VIII. Concluding Remarks, Part One

No rigorous check on the Regge-pole ideas can be obtained by looking for
recurrences, as long as no detailed theoretical models are employed to calcu-
late trajectories. The recurrence idea must be regarded only as a rough guide
to the possibilities of higher resonant states on the basis of empirical
knowledge of low-lying states, and a conceptual framework for systematizing
our knowledge of existing states.

We will show in Part Two, however, that in a sense, there is some possi-
bility of checking the Regge-pole 1deas if we confine our attention to the
poles in the upper % plane near zero total energy (S = 0). At the same time,
if valid, there are predictive powers inherent in the Regge-pole concepts.
Many of these predictions stem from the factorization property of residues.
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PART TWO ,
APPLICATIONS OF REGGE POLES IN THE '
ANALYSIS OF HIGH-ENERGY REACTIONS

I. - Relativistic Description of Scattering and Reaction Processes and
Crossing Relations

A. Kinematics

Consider the elastic scattering of two spinless partiéles, called
here 7 and N, with masses u and M. Let (k;,P;) be the four-vector momenta
of the incoming (u,M) particles, respectively, and (k,,P,) their outgoing
momenta. We define two relativistic invariants, - '

n
1l

2
= (kl + Pl)
and

(Pl - Pz)z = (kl ~,k2)2.

t

We assume P% = P% = M2, k% = kg = uz, and P; + k; = P, + ko; units are chosen
so that ¢ =-1. It can be shown (cf. Chapter 5 of Omnés and Froissart!) that
all components of the momenta k,, P;, kp, and P, are determined in any given
reference frame if u, M, s, and t are specified; i.e., the scattering event
is uniquely specified by s and t in an invariant way.

- .
In the center of mass (c.m.) frame, where P; lies along the Z axis, we
evaluate s and t in terms of energy and scattering angle as follows:.

s = (kjg + P1g)? = (E_+ E)? = w2

where W is the total c.m. energy;

t
1

2 > > - >
(kig - ka0)® + 2ky - kp - 2k - 2k3

or

I

t = -2k2(1 - cos 08),

where 6 is the c.m. scattering angle, and k is the c.m. spatial momentum of
the nucleon, related to W by

2
W=E +E = (k2 + pz)l/z + (k2 + Mz)l/ .

For the equal-mass case (u =-M), relevant to pp scattering, for example, we
obtain the simpler relation

s = 4(M2 + k2).
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Note that for fixed s, the physical scatterlng reglon -1 =<cos 6=+ 1 cor-
responds to the t interval .

-4k? < t < 0.

Further discussions of kinematics are contained in Ref. 2.

B. Crossing, and Definition of Invariant Amplitudes

We can draw & diagrém for the scattering process ag‘folipws:
K, ; Kk,
8
E/’ P2

Here arrows indicate the movement uf Lhargc or baryon mmber and 1nd1cate
the sense in which the spatial momenta kl, Pl are defined.

If we consider any field-theoretic perturbatioh—theory diagram con-
tributing to the scattering, as indicated schematlcally here (the braces in-
dicate the incoming pair of particles),

.

(n) p| pa (N)

it is apparent that the'samé4diagfam also occurs in two other reactions,
whose diagrams may be obtained from this one by interchanging certain ex-
ternal lines, or by considering the diagram from a different direction. Let
us call the u-M elastic scattering reaction I. Then it is related to the
process NN -+ m7, which we call reaction II, as follows: ’

K (1—"|) . kg(ﬂ'zl)

(Nli pz(ia)
. \ - J o
t '

The incoming particle No. 2 now is an antiparticle N with momentum (- P2) but
positive energy [+ (P2 + M2)1/2] In the Feynman point o. view, we have



changed the direction of time for this particle. (Alternatively, we see

that the arrows do.not change their orientation with respect to the internal
"diagrams; hence, they indicate opposite sign for baryon.number flow and
spatial momentum.) The outgoing particle No. 1 also must have reversed quan-
tum numbers and momentum-—ﬁl. : : ‘

We obtain a third reaction from I by considering ks to be an in-
coming line and k; an outgoing line. Then both the mesons' quantum numbers
and momenta are reversed, leaving the nucleon states as before. We may call
this crossed reaction III. We denote the associated c.m. energy variable
as u, defined by u = (P} - ky)2. The diagram may be drawn as follows:

ky (7) | - ky(7)

u
P, (N) P, (N)

If p =M (e.g., as in pp scattering), u = -2k (1 + cos 8) in terms
of channel I quantities. -

If reaction I was ﬂ+p elastic scatteriné,'then reaction III will be
T"p scattering, while reaction II will be pp > w'n~, with (c.m. energy)? = t.

Suppose we describe the scattering process I with a function
A(I)(s,t) proportional to the scattering amplitude when s and t are in the

physical regions for reaction I. If we consider A as given by the sum of all

Feynman diagrams, we can show that a corresponding reaction amplitude
A(II)(t,s) for reaction II must be the same function of s and t since both
amplitude are obtained by summing the same set of diagrams. The relation of
these invariant amplitudes A to the nonrelativistically defined scattering
amplitude f) (8) may be deduced by examining the terms of the covariant per-
turbation expansion, and requiring simple relations under interchange of s
and t. The proper choice is (for spinless particles)

AP0 = s1/25(0), 2+ )2+ 2+ u2)1/7)2 -,

<$J_>(I) . |A(I)]2.
dQ

in the physical region for reaction I, while in the physical region for
reaction II, : '

<§2>(ID - AP

dq

Then

29
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(1) (II)

and A

The crossing relation connecting A then is

AP0 = a0 (e, 9, (37)

where the convention is followed of writing first the variable (t. or s) that
represents the square of the c.m. energy for the physical reaction process
identified by the superscript on A.

A concrete example of crossing relations is a one (scalar)-particle
exchange diagram

which contributes

g.8
(A (5,015 = 25

M -t

For reaction II we obtain the same, i.e.,

do (II)= li §182 |2
g t'M2 - ¢

OME

where t = -2k2(1 - cos 6) for reaction I, but for reaction II, t is the square
of the c.m. energy and is greater than 4M2.

In general, crossing is severely complicated by the presence of

spin; less severe are treatments of isospin and other nonspatlal quantum
numbers.

Observe that the crossing relations between reactions I and II
never connect physical regions of reaction I directly to physical regions of

reaction II, 'since these do not overlap. They are summarized by the follow-
ing table:

Reaction Reaction
I 11

i =t=0 Lot o> 4M?

s> M+ p)? (s < 0)

(The precise limits on s in reaction II are not given since they are some-
what complicated.)



Thus, to predict one reaction in terms of another, we need to in-
troduce theoretical knowledge concerning A to allow extrapolation. The most
naive methods usually fail, as we now illustrate (to motlvate the subsequent
introduction of- Sommerfeld—Watson transform).

C. Example
Suppose we analyze reaction I in partial waves and write

A(I)(S,t) = z (22 + 1) Aéi)(s) Pz(coé ), : (38) .
=0 : o , .
cos 8 =1 + t/2k§;

where <

K2 = [s - (M + u)Z][S - M- w?]
2 .
. 4s )

(A similar decomposition can be written for A(ID terms of channel II vari-
ables.) In terms of phase shifts,

AEI)(S) = o~ 1(s) eiég(s) sin 8y(s),

where

p(s) = 2ks/sl/2. .
This series represents the physical scattering amplitude well for strong in-
teraction problems (short-range potentials), and terms are experimentally un-
detectable for, say, £ > 10 k/pg;, where uy is the pion mass. As a function of
(complex) Zg = cos B, this series converges in an ellipse with focii #1 and a
major axis determlned by the range of the potential effective in channel I
scatterin for a practical expectation of range (2u,) "~ 1, the ellipse reaches
to about T slml + 2p 2/k2 We can fit some rational function in s to each
Ag(s) and satisfactorily interpolate to s < 0. However, if we attempt to

use the series for large ]Zs|, the series diverges. This is the case for high
c.m. energy in reaction II; e.g., for fixed channel II reaction angle, |ZS|
grows linearly with t, the square of the channel II reaction energy.

If only channel I s-wave scattering were important, this might not
be serious; but these are not the interesting cases, and in general we find.
untenable results.

The interesting cases, in general, are those in which a resonance or
bound state appears in the crossed channel. In such a case, we might expect
only one partlal—wave amplitude in that channel to dominate the reactions, if
we use the series representation (38).

For example, consider the f9(1250) TT resonance, presumably 2+, This
will appear, in any channel that has the same quantum numbers, as a Breit-
Wigner form for the D-wave (& = 2), partial-wave amplitude involved. Thus,
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in NN > TT we expect-a contribution (1gnor1ng nucleon spln),_by analogy
with (38),

, _ - Ko
_[A(H)(t',S)]fo =1 @+ 1)[As(LII)(‘t)]f° Pyleos Bp) = 5 -
) fo -t T,

ot
+ Py(cos et),

where a ktJ factor has been used in .the resonance.formula to insure correct
threshold behavior of ALl at the: threshold t > 4M%2, Trop .is the full width

of £0 FNN is a coupling factor to NN, and 8¢ is the c.m. reaction angle in-
volved in channel II. If we consider now the physical region of reaction I,
t < 0, and we can ignore the imaginary part of A relative to thé real part;

thus, we have- .

o P,(cos 6 )
[A(I)(S,t)]fo ='[A(II)(C,$)]f‘0 X SFNﬁ . M20 - tt . k;- -
f

Now for high-energy scattering in channel I, s + =, we find

P;(cos 8,) > (cos 8.)7 > (—S—)

2
Zkt
so we can write (with J = 2)
M (5,001 . Y8507 .
(s—»oo) M%o -t

where y and sy are some real constants.
This would predict that at-high energies, in 7{; elastic scattering,

(I)|

a. |A n o) (s/so)z, hence %2 v o (s/sg) for fixed -t.
‘ : t

<

2

b. Behavior in t ‘like. SE N ——;l;—— .
M%O -t

A(D

C. becomes ‘real,
All three of these are definitely in. contradlctlon with experlmental high-
energy 7Tp scattering; we find instead

- A. dog/dt ~ constant for flxed (small) -t.
B. Exponentlal forward peak with width of order 4u .
c. A(I) is mostly imaginary. '



This extrapolation, however, has used only one ‘term of the series.
such as (38), and as we have seen that the series diverges in the channel I
physical region, our results do not contradict the physical hypothesis that
the existence of £f0 in channel II leads to interesting consequences for
channel I. We have to use for A(II) 5 different representation, which con-
verges properly. Such a representation can be obtained by converting the
series (38) into a contour integral in the complex % plane, the Regge
representation.

