Chapter 3

An Outline of Theories of Diffusion
in the Lower Layers of the Atmosphere

Franklin A. Gifford, Jr.*

LIST OF SYMBOLS

Symbols used frequently in Chaps. 3 and 4
are listed here. (The dimensions mass, length,
time, and temperature are abbreviated as M,
L, T, and D, respectively. Equation or section
numbers indicate where the symbol first ap-
pears or where additional clarification may be
found.)

A Turbulent or eddy viscosity or “Aus-
tausch” coefficient (ML T7Y),
Eq. 3.7

A Refers to average concentration value

in discussions of peak-to-average
ratio, Eq. 3.137

A Area within a concentration or expo-
sure isopleth (L%, Eq. 3.150

C,Cy,C, Sutton’s virtual diffusion coefficients
(L™%), Eqs. 3.78 and 3.80

c, Specific heat of air at constant pres-
sure (L*T7?D™), Eq. 3.26

D Distance along y- or z-axis of center
of meandering plume (L), Eq. 3.119

D Depth of laminar sublayer (L), Eq.
3.11

d Zero-plane displacement (L), Eq.3.16

Amax. Distance to point of maximum ground

concentration from an elevated
source (L), Sec. 4-4.1.2

F(n) Lagrangian eddy-energy-spectrum
function (T), Eq. 3.66

f Coriolis parameter (T™!), Eq. 3.34

Gravitational acceleration (LT™?), Eq.

3.18

H Eddy heat flux [(ML*T-)L-2T"!}, Eq.
3.26

h,; Depth of the mixing layer (L), Eq.
3.133

*Atmospheric Turbulence and Diffusion Laboratory,
Environmental Science Services Administration, Oak
Ridge, Tennessee.

Ql

Q

Height of a source above the ground
(L), Eq. 3.115

Intensity of turbulence in the x-, y-,
and z-directions (dimensionless),
Eq. 4.26, Chap. 2, Sec. 2-6.2.2

Eddy diffusivity coefficient (L*T™Y,
Eq. 3.45

Eddy heat conductivity coefficient
(L*T7Y, Eq. 3.26

Kinematic eddy-viscosity coefficient
(L3T™Y, Sec. 3-1.2.5

Von Karman’s constant 0.4 (dimen-
sionless), Eq. 3.12

Stability -dependent length introduced
by Lettau, Monin, and Obukhov (L),
Eq. 3.28

Lagrangian integral time scale (T),
Eq. 3.70

A length scale (L), Table 3.2

Frequency (T"), Eq. 3.66

Sutton’s parameter associated with
stability (dimensionless), Eq. 3.76

Refers to peak-concentration value in
discussions of peak-to-average con-
centration, Eq. 3.137

Atmospheric pressure (ML"T'Z),
Eq. 3.17

Source strength; total amount of ma-
terial released from a point source
(M or other units of quantity),
Eq. 3.49

Source strength; time rate of material
emission from a continuous point
source (MTY, Eq. 3.91

Source strength; total amount of ma-
terial emitted per unit length from
a line source (ML"’), Sec. 3-3.5.8

Source strength; time rate of material
emission per unit length from a
continuous line source (ML"‘T"‘),
Sec. 3-3.5.3

Mean value of a conservative air
property per unit mass of air,
Eq. 3.45
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Velocity autocorrelation coefficient
(dimensionless), Eq. 3.65

The Reynolds number (dimensionless),
Eq. 3.5

Flux form of the Richardson number
(dimensionless), Eq. 3.27a

The Richardson number (dimension-
less), Eq. 3.22

Temperature (D), Eq. 3.17

Time (T); appears in various equa-
tions; in special applications T is
also used , Eq. 3.108

Components of the wind in the x-, y-,
and z-directions, respectively
(LT, Eq. 3.2

Total wind-motion vector (LT,
Eq. 3.1

Deposition velocity (LT™Y), Eq. 4.14,
Chap. 5, Sec. 5-3.2.1

Friction velocity (LT-Y), Sec. 3-1.2.6

Positions in a Cartesian coordinate
system which is usually oriented
so that the x-axis is in thedirection
of the mean horizontal vector wind,
the y-axis is crosswind, and the
z-axis is vertical (L), Eq. 3.2

A distance between particles (L),
Eq. 3.96

Roughness length (L), Eq. 3.14

Lagrangian — Eulerian time-scale ra-
tio (dimensionless), Eq. 3.104

Dry adiabatic temperature lapse rate
and existing temperature lapse, re-
spectively (DL, Eq. 3.21

Rate of eddy energy transfer (L}*T—9),
Sec. 3-2.2.6

Dimensionless ratio = z/L, Eq. 3.32

Potential temperature (D), Eq. 4.19

Lateral wind-direction angle or width
of sector (expressed as degrees,
radians, etc.), Eq. 3.122

Dynamic viscosity coefficient
(ML-!TY), Eq. 3.4

Kinematic viscosity (L*T™), Eq. 3.5

Atmospheric density (ML™), Eq. 3.5

Standard deviation of the distribution
of material in a plume in the y- and
z-directions (L), Eq. 3.113

Standard deviation of the distribution
of material in a puff in the x-, y-,
and z-directions (L), Eq. 3.154

Standard deviation of lateral wind-
direction distribution (degrees or
radians), Sec. 3-3.4.1

Standard deviation of vertical wind-
direction distribution (degrees or
radians), Table 4.2

Tangential stress on a unit area of
fluid (ML-IT—%, Eq. 3.4
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Tangential stress in the lowest air
layers (MLT-%), Eq. 3.8 '
Geographical latitude, vertical wind-

direction angle or width of sector
(degrees or radians), Sec. 3-1.3
Concentration at a point (x,y,z) at
time t (ML™?), Eq. 3.89
Average concentration (ML), Eq.
3.91
Crosswind integrated concentration
(ML7?), Eq. 3.143
Fumigation concentration (ML), Eq,
3.133
Maximum concentration on the ground
from an elevated source (ML™),
Eq. 3.135
Peak or center-line concentration val-
ues (ML~%), Eqgs. 3.155 and 8.91
Exposure (MTL™); subscripts p and
CWI have the same meaning as for
concentration (also referred to as
the concentration time integral),
Eq. 3.156
Angular velocity of earth’s rotation
{(radians)T™!], Sec. 3-1.3
Space, time, or statistical average,
Sec. 3-2.3
Running mean average, Eq. 3.75
Superscript referring to deviation
from the mean, i.e., x =X+ x’,
Eq. 3.1; also used in source-
strength notation to indicate a re-
lease rate, Eq. 3.91
Subscripts referring to conditions
surrounding a parcel of air and
within the parcel, respectively,
Eq. 3.18
Subscript referring to geostrophic
flow
Subscripts referring to coordinate
axes

Other subscript notation accompanies the notation
found in the preceding portion of this table.

3-1 MEAN FLOW IN THE LOWER
'LAYERS OF THE ATMOSPHERE

3-1.1 Introduction

The problem to be considered is the descrip-
tion, by means of mathematical —physical mod-
els, of the role of the earth’s lower atmosphere
in redistributing and diluting the radioactive
gases and particles that may be introduced into
it as a result of various activities of the atomic
energy industry. Although most interest is
centered on the problem of isolated, more or
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less continuously emitting sources at or near,

the ground level, such as fixed nuclear reac-
tors and their associated chemical processing
plants, the problem of quasi-instantaneous
sources, such as might result, for example,
from a nuclear rocket launch-pad accident,
will also be considered. The special problems
created by the radioaetive nature of these vari-
ous sources are most conveniently dealt with
separately. Therefore the results described in
this chapter apply equally to nonradioactive air
contamination, such as that created by large
conventional power plants and many other ac-
tivities of an industrial society.

The symbols most frequently used in this
chaptér and in Chap. 4 are listed and defined

“in the List of Symbols at the beginning of the

chapter.

The atmosphere disperses gases and par-
ticles rapidly because it is turbulent. Turbu-
lence is the property, easy to recognize but
difficult to define, of irregular, chaotic motion
possessed by almost all natural fluid flows. In
fact, for practical purposes we can best define
a turbulent fluid flow as one that has the
ability to disperse particles embedded within
it quite rapidly, at a rate orders of magnitude
greater than can be accounted for by molecular
diffusion. Most of the meteorological problems
(as well as certain other technical fluid-flow
problems, such as heat transfer) of the power,
chemical, and atomic energy industries center
themselves around the phenomenon turbulent
diffusion.

Osborne Reynolds (1895) suggested in 1883
a device by which such a complex phenomenon
as a turbulent flow could be reduced to a rela-
tively manageable mathematical form. Reyn-
olds’ idea was that the total wind-motion vector,
V, can be thought of_as being composed of a
constant mean part V and a fluctuating, or
turbulent, part V’, such that

V=V+W (3.1)

or, considering the three orthogonal wind com-
ponents separately,

u=4+u (in the x-direction)
v=% +v (in the y-direction)
w=W+w (in the z-direction) (3.2)

Components of the natural wind can be mea-
sured by a sensitive anemometer. Figure 3.1
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Fig. 3.1—Portion of anemometer record, u(t), made
at an elevation of 35 m in the atmosphere.

is a sample of one such measurement made at
35 m above the ground surface. Notice that the
fluctuating, or turbulent, component of the wind
is of the same order of magnitude as the fixed,
or mean, part; i.e., u’ is about as large as u.
This is characteristic ot atmospheric turbu-
lence and distinguishes it sharply from wind-




68 METEOROLOGY AND ATOMIC ENERGY —1968

tunnel turbulence, where u is more likely to
be 10? to 103 times u’.

Equation 3.1 or 3.2 tells us that to specify
atmospheric turbulence we must first be able
to specify the mean state 'of atmospheric mo-

tions. Some consideration of the mean state of '

the atmosphere is also necessary because thé
‘energy supply for atmospheric turbulence lies
in the organized large-scale mean atmospheric

motions. Moreover the strength of the mean

wind is directly related to the capacity of the
atmosphere for diluting pollutant materials in-

jected into it. Finally, in the layers of air.

nearest the earth’s surface, extending to ele-
vations of several kilometers, the mean wind
pattern itself is determined primarily by tur-
bulence arising from frictional drag at the
air—earth interface. Thus it appears that the
analysis of atmospheric turbulence is deeply
involved with the mean field. of motion on four
separate- éounts. A discussion of the mean wind
structure in the lower layers of the atmosphere
is clearly required as a preliminary to the
treatment of the diffusion problem. Although it
is convenient to proceed as though this mean
wind can actually be defined over some suitable
space or time domain, it should be noted that
in the atmosphere, in contrast to the wind tun-
nel, the method of doing this is neither simple
nor obvious. Fluctuations of the wind having a
wide range of periods can and do occur, but
just how to define the average value is not
always clear. This problem is discussed at
some length in Sec. 3-2.3.

3-1.2 The Mean State of the Wind
:ip"‘tl\;‘e Lowest Layers.

3-1.2.1 ~.,f}ikcq;ity. . Assuming ‘for the moment
a horizontal; straight, parallel, steady mean
wind ﬂqw,'.}‘i(z), at some level z, fairly near
the suljfacé (just how near will be determined
subsequently), ‘let us try to determine the
mean wind  structure. Upon what quantities
should ‘it . depend? Obviously T must increase
with height, z, for at least some distance above
the earth’s surface since just at the surface it
. must equal -zero. This means that adjacent
horizontal layers of air must be in motion rela-
tive to one another, and so certainly G(z) must
be expected to depend also on the viscosity of
the atmosphere.

§3-1.2

Imagine a small volume of air next to the
surface to be symbolized by a deck of smooth
new playing cards resting on a table (Fig. 3.2).’
If the top card is slid parallel to the deck
while the cards are held firmly in contact, the
bottom card remains fixed, but the remainder
of the deck is tilted forward, or sheared, in
such a way as to deform the deck into a uniform
parallelepiped. The horizontal force on the top
card represents the horizontal (in general,

-

' Fig. 3.2—Illustration of shear due to a tangehtial

force.

tangential) shearing stress on any small air
volume. The resistance of the cards to vertical
hand pressure symbolizes ordinary (normally
directed) air pressure, and the resistance to
horizontal slippage of cards symbolizes the
viscosity of the air. Just as the bottom card
sticks to the table, so the lowest air layer
sticks to the surface of the earth.

3-1.2.2 Shearing Stress. A tangential shéaring
force, or stress, applied for a certain time
to the top card produces a certain defor-.
mation of the deck, symbolizing a vertical
shear of the horizontal wind [dl(z)/dz]; the
smaller the viscosity is the greater this effect
will be. It is reasonable to suppose that

du « shea?'ing s?tress (3.3)
dz viscosity

or, using the symbols ordinarily assigned to
these quantities and rearranging terms,

du

TEL G, (3.4)
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This is Newton’s law for molecular fluid vis-
cosity; 7 is the tangential stress on a unit area
of the fluid, and u is called the dynamic vis-
cosity coefficient because it is a measure of the
resistance of the fluid to volume distortion re-
sulting from the stress.

3-1.2.3 Mechanical Turbuience. Fluid viscosity,
which is described in Sec. 3-1.2.1, depends on
molecular structure; it is a bulk property of the
fluid, which, however, is determined by in-
ternal microscopic fluid characteristics. Infact
it is sometimes called internal friction, and its
detailed nature can best be elucidated by the
arguments of kinetic theory, involving transfer
of momentum from layer to layer of the fluid
by individual molecules. Molecular viscosity
accounts adequately for transfer of fluid prop-
erties very near flow boundaries and, in gen-
eral, in any small volume of fluid. Considering
the situation for the flow as a whole, however,
we have to deal in the lower atmosphere with
a structure much more complex than the simple
layered parallel flow we have so far conceived,
namely, a turbulent flow. For the time being
let us regard this turbulence next to the surface
as purely mechanical in origin and as deriving
its energy somehow from the mean flow of the
air at greater elevations in a way that does not
depend on the action of thermal buoyancy
forces.

3.1.2.4 The Reynolds Number. What is the na-
ture of low-level turbulent atmospheric mo-
tions? In a nonturbulent flow, such as water
issuing at low velocity from a tap, paths of
adjacent fluid “particles” are essentially par-
allel, as illustrated in (a) of Fig. 3.3. (By a
fluid particle, we have in mind a small volume
of the fluid. Such a volume would contain a
very large number of molecules, but the mo-

lecular nature of the fluid does not concern us’

here. We regard the fluid as being microscopi-
cally continuous, an assumption that permits us

to apply the definitions and limiting processes -
of ordinary differential calculus to the fluid .

motions.) This nonturbulent flow is called lami-
nar, the connotation being that adjacent layers
of fluid remain distinct and identifiable (lami-
nated) and do not intermix. Physically, the
laminar stream of water appears smooth and
coherent; small irregularities remain small
or are rapidly damped. Under these conditions
Newton’s law for viscosity would be obeyed. If

the velocity of the stream is increased slowly,
no change may occur at first, but at some point
the nature of flow will be observed to hioxﬁe
radically and suddenly. The smooth appearance
turns to a rough, irregular one, as shown in
(b) of Fig. 3.3. It is obvious that adjacent

Fig. 3.3—(a) Laminar flow of water from a labora-
tory faucet. (b) Turbulent flow of water issuing at a
higher speed from the same faucet as in part (a).
(Courtesy J. E. Westcott)
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particle paths no longer are parallel but are
intermingled in a highly irregular way. The

water churns and splatters, We immediately °
recognize the new state of the fluid as tur-'

bulent and can readily grasp the importance of
the turbulent fluid state in problems involving
the transfer of such properties as heat and
momentum.

It is possible to learn more from this simple
experiment. By repeating it with taps having
openings of different sizes, we would find that
~ the water flow issuing from a smaller opening
stays laminar up to a higher velocity. For
example, the very fine stream of water issuing
from a laboratory wash bottle is nearly always
smooth, i.e., laminar, for considerable dis-
tances from its tip [(a) of Fig. 3.4]., On the
other hand, the flow from a fire hydrant is in-
variably turbulent [(b) of Fig. 3.4]. Now con-
sider an experiment otherwise identical but
performed with some thick liquid, e.g., heavy
oil or molasses, substituted for water as the
fluid. We would find that the velocity required
to produce turbulent flow is in each case higher
than for water.

