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LECTURES ON REGGE POLES AND 
THEIR PHENOMENOLOGICAL APPLICATION 

IN HIGH-ENERGY PHYSICS 

R. C. Arnold . .. 

. . 
PREFACE . . 

These lectures will be.divided into two parts. In Part'One, we 
will discuss bound states and. scattering. from a nonrelativTstic, .potential- 
theory viewpoint. .Regge poles will be intr0duced.a~ generalizations of 
bound states and scattering resonances. Regge trajectories are discussed 
as aids in classifying spectra of complex two-body systems.with many bound 
or resonance states.. A classification.of .presently known, strongly inter- 
acting particles and resonances is exhibited to the extent that data on 
the.spectrum are presently available. 

In Part Two, crossing relations and the Sommerfeld-Watson transform 
are employed to discuss the influence of Regge poles on low-momentum- 
transfer, high-energy reactions in crossed channels. Phenomenological 
analyses of data from selected two-body reactions are discussed, and suc- 
cesses and failures of simple Regge-pole models are explicated. Peripheral 
models for inelastic reactions are treated as special cases. Finally, a 
(presently) semiphenomenological optical-model framework, including as a 
special case the absorptive correction method, is briefly described as an 
example of a more general approach to high-energy reactions in which the 
Regge poles appear as an approximation valid in the empirically successful 
cases described above. 



PART ONE 

I. Simple Model I l l u s t r a t i n g  Regge T r a j e c t o r i e s  and, S igna tures  

Consider a  diatomic molecule,  e.g. ,  H 2 ,  wi th  two i d e n t i c a l ,  spin-112 
n u c l e i ,  bound such t h a t  a  r i g i d  r o t a t o r  model i s  a  good approximation. 
Consider n u c l e i  on ly ,  t r e a t i n g  e l e c t r o n s  a s  a  s e l f - c o n s i s t e n t  phenomeno- 
l o g i c a l  p o t e n t i a l .  Assume no nuclear-spin dynamical coupl ing.  (See 
Landau and L i f s h i t z . ' )  There a r e  two nuclear-spin wave func t ions ,  S  = 1 
(symmetric) and S  = 0 (ant isymmetr ic) .  Because of t h e  P a u l i  p r i n c i p l e ,  
on ly  odd R r o t a t i o n a l  s t a t e s  occur  i n  t h e  f i r s t  case  (R = 1, 3 ,  5,  . . . ) 
and even i n  t h e  second (2 = 0,  2, '  4, ...). The r o t a t i o n a l  spectrum of 
t h i s  molecule then  c o n s i s t s  of two d i s j o i n t  s e i u e n c e s  of enerRy l e v e l s  
(pala a d  o r r h o ) ,  

and 

2 
Note w o  i s  inve r se ly  p ropor t iona l  t o  t h e  moment of i n e r t i a ,  hence in-  

v e r s e l y  p ropor t iona l  t o  (nuc lear  s epa ra t ion )  2 .  I f  a  smal l  nuclear-spin 
coupling i s  in t roduced ,  then t h e  two sequences w i l l  no longer  l i n e a r l y  in- . 
t e r p o l a t e  each o t h e r ,  bu t  w i l l  be  d isp laced  a  small  amount, e .g . ,  
E ~ + - E ~  + . 

We can p l o t  - Eg v s  R; t h i s  appears  as shown i n  t h e '  fol lowing ske tch ,  
f o r  small  R .  The l a r g e  R p a r t  of t h e  curve is.  t h e  breakdown of r i g i d -  
r o t a t o r  model. Now observe:  

a .  There a r e  obvious, s imple,  a n a l y t i c  func- , 

t i o n s  E'(R) = ~6 + R(R + l)Nwo, which 
i n t e r p o l a t e  between t h e  bound s t a t e s  a t  
i n t e g e r  R .  Such a  func t ion  can be invert'ed 

i t o  g ive  R(E) , c a l l e d  a t r a j e c t o r y .  

b. O t h e r  t r a j e c t o r i e s  u ~ u a l l y  e x i s t ,  wi th  d i f -  

1 2 3  f e r e n t  r a d i a l  ( i . e . ,  v i b r a t i o n a l )  quantum 
1 number, which have d i f f e r e n t  w g .  

c .  T r a j e c t o r i a s  ;ill t u r n  over even tua l ly  s i n c e  r o t a t i o n  w i l l  p u l l  
t h e  molecule a p a r t  i f  r o t a t i o n  i s  too  ene rge t i c .  

11.. I n t e g r a l  Equatiqn f o r  S c a t t e r i n g  Amplitude and A n a l y t i c i t y  i n  R with 

When bound s t a t e s  a r e  p r e s e n t ,  we can show t h a t  t h e r e  a r e  such. i n t e r -  
p o l a t i n g  t r a j e c t o r i e s ,  . . which r ep resen t  bound s t a t e s  when !?(El passes  upward 



through an integer... In general, there will be (+) and (-) trajectories due 
to the existence of exchange forces, which provide different potentials in 
even and odd R states. 

Not only bound states, but'also scattering resonances may,be connected 
by a trajectory. To show this, we must make a close connection between 
scattering and bound-state . solutions of the ~chriidinger equation. (SE) , and 
exhibit smooth behavior.of:SE solutions as R varies. 

We will replace SE by an integral equation for the scattering amplitude; 
these .unified properties .will.be easy.to.see,. and an approximate solution 
(for.noninteger R as well as integer) can be exhibited. 

Let us consider a two-particle system, bound (E<O) or scattering (E>O). 
Put k2 = E; then k is real for scattering, and imaginary for the bound state. 
Angular and radial-wave functions 

+ - ,  
- are separated. whenever potential depends only on I r 1 . The Schrzdinger 
equation . _  

then separates, giving radial ,equations for each R .  

For either scattering or bound-state boundary conditions, these radial- 
wave functions for angular momentum R satisfy 

The boundary condition (BC) appropriate for scattering (k real) is . 

+- 
where k is a vector along the incoming beam direction with magnitude k, and 
f(8) is called the scattering amplitude. 

For bound'states, the BC is (with k imaginary) 

Note that these are mutally exclusive conditions. 
' 



The. BC1s in terms of '&dial wave functions may be written , -  ' 

. .  . 

for a boun'd state.~f.angu~ar monientum &;.:and ,, 

for scattering in a state of angular ,momentum R. The j t e q  represents the, . ..' . ....... . .  

plane-wave part .(see .below). A complete ,set of ',solutionk o.f ..the homogeneous . " 

version (V = .C)) of (1) are. spherical Bessel function j pa (kr-) , yq,(kr) , which , 
- .  

have.asymptotic behavior as r:+,w, as follows: ' .  . .  < .  . . . . 
. . . . 

and 
. . 

.. . 
. kr yk'(kr) +. cos (kr - ~~12). 1 . . 

A plane wave, which satisfies the icatteTing BC with V = 0, . hence . f . =  0, is 
represented as follows with jR,,functions only;. . 

I .  . 
L 

A purely .outgqing wave. solution .can, also be cons.tructeh of 'the form 

i(kr .- Q 7 r / 2 )  . . .  . . 

h(') R (kr) = yR(kr) + ijR(kr) ? e .  kr 

Knowing a complete set of :solutions for the homogeneous version of (1) eri- 
ables .us .to construct Greenl,s functions.for .(l) and t&.converC (1) to an 
integral equation., .(An a1ternative:to .our approach is presented.inSRef. 2.) . , 

For 'any BC, we first ftnd a G .(k;r,r.() such: that. 
, R 

'For 5 scattering BC, we then construct G such that 

. , r-, 
r1 finite . . , , . . 



Given such a G, we now show that (1) with scattering BC can be replaced 
by the -integral equation 

UR(kyr) = je(k,r) + Iw dr' ~~(k;r,r') V(rl) UR(k,rl), 
0 

(3) 

. , 

provided V drops off rapidly enough with increaking r. 

To show that a solution. of (3) satisfies scattering BC, it is sufficient 
to examine the integral over G, which is . 

This integral just depends. on the BC for ,G, which was specified -co.rre,c,tly. 
above. 

Explfcitly, we now assert that G can.be represented as ' 

where 

r = min(r,rl) and r = max(r,rl). 

The BC is obvious. The fact that G satisfies (2) is not so obvious; it 
is however, easy to see that the left-hand side of (2) vanishes for r # r'. ' 

. . . 8. _ , . ... . 
The representation (4) may be replaced,. by using a product £ormula. for 

Bessel functions,. by the integral representation 

Now the scattering amplitude fi(k) is defined by 

- - lim Iw dr' ~ k ; r  V(rl) ~~(k,;') 
r- 0 



Thus, 
. . . . .  . .. . . . . . . . . , .. t 

. . 
f Q ( k )  = I m d r  j a ( k r )  V(r) Ug(k , r ) .  . 

0 
( 6 )  

Thi s  r e q u i r e s  t h e  p r i o r  coinputation of ~ i .  Now we w i l l  o b t a i n  an i n t e g r a l  
equa t ion  which y i e l d s  f~  d i r e c t l y  wi thout  f i r s t  computing UQ. Define 
f R ( k , k l )  by t h e  formula , . , . 

where U Q  i s  t h e  s o l u t i o n  of  ( 3 ) .  Note t hen  t h a t  f  (k) = f  Q (k ,k)  i s  t h e  phys- 
i c a l  s c a t t e r i n g  ampli tude.  W e  now d e r i v e  an  i n t e g r a l  equa t ion  f o r . f Q ( k , k l ) ,  
which we w i l l  denote  a s  t h e  off-energy-shel l  s c a t t e r i n g  ampl i tude '  

\ 

S u b s t i t u t i n g  (3 )  i n t o  (7), and us ing  ( 5 ) ,  we have . , .  

d l  f p ( k , k l )  = Gt(k,k1)  + j m  d r  j a ( k r ) , V ( r )  1- d r '  I - .  . . . . 
U 0 .  O q 2  - k2 - i~ 

Now t h e  r i n t e g r a l  can be  c a r r i e d  ou t  i n  terms of V by i n v e r t i n g  t h e  
o r d e r s  of i n t e g r a t i o n ;  we have.'elierl 

Q 

The r ' in ' t egra l  now y i e l d s  f  (q , k t  ) , and w e  have, f i n a l l y ,  
Q 

Notes: 1. I n  t h i s  equa t ion ,  k '  i s  f i x e d  and i s  t r e a t e d  as a  parameter when 
t h e  equa t ion  i s  being so lved .  When a  s o l u t i o n  i s  obta ined ,  w e  s e t  
k t  = k  t o  o b t a i n  t h e  phys i ca l  partdial-wave s c a t t e r i n g  ampli tude 
f Q ( k )  

2 .  For bound s t a t e s ,  k12 < 0 ,  s o  t hh  i~ is  unimportant ;  t h e r e  i s  no 
s i n g u l a r i t y  i n  t h e  k e r n e l  then .  

. .  . . -. 
For a  s imple Yukawa p o t e n t i a l  V(r) = (ge'Pr)/r, w e  ob t a fn  



For a superposition of Yukawas, then, 

we obtain 

. . .  

Now Qp, (Z) is an analytic funct.ion of R, for: R # -1, -2, . . . , , which (see 
Appendix A) can be represented as a hypergeometric function. Thus. (8) yields 
('in general) solutions fR(k). for (almost all) complex R values ,. which ,coin- 
cide'with physical.scaftering amplitudes when R = 0..1, 2, ..; . : :, . . . . 

111. Formal Solution of Integral Equation for Scattering Amplitude; Bound 
States; First-order .Determinantal Approximation 

In the previous section. we have gone as far as one can go with scatter- 
ing states without obtaining explicit solutions for (8). We will now exhibit 
a method of solution, show that the bound states are also obtained from the 
solutions of (8), and derive a rough approximation for the bound-state loca- 
tions. This will be used in a spirit similar to the Born approximation, which 
is usually taken as a rough guide to scattering. The approximation will re- 
tain analyticity in R and thus exhibit Regge trajectories for any potential 
that can be represented as a superposition of Yukawas. 

Take E # 0 for the present. Consider approximating the integral in (8) 
by a sum over N discrete q values {qn), with weights {wn) for integration. 
Then, evaluating k also at these values, we obtain (for fixed kt) the approxi- 
mate equations 

for n = 1, 2, ..., N. Let. 

and K g =  .matrix whose (n,m)th entry,is the, expression in braces 1 in 
Eq. ( 9 ) .  .Note.that Q (as well as VR) is analytic in R, in the sense that 
all terms in K (and V). are.analytic functions of R. Then (9) can be written 



where (I),, E 6, and the matrices I.and K are N x N. If (I - Kg) is a non- 
singular matrix, we may invert it and obtain the following solution to (9): 

We can then.approximate the solution of.(8) arbitrarily .well by taking 
N->a) . 

Since the - inverse r1 of a matrjlx M depends 'analytically on .the dements 
Mij , f will be .analytic in 9. except for isolated values. of R .such[ that - .  

det (I.. - Kt) = 0. Let De(kl) = .det (I - KR) . (~ecall. that .kl is a paramgter 
in Kg.. ) 'Now we. prove the, following: "hen DR = . 0. .and k2 .< 0, a bound state .. 
exists for.,these values .of R and k. ,The tem."bound state', will be applied, 
at the moment for integer (physical) !L values. 

To prove thi= a~~ertion, concider the :,matrix equation (?a) (for arbi- 
tarily .large N) . If D # .O; .there is a unique solution to (9a) ; . bu't .i£ D = 0, 
(9a) has a solution if and only if the inhomogeneous term is zero. (This 
is a well-known matrix-theory theorem.) Thus, if D = 0, 3 'satisfies the ,honio- 
geneous equation . . 

Passing back (N-) to the continuous functions, we obtain the following 
homogeneous.equation analogous to (8): 

Rertacing the steps leading eo (8) and replacing fl0' by i r s  expression 
in terms of wave functions, we find tkat the associated radial-wave function 
u / ~ )  (k,r) must satisfy the.homogeneous equation corresponding to ( 3 ) ,  or 

uk0)(k,rj. = Jm dr' GR(k;ryr' j ~(r' j "in? (kyrl). 
0 

Now this.wave.function is novalizable; using the BC for ,GR for .r-, we 
obtain. 

This shows the integrability of I U  1 at the upper limit if k2 < 0. GR is 
integrable at r +- 0. Thus when Dk(k) = U, there exists u(O) (k,r) such R 
that 



and h e n c e . t h e r e  i s  a bound s t a t e  a t  th . is  k  value.  
. . 

This  does n o t  show what happens f o r  k2 > 0 ;  bu t  s i n c e  K i s  complex i n  
such a  ca se  i t  is  a t  l e a s t  p l a u s i b l e  t h a t  ' :det(1 - 'I() '.+ 0' i f  k2 > 0. . However, 
we can have .Re >Dg(k) = 0 f o r  k2 > . 0 ,  and i n  t h i s  ca se  w e  o b t a i n  i n  gene ra l  a 
sca t t ' e r ing  resonance a t  t h a t  k  va lue  i n  t h e  R t h  par t ia l -wave ampli tude,  a s  we 
show l a t e r .  

% 
Now we show how t o  develop DR i n  a  convergent power s e r i e s  i n  V R ;  we 

w i l l  then  o b t a i n  a  rough apprgximation f o r  ' the s o l u t i o n  of (8) by r e t a i n i n g  
only  t h e , f i r s t - o r d e r  term i n . v g  i n  D R  (analog of Born approximation) .  . 

For e x p l i c i t l y  so lv ing '  ( a ) ,  we need t o  g ive  an e x p l i c i t  f o r m u l a . f o r  
(I - KR)-' ifR, which can be i n t e r p r e t e d  i n  terms of cont inuous func t ions ,  a s  

. . N + For t h i s  purpose,  we use  t h e  fol lowing expansion of t h e  inverse o f ,  a  
ma t r ix  i n ' d e t e r m i n a n t s  of submatr ices  (Cramer's r u l e ) :  

( s l )  ij = (-1) i + ~  d e t  [ ~ ( f j )  ]  l d e t  [MI , . (13) 

where M ( i j )  i s  t h e  (N - 1 )  x (N - 1 )  ma t r ix  ob ta ined  from M 'by d e l e t i n g  
t h e  i t h  row and t h e  j t h  column. 

i+j . 
We can c h a r a c t e r i z e  A ( iJ)  ! d e t  ( ~ ( ~ j ) )  x (-1) a s  a  p a r t i a l  d e r i v a t i v e  

of d e t  M w i th  r e s p e c t  t o  t h e  ( i ,  j ) t h  element of M y  a s  fo l lows:  

A ( i j )  - a ( de t  M) . 
aMi 

[This  can be v e r i f i e d  simply i n . t h e  2 . x  2 case ,  

b l  

= ( d), 
d e t  M = (ad - bc) . 

The d e f i n i t i o n  of M ( i j )  y i e l d s  e x p l i c i t l y  

d e t [ M ( l l ) ]  = d e t  M 2 2  = M 2 2  = d ,  (The determinant  of a  1 x 1 "matrix" 

a  i s  t h e  va lue  of a:) 
d e t [ ~ ( l ~ ) ]  = d e t  M2' = M2' = c ,  

d e t [ ~ ( ~ l ) ]  = L, 

def tM(22r ]. i a ,  . . 



On the other hand, the formula (14) yields 

in agreement with the:explicit results above.] . . 
. . 

For continuous functions, the.discrete formula (14) may.be gene,rali.zed 
in a.functiona1 derivative notation, 

6 . . 
A(k7q). = dM(kSq) [det MI ; 

where [det MI is the limit of det.M as N.+ -, expressed as a'functional of 
M(k,q) [for example, a. power series involving integrais over M(k,q)]. . (We 
will not need to use, this ..form. explicitly ,in ,.what follows. ) .  

Then f (k) can.be written as f i ( k , k ) ,  where 
R 

where 

Thus the solution to (8) may be ~ritten~down, provided we can express 
Dg as .a functional of K a .  The bognd-s'tate positions (i.e., spectrum), how- 
ever, may .be.obtained (from zeros 'of Di) wit.hout employing any functional 
differentiation. 

" l r  

We will express the Ntll-order determinant D as a 'series in V, such that 
the first few terms can be explicitly evaluated.in the limit N + -. For this 
purpose, the,formula . 

det M = exp{trace (log M)) (18) 

is employed. The matrix (log..M) is defined .by the power-series expansion 
of the function 

Thus, if Z is a matrix and.1 the identity matrix, we define 



The trace 'of a matrix M is 1 M 
ij ' 

i 

The formula (18) may:be proved simply if we diagonalize M; in this 
case, , 

det M = n h j  

j 

where { X . )  are the eigenvalues of .M; and,'on the other hand . 
' 

J 

1% A1 

. ) 
'log A N  

trace (log M) = 1 log h  
j ' 

j 

whence 

exp[trace (log M)] = 61 X = det M, 

j 
j 

as required. 

Returning to the.case.M = I - K, we obtain 

trace K~ trace K3 + ...) o 

= exp(; trace K + - 
2 3 

Expanding the exponential in power series (in the strength of the poten- 
tial), we obtain then 

1 
Di = 1 - trace K + - [(trace K.)~ - traceK2] - . . . .. 2 '  (19) 

'I, 

If we keep only the lowest order in V, this becomes 

'I, 
D = 1 - trace K R 



Returning now to continuouk functionS (N + m);, and. . -  , setting . .. k' = k,,.. we 
obt'ain , .  

. dq 'I, 
D (k). .2 1 - Jm R o q2 - k2 - i, VQ (Pj.q) 

This is.called the FIRST-ORDER DETERMINANTAL APPROX1MAT:ION (for D), 
' abbreviated FODA. 

If we put k2 = -E < 0, then the bound-state energies E are such that 
(in the FODA) 

If.we define E(R) such that this equation is satisfied whenever 
E = E(&), then this defines a Kegge trajectory (in.FODA). . . 

Remarks 

1. The solution of (8) obtained by the formula (16) together with the 
series (19), is known as the Fredholm,solution for (8); the use of . 
D as given by (19) is known in potential theory as the determinantal 
m e t h ~ d . ~ , ~  This was developed by Brown kt &.5 for complex R. 

2. For Yukawa potentials, (20) cannot be evaluated in terms of simple 
tabulated. functions .. Bowever, some general. propertLes of bound 
states can be immediately deduced from (20), as we will see later. 

3 .  The coulomb scattering amplitude can be obtained by considering the 
limit p -) 0. IIoweves, this is a delicaLe l'lnl~, and although the 
coupling strength may be small, the series (19) does not converge 
rapidly for small binding energy; thus the FODA can, at best. yield 

- a crude result for the most deeply bound states. 

The ,corresponding approximation for fg now is obtained by using 

,(ij) - = bR(k.,k:) = -- 
1 .  J .  

a det (I - K) 
aKi 

and passing to the continuous limit, where.det(I - K) : D is .evaluated in 
FODA; we have.then 

. . 

so that 

,(ij) = a~ a ( l I L ) = {  o i f i f j  

ij m 



yielding, from (17), 

or, passing to the continuous limit, 
Z, Z, 

N (k,kf) = VR(k,kl). R (21) 

Thus the FODA result for fR(k), using (20).and (21), can be. written 

% 
where Bg(k) r Vk(k,k) is the Born approximation. Recall that this function 
is analytic in R and provides an interpolation between bound states (k2 < 0) 
and scattering amplitudes (k2 > 0). 

Further manipulations .with the expressions (14') and (15) yield the re- . 
sult that the exact fR can be written,in similar form, 

with D given by 

where N (k) is a real function for k2 > 0, analytic in R. 
R 

Accepting this, or relying on (22) as a guide, we can now show thaC.a 
zero of Re DR(k) for k2 > 0 and .integer.R corresponds to a scattering reso-. 
nance in the ~ t h  partial wave. 

The phase-shift representation of £2 is 

e isa(k) sin tie(k) 
f (k) = . = (e2i6Rik) - 1)/2ik. 
. R  k 

Thus 6R(k) is the phase-.of fR. When 6~ = 1~12, we obtain a resonance;' this 
meank R& f 0. But Re f jl = 0 'rhe~ns Re Y5-l = 0; and since NR is real, for a 'i; R k2 > 0, we flnd the cond.ition for a resonance is 

ReDR(k) = 0 ,  k2 > .0. (25) 



For Regge-pole d i s c u s s i o n  f o r '  s m a l l  I Bg I , s e e  ..Appendix .B.  

I V .  Regge Poles  and T r a j e c t o r i e s ;  S igna tu re  . . 

Now we%.can ' e x h i b i t  t h e  poles of f A ( k ) ,  i n  t h e  complex X v a r i a b l e .  These 
a r e  c a l l e d  Regge po le s ;  t h e i r  l o c a t i o n  v a r i e s  wi th  k  (or  E) ,  and t h e i r  pa th  i n  
t h e  complex' X p l ane  i s  c a l l e d  a  R e g g e ' t r a j e c t o r y ,  

Assuming i o r  t h e  moment t h a t  some bound s t a t e s  occur ,  cons ider  'the. most 
t i g h t l y  bound one,. w i th  energy El and angular  momentum R1 (e .g . ,  R 1 , =  .0 i f  
t h e  lowest  bound s t a t e  ..is S wave). ' . 