II. Regge Representation for Invariant Amplitudes

If there exists any function A)(s) analytic in the complex A plaﬁe in a
neighborhood of the positive real axis and sufficiently well behaved as
|A| + «, we can define the integral :

Ax(s)(ZA + 1) PA(-Z)

1 . .
I(s,2) = 2ni é: sin TA dA’_ , : (39)

where the contour C encloses the positive real axis in the A plane but no
other poles of the integrand.

The legendre function P)(-z) for complex A can be represented as a
hypergeometric function,

P)(-z) = F(A +1, - x5 1; l—; z). o (40)

[For |x|< 1 the hypergeometric function can be represented as a power series

°z° I'(c) T(atn) I:(b+n) n

F(a,bjc;x) = T'(a) I(b) I'(ctn) T(I+n) ~ °

n=0

and for |x| > 1 there exist integral representations enabling its compu-
tation for general x.]

The integrand of (39) has poles at A = 0, 1, 2, ..., and we can evaluate
I(s,z) by evaluating the residues at these poles. The result . is :

I(s,z) = 2'(22 + 1) Ay(s) Pk(z),
=0 :

where the relation Py(z) = (-1)*% Py (-z) has been employed.

' Now if Ag(s) for £ =0, 1, 2, ..., are the physically invariant partial-
wave amplitudes for scattering, if z is identified as the cosine of the
scattering angle, zg, we can identify I with the invariant amplitude,

‘A(s,t) = z (22 + 1) Ag(s) Py(zg).. o .. (41)
2=0 : ' ~ ‘
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Thus if there exists a function Aj(s), analytic in the A plane in .a neigh- -
borhood of the positive real A axis, which coincides with the physical
scattering amplitude for A = zero or positive integer, and dropping off .fast
enough as IA|~+ @ so that the integrals under consideration converge, we

can write the following integral representation for -A(s,t):

(2x + 1) P, (-2) ax

A(s,t) = 5%1 ¢ Ay(s). o ' . (42)

c sin mA
The passage from (41) to (42) is called the Sommerfeld-Watson (SW) trans-
form. Now consider the singularities of Aj(s) .in the complex A plane, to
the right of the line Re A = -1/2, If there are only poles, we can distort
the contour C to run along a vertical line, say Re A = -1/2, and pick up-
the residues of the poles o, in the right-hand A plane over which.the con-
tour had to, be distorted. The result is

+io-1/2 (2x + 1) P,(-2)

-1
Als,t) an Lim_l/z da sin mA ax(s)
(20 + 1) Py_(-2) .
+ 22 P - Bp- ' (43)
(OLn) n

The a, (pole locations) and B, (pole residues) depend on s, since the
singularities in A of Aj(s) will (in general) depend on s. We call this
representation (43) the Regge representation.

In the crossed channel, |z| will be large, but this does not dcotroy
the convergence of (43), and we can employ (43), as a tuvul to exploit cross=-
ing relations in general.

Now the (nonrelat1v1st1c) partial-wave amplidudes A = Vs fg for complex
2 obtained from Part One of these lectures, as 1nterpolators between bound
states and resonances, satisfy the conditions necessary for A)(s). This is
clear, except for the convergence. properties asv|A| =+ o in the right=hand X
plane. These convergence problems (for superpositions of Yukawa potentials)
are treated with the determinantal method in Ref. 5 of Part One.

Thus the terms in the sum in (43) are exactly -the Regge poles ( at
A = ap) which occur in the tright-hand half of the A planc whose locatlonq
are determlned by -the condition

)(S) (44)

n(S

As s is varied continuously from energies above threshold (where reso-

_nances are found) to negative values (which lie in the physical region for

scattering in the crossed channel), the poles follow their trajectory func-
tions a(s) and exhibit residues B(s).

The integral in (43) is called the background integral. We will now
exhibit the asymptotic high-energy limit for the crossed-channel reaction.




- As |z| > =, the Pa(z) have asymptotic. behav1or (-2z)%, whose magnitude
is determined by (- z)Rea, ’

Thus the background 1ntegral behaves asymptotlcally like (- z)'l/2
while the Regge poles (a,) behave like (-z)Reon(s). 1If there are some
o, for which Reap > -1/2 for physical s values in crossed-channel scatter-
ing, then these poles will asymptotically dominate the crossed-channel
amplitude as t > @, As a concrete illustration, consider the physical ex-
ample examined in the preceding section. Here we interchange the roles of
s and t channels, considering Regge poles in channel II. There w111 be a
trajectory ag(t) passing near the £0 resonance region, i.e., ReaO(Mfo) =2,
in channel II, where t is-the (energy) Suppose this trajectory, for

2 .
t < Mgy, behaves as follows:

Rea(t)r2

' -t
0 + Mfz°

i.e., a(0) ~ 1.0, a(t) ® a(0)+ ta'(0) + ... for small (-t).

Then in channel I, for t < 0 and s »~ « , we obtain, keeping only this °
pole in (43),

[200(2) + 1] Po (¢) (-2¢) Bo(t)

\ |
(t,8) = sin [mag(t)] ) (43)

(I1)

AP (s,t) = a

Assuming for the moment that

8o (t) /sin [mag(t)]

is not singular near t = 0, we obtain as s > for small (-t) (comparlng the
derivation in the previous section,

A(I)(s,t) > [2aq(t) + 1] soaO(t) - Bo(t) ) (ji)ﬂo(t)
59

sin [mag(t)] ) c21)@o(t) (46>

- apg(t
= F(t) * (s/sg) of ),
where s is any scale parameter (note that F depends on the choice of sgp).

‘Now we find the following behavior of A(I):

(a) (do/dt) v —E}— . |A(I)|2 v constant for fixed t, s > =,

kg*s

and if F(t) is slowly varying for small -t, then for fixed s
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. 2 :
“(b) (do/dt) =~ etR s where R? = 20" (0) log”(s/so);
so that under such circumstanc.es—.R2 grows. logarithmically with s.

These ére, in fact, the features experimentally fouhd'for high—energy
Tp scattering, except that R? apparently grows at a negligible rate.

However, we have yet to establish a phase for the poles, and we must
avoid having a singularity at t = 0 due to sin [ma(t)] vanishing. These
points depend on the introduction of. a signature factor for the trajectory.

ITITI. Signature and Phase ‘of Pole Terms

It is’clear that symmetry considerations appear‘in this problem, since
the mm state (due to Bose stullsllics) have only cven £ bound states and
resonances when their isospin is even. This shows we cannot have a physical
pole at & = 1 with t = 0 contributing to any scattering amplitude involving
T o

To explicitly take symmetry into account, and include the possibility
of exchange potentials in the determination of pole parameters a and B, we
define even and odd scattering amplitudes, in. the nonrelativistic ‘formalism
as follows: '

P;L(z) +2,(-2)

.y . f(s,2) + f(s,- :

fH(s;z) = L(5:2) y (s,-2) _ % 22 + 1) £,(2) . :

(cven)
and
' ) ’ f (z) - P_(-2)

- _ f(s,2) = [(s,- . ; ; A

£ (S,Z) = (b ) > (S Z‘.) — % (29, + 1) fl(Z) 7 °
(odd)

Then f = ft + f7; even signature poles will yield bound states and/or
resonances in ft, while odd signature poles contribute to f~.

If exchange potentials are present, the even £ and odd % scattering

- amplitudes will be obtained by solving two different Schrddinger equations,
. with potentials

V) = V(@) + vRD)1/2
‘and:

v-(r) = [V(x) - VXN ()72,
respectively.

Then we have two (off-shell) Born approximations Vz(k,k'),and V;(k;k‘)
each analytic in complex &. ’



These will yield two distinct scattering.amplitudes, each an analytic
function of &, i.e., f+(s) and £~ (s), such that we can write

Pg(z) + Pl(—z)
fH(s,2) = ] @+ 1) () | — (47)
‘ A L - L 2 N
and _ : -
PZ(Z) - Pz(—z)
£ (s,z) =) (20 + 1) £,(s) 1,
. 0 2 )

where the sums are allowed to run over all (even as well as odd) & values.

Now we can apply SW transforms separately to /— £t = At and /s £~ = A7,
which yield the pair of Regge representations,

P)\(ZS) + PK(_ZS)

I+lw_l/2 2 + 1

+ +(a
AT (s,t) = 21r1 ! o1 )2 dr stn | 2 Ay (s)
: P. (z) + P, (-2)
1 On On
TFZT 2 (Zag + 1) By sin (mop)
even n
signature poles
and
_ 1 phie-1/2 -+ 1 |Ea(zs) ~ Bz
A7(s,t) = 73 A Sin T n 2 A5 (s)
—ie-1/2 )
P, (z.) - P, (-2z4)
1. o S a s

odd
signature poles

with A = At + A- being the invariant scattering amplitude. We will utilize
these by considering Regge poles in channel %I where t is the square of
the mass of the resonance or bound state; thus, instead of zg we use zg,
and the arguments of a's and B's will be t.

. Now for |z| » = (hlgh energy in the crossed’ channel), we find that-
asymptotically A becomes the sum over all even and odd 51gnature poles.
0dd signature poles contribute terms of ..the form

P2 - P (-2 B(®) R(a) [} _ ina(®)
2o+ 1) 5 i a1 P =20t D o] 2 (49)
[since Pd(—z)'= e—ina Pa(z)] whiie even signature Poles yield

P (z) + Py(-z) B(t) Pu(2) [; 4 mima(®)
2o + 1 5 i e B8 = 20t D G e (6)] | (50)
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A (s,6)1 0 = [A(H)(t,s)]‘-fo= [2a0(t) + 1] Bo(t) P

Note the odd signature terms now are not singular (i.e., not poles at.
all) when o = 0, *2, %4, ..., .since the signature factor (1 - e~1T3) cancels
the zeros of the denominator. Similarly, the even 31gnature terms are not
singular when o = 1, 13 35 cee :

Assuming a and 8 are real for t. < 0, we see the phase of each pole term
is the phase of the signature factor (1 + el™ey,

We can exhibit this phase explicitly as follows: -

0dd signature:

I + P . i .
cin (wo 2 - T T
- (o) C 2 sin' 2 sos &

—ime - —iTo i C—ir :
1 -e M e ima/2 elﬂq/z - et o/2 . —ina/z( 1 )
ie
2 2

Even signature!