We have now in a highly qualitative way
established the facts about turbulent flows that
were found to be “sig'nificant by Reynolds, who
made the first systematic study of the onset of
fluid turbulence:* to change a laminar flow into
a turbulent flow one must either increase the
velocity, increase a characteristic reference
length associated with the flow, or decrease the
viscosity of the fluid. These factors can be
combined into a dimensionless ratio known as
the Reynolds number, Re:

Re = (a characteristic flow length)
X (a characteristic flow velocity)
X (dynamic viscosity/density)™ (3.5)

The denominator of this expression is called
the kinematic viscosity, v (square centimeters
per second), and is related to the dynamic
viscosity by v = p/p, where p is air density.
The kinematic viscosity is a measure of how
the intrinsic fluid stickiness, i.e., the dynamic
viscosity, affects the overall flow geometry,
and consequently it must depend on the inertia

*The word ‘‘turbulence,’”’ designating a state of
fluid flow exceeding a certain critical threshold, was
introduced by Lord Kelvin in 1887 according to Rouse
and Ince (1957).

Fig. 3.4—(a) Laminar flow of water from laboratory
wash bottle with a small nozzle. (b) Turbulent flow of
water from a fire hydrant. (Courtesy J. E. Westcott)

of the fluid and hence on the density. The Reyn-

olds number can also be thought of as the ratio

of the inertial to the viscous forces acting on a

small volume of fluid,

inertial force

Re o viscous force (8.6)

The inertial force on a unit volume of fluid is

equal to/the product of density and acceleration;

the viscous force equals the viscous stress per
unit area. - '

The way in~Wwhich a length characteristic of

the flow should be specified in the atmosphere
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is not by any means self-evident. In pipe flows,
such as those Reynolds studied, the pipe diame-
ter provides a natural reference length, as did
the size of the opening in the example with
which the discussion in this section began. In
airfoil theory the wing chord is a suitable
reference length; in wind tunnels the size of a
wire mesh or grid used to induce turbulence
likewise defines a length. With any of these
definitions, flows characterized by Reynolds
numbers above about 10° or 10° are always
turbulent.

What length scale applies in the atmosphere ?
In the atmosphere there is no particularly ob-
vious macroscopic external length scale associ-
ated with the turbulence phenomenon. In fact it
seems that fluctuating motions can occur over
a very wide size range. For any reference
length we might choose as a matter of ex-
pediency (height above the ground, for example),
we are bound to conclude that the Reynolds
number of the atmosphere will be very large
because typical velocities are of the order
10> cm/sec and v equals about 0.15 ¢cm?/sec.
Consequently we find that atmospheric flows
are ordinarily turbulent, The degree of turbu-
lence of the atmosphere can vary over wide
limits and depends primarily on the vertical
temperature structure, i.e., upon stability.
Nevertheless the atmosphere is normally tur-
bulent. In"laminar flow the rate of diffusion of
molecules or particles is proportional to the
coefficient of molecular viscosity, or diffusivity,
p. Because atmospheric flows are turbulent,
diffusion in the atmosphere occurs at a rate
which is rarely less than several orders of
magnitude greater than the molecular rate and
which may be many orders of magnitude greater
than this value.

3-1.2.5 Eddy Viscosity. By analogy with the
Newtonian law of molecular viscosity (Eq. 3.4),
Boussinesq (1877) proposed that the effect of
turbulent viscosity be taken into account by
introducing an augmented viscosity

T (utA) S (3.7)

The turbulent, or eddy, viscosity, A, was
termed by Schmidt (1925) an “Austausch,” or
exchange, coefficient. It was, of course, real-
ized much earlier than this that the Newtonian,

‘or molecular, viscosity, p, was orders of

magnitude too small to account for the observed
transfer of heat or momentum in fluids. An
interesting historical account of the subject
by Bateman (1956) mentions the studies by
Dalton in 1799 and Count Rumford in 1806.
Convection over heated ground was described
as early as 1749 by Benjamin Franklin, accord-
ing to Middleton (1965). The meteorologist
Espey in 1840 also used the idea of convective
mixing of wind currents to explain the diurnal
variation of the wind, In line with the molecular
analogy, it is convenient to define a kinematic
eddy -viscosity coefficient K,, in terms of A and
p, A =pKy; Ky thus has the same dimensions
as v but is, as we shall see, normally several
orders of magnitude larger. The subscript M
indicates that this eddy-exchange process in-
volves transfer of momentum.

Notice that a significant new concept, that of
an eddy,* has just been introduced. An eddy is
thought of as an irregular but somehow identifi-
able material wind structure, perhaps similar
to a “puff of wind” or to a “cat’s paw” over
open water, having the ability to transfer air
properties across the flow in a way that can
conveniently be thought of as analogous totrans-
fer by the air molecules on a much smaller
scale. At this point we need not try to make
this idea very much more precise; indeed to do
so will turn out to be impossible in most re-
spects although we shall freely discuss from
time to time various properties of eddies. To
prevent such looseness of argument from be-
coming too great a mental or aesthetic ob-
stacle, we need only recollect how much of
physical theory can be rationalized by assuming
that molecules behave like little hard balls.

Assume then an eddy viscosity K, that con-
trols, through the properties of turbulent eddies,
the mean structure of the wind over the earth’s
surface. Very near the surface, height above
the ground must limit the vertical size of
eddies. At greater and greater elevations,
eddies that are larger and larger in their

*The concept of an eddy is new, of course, only at
this point in the present discussion. The intuitive
idea of relating turbulent fluid motion to such an
‘entity seems to be very old. Rouse and Ince (1957)
reproduced a sketch drawn by Leonardo da Vinci

-clearly illustrating eddies in the wake of an obstacle

in a water channel (he, however, attributed properties
to these eddies that we would not today).
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vertical dimension can be present, and so it
is reasonable to expect that K, should depend
upon z. Moreover Ky is related to the tangential
shearing stress by Eq. 3.7, which may be
rewritten
du
T = (PKn) 3 (3.8)
where the subscript zero indicates that this
is to apply in the lowest air layers and j is
neglected as small.

3-1.2.6 The Logarithmic Wind Profile., In general,
the tangential shearing stress, 7o, will vary
with height in the lower layers of the atmo-
sphere. As a simplification we can, however,
limit the discussion to a layer of air just
next to the surface through which the vertical
variation of 7, is small enough that 7, can be
considered constant. Then the vertical struc-
ture of the mean wind, @, for the flow we are
considering appears to depend on the following
quantities, which can be chosen as fundamental
to the flow: the kinematic air viscosity, v;
height above the surface, z; air density, p; and
frictional stress, 7, The quantity K,, can be
expressed in terms of these through Eq. 3.8.

In particular, the vertical gradiént of the
mean velocity in a uniform, straight, parallel
flow of air next to the ground, for which the
energy of the air turbulence is purely mechani-~
cal in origin, involves relations among five
dimensional quantities: dd/dz, v, z, p, and Tg.
If ordinary principles of dimensional analysis
are applied to this problem (see Bridgman,
1931), the well-known II theorem tells us that
two independent dimensionless ratios can be
formed from these (namely, the number of
quantities, 5, minus the number of fundamental
dimensions involved, 3) and that a single un-
known function of these two ratios may be set
equal to zero. Of these remaining quantities,
only 7¢ and p involve mass, and so they must
enter any dimensionless product as the ratio

To/p, which has the dimensions of velocity

squared. Its square root is often termed the
friction velocity and is given the special symbol
v.. One dimensionless ratio can thus be written
as ~(do/dz)(z/v.), and the second, as zvy/v.
Consequently the dimensional analysis provides
the following result:

f1<dﬂz E‘.L*):o

az v, (3.9)

§3-1.2

Since our object is to determine du/dz we can'
solve for the ratio containing it: :

' (3.10)

Although simpler than Eq. 3.9, Eq. 3.10 never-
theless contains a function f, about which it is
not yet possible to speculate on the basis of the
assumptions made so far; f; may be a simple
linear function, or it could equally be highly.
transcendental. This is a commonimpasse when
dimensional analysis is applied to a compli-
cated problem and can only be resolved by
invoking some additional principle or physical
understanding of the problem. Let us see what
can be accomplished.

Very close to the earth’s surface the vertical
structure of u, the vertical velocity profile,
must mainly be governed by molecular viscos-
ity because close enough to the surface:the
turbulence due to eddies must become negligi-
ble, there. being insufficient height for the
eddies to come into play. Let us assume that
this situation holds up to some fixed elevation,
z =D, and attempt to estimate D, If we sub-
stitute D into the second of the dimensionless
ratios, which we should recognize as a form of
Reynolds number, we see that for a given flow
(i.e., a constant value of v,)

Re = Dv./v = constant (3.11)
Because flows for which Re = 10% are ordinarily
turbulent, it follows that an upper limit to D,
the depth of the laminar sublayer of the atmo-
sphere, will be of the order of a millimeter
since v, is known from observations to be of
the order of 100 cm/sec and v equals about

10~ cm?/sec.

This means that blades of grass, grains of
dirt, sticks, twigs, people, and so forth, all
protrude through the laminar sublayer. In fact,
except perhaps for flow over very smooth ice
or still water, we may ignore the effect on
di/dz of zvi«/v. Then the equation for the
gradient of the wind profile near the earth’s
surface simplifies to

dz kz (3.12) .‘

which will apply to fully turbulent flow over a
rough surface, i.e., one whose roughness ele-




§3-1.2 DIFFUSION IN THE LOWER LAYERS OF THE ATMOSPHERE 73

ments protrude through the laminar sublayer.
Such a surface is sometimes called aerody-
namically rough; an aerodynamically smooth
surface is, in contrast, one whose roughness
elements are contained within the laminar sub-
layer, a case that does not as a rule apply in
the atmosphere. The universal proportionality
constant, k, is' called von Karman’s constant
and has been found by experimentation to
equal 0.4.

Equation 3.12 can be integrated to obtain the
wind profile near the earth’s surface in the
constant-stress layer:

a(z) = % In z + constant (3.13)

The integration constant is usually defined so
as to introduce the effect of surface roughness
by requiring that @ = 0 when z = z; 2, is called
the roughness length because it expresses the
effect of varying ground surface roughness on
the wind profile:

i(z) =%(lnz—1n Zg) =¥{iln (Zio) (3.14)

Written in this form, the result indicates the
role of the integration constant, which is to
translate the wind profile without changing its
form. This equation is valid only for z =z,
since the dimensional argument applies only
above the laminar sublayer.

Sometimes z, is chosen so that U(z) = 0 when
z = 0. If this is done, the wind profile equation
takes the form

@) =¥ 1 (z—;ﬂ) (3.15)
Since, as a practical matter, interest is ordi-
narily centered on wind at heights where z > z,,
the two forms are substantially equivalent. It
is sometimes necessary to take account of the
possibility that the actual zero-plane datum
level used in an experiment may differ from
the zero-plane implied by Eq. 3.14 either ar-
bitrarily for experimental convenience or be-
cause the level down to which the effect of the
wind profile extends (e.g., over thick vegetation)
does not coincide with the ground surface. This
is done by formally introducing a zero-plane
displacement, d,

U(z) = ¥ 1n (zz‘od> (3.16)

Such precision is not often required in field
work. The existence of a logarithmic wind
profile next to the earth, such as these equa-
tions predict, has been confirmed in numerous
experiments for the type of flow that we have
specified, i.e., purely mechanical turbulence.
Values of z; and v, found from such experi-
ments appear in Table 3.1.

Table 3.1— TYPICAL VALUES OF PARAMETERS
GOVERNING THE LOGARITHMIC WIND PROFILE
NEAR THE EARTH’S SURFACE*

Type of surface Zy, CIM v,, m/sect
Smooth mud flats; ice 0.001 0.16
Smooth snow 0.005 0.17
Smooth sea 0.02 0.21
Level desert 0.03 0.22
Snow surface; lawn to 1 cm

high 0.1 0.27
Lawn, grass to 5 cm 1-2 0.43
Lawn, grass to 60 cm 4-9 0.60
Fully grown root crops 14 1.75

*Based on Sutton (1953), Priestley (1959), and
Pasquill (1962).
tFor u(2m) = 5 m/sec.

3-1.2.7 Effect of Buoyancy. The effect on the
wind profile of departures from purely me-
chanical turbulence must be considered, and
we should begin by trying to clarify what is
meant by mechanical turbulence. Because of the
weight of air, i.e., because of the vertical
force exerted on any air volume by gravity, the
pressure of the atmosphere decreases with
elevation. This vertical pressure variation im-
plies a certain vertical temperature structure
governed by the atmosphere’s equation of state,

p=pRT (3.17)

where p is the density, R is the gas constant for
air, and T is the Kelvin temperature. Specifi-
cally, the temperature of a volume of dry air
displaced upward by a process that does not
add or remove sensible heat will decrease at
the linear rate of 1°C per 100 meters, the so-
called “dry adiabatic lapse rate.”

The mean vertical temperature structure of
the lower layers of the atmosphere may under
certain circumstances happen to possess a dry
adiabatic lapse rate; if so, a small isolated
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" volume of air, an air parcel, that is undergoing
adiabatic vertical motion will at all times ad-
just itself so that it will experience no buoyancy
force tending to restore it to its original eleva-
tion. It will always possess just the temperature
of its environment. Mechanical turbulence in the
atmosphere is conceived to have just this
essential property that, no matter how irregu-
lar the individual eddy motions of which it
consists may appear, there are no net buoyancy
forces on fluid elements, or eddies, due to
departure from an average adiabatic lapse rate.

This restriction to mechanical turbulence has
simplified the analysis considerably up to this
point, but in the lower atmosphere an adiabatic
lapse rate is present only a small fraction of
the total time. This seriously restricts the
utility of the results obtained thus far. Figure
2.19 of Chap. 2, illustrating the normal clear-
day diurnal variation of temperature structure
of the lower atmosphere, demonstrates that
the adiabatic state can ordinarily be expected
only just after dawn and at dusk and will last
perhaps for a few moments. The reason is that
the flow of heat to and from the underlying
surface by radiation, conduction, and convection
causes the lapse rate in the lower. air layers
to vary from day to night over wide limits.
During the day vertically displaced volumes of
air undergoing adiabatic expansion must be
acted upon by positive buoyant forces, and as a
result turbulence is enhanced. During the night
the converse effect tends ordinarily to suppress
turbulence sharply. Of course, when the normal
vertical heat flux in the lower layers is re-
stricted markedly, for instance by a thick low
cloud layer, the adiabatic state can persist for
longer periods of time.

‘The buoyant force, F, on an air parcel is
easily calculated, being equal to the weight of
the displaced air volume, W,, minus the weight
of the air parcel, W, i.e.,

F=W, —Wp =g V(ps—pp) (3.18)
"where positive F indicates upward buoyancy,
g is the gravitational acceleration, and V is the
volume in question. The resulting acceleration,
a, of the parcel, i.e., F divided by its mass, is

Pa— Pp

oy (3.19)

a=g

§3-1.2

which, from the equation of state, can be
written (bearing in mind that p, = pp) ~ '

a=g PoTA (3.20)
A .

where T, and T, are the air and parcel tem-
peratures, respectively, in degrees Kelvin.
Since the air parcel is conceived of as acquiring
buoyancy by changing temperature dry adiabati-
cally in a diabatic (i.e., nonadiabatic) environ-
ment, the last equation can also clearly be
written as follows: '

(3.21)

where y = existing (in general, diabatic) lapse
rate in the surrounding air
T’ = dry adiabatic lapse rate o
Az = height through which this process
operates T ' '
w = vertical velocity acquired by the air
parcel

The adiabatic lapse rate thus emerges as a
natural standard of vertical temperature strati-
fication in the atmosphere. It is of fundamental
interest in connection with problems related to
the turbulent structure of the lower layers of
air because vertical displacements of air par-
cels, such as occur in turbulent flow, have the
following character: (1) Vertical displacements
have neutral stability, and displaced air parcels
tend neither to fall nor to rise when

dT
% =__.E.= I"’ (TP = TA)

(2) Vertical displacements are unstable and are
amplified by buoyancy when

y>T; (Tp>T,)

(3) Vertical displacements are strongly damped
when

y<T; (Tp< Ty)

3-1.2.8 The Richardson Number. Previous dis-
cussion has indicated that the energy of
purely \mechanical turbulence is associated
with vertical wind shear, dU/dz, through the
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agency of an eddy stress, 7y. In the presence of
a diabatic lapse rate, it now appears that turbu-
lent energy is also strongly affected by buoy-
ancy forces. Richardson (1920) suggested that
turbulence should occur in the atmosphere when
the production of turbulent energy by the wind
shear is just large enough to counterbalance
its consumption by buoyancy forces. He pro-
posed as a measure, or criterion, of the effect
the dimensionless number Ri that has been
given his name:

Ri o (rate of consumption of turbulent
energy by buoyancy forces)
X (rate of production of turbulent
energy by wind shear)™! (3.22)

There are several ways to derive the Rich-
ardson number. Let us once again view the
problem from the dimensional standpoint, ask-
ing what are the relevant variables. We have
seen that mechanical turbulence is controlled
by the vertical shear, or gradient, of the mean
horizontal wind, di/dz. From Eq. 3.19 we con-
clude that the effect of consumption of turbulent
energy by buoyancy will be governed by gravity,
g, air density, p, and the vertical density
gradient. This follows because Eq. 3.19 can be
rewritten in the essentially equivalent form

&,%

g
a =—;I‘—A (3.23)

where a is now to be interpreted as the re-
storing force on a unit mass of air resulting
from its unit vertical displacement (Az =1)
from an equilibrium position. From these four
quantities, involving three fundamental dimen-
sional units, a single dimensionless ratio can
be formed, namely,

. _ g (de/dz)
Ri= ,ITA {da/dz)? (3.24)

This can also be written

._g (-1
RI—TA (dﬁ—/dz)7 (3.25)

which follows from Eqgs. 3.21 and 3.23 and
shows the relation of the Richardson number
to the departure from an adiabatic lapse rate.