, 
Then, s i n c e  D X  i s  simultaneously a n a l y t i c  i n  X'and E, an  a n a l y t i c  func- I 

t i o n  X1(E) e x i s t s  such t h a t  

Th i s  A 1  d e f i n e s  a Regge t r a j e c t o r y ,  say  ( I ) ,  which may y i e l d  o t h e r  bound 
s t a t e s .  

To f i n d  o t h e r  t r a j e c t o r i e s ,  s e e  i f  t h e r e  i s  more than  one angular  mo- 
mentum s t a t e ,  bound o r  r e sonan t ,  a t  a  g iven  energy. I f  so ,  then  t h e r e  must - 
be  o t h e r  i n t e r e s t i n g  t r a j e c t o r i e s ,  which pas s  through t h e  o t h e r  bound s t a t e .  
(See a l s o  Ahmadzadeh, - e t  I n  t h e  Coulomb case ,  t h e r e  a r e  i n d e f i n i t e l y  
many R v a l u e s  bound a t  s m a l l  b inding  energy ( c l o s e  t o  t h e  continuum); hence 
t h e r e  a r e  i n f i n i t e l y  many t r a j e c t o r i e s  t h a t  produce phys i ca l  bound s t a t e s .  

A s i n g l e  Regge.pole  i n  f X ,  say  X1(E),, can be r ep re sen ted  i n . t h e  .complex 
. . 

h p lane  by 

where B1 i s  the  r e s i d u e  of f A  a t  X + X I .  We can express  B i n  terms of NJ 
and D x :  

where k2 = E. 

For l a t e r  r e f e r e n c e ,  we n o t e  t h a t  [ a t  l e a s t  i f ,A1(E)  > 0 ]  i f  a D A / a X  is  
nons ingu la r  ( a t  X = X.1). a s  k2. +- 0+, then  t h e  ? th re sho ld  (k2 +- 0+) behavior,  of 
$(E) w i l l  be  t he  same a s  t h e  th re sho ld  behavior  o f '  N (k ) ;  and i n  FODA, 

X.1( 0 

f o r  a  s imp le '  Yukawa. p o t e n t i a l '  V(r) = ge-'r/r. 



P u t t i n g  R = l ~ - l ,  we o b t a i n  

Thus t h e  resid.ues f i n ,  have.  t h e  behavior  

% 
where Bn(0) i s  f i n i t e .  

By s i m i l a r  reasoning ,  we can show t h i t ' t h e  s l o p e  of X(E) i s  r e l a t e d .  t o  
R - ~  (bu t  weighted i n  a more complicated way), a s  would be expected by s imple 
r i g i d - r o t a t o r  models, where t h e  moment of i n e r t i a  i s  p ropor t iona l  t o  R ~ .  An 
a l t e r n a t i v e  d e r i v a t i o n  of t h e s e  f a c t s  i s  one of t h e  concerns i n  t h e  appendix 
of Ref. 8. These f a c t s  a r e  r e l e v a n t  t o  a  q u a l i t a t i v e  understanding o f . t h e  
t h e  o r d e r  of magnitudes involved.  

If we t a k e  a l l  An l i n e a r  i n  E  ( o r  E~ i n  t h e  r e l a t i v i s t i c  c a s e ) ,  we;can 
a t tempt  t o  put  resonances and bound s t a t e s  empi r i ca l ly  on t r a j e c t o r i e s .  

% 
The p o t e n t i a l s  VR w i l l  be ,  i n  g e n e r a l ,  d i f f e r e n t  func t ions  i n  even and 

odd R s t a t e s ,  due t o  exchange c o n t r i b u t i o n s  ( s ee  Sec t ion  I above) d A s  a  
consequence, t h e r e  w i l l  be t w o ' s e t s  of t r a j e c t o r i e s ;  one s e t  w i l l  c o n t r i b u t e  
t o  bound s t a t e s  and resonances wi th  R an even i n t e g e r ,  t h e  o t h e r  t o  bound 
s t a t e s  and resonances wi th  R an  odd incege r .  We can express  t h i s  formal ly  by 
t h e  word s i g n a t u r e ;  we say  An(E) r e p r e s e n t s  an - even s i g n a t u r e  t r a j e c t o r y  i f ,  
when An(E) = even i n t e g e r ,  Bn(E) # . 0 ,  bu t  when A, (E),  = odd i n t e g e r ,  Bn (E) = 0. 

Conversely, we s a y  An repres 'ents  an &3 s i g n a t u r e  t r a j e c t o r y  i f  Bn(E) = 

0  (Comment: t h e  d e f i n i t i o n s  of On w i l l  be d i f f e r e n t  l a t e r  when s i g n a t u r e  i s  
exh ib i t ed  i n  terms of evea .and  odd Regge r e p r e s e n t a t i o n s . )  when hn(E) = ven 
i n t e g e r  . P 

Here we assumed t h e r e  were s u f f i c i e n t l y  many bound s t a t e s  so we can un- 
ambiguously c l a s s i f y  t h e i r  t r a j e c t o r i e s .  I f  t h e r e  a r e  only  one o r  two bound . . 

s t a t e s ,  i t  i s  necessary  t o  g i v e  a more formal d e f i n i t i o n ,  However, we can 
always t h i n k  of i nc reas ing  t h e  p o t e n t i a l  s t r e n g t h  g  t o  g e t  s u f f i c i e n t l y  .many. . - - 

bound s t a t e s ,  t h e n . c l a s s i f y i n g  t r a j e c t o r i e s ,  and then  cont inuing  back t o  i ts  
p h y s i c a l . v a l u e ,  t he reby  r e t a i n i n g  t h e  t r a j e c t o r y  l a b e l l i n g .  

V. Regge Poles  i n  R e l a t i v i s t i c  Theor ies ;  Q u a l i t a t i v e  Remarks 

The gene ra l  p r o p e r t i e s  ( i . e . ,  po l e s ,  a n a l y t i c  i n  L) of t h e  sca~cexing 
ampli tude f k ( E )  we have found a r e  r e t a i n e d  i f  a  r e l a t i v i s t i c . ( e . . g . ,  Bethe- 
S a l p e t e r )  equat ion  i s  used t o  o b t a i n  bound s t a t e s ,  p r o v i d e d ' t h e  r e l a t i v i s t i c  
p o t e n t i a l s  a r e  a n a l y t i c  fur,lctions of R ,  and t h e  r e l a t i v i s t i c  k inemat ics  a r e  

, . used. This  is  adequate  t o  show t h a t  Regge po le s  a r e  i n t r i n s i c a l l y  connected 

. . .  wi th  t h e  i d e a  of a  bound s t a t e  ( a t  l e a s t  of two p a r t i c l e s ) ,  i f  produced by 
a  p o t e n t i a l  w i th  s u f f i c i e n t  a n a l y t i c  p r o p e r t i e s  i n  R of i t s  s p h e r i c a l  Besse l  



t ransform not  a  n o n r e l a t i v i s t i c  phenomenon. A n a l y t i c i t y  i n  R of t h e  po- 
'L ' 

t e n t i a l  vR i s  connected w i t h  t h e  l i m i t i n g  f.orm of V a t  smal l  d i s t a n c e s  (pro- 
v ided  we exclude Coulomb p o t e n t i a l s ,  i . e . ,  bad long-range behavior ) .  I n  
p a r t i c u l a r ,  s c a l a r  meson exchange-, being t h e  r e l a t i v i s t i c  form of a  Yukawa 
i n t e r a c t i o n ,  .has '  t h e  same smo6th behavior  a s  i n  t h e  n o n r e l a t i v i s t i c  ca se  
w i t h  a  s imple Yukawa p o t e n t i a l .  

The FODA can be extended t o  r e l a t i v i s t i c  probldms, and' the.  formula (22) 
remains v a l i d  when BR(q) i s  t h e  r e l a t i v i s t i c  Born ,approximation f o r  

i s R  e s i n  6 
R 

fll (k)  = k 

With mass p s c a l a r  meson exchange, w i t h  (Lagrangian f i e l d  theory)  coupling 
c o n s t a n t  g ,  

1 1 2  
where W = (k2 + M ~ )  , M being t h e  mass of '  t h e  p a r t i c l e s  undergoing s c a t t e r -  
i n g  o r  binding.  The complete s t o r y  on t h e  Bethe-Salpeter  equat ion  wi th  s c a l a r  
meson-exchange k e r n e l  i s  contained in.: Ref. 9 .  

We w i l l  hencefor th  assume q u a l i t a t i v e  p r o p e r t i e s  f o r  r e l a t i v i s t i c  bound- 
s t a t e  problems t h a t  a r e  conta ined  i n  (22) w i th  (28) (o r  a  supe rpos i t i on  w i t h  
d i f f e r e n t  p ' s )  f o r  t h e  Born approximation, except  when o therwise  noted.,  

Remarks 

1. I n  a more r e a l i s t i c  fie.1.d-theory model, t h e  p o t e n t i a l  terms ("Born 
apprnx.  ") w i . l L  be complex above t h e  t h r c ~ h o l d  f o r  t h ~ e e -  body, ia- 
e l a s t i c  ( p r o d u c t i o n ) ~ p r o c e s s e s .  Associated wi th  t h e s e  th re sho lds ,  
Ng w i l l  have an  imaginary p a r t  a l s o ,  s o  t h e  phase of DR w i l l  n o t  
co inc ide  wi th  t h e  s c a t t e r i n g  phase s h i f t .  

2 .  O u r  obse rva t ions  on r e l a t i v i s t i c  t heo r i cg  apply s p e c i f i c a l l y  t o  
p r o p e r t i e s  of bound s t a t e s  and resonances and t h e i r .  a s s o c i a t e d  t r a -  
j e c t o r i e s ,  b u t  n o t  n e c e s s a r i l y  t o  t h e  complete s c a t t e r i n g  ampli tude 
i n  a  f i e ld - theo ry  model. 

V I .  ~ u l t i b h a i n e l  ~ s c a t t e r i n g  and ~ a c t i r i z a t i o n  nf ~ & s i d ~ . ~ p . s  
. . 

I n  p r a c t i c e  , ,p roblems i n .  high-energy physics:  almbst neve t . : a r e  concerned - .  

simply w i t h  s ingle-channgl  r e a c t i o n s . .  ~vexi '  i n  two-bidy .decay'. brokesses,  
more 'tHan one chaqhel  i s  a v i i i l i b l e ,  f o r  t h e  h e a v i e r .  're$bnanc+s. ' v  .More gener- . . 
, a l l y ,  a bound. s t a t e  or. , .rks.onin& m u i t  ' be  cohkidered &8! a .  cbTnpo&itk df ( a t  

, . , 

, l e a s f )  a l l '  t h e  two-body s t a t e d  . t h a t  'can % x i k t  w i th  the '  q u a i t &  ndmbers of t h e  
g iven  s t a t e .  . Thus ' t h e  ' p mes0n . i  s t a t e  appears  edperimentall)i  only , through 
its,  2n decay mode, y e t  i t  can' i n  p r i n c i p l e  be .cons idered  as a bound. s t a t e  of 
KR and/or  which decays .by  coupl5ng t o  t h e  .rr.rr channkl.  We w i l l  see.  i n  



Part Two that such multichannel considerations for a given b~und~state or 
resonance are important for obtaining a predictive element in the Regge-pole 
concept. 

~ultichannel' scatteririg theory (when only two-bod?, .nonrelativistic chan- 
nels 'are involved) can be formulated by using a matrix (in 'channel indices.) 
generalization of the formalism presented in Sections.11 and I11 above, We 
noG sketch this generalization and di~cuss impli'c'a'tions of .the final results~. 

Consider'N coupled two-body channels.. We.can describe the scattering and 
transition amplitudes by N coypled SchrGdinger equations for the N two-body; 
scattering-wave functions $j(r),j = 1,+,2,+ ..., N; using the appropriate BC's, 
we can define a scattering matrix Fij(ki,kj), which is.a generalization of the 
scattering amplitude £(€I), and partial-wave .scattering matrices (fa)ijy which 
are ,generalizations of the partial-wave scattering amplitudes fa. The.calcu- . 
lation o£ these .amplitudes requires the specification of a generalized po- 
tential matrix Vij(r) whose off-diagonal elements describe transitions between 
channels. The SchrGdinger .equation then is written 

We can construct a.matrix Green's function Ga for this system of equations, 
and obtain. after some manipulation an integral equation analogous . to (8) in- 
volving matrices in channel indices; if,'for simplicity, we take all channels 
to have .equal masses, we .obtain 

'L 
where Vk is the spherical Bessel .transform of the potential matrix V(r). Now 
a determinantal method (Fredholm solution) is applicable to (30), and by 
analogy with the one-channel case, we can obtain 

where NR and DQ have convergent expansions in powers of V2: 

The poles of fa represent bound states and are obtained by solving the. 
equation 

det Dg,(k) = 0. (32) 

(Here.recal1 that the matrix indices refer to discrete channels.) 
. . . . 

The ~ O D A  for (.3f) tan he wt'itten. . 



~ ~ s u m i h ~  V(r) i s  s h o r t  range and n o t  t oo  s ingu la r , .  a t  t h e  o r i g i n ,  w e  can 
% conclude . t h a t  VR is  a n a l y t i c  i n  4, and hence t h a t  f i  . i s .  a n a l y t i c  except  f o r  

, po le s  where d e t  D x ( ~ )  = 0 f o r  some complex X which, depends on k. We ,can ex- 
tend t h e  Regge-pole concept t h e n . t o  t h e  mul t i channe l . ca se  w i t h o u t ~ d i f f i c u l t y .  : 

A -  p o l e .  [ s a p  Xn(E) ] i n  t h e  complex x.' p lane  w i l l  .g ive a '  c o q t r i b u t i o n  t o  f.(k) of ' 
. the  form 

. . 

(This  form is,  independent.  of .kinematics ,  . . .e.g. ,  whether. masses a r e  eq"ua1 o r  
n o t .  ). 

I .  

NOW we o b t a i n  a  new.resul . t ,  known a s  f a c t o r i z a t i o n  of r e s i d u e s ,  w h i c h .  . 

s t a t e s  t h a t  f o r  a , g i v e n  pole  ( a t  ,given .E) t h e  channel-index'dependence of B i j  
' I  

can be f a c t o r i z e d  a s  fo l lows :  

provided .another t r a j e c t o r y  does n o t  i n t e r c e p t  t h e  given ,one a t  t h e  given . b 

energy.  

The e s s e n t i a l  obse rva t ion  i s  t h e  e x i s t e n c e  of ' a  :.simple ( i .  e.  , , : l i n e a r )  . . 
ze ro  of d e t  D ,  implied by t h e  assumption t h a t  on ly .  one eigenvalue, of 

pstxeE through zerq  a t  A = : A 1 .  [ N o ~ e  t h a t  det NX-' must be w e i l  behaved, o r  
e l s e  we.would o b t a i n  a  second-order .pole  a t  A ;  and 

. . 
d e t  ( D ~ N ~ - ' )  = (de t  .DA) x ( d e t  NX-') 1. 

+ 
I f  we ieprescint . . f~  i n  terms of i t s  e igenvalues  cl, ?nd . e igenvec to r s  . ~ ( " 1 ,  
w e  'can ' w r i t e  

The corresponding r e p r e s e n t a t i o n  of f X . w i l l  be 

Now a t  X + X.1, .we have se'en t h a t  . e x a c t l y  one a,. say  a1  , vanishes  with,  a  
.s imple ze ro ;  thus  we.can w r i t e ,  near  X 1 ,  , 

. . 



a1 = c(X - Al), o t h e r  a ' s  nonzero. 

This  shows t h a t  a s  X + X I ,  we o b t a i n  

( I ) *  (1) I d e n t i f y i n g  c-I Ci C j  , wi th  Bij  ( ' I ,  we s e e  t h a t  we can w r i t e  . 

which proves our  a s s e r t i o n .  

This  kind of f a c t o r i z a t i o n  i s  i n t u i t i v e l y  expected i n  nuc lea r - r eac t ion  
resonance i n t e r p r e t a t i o n ,  where t h e  resonance has  p r o b a b i l i t y  ampli tude yi 
of formation,  and y  f o r  decay. 

j 

VII.' Known Resonances and Poss ib l e  Kegge Tra j ec to ry  C l a s s i f i c a t i o n  

To e s t i m a t e  t h e  l o c a t i o n  of r ecu r rences ,  i t  w i l l  be  assumed t h a t  ( a )  t h e  
X's a r e  l i n e a r  i n  S  ( t h i s  i s  ind ica t ed  by r e l a t i v i s t i c  models) ,  and (b) t h e  
s l o p e  A i s  of o r d e r  1 ( ~ e v ) - ~ .  The l a t t e r  , i s  a  reasonable  va lue  i f  t h e  
c h a r a c t e r i s t i c  bound-state r a d i u s  i s  of o rde r  ( 2 ~ , ) - l .  

A. Meson S t a t e s  

The l i g h t e s t  s t a t e s  (v,K) a r e  0-; these ,would  r e q u i r e  even-signature 
t r a j e c t o r i e s  (wi th  nega t ive  i n t r i n s i c  p a r i t y )  .  he f i r s t  r ecu r rences  would 
be expected t o  be 2-. No such mesons have been e s t a b l i s h e d  t o  d a t e ; . o n e  
would expect  them around 1 .5  BeV. 

The nex t  l i g h t e s t  s t a t e s  a r e  1-(p,w) and would sugges t  odd-signature 
t r a j e c t o r i e s  (wi th  p o s i t i v e  i n t r i n s i c  p a r i t y ) .  Thei r  r ecu r rences  would be 3- 
mesons around 2  BeV, none of which.have been seen  t o  da t e .  

There a r e  :ome e s t a b l i s h e d  2+ meson ( resonant )  s t a r e s  between 1 .2  and 
1.5 BeV ( f O ,  A2, K1400, fO') which w i l l  r e q u i r e  even-signature t r a j e c t o r i e s  
w i th  even i n t r i n s i c  p a r i t y .  They could presumably r e c u r  a s  4+ meson s t a t e s  
nea r  3.5 BeV. It i s  a l s o  t r u e  t h a t  i f  t h e  t r a j e c t o r i e s  a r e  e x t r a p o l a t e d  down- 
ward, one might expect O+ mesons a t  nega t ive  S (imaginary mass).  Such s t a b l e  
s t a t e s  would, however, v i o l a t e  gene ra l  requirements  of quantum mechanics 
(e .g . ,  u n i t a r i t y )  and must no t  e x i s t .  Thus e i t h e r  (a) t r a j e c t o r i e s  bend up 
and never  c r o s s  i n t e g e r s  f o r  S < 0 ,  o r  (b)  t h e  r e s i d u e s  van i sh  a t  c r o s s i n g  
po in t s .  ( I n  model c a l c u f a t  i ons ,  both phenomena have been observed. ) 

It is cnnce ivable  (and a c t u a l  i n  some models) t h a t  exchange f o r c e s  a r e  
no t  v e r y  important  i n  t h e  mesonic bound s t a t e s ;  i n  such a  ca se ,  t r a j e c t o r i e s  
of even and odd s i g n a t u r e  would be  degenerate .  This  would a l low us  t o  p l ace  
1- and 2+ s t a t e s  on t h e  same (degenera te  p a i r )  t r a j e c t o r y .  Empi r i ca l ly ,  such 
a  hypo thes i s  g c o n s i s t e n t  w i th  t h e  s l o p e  es t imated  above and t h e  mass 



d i f f e r e n c e s  between t h e  1- o c t e t  ( o r  nonet)  and t h e  2+ o c t e t  ( o r  nonet ) .  A 
more d e t a i l e d  d i scuss ion  i s  presented  i n  Ref. 10. 

The 1- and 2+ t r a j e c t o r i e s '  i n t e r c e p t s  a t  = 0 have phys i ca l  s i g n i f -  
i cance  i n  terms of high-energy forward s c a t t e r i n g  i n  t h e  c rossed  channel ,  a s  
w e  w i l l  . see i n  P a r t  Two of t h e s e  l e c t u r e s .  

B. Baryon S t a t e s  

(Here t h e  - t r a j e c t o r i e s  r e f e r  t o  o r b i t a l  angular  momentum; t h e r e ' a r e  
d i s t i n c t  t r a j e c t o r i e s  f o r  even and odd p a r i t y  s t a t e s ,  .as w e l l  a s  two s ig -  
n a t u r e s .  ) 

We cons ider  f  i r k t  t h e  nonstrange,  Y = +1 s t a t e s .  

The lowest  mass s t a r e  here i s  t h e  nucleon, 1-12', Through t h i s  J 
v a l u e ,  we pas s  a  t r a j e c t o r y  of odd s i g n a t u r e ,  p o s i t i v e  i n t r i n s i c  p a r i t y .  
('1:h-l~ r.au Ire bascd on t h e  model of a nucleon a s  a  composite of i t s e l f  and a  
n meson.) This  t r a j e c t o r y ,  w i t h  a slope u1 uni ty  (1 BQV 2) ,  would g ive  a 
5/2+, T = 112 resonance about 1.9 BeV. There i s  such a  ITN s c a t t e r i n g  reso-  
nance, a t  900 MeV pion l a b  energy, which may l i e  on t h i s  t r a j e c t o r y .  I n  f a c t ,  
t h e r e  is  some evidence f o r  a  t h i r d  recur rence ,  9/2+ a t  2645 MeV. 

. Two more p a i r s  of ITN resonances a r e  candida tes  f o r  common t r a j e c -  
t o r i e s ;  [3/2+(1236), 7/2+(1924) 1 (T = 312.) wi th  an odd-signature,  pos i t i ve -  
i n t r i n s i c - p a r i t y  t r a j e c t o r y ,  and [3/2-(1518), 712-(2190)l (T = 112) wi th  an 
odd-signature,  nega t ive - in t r in s i c -pa r i t y  t r a j e c t o r y .  . A l l  t h r e e  of' t h e s e  t r a -  
j e c t o r i e s  a r e  compatible w i th  an average s l o p e  of un i ty .  There a r e  no o t h e r  
cand ida t e s  f o r  recur rences  a t  p resent .  - ( s e e  Fig. 1 . )  

' -t  - I (,nrp RESONANCES 1 1 - 
1 = 3/2 ----- 
-(+) PARITY 
O(-) PARITY 

( 1,~') DATA FROM RMP, OCT. 1965 
( I INDICATES ONLY A LITTLE EVIDENCE. 

I EXCEPT: *FROM PHASE SHIFT ANALYSES OF BAREYRE et .o l .  

J I t FROM OTHtH SOURCE3 
'312 - (ARGONNE. MICHIGAN. U.of CHICAGU EXPTS.; 

AND n p f  K A  PNBI.YSISI 
'h - 

T2 
- 

Fig. 1 

.Wonstrange. Baryon Keso- 
nances and Poss ib l e  
Trajectories 

These t r a j e c t o r i e s  have a d d i t i o n a l  phys i ca l  imp l i ca t ions  f o r  back- 
. w a r d  TN s c a t t e r i n g ,  a s  we s h a l l  s e e  i n  P a r t  Two. 