2 sin (7o) 2 sin o

. T moL
2 sin — cos — >

«ifa - -imwo/2 iTa/2 -iTo/2 .
+ . : -
l1+e e e’ +e " - e ima/2 ( 1 ). (51)
2 2 2

In the nonrelativistic formalism for caléulating the poles, we can
first show that a(t) is real for t < 0. This can be seen from the fact:that
Ky is real for k? < 0 and real %, but complex for complex & [see Eq. (9)].
The eigenvalues of Xy then (s1nce K is not hermitian) are real only for

- real &, and hence zeros of det(I = Ky) exist only for real %, when k2 < 0.

[This can‘also be ‘seen from the series representation (19).]

Similarly, we can see that B, is .real for k? < 0 since, when Ky is
)

‘real, N A~ — det(Il - K) is also real [see (15) and discuseion following];

Sk
the residue B, is proportienal- to [Nﬁ/zaD)]A—d and both numerator and de-
.. - n
nominator are real for k2 < 0.
Thus the phase of each. pele contribution, as seen in high—energy,
crossed-channel reactions, is given by e“l"a(t)/z, or 1 times this. ' This
relates -the phase to the asymptotic high-energy behav1or, independent of-

details. -

As an 1mportant example, con51der the £0 problem as before. Now
=2% implies even signature for this trajectory; so this pele will con-

.tr1bute [instead of (45)] a term such as (50), as follows: "

l +. 1ﬂao(t)

ao(t)(zt) 2 sin [Tag(t)]”
(52)

For high energies in. channel I, z, > s/2k2 > @, and we obtaln the
asymptotic form,"



209(t) + 1 B(t)SO() Coot) :
(1) 0 0 0 s\ 0 -imag(t)/2
(A7 (s, )] 0™ v . e 0 ; (53)
i [“0‘0(")] (k20 (®) (S«O) | -

where sg is any suitable scale factor. Now if (for some sy) the expression
in brackets is a slowly varying function of t near t = 0, we obtain the

same results as discussed after (46) above, but in addition we have deter-
mined the phase at t = 0; it is purely imaginary. Thus, to (a) and (b)
following (46) above, we add: (c) A(I)(s 0) is asymptotically purely imag-
inary. (To fit the asymptotic variation of R with energy, which is very
slow in the 7Tp scattering reaction, it is necessary to have sg $ O. 30 BeV?,) .

This poele, then, gives a satisfactory qualitative description for the
asymptotlcally high-energy 7p scattering, since (a), (b), and (c) now agree
with properties evident from present experimental data above 6 BeV and for
-t < 0.30 (BeV)?; the real part of A in the forward direction is small com-
pared with the imaginary part.

IV. Discussion of Poles in mp Scattering and Charge Exchange

The choice a(0) = 1 for the £0 trajectory essentially determines the
s-independence of values of do/dt near the forward direction in Tp scattering.
This number is essentially determined, then, from the high-~energy data.

Such a pole, whose trajectory passes through o = 1 at t = 0, has even sig-
nature, isespin zero, and G parity positive (whlch we have 1ntroduced as
associated with £f9), is called a "Pomeranchon." 1Its existence guarantees
equality and constancy of particle and antiparticle cross sections in the
asymptotic limit. Such equality and constancy were first strongly suggested
by Pomeranchuk on the basis of forward-scattering dispersion relations com-
bined with intuitive ideas about diffraction scattering (inelastic processes)
at high energies. Note that total cross sections (OT) are related to for-
ward elastic-scattering amplitudes by the optical theorem

oT =-§g Im £(s,0)

and hence linearly to A(s,0). Thus the dominant poles determine the energy
dependence of oT. The qualitative features of P (the Pomeranchon pole) are’
similar to scattering from an absorbing disc, except that the radius varies
with s. :

Of course, other poles nearby in the A plane:may compete with the
Pomeranchon (P) at nonasymptotic energies. If the energy dependence of the
Tp elastic scattering and total cross-section data (above, say, 4 BeV) is
analyzed on the assumption that only one other pole contributes, a second
pole with 0(0) = 0.50 is found. Since mtp and T p scattering are very
similar, the dominant coentribution to this "correction" pole must have
T = 0 in the channel II reaction . (otherwise there would be a change of. sign
in dominant part of 7 p correction compared to 7tp correction). Since the
t-channel reaction involves two 7T's, this pole must have even signature; so
it must have the same quantum numbers as P. It has been called therefore
P l .
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A possible physical resonance lying on the P' trajectory has been
found at 1.67 BeV and has been called f

There is, in addition, a small but significant difference between
o(ntp) and o(7”p) in the energy region 4-20 BeV, which seems to have about
the same energy dependence as the P' contribution. A pole that can account
for this must have T = 1 in channel II. The only known isovector mm reso-

nance is the p, which has JP = 17 at 760 MeV. The p trajectory then must

have a,(0) = 0.50; this is confirmed by charge-exchange data. The charge-
exchange reaction 77p > 70n can be represented as the difference between

=3/2 and T = 1/2. elastlc 7p scattering amplitudes. The P and P', being
isoscalars in channel II, do not contribute to this difference, and the p
is the only pole known that contributes. This is the most clear-cut test
known of Regge pole rapplicability, and analy51s of the data seems to bear
out the pole conjectiite very well (bee Ref 3).

A good diecussion of the energy dependence of total cross sections may
be found in Udgaonkar's article;" we will not pursue this further in these
lectures. The phase of forward scattering is discussed in Ref. 5.

All the discussion presented so far has been oriented toward the in-
fluence of mesonic -states in the t'channel (e.g., £0 p) on high-energy nN
scattering, particularly near the forward direction where |—t is small.
However, channel III is yet to be considered. The Regge poles associated
with that channel are 7N resonances and bound states (we consider the nucleon
to be a bound state of 7 and N with binding energy equal to the pion mass).

There are crossluyg ifelations connccting the channel TTT invariant ampli-
tudes with channel I; referring to the discussion in Section I-B of the
three channels connected by the same four-leg Green's function, we define a
channel TTT invariant amplltude A(Tll)(u t). such that (ignoring spin for the
moment)
chII
ds

=l (a0 )2,

The crossing relation then reads

A(I)(s,t,u) = A(III)(u,t,s),

where only two of the three variables are independent; we have written all
three explicitly Lo obtain a symmetrical notation.

Channel III represents ﬂ+g elastic scattering, if channel I is 77 p’
scatterlng, with (c.m. energy)“ = u. The dominant Regge trajectories in the
nt p channel are associated with the T = 3/2 resonances. ‘If the trajectory

. picture in Fig. 1 is essentially correct with respect to -this point, there

should be only one important .trajectory near u = 0, namely the one that
passes through the P3/p 3/2(1238) resonance. Let us denote this one by ax.
Then ‘we expect that when (and if) ax > -1/2, in the physical region for’

. channel I scattering, we get a contribution to the asymptotic behavior for

channel I of the form

1 2
dol s
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' Now (from Fig. 1) a, is presumably above zero when u is close to
zero. In terms of t,

u = 2M2 + 2u2 - s - t.

Thus, for u to be small and s large, we need large (-t), i.e., large
angles in the center of mass. If s >> 2(M%2 + u ), we get

~ -2k2(1 + cos 8)’

(as in the equal mass case), so we need cos 6 = -1.to obtain the Regge
asymptotic behavior from ox. (Note that for large -t, the channel II poles
presumably retreat into the lower half of the % plane and do not contri-
bute to asymptotic behavior.)

If a relativistic treatment of nucleon spin is considered, it is
found that o, (or any fermion Regge pole trajectory) and Bx, the associated
residue, should be ‘considered as analytic functions of W, = /u (instead of t,
for example, when the t channel contains boson Regge poles) and that for
u < 0, we obtain complex conjugate pairs of Regge poles: o, (W), a(z)(w) =
[a*(W)]*.

As a result, the phase relations are not as simple for fermion poles
as for boson poles; in addition to signature factors of the form

—in (a-172)

é%[l t e I,

we have contributions to the phases from the complex nature of the trajec-
tories and residues. It is still true, however, that a constraint exists
connecting the phase and energy dependence of each pole.

A complete theoretical discussion has been given by Singh6 and the
most important points are discussed by Kinoshita.’ A phenomenological
analysis by Chew and J. D. Stack® has shown that the energy dependence and
backward peak width observed in T~ p scattering are consistent with bootstrap-
calculations of N* parameters. As Chew and Stack point out, however, more
accurate data over a wide range of energies near cos 8 = -1 are necessary,
as in the "~p.charge-exchange reaction (near cos 6 = +1), to provide a
crucial test of the dominance of single o, pole.

V. Variation of Residues and Diffraction Peak Widths

If we represent pole terms as in (53) by (for even signature)

(54)

SR : a(t) .
[als, 01 o1 = (t)( ) ima(t)/2

(or with an additional factor of i for odd signature) where F depends on
* the choice of scale parameter sy, it is apparent that we must determine
under what circumstance F could be a slowly varying function eof t. This
circumstance depends on the behavior of the residue 8(t) (we assume a(t)
can be reasonably approximated by a straight line for small -t).
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The only point in t we can ihvestigate simply (in a nonrelativistic
formalism at least) is a threshold for the channel II reaction, wherée the .
channel II c.m. momentum ki vanishes. At such points we know the thres-

‘hold behavior of the residues is

.Bn(t) N (ktR)zan(kt+0)

(see Part One, Section IV), where R is the effective range of the potential
that acts in channel IT scattering. Thus, if we define a reduced residue

we know that b, (t) is slowly varying near a threshold in t. Applying this to
(53), we write F from (54) as

, _— R s a(t) ) '
FSO(t) = M . bA(t) .( bg) . (55)

2 sin (mw/2)

If sy is chosen to equal (R?/2)7!, we see that all terms in Fgy(t) are slow-
ly varying near a threshold in t. This is as much as can be done in a model-
independent sense; we must then assume that the extrapolation from t =
(threshold in channel II) down to t = O is a smooth one, and that Fso(t) is
also slowly varying near t = 0. This clearly depends on the details of the
channel II potential, for example, and may not be true in all cases. It

.appears to be an adequate assumption for P, but not for p. We estimate the

range R by examining the largest-range effective potential contributed by
simple one-particle exchange diagrams. For example, in NN + nw, we find
one-nucleon exchange

contributes the loungest range R2 ~ 2uM; thie figure is consistent with the
sg values needed to match the slow logarithmic dependence of the mp dif-
fraction width.