A second form of the Richardson number is
often used. In diabatic turbulent shear flow,
the significant phenomenon has been shown to
be the departure of the temperature of the
eddies from that of the surrounding air in
which they are conceived as embedded. It fol~
lows that, in addition to momentum, the eddies
act to transport heat across the flow. An ex-
pression for this eddy heat transport, or flux,
H, can be written by analogy with Eq. 3.8 for
the momentum flux, or stress,

H=pc, Ky (y-T) (3.26)

where c, is the specific heat capacity of the
air at constant pressure and Ky is a coefficient
of eddy heat conductivity. If Eqs. 3.8 and 3.26
are substituted into Eq. 3.25 for Ri, we find
that

gH Km

" ¢y Ta T, (du/dz) Kn (3:27)

Ri

Thus an alternate definition is the so-called
“flux form” of the Richardson number, Ry,
where

Ky gH

Ku ¢, Ta T (dU/dz) (8.27a)

Rf=Ri

3-1.2.9 The Diabatic Wind Profile. The Richard-
son number, Ri, or R, has come to be used
as a characteristic turbulence parameter
rather than as an absolute criterion of turbu-
lence. That is, it is regarded as broadly indi-
cating the nature and to some extent the in-
tensity of the turbulence rather than specifying
an exact criterion for turbulence to occur. As
such, the Richardson number indicates the
quantities upon which the velocity profile will
depend in the diabatic case, namely, U will
involve z, z;, v, and k, as before, and, in
addition, the parameters characterizing the
diabatic effects, g, p, ¢,, H, and T,. Adirect
dimensional attack on this problem by the
method we have been employing will evidently
be fruitless because of the large number of
dimensionless ratios that can be formed from

the quantities involved. An elegant simplifica- -

tion is, however, possible following the sugges-
tion made (independently) by Lettau (1949) and
by Monin and Obukhov (1953).
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We are considering uniform, straight, paral-
lel turbulent flow near the surface with con-
stant stress and heat flux. We assume that this
kind of flow will extend to some elevation
above the surface, an elevation that has not
yet been directly specified but will be approxi-
mated later on. For the time being the depth of
the layer can be regarded as that depth through
which the assumptions of constant heat and
momentum fluxes are applicable. Within this
region of applicability, which Lettau calls the
surface layer, the turbulence properties, in-
cluding the wind and temperature profiles, will
at any point be under the control of the various
physical parameters just enumerated. It is
known from the form of the governing equa-
tions of motion (Lumley and Panofsky, 1964,
for example) that the effect of thermal buoyancy
enters this problem through the buoyancy pa-
rameter, g/T,. The conditions of constant
momentum flux and heat flux likewise lead
(Monin and Obukhov, 1953) to dependence of the
flow on the dimensional parameters v, and
H/c,p, respectively. From these three parame-
ters, which uniquely characterize the velocity
and temperature profiles in the surface layer,
Monin and Obukhov formed the unique length, L,

- [ ()

The quantity L is a constant, characteristic
length scale for any particular example of the
flow; it is negative for unstable conditions (up-
ward heat flux), positive for stable conditions,
and approaches infinity as y approaches I'. Of
course L, being formed irom the same parame-
ters as the Richardson number, is closely re-
lated to Ri or R,

(3.28)

~
<

1
=2Hpi =%
R =%, B~ % Lau/do)

(3.29)
as can easily be verified by substitution. It is
more convenient to use L than Ri as a stability
parameter characterizing the diabatic velocity
profile because Ri must, from Eq. 3.29, vary
with height.

Since all quantities having the dimension of
length associated with this problem must be
proportional to L, the diabatic wind profile is
by dimensional analysis found to be

§3-1.2

= V, 2 2
1 - (%)

Bearing in mind the boundary condition at the
ground, @ = 0 when z = zy provided z; >.D, the
depth of the laminar sublayer, we usually ex-
press Eq. 3.30 in the equivalent form

i(z) = ‘l’{—* f(zf) - f(%)]

because the role of z; as a constant of integra-
tion is only to shift the velocity profile without
changing its form (Eq. 3.14).

In the past few years, a large amount of re-
search has gone into evaluating the form of the
universal function f for various regimes of
atmospheric stability. Such a function can be
evaluated by means, for example, of a care-
fully planned program of measurements of U(z),
or auxiliary physical or mathematical assump-
tions and principles can be invoked. As ex-
perience, in the form of detailed observational
and theoretical studies of the vertical transport
of heat and momentum in the surface layer, has
been accumulated, it has become clear that
three physically more-or-less distinct regimes
are involved in this problem: forced convection,
free convection, and the inversion or stable
regime. The forced-convection regime is char-
acterized by the fact that buoyancy does not
contribute appreciably to the vertical mo-
mentum or heat diffusivities, these being com-
pletely dominated by mechanical turbulence and
accompanied by a nearly adiabatic lapse rate.
In this kind of turbulence, both heat and mo-
mentum are transferred by the action of the
mechanically driven eddies, and these might be
expected to occur at approximately equal rates,
i.e., Ky =Ky. :

In free convection, on the other hand, th
vertical flux is mostly produced by buoyant
motions. Strictly speaking, the term “free
convection” should be reserved for the case of .
no mean wind shear, i.e., the case in which
turbulence arises solely from the action of
buoyant eddies. In practice, the term is com-
monly used to describe a turbulence regime
that is characterized by the presence of a
certain amount of forced, or mechanical, tur-
bulence, i.e., by some shear. As Webb (1962)
pointed out, this kind of turbulence should
probably be called mixed convection in recogni-

(3.30)

(3.31)
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tion of its composite nature. The term “free
convection” will be retained in this discussion
on the grounds that it conforms to current
usage, but the point is well taken. The immedi-
ate sources of the energy that drive both me-
chanical and free convection are located at the
earth’s surface, but, as Scorer (1958, pp. 140-
141) points out, the character of the turbulent
air motions involved is necessarily quite dif-
ferent. In forced convection the turbulent eddies
appear to be most vigorous within the surface
layer near the ground. These eddies feed tur-
bulent kinetic energy both upward and down-
ward but always in the direction of smaller
fluctuations. The picture is probably similar to
that advanced by Townsend (1956, p. 236) in
describing the energy flow in a wind-tunnel
boundary layer. On the other hand, buoyant
elements associated with free convection char-
acteristically grow larger as they ascend from
the ground.

The entire subject of the structure of the
diabatic surface layer is under study by a
number of investigators, and it is possible to
give here only a brief sketch of the main re-
sults that are available. As an asymptotic ap-
proximation to Eq. 3.31, valid under conditions
sufficiently near adiabatic, the well-known log

plus linear law has been derived by several

workers,
d(z) =¥ (In 2
a(z) = X (ln Z + a;) (3.32)

where {=2z/L. This equation implies that f(¢)
in nearly adiabatic conditions is given by

f(¢) =In ¢ + at (3.33)

Although it is usually associated with the simi-
larity theory, the log plus linear wind profile

was also deduced independently in the surface-

layer study by Lettau (1949). In fact, a wind
profile of this form was suggested by Halstead
(1943) on empirical grounds.

Interpolation formulas for velocity profiles
that provide a smooth transition between the
forced-convection and the free-convection cases
have been suggested by Kazansky and Monin
(1958), Ellison (1957), Yamamoto (1959), Sellers
(1962), and Businger (1959). Panofsky, Blacka-
dar, and McVehil (1960) recently showed that
Ellison’s diabatic profile agrees well with ob-

servations made in unstable air. The results of

"these studies were summarized in the form of

the so-called “KEYPS” function described in
detail by Lumley and Panofsky (1964). The
case of great stability remains, on the other
hand, something of an enigma from the theoreti-
cal standpoint. The general conclusion from the
above studies is that the log plus linear velocity
profile, Eq. 3.32, agrees well with observations
in both stable and forced convection conditions
for |¢| < 0.1 if the value a = 6.0 is used, but,
on the side of considerable stability, this good
agreement seems to fail. The suggestion made
by Panofsky, Blackadar, and McVehil (1960) is
that under very stable conditions the velocity
profile no longer will depend simply ondistance
from the ground as is assumed by the simi-
larity theory. Under very stable conditions
there seems to be a decoupling of the direct
linkage assumed in the similarity theory be-
tween the structure of surface-layer turbulence
and the physical presence of the ground witl
the result that the surface-layer flow prop-
erties are primarily determined by the nature
of the air flow at still higher elevations in the
planetary boundary layer.

3-1.3 Wind Variation in the Planetary
Boundary Layer

Restricting consideration to steady, straight,
and parallel flow with constant stress and in-
troducing complications serially makes it pos-
sible to analyze the average wind structure in
the surface layer of the atmosphere in some
detail and to isolate and emphasize the crucial
phenomenon involved, i.e., that of eddy turbu-
lence. When this has been done, the mean wind
has been regarded as a given condition super-
imposed on the flow, so to speak, from above.
A wind-speed profile showing an increase with
height above the surface as a result of a net
downward transport of momentum by turbulent
eddies was found.

On the other hand, it is a matter of common
experience (e.g., on airplane flights) that the
effect of turbulence decreases with elevation
in the lower atmosphere and is usually negligi-
ble above several thousand feet. Moreover the
eddy stress has been found by analysis of wind-
fluctuation observations to decrease with height
above the surface layer. Furthermore the mean
wind does not increase indefinitely with height.
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In the model adopted here, however, both tur-
bulence and the mean wind as a result of the
assumption of constant stress must, according
to Egs. 3.8 and 3.12, increase with height.
Consequently this model can apply only in the
lowest part of this region, and the theoretical
picture requires some modification and
elaboration. '

The equations of motion (i.e., the form of
Newton’s law, ZF =ma) applicable near the
earth’s surface to a steady horizontal wind flow
with parallel isobars, according to texts on
dynamic meteorology, are

_ 1la8p 1 0
wimdiace oo
_ 1% 1 @8
—fu——-ﬁé? BE 2y 0 (3.35)

where f is equal to 2w sin ¢ and is called the
Coriolis parameter (w is the angular velocity
of the earth’s rotation and ¢ is geographical
latitude), p is pressure, and the subscript zx on
the eddy stress, T, indicates that it acts to
transport x-directed momentum in the vertical
or z-direction. Stated in words, the average air
motion is governed by the sum of three accel-
erations: the Coriolis acceleration (or the
apparent acceleration due to the earth’s rota-
tion), the pressure-gradient acceleration, and
the frictional acceleration. The sum of these is
zero because the flow is assumed steady (un-
accelerated). These equations are supposed to
apply to a unit mass of the atmosphere, and so
the accelerations are equally likely to be re-
ferred to as forces.

By analogy with Eq. 3.8, we might suppose
that

au
7,=pPK 57 (3.36)
and
I
Ty, =PK 52 (3.37)

In other words, the eddy viscosity can be gen-
eralized by breaking it up into x- and y-com-
ponents. The K’s will, in general, depend on
height, z. Then Egs. 3.34 and 3.35 become

§3-1.3
1op 8 auy _
fv — > % 52(K ﬁ) =0 (3.38)
1p @ LA
__fﬂ'_ﬁ—y 5z (K E)—O (3.39)

Since we expect the effect of turbulent friction
to decrease with elevation, the third term in
these equations, which represents the accelera-
tions due to eddy turbulence, should become
negligible at some height in the atmosphere.
If we orient the x-axis in the direction of the
wind at this level, 89p/8x = 0, the above system
simplifies to the following:

fu (3.40)

1
¢ p

| @
S B

where the subscript G is introduced to designate
the level in question. The term T is called the
geostrophic wind, from the Greek words mean-
ing “earth” and “turning,” and -Eq. 3.40 is
known as the geostrophic wind equation.

Assuming, as the simplest useful approxima-
tion, that below the geostrophic wind level the
effect of eddy viscosity on the mean wind struc-.
ture can be expressed by letting diffusivity be
constant and that the pressure gradient is in-
dependent of height, the solution is

’ cos az)

a

uz)=u,(1 - (3.41):

az

V(z) =Uge  sin az (3.42)
where a = (f/ ZKM)%. This can easily be verified
by substituting into Eqs. 3.38 and 3.39 and
taking into account Eq. 3.40, Figure 3.5 is a
plot of this wind distribution, which shows that
near the ground friction causes the air to flow
across the lines of constant pressure (isobars)
in the direction of low pressure. This effect
decreases with increasing height and disappears
at the/ geostrophic wind level zg, which can
convery'_ently be defined as the lowest level at
which v =0 and therefore the lowest level at
which the wind is parallel to u;. This must
occur when az = 7, from which we can conclude
since f ~ 107 sec™ and Ky is known to be-of
the order of 10* cm?/sec, that the depth of the
layer of frictional influence in the atmosphere
is of the order of hundreds of meters. This
layer is called the planetary boundary layer.
Notice also that the eddy viscosity, Ky, is five
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Fig. 3.5-—8chematic wind distribution (Ekman’s spiral) in the planetary boundary layer, assuming Ky =
constant, according to Eqs. 3.41 and 3.42. Wind vectors are plotted from a common origin at increasing

heights, z;, i = 1, 2, etc.

orders of magnitude larger than v, a fact which
justifies neglect of the influence of molecular
viscosity.

The frictional acceleration in the equations
of motion is known to be of the same order of
magnitude as the Coriolis acceleration, about
107! cgs units; i.e., | (1/p) (87/82)] = 107!, Con-
sequently 8T ~10™* (9z), which equals 0.1
dyne/cm? in 10 m of height. This will usually
amount to about 10% of 7, as the following
calculation shows. The magnitude of the total
eddy stress is given by the sum of Egs. 3.36
and 3.37 for the components. The value at the
surface, 7,, is, assuming constant K,

To = p K\y0U/02),.o +8V/82],-o) (3.43)

where the wind shears are to be evaluated at
the surface. Substituting Eqs. 3.41 and 3.42
into Eq. 3.43, carrying out the differentiations,
and letting z = 0, we find that

To=PaKyp G = 5= fplc  (3.44)

Estimating that zg is of the order of 10* cm
and {ig ~ 10 cm/sec, we find that 7, isof the
order of 1 dyne/cm?.

From this it can be concluded that the depth
of the surface layer, i.e., the layer just next
to the ground through which the stress 7, may
be considered to be constant, is of the order

of tens of meters, or about 10% of the depth
of the planetary boundary layer. Through the
surface layer the mean wind direction is ap-
proximately constant, and the speed increases
with height according to equations derived in
the preceding sections. Above the surface layer
the mean wind turns to the right (in the north-
ern hemisphere) and attains, provided the over-
lying flow is geostrophic (i.e., governed by
Eq. 3.40), the direction and speed of the geo-
strophic wind at elevations of the order of
hundreds of meters.