* * Next we cons ider  t h e  Y = 0 s t a t e s :  A ,  C+ Y g s ,  and Y l s .  There a r e  
two candida tes  f o r  recur rences :  ~ : ( 1 8 1 5 ) ,  i f  5 1 2  ,*can belong t o  t h e  A. t r a -  
j e c t o r y ;  and ~ : ( 2 0 6 5 ) ,  i f  7/2+, can belong t o  t h e  Y1 (1385) [3/2+] t r a j e c t o r y .  



F i n a l l y ,  t u rn ing  t o  t h e  .Y = -1 s t a t e s  (E and &*), we f i n d  one p o s s i b i l i t y :  
i f  E"(1933) i s  T = 112 and 5/2+, i t  can be a  r ecu r rence  of E .  

V I I I .  Concluding Remarks. P a r t  One 

No r igorous  check on the,Regge-pole i d e a s  can be obta ined  by looking f o r  
r ecu r rences ,  a s  long a s  no d e t a i l e d  t h e o r e t i c a l  models a r e  employed t o  calcu-  
l a t e  t r a j e c t o r i e s .  The r ecu r rence  i d e a  must be  regarded only a s  a  rough guide  
t o  t h e  p o s s i b i l i t i e s  of h ighe r  resonant  s t a t e s  on t h e  b a s i s  of empi r i ca l  
knowledge of low-lying s t a t e s ,  and a  conceptual  framework f o r  sys temat iz ing  
our  knowledge of e x i s t i n g  s t a t e s .  

We w i l l  show i n  P a r t  Two, however, t h a t  i n  a  sense ,  t h e r e  i s  some poss i -  
b i l i t y  of checking t h e  Regge-pole i d e a s  i f  we conf ine  our  a t t e n t i o n  t o  t h e  
po le s  i n  t h e  upper R plane  near  ze ro  t o t a l  energy (S = 0). A t  t h e  same t ime,  
i f  v a l i d ,  t h e r e  a r e  p r e d i c t i v e  powers i nhe ren t  i n  t h e  Regge-pole concepts .  
Many of t h e s e  p r e d i c t i o n s  stem from t h e  f a c t o r i z a t i o n  proper ty  of r e s idues .  
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PART TWO / 

APPLICATIONS OF REGGE POLES I N  THE . . 
ANALYSIS OF HIGH-ENERGY REACTIONS 

I. R e l a t i v i s t i c  Descr ip t ion  of S c a t t e r i n g  and Reaction Processes  and 
Crossing Re la t ions  

A. Kinematics 

Consider t h e  e l a s t i c  s c a t t e r i n g  of .  two s p i n l e s s  p a r t i i l e s ,  c a l l e d  
h e r e  IT and N ,  wi th  masses p and M. Let (kl ,P1)  be t h e  four-vector  momenta 
of t h e  incoming (p,M) p a r t i c l e s ,  r e s p e c t i v e l y ,  and (k2,P2)  t h e i r  outgoing 
momenta. We'define two r e l a t i v i s t i c  i n v a r i a n t s ,  - 

and 

2 2 2 2 We assume P1 = P2 = M 2 ,  k l  = k; = p , and P1 + k l  = P2 + k2;  u n i t s  a r e  chosen 
so  t h a t  c  = .1. It can be shown ( c f .  Chapter 5 of 0mn6s and ~ r o i s s a i t ' )  t h a t  

. . a l l  components of t h e  momenta k l , . P l , , k 2 ,  and P2 a r e  determined. i n  any g iven  
r e fe rence  frame i f  u; M, s,  a n d . t  a r e  s p e c i f i e d ;  i . e . ,  t h e  s c a t t e r i n g  event  
i s  uniquely s p e c i f i e d  by s and t i n  an i n v a r i a n t  way. 

-+ 
I n  t h e  c e n t e r  of mass (c.m.) frame, where P1 l i e s  a long t h e  Z a x i s ,  we 

eva lua t e  s and t i n  t,erms of energy and s c a t t e r i n g  ang le  a s  fo l lows:  

where W i s  t h e  t o t a l  c.m. energy; 

where 8 i s  t h e  c.m. s c a t t e r i n g  angle ,  and k  i s  t h e  c.m. s p a t i a l  momentum of 
t h e  nucleon,  r e l a t e d  t o  W by 

For t h e  equal-mass c a s e  (p = M), r e l e v a n t  t o  pp s c a t t e r i n g ,  f o r  example, we 
obt'ain t h e  .s impler  r e l a t i o n  



Note t h a t  f o r  f i xed  s ,  t h e  phys i ca l  s c a t t e r i n g  region -1 5 cos  8 5 + 1 cor- 
I '  

responds t o  t h e  t i n t e r v a l  . . 

Fur the r  d i scuss ions  of kinematics  a r e  contained i n  Ref. 2 .  

B. Crossing,  and D e f i n i t i o n  of Inva r i an t  Amplitudes 
. . 

We can draw a diagram f o r  t h e  s c a t t e r i n g  process  a s ~ , f o l l o w s :  

Here arrows i n d i c a t e  t h e  movemenL "1 cl~,argc+or baryon nllrn~rr and i n d i c a t e  
t h e  sense  i n  wl~ich thk s p a t i a l  momenta ci, P i  a r e  def ined .  . . 

I f  w e  cons ider  any f i e l d - t h e o r e t i c  per turba t iqn- theory  dia.gram con- 
t r i b u t i n g  t o  t h e  s c a t t e r i n g ,  a s  i nd ica t ed  schemat ica l ly  here  ( t h e  braces in-  
d i c a t e  t h e  ,incoming p a i r  of p a r t i c l e s ) ,  

i t  i s  apparent  t h a t  t h e  .- same.diagram a l s o  occurs  i n  two o t h e r  reac t ions , ,  . 
whose diagrams may be obta ined  from t h i s  one by in te rchanging  c e r t a i n  ex- 
t e r n a l  l i n e s ,  o r  by cons ider ing  t h e  diagram from a  d i f f e r e n t  d i r e c t i o n .  Let 
u s  c a l l  t h e  u-M e l a s t i c  s c a t t e r i n g  r e a c t i o n  I. Then i t  i s  r e l a t e d  t o  t'he 
process  N f  += T I T ,  which we c a l l  r e a c t i o n  11, a s  fol lows:  , 

+= 
The incoming p a r t i c l e  No.' 2 now i s  an a n t i p a r t i c l e  N with  momentum (-P2) but 
p o s i t i v e  energy [+ (5: + M ~ )  ' I 2 ] .  I n  t h e  Feynman po in t  ui' v i m ,  we have 



changed t h e  d i r e c t i o n  of t ime  f o r  t h i s  p a t t i d e .  ( A l t e r n a t i v e l y ,  we s e e  
t h a t  t h e  arrows d o . n o t  change t h e i r  o r i e n t a t i o n  w i t h  r e s p e c t  t o  t h e  i n t e r n a l  
d iagrams;  hence ,  t h e y  i n d i c a t e  o p p o s i t e  s i g n  f o r  b a r y o r n u m b e r  f low and 
s p a t i a l  momentum.) The ou tgo ing  p a r t i c l e  No. 1 a l s o  must have r e v e r s e d  quan- 

-f 
tum numbers and momentum.-kl. . .  . . . 

W e  o b t a i n  a t h i r d  r e a c t i o n  from I by c o n s i d e r i n g  k2 t b  b e  an  in -  
coming l i n e  and k l  an  o u t g o i n g . l i n e .  Then b o t h  t h e  mesons' quantum numbers 
and momenta a r e  r e v e r s e d ,  l e a v i n g  t h e  nuc leon  s t a t e s  a s  b e f o r e .  W e  may c a l l  
t h i s  c r o s s e d  r e a c t i o n  111. We'denote  t h e  a s s o c i a t e d  c.m. energy v a r i a b l e  
as u ,  d e f i n e d  by u  = (P1 - k212. The diagram may be  drawn as f o l l o w s  : 

I f  p = M (e .g . ,  a s  i n  pp s c a t t e r i n g ) ,  u  = -2k ( 1  + c o s  8) i n  t e r m s  
of channe l  I q u a n t i t i e s .  

I f ' r e a c t i o n  I was T + ~  e l a s t i c  s c a t t e r i n  ' then r e a c t i o n  I11 w i l l  b e  f T-p s c a t t e r i n g ,  w h i l e  r e a c t i o n  I1 w i l l  be  pp -f T T-, w i t h  (c.m. e n e r g y ) 2  = t .  

Suppose we d e s c r i b e  t h e  s c a t t e r i n g  p r o c e s s  I w i t h  a  f u n c t i o n  
A( ' ) ( s , t )  p r o p o r t i o n a l  t o  t h e  s c a t t e r i n g  ampl i tude  when s and t are i n  t h e  
p h y s i c a l  r e g i o n s  f o r  r e a c t i o n  I. I f  we c o n s i d e r  A a s  g i v e n  by t h e  sum of a l l  
Feynman diagrams,  we can show t h a t  a cor responding  r e a c t i o n  ampl i tude  
~ ( 1 1 )  ( t , s )  f o r  r e a c t i o n  I1 must be  t h e  same f u n c t i o n  of s and t s i n c e  b o t h  
ampl i tude  a r e  ob ta ined  by summing t h e  sam.e ,se t  of diagrams. The r e l a t - i o n  of 
t h e s e  i n v a r i a n t  ampl i tudes  A t o  t h e  n o n r e l a . t i v i s t i c a l l y  d e f i n e d  s c a t t e r i n g  
ampl i tude  f k ( 8 )  may be deduced by examining t h e  terms of t h e  c o v a r i a n t  per-  
t u r b a t i o n  expansion,  and r e q u i r i n g  s imple  r e l a t i o n s  under i n t e r c h a n g e  of s 
and t .  The p roper  c h 0 i c e . i ~  ( f o r  s p i n l e s s  p a r t i c l e s )  

Then 

i n  t h e  p h y s i c a l  r e g i o n  f o r  r e a c t i o n  I ,  w h i l e  i n  t h e  p h y s i c a l  r e g i o n  f o r  
r e a c t i o n  11, 



The c ros s ing  r e l a t i o n  connecting A(') and A ('I) then  i s  

where t h e  convention i s  followed of w r i t i n g  f i r s t  t h e  v a r i a b l e  ( t . o r  s )  t h a t  
r e p r e s e n t s  t h e  square  of t h e  c.m. energy f o r  t h e  phys i ca l  r e a c t i o n  process  

' 

i d e n t i f i e d  by t h e  s u p e r s c r i p t  on A. 

A c o n c r e t e ,  example 'of c ros s ing  r e l a t i o n s  is  a one : ( s c a l a r ) - P a r t i c l e  
exchange diagram 

which c o n t r i b u t e s  

For r e a c t i o n  I1 we o b t a i n  t h e  same, i . e . ,  

where t = -2k2(1 - cos 8 )  f o r  r e a c t i o n  I ,  but  f o r  r e a c t i o n  11, t is  t h e  square  
o f .  t h e  c.m. energy and i s  g r e a t e r  than 4M2. 

I n  gene ra l ,  c ros s ing  i s  seve re ly  complicated by t h e  presence of 
s p i n ;  l e s s  severe  a r e  t rea tments  of i s o s p i n  and o t h e r  nonspa t i a l  quantum 
numbers. 

Observe t h a t  t h e  cr.ossing r e l a t i o n s  between r e a c t i o n s  I and I1 . 

never connect phys i ca l  reg ions  of r e a c t i o n  I d i r e c t l y  t o  phys i ca l  reg ions  of 
r e a c t i o n  1 1 , ' s i n c e  t h e s e  do not  overlap.  They a r e  summarized by t h e  follow- 
ing  t a b l e  : 

React ion  Reaction 
I I I 

(The p r e c i s e  l i m i t s  on s i n  r e a c t i o n  I1 a r e  not  given s i n c e  they a r e  some- 
what complicated.) 



Thus; to predict one reaction in terms of another, we need to in- 
troduce theoretical knowledge concerning A to'allow extrapolation. The most 
naive methods usually fail, as we now illustrate (to motivate the subsequent 
introduction of, Sommerfeld-Watson transform). 

C. Example 

Suppose we analyze reaction I in partial waves and write 

cos 8 = - 1  + t/2k:; . 

where 

(A similar decomposition can be written for A(") terms of 'channel I1 vari- 
ables.) In terms of phase shifts, 

. . 

i6 q, (s) A:') (s )  = p-l (s) e sin 6R(s), 
. . 

where 

This series represents the physical scattering amplitude well for strong in- 
teraction problems (short-range potentials), and terms are experimentally un- 
detectable for, say, R > 10 k/v,, where p, is the pion mass. As a function of 
(complex) Zs = cos 8, this series converges in an ellipse with focii +1 and a 
major axis determined by the range of the potential effective in channel I 
scatterin for a practical expectation of range (2p,)-', the ellipse reaches 
to about 7is141 + 2vT2/k2. We can fit some rational function in s to each 
Ak(s) and satisfactorily interpolate to s < 0. However, if we attempt to 
use the series for large I z ~ ~ ,  the series diverges. This is the case for high 
c.m. energy in reaction 11; e.g., for fixed channel I1 reaction angle, I Z , ~  . - 
grows linearly with t, the square of .the channel I1 reaction energy. 

If only channel I s-wave scattering were important, this might not 
be serious; but these are not the interesting cases, and in general we find 
untenable results. 

The interesting cases, in general, are those in which a-reson.ance or 
bound state appears in the crossed channel. In such a case, we might expect 
only one partial-wave amplitude .in that channel to dominate the reactions, if 
we use the series representation (38). 

For example, consider the fo (1250) .rrv resonance, presumably 2'. This 
will appear, in any channel that has the'same quantum numbers, as a Breit- 
Wigner form for the D-wave ( k  = 2), partial-wave amplitude involved. Thus, 



i n  NN + :m we e x p e c t .  a  c o n t r i b u t i o n  ( ignor ing  nucleon s p i n )  , ,,by analogy 
wit& ( 3 8 ) ,  . . 

. , . . 

k t  rfi 
[A('') ( t ; ~ )  l f o  = 1 (2a + 1 )  [A:''' l f o  P,(COS e t )  = 5 

R M:O - t - ir 
t o t  

P2(cos €I t) ,  

where a  kEJ f a c t o r  has  been used i n  t h e  r e s o n a ~ ~ c e f o r m u l a  t o  i n s u r e  c o r r e c t  
t h r e s h o l d  behavior  of A 1 1  a t  t h e  t h r e s h o l d  t -+ 4M2, rtot : is t h e  f u l l w i d t h  
o f . f O , p ~  i s  a coupling f a c t o r  t o  fi, and et  i s  t h e  .c.m. r e a c t i o n  ang le  in-  
volved .in channel  11. I f  we cons ider  now the phy=ica l  reg ion  of r eac t ion ,  I ,  , 

t < O, apd we can ignore  the . imag ina ry  p a r t  of A r e l a t i v e  t o  etie real  p a r t ; ,  
t h u s ,  we have '  

Now f o r  high-energy s c a t t e r i n g  i n  channel  ' I ,  s -+ we f i n d  

PJ(cos Ot) + (cos  e t l J  + ($9 

s o  w e  can w r i t e  (wi th  J = 2) 

where y and so a r e  some r e a l  cons t an t s .  

This  would p r e d i c t  t h a t  a t . h i g h  e n e r g i e s ,  i n  ~iii e l a s t i c  s c a t t e r i n g ,  

(1) d  a  a .  [ A  . I 'L o ( S / S ~ ) ~ ,  hence - ' b . 0  ( s / s o )  f o r  f i x e d  -t. 
d t  ' .  

i- 

do .1 b. Behavior. i n  t l i k e  - % . . 

c.  A(') becomes real; 

A l l  t h r e e ' o f  t h e s e  a r e  d e f i n i t e l y .  i n . c o n t r a d i c t i o n  .with exper imenta l  high- 
energy '  mp . s c a t  t e . r i ng  ; we , f i n d  . i n s t ead  ' I 

, A. d a / d t  'L cons t an t  f o r  f i x e d  (smal l )  -t. 
2 

B. Exponential  forward peak wi th  width of o r d e r  4uT. 
C. ~ ( 1 )  i s  most ly imaginary. 



This  e x t r a p o l a t i o n ,  however, has  used only one term of t h e  s e r i e s .  
such a s  (38) ,  and a s  we have seen  t h a t  t h e  s e r i e s  d iverges  i n  t h e  channel I 
phys i ca l  reg ion ,  our  r e s u l t s  do not  c o n t r a d i c t  t h e  phys i ca l  hypothes is  t h a t  
t h e  ex i s t ence  of f 0  i n  channel I1 leads  t o  i n t e r e s t i n g  consequences f o r  
channel I. We have t o  use  f o r  ~ ( 1 1 )  a  d i f f e r e n t  r e p r e s e n t a t i o n ,  which con- 
verges  properly.  Such a  r e p r e s e n t a t i o n  can be obta ined  by conver t ing  t h e  
s e r i e s  (38) i n t o  a  contour i n t e g r a l  i n  t h e  complex R p lane ,  t h e  Regge 
r ep resen ta t ion .  

11. Kegge Representat ion f o r  ~ n v a r i a n t  Amplitudes 

I f  t h e r e  e x i s t s  any f u n c t i o n A A ( s )  a n a l y t i c  i n  t h e  complex X i n  a  
neighborhood of t h e  p o s i t i v e  r e a l  a x i s  and s u f f i c i e n t l y  w e l l  behaved a s  

I X I -+ w,  we can d e f i n e  t h e  i n t e g r a l  

1 AX (s) (2X + 1 )  PA (-23 
I(s,-2) = - 4 dX, 

2 ~ i l  s i n  T X  ' (39)  

where t h e  contour  C enc loses  t h e  p o s i t i v e  r e a l  a x i s  i n  t h e  X p lane  bu t  no 
o t h e r  po les  of t h e  in tegrand .  

The legendre  func t ion  PA(-z) f o r  complex X can be represented  a s  a  
hypergeometric func t ion ,  

[For Ix 1 < 1 t h e  hypergeometric func t ion  can be represented  a s  a.' power s e r i e s  

and f o r  1x1 > 1 t h e r e  e x i s t  i n t , e g r a l  r e p r e s e n t a t i o n s  enabl ing  i t s  compu- 
t a t i o n  f o r  gene ra l  x . ]  

The in tegrand  of (39) has  poles  a t  A = 0,  1, 2 ,  ..., and we can e v a l u a t e  
I ( s , z )  by eva lua t ing  t h e  r e s idues  a t  t hese  poles .  The r e s u 1 t . i ~  

where t h e  r e l a t f o n  PE(z)  = (-1) PQ(-Z) has  been employed. 

Now i f  Ag(s) f o r  R = 0 ,  1, 2, ..., a r e  t h e  phys i ca l ly  i n v a r i a n t  p a r t i a l -  . 

wave amplitudes f o r  s c a t t e r i n g ,  i f  z  is  i d e n t i f i e d  a s  t h e  cos ine  of t h e  
s c a t t e r i n g  angle ,  zs, we can i d e n t i f y  I wi th  , the i n v a r i a n t  ampli tude,  



Thus i f  t h e r e  e x i s t s  a  func t ion  AA,(S), a n a l y t i c  i n  t h e  A p l ane  i n  . a  .neigh- 
. borhood of t h e  p o s i t i v e .  r e a l  A a x i s ,  which co inc ides  wi th  t h e  phys i ca l  . 

s c a t t e r i n g  ampli tude f o r  A = ze ro  o r  p o s i t i v e  i n t e g e r ,  and dropping o f f . f a s t  
enough a s  1 A I .+ m s o  t h a t  t h e  i n t e g r a l s  under cons ide ra t ion  converge, we 
can w r i t e  t h e  fo l lowing  i n t e g r a l  r e p r e s e n t a t i o n  f o r  .A(k , t )  : 

1 
(2A + 1 )  PA(-z) dA 

A($ , t )  = - 4 . . 2 i ~ i  s i n  .rrh  is). 

The passage from (41) t o  (42) is  c a l l e d  t h e  Sommerfeld-Watson (SW) t r ans -  
form. Now.consider t h e  s i n g u l a r i t i e s  of AA(s) i n  t h e  complex A p lane ,  t o  
t h e  . r i g h t  of t h e  l i n e  Re A = -112. I f  t h e r e  a r e ' o n l y  p o l e s ,  we can d i s t o r t  
t h e  c0n tou r .C  t o  run  a long  a v e r t i c a l  l i r ~ e ,  s ay  R e  A = -112, and p ick  up-  
t h e  r e s i d u e s  of ,  t h e  po le s  a, i n  t he  .right-'hand A p l ane  over w l ~ l c h . ~ h c  con- 
t o u r  had t o j b e  d i s t o r t e d .  The r e s u l t  i s  

+im-112 (2A + 1 )  P ~ ( - Z )  
1 '  

A(syt )  = - J 
-ia,-1/2 d  A sin. T A  

AX (s) 

The an  (pole  l o c a t i o n s )  and Bn (po le  r e s i d u e s )  depend on s ,  s i n c e  t h e  
s i n g u l a r i t i e s  i n  X of AA(s)  w i l l  ( i n  gene ra l )  depend on s. Weycall t h i s  
r e p r e s e n t a t i o n  (43) t h e  Regge r ep resen ta t ion .  

I n  t h e  .c rossed  channel., 1 z 1 w i ' l l  b e  l a r g e ,  b u t  ~ l d s  docs. no t  dcot roy  
t h e  convergence of '  ( 4 3 ) ,  and we can employ ( 4 3 ) ,  as a t o o l  t o  e x p l o i t  c ross -  
i n g  r e l a t i o n s  i n  gene ra l .  

Now t h e  ( n o n r e l a t i v i s t i c )  par t ia l -wave amplidudes A & =  & f g  f o r  complex 
R ob ta ined  f;om Par t .One  of t h e s e  l e c t u r e s ,  a s  i n t e r p o l a t o r s  between bound 
s t a t e s  and resonances,  s a t i s f y  t h e  cond i t i ons  necessary  for .AA(s) .  This  is  
c l e a r ,  except  f o r  t h e  convergence. p r o p e r t i e s  as. ,  I X I + Pd i n  t h e  i igh t -hand  A 
p lane .  These convergence problems ( f o r  supe rpos i t i ons  of Yukawa ~ o t e n t i a l s )  
a r e  t rea te .d  wi th  t h e  determinant& method i n  Ref. 5 of P a r t  One. 

Thus t h e  terms i n  t h e  sum i n  (43) a r e  e x a c t l y  t h e  Regge poles  ( a t  
A = an) which occur  i n  t h e  r ight-hand hall: of t he  A p l ane ,  whose l o c a t i o n s  
a r e  determined by t h e  c o n d i t i o n  

D (S) = 0. 
a n ( s )  

A s  s is  v a r i e d  cont inuous ly  from ene rg ie s  above th re sho ld  (where reso-  
nances a r e  found) t o  n e g a t i v e  v a l u e s '  (which l i e  i n  t h e  p h y s i c a l  reg ion  f o r  
s c a t t e r i n g ' i n  t h e , c r o s s e d  channel ) ,  t h e  po le s  - fo l low t h e i r  t r a j e c t o r y  func- 
t i o n s  a ( s )  and e x h i b i t  r e s i d u e s  B(s).  