This analysis of residues was first applied by Desai (Ref. 8 of Part I)
to mp and pp scattering.

The range R, and hence the appropriate value of sg, will be different .
for different reactions. Thus the diffraction peak width, and its rate of
shrinkage with s, will differ. Estimates of R indicate that pp scatter-
ing should exhlblIL wuch stronger shrinkage than 7wp, which agrees qualitatively
with experiment. :

i
If one does not rely on F.being essentially constant, it will be neces-
sary to parametrize the residues in some way such as an exponentlal (or sum
of exponentials) in t. Then one may choose sy arbitrarily, e.g., 1(BeV)?2.
This was done by Phllllps and Rarita in their detailed fit to high-energy
meson-nucleon scattering, which .involves many free parameters.



For other reactions, e.g., Kp and pp scattering, poles other than P
P', and p are possible .since the mm selection rule forbidding G = -1 tra—
jectories is absent. Trajectories associated with w, and an isovector
G = -1 (R) pole, discussed in the next section, are required in phenomeno-
logical elastic-scattering analyses (see Ref. 9).

VI. Exchange and Inelastic Reactions

The phenomenological fits_to total and differential elastic cross
sections fail in the case of pp scattering in the energy range presently
- available. For other scattering processes they are reasonably successful,
espec1ally for small momentum transfer (see, for example, Binford and
Desa1l ). All such phenomenological. fits require many parameters. The
relevance of simple poles to high-energy processes is much more striking in
exchange reactions or inelastic (two-body) reactions, where only one (or
perhaps two) poles are allowed in certain favorable cases by strong-
interaction selection rules. We have already remarked on m~p charge ex-
change. Another case that is very restrictive is the "isospin-exchange"
reaction m"p -~ nn. The only poles allowed in channel II, which here is
pn > m+n, have isospin 1, G = -1, and even signature with positive intrinsic
parity; associated physical resonances could have JP = 2% then (but not 17).
.The leading such trajectory has been called R, and the Ay may be a physical
resonance lying on this trajectory.

The data for this reaction between 4 and 18 BeV/c are clearly con-
sistent with such a sin%le pole; the situation has been analyzed thoroughly
by Phillips and Rarita. An analogous case is 77p ~ X% n, but this reaction
seems to be rare and in any case has not been studied with care above 6 BeV/c.

A third case in which only one known pole can contribute is n*p - n0
'N3/2, which allows only p in the t channel. Unfortunately the experimental
situation is not so clear-cut for this reactlon but data are consistent at
present with the hypothesis of a simple pole w1th trajectory such that
a(O) 0.5, whlch is true for p as seen in the charge-exchange reaction. -

0 x4+

The reactions nt P nN3/2, at p > X N3/2 1nvolve only the R tra1ectory,

but no s1gn1f1cant data are as yet avallable on these reactions.

_ This exhausts the cases, in whieh only one pole contributes. Several re-
actions involve only two known poles; the simplest examples are

Xp+Kin p,R _
KN, KN
Kt > KOp 0,R charge exchange

These have been discussed in Ref. 9.

Kp > %0 KkrQ . 17p > KOZ0 K#,Q PS-N
mp +~ KOA  K*,Q mtp. > Kt K*,Q ¢ hypercharge
K-p » TTpzo K*,Q Kp > -zt K*,Q .exchange

These are discussed in Ref..12.
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Here the Q is a pole whose resonances WOqld have quantum numbers
(1,JP) = (l/2,2+); the K* pole has a resonance with (I,JP) = (1/2,17) at
880 MeV.

The recently observed K*(1410), if JP = 2%, provides a trajectory suit-
able for Q.

Trajectories with I = 3/2 would also contribute to such reactions; but
there is no known meson or meson resonance with this isospin quantum number,
so unless they would definitely be called for by data (for example in

- K'p » ntz- at high energies), these possibilities are ignored at present.

Many other reactions, producing baryon resonances and/or meson resonances
in the final state, involve only two poles. But the number of parameters
required is large when the number of spin states involved is large, and fits
to data are difficult to carry out in an unambiguous way. This is partially
compensated for in some cases where the decay-density matrices can be deter-
mined experimentally since these provide a great deal of information concern-
ing the reaction. '

\

The factorization property of residues (Part One, Section VI) is impor-
tant in connecting one reaction with another, especially when spin is taken
into account. ‘ ' .

VII. Peripheral Inelastic Reaction Model as Special Case: Comparison in
General

There have been moderately successful explanations of some high-energy
reactions, especially baryon resonance production pp * pN*, from a field-
theoretic point of view using the idea that one-meson exchange diagrams
dominate such recactions. In the above case, one-pion exchange contributes:

> >
P i p
]
]
—
P n*

Another case which has been at least qualitatively successful is
mp > pp, also involving pion exchange:

(These models work very well if absorptive corrections are applied. We will
discuss such modifications of pole terms in Section IX of these lectures.)



Other processes such as ©N - nNg/z, which in such a picture might pro-
ceed by vector meson exchange (e.g., like p), have been successful to a more
limited extent; isospin ratios and N* decay-density matrix elements are cor-
rect, but energy dependence and angular distributions are not very good. An
extensive survey and bibliography are presented in Ref. 13.

We now indicate how "elementary" (i.e., field theoretic with Feynman
diagram interpretation) particles can be represented as a limiting case of
Regge poles. As a consequence, we see a connection between the Regge-pole
approach for inelastic reactions and the peripheral models. Underlying our
discussion will be the idea that every particle is composite, in the sense
that it can be obtained by solving some relativistic bound-state problem.

Consider for example a Regge-pole model (ignoring spin) for 77 p > 00
In the t channel, we have pp > wp; the relevant poles must have G = -1,
isospin nonzero; there is no signature restriction. No known resonances or
particles have isospin >1, so we look for I = 1, G = -1 particles. The only
well-established state is the 7 meson; if A; is a true resonance, it would
also be a candidate. (See Ref. 8 of Part One for classification of meson
trajectories.) Assuming only m, we see the physical region for channel I
(s channel) T p > pon near the forward direction involves t values within
one or two uy of the point where a,; = 0, i.e., the physical pion pole. Since
this is a small interval, compared to the characteristic dimension 1 (BeV)?
we have seen in trajectory slopes, we can approximate the (pion trajectory)
pole term

(20 +1) B(E) , (. <} + e‘i"“(t)> (56)
a

n.

sin ma(t) 2

by its behavior near t = 0, o = 0,

B(0) ~ 8(0)/ma’

2 ]

7 (57)
sin [m(t-uy) a'] t - uj

which is just the form of the elementary-particle result (ignoring spin); the
dominator is just the propagator of the (virtual) pion evaluated on the mass
shell for the physical reaction in question, where [B(0)/ma'] takes on the

significance of a product of pion-nucleon and pion-rho-pion coupling constants,

gf. We observe finally that the residue factorization property guarantees
that B(0) can be factored into such a product. In comparing (for example)
similar reactions (again ignoring spin) such as

m

LMWV #

m

——4rrm ¢

p
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assuming all these are dominated by the same pole, putting B,p = 8(0) for
the reaction mp =+ pp and similar notation for the other reactions, we find
the relations

Bop _ Bfop

14
oN* BfON*

(58)
B

which are the same as if we considered elementary pion exchange with coupl-
ing constants at the vertices.

Note that such a correspondence in detail (as a function of s and t)
depends essentially on the small mass of the pion, which allows an extrapo-
lation to take place over only a small interval in t from the crossed-
channel physical region to the pion pole.  We expect that more massive
resonances (e.g., p,w) differ in greater detail when considered as elementary-
(i.e., fixed spin)! compared to treatment as a Regge pole.

The most striking overall difference between the Regge pole-formulation
and the covariant perturbation theory (with fixed-spin particles) appears
in the energy dependence of the inelastic (or exchange) reactions. The
former predicts asymptotically

do - SZa—l or do Sz(d—l)
dQ dt ’

where o is always less than 1, while the latter predicts

ég_~-s2(J—1)
dt : ’
where J is the spin of the physical exchanged particle or resonance.

For the light,spin—0 mesons this does not make much difference, but for
the 1~ and 2% resonances it is a big change. Note that the phase of the in-

elastic processes is also quite different from the (real) prediction of fixed-
spin perturbation theory; however, the phases are not easy to measure.

The relative importance of various poles, if more than one contribute,
depends on the energy (s) in general. Although the lightest mass state
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(e.g., 7) may dominate at low energies because the factor u% - t is small,
at high energies this consideration gives way to the factor s®, which is
greater for higher trajectories (e. 8 p).

Remark. SU3(and other higher symmetries)~predictions may be developed in a
way analogous to the relations between coupling constants in perturbation
theory, through the use of appropriate Clebsch-Gordan coefficients. This is
discussed in Refs. 9, 11, 12, and 14. The latter reference, in particular,
using only residues evaluated at t = 0 (by analy21ng only total cross
sections) av01ds some of the ambiguities associated with symmetry breaking.
These arise, for example, because the functions B(t) will not be the same
functions of t, even within a multiplet of SU3 due to the mass differences.

VIII. Spin, Polarization, and Decay-density Matrices

The introduction of spin for the incoming and outgoing particles
complicates the practical application of Regge poles enormously. One of the
worst difficulties appears in the crossing relations. The scattering ampli-
tudes for given spin (or alternatively helicity states) in channel I are
obtained as linear combinations of spin or helicity amplitudes in channel II,
with coefficients that depend on s and t. Thus one .requires first of all
(in principle) a determination of this crossing matrix, which is an invelved
problem in general. If this matrix is known (as it is in the simplest cases
such as mp and pp scattering), the problem remains of determining the many
parameters required to specify the various residues involved. The situation
in both channel I and channel II may be described with a multichannel for-
malism (such as that of Section VI, Part One) in which different spin or
helicity states are represented by different channels. (Only some of these
will be actually coupled, because angular-momentum, time-reversal, and parity
selection rules will forbid some transitions.) The residues for each spin
state will (in general) have different behavior as functions of t.