The solution to the wind distribution in the
planetary boundary layer given by Egs. 3.41
and 3.42 was first obtained by Ekman in 1902
and is known as Ekman’s spiral. It provides a
reasonably good qualitative explanation of the
wind structure and an order of magnitude
estimate of such quantities as z; and K. But
we have seen that eddy viscosity, Ky, must
vary with height in the planetary boundary
layer, increasing just above the ground as
larger eddies become effective and then de-
creasing at greater elevations as the general
influence on the airflow of the surface frictional
drag decreases. Moreover we can expect, on
the basis of analysis of the diabatic surface
layer, that the eddy structure in the planetary
boundary layer will also be strongly influenced
by buoyant heat flux. In addition, for many im-
portant practical situations, it cannot be as-
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sumed that the governing forces are in balance.
The sea breeze and mountain and valley winds
are examples of such accelerated flows. All
these complicating factors and others are the
subject of active research studies, and con-
siderable progress has been made, which, how-
ever, would take us too far afield to summarize.
As a practical matter, such effects are not
normally evaluated quantitatively in connection
with estimates of atmospheric diffusion, and
so the qualitative discussion given in Chap. 2
provides an adequate guide. Readers interested
in further development of this important sub-
ject will find useful discussions in the papers
by Estoque and Yee (1963), Blackadar, Panof-
sky, MecVehil, and Wollaston (1960), and Lettau
(1962).

3-2 DIFFUSION THEORIES

Small particles or droplets released into the
atmosphere will separate more or less rapidly
from one another under the influence of turbu-
lent eddies, a phenomenon called diffusion, We
have already investigated the vertical diffusion
of such intrinsic air properties as momentum
and heat in Sec. 3-1. Indeed the two phenomena
are closely related, differing only in that for
particle diffusion the possibility exists of ef-
fects arising from the size and inertia of the
particles involved. In Sec. 3-2 we are con-
cerned with diffusion of particles from isolated
sources in the lower atmosphere.

The problem of turbulent diffusion in the at-
mosphere has not yet been uniquely formulated
in the sense that a single basic physical model
capable of explaining all the significant aspects
of the problem has not yet been proposed. In-
stead there are available two alternative ap-
proaches, neither of which can be categorically
eliminated from consideration since each has
areas of utility that do not overlap the other’s.
The two approaches to diffusion are the gradi-
ent transport theory and the statistical theory.
Diffusion at a fixed point in the atmosphere,
according to the gradient transport theory, is
proportional to the local concentration gradient.
Consequently it could be said that this theory
is Eulerian in nature in that it considers prop-
erties of the fluid motion relative to a spatially
fixed coordinate system. On the other hand,
statistical diffusion theories consider motion

following fluid particles and thus can be de-
scribed as Lagrangian. Diffusion theories may
be classified as either continuous-motion or
discontinuous-motion theories, depending on
whether this particle motion is postulated to
occur continuously or -as discrete events. There
must necessarily be a close connection among
all these approaches to the diffusion problem
since obviously there is only one atmosphere.
We will consider here those aspects of each of
these approaches which have found application
in the atmosphere. .

3-2.1 The Gradient Transport Approﬁch

3-2.1.1 Fickian Diffusion. Adolph Fick, a Ger-
man physiologist, published a paper in 1855
(Ann. Physik Chem., [2] 94: 59-86) entitled
“Uber Diffusion.” These details are given be-
cause, although Fickian diffusion is spoken.of
quite’ familiarly by research workers. in many
disciplines, few appear to know who Fick was,
His idea stated in his own words [Phil. Mag.,
[4] 10: 30-39 (1855)] is: “It is quite natural to
suppose that this law for the diffusion of salt
in its solvent must be identical with that ac-
cording to which the diffusion of heat in a
conducting body takes place; upon this law
Fourier founded his celebrated theory of heat,
and it is the same which Ohm applied, with
such extraordinary success, to the diffusion of
electricity in a conductor.” The mathematical
statement of this hypothesis, Fick’s law, has
(in the one-dimensional case) the form of the
classical equation of conduction,

aq_ . 2% .
‘&?—K'a_xf ) (3.45;

where K {in the atmosphere) is a constant
eddy-diffusivity coefficient and § refers to the
mean value of some conservative air property
per unit mass of air. One of the many interest-
ing applications. of this useful equation is: to
describe the diffusion of thermal neutrons in a

"nuclear reactor.

The more general case of diffusion in three
dimensions in which the diffusion coefficients;
which are not necessarily equal, can vary with
the three spatial coordmates i.e., .

ag_ 8 ag\ @ 8q 8g
o D) (D)
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was first investigated independently by Rich-
ardson (1926) and by Schmidt (1925). The prob-
lem of atmospheric diffusion reduced to that of
solving Eq. 3.45 or 3.46 under appropriate
boundary conditions is often called the Ktheory.
If X,, K,, and K, are constants, the diffusion is
called Fickian. The K can be thought of as
measuring the flux of a passive scalar quantity
q, such as smoke [flux is defined as K,(8q/9x)
or by a similar expression in y or z). This
quantity, by definition, does not affect the dy-
namics of the air motions but is merely carried
along by them. Consequently, when the turbu-
lence is largely mechanical, K = Ky; but, when
there is strong thermal convection, K=Ky
would be the better approximation. In view of
our present limited ability to specify Ky, due
largely to the difficulty of determining atmo-
spheric heat flux, this distinction is somewhat
academic. In practice K values are usually
determined by reference to observed diffusion
data.

For a stationary medium Eq. 3.45 in one
dimension becomes

°og _ 0%
B_t—_Kaxz (3.47)

Boundary conditions specifying a point source
are

(1)g ~0ast—w (-0 <x <+w)

2)q -0ast— 0
(for all x except x = 0) (3.48)

where q — *«° such that
Tqax=Q (3.49)

where Q is the source strength (total release
of @). The solution may be obtained by various
mathematical devices, in particular by the
method of Fourier series. In fact it is prob-
ably fair to say that the existence of a large
variety of solutions to Eq. 3.45 with various
boundary conditions, from the classical theory
of heat conduction, has been one of the great-
est incentives to development of the K theory.

The fundamental solution of this problem is
known to be a Gaussian function, i.e., it has the
form

1 bx?
= atn o (‘%) (8.50)

Falfe]

Notice that the factor x* implies a symmetrical
cloud and that the factor t™! in the exponent
satisfies condition (2) of Eq. 3.48. By partial
differentiation of Eq. 3.50, we can easily show
that it satisfies Eq. 3.47, and, making use of
the continuity condition, Eq. 3.49, we find that
a=(4Km)*% and b= (4K)™'. Since condition (1)
corresponds to an instantaneous point source
at t=0, the solution to Eq. 3.45 for an in-
stantaneous point source of q with strength Q is

- ok o (~2m7)
Q @mkos P Tkt (3.51)

This solution would apply to an atmosphere in
which u = constant, v = w = 0, and for which the
coordinates are thought of as moving with the
mean wind, U.

Equation 3.51 may be extended to three
dimensions and generalized to the case {(non-
isotropic diffusion) where K, =K, =K, The
resulting solutions to Eq. 3.46 are, for K,=
K,=K,=Kand x* + y2 + 2% = r%,

_ B .
q(g’t) = (47Kt) * exp (‘4r_1<t) (3.52)

and, for the nonisotropic case,

E(}’}é’_zyt) = @nt)* (KKK,

1 xZ y2 ZZ
X exp [—4t (E; +fy+fz (3.53)

These are the fundamental building blocks of
Fickian diffusion theory. Integration of one of
these instantaneous-point-source solutions with
respect to space yields equations for instan-
taneous volume sources (bomb bursts, for ex-
ample), Integration of the instantaneous-point-
source equation with respect to time gives the
continuous-point-source solutions. These may,
in turn, be integrated with respect to, say, the
y-axis to give the crosswind infinite-line-
source equation, or they may be integrated with
respect to the horizontal plane, and so on.
Probably because of the essentially tractable
nature of the mathematics involved, almost
every laborer in the vineyard of atmospheric
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diffusion theory has worked out a solution or
two for the Fickian case. As a result, this
branch of the subject is now fairly complete.

3-2.1.2 The K Theory. The assumption of con-
stant eddy diffusivity, although it may be of
considerable use in the free atmosphere, can
hardly apply to the planetary boundary layer,
which, as we have seen, is characterized by
pronounced shear of the mean wind and large
variations in vertical temperature gradients
due to heat flux. The K theory of diffusion has
addressed itself to these problems.

Equation 3.46 may be simplified by assuming
the steady state, i.e., 8q/8t =0, If we take an
infinite crosswind line source, for which, at
ground level,

d (i 87\ _
o (Ky W) =0 (3.54)
(recalling that w = ¥ = 0 if the mean wind blows
along the x-axis) and assume, as is reason-
able, that 8(K.3q/8x)/0x « U 8§/9x, i.e., the x-
transport by the mean flow greatly outweighs
the eddy flux in that direction, then we can re-
duce Eq. 3.46 to

(3.55)

This equation, together with the boundary con-
litions

1)g—0asz—+w

(2)gq—0asx—0forallz>0butq— * as
x—>0,z—’0suchthatlina f:ﬁddz=Q
X

(8)K,9q/6z—0asz—O0for allx>0 (3.56)
the latter implying zero flux at the ground, has
been used as the basis for many investigations.

The effect of shear of the mean wind was
taken into account by Roberts, who solved
Egs. 3.55 'and 3.56 together with a power-law
form of K,; the solution can be found in Sutton’s
(1953) book. On the basis of the assumption
that the surface layer is about 10 m deep, it
has been supposed that power-law solutions to
Eq. 3.55 would be strictly valid to a distance
of about 100 m from a ground-level source
since beyond that the diffusing cloud would be
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likely to be growing out of the surface layer.
It now appears from DeMarrais’ (1959) study
that as a practical matter such solutions may
be valid to considerably greater distances.
DeMarrais shows that wind profiles can be fit
by power functions to elevations of about 100 m,
which implies that K, can also be represented
by a power function to this-height.

Extension of the K theory to account for
surface-roughness effects was undertaken by
Calder (1949), who assumed the power-law wind
profile

(3.57)

and chose the constants r’ and a’ so as to give
the best fit to the logarithmic wind profile.
His solutions are complicated, but over level
uniformly rough ground good experimental veri-
fication is obtained to distances up to a kilome-
ter from the line source in adiabatic condi-
tions.

Varying atmospheric stability was introduced
into the problem by Deacon (1949), who gave a
solution for an infinite line source based at the
surface, using

Z

8
K(Z) =Kkv, Zy (Z_o)

ok

a(z) = v*r*<zio)

and determining 8 and o* from observed (dia-

(3.58)

. batic) wind profiles. A solution for an infinite

elevated crosswind line source has also been
given, as has a solution for a finite line source
oriented along the mean wind. Finite and infinite
plane sources are considered extensively in
evaporation theory; a review of much of this
material can be found in the monograph by
Anderson, Anderson, and Marciano (1950).
Lettau (1952) developed a shearing advection
correction to the K theory which takes into
account the apparent diffusion that results from
the presence of shear of the .mean wind in the
planetary boundary layer. Davies (1954), Gee
and Davies (1963), and Saffman (1962, 1963)
have also discussed the effect of shear. Some
progress has recently been made on solutions
to Eq. 3.46 for a continuous point source, both
at the ground and aloft, by Rounds (1955) and
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Smith (1957). This work has been extended in
the papers by Godson (1958) and Davidson and
Herbach (1962) to include stable conditions,
elevated point sources, and the effect of par-
ticle settling.

‘The K theory has great appeal to research
‘workers in atmospheric turbulent diffusion,
judging by the papers just cited as well as many
related ones found in the bibliographies that
the papers contain. Because the fundamental
differential equation involved, Eq. 3.46, can be
considerably simplified by eliminating one or
more of the space coordinates, K theory is
widely applied in studies of evaporation and
heat conduction from the earth’s surface, which
is considered to be an extended, horizontal,
plane source. Study of the momentum distribu-
tion in the planetary boundary layer has like-
wise suggested the use of K theories. The
abundant literature on this phase of the subject
was reviewed by Priestley (1959) [see also
Priestley, McCormick, and Pasquill (1958)].

Since, in planetary-boundary-layer heat con-
duction, the source, or driving term, is a
sinusoidal time function, the mathematical com-
plexity of some of these solutions is consider-
able. Staley (1956) described certain K theories
quite accurately as “a mathematical extrav-
aganza.” It seems that the attraction exerted
by the K theory may stem as much from the
opportunity it provides for obtaining mathemati-
cally explicit results as from its intrinsic
physical correctness. All ramifications of the
K theory depend ultimately on the validity of the
assumption of simple gradient transport, which
is the notion that the flux of a quantity is pro-
portional to the gradient of this quantity.
Priestley (1959) points out that there is no
precise physical basis for the use of this as-
sumption as the foundation for a description of
turbulent diffusion in the atmosphere, and con-
sequently the validity of the K theory “is nor-
mally judged from the degree of success
achieved in... predicting particular diffusion
phenomena.” Calder (1965) studied the appli-
cability of the diffusion equation to the atmo-
spheric case and concluded that the standard

- K-theory form, Eq..3.46, cannot be generally

valid. Russian workers, e.g., Monin (1959),
refer to K theory as a semiempirical theory
of diffusion. The basic nature of K theory must
be kept in mind as the chain of deductions from

the original equation grows longer and more
involved.

This being said, it must hastily be added
that K theory provides many useful, practical
results. For example, an approach to the diffi-
cult problem of the deposition of polydisperse
aerosols (Davidson and Herbach, 1962) can be
made via K theory. Barad (1951) presented a
K theory of the complicated problem of diffu-
sion of a bent-over stack plume in very stable
atmospheres. There are many other examples.
Corrsin has aptly summarized the situation by
pointing out that K theory is not useful in
principle but only in practice.

3-2.2 Statistical Theories
of Turbulent Diffusion

Today the statistical theory of fluid turbu-
lence comprises a large and important body of
literature, and its results are applied in many
areas from oceanography to cosmology. The
study of turbulence by this method actually
began, however, with the investigation of tur-
bulent diffusion by Taylor (1921), The statisti-
cal approach to the diffusion problem differs
considerably from K theory. Instead of studying
the material or momentum flux at a fixed space
point, one studies the histories of the motion of
individual fluid particles and tries to determine
from these the statistical properties necessary
to represent diffusion.

3-2.2.1 Diffusion by Discontinuous Motion. Many
of the essential characteristics of statistical
diffusion theory can be introduced by the fol-
lowing classroom experiment in diffusion by
discontinuous motion. The instructor takes a
number of pennies and distributes them to the
class as follows. He tosses one and, according
to whether it comes up heads or tails, passes
it out to the student on his right or on his left
in the middle of the first row. The student, in
turn, repeats this, passing the penny over his
right or left shoulder, and so on, until finally
the penny reaches the back row. The instructor
continues tossing more pennies and passing
them out. Of course, after a time the students
in the back row of the classroom will receive
pennies in some more or less regular pattern
with most of the pennies going to students near
the middle of the row and fewest to those near
each end. This experiment, simple and obvious

ey i R v
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as it is, nevertheless brings out a number of
important features of the diffusion problem:

1. The stochastic, or probabilistic, nature of
diffusion: this is illustrated by the processused
to distribute the pennies.

2, Continuity: the diffusion process must
satisfy a continuity condition (i.e., all the

'pennies should be returned at the end of the
experiment). -

3. Deposition: occurs if a penny is dropped.

4, Attenuation: at any step, a penny might be
removed permanently from the diffusionprocess
(for radioactive particles the analogy is radio-
active decay).

5. Effect of sampling: the actual distribution
of pennies at the back row is not a perfectly
symmetrical distribution. It could be skewed
or perhaps bi- or multimodal. Since only a
relatively small sample (just a few pennies)
was used, the observed distribution will depart
from the ideal, symmetrical pattern.

This experiment can be formalized (see
Chandrasekhar, 1943). The probability, P, that
a penny will move right or left equals Y. After
n steps, the penny can be at any of the points
-n, -n+1,.,,,-1,0,1, ..., n~1,n The num-
ber of possible paths in n steps is 2%, and P =
27" i.e., all are equally probable. Let x = mh
and t = nk; then the probability of a penny’s
reaching any given point mh, at step nk is
P(mh,nk) = 27" (number of possible paths). The
grid spacing, h and k, can be chosen as unity
and ignored. Let r equal the number of steps
right and / equal the number of steps left in a
path. Then [ =r —m (number to left = number
to right minus total lateral distance), and [ =
{n — r) (total number of steps minus number to
right), i.e., r = m =n - r, or m+ n=2r, and
r = % (m + n). The number of paths equals
(?), i.e., the number of combinations of r ele-~
ments Or n; SO -

Fa

1 n!

2 fn+m , (n—m),
; 2/ 2 :

which is Bernoulli’s distribution. For large

values of n, this distribution approaches the

normal distribution, normal error curve, or
Gaussian distribution:

(3.59)
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% 2
P(m,n) = (7r2_n> exp (-—-rzin) -(3.60)
If Eq. 3.60 is plotted for successive values of
n, the familiar bell-shaped curves of the
normal error law result. It is of interest that
the coin-tossing, or Monte Carlo, method was
originally developed by von Neuman and Ulam
in connection with complex problems arising in
the calculation of diffusion of neutrons through
absorbing and shielding media.