The i n t , e g r a l  i n  (43) is  c a l l e d  t h e  background i 'n tegra l .  We w i l l  now 
e x h i b i t  t h e  asymptot ic  high-energy l i m i t  f o r  the ,c rossed-channel  r eac t ion .  



A s  I z I + m ,  t h e  Pa (z)  have asymptot ic  behavior  ' (-z)", whose magnitude 
i s  determined by (-z)Rea. 

Thus t h e  background i n t e g r a l  behaves asympto t ica l ly  l i k e  (-=)-I/2 , . 
whi l e  t h e  Regge. po les  (an) behave l i k e  (-z)Rea,(s). I £  t h e r e  a r e  sbme 
an f o r  which Rean > -112 f o r  phys i ca l  s va lues  i n  crossed-channel s c a t t e r -  
i ng ,  then t h e s e  po les  w i l l  a sympto t i ca l l y  dominate t h e  crossed-channel 
ampli tude ,as t + A s  a  conc re t e  i l l u s t r a t i o n , . c o n s i d e r  t h e  phys i ca l  ex- 
ample examined i n  t h e  preceding sec t ion .  Here w e  in te rchange  t h e  r o l e s  of 
s and t channels ,  cons ider ing  ~ e g ~ e  poles  i n  channel 11. There w i l l  be  a  
t r a j e c t o r y  a o ( t , )  passing nea r  t h e  f 0  resonance r eg ion ,  i . e . ,  ~ e a o ( ~ : ~ )  = 2 ,  
i n  channel 11, where t i s -  the  .(energy12. Suppose t h i s  t r a j e c t o r y ,  f o r  

2 
t < M f O ,  behaves a s  fol lows:  

i . e . ,  a (0 )  % 1.0,  a ( t )  % a(O).+ t a l ( 0 )  + .. . f o r  smal l  ( - t ) .  

Then i n  channel I ,  f o r  t < 0 and s + , w e  o b t a i n ,  keeping only t h i s  
po l e  i n  (43) ,  

[ 2ao ( t )  + 1 1  Pao(t)  Bo(t) 
A(') ( s ,  t )  = A(") ( t ,  s )  2' . - 

s i n  [ r a o ( t ) ]  (45) 

Assuming f o r  t h e  moment t h a t  

is n o t  s i n g u l a r  near  t = 0 ,  we o b t a i n  a s  s + f o r  small  ( - t )  (comparing t h e  
d e r i v a t i o n  i n  t h e  previous s e c t i o n ,  

: 

~ ( I ) ( s , t )  + [ 2 a o ( t )  + 11 so ao ( t >  
s i n  [ r a o ( t ) 1  

where so i s  any s c a l e  parameter (no te  t h a t  F depends on t h e  choice  of s o ) .  

Now we f i n d  t h e  foI lowing bdhavior .of A(T) : 

1 
(a)  (do ld t )  % - 2 I A  % cons tan t  f o r  f i x e d  t ,  s + m y  

k s*s  

and i f  F ( t )  i s  slowly varying f o r  small  - t ,  then f o r  f i x e d  s 



2 
(b) (daldt) % etR , , where R2 = 2a1(0) log (s/s0); 

. . 

so that under, such circumstan~es .-R2 grows. logarithmically with s. 

These are, in "fact, the features experimentally f ouid for high-energy 
np scattering, except that R ~ .  apparently.grows at a negligible rate. 

However, we have yet .to establish a phase 'for the .poles, and we must . , 

avoid having a singularity.at t =,O due to sin [.rr&(t)] vanishing. These 
points depend on the introduction 0f.a signature factor,for the trajectory. 

111. Signature and Phase'of Pole,Terms 

It is clear that symmetry considerations appear in this problem, since 
the ITIT state (due t6 Bose sLaLlsLlcs) have only cvcn R bound 6 t a t e s  and 
resonances when their isospin is even. This shows we cannot have a physical 
pole at R = 1 with t = 0 contributing to any scattering amplitude involving 
ITIT. 

To explicitly take symmetry into account, and include the possibility 
of exchange potentials 211 the determination of pole parameters a and B y  we 
define even and - odd scattering amplitudes, in the nonrelativistic formalism 
as follows: 

and 

f Y  - = 1 ( 2 ~  + I) c,(ej [.9,izj P ~ , ( - ~ ) ]  . f-(s,z) - 
2 R 

Then f = f+ + f-; even signature poles will yield bound states and/or 
resonances in f+, while odd signature poles contribute to f-. 

If exchange potentials are present, the even R and odd R scattering 
amplitudes will be obtained by solving two different Schrodinger equations, 
wj-th potentials 

exch 
, e(r) = [V(r) + V (r) 112 

and. . . 

exch 
V-(r) = [V(r) - V (r).l/2, 

respectively. 

) .  Then we, have two (of f-shell) Born approximations q(k,kl). and v;(kikl ) 
each analytic in complex R. 



These w i l l  y i e l d  two d i s t i n c t  s c a t t e r i n g  ... ampli tudes,  each an a n a l y t i c  
func t ion  o f  R ,  i . e . ,  f i ( s )  and f;(s),  Such t h a t  we can w r i t e ' '  

~ + ( s , z )  = 1 (2e + 1 )  f:(~) (47) 
R 

and 

f-(s,.) = 1 c2a + 1, f;cs, 9 

R 

where the. sums a r e  allowed t o  run over a l l  (even a s  w e l l  a s  odd) R va lues .  

Nowwe c a n  apply  transforms s e p a r a t e l y  t o  f+  = A+ and & f -  = A-, 
which . y i e l d  t h e . p a i r  o f ,Regge  r e p r e s e n t a t i o n s ,  

s i n  (TX) 2  I 
+ Pan(-2) 1 I + - 1 (2an + 2 

even . . 

s i g n a t u r e  po le s  

and 

s i n  ( % A )  

1 .  - Pan(-zs) I + -  1 ( 2 a n + 1 )  Bn 
odd 
s i g n a t u r e  po le s  

+ wi th  A = A + A- being t h e  i n v a r i a n t  s c a t t e r i n g  amplitude. We w i l l  u t i l i z e  
t h e s e  by cons ider ing  Regge poles  i n  channel TI, where t is. t h e  squa re  of 
t h e  m a s s  of t h e  resonance o r  bound s t a t e ;  t h y ,  . i n s t ead  of 2,. we u s e  z t ,  
and t h e  arguments of a ' s  and B's w i l l  b e  t .  

' 

Now f o r  lz 1 + (h igh  energy i n '  t h e  c rossed '  channe l ) ,  we f i n d  t h a t  
a sympto t i ca l ly  A becomes t h e  sum over  a l l  even' and odd s i g n a t u r e , ,  po les .  
Odd s i g n a t u r e -  po les  c o n t r i b u t e  terms o f . , t h e  form 

, . PaCz> - P a w  

(2a + 2 s i n .  [ r ru( t ) l  B(t) = .'(2a + 1 )  sin 
( 4 9 )  

- i ~ a  
[ s i n c e  P ' (-2) = e  P,(z)] wh i l e  even s i ,gna ture  po le s  y i e l d  

q 

P,(z> + P,(-z) 

(2a + 2 s i n  [ n a ( t ) ]  
B(t)  = (2a + 1 )  

B(t)  pa,,) [, + e-;a(,t)] 

s i n  [rr.a(t)] 



Note t h e  odd s i g n a t u r e  terms .now a r e  n o t  s i n g u l a r  ( i . e . ,  no t  po le s  a t .  
a l l )  when a  = 0,  '2, k4, . . . , . . s ince t h e  s i g n a t u r e  f a c t o r ,  ( 1  - e-i'a) canae l s  
t h e  .zeros of t he  denominator. S imi l a r ly ,  t h e  even s i g n a t u r e  terms a r e . n o t  
s i n g u l a r  when a  = 21, +3,  25; ... . 

Assuming a  and B a r e  r e a l f o r  t < 0 ,  we s e e  the .phase . .o f  each pole  term 
is t h e  phase .of t h e  s i g n a t u r e  f a c t o r  ( 1  + eiT") . 

We can e x h i b i t  t h i s  phase e x p l i c i t l y  a s  ~ f o l l o w s :  

Odd s i g n a t u r e  : . . 

- 2 j ~ a .  -iii&/2 i ? a / 2  . -i'tr'a/2 
1 . - e  - - - e  e  - e  -ina/2, 

= i e  
1 

2 o i n  ( i i o a )  . 2 s=fi.s T.a. . , 

2 COS - 2 

Even s i g n a t u r e :  

+ e-i.Va -i:~ia/2 ina /2  + e - i ~ a / 2  
. - e  e  - i71a / 2 - 

2 s i n  (%a) 2  712  IT^ 
= e  (51) 

2 s i n  c o s -  
2  2  

I n  t h e  n o n r e l a t i v i s t i c  formalism f o r  c a l c u l a t i n g  t h e  po le s ,  we can 
f i r s t  show t h a t  a ( t )  i s  r e a l  f o r  t < 0. This  can be seen  from t h e  f a c t  t h a t  
KR i s  r e a l  f o r  k2 < 0 and r e a l  R ,  bu t  complex f o r  complex R [ s e e  Eq. (9) 1 .  
The e igenvalues  of Kg then  ( s i n c e  K i s  not  hermi t ian)  a r e  r e a l  only f o r  
r e a l  R, and hence ze ros  of dt! t ( I  = KL) exist only f o r  r e a l  R, when k 2  < 0. 
[This  can a l s o  b e  seen  from t h e  s e r i e s  r e p r e s e n t a t i o n  (19) . ]  

S i m i l a r l y ,  w e  can see t h a t  B, i s  r e a l  f o r  k2 < 0 s i n c e ,  when KR i s  - 6 
r e a l ,  N Q - det (T  - K-) i s  a l s o  re+-1 [ s e e  (15) and dis.cuosiqn . fol lowing];  6k 

t h e  . r e s i d u e  Bn i s  p r o p o r t i o n a l .  t o  and both  numerator and de- 

nominator a r e  r e a l  f o r  k2 < 0. 

Thus t h e  phase of e a c h . p o l e  c o n t r i b u t i o n ,  a s  seen i n  high-energy, 
crossed-channel r e a c t i o n s ,  is  given .by e-ira(t) 12, o r  i timds t h i s .  ' This  
r e l a t e s - t h e  phase. t o  t h e , a s y m p t 6 t i c  high-energy behavior , ' independent  o f '  - d e t a i l s .  

AS an important  example,, . cons ider  t h e  f  O problem a s  before .  Now 
JP = . 2 +  impl ies  even s i g n a t u r e  f o r  t h i s  t r a j e c t o r y ;  s o  t h i s  p o l e  w i l l  con- 

. t r i b u t e  [ i n s t e a d  o f '  . (45) l  . a  t e r q  such a s  (50) ,  a s  fo l lows:  

1 + . e  
-iiiao (t) 

[A") ( s , t ) l i O  = [A(") ( t , s ) l f o  = [ 2 a 0 ( f )  + 1 1  ' B Q ( ~ )  ( t )  ('t) 2 sin [ f u o ( t ) ]  

For h igh  e n e r g i e s  i n .  channel  I, z t  +.s/2k: + m, and ,.we o b t a i n  t h e  
asymptot ic  form," 



ITa0 ( 2 k f ) a ~  
2  s i n  

where so is  any s u i t a b l e  s c a l e  f a c t o r .  Now i f  ( f o r  some s o )  t h e  express ion  
i n  b racke t s  is  a  slowly varying func t ion  of t near  t = 0,  we o b t a i n  t h e  
same r e s u l t s  a s  d i scussed  a f t e r  (46) above, bu t  i n  a d d i t i o n  we have de t e r -  
mined t h e  phase a t  t = 0;  i t  i s  pure ly  imaginary. Thus, t o  ( a )  and (b) 
fol lowing (46) above, we add : (c )  ~ ( 1 )  ( s  $0 )  - i s  asymptot ica l ly  pure ly  imag- 
i na ry .  (To f i t  t h e  asymptot ic  v a r i a t i o n  of RL w i th  energy, which is  ve ry  
slow i n  t h e   IT^ s c a t t e r i n g  r e a c t i o n ,  i t  i s  necessary  t o  have so S 0,30 B ~ v ~ , )  

This  po le ,  then ,  g ives  a  s a t i s f a c t o r y  q u a l i t a t i v e  d e s c r i p t i o n '  f o r  ' t h e  
asymptot ica l ly  high-energy ?i.p s c a t t e r i n g ,  s i n c e  ( a ) ,  ( b ) ,  and (c)  now ag ree  
wi th  p r o p e r t i e s  ev ident  from p resen t  experimental  d a t a  above 6  BeV and f o r  
-t < 0.30 ( B ~ v ) ~ ;  t h e  r e a l  p a r t  of A i n  t h e  forward d i r e c t i o n  is  smal l  com- 
pared wi th  t h e  imaginary p a r t .  

I V .  Discussion of Poles  i n   IT^ S c a t t e r i n g  and Charge Exchange 

The choice  a ( 0 )  = 1 f o r  t h e  f 0  t r a j e c t o r y  e s s e n t i a l l y  determines t h e  
s-independence of va lues  of d a / d t  nea r  t h e  forward d i r e c t i o n  i n   IT^ s c a t t e r i n g .  
This  number is  e s s e n t i a l l y  determined, then ,  from t h e  high-energy da t a .  
Such a  po le ,  whose t r a j e c t o r y  passes  through a  = 1 a t  t = 0 ,  has  even s ig -  
n a t u r e ,  i s o s p i n  zero ,  and G p a r i t y  p o s i t i v e  (which we have in t roduced  a s  
a s s o c i a t e d  w i t h  f O ) ,  i s  c a l l e d  a  "Pomeranchon." I ts  e x i s t e n c e  guarantees  
e q u a l i t y  and constancy of p a r t i c l e  and a n t i p a r t i c l e  c r o s s  s e c t i o n s  i n  t h e  
asymptot ic  l i m i t .  Such e q u a l i t y  and constancy were f i r s t  s t r o n g l y  suggested 
by Pomeranchuk on t h e  b a s i s  of forward-sca t te r ing  d i s p e r s i o n  r e l a t i o n s  com- 
bined wi th  i n t u i t i v e  i d e a s  about d i f f r a c t i o n  s c a t t e r i n g  ( i n e l a s t i c  processgs)  
a t  h igh  ene rg i e s .  Note t h a t  t o t a l  c r o s s  s e c t i o n s  (UT) a r e  r e l a t e d  t o  fo r -  
ward e l a s t i c - s c a t t e r i n g  ampli tudes by t h e  o p t i c a l  theorem 

and hence l i n e a r l y - t o  A(s,O). Thus t h e  dominant po le s  determine t h e  energy 
. dependence of aT. The q u a l i t a t i v e  f e a t u r e s  of P  ( t h e  Pomeranchon pole)  a r e  

s i m i l a r  t o  s c a t t e r i n g  from an absorbing d i s c ,  except  t h a t  t h e  r a d i u s  v a r i e s  
wi th  s o  

Of course ,  o t h e r  po le s  nearby i n  t h e  A p l ane  may compete w i t h  t h e  
Pomeranchon (P) a t  nonasymptotic ene rg i e s .  I f  t h e  energy dependence of t h e  
 IT^ e l a s t i c  s c a t t e r i n g  and t o t a l  c ros s - sec t ion  d a t a  (above, s ay ,  4  BeV) is  
analyzed on t h e  assumption t h a t  only one o t h e r  po lc  c o n t r i b u t e s ,  a second + pole  w i th  a ( 0 )  Z 0.50 is found. Since IT p  and IT-p s c a t t e r i n g  a r e  very  
s i m i l a r ,  t h e  dominant c o n t r i b u t i o n  t o  t h i s  "cor rec t ion"  pole  must have 
T  = 0 i n  t h e  channel  I1 r e a c t i o n  (o therwise  t h e r e  would be a  change of s i g n  
i n  dominant p a r t  of r-p c o r r e c t i o n  compared t o  c o r r e c t i o n ) .  S ince  t h e  
t-channel r e a c t i o n  involves  two IT 'S ,  t h i s  po le  must have even s i g n a t u r e ;  so  
i t  must have t h e  same quantum numbers a s  Po It has  been c a l l e d  t h e r e f o r e  
P'  . 



A p o s s i b l e  p h y s i c a l  resonance l y i n  on t h e  P' t r a j e c t o r y  has  been 8 found a t  1.67 BeV and has  been c a l l e d  f  

There i s ,  i n  a d d i t i o n ,  a  smal l  bu t  s i g n i f i c a n t  d i f f e r e n c e  between 
o ( ~ + ~ )  and ~ ( w - p )  i n  t h e  energy reg ion  4-20 BeV, which seems t o  have about 
t h e  same energy dependence a s  t h e  P '  con t r ibu t ion .  A po le  t h a t  can account 
f o r  t h i s  must have T  = 1 i n  channel  11. The only known i s o v e c t o r  TT reso- 
nance i s  t h e  p ,  which has  JP = 1- a t  760 MeV. The p t r a j e c t o r y  then  must 
have a p ( 0 )  = 0.50; t h i s  is  confirmed by charge-exchange da t a .  The charge- 
exchange r e a c t i o n  ~ ' p  + TO, can be represented  a s  t h e  d i f f e r e n c e  between 
T = 312 and T = 112 e l a s t i c  ~p  s c a t t e r i n g  amplitudes.  The P  and P ' ,  being 
i s o s c a l a r s  i n  channel 11, do n o t  c o n t r i b u t e  t o  t h i s  d i f f e r e n c e ,  and t h e  p 
i s  t h e  only  pole  known t h a t  c o n t r i b u t e s .  This  i s  t h e  most c l ea r - cu t  t e s t  
known of Regge po le  a p p l i c a b i l i t y ,  and a n a l y s i s  of t h e  d a t a  seems t o  bea r  
ou t  t h e  p o l e  con jec tu re  ve ry  we l l  ( s ee  Ref. 3 ) .  

A good d i scuss ion  of the energy dependence 'of t o t a l  c r o s s  s e c t i o n s  may 
b e .  found i n  Udgaonkar's a r t i c l e ; 4  we w i l l  no t  pursue t h i s  f u r t h e r  i n  t h e s e  
l ec tu re s . .  The phase of forward s c a t t e r i n g  i s  .d i scussed  i n  Ref. 5. 

A l l  t h e  d i scuss ion  presented  s o  f a r  has  been o r i e n t e d  toward t h e  in- 
f l u e n c e  of mesonic s t a t e s  i n  t h e  t channel  (e .g . ,  f O , p )  on h i  h-energy T N  
s c a t t e r i n g ,  p a r t i c u l a r l y  nea r  t h e  forward d i r e c t i o n  where 1 -t 7 i s  small .  
However, channel I11 i s  y e t  t o  b e  considered.  The Regge po le s  a s soc i a t ed  
w i t h  t h a t  channel a r e  TN resonances and bound s t a t e s  (we cons ider  t h e  nucleon 
t o  b e  a  bound s t a t e  of T and N wi th  binding energy equal  t o  t h e  pion mass). 

'I'here are crosslzig r e l a t i o n s  connect ing t h e  channel T I T .  i n v a r i a n t  ampli- 
t udes  w i t h  channel  I ;  r e f e r r i n g  t o  t h e  d i scuss ion  i n  Sec t ion  I -B of t h e  
t h r e e  channels  connected by t h e  same four- leg Green 's  f u n c t i o n ,  we d e f i n e  a  
channel T T T  i n v a r i a n t  alnplitude ~ ( 1 ~ ~ )  ( u , t )  such t h a t  ( ignor ing  s p i n  f o r  t h e  
mornen t ) 

The c r o s s i n g  r e l a t i o n  then  r eads  

A ( I ) ( s , t , u )  = A (u,  t , s )  , 
where only  two of t h e  t h r e e  v a r i a b l e s  a r e  independent ;  we have w r i t t e n  a l l  
t h r e e  e x p l i c i t l y  Lo o b t a i n  a symmetrical no ta t ion .  

Channel I11 r e p r e s e n t s  T? e l a s t i c  s ca t t e r , i ng ,  . i f  channel  I is  T-p 
s c a t t e r i n g ,  wi th  (cam. energy)' = u .  The dominant Regge t r a j . e c t o r i e s  i n  t h e  
T + ~  channel  a r e  a s s o c i a t e d . w i t h  t h e  T = 372 resonances. .  -If  t h e  t r a j e c t o r y  

. p i c t u r e  i n  Fig.. 1 i s  e s s e n t i a l l y  c o r r e c t  w i t h  r e spec t  t o  . t h i ~  p o i n t ,  thr?.re. 
should  be  only one i m p o r t a n t . t r a j e c t o r y  nea r  u  = O,.namely t h e  one t h a t  
p a s s e s  through . t h e  P31.2 3/2(1238) resonance. Le t  u s  denote  t h i s  one by a*. 
Then.we expect  t h a t  when (and i f )  a* > -112, i n  t h e , p h y s i c a l  reg ion  f o r  
channel  I s c a t t e r i n g ,  we g e t  a  c o n t r i b u t i o n ' t o  t h e  asymptot ic  behavior  f o r  
channel  I of t h e  form 



Now (from Fig. 1 )  a* i s  presumably above zero when u  is  c l o s e  t o  
zero.  I n  terms of t ,  

Thus, f o r  u  t o  be smal l  and  s l a r g e ,  we need l a r g e  ( - t )  , i. e., l a r g e  
ang le s  i n  t h e  c e n t e r  of mass. . I f  s >> 2 ( ~ ~  + p2) ,  we g e t  

u  z -2k2(1 + cos 8) 

( a s  i n  t h e  ,equal  mass c a s e ) ,  so  we need cos 8  z - 1 . t o  o b t a i n  t h e  Regge 
asymptot ic  behavior  from a*. (Note t h a t  f o r  l a r g e  -t ,  t h e  channel  I1 poles  
presumably r e t r e a t  i n t o  t h e  lower h a l f  of t h e  R plane  and do n o t  c o n t r i -  
b u t e  t o  asymptot ic  .behavior.)  

I f  a  r e l a t i v i s t i c  t rea tment  of nucleon s p i n  i s  cons idered ,  i t  i s  
found t h a t  a* (o r  any fermion Regge po le  t r a j e c t o r y )  and B*, t h e  a s s o c i a t e d  
r e s i d u e ,  should be  'considered a s  a n a l y t i c  func t ions  of Wu = ( i n s t e a d  of t ,  
f o r  example, when t h e  t channel  con ta ins  boson Regge poles )  and t h a t  f o r  
u  < 0, we obtain,  complex conjugate  p a i r s  of Regge po le s :  u*(W), aL2) (W) = 
Ca*(w> I*. 