-Some (mostly formal) results concerning cr0581ng relations .for helicity
amplitudes have been proved by Trueman and Wickl!® and employed by Gottfried
and Jacksonl® in their discussion of spin in exchange models (including
Regge poles). They show, for example, that for certain cases (e.g.,

Kp * K*%), 1in Lle spin-parity analysis of exchanged mesons (using evidence
from the decay-density matrix of final-state resonances), one may generalize
immediately from fixed-spin (e.g., elementary K*) exchange to Regge poles.
In general, however, the situation as regards spin.is much more complicated
when Regge trajectories are used than in the elementary-exchange peripheral
model.

The essential formalism for Regge poles in 7N scattering and charge ex-
change may be found in Ref. 17, a pioneering paper on the subject of Regge
poles and their phenomenological application. (This formalism, as far as
kinematic factors are concerned, may be used for KN reactions also, if we
include poles of both signatures for each isospin state instead of only one
in 7N reactions.) A summary is given in Ref. 9. Discussion of pp scatter-
ing (and pn charge exchange) is given in Ref. 18. This formalism for

Tp + mMN* and KP > KN* has been worked out by Hara.l°

Following the approach of Refs, 15 and 16 we decompose a general re-

action amplitude in channel II (for the reaction a + ¢ » b + d) in terms of
covariant helicity amplitudes
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Qaralatie, 9 1ar),

such that the differential cross section for the reaction a + c>b+d with-

incoming (a,c) helicities (A;,XAy) and outgoeing (b d) helicities (A3,A4) is
given by .

NIT - o

do 1 ) 2

(dQ) : =‘E4<§3A4|A11(t,s)lxlkg>l : - (59)
‘A1A23A3y .

Similarly, in channel I, the reaction a + b > ¢ + d is. described by channel I
helicity amplitudes ‘

<@3vq|Al(s,t)|V1V%>’

sucl Lhat the difterential cross section for the channel I reaction with in-
coming .(a,b) helicities (v;,vy) and outgoing (c,d) helicities (viy,vy) is

given by
RN 1 I : "2,
\ag = Z[Qu3vs|at(s, ) [vivapl s 69

V1V2;V3Y4

Then, according to.Ref. 15, there.exists an orthogenal crossing matrix X

(whose elements are functlons of s and t-and are real in the phys1ca1 regions),
such that » '

' HiMg
<§3V4|AI(S,C)|V1V€> = 1 X <§3U2|AII(t,S)|V1U£>~ : (61)
. . 2Vy
‘ HiU2 .
The X matrix simplifies to some extent in the s > = asymptotic-unit; or
if equal mass. partlcles are involved. - Further, as t » 0, X is nensingular,
So we can use a llmltlng form near the forward (channe] T) direction if .

desired.

In the wN case, we have only two,indépendent helicity amplitudes; in

‘channel I, where the helicities refer te initial and final_nucleonsy~we have

G+(s3t)v='<}l/2}AI|+l/i> = <§1/2|AI[-1/2> |
and |
~c;(s,t)'='<}1/2|AI|+1/§> - <}1/2|AI|—1/%>,' R (62)

where the ‘latter equalltles follow from time-reversal symmetry and parity.
conservation.

In channel II, NN - 77, where helicities refer te inceming nucleon and
antinucleon, we define ' ‘



§+(t',s) - <|.AH|+1/2+1/2> = .<|AII|-1/2—1/§;

and . ) _
F_(t,s) = <|‘AII|+1/2—1/2> = <|AH|—1/2-F1/2>, ' ' (63)

Then X can be represented as a 2 x 2 matrix, which is derived 'in
Ref. 15 » , . . : - n

" The Regge-pole decomposition F+, which is approprlate for P,P',p in the
NN > 7w channel, may be obtained from a Sommerfeld-Watson (SW) transform
applled to partial—wave representations of the he11c1ty amplitudes

(z¢ = cos B¢

Fp=) (27 + 1) fim-d{,z 1/é<zt),
‘ J
aﬁd
A | 30 a : o
F_=) (23 + 1) £(t) d}/p_1/2(2¢) - (64)
5 } ,

"The d functions here are as defined by Jacob and Wick.2® Each of these
sums must be separated into even ‘and odd J values to obtain analytic con-
tinuations in J for the partial-wave amplitudes. Then we continue the d
functions analytically in J by using their definitions in terms of hyper-
geometric functions. After performing the SW transform, we obtain

: ag(t) .
2¢8(t) + 1) 4 —imog (t) even
F§ = Y Bin(t) (e 2 (9 ) d1/2 1/2(zt) ( e,z 1 _+ |background ),
. . even- sin Ta (t) integral
signature Toon .
poles
and
. an(t) . e R .
C (zuo(t) +1) d (z¢) _=ima_(t) odd
Fi = ) Bgn(t) 1/2 1/2°%¢ ) -° 5 2 -+ | background],
odd-- . - sin naﬁ(t) integral
signature
poles .
(65)

and similarly for F€ and FO, with

0820 ()
d_y1/2 1/2(2¢)3
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and finally, . N -,

= e r0 - = 7€ 4 w0
. F+ F+ + F+, F_ FS + FZ.

Note'’ that the same traJectorles w1ll in general appear in F+ and . Fe,,and in
FO and F but w1th different re51dues in (+) and ( ) amplltudes,

Now when crossing .is employed, and z¢ +> = as s > =, we utilize the
asymptotlc ‘behaviers

an .
dy/a 172 (z¢) > (zt) *n

and

Oln _ e -1 ' ) .
d_1/p 172 (2g) > enlzy)™n _ ' (66)

and obtain results in,the*asymptotic,regienAof the4fqrm”

s

—-imogn (t) o .
1 + epe n Cop |
- et o
2 sin ‘"“n(t) (X-_.t_’_*..s_'_nzt + OLnXt,_B_nZt - ’ (67)

Gu(s,t) ] (20n + 1)
s ‘

where €, = +1 is the 51gnature factor of the nth pole, and Xij are the

crossing-matrix elements.. (The- X+,_ have one hlgher poewer of s than the
Xt,+’ s0 the contributions from B84: and_B ‘are Lomparable in general )

Defining reduced residues

(t)
4 - By (t n
bg(t)._ +n(2)uszt) s
(Zkt)'n -
we obtaiﬁ finally
. _ o 1+ ene_iﬂan(t)‘ S an(t) -
Gi(s,t)‘g'z 20y () + D\ ot 7y (53) Yag (E) s (68)

where the,y+n become,independent of g'(as indicated) in the high-energy
limit: - ' ' : »

L X, \
= X, bh(e) + o (0| =) pp(e)

~
(a3
~
]

<

~~
(nd

N’
|

X . | A
= X_bi(t) +a (t)( > ba(t). | A (69)
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Now the differential cross section in channel I is given asymptotically by

g e i, 17 + et} -2

where o is the trajectory of the dominant pole.

The polarization of the final nucleon, if the target is unpolarlzed
“is given by :

do

P(0) Fhs)

= 21@{jS_}/s.

The polarization thus vanishes if the phases of G+ and G- are equal, as
they are when a single pole dominates. With two poles contributing, say
.o and G2, we get a polarization that asymptotically has energy dependence

s~ (a1-a3) (assuming a; > aj).

These facts remain true in general for other reactions involving spin,
e.g., pp scattering. Note that although final nucleon polarization (assuming
an unpolarized target) vanishes when only a 31ngle pole contributes, this is
not true for other sp1n—correlat10n parameters, which may not be asymptoti-
cally zero. ' :

For the general reaction with spin, (64) can be generalized to?20

) ) J J .
Aarg [ATT A 0N =) £ £) » (2T +1) + d z (70)

and, separating inte even and odd J, SW transforms can be applled to yield
the following generalizations of (65)

ag (t)
: (2o (t) + 1) 4. (z¢)
. (n) n A3=AlsAy=Ay  ~
<§3AMIAIIIX1A€> = po%es Bglkz;xaxq(t) : 2 sin ma,(t)
[+ e e imm(®) ) 7L

+ (background integrals).

The asymptotlc forms of the d functions are powers of - Z¢ analogous to
(66), and one obtains eventually for high-energy channel I reactions, the
general form, ’

VyVy ViAo Vi3Ay

‘ : , —ima. (t) o ()
<)3\)L+|AI(S,t)'\)1\)2>; z [Z(X.n(t) + l:! [l + €ne n. ] . <_b_)n .
_ poles 2 sin nan(t) so/ .
Aqkz : -
. Z X b(n) . (t) . | (72)

A2 Ay
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More details have been given by Fiset?! who points out that for evalu-
ating spin-summed cross sections, one does not need to know X since its
orthogonality allows its elimination.

Gottfried and Jacksonl® show how the density matrix for final-state -
resonance decays may be obtained from such helicity matrix elements.

The formula (72) shows that the energy dependence and phase of pole con-
tributions are relatively easily predicted even when many' spin states occur
in the reaction. The reduced residues bA1A2A3A4(t)’ however (at least in a

purely phenomenological approach), are in general independent functions in
each reaction, although a factorization property holds for these helicity
residues (as a special case of multichannel reactions). For an application,
cce Barmuwi.22:23

When a reaction is fit by poles it is possible in some cases to check
the reasonableness of the residues within the framework of bound-state models,
as developed by bootstrap practicioners. An example of a nontrivial case is
presented in Ref. 24, ‘ :

IX. Regge Poles in the Optical Model Potential and Absorptive Corrections
A, Motivation

I1f we regard the Regge-pole formalism as a whole as a generalization
of field-theoretic, i.e., covariant,. perturbation-theory, peripheral (one-
meson exchange) models, then analogles with more complete field-theoretic (or
even potential-theory) models may enable further developments toward more
exact agreement with experiment. That such developments are indeed necessary
is indicated by the necessity for applying absorptive corrections to pro-
cesses involving plon exchange. :

We have seen that the 7 pole should, for small momentum transfer,
behave like the elementary m exchange pole as calculated from covariant per-
turbation theory (in lowest order). However, quantitative agreement with
experiments such as mp - pp, including overall normalization and p decay-
density matrix elements, require strong modification of the elementary
formula as provided by the absorptive-correction method. References 25-27
discuss this method and its quantitative results. Generalizing from this,
it seems plausible that (at least) normalizations and spin-state properties
(e.g., polarization and decay-density matrices) will not be correctly de-
scribed by a Regge-pole model (at least when simplest hypotheses are employed
for the residue behaviors), but some modifications (e.g., ''absorptive
corrections') are necessary. For inelastic channels, which individually
constitute a small part of the total cross sections at high energies, this
can be expressed by saying that competition from many other channels should
be explicitly taken into account in the formalism. This is provided for if
there is some means of insuring unitarity of the S matrix at high energies,
where much inelasticity is present.