The simple discrete-step stochastic diffusion
model (sometimes called “the drunkard’s walk”)
implied by the above discussion is far from
irrelevant to the .atmosphere. Its molecular
analog describes Brownian diffusion. On the
other hand, actual turbulent atmospheric mo-
tions tend to be rather highly self-correlated,
in marked contrast with Brownian motion. The
approximation that successive diffusion events
are uncorrelated is not a good one in the case
of atmospheric turbulence except when the
time scale of the problem is large compared
with the time scale of the diffusion process.
The consequences of a direct application of the
Brownian-motion analogy to atmospheric diffu-

-sion have been investigated by Obukhov (1959),
" Lin (1960), and Chadam (1962).

The uncorrelated kind of diffusion process
described by Eq. 3.60 corresponds closely to
Fickian diffusion; tconsequently it must be gov-
erned by a parabolic type of differential equa-
tion, such as Eq. 3.47. Physically, parabolic
differential equations characterize equalization
processes, of which the heat-conduction prob-
lem provides the classical example. Solutions
of parabolic equations have the character that
some effect is felt everywhere except at the
initial instant, t = 0, as is shown by Eq. 3.51.
The implication is that diffusion proceeds in
some sense with infinite velocity. Generaliza-
tions to more realistic discrete-step diffusion
models in which successive events are corre-
lated (drunkard’s walk with a memory) have
been discussed by Taylor (1921), Goldstein"
(1951), Davies and Diamond (1954), Davies,
Diamond, and Smith (1954), and Monin (1955).
These studies indicate that atmospheric diffu-
sion should obey the “telegrapher’s equation”
rather than a simple parabolic equation of the
heat-conduction type. Since, in the diffusion
application, the telegrapher’s equation ishyper-
bolic like the wave equation rather than para- -
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bolic, it describes diffusion that proceeds at a
finite velocity. Thus there will be a definite
limit to the distance that fluid particles can
disperse in a given amount of time in contrast
to the conclusion from Eq. 3.51 that the effect
of diffusion is felt everywhere to some extent
for all values of t >0, It cannot be denied that
finite diffusion is physically more realistic
although the practical difference, as shown in
Sec. 3-3, is probably not great.

3-2.2.2 Diffusion by Continuous Motion. Taylor
(1921) derived a fundamental diffusion theorem
that has had very great influence on all sub-
sequent work in this field, both theoretical
and practical. Taylor’s result applies to dif-
fusion in one space dimension or to the pro-
jection onto a single space axis of two- or
three-dimensional diffusion in a stationary,
homogeneous turbulent flow. A homogeneous
turbulent flow is one in which the statistical
properties are independent of position. Sta-
tionary turbulence is homogeneous in time.
Properties of the turbulence, such as thetrans-
verse (to the mean flow direction) root-mean-
square velocity, (v'z)%, would be expected to be
invariant anywhere in such a flow. Turbulence
in the upper portion of the planetary boundary
layer may approximate the homogeneous type,
but surface-layer turbulence is decidedly in-
homogeneous. The idea of turbulence homogene-
ity is a simplification introduced into the theory
to permit further progress to be made.

Taylor’s calculation involves the motion (con-
tinuous) of a fluid particle, which is assumed
to be somehow identified or tagged. On the
other hand, we might consider a dynamically
and chemically inert particle of negligible size
and mass which is being transported by the
atmosphere. The distance, y, that this particle
is carried away from an origin by turbulent
wind fluctuations, v’, during a time interval, t,
is equal to

v = fivitpat, (3.61)

(We will not introduce a separate symbolism
to distinguish the particle-attached, or La-
grangian, motion from the fixed-point Eulerian
motion since this would greatly complicate the
notation. The distinction should always be kept
clearly in mind, however.) This straightforward
process is pictured in Fig. 3.6. By the trans-
formation t = x/u, we can also visualize the

y
¥ t=x/

”Cl

- t =

Fig. 3.6—Path of a tagged particle displaced a dis-
tance y in time t by the action of random turbulence.

motion as taking place relative to a fixed
space axis extending downwind from the origin.
A physical example of this phenomenon would
be the motion of a smoke particle emitted from
a chimney in a steady mean wind.

The simplest meaningful statistical measure
of this irregular, random process that we can
compute is the mean-square diffusion that
would result from a large number of indepen-
dent repetitions, i.e., the variance, or second
moment, of the resulting distribution of par-
ticles along the y-axis. By squaring both sides
of Eq. 3.61 and taking the average over many
repetitions of the experiment (the statistical, or
ensemble, average), we are led to Taylor’s
result:

vit) =2 v ff [UR() dz at;  (3.62)

The mathematical steps are given in many
references, e.g., Pasquill (1962).

The function R(£) is called the one-point
Lagrangian velocity correlation coefficient, La-
grangian because it refers to the velocity of a
particle rather than the velocity at a fixed
space point, and coefficient because it has been
normalized, i.e., adjusted, by dividing by v’
so that R(0) = 1:

vI{t) vt + &) (3.63)

R(§) = vz

Batchelor (i949) generalized Eq. 3.62 to three
dimensions. In this form the mean-square diffu-
sion becomes a tensor, 8%, with indices ranging

from 1to 3, and y? = 6,. Computation of higher

order moments, such as y®, could be carried
out by the same straightforward process al-
though with rapidly increasing complexity.
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Since R(0) =1 and, for sufficiently small
diffusion time, R(t) = 1 because R is a correla-
tion coefficient, it follows that when t is small

YA s vR P (3.64)

When t is large, it may be supposed that the
autocorrelation function, R, must approach zero
sufficiently rapidly that

v lim [ R(ty dt; = K; (3.65)
> :

where K, is some constant. The particle must
ultimately “forget” its original motion. There
are several ways to see why this should be
true. Perhaps the most obvious is the one dis-
cussed in the following paragraphs.

Consider the Fourier cosine transform F(n)
of R:

F(n) = 4 J,” R(t) cos(2r nt)dt  (3.66)

where F(n) is called the Lagrangian eddy-

energy spectrum. The eddy-energy spectrum
expresses the distribution as a function of
frequency, n, of turbulent kinetic energy corre-
sponding to the various Fourier components of
the (in this case) one~dimensional Lagrangian
turbulent velocity field. The simpler term
“eddy” will be used from now on to denote a
Fourier component of the turbulent velocity
field characterized by a certain time or length
scale. Although it is always more convenient to
speak of an eddy of some size (or of some
time scale proportional to n~?!), it should not
be inferred that such a Fourier component
necessarily has a separate, identifiable mate-
rial existence such as we have previously
imagined is possessed by eddies. It must be
remembered that two meanings of the term
“eddy” exist and that they are often confused in
the meteorological literature. The interested
- reader should consult Corrsin (1959) for a con-
. cise discussion of the meaning of the spectrum
representation of a turbulent velocity field; a
complete discussion of atmospheric energy-
spectrum properties is contained in the books
by Pasquill (1962) and by Lumley and Panofsky
(1964).

At zero frequency (n = 0), we can see from
- Eq. 3.66 that

F(0)=4 [ R(t)dt (3.67)

Even without further discussion of the prop-
erties of the energy spectrum, it seems
clearly to be required that F(0) « K; < .
Otherwise the eddy kinetic energy would be in
some sense infinite. Consequently we may de-
rive the limit of Eq. 3.62 for large diffusion
times:

yit) = 2Kt (3.68)

where K, is a constant. o

The derivative of Eq. 3.68, i.e., Y dy?/dt,
has the dimensions of a diffusivity. It might be
argued therefore that K; plays a part similar to
that of the K of Fickian theory and that

2
%Yt_ =K, =K (3.69)

1

Nl =

where K has the original meaning assigned to
it, an eddy diffusion coefficient. Comparing
Egs. 3.69 and 3.68, the conditions for the
applicability of the K theory in the atmosphere
can be appreciated. The quantity [i R dt de-
fines a time-scale characteristic of the turbu-
lence called the Lagrangian integral time scale,
Z:

¢ = fo” R(t) dt (3.70)

This argument makes it appear reasonable that
Fickian theory, in which K is constant, should
apply when the diffusion time, t, is large com-
pared to 2.

There appears to be no basic way of evalu-
ating the precise points at which the limits of
Taylor’s diffusion theorem for small and large
times will apply in the atmosphere. If it were
possible to measure the Lagrangian autocorre-
lation function, R, with precision, the applicable
diffusion times could be determined, but this
is very difficult to do. In fact most of the re-
liable knowledge of the form of R has been
inferred, by applying Eq. 3.62 inversely, from
diffusion experiments (Panofsky, 1962; Mickel-
sen, 1955: and Baldwin and Mickelsen, 1961).

Taylor’s theorem can also be written in
terms of the eddy-energy spectrum by com-
bining Eq. 3.62 and the inverse transform of
Eq. 3.66. It then follows that the mean-square
diffusion, y?, is ,

—_ ® 2.2
yt=v' tzj; F(n) ———T—S‘(‘;S;‘t)dn (3.11)
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It can be seen from this not only that y*(t)
depends on the entire energy spectrum, F(n),
for any value of t but also that the larger t is,
the more the diffusion is dominated by the low-
frequency contributions to F(n). This follows
because the spectrum in Eq. 3.71 is weightedby
the function
sin 7nt\2
W(n;t) = (—mt ) (3.72)
which is largest for small values of nt and
rapidly approaches zero for other values. The
larger t is, the smaller n must become in
order that this weighting factor differ much
from zero. In other words, it appears that the
large eddies (Fourier components of the motion
having low frequency) dominate atmospheric
diffusion when this is calculated with reference
to a fixed source or axis. In this day and age
of high-fidelity sound equipment, there will be
general understanding of the statement that the
diffusion process acts like a filter for high-
frequency spectrum components, having the
band-pass characteristic of Eq. 3.72.

3-2.2.3 Method of Moving Averages. Hay and
Pasquill (1959) noticed that the integrand of
Eq. 3.71 is similar in form to the expression
by which a computed turbulence energy spec-
trum is corrected for the effect of averaging
the raw data over a time interval a;

F(n) (%)2 = F,(n) (3.73)

where F, (n) is the observed spectrum obtained
from a wind-velocity-fluctuation record that
has been averaged over the time interval a. The
averaging might, for example, reflect the re-
sponse characteristic of the particular ane-
mometer used or the interval between diffusion
measurements.

If the averaging interval is selected to be

equal to the time of travel, or diffusion time, t, -

it follows that

yAt) = vt [ F.(n) dn (3.74)

By definition vZ [;° F,(n) dn is just the total .

turbulence energy contained in a velocity signal
that has been subjected to a moving average
over the time t. Thus Eq. 3.74 can be written
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vit) = (v, £ (3.75)
a form fully equivalent to the autocorrelation
and spectrum forms, Eqgs. 3.62 and 3.71. The
symbol (), indicates that (one component of)
the single-point Lagrangian velocity, v/, is to
be subjected to a moving average over t prior
to computation of the variance.

3-2.2.4 Sutton’s Diffusion Model. From the lim-
iting cases for small and large diffusion times
of Taylor’s theorem, Eqgs. 3.64 and 3.68, it
appears that the limit for large diffusion time
may not be attained very rapidly since there
is room in the atmosphere, at least in the
horizontal direction, for quite large eddies to
come into play. This fact led Sutton to propose
his well-known model of averaged plume diffu-
sion. Sutton (1953) reasoned that the Lagrangian
single-particle autocorrelation function, R(¢),
must depend only on the intensity of turbulence,
v'Z, on viscosity, v, and on £. Since R(0) = 1 and
R (») = 0, he proposed on dimensional grounds
the following simple interpolation formula for
R:

R = (v +VW£)

If Eq. 3.76 is combined with Eq. 3.62 and if
terms of the order of v are ignored, it develops
that

(0<n<1) (3.76)

-2yt

(L _n)2 —myvi? (VO

yit) = (3.77)
Defining a constant CZ, called by Sutton a

virtual diffusion coefficient,

4yn - W)i'"
22 (¥
=T ne e (‘2 (3.78)
we find that
o2 _ 1 2(=4\2-n 3.79
y = E‘ Cy(ut) ( . )

Sutton further introduced the concept of macro-

. viscosity, N =v, z,, to replace the molecular

viscosity, v, for flow in the atmosphere in
which the effect of molecular viscosity can be
ignored. .

Sutton originally studied diffusion in the
lower few meters, in what we now call the
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surface layer. Since this region of the planetary
boundary layer is characterized by marked
- vertical shear of the mean wind, the question
might be raised:whether Sutton’s application of
‘Taylor’s result, which is based on the assump-
tion of turbulence homogeneity, can conceivably
be correct. Certainly the assumption of hori-
zontal turbulence homogeneity at a fixed level
is a reasonable one. Therefore it is also rea-
sonable to expect that an expression of theform
of Eq. 3.79 might apply-in the atmosphere.
~. Sutton also assumed that similar expressions
hold for x* and z%. For example,

e 4 (ﬁ )1-,. ’
C. (1 -n)(2 - n)@® \ & (3.80)
and
2= % ciaty* (3.81)

Notice that since n > 0 Sutton’s expressions for
y? and z? grow with time at a rate much more
rapid than is true for Fickian diffusion
(Eq. 3.68), In view of Eq. 3.71, such behavior
could very well be a generally desirable prop-
erty for an atmospheric diffusion model to
have in some suitably restricted range of t, as
Batchelor (1949) pointed out.

In order to introduce the effect of stability
on the wind profile, it was originally assumed
that n could be determined from the following

relation:
E: ﬂ n/(2-n)
U \z

where the subscripts refer to two different
"elevations. The justification for identifying'n as
a stability factor is that this exponent does
exhibit a marked variation with stability. On the
other hand, no satisfactory direct relation be-
tween n as defined by Eq. 3.82 and as defined
by Eq. 3.76 is apparent since Eq. 3.76 assumes
a -homogeneous turbulence field that is true for
Eq. 3.82 only if n = 0 and Eq. 3.76 involves
Lagrangian wind statistics. Equation 3.82 in-
volves the Eulerian wind field. Furthermoré,
for very large diffusion times, the autocorrela-
tion defined by Eq. 3.76 must be questioned by
the same argument- that was used in deriving
the ‘limit for large time of Taylor’s theorem.

(3.82)
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According to this argument the Lagrangian

‘integral scale of turbulence corresponding to

Eq. 3.76 is

Y y n
g]:j;” (v+v_’2t1) dty =

which by Eq. 3.67 implies infinite eddy energy
density at zero frequency, i.e., F(0)=«. This

(3.83)

is in conflict with Eq. 3.68 as well as with

observed power spectra.

Notwithstanding these purely theoretical dif-
ficulties, Sutton’s model has been widely proved
in practice and sanctioned by usage. It should
certainly be regarded as something better in
the sense of being more useful, theoretxca.lly
oriented, or physically motivated than, say, a
purely empirical mtex_'polat_ionkf_ormula. But it
should not be accorded the unequivocal status
of a law of nature; it should be used with due

‘regard for its several ad hoc features, and

verification over some restricted range of
distance and meteorological conditions should
not be taken as an open invitation to an uncriti-

‘cal, universal application. Good verifications of

diffusion predictions by Sutton’s method have
been obtained for distances of the order of
several k110meters under neutral or unstable
conditions.

Attempts have been made to extend the
apphcabxhty of Sutton’s scheme empirically to
greater distances by introducing the separate
parameters, n, and n; for each direction
(Schmidt, 1960; Leonard, 1957; and Barad and
Haugen, 1959). Barad and Haugen were able to
improve agreement considerably with data on
diffusion from a source very near the ground
while at the same time emphasizing the basi-
cally empirical nature of such extensions to
Sutton’s formulatmn

3-22.5 4 Similarity Theory of Diffusion in the Sur..
face Layer. The- statistical diffusion methods
discussed so far depend on stationary, ho-
mogeneous turbulence. The planetary boundary
layer, particularly the surface layer, however,
is characterized by marked inhomogeneity
of turbulence in the vertical direction as a re-
sult of wind shear and stability. Vertical in-
homogeneity of the surface layér is taken into
account in the K theories of Calder (1949),
Deacon (1949), Frost (1948), Rounds (1955), and
Smith (1957) by assuming some variation of
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U(z) and consequently of K(z), usually a pcwer
law. This amounts to recognizing the problem
of vertical inhomogeneity without solving it
since the coefficients of the assumed power
laws, or some related parameters of the prob-
lem, are invariably left to be determined from
suitable observations. Ellison (1959), prompted
by a remark by Batchelor (1959), applied a
dimensional method to the determination of the
diffusion downwind from a continuous point
source in a logarithmic (adiabatic) surface
layer. Batchelor (1959a) obtained the same re-
sults as Ellison (unpublished note; see also
Batchelor, 1964). Subsequently Gifford (1962)
attempted to extend the method to the diabatic
surface layer, and Cermack (1963), Calder
(1963), and Yaglom (1965) presented further
results., The remaining paragraphs in this
section outline the reasoning involved in these
studies, which are important because they
treat surface-layer diffusion without postulating
a diffusivity.