I 

A s  a  r e s u l t ,  t h e  phase r e l a t i o n s  a r e  not  a s  s imple f o r  fermion poles  
a s  f o r  boson poles ;  i n  a d d i t i o n  t o  s i g n a t u r e  f a c t o r s  of t h e  form 

we have c o n t r i b u t i o n s  t o  t h e  phases from t h e  complex n a t u r e , o f  t h e  t r a j e c -  
t o r i e s  and r e s idues .  It i s  s t i l l  t r u e ,  however, t h a t  a  c o n s t r a i n t  e x i s t s  
connect ing t h e  phase and energy dependence of each pole .  

A complete t h e o r e t i c a l  d i scuss ion  has  been given by s ingh6 and t h e  
most important  p o i n t s  a r e  d iscussed  by ~ i n o s h i t a .  A phenomenological 
a n a l y s i s  by Chew and J. D. s t ack8  has  shown t h a t  t h e  energy dependence and 
backward peak width observed i n  T-p s c a t t e r i n g  a r e  c o n s i s t e n t  w i t h  b o o t s t r a p '  
c a l c u l a t i o n s  of N* parameters .  A s  Chew and Stack  po in t  out., however, more 
a c c u r a t e  d a t a  over  a  wide r ange .o f  e n e r g i e s  near  cos  8  = -1 a r e  necessary ,  
a s  i n  t h e  T-p .charge-exchange, r e a c t i o n  (near  cos  8  = + I ) ,  t o  a  
c r u c i a l . t e s t  of t h e  dominance of s i n g l e  a, po le .  

V. Va r i a t ion  of Residues and D i f f r a c t i o n  Peak Widths 

I f  we r ep resen t  p n l e  terms a s  i n  (53) by ( f o r  even s i g n a t u r e )  

( o r  w i t h  an a d d i t i o n a l  f a c t o r  of i f o r  odd s i g n a t u r e )  where F,depends on 
t h e  choice  of s c a l e  parameter s 0 , ' i t  2s  apparent  t h a t  we must determine 
under what c ircumstance F  could be  a  slowly vary ing  func t ion  of t .  This  
c ircumstance depends on t h e ' b e h a v i o r  of t h e  r e s i d u e  ~ ( t )  (we assume a ( t )  
can be  reasonably approximated by a  s t r a i g h t  l i n e  ' for  smal l  - t ) .  



The o n l y  p o i n t  i n  t we can i n v e s t i g a t e  s imply ( i n  a  n o n r e l a t i v i s t i c  
fo rmal i sm a t  l e a s t )  i s  a  t h r e s h o l d  f o r  t h e  channe l  I1 r e a c t i o n ,  where t h e  
c h a n n e l  I1 c.m. momentum k t  v a n i s h e s .  At such  p o i n t s  we know t h e  t h r e s -  
h o l d  b e h a v i o r  of t h e  r e s i d u e s  is 

( s e e  P a r t  One, S e c t i o n  IV) ,  where R i s  t h e  e f f e c t i v e  range of t h e  p o t e n t i a l  
t h a t  a c t s  i n  channe l  I1 s c a t t e r i n g .  Thus, i f  we d e f i n e  a  reduced r e s i d u e  . 

w e  know t h a t  b n ( t )  i s  s lowly  v a r y i n g  n e a r  a  t h r e s h o l d  i n  t .  Applyiay t h i s  t o  
( 5 3 ) ,  we w r i t e  F from (54) a s  

2 a ( t )  + 1 
u(t) 

. b ( t ) . ( G l )  
Fso(t)  = 2 s i n  (nu/2) 

I f  S O  is  chosen t o  e q u a l  ( ~ ~ / 2 ) - l ,  we s e e  t h a t  a l l  terms i n  F s o ( t )  a r e  slow- 
l y  v a r y i n g  n e a r  a  t h r e s h o l d  i n  t .  T h i s  i s  a s  much a s  can be  done i n  a  model- 
independen t  s e n s e ;  we must t h e n  assume t h a t  t h e  e x t r a p o l a t i o n  from t = 
( t h r e s h o l d  i n  channe l  1 1 )  down t o  t = 0 is  a  smooth one,  and t h a t  F s O ( t )  i s  
a l s o  s lowly  v a r y i n g  n e a r  t = 0. T h i s  c l e a r l y  depends on t h e  d e t a i l s  of t h e  
c h a n n e l  I1 p o t e n t i a l ,  f o r  example, and may n o t  be  t r u e  i n  a l l  c a s e s .  It 
a p p e a r s  t o  b e  an  a d e q u a t e  assumption f o r  P, b u t  n o t  f o r  p .  We e s t i m a t e  t h e  
r a n g e  R by examining t h e  l a r g e s t - r a n g e  e f f e c t i v e  p o t e n t i a l  contributed by 
s imple  o n e - p a r t i c l e  exchange diagrams. For example, i n  NN + nn, we f i n d  
one-nucleoli exclldage 

c o n e r f b u r e s  t h e  l u n g e s t  range R~ % 2pM; t h i c  f i g u r e  i s  cons i . s ten t  w i t h  the 
so v a l u e s  needed t o  match t h e  slow l o g a r i t h m i c  dependence of t h e  np d i f -  
f r a c t i o n  wid th .  

T h i s  a n a l y s i s  of r e s i d u e s  was f i ' r s t  a p p l i e d  by Desa i  (Ref. 8 of P a r t  I )  
' 

t o  mp and pp s c a t t e r i n g ,  

The Kange R ,  and hence t h e  a p p r o p r i a t e  v a l u e  of so, w i l l  be d i f f e r e n t  . ' 

f o r  d i f f e r e n t  r e a c t i o n s .  Thus t h e  d i f f r a c t i o n  peak w.idth, and i t s  r a t e  of 
s h r i n k a g e  w i t h  s ,  w i l l  d i i f e r .  E s t i m a t e s  of Rpp  i n d i c a t e  t h a t  pp s c a t t e r -  
i n g  shou ld  exiilblL I I I U ~ ~ I  stronger s h r i n k a g e  t h a n  np, which Pgrees  q u a l i t a t i v e l y  
w i t h  exper iment .  

( 

I 

I f  one does n o t  r e l y  on F . b e i n g  e s s e n t i a l l y  c o n s t a n t ,  i t  w i l l  be  neces- 
s a r y  t o  p a r a m e t r i z e  t h e  r e s i d u e s  i n  some way such a s  an  e x p o n e n t i a l  ( o r  sum 
of e x p o n e n t i a l s )  i n  t .  Then one may choose so a r b i t r a r i l y ,  e . g . ,  l ( ~ e v ) ~ .  
T h i s  w a s  done b y r P h i l l i p s  and R a r i t a  i n  t h e i r  d e t a i l e d  f i t  t o  high-energy 
meson-nucleon s c a t t e r i n g  , which . i n v o l v e s  many, f r e e  pa ramete rs .  



For o t h e r  r e a c t i o n s ,  e .g . ,  Kp and pp s c a t t e r i n g ,  po l e s  o t h e r  than  P, 
P ' ,  and p a r e  p o s s i b l e . s i n c e  t h e  nn se l ec t ' i on  r u l e  forb idding  G = -1 t r a -  
j e c t o r i e s  i s  absent .  T r a j e c t o r i e s  a s s o c i a t e d  wi th  w ,  and an i sovec to r  '. 

G = -1 (R) po le ,  d i scussed  i n  t h e  next  s e c t i o n ,  a r e  r equ i r ed  i n  phenomeno- 
l o g i c a l  e l a s t i c - s c a t t e r i n g  ana lyses  ( s ee  Ref. 9 ) .  . 

V I .  Exchange and I n e l a s t i c  React ions 

The phenomenological f i t s  t o  t o t a l  and d i f f e r e n t i a l  e l a s t i c  c r o s s  
s e c t i o n s  f a i l  i n  t h e  case  of s c a t t e r i n g  i n  t h e  energy range p re sen t ly  
a v a i l a b l e .  For o t h e r  s c a t t e r i n g  processes  they a r e  reasonably succes s fu l ,  
e s p e c i a l l y  f o r  small  momentum t r a n s f e r  ( s e e ,  f o r  example, Binford and 
~ e s a i '  O) . A l l  such phenomenological f i t s  r e q u i r e  many parameters.  The 
re levance  of s imple po les  t o  high-energy processes  is much more s t r i k i n g  i n  
exchange r e a c t i o n s  o r  i n e l a s t i c  (two-body) r e a c t i o n s ,  where only one ( o r  
perhaps two) po les  a r e  allowed i n  c e r t a i n  f avo rab l e  cases '  by s t rong-  
i n t e r a c t i o n  s e l e c t i o n  r u l e s .  We have a l r eady  remarked on n-p charge ex- 
change. Another ca se  t h a t  i s  very  r e s t r i c t i v e  i s  t h e  "isospin-exchange' '  
r e a c t i o n  IT-p + nn . The only po les  allowed i n  channel 11, which he re  i s  

+ n+n, have i s o s p i n  1, G = -1, and even s i g n a t u r e  w i th  p o s i t i v e  i n t r i n s i c  
p a r i t y ;  a s soc i a t ed  phys i ca l  resonances could have JP = 2+ then (bu t  no t  I - ) .  
The lead ing  such t r a j e c t o r y  has  been c a l l e d  R ,  and t h e  A2 may be a  phys i ca l  . .. 
resonance l y i n g  on t h i s  t r a j e c t o r y .  

The d a t a  f o r  t h i s  r e a c t i o n  between 4 and 18  BeV/c a r e  c l e a r l y  con- 
s i s t e n t  wi th  such a  s i n  l e  po l e ;  t h e  s i t u a t i o n  has  been analyzed thoroughly 
by P h i l l i p s  and Rarita." An analogous ca se  i s  n-p + X O  n ,  bu t  t h i s  r e a c t i o n  
seems t o  be r a r e  and i n  any ca se  has  no t  been s t u d i e d  wi th  c a r e  above 6 BeV/c. , 

A t h i r d  ca se  i n  which only one known pole  can c o n t r i b u t e  i s   IT+^ + no 
N B ~ ,  which al lows only  p i n  t h e  t channel.. Unfortunately t h e  experimental  
s i t u a t i o n  i s  not  s o  c l ea r - cu t  f o r  t h i s  r e a c t i o n ,  but  d a t a  a r e  c o n s i s t e n t  a t  
pres.ent wi th  t he  hypothes i s  of a  s imple po le  wi th  t r a j e c t o r y  such t h a t  
a ( 0 )  2 0.5, which i s  t r u e  f o r  p a s  seen  i n  t h e  charge-exchange r e a c t i o n .  . 

** 0 ** 
The r e a c t i o n s  n+p + n N 3 / 2 ,   IT+^ + X N 3 1 2  in&lYe only t h e  R t r a j e c t o r y ,  

bu t  no s i g n i f i c a n t  d a t a  a r e  a s  y e t  a v a i l a b l e  on t h e s e  r e a c t i o n s .  

This  exhausts  t h e  c a s e s , i n  which only one po l e  c o n t r i b u t e s .  Severa l  re-  
a c t i o n s  involve  only two known po le s ;  t h e  s imp le s t  examples a r e  

- 

ray KN 
"' K + n + K o p  + "On p Y R  ' }charge exchange 

These have been d iscussed  i n  Ref. 9 .  

These a& d iscussed  i n  Ref. 12.  



Here t h e  Q i s  a  po le  whose resonances would have quantum numbers 
( I ,  JP) = (1/2,2+) ; t h e  K* po le  has a  resonance wi th  ( I ,  JP) = (112, I-) a t  
880 MeV. 

The r e c e n t l y  observed ~ * ( 1 4 1 0 ) ,  i f  JP = 2+, provides  a  t r a j e c t o r y  s u i t -  
a b l e  f o r  Q. 

T r a j e c t o r i e s  w i th  I = 312 would a l s o  c o n t r i b u t e  t o  such r e a c t i o n s ;  bu t  
t h e r e  i s  no known meson o r  meson ,resonance wi th  t h i s  i s o s p i n  quantum number, 
s o  u n l e s s  they'would d e f i n i t e l y  b e  c a l l e d  f o r  by d a t a  ( f o r  example i n  
K-p -t IT? a t  high e n e r g i e s ) ,  t h e s e  p o s s i b i l i t i e s  a r e  ignored a t  p resent .  

. . 

Many, o t h e r  r e a c t i o n s ,  producing baryon resonances and/or  meson resonances 
i n  t h e  f i n a l  s t a t e ,  involve  only two poles .  But t h e  number of parameters 
r equ i r ed  i s  l a r g e  when ' the  number of s p i n  s t a t e s  involved i s  l a r g e ,  and f i t s  
t o  d a t a  a r e  d i f f i c u l t  t o  c a r r y  out  i n  an uriambiguous way. This  is p a r t i a l l y  
compensated f o r  i n  some c a s e s  where t h e  decay-density mat r ices  can be de t e r -  
mined experimental ly  s i n c e  t h e s e  provide a  g r e a t  d e a l  of information concern- 
i ng  t h e  r eac t ion .  

\ 

The f a c t o r i z a t i o n  proper ty  of r e s idues  ( P a r t  One, Sec t ion  VI) is impor- 
t a n t  i n  connect ing one r e a c t i o n  wi th  another ,  e s p e c i a l l y  when s p i n  i s  taken 
i n t o  account .  

V I I .  P e r i p h e r a l  I n e l a s t i c  Reaction Model a s  Spec ia l  Case: Comparison i n  
General 

There have been moderately succes s fu l  explana t ions  of some high-energy 
r e a c t i o n s ,  e s p e c i a l l y  baryon resonance product ion pp +- pN*, from a f i e l d -  
t h e o r e t i c  po in t  of view us ing  t h e  i d e a  t h a t  one-meson exchange diagrams 
dominate such r eac t ions .  I n  t h e  abovc case ,  one-pion exchange con t r ibu te s :  

Another case  which has been a t  l e a s t  q u a l i t a t i v e l y  succes s fu l  i s  
 IT^ +- pp, a l s o  involv ing  pion exchange: 

(These models work very  we.11 i f  abso rp t ive  c o r r e c t i o n s  a r e  appl ied.  We w i l l  
d i s c u s s  such modi f ica t ions  of po le  terms i n  Sec t ion  I X  of t h e s e  l e c t u r e s . )  



* 
Other processes  such a s  ITN + I T N ~ / ~ ,  which i n  such a  p i c t u r e  might pro- 

ceed by v e c t o r  meson exchange (e .g . ,  l i . k e  p ) ,  have been s u c c e s s f u l  t o  a  more 
l i m i t e d  e x t e n t ;  i s o s p i n  r a t i o s  and N* decay-density ma t r ix  elements a r e  cor- 
r e c t ,  but  energy dependence and angular  d i s t r i b u t i o n s  a r e  no t  very  good. An 
ex t ens ive  survey and b ib l iography  a r e  presen ted  i n  Ref. 13. 

W e  now i n d i c a t e  how "elementary" ( i . e . ,  f i e l d  t h e o r e t i c  w i th  Feynman 
diagram i n t e r p r e t a t i o n )  p a r t i c l e s  can be  represen ted  a s  a  l i m i t i n g  c a s e  of 
Regge poles .  A s  a  consequence, w e  s e e  a  connect ion between t h e  Regge-pole 
approach f o r  i n e l a s t i c  r e a c t i o n s  and t h e  p e r i p h e r a l  models. Underlying our 
d i s cus s ion  w i l l  be  t h e  i dea  t h a t  every p a r t i c l e  i s  composite,  i n  t h e  s ense  
t h a t  i t  can be  ob ta ined  by so lv ing  some r e l a t i v i s t i c  bound-state problem. 

Consider f o r  example a  Regge-pole model ( ignor ing  sp in )  f o r  IT-p + pOn. 
I n  t h e  t channel ,  we have pp +  IT^; t h e  r e l e v a n t  po les  must have G = -1, 
i s o s p i n  nonzero; t h e r e  i s  no s i g n a t u r e  r e s t r i c t i o n .  No known resonances o r  
p a r t i c l e s  have i s o s p i n  >1, so  we look f o r  I = 1, G = -1 p a r t i c l e s .  The only 
wel l -es tab l i shed  s t a t e  i s  t h e  n meson; i f  A1 i s  a  t r u e  resonance,  i t  would 
a l s o  be  a  candida te .  (See Ref. 8 of P a r t  One f o r  c l a s s i f i c a t i o n  of meson 
t r a j e c t o r i e s . )  Assuming only IT, we s e e  t h e  phys i ca l  r eg ion  f o r  channel I 
( s  channel) IT-p + pOn nea r  t h e  forward d i r e c t i o n  involves  t va lues  w i t h i n  

2 one o r  two u, of t h e  po in t  where a, = 0,  i . e . ,  t h e  phys i ca l  pion pole .  S ince  
t h i s  i s  a  smal l  i n t e r v a l ,  compared t o  t h e  c h a r a c t e r i s t i c  dimension 1 ( B ~ v ) ~  
we have seen  i n  t r a j e c t o r y  s l o p e s ,  we can approximate t h e  (pion t r a j e c t o r y )  . 

pole  term 

(2a + 1 )  B(t)  
s i n  ~ ~ a ( t )  

by i ts  behavior  nea r  t = 0,  a  = 0,  

B (0) - - B ( o ) l ~ ~ a '  
2 

- 
2 '  s i n  [ ~ ( t - u , )  a '  I t - uIT 

which i s  j u s t  t h e  form of t h e  e lementary-par t ic le  r e s u l t  ( i g n o r i n g , s p i n ) ;  t h e  
dominator is j u s t  t h e  propagator  of t h e  ( v i r t u a l )  pion eva lua ted  on t h e  mass 
s h e l l  f o r  t h e  phys i ca l  r e a c t i o n  i n  ques t i on ,  where [ B ( O ) / I T ~ ' ]  t akes  on t h e  
s i g n i f i c a n c e  of a  product of pion-nucleon and pion-rho-pion coupl'ing c o n s t a n t s ,  
g f .  We observe f i n a l l y  t h a t  t h e  r e s i d u e  f a c t o r i z a t i o n  proper ty  guaran tees  
t h a t  B(0) can be  f ac to red  i n t o  s u c h . a  product .  I n  comparing ( f o r  example) 
s i m i l a r  r e a c t i o n s  (again ignor ing  sp in )  such a s  



' assuming a l l  t h e s e  a r e  dominated by t h e  same pole ,  p u t t i n g  B p p  = B(0) f o r  
t h e  r e a c t i o n   IT^ -t pp and s i m i l a r  n o t a t i o n  f o r  t h e  o t h e r  r e a c t i o n s ,  we f i n d  
t h e  r e l a t i o n s  

which a r e  t h e  same a s  i f  we considered elementary pion exchange wi th  coupl- 
i ng  cons t an t s  a t  t h e  v e r t i c e s .  

Note t h a t  such a correspondence & d e t a i l  ( a s  a  func t ion  of .  s and t )  
depends e s s e n t i a l l y  on t h e  smal l  mass of t h e  pion,  which a l lows  an  extrapo- 
l a t i o n  t o  t a k e  p l a c e  over  only a  smal l  i n t e r v a l  i n  t from t h e  crossed- 
channel  phys i ca l  r eg ion  t o  t h e  pion p o l e . .  We expect t h a t  more massive 
resonances ( e . ~ . ,  p ,w)  d i f f e r  i n  g r e a t e r  d e t a i l  when considered a s  e lementary .  
( i . e . ,  f i x e d  s p i n ) ,  compared t o  t rea tment  a s  a  Regge pole .  . . 

The most s t r i k i n g  o v e r a l l  d i f f e r e n c e  between t h e  Regge pole-formu'lation 
and t h e  cova r i an t  p e r t u r b a t i o n  theory (with f ixed-spin p a r t i c l e s )  appears  
i n  t h e  energy dependence of t h e  i n e l a s t i c  (o r  exchange) r e a c t i o n s .  The 
former p r e d i c t s  asymptot ica l ly  . 

where a is always l e s s  than  1, whi le  . the l a t t e r  p r e d i c t s  

where J is  the  s p i n  of t h e  phys i ca l  exchanged p a r t i c l e  o r  resonance. 

For t h e  l i g h t  ,spin-0 mesons thi's does no t  make much d i f f e r e n c e ,  bu t  f o r  
t h e  1' and 2' resonances i t  i s  a  b i g  change. Note t h a t  t h e  phase of t h e  in-  
e l a s t i c  processes  is  a l s o  q u i t e  d i f f e r e n t  from t h e  ' ( r e a l )  p r e d i c t i o n  of f ixed-  
s p i n  pe r tu rba t ion  theory ;  however, t h e  phases a r e  not  easy t o  measure. 

The r e l a t i v e  importance of va r ious  p o l e s ,  i f  more than one c o n t r i b u t e ,  
depends on t h e  energy ( s )  i n  genera l .  Although t h e  l i g h t e s t  mass s t a t e  



2 (e .g . ,  IT) may dominate a t  low ene rg ie s  because t h e  fa ' c tor  u, - t i s  smal l ,  
a t  h igh  ene rg i e s  t h i s  cons ide ra t ion  g ives  way t o  t h e  f a c t o r  s", which is  
g r e a t e r  f o r  h ighe r  t r a j e c t o r i e s  (e .g . ,  p ) .  

Remark. SU3(and o t h e r  h ighe r  symmetries) - p r e d i c t i o n s  may be developed i n  a  
way analogous t o  t h e . r e l a t i o n s  between coupling cons t an t s  i n  pe r tu rba t ion  
theo ry ,  through . the  use  of a p p r o p r i a t e  ~ l e b s c h - ~ o r d a n  c o e f f i c i e n t s .  This i s  
d iscussed  i n  Refs. 9 ,  11, 12 ,  and 1 4 .  The l a t t e r  r e f e rence ,  i n  p a r t i c u l a r ,  
u s ing  only r e s idues  eva lua ted  a t  t = 0 (by ana lyz ing  only t o , t a l . c r o s s  
s e c t i o n s )  avoids some of the '  ambigui t ies  a s s o c i a t e d  wi th  symmetry breaking.  
T h e s e , a r i s e Y 3  f o r  example, because t h e  func t ions  B( t )  w i l l  no t  be the , same 
func t ions  of t ,  even w i t h i n  a  m u l t i p l e t  of S U ~  due t o , t h e  mass d i f f e r e n c e s .  