Although it is possible to develop the following (optical-model)
approach from a covariant, field-theoretic viewpoint, the physical ideas
are more simply understood with a high-energy (but apparently nonrelativistic),
potential-theory formalism, using analogies with nuclear- phy51cs scatterlng
theory in the optical-model approximation.



‘B, Optical-model "Potential' Definition

Consider a scattering process in which many inelastic channels are
open. For the moment, we consider only two-body channels, We can formally:.
describe the system with a multichannel Schrddinger equation as in Part One,
‘Section VI, for the radial-wave functions of the system

d2 o a(a+ 1) | _
{dr2 * ki - r. } Uli(ki’r) - g vij (r) Ugj (kj ,'r). (73)

(We may assume the V;; are independent of energy k, although this
is net necessary.) In Part One, Section VI, we indicate how one could de-
velop a matrix integral equation [cf. Eq. (30)] whose Fredholm factors N
and D yielded the multichannelg?ound states as well as multichannel scatter-
ing amplitudes. Our motivation was primarily to obtain low-energy infor-
mation, i.e.,.concerning bound states and scattering resonances.

Now, however, we are interested in the high-momentum scattering
(large ki) problem associated with (73), and we will sketch a different
formulation for such a purpose, motivated primarily by the optical-model
formulation of scattering by a complex nucleus. A nucleus has excited
states, and any of these may be excited by a projectile passing through the
nucleus in a scattering process; thus the probability for inelastic pro-
cesses (i.e., excitation) is large, and in fact the excitation properties
may - -dominate the calculation of scattering.

In this section, we will show that by formally eliminating explicit

reference to channels j # i, a complex potential operator v(i) may be con-
structed, such that the elastic scattering in channel i is given (exactly)
by solving a one-channel radial Schrédinger equation with the -complex, non-
local potential V(i)(r,r') as follows (k = ki);

’

d2 L(e + 1) _ *® v (1) 1 ' .
[E;E +4k2 - ___;:r_.] U&i(k’r) = % dr VkR (r,x") Uli(k’r ), (74)

[In Section C below we will show that for large mementum (k), we
can simplify further to obtain a local potential, and then further to obtain
an explicit solution.] ‘

. This V(r,r') will be denoted by the' (exact) optical potential; it
is sometimes called a pseudopotential.

To show this, we proceed as follows: Define the (diagonal matrix)
operators (kinetic-energy plus centrifugal-barrier terms) by

’ 2
T, =L 2 AR DY,
21_‘]‘ drz 1 r2 13
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Then (73) may be written
> >
TZ ,U- = VQ, U,

where

Uli(klsr)

Uga(ka,x)

=P
s

UQN(kN,r)

Suppose we can flnd a dlagonal—matrlx Green's. functlon operator Gy, [anale-
gous to the single-channel Gy(k; L.t ) of Part One, Sectlon II] which is a
right inverse for T, i.e., T Gy U = U, "and such that (Gy U) satisfies
outg01ng—wave boundary conditions in all channels, and suppose we can find
a Uo(r) such that

(1) T =o0,
and

+ .
(2) Up(r) satisfies boundary conditiens describing only a plane
wave in channel I:

U

o O OO -

0 .
N Ul « lz(k,r).

h.

. N , A
Then if U is the solution of (73), with plane wave in channel I plus
outgoing waves.in all channels, U satisfies

> E '
U= 30 + Gog Vg ﬁ, ' ' (75)

which can be readily verified by substituting (75) inte (73), :and by utiliz-
ing the boundary conditions stated .above. ' ’

Now separate the first :component .(U;) of (75) from the other com-
ponents (Up,m > 1), and the result is

U, = Ul + (GOQ VQ)II U1 + 2 (002 VQ) (76)

o> 1 im m
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and

U, = 21 (Gop V) pn Un *+ (Gog Vpdy, Ui- ' (77)
n-> .

Let Hy be the (N - 1) x (N - 1) matrix of operators

(Hg)mn = (GOQ .Vg)mn, .o m # l, n 9‘ l,

appearing in (77); Then (77) can be written

>1 B - . .
(I-H)U =Y, , ‘ (78)
> 1
where U signifies the (N - 1) components
Uy
U3

Uy

> . > .
(i.e., U with the first component deleted), and Y signifies the (N - 1)
components

Ym = (GOQ, V'Q/)ml Ul, m# 1.

From the form (78), assuming we can find an inverse operator (I - H,L)_l
then (77) becomes

|

3@ - Y, | ~ L)

or, in terms of components, for m >'1l we have

- ’ -1 .
n ” nzlA(I j?')mn (GOQ Vﬁ)ni Uy (80)

Substituting (80) into (76), we obtain an equatlon which 1nvolves only the
channel 1 wave function in an explicit way,

Uy = U] + (G W, U1 + ] (Go My (- H)=L (Go V), U1, (81)
m# 1 ‘ C
n#l
which can be written
Uy = o)+ KUy, o (82)

where the operator K; is defined by
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Ky = (Gog Vp)qy + ; (Gog Vedim (I - g) (Gog Vdn;- (83)
mFl R
n#l

Finally, ‘to return to the form of a s1ngle—channel Schrddinger
equation (74), we multlply by T;; and employ T U = 0; then

Ty Uy = (T1; Ky) Uy = v(D U, ) - (84)

which is just in the form (74), with

Vgl) = Te11(Gog Vi) + Tegy ;i (Gog Vedym (I - H“)_ (Gog Vo)
g

n#1 (85)

Separating out the terms involving only channel 1, we can write
(85) more explicitly as

v = @)y, e - ) mzl Vpim = 7L (Gog Vodgys  (86)
n#1

where we have used the facts that Ty and Gpg are diagonal, and TyGgg =
I(S(r - r').

Remarks

1. The restriction to two-body channels was only.for convenience of
notationy the formal results arve tiue fur mulllparllele channels
as well.

2. (I - Hy), and hence (I - Hg)'l, depend on the channel momenta
kn(n # 1), and are complex above the threshold for channels m #.1,
i.e., inelastic thresholds. Thus VE ) will be complex above the
inelastic threshold for scattering in channel 1, and even below
such physical thresholds, V(1) will be energy-dependent, unless
only V;; is nonzero, (if V;i  itself is energy-independent).

3. A relativistic field-theoretic ‘construction -of the optical potential -

for high-energy physics has been outlined by Blokhintsev et g;,zs

C. High-momentum Scattering with Optical Potential; the Eikonal
Approximation

A physical interpretation can be attached to the nonlocal, energy-.
dependent, potential operator Vﬁz)(r,r') as follows: Suppose the potentials
Vij .
the unperturbed U;(r) represents a plane wave; i.e., we use the first itera-
tion of the integral equation (81) or (82).

are very weak, so we can use a first-order approximation to (74), where
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Then [V(r,r") Ul(r ) dr ] is the differential source strength [for
the wave equatlon (74)] at r, ‘due to the 1nc1dent wave functlon U1 at r', in
an interval dr'.

The nonlocality of V(r,r') comes from the physical fact that chan-
nel 1 particles can go into channel m (m # 1) at point r',. and reappear in
channel 1 by making the transition (m -~ 1) at point r.

This interpretation allows us to develop approximations good at
high energies. In particular, it is plausible -that for large incident mo-
mentum, i.e., high velocities, the optical potential becomes essentially
local, i.e., '

(1)(r r') > V(l)(r) §(r - '),

where

7o - [ ar v (ror N ENCD

(aside from a normalization factor). In the classical limit, this is in-
tuitively evident, especially if the other channels have larger masses,
since in that case particles in channel n # 1 would travel slower than the
particles in channel 1 (by conservation of energy), and so transitiens to
and from other channels must occur at neighboring points (r,r').

A basically semiclassical approximation for the solution of (74) -
is convenient for high-momentum scattering and small angles if one assumes
V is approximately local in r. This approximation, the Eikonal, has been
extensively discussed by Glauber?? using scattering equations in three
dimensions. " We can obtain the same results simply by finding an approxi-
mation satisfying the following requirements:

a. High partial waves dominate the elastic-scattering cross
section.

b. The approximation should yield the complex, energy-dependent
Born approximation for the scattering. amplltude in channel I
in the limit |V| - 0.

c. The channel 1 phase shifts (complex above inelastic thres-
hold) are a linear functlon of the potentlal V(l),,in the
hlgh—momentum unit.

The first two requirements are generally. to be expected when the.
momentum kj becomes large compared to the range of the potential, .and when.
only small angle scattering dominates the elastic cross section. This- .-
last requirement is the more restrictive one for high-energy physics.

The significance of postulate ¢ becomes apparent when we consider
the simple optical model of ‘a partially absorbing sphere. Here the 'phase’
shifts" will be purely imaginary, and the attenuation factor (inverse mean
free path) in each partial wave should be proportional to the optical
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‘where

"density of the target, which is characterized by a purely-imaginary potential..

V if it is purely absorbing. (Postulate c -actually -represents.the dynamical
assumptions involved in the approximation, although in a nontransparent
fashion.)

If postulate a is true, we can reéplace the partial-wave sum

eZidz(k)

£(8) =) (22 + 1) Py(cos 6) ik

2{ .

(87)

by an integral over continuous %, and use -a large —Z approximation for . the

'Pl S,

ix(,k)
2ik T

£(0) = L; de(22 + 1) Jo[(22 + 1) sin (8/2)]]5

where we have written a continuous function X instead of the discrete 26j.

If we change variables to b = (£ + 1/2)/k, known as the impact=
parameter variable, this becomes ' '

e1X(b,k)

£(8) = ik Lj b db Jg[2k b sin (6/2)][1 - IR ' (88)
Note ‘that

2k sin (6/2).= /—t,
so alternatively we can write ‘

f(s,t) = ik {f b db Jg(b/-t)[1 - eiX(b’k)]. (89)

. Now if X.is tb‘yield the Born approximation for small |v|, and X.
(proportional to phase shift) is linear in V, then as |V| »> 0, we find
¥ * 0, and we must have, to first order in V,

£ > £8P o gk {T b db Jo(bV=t) [-ix(b,k)]. . (90)
Using the inverse Fourier-Bessel transform, we obtain

X (b, k) = —-f x dx Jo(xb) £207(s,-x2), - D)

x = /—t.