The Eulerian (spatially fixed) characteristics
of surface-layer turbulent flow are, as we have
seen in the mean-wind field, particularly sim-
ple, being completely characterized by the fric-
tion velocity, v,, and the stability length, L.
Since any characteristic surface-layer velocity
must therefore be proportional to v, times a
universal function of the dimensionless length,
¢=z/L, Kazansky and Monin (1957) and Monin
(1959) reasoned that the maximum vertical
velocity of a smoke particle in adiffusing plume
emanating from a source at ground level, w,,
must be given by

3= Wa =MV, 9(8) (3.84)

where ¢(¢) is a universal function, A’ is a uni-
versal constant, and z refers to the motion of a
smoke particle at the upper boundary of the
plume. It is reasonable to suppose that the
equation for the horizontal velocity of a smoke
particle at the upper plume boundary is dx/dt =
u; the shape of the upper boundary of the plume
can be described (recalling Eq. 3.31) by

dx _ 1 [£(8) —£E,)]
PR U R 0 (3.85)

Monin evaluated the function ¢(¢) from the
turbulent-energy-balance equation and found
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1 %
QL) = [1 - WC)] (3.86)

Using Eq. 3.86 and suitable equations for
f(z), Monin integrated Eq. 3.85 numerically to
obtain the shape of the upper boundary of the
plume from an infinite crosswind line source at
ground level as a function of stability. A result
similar to Monin’s was obtained by Kao (1960)
with, however, differences in the numerical
values involved.

The concentration distribution of a diffusing
plume is a statistical function of the Lagrangian
(particle-attached) fluid velocities. If La-
grangian statistical properties of the surface-
layer flow are assumed to obey the hypothesis
of dynamical similarity, as do the above Euler-
ian properties, then we may proceed as follows.

Let the mean position of a particle be X(t),
y(t), z(t). (If we choose the downwind direction
to coincide with X, then ¥ = 0.) Assume that

dx -

=1(z) (3.87)

i.e., that at any point the horizontal part of the
particle’s motion equals the average wind speed
(see, however, the discussion of this point by
Yaglom, 1965). Following a dimensional line of
reasoning, we can also conclude that the mean
vertical velocity of a particle, w, is given by

az z
R—W—bV* (p1 (E)

where ¢; is a universal function that has usually
been assumed to coincide with ¢ of Eq. 3.86
although this cannot be justified a priori and b
is a universal constant. As Ellison (1957)
pointed out, the role of z; in surface-layer
turbulence is restricted to that of a horizontal
translation of the mean flow, as in Eq. 3.87.
Consequently neither z nor the concentration
depend on z;.

Now apply dimensional reasoning to de-
termining the probability of a particle’s reach-
ing some distance r = (x + y? + z?)* from the
mean particle position (%,0,Z). This is the same
as inquiring what the concentration distribution,
X, would be following the-instantaneous release
of Q particles from the coordinate origin,
where x is measured from the mean particle
position and averaged over a very large num-

(3.88)
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ber of repetitions of the experiment and the
x~axis is oriented along the mean wind direc-
tion. In addition to x and Q, the relevant
variables are the displacements, x— X,y -y =
y, z — Z; the parameters characterizing the
turbulence, v, and L; and the mean time of
particle travel to point (%,0,7), t.

For the special case of the axial ground
concentration, y = z = 0. From the remaining
variables we can form the following:

_3 — -
Xz2° X—X Z v,t\ _
(——, =T '—L-) =0 (3.89)
Solving for the ratio containing x, we find

%: %, F, (——x L ll’i—t) (3.90)

To find the continuous-point-source axial
concentration, X,, we would have to integrate
Eq. 3.90 with respect to time from 0 to =,
Since all the remaining dimensionless ratios
are functions of time and nothing whatsoever is
known about F, this becomes a difficult prob-
lem. In the adiabatic case, however, L. = © and
¢ =1, and the integration can readily be per-
formed:

5 [F (——x - x,o,o) dt
'@ = A 23 (3.91)

where Q’ is the continuous-source strength.
By changing the integration variable, we find
that

At a sufficient distance downwind, the diffusing
particles will be swept past any point rapidly
compared with the time taken to reach that
point, and we may assume that x ~ X, With this
simplification it is easily shown that

o\ o o 1
Qv Fm + 1]

where, from Eqs. 3.87 and 3.88,

(3.93)
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%= [z(m Z- >] (3.94)
This is the result found by both Ellison and
Batchelor.

By evaluating Eq. 3.93, these authors showed
that in the adiabatic surface layer the downwind
concentration from a continuous point source
varies as xF, where p varies approximately in
the range —1.8 to —1.9. For a continuous, in-
finite crosswind line source, the downwind con-
centration was found to vary as x~!. These
results are quite interesting. They provide an
alternative to Sutton’s solution that leads to
essentially the same result and, in the adiabatic
surface layer, is known to be in excellent
agreement with data. It is also interesting to
note that the surface-layer diffusion proceeds
at a rate quite close to the limiting prediction
for homogeneous turbulence, Eq. 3.64, i.e., as
x 72 (since x = t).

In the diabatic case the last two of the
dimensionless ratios of Eq. 3.90 cannot be
expected to disappear so conveniently. By, in
effect, assuming that even in the diabatic case
the function F, does not depend strongly on
these two ratios, Gifford (1962) proposed that

6"1,’ = [3(z) Z2] ™! (3.95)
which is the counterpart to Eq. 3.93 for a non-
adiabatic surface layer. For a relation between
axial ground concentration and downwind dis-
tance, X, to be obtained, a relation between X
and Z must be established. This follows from
integration of Eq. 3.85 for dx/dz. Details have
been given by Gifford (1962), and the results
are in reasonably close agreement with de-
tailed experimental atmospheric-concentration

-measurements. Wind-tunnel diffusion studies

by Cermak (1963) have provided additional
verification. :

3-2.2.6 Relative Atmospheric Diffusion. Taylor’s
expression for diffusion measured from a
fixed origin or axis, Eq. 3.62, is completely
characterized by the statistics of the motion
of a single fluid particle. The statistical av-
eraging that Taylor had in mind was inde-
pendent of any single particular realization of
the experiment, that is, of any single set of
initial conditions of the turbulent flow. The
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motions of any two or more fluid particles
during a diffusion time t should be completely
independent from the point of view of Eq. 3.62,
But, if one is interested in the spreading out of
an isolated cloud of fluid particles, this re-
quirement cannot hold. Because the particles
all start out together, the motions of particles
in a cloud, puff, or cluster will at first be
strongly correlated. In fact, if it is required
that particles start out infinitely close together
(an instantaneous-point-source condition), they
will {in principle) never separate since at all
times they are acted upon by the same fluctua-
tion. Thus Richardson concluded that a spread-
ing dot is unsuitable as a model for cloud
diffusion. A second mode of diffusion, based on
the rate of spreading of a cluster of fluid
particles relative to their mutual center of
gravity, must be calculated.

Consider two dispersing fluid particles, the
simplest case of the diffusion of a cloud of n
particles (Fig. 3.7). Stationary and homogene-
ous turbulence conditions are again assumed.
One can calculate Y?, the mean-square value
of the spreading, or the relative, diffusion. The
procedure is exactly the same as for the cal-
culation of ? (Eq. 3.62), the single-particle
dispersion parameter. The distance between
the particles, Y, is given by

Y=y -y =Yo+ Jy vilt)dt,
— [$vit)dt,  (3.96)

where Y, is the initial separation between the
particles and the subscripts on y and v’ refer
to the particles. The corresponding mean-
square relative diffusion is

Y=Y+ 2v2 [§[5 Rit,—t) dt, dt,
—2 [f [Sv{{t) viltydt, dt,  (3.97)

The detailed steps are essentially the same as
those for the one-particle case. Generalization
to a cloud of particles is given by Batchelor
(1952).

Comparison of Eqgs. 3.97 and 3.62 shows that
the separation between two particles dependson
two factors in addition to the single-particle
Lagrangian time correlation, R(f). These are
the initial separation, Y;, and the relative
(two-particle) Lagrangian correlation term,
vi(t,) vi(t,). Notice that if two particles initially

y

i

Y
ry t=x/U

—vg I
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Fig. 3.7—Relative diffusion of two tagged particles
(see Eq. 3.96).

occupy the same position in the fluid thenY, = 0
and v} = vJ. As a result Y’= 0, and the particles
will never disperse relative to one another. By
Taylor’s diffusion theorem, Eq. 3.62, they will,
however, disperse on the average with respect
to a fixed axis.

From the foregoing arguments it appears that
relative diffusion, that is, the spreading out of
a cloud of fluid particles or the spreading of a
plume from its center line, is described by the
joint Lagrangian statistics of two dispersing
particles. Single-particle Lagrangian statistics,
on the other hand, describe the average spread-
ing of a plume about a fixed axis. The plume
photographs shown in Fig. 3.8 (Culkowski, 1961)
may make the distinction between relative and
average dispersion clearer. Part a, Fig. 3.8,
is an instantaneous (Y, sec) exposure of a
plume. The spreading of this plume relative
to its irregular, undulating center line is de-
scribed by Eq. 3.97, Part b, Fig. 3.8,1is a 5-min
time exposure of the same plume. The average
diffusion about the horizontal plume center
line, which is obviously oriented inthe direction
of the mean wind, is appropriately described
by Taylor’s diffusion equation (Eq. 3.62).

Qualitatively, relative diffusion should de-
pend on the action of eddies approximately as
large as a puff or, as in (a) of Fig. 3.8, as large
as the width of the instantaneous plume. We
have, on the other hand, noticed (Eq. 3.71) that
average plume diffusion rapidly becomes de-
pendent on quite large eddies. This distinction,
first made by Richardson, was reemphasized
by Yudine (1946), Brier (1950), and particularly
by Batchelor in his definitive theoretical treat~
ment (Batchelor, 1949, 1950, 1952). Richardson
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Fig. 3.8— Plume photographs. (a) Instantaneous (Y5 -sec) exposure photograph of a plume. (b) Time exposure

(5-min) of same plume. (From Culkowski, 1961.)

(1926) observed horizontal eddy diffusivities,
K, of particle clusters with widely divergent
sizes and arranged his K values according to a
length scale, /, corresponding to the size of the
clusters involved, as shown in Table 3.2. The
K values clearly increase with /, and Richard-
son proposed the empirical equation K= 0.2!

to .describe these observed values. Somewhat
unexpectedly, the spreading of puffs or clusters

appears to depend upon the scale of the diffusion
event, i.e., on the separation between repre-
sentative dispersing particles. A formal ex-
planation for Richardson’s discovery was given
by Obukhov (1941), who pointed out that the law
K « 1% follows by a dimensional argument from
the assumption that in the inertial range the
structure of eddies governing cloud or cluster
spreading is controlled by the rate of eddy-
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Table 3.2— VALUES OF HORIZONTAL EDDY
DIFFUSIVITIES AT VARIOUS SCALES*

Scale (1), cm K, cm?/sec Source of data
5x 102 1.7 x 101 Molecular diffusion
1.5 x 103 3.2 x 10° Low-level wind shear
1.4 x104 1.2 x 108 Low-level wind shear
5x 104 6 x 104 Pilot balloons, 100 to
800 m X
2 x 108 1 x 108 Manned and unmanned
balloons
5 x 108 5 x 108 _ Voleanic ash
1 x108 1 x 10t Cyclonic storms

*From Richardson, 1926.

energy transfer, € (cm?/sec®); K (cm?/sec)
must be proportional to €%1%,

The useful concept of an inertial range of
eddies, i.e., a range of eddy sizes in which the
properties of turbulence are dominated by the
transfer of energy by inertial forces and are
independent of viscous dissipation, was intro-
duced by Kolmogorov (1941) and Obukhov (1941).
Like so much of significance in atmospheric
turbulence and diffusion theory, it has itsorigin
in Richardson’s early work. Richardson stated
the basic idea in characteristically unorthodox

form, the frequently quoted (Shaw, 1942; Sutton,

1949; and Batchelor, 1950, to give but a few
examples) quatrain:

Great whirls have little whirls

That feed on their velocity;

And little whirls have lesser whirls,
And so on to viscosity.

These lines, a parody of a well-known verse
by Swift, represent in all probability the only
example of the statement of a fundamental
physical principle in doggerel. There is ample
room in the atmosphere for whirls (eddies) that
are quite large, at least in their horizontal
dimensions. Between the largest of these (pos-
sibly comparable to the scale of great cyclonic
storms) and the smallest (the very small scale
of viscous dissipation), there is a wide range of
eddy sizes available for the eddy-energy cas-
cade process described so neatly by Richard-
son’s rhyme. In a sufficiently restrictedportion
of this size range, the turbulence properties
must be independent of both the manner of
energy supply to the large-scale eddies and
the manner of eddy-energy dissipation at very
small scales by viscosity. Consequently the
turbulence properties in this range must be
determined only by the rate of eddy-energy

transfer, € (cm?/sec®). This range of small-
scale high-frequency eddies, lying in size just
above the dissipative range of eddy sizes, is
called the inertial range. The available evi-
dence on the limits of the inertial range of
eddy. sizes in the atmosphere has been sum-
marized by MacCready (1962). From his work
we can conclude that eddies ranging in size
from several times height above the surface
down to well below the resolving power of
ordinary wind-measuring equipment should be
inertial in character.

Batchelor argued that in the inertial range
the rate of relative diffusion, dY%/dt, can de-
pend only on the initial separation, Y,, on the
diffusion time, t, and on the rate of eddy-energy

transfer per unit mass, €, Furthermore, fort

greater than some value t*, the diffusion rate
will be independent of the initial separation.
Provided this also occurs within the inertial
range, purely dimensional considerations re-
sult in the following predictions concerning the
rate of relative diffusion:

=
"dlt « (€ Yo¥t t<t¥y  (3.99)

day? 2 .
‘d—t' o« et t>t ) (3.99)
tra YD e (3.100)

Integrating Egs. 3.98 and 3.99, we get
Yt —Y3(0) o« t? (t <t¥ (3.101)

YE(t) ot {t > t%) (3.102)
Not much credence was attached at first to
these predictions of relative diffusion since the
extent of the inertial range of eddy sizes was

thought to be quite small. Until very recently -

researchers have attempted to explain the dif-
fusion of puffs near the surface or the in-
stantaneous spreading of a plume by applying
Eq. 3.62. Note that Eq. 3.64 should never
predict diffusion any faster than t?, in marked
contrast to the prediction of Eq, 3.102. The
reanalysis of data on puff spreading and con-
centration from several experiments by Gifford
(1957) has confirmed the validity of the relative-
diffusion predictions in the atmosphere.
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By studying the relative accelerations rather
than the velocities of particle pairs, Lin (1960,
1960a) derived a relative diffusion law of the
same form as Eq. 3.102 without, however,
making explicit use of the inertial-range con-
cept. Lin found that

=2 (3.103)

where D is a quantity having the dimensions of
energy dissipation (¢), i.e., cm’/sec}. The
proof is quite similar to that of Taylor’s dif-
fusion theorem. Since Eq. 3.103 is not re-
stricted to the inertial range, it is presumably
valid over a greater spatial domain and may
contain the explanation for Richardson’s em-
pirical diffusion law, which can be derived
from it. Furthermore D is a Lagrangian pa-
rameter, i.e., it arises in a Lagrangian de-
scription of diffusion; whereas € is Eulerian in
nature. Consequently Lin’s result appears to be
a conceptual improvement. Smith and Hay (1961)
also studied relative diffusion by assuming a
certain form of the relative-velocity correlation
and assuming that the material distribution in
a cluster is Gaussian. They derived a particu-
larly simple relative-diffusion formula that
has been useful in several field studies (see
Chap. 4).