V I I I .  Spin,  P o l a r i z a t i o n ,  and Decay-density Matr ices  

The i n t r o d u c t i o n  of s p i n  f o r  t h e  incoming and outgoing p a r t i c l e s  
complicates  t h e  p r a c t i c a l  a p p l i c a t i o n  of Regge po le s  enormously. One of t h e  
worst d i f f i c u l t i e s  appears  i n  t h e  c ros s ing  r e l a t i o n s ,  The s c a t t e r i n g  ampli- 
tudes  f o r  given s p i n  ( o r  a l t e r n a t i v e l y  h e l i c i t y  s t a t e s )  i n  channel I a r e  
obta ined  a s  l i n e a r  combinations of s p i n  o r  h e l i c i t y  ampli tudes i n  channel  11, 
w i t h  c o e f f i c i e n t s  t h a t  depend on s and t .  Thus one r e q u i r e s  f i r s t  of a l l  
( i n  p r i n c i p l e )  a  de te rmina t ion  of t h i s  c ros s ing  ma t r ix ,  which i s  an  involved 
problem i n  gene ra l .  I f  t h i s  ma t r ix  i s  known ( a s  it i s  i n  t h e  s imp les t  ca ses  
such a s   IT^ and pp s c a t t e r i n g ) ,  t h e  problem remains of determining t h e  many 
parameters  r equ i r ed  t o  s p e c i f y  t h e  va r ious  r e s idues  involved.  The s i t u a t i o n  
i n  both  channel  I and channel I1 may be  descr ibed  wi th  a  mul t ichannel  fo r -  
malism (such a s  t h a t  of Sec t ion  V I ,  P a r t  One) i n  which d i f f e r e n t  s p i n  o r  
h e l i c i t y  s t a t e s  a r e  represented  by d i f f e r e n t  channels .  (Only some of t h e s e  
w i l l  be  a c t u a l l y  coupled, because angular-momentum, t ime-reversa l ,  and p a r i t y  
s e l e c t i o n  r u l e s  w i l l  f o r b i d  some t r a n s i t i o n s . )  The r e s i d u e s  f o r  each s p i n  
s t a t e  w i l l  ( i n  gene ra l )  have d i f f e r e n t  behavior  a s  func t ions  of t. 

Some (mostly formal) r e s u l t s  concerning c ros s ing  r e l a t i o n s  f o r  h e l i c i t y  
ampli tudes have been proved by Trueman and wick15 and employed by G o t t f r i e d  
and ~ a c k s o n '  i n  t h e i r  d i scuss ion  of s p i n  i n  exchange models ( i nc lud ing  
Regge po le s ) .  They show, f o r  example, t h a t  f o r  c e r t a i n  ca ses  (e .g . ,  
Rp + K*p), i n  L l ~ e  sp in -pa r i t y  a n a l y s i s  o f  exchanged mesons (us ing  evidence 
from t h e  decay-density ma t r ix  of f i n a l - s t a t e  resonances) ,  one may g e n e r a l i z e  
immediately from f ixed-sp in  (e .g. ,  elementary K*) exchange t o  Regge poles .  
I n  g e n e r a l ,  however, t h e  s i t u a t i o n  as regards  s p i n  i s  much more complicated 
when Regge t r a j  e c t o r i e s  a r e  used than i n  t h e  elementary-exchange p e r i p h e r a l  
model. 

The e s s e n t i a l  formalism f o r  Regge po le s  i n  ITN s c a t t e r i n g  and charge ex- 
change may be found i n  Ref.' 1 7 ,  a  p ioneer ing  paper on t h e  s u b j e c t  of ,Regge  
po le s  and t h e i r  phenomenological a p p l i c a t i o n .  (This  fo:rmalism, as f a r  a s  
kinematic  f a c t o r s  a r e  concerned, may b e  used f o r  KN r e a c t i o n s  a l s o ,  i f  we 
inc lude  pores  of both s i g n a t u r e s  f o r  each i s o s p i n  s t a t e  i n s t e a d  of only one 
i n  ITN r e a c t i o n s  .) A summary i s  given i n ,  Ref. 9. Discuss ion  of pp s c a t t e r -  
i n g  (and pn charge exchange) i s  ' given i n  Refi 18. This  formalism f o r  
mp + -nN* and KP + KN* has  been worked out  by Hara. l 9  

. . -  

Following t h e  approach of Refs. 15 and 16 ,  we decompose a  gene ra l  re- 
a c t i o n  ampli tude i n  channe'l -11 ( f o r  t h e  r e a c t i o n  a  + ; + 6 + d) i n  terms of 
cova r i an t  h e l i c i t y  ampli tudes 



.such t h a t  t h e  d i f f e r e n t i a l  c r o s s  s e c t i o n  f o r  t h e  , r e a c t i o n  a  + S :+ 6. + d wi th  
incoming (a,':) h e l i c i t i e s  (hl,A2) and outgoing ( i , d )  h e l i c i t i e s  (h3,X4) i s  
g iven  by 

S i m i l a r l y ,  i n  channel  I, t h e  r e a c t i o n  a  + b + c  + d 5s..des.cribed by channel  I 
h e l i c i t y  ampli tudes 

sucli L l~a t  the d i f f e r e n t i a l  c r o s s  s e c t i o n  f o r  khe.channel  I r e a c t i o n  wi th  in-  
coming ( a ,b )  h e l i c i t i e s  (v l  ,v2)  and outgoing ( c ,d )  h e l i c i t i e s  (v3 ,vq) i s  
g iven  by 

Then, a c c o r d i n g . t o . R e f .  15,- t h e r e . e x i s t s  an .or thogona1 c r o s s i n g  ma t r ix  X 
(whose eleinents a r e  f u n c t i o n s  of ,s and t .and a r e  r e a l  i n  t h e  p h y s i c a l , r e g i o n s ) ,  
such t h a t  

. The 'X ma t r ix  s i m p l i f i e s  to" some e x t e n t  i n  t c e  s + asymptot ic  . u n i t ,  o r  
i f  equa l  m a s s . p a r t i c l e s  a r e . i n v o l . ~ e d . .  F u r t h e r ,  a s  t + 0;X is  nons ingular ,  
s o ' w e  can u s e  a ' . l i & i t i n g  form ,near  t h e  forward (channel. I) d i r e c t i o n  i f  . 
d e s i r e d .  

I n  t h e  TN ca+e ,  we have only two , independent  h e l i c i t y  ampli tudes;  i n  
channel  I, where t h e  . h e l i c i t i e s  r e f e r  t o  i n i t i a l  and f i n a l  riucleons.,. we have 

and  

, , 

where t h e . . ' l a t t e r  e q u a l i t i e s  fo l low from' t ime-reversal 'symmetry .and p a r i t y .  
conse rva t ion .  

I n  channel  11, NN -t T T ,  where h e l i c i t i e s  r e f e r  t o  incoming nucleqn and 
an t inuc leon ,  we d e f i n e  



and 

. . 

Then X can be represented  a s  a 2 x 2 mat r ix ,  which i s  d e r i v e d ' i n  
Ref. '15. 

. . 
:. The Regge-pole decomposition F+, which i s  a p p r o p r i a t e  f o r  P,Pt ,p i n  t h e  
fi +, .rrn channel,  may be-  obtained from a Sommerfeld-Watson (SW) t 'ransforn 
appl ied  t o  partial-wave repres 'en ta t ions  of t h e  h e l i c i t y  amplitudes 
(zt  = cos Bt): 

and 

The d func t ions  h e r e  a r e  a s  def ined  by Jacob and Each of t h e s e  
sums must be separa ted  i n t o  e v e n a n d  odd J va lues  t o  ob ta in  a n a l y t i c  con- 
t i n u a t i o n s  i n  J f o r  t h e  partial-wave amplitudes.  Then we cont inue t h e  d 
func t ions  a n a l y t i c a l l y  i n  J by us ing  t h e i r  d q f i n i t i o n s  i n  terms of hyper- 
geometric func t ions .  Af te r  performing t h e  SW transform, we o b t a i n  

a E ( t )  

(2az ( t )  + 1)  dl12 i / 2 ( z t )  - i t )  ( even ) 
F: = 1 ~:(t) . + background , 

even- s i n  n a z ( t )  i n t e g r a l  
s i g n a t u r e  

poles  

and 

. . 

~0 = (2a:(t) + 1 )  1 / 2 ( ~ t )  1 @ k ( t )  + 
odd- s i n  naE(t)  

s igna t i l re  
po les  

. . (65) 

and s i m i l a r l y  f o r  Fc and F!, w i t h  



. .. . . . .  , 

and f i n a l l y ,  . 
. . 

F + = F F + F ~  F- = F : + F ~ .  + ' 
' 

Note .  t h a t  t h e  same t r a j e c t o r 5 e s  w i l l  i n  gene ra l  :app,ear . , in  F': and .Fey  . and i n  
F: and F!, bu t  w i t h ,  d i f f e r e n t  r e s idues  i n  (+) and,  (-) ampli tudes.  

Now when c r o s s i n g  . i s  employed, and z t  + a a s  s + a, we u t i l f z e ,  t h e  
asymptdt ic  . b e h a u i ~ r s  

and o b t a i n  r e s u l t s  i n  . the  ..asymptotic , reg ion  of t h e  .form' 

where E~ = f 1 i s  t h e  s i g n a t u r e  f a c t o r  of t h e  n t h  po le ,  and X i j  a r e  t h e  
crossing-matr ix elements.  (The X+ - have one h i g h e r  power of s than  t h e  
Xk,+, s o  t h e  c o n t r i b u t i o n s  from ~<'anrl  8- are comparable i n  gene ra l . )  

D e f  i r i ing reduced r e s i d u e s  
. . 

we o b t a i n  f i n a l l y  

where t h e  y+, - become independen t  o£ - s ( a s  i n d i c a t e d )  i n  t h e  high-energy 
l i m i t  : 

-, 

and 



Now the differential cross section in channel I is given asymptotically by 

where a is the trajectory of the dominant pole. 

The polarization of the-final nucleon, if the target is unpolarized, 
is. given by 

The polarization thus vanishes if the phases of G-t and G- are equal, as 
they are when a single pole dominates. ~ith'two poles contributing, say 

, a1 and a2, we get a polarization that asymptotically has energy dependence 
s (assuming a1 > a2). 

These facts remain true in general for other reactions involving spin, 
e. g. , pp scatte'ring. Note that although final nucleon polarization (assuming 
an' unpolarized target) vanishes when only a single pole contributes, this is 

. 'not true for other spin-correlation parameters, which may not be asymptoti- 
cally zero. 

For the general reaction with spin, (64) can be generalized to20 

and, separating into even and odd J, SW transforms can be applied to yield 
the following generalizations of (65) : , . 

. . 
an(t) 

' .  (n) h3-A 1 Y A4-h2 
(zt) 

G 3 h 4  hlh> = 1 8:: ~ 1 x 2  ;X3Xi+ 2 sin .rran(t) 
poles 

+ (background integrals). 

The asymptotic forms of the d functions are powers of.zt analogous to 
( 6 6 ) . ,  and one obtains eventually for high-energy channel I reactions, the 
general'form, 

. . -i.rrcin( t) 

l~I(s,t) 
[2un(t)' + 1.1 [l + Erie 

poles 2 sin ra,(t) 



More d e t a i l s  have been given by ~ i s e t ~ l  who p o i n t s  ou t  t h a t  f o r  evalu- 
a t i n g  spin-summed c r o s s  s e c t i o n s ,  one does n o t  need t o  know X s i n c e  i t s  
o r thogona l i t y  a l lows  i t s  e l imina t ion .  

Got t f r i e d  and ~ a c k s o n '  15 show how t h e  d e n s i t y  ma t r ix  f o r  f i n a l - s  t a t e  
resonance decays may be  obta ined  from such h e l i c i t y  ma t r ix  elements.  

The formula (72) shows t h a t  t h e  energy dependence and phase of po le  con- -, 
. t r i b u t i o n s  a r e  r e l a t i v e l y  e a s i l y  p red ic t ed  even when many s p i n  s t a t e s , o c c u r  

i n  t h e  r eac t ion .  The. reduced r e s idues  bA A A A ( t ) ,  however ( a t  l e a s t  i n  a  
1 2 3 4  

pu re ly  phenomenological approach) ,  a r e  i n  gene ra l  independent func t ions  i n  
each r e a c t i o n ,  a l though a  f a c t o r i z a t i o n  proper ty  holds  f o r  t h e s e  h e l i c i t y  
r e s i d u e s  ( a s  a  s p e c i a l  c a s e  of mult ichannel  r e a c t i o n s ) .  For an a p p l i c a t i o n ,  
cce I3a.muwii 22 r 

When a  r e a c t i o n  i s  f i t  by poles  i t  i s  p o s s i b l e  i n  some' ca ses  t o  check 
t h e  reasonableness  of t h e  r e s idues  w i t h i n  t h e  framework of bound-state models, 
a s  d e v e 1 o p e d . b ~  b o o t s t r a p  p r a c t i c i o n e r s .  An example of a  n o n t r i v i a l  ca se  i s  
presented  i n  Ref. 24. 

IX. Regge Poles  i n  t h e  O p t i c a l  Model P o t e n t i a l  and .Absorp t ive  Correc t ions  

A. Motivat ion 

I f  we regard  t h e  Regge-pole formalism a s  a  whole a s  a  g e n e r a l i z a t i o n  
of f i e l d - t h e o r e t i c ,  i . e . ,  c o v a r i a n t ,  per turba t ion- theory ,  p e r i p h e r a l  (one- 
meson exchange) models, then  ana logies  wi th  more complete f i e l d - t h e o r e t i c  ( o r  
even po ten t i a l - t heo ry )  models may enable  t u r t h e r  developments toward more 
exac t  agreement w i t h  experiment.  That such developments a r e  indeed necessary  
is  i n d i c a t e d  by t h e  n e c e s s i t y  f o r  applying a b s o r p t i v e  c o r r e c t i o n s  t o  pro- 
c e s s e s  involv ing  pion exchange. 

We have seen  t h a t  t h e  IT po l e  should ,  f o r  smal l  momentum t r a n s f e r ,  
behave l i k e  t h e  elementary IT exchange po le  a s  c a l c u l a t e d  from cova r i an t  per- 
t u r b a t i o n  theory  ( i n  lowest  o rde r ) .  However, q u a n t i t a t i v e  agreement w i t h  
experiments  such a s  ~p  + pp, inc luding  o v e r a l l  normal iza t ion  and p decay- 
d e n s i t y  ma t r ix  elements ,  r e q u i r e  s t r o n g  mod i f i ca t ion  of t h e  elementary 
formula a s  provided by t h e  abso rp t ive -co r rec t ion  method. References 25-27 
d i s c u s s  t h i s  method and i t s  q u a n t i t a t i v e  r e s u l t s .  Genera l iz ing  from t h i s ,  
i t  seems p l a u s i b l e  t h a t  ( a t  l e a s t )  normal iza t ions  and s p i n - s t a t e  p r o p e r t i e s  
( e .g . ,  p o l a r i z a t i o n  and decay-density ma t r i ce s )  w i l l  no t  be c o r r e c t l y  de- 
s c r i b e d  by a  Regge-pole model ( a t  l e a s t  when s imp les t  hypotheses a r e  employed 

I t  f o r  t h e  r e s i d u e  behav io r s ) ,  b u t  some mod i f i ca t ions  (e .g. ,  a b s o r p t i v e  
co r r ec t ions" )  a r e  necessary.  For i n e l a s t i c  channels ,  which i n d i v i d u a l l y  
c o n s t i t u t e  a  sma l l  p a r t  of t h e  t o t a l  c r o s s  s e c t i o n s  a t  h igh  ene rg i e s ,  t h i s  
can b e  expressed by say ing  t h a t  competi t ion from many o t h e r  channels should 
be e x p l i c i t l y  taken i n t o  account i n  t h c  formalism. This  is  provided f o r  i f  
t h e r e  i s  some means of i n s u r i n g  u n i t a r i t y  of t h e  S ma t r ix  a t  h igh  ene rg i e s ,  
where much i n e l a s t i c i t y  is  p re sen t .  

Although i t - i s  p o s s i b l e  t o  develop t h e  fo l lowing  (optical-model) 
approach from a  c o v a r i a n t ,  f i e l d - t h e o r e t i c  viewpoint ,  t h e  phys i ca l  i d e a s  
a r e  more simply understood wi th  a  high-energy (but  apparent ly  n o n r e l a t i v i s t i c . ) ,  
po t en t i a l - t heo ry  formalism, u s ing  ana log ie s  w i th  nuclear-physics  s c a t t e r i n g  
theory  i n  t h e  optical-model approximation. 



.B. Optical-model "Po ten t i a l "  D e f i n i t i o n  

Consider a  s c a t t e r i n g  p r o c e s s  i n  which many i n e l a s t i c  channels aEe 
open. For t h e  moment, we cons ider  only two-body channels .  We can formal ly .  
d e s c r i b e  t h e  system wi th  a  mul t ichannel  Schrtidinger equat ion  a s  i n  P a r t  One, 
.Sect ion V I ,  f o r  t h e  radial-wave func t ions  of t h e  system 

(We may assume t h e  Vi j  a r e i n d e p e n d e n t  of energy k ,  a l though t h i s  
i s  n o t  necessary.)  I n  Pa r t 'One ,  Sec t ion  V I ,  we i n d i c a t e  how one could de- 
velop a  ma t r ix  i n t e g r a l  equat ion  [ c f .  Eq. (30) ]  whose Fredholm f a c t 0 r s . N  
and D y i e lded  t h e  mul t ichannel  bound s t a t e s  a s  w e l l  a s  mul t ichannel  s c a t t e r -  
ing  amplitudes.  Our m o t i v a t i o a w a s  p r imar i ly  t o  o b t a i n  low-energy in fo r -  
mat i on ,  i. e. , . concerning bound s t a t e s  and s c a t t e r i n g  resonances.  

Now, however, we a r e  i n t e r e s t e d  i n  t h e  .high-momentum s c a t t e r i n g  
( l a r g e  k i )  problem a s s o c i a t e d  wi th  (73) ,  and we w i l l  s ke t ch  a  d i f f e r e n t  
formulat ion f o r  such a  purpose,  motivated p r i m a r i l y  by t h e  optical-model 
formula t ion  of s c a t t e r i n g  by a  complex nucleus.  A nucleus has exc i t ed  
s t a t e s ,  and any of t h e s e  may be  exc i t ed  by a  p r o j e c t i l e  pass ing  through t h e  
nucleus i n  a t s c a t t e r i n g  process ;  t hus  t h e  p r o b a b i l i t y  f o r  i n e l a s t i c  pro- 
ce s ses  ( i . e . ,  e x c i t a t i o n )  i s  l a r g e ,  and i n  f a c t  t h e  e x c i t a t i o n  p r o p e r t i e s  
may.dominat.e t h e  c a l c u l a t i o n  of s c a t t e r i n g .  

I n  t h i s  ' s ec t ion ,  we w i l l  show t h a t  by forma'lly e l imina t ing  e x p l i c i t  
r e f e rence  t o  channels  j # i, a  complex p o t e n t i a l  ope ra to r  ~ ( 5 )  may be  con- 
s t r u c t e d ,  such t h a t  t h e  e l a s t i c  s c a t t e r i n g  i n  channel  i is given ( exac t ly )  
by so lv ing  a  one-channel r a d i a l  Schradinger  equat ion  wi th  t h e  complex, non- 
l o c a l  p o t e n t i a l  ~ ( i )  ( r , r 9 )  a s  fo l lows  (k = ki).: 

k, '  

a ( i )  
d2 + ,k2 - '(a + 

( )  = d r '  vkg . ( r , r 9 )  uLi(k,r1)  ( 7 4 )  
r * 0 

[ I n  Sec t ion  C below we w i l l -  show t h a t  f o r  l a r g e  momentum ( k ) ,  we 
can s i m p l i f y  f u r t h e r  t o  o b t a i n  a  l o c a l  p o t e n t i a l ,  and then  f u r t h e r  t o  o b t a i n  
an e x p l i c i t  s o l u t i o n . ]  . ' 

This  V ( r , r l )  w i l l  b e  denoted by t h e ' ( e x a c t )  , o p t i c a l  p o t e n t i a l ;  i t  
is. sometimes c a l l e d  a  pseudopotent ia l .  

To show t h i s ,  we proceed a s  fo l lows:  Define the  (d iagonal  mat r ix)  
o p e r a t o r s  (kinet ic-energy.  p l u s  c e n t r i f u g a l - b a r r i e r  t e rms) .by  



  hen (73) may be  w r i t t e n  

Suppose we can f i c d  a diagonal-matr ix Green's func t ion  ope ra to r  G [analo- ? 2 gous t o  t h e  s ingle-channel  GQ(k;:,rfl of P a r t  One, Sectio: 111 whlch i s  a 
r i g h t  i n v e r s e  f o r  T, i . e . ,  T GO,  u = U ,  and such t h a t  (Go U) s a t i s f i e s  
ouSgoing-wave boundary cond i t i ons  i n  a l l  channels ;  and suppose we can f i n d  
a u 0 ( r )  such t h a t  

and 

+- 
(2)  UO(r)  s a t i s f i e s  boundary cond i t i ons  desc r ib ing  only a p lane  

wave i n  channel  I: 

+  hen i f  U is  t h e  s o l u t i z n  o f  ( 7 3 ) ,  wi th  p l ane  wave i n  channel  I p l u s  
outgoing waves. i n  a l l  channels ,  u s a t i s f i e s  

which can be  r e a d i l y  v e r i f i e d  by s u b s t i t u t i n g  (75) i n t o  (73) ,  and by u t i l i z -  
i n g  t h e  boundary c o n d i t i ~ n s ~ s t a t e d  above. 

Now s e p a r a t e  t h e  f i r s t  ,.component :(U1) of (75) from t h e  o t h e r  com- 
ponents  (Um,m > I ) ,  and t h e  r e s u l t  i s  



and 

Let H i  be  t h e  (N - 1 )  'x (N - 1 )  ma t r ix  of o p e r a t o r s  

appearing i n  .(77). Then (77) can be  w r i t t e n  

+-I 

where U s i g n i f i e s  t h e  (N - 1 )  components 

+- +- 
( i . e . ,  IJ wi th  t h e  f i r s t  component d e l e t e d ) ,  and Y s i g n i f i e s  t h e  (N - 1 )  
components 

- 1 From t h e  form (78) ,  assuming we can f i n d  .an i n v e r s e  ope ra to r  ( I  - HE! , 
then  (77) becomes 

o r ,  i n  terms of components, f o r  m > ' 1  we have 

S u b s t i t u t i n g  (80) i n t o  (76) ,  we o b t a i n  an equat ion  which involves  only the  
channel 1 wave func t ion  i n  an e x p l i c i t  way, 

which can b e  w r i t t e n  

where t h e  ope ra to r  K1 i s  def ined  by 



F i n a l l y ,  - t o  r e t u r n  t o  t h e  form of a  s ingle-channel  Schradinger  
equa t ion  (74) ,  we mul t ip ly  by TI 1 a i d  employ T1 1 U: = 0; then  

which is j u s t  i n  t h e  form (74) ,  wi th  

s e p a r a t i n g  out  t h e .  terms involv ing  only channel  1, w e  can write.  
(85) more e x p l i c i t l y  a s  

1 

where we'haue used t h e  f a c t s  t h a t  TR and G o t  a r e  d i agona l ,  and.TgGog = 
I 6 ( r  - r ' )  a 

Remarks 

1. The r e s t r i c t i o n  t o  two-body channels  was o n l y . f o r ' c o n v e n i ~ . n ~ ~ .  nf 
no t  a t i on !  t h c  formal r ~ s u l t s  are f XUS: LUL ululLlparL1 t:lr . t r l~~nnr. l ! :  
a s  wel l .  