Finally, since X is to be linear in V, and f ? is linear in V,
the relation (91) must be true for all strengths of V and not just |V| + 0.




Thus (91) and (89) define our high-momentum, small-angle approx1mat10n, The
function X is known as the’ Eikonal functlon. :

The Eikonal approximation may also be obtained as a linearized .form, -

suggested by the high-energy limit, of the WKB approximation. However, the -
Eikonal method is actually much better than the WKB method for small-angle
scattering; for example, the WKB approximation demands that all phase shifts-
be large in magnitude, whereas the Eikonal approximation (correctly) obtains
the Born approx1mat10n for small phase shifts.

In -practice, the potentlals for the coupled -channel problem (73)

are not known, and one tries .to estimate the optlcal potential (in local
approx1mat10n) dlrectly, either by analyzing the data in a purely phenomeno-
logical approach, or by adopting some simplified theoretical model. One ex-
ample of the latter is found in nuclear physics, where high-energy elastic
scattering from a large nucleus is well described by a 'grey sphere' model,

V(l)(r) = iV r <R,

=0 x> R,

where Vy is real and positive. Another example is described in the next

section,

Remarks

1.

D.

The Eikonal method in relativistic field theory is not on firm
ground at present,‘since one does not have an explicit equation

of motion analogous to the ‘Schrddinger equation, and yet to in-
vestigate the nature of the approximation, one must go beyond the .
lowest orders of .perturbation theory. The best informatien on

its significance available. at present may.be found. in the thesis
of Torgerson°

The Regge (complex angular momentum in t channel) representation
for the -amplitudes Al(s,t) = /s £(s,t) obtained from the Eikonal
formula may be used, in which case we discover that A%I(t) has

branch points (not only poles) in the complex A plane whese loca-
tions depend on t. At t = 0 (with the Pomeranchon in the Eikonal
function) they move up to. A = 1, and appear.of.equal .asymptotic
importance as the Pomeranchon.pele. For -t > 0, they are higher
than the Pomeranchon and. dominate over the pole asymptotically..

Such branch points, consequences of s channel unitarity, were flrst
locatéd by Amati et al.3! and further discussed by Mandelstam. 82,33
However, the cancellations pointed out by Mandelstam3?2 may not occur
in the Eikonal formalism; this point is discussed in Ref. 34,

Regge Poles and the High—energy, Optical-model Born Approximation

To determine X, it ‘is necessary to know' the ‘functional form of the

Born approximation for scattering, fBorn,

1f we -have a model that contains .a parameter, say I', which multi--

plies the strength of the potential, then fBorn will be proportlonal to T.

59
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The amplitude f, determined by the Eikonal expression, then will approach
zero as T > 0. Conversely, if we have a model such that f is proportional
to a parameter ' as I' > 0, we can-interpret the limiting function (£/T) as
the Born approximation fBorn except for normallzatlon.

Now the phenomenological Regge-pole model, described previously in.
these lectures as a model for the high-energy behavior of scattering ampli-
tudes f, can be formally provided with such a stréngth parameter simply by - ..
multiplying the crossing matrices by T; the model as previously described.
then corresponds to I' = 1. But the discussion above then implies that the.
Regge poles in the crossed channels are to be interpreted in the sense of a

-Born approximation for the s channel reaction and supply us not with f itself

but with fBorn hence the Eikonal function X. .

. In the limit of small-momentum transfer and high energy, the Born
approximation sometimes gives a satisfactory qualitative descriptien of the
scattering amplitude, but in general the use of Regge pnles in X leads to
quantitatively different results than using Regge poles in £, particularly in
reactions such as charge exchange, which can be considered as small dif-
ferences of elastic-scattering amplitudes. 'he difference between f and
fBorn in such. a case can be expressed as follows: If fpop is the difference
between TN elastic scattering in isospin states T = 3/2 and T = 1/2, we have:
Eikonals X3/ and X;/, obtained from the Regge poles contrlbutlng to. these
states; ignoring Spln we obtain

fop = ik &f b db Jo(bv/or) [ePX1/2 - oiXs/2y (92)

Now if the elastic scattering is domlnated by T = 0 poles in the £ 
channél (e.g., P and P'), such that

|X3/2 - X1/2] << 1, . - (93)

we can write -

where

|8x| << 1,

and X is the average elastic-scattering Eikonal function; thus

fEL = ik f0°° b db Jo(bV=E) (L - 1%y, (94)

Expanding the exponéntials in (92) and keeping only first powers-
of 86X, we obtain .

feg = ik-L: b db Jo(bV/-t) e (-18%). (95)

Now (kd8X) is just the Fourier-Bessel transform [cf. (91)] of the
charge-exchange Born approximation, i.e., the dominant Regge pele in the
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charge-exchange amplitude.. If we determine X -from elastic-scattering ex=-
perimental data through (94), then (95) represents exactly the absorptive-.
correction prescription (omitting spin) of Refs. 25-27 applied to 7N charge
exchange with a Regge-pole form for f%%rn_

A simplified numerical example of the magnitude of this correction.
is given in Ref. 34, as well as some additional discussion concerning.the . -
foundations of the method in relativistic formalism. Applications to re-
actions with spin are naturally complicated, and follow the methods described
in Refs. 25-27 with Born terms as discussed in Section VIII of Part Two of
these lectures, provided the -elastic scattering can be well described by a
spin-independent scattering amplitude. :

E. ‘Spin Flip Amplitudes in the Eikonal Approach

1f the above condition is not met, one must use an extension of the:
Eikonal formalism including spin. The nonrelativistic description for
spin 1/2-spin O cases is given in Ref. 29, but a relativistic treatment
has not been given in the literature. For completeness, and for illustra-
tive purposes, we now discuss the relativistic @N scattering problem (in-
cluding spin). Our-starting point will be the postulates a, b, "and ¢ above;
development of the Eikonal formalism for helicity nonflip (G+) and helicity
flip (G_.) amplitudes then will follow analogously to the he11c1ty—less
problem.

In 7N scattering, scattering eigenstates (and hence phase shifts)
for definite J and parity (*) may be constructed; the corresponding partlal—
wave scattering amplitudes fj: are linear combinations of the partial-wave
helicity amplitudes gg occurring in the expan51on520

Gyuls,t) =) J +% di/s 1/2(2) gi(S),
5 .,

and

G_(s,t) =] J+3 dl/am1/2(2) g2(s). ‘ (96)
=l |

Explicity, the JP elgenamplltude expansion for .spin 1/2- sp1n 0 scatterlng
can be written3S

£1(s,t) = ) £, P! (2) ) £, P! (2)
2=0 ¢+ A+l 42 - " 2-1
and
) = - - Yy pt
fa(syt) = ] (£, - £,) Py(2), )
=1 . A
where z = cos 0; the normalization is fixed by

do

TS |£1 + £ cos 6|2 + lf2|2 sin? o. (98)
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The fy,, expressed in terms of phase shifté, are

i8ps i .
e %% gin 62+ e2162¢ _

_ s £ _ ] : 99
fos = 7 k 2ik o (99)

Here & =.J - 1/2 for fg_ and 2 = J + 1/2 for f2+;'(2 is the orbital angular
momentum and is a good quantum number when spin is present in this case,
only because there is an unique relation between J, parity, and % for

spin 1/2-spin 0 scattering).

Comparing (97) and the noermalization appropriate to covarlant
helicity amplltudes,

c e flo P+ ol - - am

'n1m
ola

we find the following rélations between G, and f, and f2:

Gy = (f1 + f2) cos (8/2)

G_ (fl - f2) sin (9/2). . o (101)

Then, if we examine the expressions of the dgv functions in terms of Pé
and sin (6/2) or cos (6/2) (see Ref. 20 of appendix), we obtain, by compar-
ing (96) and (97),

gl = AlEy, + £y ] = sG]t - (2100 4 2RO - g

and

gd = Vslf

R RN I YO} R (et CL b (102)

where p(s) = 2k/Vs, and % is defined to be J - 1/2 here. The expansions (96)
are now . (by postulate a) replaced with the integral over continuous b =

(i + 1/2)/k as before, using a small angle approx1mat10n for the d function
(see. appendlx of Ref. 27):

Gy(s,t) = k2 cos (8/2) [7 b an 30 (/D) g, (s,b2)

and
6_(s,8) =2 [“ b db 31 (/D) e (s,b2), o (103)

where, putting Xi(s,bz) in place .of 2621(5)’ we obtain

1 2 s 2
gi(s,b2) = (1p)=1[PH(E:PD) 4 BX-(8:DT) g



and
: _ .\ 2 .
B-(s,62) = (1p)” [DH(EPD) _ G 1X-(:0D) (104)
(Analyticity properties in t of Gt réquire that the .g: be functions of b2.)