It is interesting that the concept of relative
diffusion has been employed by oceanographers
to explain the spreading of dye patches on the
sea surface (see the excellent summary of this
area of research by Okubo, 1962). Relative dif-
fusion has also been invoked in discussing the
spreading of sodium vapor trails in the lower
ionosphere (e.g., Coté, 1963, and Zimmerman
- and Charmpion, 1963).

3-2.3 The Problems of Averaging

- Two distinct kinds of averages have so far
been used in discussing diffusion: the time
average of the instantaneous turbulent velocity
field, on which Reynolds’ average-wind defini-
tion was based, and the statistical, or ensemble,
‘average, which was introduced in connection
with Taylor’s diffusion theory. In addition, a
distinction must be made between two distinct
systems of reference before averaging can be
performed. These are the spatially fixed, or

Eulerian, system and the particle-attached, or
Lagrangianv, system.

Eulerian coordinates can be fixed with re-
spect to a certain location, e.g., an anemome-
ter. Consequently the Eulerian fixed-point sys-
tem is the natural system for experimentalists
to use. On the other hand, the Eulerian refer-
ence frame can be thought of as attached to
and moving along with the mean wind. In this
system the mean wind components vanish, and
only the turbulent components remain. Of these,
fluctuations in either space or time or a com-
bination of both can be discussed. Most of the
statistical theory of turbulence is developed in
the Eulerian space or space-—time system.*

3-2.3.1 Taylor’s Hypothesis. Because the mean
wind speed in wind-tunnel flows is very large
compared with the root mean square of the
turbulent fluctuations, Taylor (1938) proposed
transforming from the experimentally conve-
nient Eulerian fixed-point coordinates to the
Eulerian space scheme by introducing the
transformation x = ut, where x is the distance
covered in t seconds. This transformatmn 1s
valid in -wind-tunnel work, where T > (v’ )

*A suitable designation of these various Eulerian

. frames of reference has caused meteorologists some

difficulty. For example, it has been suggested that
what we here call the ‘‘Eulerian time’’ system, in
accordance with the usage of fluid-turbulence theo-
reticians, .should be called a “pseudo- Lagranglan”
system (Pasquill, 1963) or a ‘‘pseudo-Eulerian’’ sys-
tem (Frenkiel, 1948). Adding to the confusion, what
is here termed the ‘‘Eulerian fixed-point’’ system has
commonly been designated the ‘‘ Eulerian time’’ sys-
tem in meteorological literature; Pasquill (1963), on
the other hand, proposes calling it the ‘‘quasi-
Eulerian’’ system.

Without pretending that it solves all possible prob-
lems of turbulence nomenclature, Iurge that meteo-
rologists use the system suggested in the text above
for the following reasons:

1. The terms ‘‘Eulerian’’ and ‘¢ Lagrangian’’ should
refer only to the basis of the coordinate system. If
this is particle attached, the term ‘‘Lagrangian’ is
appropriate; the term ‘‘Eulerian’’ is properly applied
to all other cases without the need for qualifying
prefixes of questionable relevance.

2. The term ‘‘fixed point’’ unambiguously char-
acterizes the commonest type of Eulerian reference
or measurement system, that in which the measuring
probe is located at a fixed point in space.

3. The term ‘‘Eulerian time’’ should mean the

- same thing to specialists in both atmospheric and

wind-tunnel turbulence; moreover, it should be in-
telligible as a special case of the term ‘‘Eulerian
space—time,’’ which is generally understood to apply
to a reference system that is at rest with respect to
the mean flow.
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the atmosphere, where u = (;'72)% and the mean
wind may vary, the applicability of this trans-
formation is not so obvious although it has been
widely employed. It is probably valid, at least
for turbulence fluctuations of comparatively
high frequency.

3-2.3.2 Eulerian-Lagrangian Averages. Before
wind-fluctuation statistics can be applied to the
diffusion problem, a method must be devised to
convert these statistics, measured at a point by
an anemometer, bivane, or other device, into the
corresponding Lagrangian values that apply to
the motion of a fluid particle. This problem,
which in principle is a purely mathematical one,
is notoriously difficult. Hay and Pasquill (1959)
suggested as a working approximation that the
Langrangian time, £, is approximately linearly
related to the time, t, of the Eulerian fixed-
point reference system, i.e.,

£=pt (3.104)

where 3 is a dimensionless Lagrangian—Euler-
ian time-scale ratio. This proposal is closely
related to the result of an earlier study by
Gifford (1955), who showed that

112§
(W)V? +1=8 (3.105)
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where ng and np are Eulerian fixed-point and
Lagrangian frequencies, respectively, referring
to the corresponding energy spectra. It appears
that by an order-of-magnitude apprommatlon of
the turbulence intensity, (v)%/4, we can ex-
pect 2= 3 =12, In fact Hay and Pasquill (1959),
on the basis of a series of eight short-range
low-level diffusion observations, computed val-
ues of 8 ranging from 1.1 to 8.5.
Values of B3 can be computed directly from
diffusion observations by introducing the scale
transformation Eq. 3.104 into Eq. 3.71,

vi(E =Wt2f

where Fg(n) is the Eulerian energy spectrum
corresponding to velocities v’(t) measured at
a fixed point. The integrand in Eq. 3.106 is
evidently equivalent to the spectrum of a fixed-
point Eulerian velocity record that has been
averaged over a time interval t/g. If the total

)[s‘“ I‘l’;“;/ B an  (3.106)

Lagrangian turbulence energy, v?, were equal

to the corresponding value for the fixed-point
Eulerian velocities, Eq. 3.106 would be equiva-
lent to

V) = (vA) ¢ (3.107)

by the same argument that led to Eq. 3.75.
For incompressible, stationary, and homogene-
ous turbulence conditions, the equality was
proved by Lumley (1957). Observations of dif-
fusion can be compared to yi(t) as calculated
from the Eulerian fixed-point wind-fluctuation
moving-average variances of Eq. 3.107, (v'z)t/a,
for various values of t/B. Since the diffusion
time, t, is known from the distance involved in
the experiments (x = Ut), this procedure de-
termines 8.

In addition to data on diffusion over a length
scale of several hundreds of meters, Hay and
Pasquill (1959) also examined diffusion data on
a scale of a thousand miles (Durst, Crossley,
and Davis, 1957) and on the very small scale of
wind-tunnel diffusion (Mickelsen, 1955). For
both these sets of data, the computed 3 values
lie in the range 1 to 10, and so it appears that
B8 “is evidently at least of the same order for
an enormous range in the scale of turbulence”
(Hay and Pasquill, 1959). Thus the practical
utility of this simple Lagrangian—Eulerian
transformation seems on the whole to be quite
well established. Further comparisons of at-
mospheric diffusion and wind-fluctuation data
indicate that a lower limit, e.g., 8 =1, should
be employed in unstable conditions and a
value approaching an upper limit of 10, in
stable conditions. Haugen (1960) has reported a -
tendency for computed S values to increase
with distance from the source in stable condi-
tions. Wippermann, Gburcik, and Klug (1962)
found B values less than unity for diffusion on
a hemispheric scale. Fortunately, as Pasquill
(1962) pointed out, moderate departures from
the average value of 8 = 4 have little practical
effect on diffusion estimates.

3-2.3.3 Finite Sample-Infinite Sample Averages. It
would seem, ideally, that samples obtained
over very long times or throughout very large
volumes might be substituted for the en-
semble averages demanded by statistical tur-
bulence theory provided the turbulence fluid
flow possesses stationary, homogeneous statis-
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tical properties. Practically, however, such
ideally long samples are not ordinarily obtained
in the atmosphere, either because of the diffi-
culty of making and analyzing extensive ob-
servations or because some change in the ex-
ternal flow situation violates the stationarity
condition. Frenkiel (1952a) discussed the latter
problem and provided an interesting example of
the marked changes that can actually occur.
The lower -layers of -the atmosphere rarely
maintain a state of turbulence that approxi-
mates a statistically stationary condition for
more than, perhaps, a few hours. Even if gross
changes in the large-scale wind field (passage
of a front, onset of a sea breeze, etc.) do not
occur, the duration of a quasi-stationary con-
dition is limited to a few hours by the marked
diurnal variation of low-level:turbulence. For
this reason it is essential to be able to form
some idea about the effect of finite sampling
periods on turbulence statistics.

The effect of finite sampling on turbulence
statistics has been studied by Ogura (1957),
Kahn (1957), Pasquill (1962), and Smith (1962)
in terms of correlations or spectra. The prin-
cipal result of these studies, given by both
Ogura and Pasquill, is the following expression
for the ensemble average diffusion over a dif-
fusion time t computed with respect to a sam-
pling period T:

— — * in
#o=vte [l

sin® 7nt
X —(ﬂTt)T dn (3.108)

As T becomes large, this equation reduces to
Eq. 3.71. Pasquill has pointed out that the term
multiplying F(n), amounts to a filtering of the
spectrum, which effectively suppresses the
contributions to diffusion from spectral fre-
quencies much higher than 1/t and lower than
.1/T (see Pasquill, 1962, Sec. 1-4 for a com-
plete discussion). The interpretation of finite
diffusion in terms of spectrum filtering
(Eq. 3.108) suggested to Jones and Pasquill
(1959) - the so-called “sigma meter,” a very
useful and practical device for estimating dif-
fusion from wind-fluctuation records (Chap. 6,
Sec. 6-4.2.2).

Some sort of assumption about the functional

form of the turbulence statistics, i.e., auto-
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correlation, spectrum, or running-mean vari-
ance, must be made before more specific theo-
retical results can be obtained. (The reader is
referred to Ogura’s study for an idea of what
can be accomplished along this line.) In such
practical applications as the analysis of diffu-.
sion experiments, the opportunity to perform
an averaging that corresponds even remotely
to the ensemble average usually does not exist.
Nevertheless the above discussion gives at
least a qualitative idea of the effect on the
mean-square diffusion, y?, of the relation be-
tween diffusion time and time of sampling so
far as departures from ideal diffusion statistics
are concerned. : .

The experimentalist, of course, wants to
know how to interpret this discussion in practi-
cal terms. There seems to be no better guide
than ordinary statistical sampling practice
combined with common sense. For example,
suppose we have a record of the transverse
wind-velocity fluctuation, v/, over a period of
time equal to T from which we wish to estimate-
the Eulerian fixed-point autocorrelation, Rg(t).
We would probably restrict t to values of about
Yoo or Y,y of T at most in order to have reason-
ably well-behaved statistics; even so our con-
fiderice in the computations of Ry for t in the
neighborhood of T/10 would be very low indeed.
Naturally we would also require that no gross
changes in the character of the turbulence had
occurred during this period T that would violate
the stationary condition. This means that the
record should not reflect the passage of frontal
systems, changes from land to sea breeze or
valley to mountain wind regimes, changes from
mechanical to convective turbulence or from
stable to unstable conditions, or any other
marked disturbance of the external forces
driving the turbulence.

Similarly, we might wish to interpret mea-
surements of the path of a single floating bal-
loon in terms of Lagrangian turbulence statis-
tics, as has recently been proposed by Angell
(1963) and by Pack (1962). For this purpose we
would probably employ segments no longer than
Yo to Y, of the total length of an observed -
balloon trajectory so that the estimated auto-
correlation, R(£), or diffusion, y?, for example,
would have reasonable statistical stability. We
would likewise make certain that none of the
occurrences that affect the external forces
driving the turbulence had taken place during
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the run. Furthermore, to combine various seg-
ments of a single trajectory statistically, we
would have to ascertain whether or not the
segments were located over similar underlying
terrain. All these factors impose very serious
and very real limitations on our ability to per-
form reproducible turbulence or diffusion ex-
periments in the lower atmosphere, particularly
at large scales, and it is essential to keep them
in mind when planning, making, or interpreting
such experiments.

3-3 ATMOSPHERIC DIFFUSION
MODELS AND APPLICATIONS

3-3.1 The Gaussian Plume Diffusion
Model

The object of all the preceding discussion
has been to arrive at useful mathematical
formulas describing atmospheric diffusion. The
main theories of atmospheric diffusion have
now been mentioned, and we have seen that the
well-known normal, or Gaussian, distribution
function provides a fundamental solution to the
Fickian diffusion equation. The Gaussian dis-
tribution has been assumed as a continuous-
source diffusion model by Sutton (1932),
Frenkiel (1953), and many other workers. Com-
bination of the Gaussian assumption with one
of the following expressions for the mean-
square particle diffusion,

y? = 2Kt (3.109)
yi= () (3.110)
F=1cgyzn 3.111
y '—2 yu ) ( . )

(and similar expressions for x* and z)) forms
the basis for most of the practical plume-
diffusion- formulas that are found in the litera-
ture on applications.

Strictly speaking, the Gaussian diffusion
model applies only in the limit of large diffusion
time and for homogeneous, stationary condi-
tions, for which, we have observed, the diffu-
sion problem may be stated in the form of the
simple Fickian differential equation. Batchelor
(1949) conjectured, however, that the Gaussian
function may provide a general description of
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average plume diffusion because of the essen-
tially random nature of this phenomenon by
analogy with the central limit theorem of
statistics. Lin and Reid (1963) pointed out that
for very small diffusion times the distribution
of particles should take the same form as the
wind -fluctuation distribution since the particle
trajectories coincide with the instantaneous
wind; in the atmosphere this approximates a
Gaussian distribution fairly closely. Moreover
recent experimental diffusion studies by Hay
and Pasquill (1957), Cramer, Record, and
Vaughan (1958), and Barad and Haugen (1959)
indicate that the Gaussian plume formula should
have a wide area of practical applicability in
the atmosphere. '

The usual way of deriving average-plume-
diffusion formulas starts with the assumption
of an instantaneous point source of material
diffusing in three dimensions. The source
strength is Q in grams or curies; the concen-
tration is x = x(x,y,z,t); %, y, and z are the
usual coordinate axes, the point (0,0,0) being a
fixed origin; and t is the time of travel of the
cloud. If 05 is the variance of the distribution
and if it is assumed that x = ut, which makes
the 0’s functions of x, then the Gaussianformula
for an instantaneous point source of material is
X(%,y,2,t) =Q(2102)™* exp (-r*/20)) (3.112)
where r? = [(x — Ut)? + y* + z%], and it is assumed,
for the moment, that o, =0, = 0, i.e., that the
diffusion is isotropic. If this may not be as-
sumed, as is clearly the case under stable
meteorological conditions or in the presence
of boundary effects, it is usually assumed that
the diffusion takes place independently in the
three coordinate directions. Then

_% —
x®,y,2) = Q@n_® exp {—[(x —u?

—r
(0,0,0,) 204
2

2
y Z
+ E;g + 20_22]} (3.113)

Equations 3.112 and 3.113 have been written
in terms of the standard deviation symbols
o, 0,, and o, to stress the following point.
According to its derivation Taylor’s diffusion
function, y?, specifically applies to the one-
dimensional problem. When it is used to de-

scribe the average diffusion of a real three-
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dimensional cloud, it correctly describes the
diffusion of the marginal projection ‘on the
y-axis of this cloud. Likewise, x° and z’ must
be regarded as applying to marginal distribu-
tions on their respective axes. Consequently
Eqs. 3.112 and 3.113 contain the implicit as-
- sumption that the distribution of the diffusing
cloud is, in the terminology of mathematical
- statistics, jointly as well as separately normal.
This is equivalent to the assumption thatcross-
product terms such as ¥z do not contribute to
diffusion. As indicated in Sec. 3-2, Batchelor
extended Taylor’s theory formally to provide a
" general theoretical expression for the diffusion
tensor, including such terms as yz; but such
terms will naturally depend on Lagrangian cor-
relations more complicated than R(%&). If we
assume joint normality, we may write the
diffusion equations with o2 = y%, and so on.
A further restriction to the applicability of
Eqs. 3.112 and 3.113 in connection with
Egs. 3.109, 3.110, and 3.111 follows from the
discussion of the phenomenon of relative diffu-
sion in Sec. 3-2. In principle these formulas
may not be conceived as describing the spread-
ing of a single puff of material or of an en-
semble of puffs relative to their centers of
mass. Application of these equations to such
puff, or cluster, spreading is valid only when
the average diffusion is calculated over an
ensemble of puff experiments relative to a
fixed axis. By Eq. 3.64 the maximum rate of
average diffusion from a fixed axis is propor-
tional to t?, but by Eq. 3.102 the average diffu-
sion about the center of mass of a puff can be
as great as t® when it occurs in the inertial
range. Consequently, in principle, quantitative
errors can result if the two phenomena are
confounded. In fact data summarized in
Fig. 4.38 show that puffs do have a somewhat
greater growth rate, particularly at shorter
distances (i.e., at smaller times), than do
plumes (Fig. 4.21).
. The method of obtaining a continuous-point-

source diffusion formula from Eq. 3.112 or
3.113 proceeds according to the principle of
superposition. The plume is regarded as re-
sulting from the addition of an infinite number
of overlapping averaged puffs, carried along the
x-axis by the mean wind, u, asin (a) of Fig. 3.9.
Each puff is in reality composed of the average
over an ensemble of puffs which have diffused
for a time t and consequently have reached the
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position (x,0,0). Mathematically this corre-
sponds to integration of Eq. 3.113 with respect
to t from 0 to «. This integration is not con-
venient because the values of 0, in general,
depend on t and hence on X because x = ut. As a
practical matter, diffusion along the x-axis is
always neglected by comparison with the gross
transport along the x-axis by the mean wind,
producing what Frenkiel (1953) has termed the
spreé.ding-disk diffusion model for a continuous
point source, (b) of Fig. 3.9. With this simplifi-

dx =u dt
Ay —~ =
_ - e X
.
(b}
A} y
- -— X
E'—P
{c)
AY
i
- - X
4\
() €.