2. (1 - HE), and hence ( I  - HR)'l, depend on t h e  .channel  momenta 

, kn(n # l ) ,  and a r e  complex above t h e  - th re sho ld  f o r  channels  m # . I ,  
i . e . ,  i n e l a s t i c  t h re sho lds .  Thus vkl )  w i l l  b e  complex above t h e '  
i n e l a s t i c  t h re sho ld  f o r  s c a t t e r i n g  i n  channel 1, and even below 
such p h y s i c a l  t h re sho lds ,  v$') w i l l  b e  energy-dependent, , un le s s  
only  V1 i s  nonzero, ( i f  V1 i t s e l f  i s  energy-independent) . 

3.  A r e l a t i v i s t i c  f i e ld - theo re t - i c  . cons t ruc t ion  .of t h e  , o p t i c a l  p o t e n t i a l  
f o r  highLeriergy physics ,  has  been ou t l i ned  by Alokhintsev &.?* 

C. High-momentum S c a t t e r i n g  wi th  Op t i ca l  P o t e n t i a l ;  t h e  Eikonal  , 

A ~ ~ r o x i m a t i o n  

A p h y s i c a l  i n t e r p r e t a . t i a n  can be a t t ached  t o  t h e  non loca l ,  energy- 
dependent,  p o t e n t i a l  ope ra to r  ~ ( l )  ( r  , r  ' ) a s  fo l lows  : Suppose t h e  p o t e n t i a l s  

kk 
V i  a r e  very  weak, s o  w e c a n  use  a  f i r s t - o r d e r  approximation t o  (74 ) ,  where 

- 
t h e  unperturbed U l  ( r )  r e p r e s e n t s  a  p lane  wave; i. e. , we use  t h e  f i r s t  i t e r a -  
t i o n  of t h e  i n t e g r a l  equat ion  (81) o r  (82) .  



0 
Then [ V ( r , r l )  U l ( r l )  d r ' ]  is t h e  d i f f e r e n t i a l  source  s t r e n g t h  [ fo r - .  

t h e  wave equat ion  (7411 a t  r ,  -due t o  t h e  i n c i d e n t  wave func t ion  UP a t  r ' ,  i n  
an i n t e r v a l  d r '  . 

The n o n l o c a l i t y  of V ( r , r l )  comes from t h e  phys i ca l  f a c t  t h a t  chaa- 
n e l  1 b a r t i c l e s  can go i n t o  channel m (m # , 1 )  a t  po in t  r '  ,. and reappear  i n  
channel 1 by making t h e  t r a n s i t i o n  (m -t 1)  a t  po in t  r. . 

This i n t e r p r e t a t i o n  a l lows  us t o  develop approximations go,od a t  
h igh  ene rg i e s .  In  p a r t i c u l a r ,  i t  i s  p l a u s i b l e  . t h a t  f o r  l a r g e  i n c i d e n t  .mo- ~ 

mentum, i . e . ,  h igh  v e l o c i t i e s ,  t h e  o p t i c a l  p o t e n t i a l  becomes e s s e n t i a l l y  ' 

l o c a l ,  i . e . ,  

where 

( a s i d e  from a  normal iza t ion  f a c t o r ) .  I n  t h e  c l a s s i c a l  l i m i t ,  t h i s  i s  in-  
t u i t i v e l y  ev iden t ,  e s p e c i a l l y  i f  t h e  o t h e r  channels. have l a r g e r  masses, 
s i n c e  i n  t h a t  ca se  p a r t i c l e s  i n  channel n  # 1 would . t r ave1  s lower than  t h e  

. p a r t i c l e s  i n  channel 1 (by conserva t ion  of energy) ,  and s o  t r a n s i t i o n s  t o  . and from o t h e r  channels  must occur  a t  neighboring p o i n t s  ( r , r l ) .  

A b a s i c a l l y , s e m i c l a s s i c a l  approximation f o r  t h e  s o l u t i o n  of (74) 
i s  convenient f o r  high-momentum s c a t t e r i n g  and smal l  angles  i f  one assumes 
V is  approximately l o c a l  i n  r. This  approximation, t h e  Eikonal ,  has  been 
ex tens ive ly  -d i scussed  by ~ l a u b e r "  us ing  s c a t t e r i n g  equat ions  i n  t h r e e  
dimensions. 'We can o b t a i n  t h e  same r e s u l t s  s i m p 1 y . b ~  f i n d i n g  an approxi- 
mation s a t i s f y i n g  t h e  . fol lowing requirements:  

a .  High p a r t i a l  waves dominate t h e  e l a s t i c - s c a t t e r i n g  c r o s s  
s ec t ion .  

b. The approximation should y i e l d  t h e  complex,. energy-dependent 
  om approximation f o r  t h e  sca t te r i r ig- ,ampl i tude  i n  channel  I 
i n  t h e  l i m i t  I v I  -t 0. 

c. The channel l ' p h a s e  s h i f t s  (complex above i n e l a s t i c  t h re s -  
hold)  a r e  a  l i n e a r  func t ion  of t h e  p o t e n t i a l  ~ ( l ) ,  , i n  t h e  
high-momentum u n i t .  

The f i r s t  two requirements  a r e  g e n e r a l l y . t o  be expected .when t h e .  
momentum k l  becomes .lar.ge compared t o  t h e  .range of t h e  p o t e n t i a l ,  .and when 
only small. angle  s c a t t e r i n g  dominates t h e  e l a s t i c  c r o s s  s e c t i o n .  T h i s .  . .  . 

l a s t ' r e q u i r e m e n t  i s  t h e  more r e s t r i c t i v e  one , fo r .h igh -ene rgy  phys ics .  

The s i g n i f i c a n c e  of p o s t u l a t e  c  becomes apparent  when we cons ider  
t h e , s i m p l e  o p t i c a l  model 0 f . a  p a r t i a l l y  absorbing sphere .  Here t h e  "phase 
s h i f t s "  w i l l  b e  pure ly  imaginary, and th?  a t t e n u a t i o n  f a c t o r , ,  ( i n v e r s e  ,mean 
f r e e  pa th)  i n  each p a r t i a l  wave should be p ropor t iona l  t o  t h e , o p t i c a l  



d e n s i t y  of ' t h e  t a r g e f ,  which i s  cha rac t e r i zed  by a pure ly  , imaginary po ten t i a l , . ,  
V i f  i t  i s  pure ly  absorbing.  ( P o s t u l a t e  c  . a c t u a l l y  . r ep re sen t s  . t h e  .dpnamical 
assumptions involved. i n  t he , app rox ima t ion ,  a l though i n  a  nont ransparent  . 
fash ion .  ) 

I f  p o s t u l a t e  a . i s .  t r u e ,  we can r e p l a c e  t h e  part ia l -wave sum 

by an i n t e g r a l  over  cont inuous R ,  and use  .a l a r g e  - R  approximation f o r . t h ' e  
.Pg ' s ,  

i ~ ( a , k )  
f ( 8 )  = 1" dR(2!L + 1)  JO [(2R + 1 )  s i n  ( 8 / 2 ) ]  

0 [. 2 i k  -:Iy 
where we have w r i t t e n  a cont inuous func t ion  X i n s t e a d  of t h e  d i s c r e t e  26k. 

I f  we change .va r i ab l e s  t o  b = (R + 1 / 2 ) / k ,  known a s  t h e  impact- 
parameter  . v a r i a b l e ,  t h i s  becomes 

f ( 8 )  = i k  Irn b db J o  [2k b s i n  (8 /2 ) ]  [ l  - e ix (b ,k )  ; 
0 

Note , t h a t  

2k s i n  (812) = 6, 

SO a l t e r n a t i v e l y  we can w r i t e  

f ( s , t )  = i k  Jrn b db . J 0 ( b 6 ) [ 1  - e i x ( b  ,k) 
0 

(89 

Now i f  ... )(....is t b  ' y i e l d  t h e  Born .approximation f o r  smal l  1.v I , and X 
t o  phase s h i f t ' ) ,  i s  l i n e a r  i la  V ,  the* as ( v I  -+ 0, we f i n d  

~ ' 4  0 ,  and we must have, t o  f i r s t  o rder  i n  V ,  

Using t h e  i n v e r s e  Fourier-Bessel  t ransform,  we o b t a i n  

1 Born 
~ ( b  ,k)  . = - lm x dx Jo (xb) f  . ( s  ,-x2),  

k  0 

where 

Born 
F i n a l l y ,  s ince .X i s  t o  be l i n e a r  i n  V,  and f  i s  l i n e a r  i n  V ,  

t h e  r e l a t i o n  (91) must be  t r u e  f o r  a l l  s t r e n g t h s  of V and no t  j u s t  I v (  -+ 0. 



Thus ( 9 i )  and (89) d e f i n e  our  High-momentum, small-angle approximation. The 
func t ion  X i s  known a s  the '  Eikonal  func t ion .  

The Eikonal  approximation may a l s o  be  obta ined  a s  a  l i n e a r i z e d . f o r m , . .  
suggested by t h e  high-energy l i m i t ,  of t h e  WKB approximation. However, t h e :  
~ i k o n a l  method is a c t u a l l y  much b e t t e r  than  t h e  .WKB method f o r  small-angle 
s c a t t e r i n g ;  f o r  example, t h e  .WKB approximation demands t h a t  a l l  phase s h i f t s .  
be l a r g e  i n  magnitude, whereas t h e  Eikonal  approximation ( c o r r e c t l y )  ob ta ins  
t h e  Born.approximation f o r  smal l  phase s h i f t s .  

I n - p r a c t i c e ,  the .poten t ia1 .s  f o r  t h e  coupled-channel problem (73) 
a r e  no t  known, and one  t r i e s  . to  e s t ima te  t h e , o p t i c a l  p o t e n t i a l  ( i n  l o c a l  
approximation) d i r e c t l y ,  e i t h e r  by ana lyz ing  t h e  d a t a  i n  a  pure ly  phenomeno- 
l o g i c a l  approach, o r  by adopting'some~simplified t h e o r e t i c a l  model. One ex- 
ample of t h e  l a t t e r  i s  found i n  nuc lea r  phys ics ,  where high-energy e l a s t i c  
s c a t t e r i n g  from a l a r g e  nucleus' i s  w e l l  descr ibed  by a  "grey sphere" model, 

where V o  is  ~ e a l  and p o s i t i v e .  Another-example is  descr ibed  i n  t h e  next  
s e c t i o n .  

Remarks 
. . 

1. The Eikonal  method i n  r e l a t i v i s t i c  f i e l d  theory  i s  n o t  on f i r m  
ground a t  p r e s e n t , , s i n c e  one does not  have an e x p l i c i t  equa t ion  
of motion analogous t o  the .Schr6dinger  equa t ion ,  and y e t  t o  in- 
v e s t i g a t e  t h e . n a t u r e . o f  t h e  app.roximation, one must go beyond t h e  
lowest  o rde r s  of . pe r tu rba t ion  theory.  The be5.t in format ion  on 
i t s  s i g n i f i c a n c e  a v a i l a b l e  a t  .present  may.'be found. i n  t h e  t h e s i s  

3 0 o f  Torgerson. 

2. The Regge (complex angular  .momentum i n  t channel) r e ,p re sen ta t ion  
f o r  t h e  .ampli tudes AI(s ,  t )  = 6 f ( s ,  t ) .  ob ta ined  'from t h e  ,E ikonal  
formula may be  used,  i n  which case  we d i scove r  t h a t  ~ f I ( t )  has  

branch p o i n t s  (not  only poles )  i n  t h e  .c.omplex A p l ane  whose loca- 
t i o n s  depend on ti A t  t = 0 (wi th  t h e  ,Pomeranchon i n  t h e  Eikonal  
func t ion )  t hey  move, up t o .  A = 1, and appear .  o f .  equa l  -.asymptoti.c 
importance .as t h e  ,Pomeranchon. po le  ... For -t > 0,  they. a r e  h ighe r  . 

th.an t h e  Pomeranchon and. dominate over  t h e  . p o l e  asymptot ica l ly .  . . 

such bkancli p o i n t s ,  , consequences of, s channel  u n i t a r i t y ,  were f i r s t  . 
l oca t ed  by Amati g ge3' and f u r t h e r  d i scussed  by M a n d e l ~ t a m . ~ ~ ~ ~ ~  
However, t h e  c a n c e l l a t i o n s  poin ted  out  by   and el st am^^ may n o t  occur  
' i n  t h e  Eikonal  formalism; t h i s  po in t  i s  d iscussed  i n  Ref. 34. 

D. Regge Poles  and t h e  High-energy, Optical-model Born Approximation 

To determine X ,  i t . . i s  necessary  t o  know. t h e  . func t iona l  form of t h e  
Born . a p p r o x i m a t i ~ n  . f o r  s c a t t e r i n g ,  £Born. 

I f  we have a  model t h a t  con ta ins  a parameter ,  say r ,  which mult i -  
p l i e s  t h e  s t r e n g t h  of t h e  p o t e n t i a l ,  t hen  £Born w i l l  b e  p r o p o r t i o n a l  t o  r .  



The ampli tude f,, determined by t h e  Eikonal  expression, .  then  w i l l  approach 
ze ro  a s  r + 0. Conversely, i f  we have a  model such t h a t  f  is p r o p o r t i o n a l  
t o  a parameter  r a s  r + 0 ,  we c a n . i n t e r p r e t  t h e  l i m i t i n g  funct.ion ( f / r )  a s  
the ,  Born approximation fBOrn,  except  f o r  normal iza t ion .  

Now the  phenomenological Regge-pole model, descr ibed  p rev ious ly  i n  
t h e s e  l e c t u r e s  a s  a  model f o r  t h e  high-energy behavior  of s c a t t e r i n g  ampli- 
t udes  f y  can be formal ly  provided wi th  such a  s t r e n g t h  parameter simply by 
m u l t i p l y i n g  t h e  c r o s s i n g  ma t r i ce s  by r ;  t h e  model a s  p rev ious ly  descr ibed  
then  corresponds t o  r = 1. But t h e  d i scuss ion  above then  imp l i e s  t h a t  t h e .  
Regge po le s  i n  t h e  c rossed  channels  a r e  t o  be i n t e r p r e t e d  i n  t h e  sense  of a  
Born approximation f o r  t h e  s channel  r e a c t i o n  and supply us  not  w i t h  f  i t s e l f  
b u t  w i t h  fBOrn,  hence t h e  Eikonal  func t ion  X. 

I n  t h e  l i m i t  of small-momentum t r a n s f e r  and h igh  energy,  the Born 
approximation sometimes g ives  a  s a t i s f a c t o r y  q u a l i t a t i v e  d e s c r i p t i o n  of t h e  
s c a t t e r i n g  ampli tude,  b u t  i n  gene ra l  t h e  u s e  of Regee pnles i n  X l e ads  t o  
q u a n t i t a t i v e l y  d i f f e r e n t  r e s u l t s  than  us ing  Regge po le s  i n  f ,  p a r t i c u l a r l y  i n  
r e a c t i o n s  such a s  charge exchange, which can be cons idered  a s  sma l l  d i f -  
f e r e n c e s  of e l a s t i c - s c a t t e r i n g  ampli tudes.  The d i f f e r e n c e  between f  and 
£Born i n  such a  c a s e  can be expressed a s  fo l lows:  I f  f cE  i s  t h e  d i f f e r e n c e  
between ITN e l a s t i c  s c a t t e r i n g  i n  i s o s p i n  s t a t e s  T = 312 and T = 112, we have 
Eikonals  X3/2 and X1/2, ob ta ined  from t h e  Regge po le s  c o n t r i b u t i n g  t o  t h e s e  
s t a t e s ;  ignor ing  s p i n ,  we o b t a i n  

Now i f  t h e  e l a s t i c  s c a t t e r i n g  i,s dominated by T = 0 po le s  i n  t h e  t 
channel  (e .  g. , P and P ' ) , such t h a t  

Ix312  - ~ 1 1 2 1  << 1, 

we can w r i t e  

16x1 << 1, 

and X i s ,  t h e  average e l a s t i c - s c a t t e r i n g  Eikonai  func t ion ;  thus  

Expanding t h e  exponen t i a l s  i n  (92) and keeping only  f i r s t  powers 
of b X ,  we o b t a i n  

Now (k6x) is j u s t  t h e  Fourier-Bessel  t ransform [ c f .  (91 ) l  of t h e  . , 

charge-exchange Born approximation,  i . e . ,  t h e  dominant Regge po le  i n  t h e  



charge-exchange amplitude.. I f  we determine X .from e l a s t i c - s c a t t e r i n g  ex-- .. . 
per imenta l  d a t a  through (94) , then  (95) r ep re sen t s  e x a c t l y .  t h e  absorp t ive-  . .  
c o r r e c t i o n  p r e s c r i p t i o n  (omi t t ing  sp in )  of Refs. 25-27 app l i ed  t o  ITN charge 
exchange wi th  a  Regge-pole form f o r  fB0m. 

C E 

A s i m p l i f i e d  numerical example of t h e  magnitude of t h i s  c o r r e c t i o n .  
i s  given i n  Ref. ' 3 4 ,  a s  w e l l  a s  some .add i t i ona1  discuss ' ion c o n c e r n i n g . t h e .  : .  
foundat ions of t h e  method i n  r e l a t i v i s t i c  formalism. Appl ica t ions  t o  re -  
a c t i o n s  wi th  s p i n  a r e  n a t u r a l l y  complicated,  and fo l low t h e  methods descr ibed  
i n  Refs. 25-27. w i th  Born terms- a s  d iscussed  i n  Sec t ion  V I I I  of P a r t  .Two of 
t h e s e  l e c t u r e s ,  provided t h e  . e l a s t i c  s c a t t e r i n g  can be w e l l  descr ibed  by a  
sp in- independent , . sca t te r ing  amplitude. 

E. .Spin F l i p  Amplitudes i n  t h e  Eikonal  Approach ; 

I f  t h e  above .condi t ion  i s  n o t . m e t ,  one must u se  an ex tens ion  of t h e .  
Eikonal formalism inc luding  sp in .  The n o n r e l a t i v i s t i c  d e s c r i p t i o n  f o r  
s p i n  112-spin 0 cases  i s  given i n  Ref. 29, b u t  a r e l a t i v i s t i c  t rea tment  
has  n o t  been given i n  t h e  l i t e r a t u r e .  For completeness,  and f o r  i l l u s t r a -  
t i v e  purposes,  we now d i scuss  t h e  r e l a t i v i s t i c  TN s c a t t e r i n g  problem ( in-  
c luding  s p i n ) .  0 u r . s t a r t i n g  po in t  w i l l  be t h e  p o s t u l a t e s  a ,  b, . .and c  above; 
development of t h e  ' ~ i k o n a l  formalism f o r  h e l i c i t y  n o n f l i p  (G+) and h e l i c i t y  
f l i p  (G-) ampli tudes then  w i l l  f o l l ow analogously t o  t h e  h e l i c i t y - l e s s  
problem. 

( .  

.In .ITN s c a t t e r i n g ,  s c a t t e r i n g  e i g e n s t a t e s  (and hence phase s h i f t s )  
f o r  d e f i n i t e  J and p a r i t y  (k) may be  cons t ruc t ed ;  t h e  corresponding p a r t i a l -  
wave s c a t t e r i n g  ampli tudes f j ?  a r e  l i n e a r  combinations .of t h e  part ia l -wave 
h e l i c i t y  ampli tudes g$ occurr ing  i n  t h e  expansions20 

and 

E x p l i c i t y ,  t h e  JP eigenampli tude expansion f o r  s p i n  112-spin 0 s c a t t e r i n g  
can be  w r i t t e n  35 

and 

where z = cos 8; . t h e  normal iza t ion  i s  f i x e d  by 

d  a - = 2 
dS-2 I f l  + £2 cos 81 + l f 212  s i n 2  8. 



The f.R,, e x p r e s s e d  i n  terms of phase s h i f t s ,  a r e  ' . 

Here R = J - 112 f o r  fg- and R = J + 112 f o r  f ~ + ;  (R is  t h e  o r b i t a l  angular  
momentum and is  a good quantum number when s p i n  is p resen t  i n  t h i s  ca se ,  
on ly  because t h e r e  is  an unique r e l a t i o n  between J ,  p a r i t y ,  and R f o r  
s p i n  112-spin 0 s c a t t e r i n g ) .  

Comparing (97) and t h e  normal iza t ion  a p p r o p r i a t e  t o  cova r i an t  
h e l i c i t y  ampli tudes, .  

w e  f i n d  t h e  fol lowing r e l a t i o n s  between G, a i d  f l  and £2: . 

G+ =, ( f  + f 2 )  cos  (812) 

G- = ( f l  - £2) s i n  (812).  . . (101) 

J 
Then, i f  we examine t h e e x p r , e s s i b n s  of t h e  d,, f unc t ions  i n  terms of P; . 
and s.in (812) or .  cos (812) ( s e e  Ref. 20 of appendix) ,  we o b t a i n ,  by compar- 
i n g  (96) and (97'), ' 

and 

where p ( s )  = 2k/&, and R i s  def ined  t o  be  J . -  112 here .  The expansions (96) 
a r e  now..(by p o s t u l a t e  a ) .  rep laced  w i t h  t h e  i n t e g r a l  over -cont inuous b = 
(j + 1 / 2 ) / k  a s  be fo re ,  u s ing  a  smal l  ang le  approximation f o r  t h e  d func t ion  
( s e e  appendix of Ref. 27) : 

and 

wheie,  p u t t i n g  x i ( s , b 2 )  i n  p l ace  o f  26Ri(s ) ,  we o b t a i n  

g+(s,b2) = ( i p ) - l [ e  iX+(s,b2) + e ix- (s ,b2)  - 21 



and 

-. g-(s ,b2)  = (ip) '  [ e  i ~ + ( s  ,.b2) _ . ix-(s  ,b2)  
(104) 

(Ana ly t i c i t y  p r o p e r t i e s  i n  t of GL r e q u i r e  t h a t  t h e  ,g* be . .  func t ions  . of b2.)  

Now we determine t h e  X ' s  by examining t h e  Born approximations f o r  
G+ and G-. Before doing t h i s ,  we f i n d  i t  convenient t o  d e f i n e  "nonfl ip"  
and "f lip1' Eikonal  func t ions  

. - 

x+ = X o  +. Xf ,. X- = X o  - 'Xf.. 

'Then we' can w r i t e ,  by r ea r r ang ing  t h e  exp?nent,ials . i n  (1041, 

. . 

and 

. .  . 

Now expanding t o  f i r s t  o rde r  i n  X o  and X f ,  we r e q u i r e  t h a t . - t h e  Born approxi- 
mations be obta ined  a s  fo l lows:  

. . . . 
and . .  

. . 

G@ = 1, b db J l ( b & ) x f ( s , b 2 ) .  ' 

. - .  P . o  

l r i ve r t i ng  t h e s e  Fourier-Bessel  t ransforms,  w e  o b t a i n  by u s i n g  (101) ,  
. . 

and 
. . . . 