Now we determine ‘the X's by -examining the Born approx1mat10ns for
G+ and G_‘ . Before doing this, we flnd 1t convenlent ‘to deflne 'nonflip"
and "flip" Eikonal functions :

Xo

5(x+v+ X)s - Xg %}%(x+'¥ X
so .
X¢ = Xo + Xg, X = xo’-‘xf;
‘Thenjweﬁcon write, by-reorranging the exponenﬁials,in (104),

iXp

' 112 e : .
Gpls,t) }E—icos (8/2) [7 b db Jg(/=E)[1 - & cos X

and'

. 2 o . :
6-(s,8) = = [ b ab 3, /=) [eX0 sin X,]. ' ©(105)

Now expanding to first order in Xg and Xf, we requ1re that-the Born approxi-

mations be obtained as follows

2 .' o B : '
6B = %; cos (8/2) 7 b b Jo(o/TD) Xo(s,bD),. .
and‘
2 - S ' , - |
¢t - X [7b @b 110/ Xg(s,0D). (106)

Inverﬁing these Fourier-Bessel transfofms; we obtain by using (101),

_Xo(S,bz) ,(p/kZ)’ J’O"f’ x dx Jo(xb)l[f}l?’orn(s, Eij + fgom(s_’ _XZ)]

and

Xe(5,b2) = (p/k2) [~ x dx J1(xb) sin (8/2) [£3(s, —x2) = £5(s; -x2)1,
R 0 ’ .
(107)

where x = /:E; sipoe x = 2k Sin-(QZQ),‘we can also express Xg as

63
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Xg(s,b2) = (p/2k3) [* x2dx J1(xb) [£3(s, -x) - £3(s, -xD)1.  (108)
0 S )

[Remark: Although the cos (8/2) factor in (106) is quantitatively.
irrelevant, since the Eikonal method is good only for small angles, it is
essential in the -inversion formula“ leadlng to (107); otherwise there would-
be (formally at least) an integration over a reglon where cos (8/2) is
imaginary, involving a factor of [cos (6/2)]1-1.1 : :

Observe that even though the spin-flip amplitude £, may be . zero :in: .
Born approximation, we obtain a nonzero f, when the relativistic Eikenal
method is used. This is related to the spln—orblt term which appears in
the D1rac equation for (certain classes of) central potentials. '

If. the Born approx1mat10nb for he11c1ty-f11p (Gg) amplitudes are
small (but not G ), we can expand G_ to first order in X¢ .and obtain.

n

© | i ‘ 2
G_(s,t) (%;)% b db Jl(b/TE) eIX0(s:2%) 1y (4,p2), (109)

while

n

, = . ,
G (s,t) <%T>eos (8/2) % b db Jo(bvoE) [1 - elX0(8:2T) g (110)

Formula (109) can be interpreted as the ébsorptive correction formula for
the ‘helicity-flip amplitude Born term (Xf being a linear transform of
GB), if we deduce Xp from experiment assuming ?G << |G+|' . The purpose

. of .using (109) would be to estimate polarization (necessarily small.for most

angles in such a case), glvenla.model for GB (e.g., Regge poles).

¥, Polarizatien in 7N Scattering

It is possible to obtain large polarizatioms in 7p scatterlng for-
some scattering angles even if |Xf| << |xols |Xf| << 1. This is well known
in nuclear-physics applications of the optlcal model (see, for example,
Ref. 36), but is not yet.widely. appreciated.in high-energy phy51cs. We now
indicate how this can occur. ‘

Suppose |Re G+| << |Im G+| for most angles but that Im G4 has a
simple zero at' z ='z;, and that Re GL and IG_| are small and slowly varying
near z =-.z;. Then putting Im Gy (z) Y y(z - z1), o = Re G4(z1), By =
Re G_(z;), and By =-Im G_(2;), we have, for z near 2z,

do

9o = lel2+ feo|27= y2(z - 2)? + 62

8

where 62 = a2 + 82 + 82, If (as assumed) v2 >> §2, the differential cross
section will have a sharp minimum at z = z;. Now-the polarization near
z = 23 has the form : ' : '

2 Im(6} G-) ~ ,Biv(z —z1)++ aBp
|G4_-|2 + |6_|? Y2(z - z1) + 62

P(8) =
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Therefore, if |aB,| << |y81| (true if a; B1, and B, are all comparable in
magnitude), we have

v(z - z1)
'Yz(z - 21)2 + 62

e

P(0) ¥ 28,

The maxima (and mlnlma) of this occur at (z - 21)2 = 62/y . and at these
points: :

2y1/2

|P|... = B1/6 = B1/(BS + B3 + a?)

MAX

Between these maximal points, P has a zero at z = z), Note that
|P|mMax can be essentially unity if 82 + a2 << 2. .In such a case, P(®) has
the behavior sketched below with do/dQ for comparison:

-1 cos §—=
Z)

Such local minima in do/df, with associated '"dispersion curves'" for
-P(8), have been observed in 77p scattering near 2 BeV/c. (There is no
direct evidence that IXf| << 1 or |X0|, however, in this case, and it is
not clear whether the Eikonal approximations would be good at this energy.
Furthermore, in this problem the energy dependence of the secondary maximum
amplitude is too rapid to be associated with leading poles in X.)

If the Regge-pole Eikonal approach is adopted, one finds then, at
sufficiently small angles (where the Born approximation is expected to give
qualitatively correct results), a polarlzatlon and differential cross section
roughly as predicted by Phillips and Rarita® whereas at larger angles one
can easily obtainh large polarizations for some angles if Im G4 has a zero
while |Re G4| and |G_| are small compared to | Im G+|, for most angles, as in-’
dicated by the discussion above.

X, Concluding Discussion

The Regge-pole concept in high-energy physics may be considered a great
improvement for high energies on the .older ideas of single-particle exchange
models, but the underlying physical assumptions (as presented in these lec-
tures) are similar. Regge poles thus provide a semiphenomenological con-
nection between resonances or particles with t channel quantum numbers, and
liigh-energy scattering or cxchange processes in the s channel.

The present data on high-energy mtp and K*p scattering and charge ex-
change, as well as less accurate data on other meson-baryon final states, is
consistent with a few Regge poles in each case (most of this is exhibited by
Ref. 9) provided only small -t values are considered. That this restriction
should be present is plausible if we interpret these poles as Born approxi-
mations for the amplitude, in an optical-model viewpoint.
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The situation in pp scattering and pn charge exchange requires six
poles (P, P', w, p, R, and m); the first three were included in order to
fit pp elastic scattering only,! 10 but p and R are necessary to fit the -
energy dependence of opp -0 p;37 finally, m is necessary to explain the
sharp peak for 0 < -t < u2 served in pn charge exchange.38 However, all
these poles are expected t0‘contribute, on the basis of the mesonic-state
mass spectrum (cf. Ref. 10 of Part One), so they are not introduced in an
ad hoc way.

With pp scattering, at momenta below 10 BeV/c at least, the Regge
poles apparently do not dominate the scattering amplitude. This is indi-
cated by the energy dependence of the width (in -t) of the pp diffraction-
scattering peak, which expands with increasing energy, contradicting the
simple expectation of logarithmic shrinkage if only one pole is used. 1In
any case, the pp and pp behaviors are quite different. 'The introduction of
the optical-model concepts, however, allows these to be reconciled; the pp
system has a strong absorptive potential due to annihilation channels, and
this extra contribution masks out the pp Regge poles at low to moderate
energies. This may be thought of as an 'absorptive correction' ‘to the
elastic-scattering Regge poles, which presumably will become less important
at higher energies than presently accessible, thus asymptotically insuring
similar behavior for pp and pp. A similar effect (nonasymptotic absorptive
contribution to X) may be responsible for the secondary maximum seen in wp
and K™p scattering between 1.5 and 3 BeV/c, since it disappears rapidly
relative to the forward peak with increasing energy.

Although the -small-angle phenomenological approach, as outlined in
these lectures, is not able to provide a complete dynamical scheme for strong
interactions, it does provide a nontrivial model framework wherein con-
straints between many reactions are present. An example of such constraint
is the existence of a single-trajectory function a(t) for each pole, inde-
pendent of the reaction in which the pole participates, and essentially
determining the asymptotic energy dependence and phase (for each t) of any
one-pole contribution. The fits already have produced nontrivial predictions
for polarization at small -t values, which seem to ‘agree in order of mag-
nitude with experimental results in 7N small-angle scattering at momenta as
low as 2.5 BeV/c,

Further results on the energy dependence of reactions involving only
one or two poles (cf. Section VI) will provide stringent tests of the cen-
sistency of the pole analy81s, either of the amplitude itself or of the
optical potential. :
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. APPENDIX A

Legendre Functions, Hypergeometric Functions,
and the Gamma Function

.For convenient reference, we summarize the representations of Px(z)
and Q) as hypergeometric functions and their singularities in A. These
representations are contained in Whittaker and Watson.*

Pk(z) = F(A + 1, =x; 1; L ; z);'
QA(Z) = 1 /r (L + 2) (X ; l, —;‘-+ 1; » + 3/23 z_2>.

(22) M1 r(3/2 + )

For |x| < 1, the hypergeometric function F can be represented by the
convergent power series

I'(c) E I'(a + n) I'(b + n)

F(a,b;c;x) = ffgj??gj (c + n) T(1L + n) -

n=90

For other values of x, the following (Barnes') integral representation
may be used: .

_ T'(e) 1 I+i” I'(a + s) I'(b + s) T(-s)
T T(a)T(b) 2mi T(c + s)

F(a,b;c;x) (-x)8 ds,

where the path of integration is deformed (if necessary) to avoid poles of
the integrand depending on a, b, and c.

The T function has the integral representation
. (o]
r'(z) = [ et dt t%71,
0

and, alternatively, an infinite product representation (Weierstrass),

F%z) = ze'? II (l + —-> —z/n,

where y is Euler's constant.

The last representation shows that T(z) has simple poles when z is at
a negative integer, and these are the only singularities for finite Izl

*E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge
University Press, Cambridge, England (1963), 4th ed., reprinted,
Chapters 12, -14, and 15. '
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This allows..

Q> that
(A1) _PA(Z)
(A2) Q,(2)

occur

us .to..conclude, .from the.above.representations of P) and

is analytic -in the entire fini;e.X plane  for any z, and

has only poles in the finite complex )\ plane, and these
at A = -1, -2, -3, ... . : :
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APPENDIX B '
Regge Poles for Arbitrarily Weak Potentials

When the strength of the potential is 1nf1n1te51mal the FODA (Sec-
tion III of Part One) becomes exact. - Then (for a simple quawa potential)
the Regge poles are the poles of

(82/2k%) Q, (1 + w2/2k?) =

[ (k%) Topy =

oo d .
1-8 | 3 Q) (1 + u2/2¢%)
0 2(q2 2 : .

q°(q° - k° - ie)

Now if g2 ¥ 0, or |k| + =, we have just a Q) function (the numerator),
~which has poles at A = -1, -2, —3, ...; these are the (fixed) Regge poles
of the Born approximation. For g # 0, the poles of Q in the denominator
now cancel the poles of the numerator at the negative integers; but the de-
nominator now will vanish for some A near every such negative integer, since
the Q) function gets arbitarily large for X sufficiently close to such a
pole. Thus, if g is varied smoothly away from zero, the poles in A will
move smoothly away from the negative integers, but remain close to them for
small g (or large |k|) In fact, it can be shown (cf. Ref. 5 of Part One)
that the trajectories (pole positions in the complex A plane) a, (k) can be
expanded to first order in g2 as follows

an(k) = -n + 1g2/k + e .

Similar results hold for a superposition of Yukawa potentials, where
g? is then a weighted average strength,