. B  : x f ( s , b 2 j  = ( ~ / k ~ )  Im X ~ X  J ~ ( x ~ )  s i n  .(8/2)[£:'(s, -x2) - f 2 ( s ;  -x2)1, 
0 

(107) 

. .. 
where x = &; s i n c e  x = 2k s i n  ( 8 / 2 ) ,  we c& a l s o  express  Xf a s  



[Remark: Although t h e  cos  (812) f a c t o r  i n  (106) i s  q u a n t i t a t i v e l y .  
i r r e l e v a n t ,  s i n c e  t h e  Eikonal  method i s  good only f o r  sma l l  ang le s ,  i t  i s  
e s s e n t i a l  i n  t h e  i n v e r s i o n  formula l ead ing  t o  (107);  o therwise  t h e r e  would 
b e  ( formal ly  a t  l e a s t )  an i n t e g r a t i o n  over  a  reg ion  where cos (812) is  
imaginary,  involv ing  a  f a c t o r  of [cos (812) ] - l o  ] 

Observe t h a t  even though t h e  s p i n - f l i p  ampli tude f 2  may be zero  i n  
Born approximation,  we o b t a i n  a  nonzero f 2  when t h e  r e l a t i v i s t i c  Eikonal  
method i s  used. This  i s  r e l a t e d  t o  t h e  sp in -o rb i t  term which appears  i n  
t h e  Dirac  equat ion  f o r  ( c e r t a i n  c l a s s e s  o f )  c e n t r a l  p o t e n t i a l s .  

B I f  t h e  Born approximatiorls f o r  h e l i c i t y - f l i p  (G-) ampli tudes a r e  
s m a l l  (bu t  no t  G )  , we can expand G- t o  f i r s t  o r d e r  i n  xf and o b t a i n  

w h i l e  

Formula (109) can be  i n t e r p r e t e d  as t h e  abso rp t ive  c o r r e c t i o n  formula f o r  
t h e  h e l i c i t y - f l i p  ampli tude Born term (xf b e i n  a  l i n e a r  t ransform of 
G!) , i f  we deduce X o  from experiment assuming r6- 1 << 1 G + I  2 .  The purpose 
o f - u s i n g  (109) would be  t o  e s t i m a t e  p o l a r i z a t i o n  ( n e c e s s a r i l y  smal l  f o r  most 
ang le s  i n  such a  c a s e ) ,  g iven  a  model f o r  GB (e .g . ,  Regge po le s ) .  

F. P o l a r i z a t i o n  i n  nN S c a t t e r i n g  

It i s  p o s s i b l e  t o  o b t a i n  l a r g e  p o l a r i z a t i o n s  i n  np s c a t t e r i n g  f o r  
some s c a t t e r i n g  ang le s  even i f  1 X f  1 << I X O  I , 1 Xf 1 << 1. This  is  w e l l  known 
i n  nuclear-physics  a p p l i c a t i o n s  of t h e  o p t i c a l  model ( s e e ,  f o r  example, 
Ref. 36 ) ,  b u t  i s  no t  y e t  widely apprec i a t ed  i n  high-energy phys ics .  We now 
i n d i c a t e  how t h i s  can occur .  

Suppose. 1 Re' G + I  << I I m .  G+ I f o r  most angles  bu t  t h a t  I m  G+ h a s  a  
s imple  ze ro  A t '  z = .z 1 ,  and t h a t  Re, G+ arid I G- I a r e  sma l l  and s lowly vary ing  
n e a r  z  = - z l .  Then p u t t i n g  I m  G+(z) 2 y(z  - z l ) ,  a  = Re G + ( Z . ~ ) ,  B1 = 
Re G-(zl),  and' ti2 = - I m  G-(zl) ,  we have,  f o r  z  n e a r  z l ,  

where 6 2  = a 2  + 8 :  + 8;. I f  ( a s  assumed) y2 >'> 62, t h e  , d i f f e r e n t i a l  c ros s  
s e c t i o n  w i l l  have a sha rp  minimum a t  z = z l .  Now.the p o l a r i z a t i o n  n e a r  
z  = z.1 has  t h e  form 



T h e r e f o r e ,  i f  laB21 << lyBll ( t r u e  i f  a ,  B 1 ,  and B2  a r e  a l l  comparable i n  
magnitude ) , we have 

The maxima (and minima) of t h i s  o c c u r  a t  ( z  - z l ) ?  = h2/y2,  :and a t  t h e s e  
p o i n t s  : 

Between t h e s e  maximal p o i n t s ,  P h a s  a z e r o  a t  z = z l .  Note t h a t  
lplEIAX can b e  e s s e n t i a l l y  u n i t y  i f  6; + a 2  << 8:. . I n  such  a c a s e ,  P(0)  h a s  
t h e  b e h a v i o r  ske tched  below w i t h  da/dSl . for  comparison: 

Such l o c a l  minima i n  da/dR, w i t h  a s s o c i a t e d  " d i s p e r s i o n  curves"  f o r  
. P ( 0 ) ,  have been observed i n  n-p s c a t t e r i n g  n e a r  2 BeV/c. (There is  no 
d i r e c t  ev idence  t h a t  l X f  1 << 1 o r  I X O I ,  however, i n  t h i s  c a s e ,  and i t  is  
no t '  c l e a r  whether  t h e  E ikona l  approximat ions  would b e  good a t  t h i s  energy.  - 
Furthermore,  i n  t h i s  problem t h e  energy dependence of t h e  secondary maximum 
ampl i tude  is  t o o  r a p i d  t o  be a s s o c i a t e d  w i t h  l e a d i n g  p o l e s  i n  x . )  

I f  t h e  Regge-pole E ikona l  approach is  adopted ,  one ' f i n d s  t h e n ,  a t  
s u f f i c i e n t l y  s m a l l  a n g l e s  (where t h e  Born approximat ion i s  expec ted  t o  g i v e  
q u a l i t a t i v e l y  c o r r e c t  r e s u l t s ) ,  a  p o l a r i z a t i o n  and d i f f e r e n t i a l  c r o s s  s e c t i o n  
roughly a s  p r e d i c t e d  by P h i l l i p s  and ~ a r i t a '  whereas a t  l a r g ' e r  a n g l e s  one 
can e a s i l y  o b t a i n  l a r  e p o l a r i z a t i o n s  f o r  some a n g l e s  i f  I m  G+ h a s  a z e r o  
w h i l e  I Re 6+1 and IG-7 a r e  s m a l l  compared t o  I I m  G + \  , f o r  most a n g l e s ,  a s  i n - '  
d i c a t e d  by t h e  d i s c u s s i o n  above. 

X. Concluding Discuss ion  

The Regge-pole concept  i n  high-energy p h y s i c s  may be  cons idered  a g r e a t  
improvement f o r  h i g h  e n e r g i e s  on t h e . o l d e r  i d e a s  of s i n g l e - p a r t i c l e  exchange 
models,  b u t  t h e  u n d e r l y i n g  p h y s i c a l  a s s u m p t i o n s ' ( a s  p r e s e n t e d  i n  t h e s e  l e c -  
t u r e s )  a r e  s i m i l a r .  Regge p o l e s  t h u s  p r o v i d e  a semiphenomenological  con- 
n e c t i o n  between resonances  o r  p a r t i c l e s  w i t h  t channe l  quantum numbers, and 
h ig l~-energy  s c a t t e r i n g  o r  cxchange p r o c e s s e s  i n  t h e  s channe l .  

The p r e s e n t  d a t a  on high-energy n'p and.K2p s c a t t e r i n g  and c h a r g e  ex- . 

change,  a s  w e l l  as l e s s  a c c u r a t e  d a t a  on o t h e r  meson-baryon f i n a l  s t a t e s ,  is ' 

c o n s i s t e n t  w i t h  a few Regge p o l e s  i n  each c a s e  ( m o s t ' o f  t h i s  i s  e x h i b i t e d  by 
Ref. 9 )  provided on ly  s m a l l  -t v a l u e s  a r e  cons idered .  That t h i s  r e s t r i c t i o n  
shou ld  be  p r e s e n t  i s  p l a u s i b l e  i f  we i n t e r p r e t  t h e s e  p o l e s  a s  Born approxi-  
mat ions  f o r  t h e  ampl i tude ,  i n  an opt ical -model  v iewpoin t .  



The s i t u a t i o n  i n  pp s c a t t e r i n g  and pn charge exchange r e q u i r e s  s i x  
po le s  (P, P '  , a, p ,  R, and T)  ; t h e  f i r s t  t h r e e  were included i n  o rde r  t o  
f i t  pp e l a s t i c  - s c a t t e r i n g  only ,1°  bu t  p and R a r e  necessary  t o  f i t  t h e  
energy dependence of Onp - u ; 3 7  f i n a l l y ,  n is  necessary  t o  exp la in  t h e  
sha rp  peak f o r  0 < -t < p: oggerved i n  pn charge exchange.38 However, a l l  
t h e s e  po le s  a r e  expected t o . c o n t r i b u t e ,  on t h e  b a s i s  of t h e  mesonic-s tate  
mass spectrum ( c f .  Ref. 10 of P a r t  One), s o  they  a r e  not  introduced i n  an 
ad hoc way. 

With pF s c a t t e r i n g ,  a t  momenta below 10 BeV/c a t  l e a s t ,  t h e  Regge 
po le s  appa ren t ly  do n o t  dominate t h e  s c a t t e r i n g  amplitude. This  is ind i -  
c a t e d  by t h e  energy dependence of t h e  width ( i n  - t )  of t h e  pp d i f f r a c t i o n -  
s c a t t e r i n g  peak, which expands with inc reas ing  energy, c o n t r a d i c t i n g  t h e  
s imple  expec ta t ion  of l oga r i t hmic  shr inkage  i f  only one pole  i s  used. In  
any case ,  t h e  pp and pF behaviors  a r e  q u i t e  d i f f e r e n t .  The i n t r o d u c t i o n  of 
t h e  optical-model concepts ,  however, a l lows t h e s e  t o  be  r econc i l ed ;  t h e  pp 
system has  a  s t r o n g  a b s o r p t i v e  p o t e n t i a l  due t o  a n n i h i l a t i o n  channels ,  and 
t h i s  e x t r a  c o n t r i b u t i o n  masks out  t h e  pp Regge a t  low t o  moderate 
ene rg i e s .  This  may be thought of a s  an  "absorp t ive  co r r ec t ion"  t o  t h e  
e l a s t i c - s c a t t e r i n g  Regge p o l e s ,  which presumably w i l l  become l e s s  important 
a t  h i g h e r  e n e r g i e s  than  p r e s e n t l y  a c c e s s i b l e ,  thus  asymptot ica l ly  i n s u r i n g  
s i m i l a r  behavior  f o r  pp and pp. A s i m i l a r  e f f e c t  (nonasymptotic abso rp t ive  
c o n t r i b u t i o n  t o  X)  may be r e spons ib l e  f o r  t h e  secondary maximum seen i n  ~p  
and K-p s c a t t e r i n g  between 1 .5  and 3  BeV/c, s i n c e  i t  d isappears  r a p i d l y  
r e l a t i v e  t o  t h e  forward peak w i t h  i n c r e a s i n g  energy. 

Although t h e  small-angle phenomenological approach, a s  o u t l i n e d  i n  
t h e s e  l e c t u r e s ,  i s  n o t  a b l e  t o  provide a  complete dynamical scheme f o r  s t r o n g  
i n t e r a c t i o n s ,  i t  does provide  a  n o n t r i v i a l  model framework wherein con- 
s t r a i n t s  between many r e a c t i o n s  a r e  p re sen t .  An example of such c o n s t r a i n t  
i s  t h e  e x i s t e n c e  of a  s i n g l e - t r a j e c t o r y  func t ion  a ( t )  f o r  each po le ,  inde- 
pendent of t h e  r e a c t i o n  i n  which t h e  pole  p a r t i c i p a t e s ,  and e s s e n t i a l l y  
de te rmining  t h e  asymptot ic  energy dependence and phase ( f o r  each t )  of any 
one-pole c o n t r i b u t i o n .  The f i t s  a l r eady  have produced non t r iv i a l -p red ic t ions  
f o r  p o l a r i z a t i o n  a t  sma l l  -t va lues ,  which seem t o  ag ree  i n  o r d e r  of mag- 
n i t u d e  wi th  experimental  r e s u l t s  i n  nN small-angle s c a t t e r i n g  a t  momenta a s  
low a s  2.5 BeVIc, 

Fu r the r  r e s u l t s  on t h e  energy dependence of r e a c t i o n s  involv ing  only 
one o r  two poles  ( c f .  Sec t ion  VI) w i l l  p rovide  s t r i n g e n t  t e s t s  of t h e  con- 
s i s t e n c y  of t h e  p o l e  a n a l y s i s ,  e i t h e r  of t h e  ampli tude i t s e l f  o r  of t h e  
o p t i c a l  p o t e n t i a l .  

REFERENCES FOR PART TWO 

1. R. 0mn6s .and M. F r o i s s a r t ,  MandeZstam Theory and Regge poles, 
Benjamin, N. Y. (1963): Chapter 5 ;  Sec t ions  6-1, 6-2, and 6-10 of 
Chapter 6; Sec t ions  7-5, 7-6, and 7-7 of Chapter 7; Chapter 8. 

' 2. R. Hagedorn, ReZativis t ic  ~ inemat i c s ,  Benjamin, N .  Y. (1963). ' .  

3 .  A. V. S t i r l . i n g ,  P. Sonderegger, J. Kirz e t  - - a l . ,  Phys. Rev. L e t t e r s  
1&, 763 (1965); G. Hghler ,  J. Baacke, H. S c h l a i l e ,  and P. Sonderegger, - 
Phys. L e t t e r s  20, 79 (1966). 



4. B. M. Udgaonkar, "Phenomenology Based on Regge P o l e s  ,'.' Strong Inter- 
actions and High Energy physics, S c o t t i s h  u n i v e r s i t i e s  summe; School 
(1963). 

I 

5. R. J. N. P h i l l i p s  and W. R a r i t a ,  Phys. Rev. L e t t e r s  x, 502 (19b5).  

6. V. s i n g h ,  Phys. Rev. 129, 1889 (1963).  

7. T. K i n o s h i t a ,  CERN 62-33, T h e o r e t i c a l  Study D i v i s i o n  (Nov. 7 ,  1962) .  

8 . .  G. Chew and  J. D. S t a c k ,  UCRL-16293 ( J u l y  26,  1965) ;  J. S t a c k ,  Phys. 
Rev. L e t t e r s  -- 16,  286 (1966) ;  V. Barger  and D. C l i n e ,  i b i d . ,  913. - 

9. R. J. N.  P h i l l i p s  and W. Rarita, Phys. Rev. 139, B1336 (1965).  

10. T. B inford  and B. Desa i ,  Phys. Rev. 138, B1167 (1965).  

12. R. J. N. P h i l l i p s  and W. R a r i t a ,  Phys. Rev. L e t t e r s  l5, 807 (1965).  

12.  R. C. Arnold,  Double Octet Regge PoZe Model for Charge- and Hyper- 
' charge Exchange Reactions, Argonne p r e p r i n t  (1966) t o  be  pub l i shed .  

13.  CERN-65-24, Vol. I; proceed ings  of t h e  1965 E a s t e r  School  a t  Bad- 
Kreuznach, A p r i l  1-15, 1965'. 

14. V. Barger  and M. Olsson,  Phys. Rev. L e t t e r s  15, 930 (1965).  

15. T. L. Trueman and G. C., Wick, Ann. Phys. (N. Y.),%, 322 (1964).  

16.  K. G o t t f r i e d  and J. D. J ackson ,  Nuovo Cimento 33, 309 (1964).  

. 1 7 .  S. C. F r a u t s c h i ,  M. Gell-Mann, and F. Zachar iasen ,  Phys. Rev. 126, 
2204 (1962) ;  r e p r i n t e d  i n  t h e  f o l l o w i n g  r e f e r e n c e : :  

18. D. Sharp and W. G. Wagner, Phys. Rev. 131, 2276 (1963) and e r ra tum,  
Phys. Rev. - 133,  I1 (1964);  s e e  a l s o  I. J .  Muzinich,  Phys'. Rev. 130, 
1571  (1963).  

19. Y. Hara,  Phys. Rev. 140, B178 (1965).  

20. M. Jacob and G. C. Wick, Ann. Phys. (N. Y . )  1, 404 (1959).  

21. E. 0.  F i s e t ,  Nuovo Cimento 35, 473 (1965).  

22. M. Bgrmawi, The Regge PoZe Contribution t o  Vector Meson Production, 
Phys. Rev. 142, 1088 (1966). I 

23. M. Barmawi, Regge Pole Analysis of d n  + up, Phys. Rev. L e t t e r s  16, 
595 (1966).  

24. B. R. Desai, nlV Charge Exchange and the p TrQjectory, Phys.  .Rev. 142, 
1255 (1966).  

25. K. G o t t f r i e d  and J. D. J ackson ,  Nuovo Cimento 34, 736 (1964) ;  J. D. 
Jackson,  Rev. Mod. Phys. 3 7 , . 4 8 4  (1965).  



J. D. Jackson, J. T. ~ o n o h u e ,  K. ~ o t t f r i e d ,  R. Keyser, and B. E. Y. 
Svensson ,. Phys . .Rev. 139, B428 (1965) . - 

L. Durand I11 and Y. T. 'Chiu, Phys. Rev. 139, B646 (1965). 

D. I. Blokhintsev,  V. S. ~ a r a s h e n k o v ,  and B. M. Barbashov, Usp. F iz .  
Nauk.68, - 417 (1959) [Eng. Tr . ,  Sovie t  Physics--Uspekhi2, 505 (1959)l .  

R. J. Glauber, l l ~ i g h  Energy Co l l i s ion .  Theory," Lectures i n  Theoreti- 
cal Physics, Vol. 1, Summer Theore t i ca l  Physics  I n s t i t u t e ,  .Boulder, 
Colo. (1958). 

I 

R. Torgerson, t h e s i s ,  Phys. Rev. 143, 1194 (1966). 
. - . . 

LJ. A m a r f ,  S. Fubin i ,  and A. S t a n g l ~ e l l i r ~ i ,  Nuuvo Cilnento 26, 836 
(1962). 

S.' Mandelstam, Nuovo Cimento 30, 1127 (1963). 

I b i d ,  1148 (19 63).  - 
R. C. Arnold, Phys. Rev. 140, B1022 (1965). - 
S. C. F rau t sch i  and J. D. Walecka, Phys. Rev. 120, 1486 (1960); s e e  
a l s o  M. Jacob, i n  Strong Interaction Processes, M. Jacob and G. F. Chew 
(Benjamin, N. Y. ,  1965).  

S. lermbach, W. ~ e i l c r o t t e ,  and J. V. iepora. ,  Phys. Rev. , 1059 
(1955). .See a l s o  J. Hiifner and A. De-Shalit ,  Phys. L e t t e r s  IS, 52 
(1965); and G. Alexander, A-. Dar, and U. Karshon, Phys. Rev. L e t t e r s  
14,  318 (1965). 

A. Ahmadzadeh, Phys. Rev. 134, B633 (1964). Note: t h e  explana t ion  of 
charge exchange i n  t h i s  paper is probably i n c o r r e c t ,  bu t  Unp - upp i s  
c o r r e c t l y  analyzed s i n c e  IT exchange i s  a smal l  con t r ibu t ion  t o  a .  

E. M. Henley and I. J. Muzinich, Phys. Rev..136, B1783 (1965). 
(Although t h e  d i f f i c u l t y  wi th  t h e  secondary maximum has  never  been re- 

' 

so lved ,  i t  i s  c l e a r  t h a t  t h e  sharpness  of t h e  forward peak has  heen 
s a t i s f a c t o r i l y  expla ined  by IT exchange.) 



Legendre Functions, Hypergeometric Functions, 
and the Gamma Function 

-For convenient reference, we summarize the representations of PA(z) 
and QA as hypergeometric functions and their singularities in A. These 
representations are contained in Whittaker and Watson." 

For 1x1 < 1, the hypergeometric function F can be represented by the 
convergent power series 

For other values of x, the following (Barnes') integra& representation 
may be used: 

where the path of integration is deformed (if necessary) to avoid poles of 
the integrand depending on a, b, and c. 

The r function has the integral representation 

r'(z) = Im e-t dt tz-1, 
0 

and, alternatively, an infinite product representation (Weierstrass), 

where y is Euler's constant. 

The last representation shows that r(z) has simple poles when z is at 
a negative intege.r, and these are the only singularities for finite 1 z 1 . 

*E. T. Whittaker and G. N. Watson, A Course of,Modem AnaZysis, Cambridge 
University Press, Cambridge, England (1963), 4th ed., reprinted, 
Chapters 12, .14, and 15. 



This  allows. u s  t o  . c ~ n c l u d e , ~ f r o m  t h e  abowe. r e p r e s e n t a t i o n s  of PA and 
Q A ,  t h a t  

. .  , 

(Al) P A ( " )  i s  a n a l y t i c  . i n  t h e  e n t i r e  f i n i t e  h p l a n e  f o r  a n y - z  , and 

(A2)  QA(z) has  only  po le s  i n  t h e  f i n i t e  complex A p lane ,  and t h e s e  
occur  , a t  .A = -1, -2 ,  -3 ,  . . . . 



APPENDIX B 

Regge Poles  f o r  A r b i t r a r i l y  Weak P o t e n t i a l s  

When t h e  s t r e n g t h  of t h e  p o t e n t i a l  i s  i n f i n i t e s i m a l ,  t h e  FODA . ( ~ e c -  
t i d n  111 of P a r t  One) becpmes exac t .  . Then ( f o r  a  s imple Yukawa p o t e n t i a l )  
t h e  Regge po le s  a r e  t h e  po les  of 

Now i f  g2 4 0, o r  ( k l  -+ -, we have j u s t  a  QA func t ion  ( t h e  numerator) ,  
.which has  po l e s  a t  X = -1, -2, -3 ,  ...; t h e s e  a r e  t h e . ( f i x e d )  Regge po le s  
of t h e  Born approximation. For g2 # 0, t h e  po les  ' o f  Q A  i n  t h e  denominator 
now cance l  t h e  po les  of t h e  numerator a t  t h e  nega t ive  i n t e g e r s ;  bu t  t h e  de- . 
nominator now w i l l  v a n i s h ' f o r  some X n e a r  eve ry ' such  n e g a t i v e  i n t e g e r ,  s i n c e  
t he .QA func t ion  g e t s  a r b i t a r i l y  l a r g e  f o r  X s u f f i c i e n t l y  c l o s e  t o  such a  
po le .  Thus, i f  g2 i s  v a r i e d  smoothly away from ze ro ,  t h e  po l e s  i n  X w i l l  
move smoothly away from t h e  nega t ive  i n t e g e r s ,  bu t  remain c l o s e  t o  them f o r  . 

smal l  g2 (o r  l a r g e  I kl ) . I n  f a c t ,  i t  can be shown (cf . Ref. 5 of P a r t  One) 
t h a t  t h e  t r a j e c t o r i e s  (po le  p o s i t i o n s  i n  t h e  complex A p lane)  an(k)  can be  
expanded t o  f i r s t  o rde r  i n  g2 a s  f o l l o w s : .  

S imi l a r  r e s u l t s  hold f o r  a  supe rpos i t i on  of Yukawa p o t e n t i a l s ,  where 
g2 is then a  weighted average s t r e n g t h .  