Fig. 3.9—(a) Schematic formation of plume from
superposition of individual averaged elements.
(b) Schematic spreading-disk plume model obtained
by neglecting x-diffusion. (c) Appearance of naturally
occurring plumes, with ‘“‘real’”’ puff elements indi-
cated. (d) Fluctuating plume model.
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cation integration of the equation can readily be
carried out:

___x(x(g,z) = (2m0,0,1

X eXp [—(E‘% + 2102)] (3.114)

where o, = )% and o, = (z)*. The continuous-
source strength, Q’, is in grams or curies per
second, and the quantities oy and ¢, can now be
regarded as functions of x.

Since most isolated continuous sources are
located at or near the earth’s surface, it is
necessary to account for the presence of this
physical barrier to the flux. This has usually
been done by the technique, borrowed from
heat-conduction theory, of assuming an image
source located symmetrically, with respect to
the ground plane, to the actual source. The
result is

—1

2 2
x{exp - (—Z—z%éi]+ exp [— (—E%llzi-]} (3.115)

where h is the elevation of the source above the
ground plane., If the receptor is located at the
ground level (z = 0), then

RERNTE
Q" mo,0a Y [_(20*3+ 20t)| (8-116)

which is the form of the Gaussian plume model
most usually used.

By combining Eqs. 3.109 through 3.111 with
Eq. 3.114, we can obtain the continuous-point-
source diffusion formulas of Roberts, Frenkiel,
and Sutton. The same generalized Gaussian
plume equation, moreover, serves as a useful
interpolation formula for the interpretation of
field diffusion trials, as in Cramer’s studies
(1957, 1859). Cramer combined Eq. 3.116 with
the assumed power laws

o« xP (3.117)
and

g, « x9 (3.118)

and obtained best fits to the Prairie Grass and
Round Hill diffusion data (Chap. 4, Sec. 4-4.2.1).

Barad and Fuquay (1962) compared several
detailed plume-concentration measurements
made under very stable atmospheric conditions
with the bivariate normal distribution function.
In their study the usual implicit assumption,
discussed previously, that the distribution of
diffusion in the y- and z-directions is jointly
as well as separately normal, was not made.
Their results indicate that the plume distribu-
tion was not jointly normal in this extreme
case but that the vertical and horizontal distri-

. butions are separately normal.

3-3.2 A Fluctuating Plume Model

The spreading-disk plume model of Eq. 3.116
describes diffusion averaged over some period
of time. Practical experience indicates that
this period of time is at least several minutes
(see Fig. 3.8). The appearance of real plumes
is quite different from that predicted by this
assumed model, especially during unstable con-
ditions when the entire plume, at any instant,
meanders or fluctuates about some mean posi-
tion, as in (¢) of Fig. 3.9. Accordingly, a
fluctuating plume model has been proposed
(Gifford, 1958, 1959a) which differs from Eq.
3.114 in that the centers of the disk elements
are conceived of as distributed at random
around their mean position, (d) of Fig. 3.9.
The basic Gaussian equation for the instanta-
neous concentrations is

a", = (27Y%)™!
(y - Dy)* + (z — D,)?

2y*

In this equation D, and D, are distances to the
center of the instantaneous plume from the axis;
Dy and D, are assumed also to possess Gaussian
distributions with variances D’. As defined in
Sec. 3-2, Y* is a relative diffusion parameter,

The mean value of X/Q’, assuming 55 =D¢ =
D—f, is found to be

X exp |— (3.119)

M (%) = [2niu(Y? + DY

2
X exp[— WEDTZ)] (3.120)
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whére r = (y2 + zz)%. A similar result was ob-~
tained by Hilst (1957). Extension to the case
where 53, # _DE is straightforward. The mean
value of x/Q' has exactly the same form as
Eq. 3.114, but the diffusion has been separated
into a mean and a fluctuating part. In addition
to the mean values, more complex statistics,
in particular the variance and the distribution
of x/Q’, can be calculated (Gifford, 1959a).
Further results based on this model have been
presented in papers by Moore (1963) and
Seriven (1965).

3-3.3 Remark on Non-Gaussian Diffusion
Models

The virtues of the Gaussian distribution
function are considerable, and the temptation
to employ it exclusively is correspondingly
great. Statistically it is completely determined
by its second moment, i.e., by o, It has many
highly useful purely mathematical properties;
for instance, it possesses a self-reciprocal
Fourier transform. Moreover, as noted earlier,
it agrees reasonably well with much, although
not all, of presently available atmospheric
diffusion data. Non-Gaussian diffusion distri-
butions arise from the various K theories and
also from the statistical diffusion theories of
Goldstein, Monin, and Davies mentioned briefly
in Sec. 3-2. It is natural to ask whether these
may not be better than the Gaussian model
discussed at some length in the previous sec-
tion. For example, we might ask whether non-
Gaussian diffusion models agree better with
diffusion observations. Elliott (1960) compared
the Prairie Grass data with Calder’s non-
Gaussian K theory diffusion model and with
Sutton’s Gaussian model. His conclusion is that
although Sutton s model gives a slightly better
fit to the Prairie Grass data, the differences
are quite’ small from any practlca.l point of
view. Pasquill (1962) also showed that the re-
sultmg plume center-line concentratxon formu-~
las’ of Calder 8 model and Monin’s (1959)

hmlted diffusion ve locity model differ but

little,

On the other hand, the basic theoretical point

emphasized by Monin (1959) and others, namely,
that the speed of a real diffusion event like the
spreadmg out of a smoke plume must neces-
sanly be less than some finite value, such as
the speed of Ssound, is certainly correct in
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principle. It should be clearly understood, how-
ever, that anomalies in diffusion data, suci as
those arising from the presence of marked
wind shear (Barad and Fuquay, 1962) or the
irregular departures from smooth concentra-
tion contours noted by Elliott (1959), are not
to be explained as an effect of finite speed of
diffusion. Because Gaussian plume models have
proved to be, by and large, reasonably success-
ful in explaining observed concentration pat-
terns, it seems reasonable to continue to em-
ploy them in practice.

3-3.4 Estimation of Diffusion Coefficients

For practical use to be made of diffusion
formulas numerical values for the diffusion
coefficients o, and 0, must be determined.
Various theoretical expressions were derived
for this purpose, particularly Eqs. 3.64, 3.68,
3.75, 3.79, and 3.81. Equation 3.64, corre-
sponding to the limiting case of Taylor’s for-
mula for small diffusion times, has been used
by Frenkiel (1952, 1952a, and 1953). It un-
doubtedly gives reliable predictions for diffu-
sion times up to at least a few minutes. At the
opposite limit Eq. 3.68, corresponding to the
case of large diffusion times, has been used to
solve the problem of diffusion on scales ranging
from continental to global (Machta, 1958), Val-
ues of K appropriate to various scales were
given in Table 3.2. Equations 3.79 and 3.81,
Sutton’s model, have frequently been applied
in reactor-hazard analyses and air-pollution
studies, and there has been considerable ex-
perience with Sutton’s diffusion coefficients.
The theoretical limitations of this model have
been discussed in Sec. 3-2, and examples
of observed parameter values are noted in :
Chap. 4. :

Equatmn 3.75, the moving average variance
method, seems a promising development in that
(1) it specifies diffusion coefficients by a de- '
tailed analysis of atmospheric turbulence mea-
surements, (2) it does not involve adjustable
empirical constants, (3) it is comparatively‘
free from debatable physical assumptigns and
(4) it is not, in principle, limited to a particular
range of diffusion times. It is, however~11m1ted
as are all apphcatlons of Taylor s theorem,
Eq. 3.62, to stationary, homogeneous turbulence
conditions. The condition of homogenelty in
particular limits its effectiveness in estimating

-
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vertical diffusion from sources near the ground.
It also appears practically desirable to be able
to estimate diffusion coefficients from meteoro-
logical data more universally available than
detailed wind-fluctuation measurements or even
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just these 10% values. The 10% value is only
an estimate. It may or may not apply to smoke
plumes in general; the point has never been
studied exhaustively. Moreover, since many of
the clouds and plumes that interest us are in-

Table 3.3— RELATION OF TURBULENCE TYPES
TO WEATHER CONDITIONS

A— Extremely unstable conditions
B— Moderately unstable conditions

C—Slightly unstable conditions

D— Neutral conditions*
E—Slightly stable conditions
F— Moderately stable conditions

Nighttime conditions

Thin overcast

Surface wind Daytime insolation or =4 <y,
speed, m/sec  Strong Moderate Slight cloudinesst cloudiness
<2 A A-B B
2 A-B B C E F
4 B B-C C D E
6 C C-D D D D
>6 C D D D D

*Applicable to heavy overcast, day or night.

tThe degree of cloudiness is
the local apparent horizon which

to make diffusion estimates based on only a
general knowledge of a location. The various
series of field-diffusion experiments described
in Chap. 4 provide considerable guidance for
such estimates.

3-3.4.1 Pasquill’s Diffusion Curves. On the basis
of available data, including the Prarie Grass
experiments, and guided by theoretical ex-
pectations, Pasquill suggested in an unpub-
lished note in 1958 a practical scheme for
the estimation of diffusion which is particularly
suitable for practical applications. The sub-
stance of this note is contained in the papers
by Meade (1959, 1960) and by Pasquill (1961,
1962). The general idea can, as well, be ex-
pressed in terms of ¢, and 0,; moreover it can
be related to results derived earlier in this
chapter.

The visible edge of a diffusing cloud has

often been assumed to coincide roughly with the
lateral point at which the concentration falls
to 10% of its axial value and could, in any event,
be defined as this point, as was done by Pasquill
(1961) and Holland (1953), for example. For
smoke screens the visible smoke-plume edge
is approximated by this figure (Gifford, 1959).
Pasquill and Meade define a smoke-plume ele-
vation, H, and an angular spread, §, which are

defined as that fraction of the sky above
is covered by clouds.

visible, there appears to be no special virtue
to this definition. If, instead, we define plume
concentration distributions in terms of their
standard deviations, we find, in Pasquill’s nota-
tion, that,

H=2.14 o, (3.121)
and, for fairly small values of 6,
o= 4-23 Oy (3.122)

The numerical coefficient 2.14 is just the 10%
ordinate of the normal error curve.

Figures 3.10 and 3.11 exhibit families of
curves of o, and ¢, for various stability cate~
gories, based on the values of H and 6 given
originally by Pasquill. The manner of relating
these curves to prevailing conditions of average
wind speed and to the estimated radiation bal~
ance is set out in Table 3.3, which was also
presented in the papers by Pasquill and Meade.
An evaluation of Eq. 3.116 for various values
of stack height, employing the 0, and 0, values
of Figs. 3.10 and 8.11, has been carried out by
Hilsmeier and Gifford (1962) (these results
are reproduced in Sec. A.3 of the Appendix).
The studies by Beattie (1961), Couchman (1961),
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Fig. 3.10— Lateral diffusion, oy, vs. downwind distance from source for Pasquill’s

turbulence types.

and Bryant (1964) have also employed these
values of ¢ in plume diffusion analyses.
Sections 4-4.3 and 4-4.4 of Chap. 4 indicate
that Pasquill’s curves fit the experimental data
collected since the Prairie Grass experiments
quite well. Furthermore the experimental data
discussed in these sections demonstrate that
_ the standard deviation of the horizontal wind
direction, 0y, for a short averaging time and
for the sampling times used in these experi-
ments (10 min to 60 min) can be related em-
pirically to the measured values of plume width
or to normalized average concentration or ex-
posure from continuous.sources. On the basis
of these data, Pasquill’s stability categories

can be relabeled approximately in terms of
measured values of o, as follows:

Pasquill stability categories  og

A, extremely unstable 25.0°
B, moderately unstable 20.0°
C, slightly unstable 15.0°
D, neutral 10.,0°
E, slightly stable 5.0°
F, moderately stable 2.5°

Pasquill’s method of estimating diffusion is
well suited to field use because a simple re-
cording wind vane and anemometer erected at
a proposed site can, when used with the wind-
direction range theory (Chap. 2, Sec. 2-6.2.3),
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Fig. 3.11—Vertical diffusion, 0,, vs. downwind distance from source for Pasquill’s

turbulence types.

furnish climatologically useful estimates of
0g rapidly. Only simple manual data processing
is necessary. The wind-measuring system will,
moreover, furnish data for other climatological
wind statistics for the site, such as wind roses,
and will also serve as the necessary wind-
velocity monitoring equipment for permanent
installation when the reactor or other plant is
in operation.

3-3.42 Quantitative Use of Smoke Observations to

‘Determine Diffusion Coefficients. Visual and photo-

graphic observations of smoke plumes and
puffs have always appealed to workers in at-
mospheric diffusion as a useful research tool.
Characteristically Richardson (1920) worked

‘'with time-exposure photographs of smoke puffs

very early in the history of diffusion study.
The use of smoke as a diffusion index continues
to be widespread to this day. Quantitative in-
terpretations of smoke observations (Sutton,
1932, Holland, 1953, Kellogg, 1956, Frenkiel
and Katz, 1956, Gifford, 1957, 1959, Saissac,
1958, Inoue, 1960, and HoOgstrom, 1964) have
usually exploited Roberts’ (1923) opacity theory
in which the visible edge of the smoke plume
or puff is supposed to represent a constant
threshold density of smoke particles along the
line of sight.

The total density of smoke particles is
obtained, according to the opacity idea, by inte-
gration of the concentration-distribution equa-
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tion along a line of sight. For the generalized
Gaussian plume distribution, Eq. 3.116, assum-
ing that the plume is being viewed from a
fairly great vertical distance, this procedure
would give - ’

g ’ 2 2
f' 4y = 2 % (yY/20)
0

2170 o0

x f " exp (‘Z2
2
0 . \207

If there is a fixed threshold value of -the
integrated concentration, x, corresponding to
the visible plume edge and located a distance
y.(x) from the plume axis, then it can be shown,
using the condition for a maximum value, that

) dz  (3.123)

(0D)m = ¥2, (3.124)

where y,, is the maximum value of ye (x). Then

2 -1
(0 = yi{ln [3%76—)]} (3.125)

where e is the base of natural logarithms,
Figure 3.12 illustrates the meaning of the vari-
ous lengths used.

An equation equivalent to Eq. 3.125 for the
case of plume observations made at a great
horizontal distance, following a line of sight
integration in the y-direction, is

2 ~1
(), = 22 {m [a%ii?ﬁ) } (3.126)

Corresponding equations for smoke puffs based ‘

on Eq. 3.125 have also been given (Gifford,
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Fig.‘ 3.12—Meaning of various quantities used in
smoke-plume analysis.
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Fig. 3.13—Plot of the equation In p = ap.

1958), All these transcendental equations can
be solved for 0/ x/U) or o,(x/u) if there are
visual or photographic observations of smoke
plumes from which y,.and z,, the plume half-
width and half-height, can be determined. The
computations-are facilitated by Fig. 3.13, which
is a graphical solution of the equation ln p =
. No assumption about the analytical form of
oy or ¢, is necessary. :
A simpler procedure when, as in the smoke
studies by Sutton (1932), Kellogg (1956),
Frenkiel and Katz (1956), Holland (1953), Moses
and Clark (1956), and others, one is willing to
choose in advance a specific form for the dif-
fusion function, was suggested by Gifford (1959).
It is to combine, for example, Eq. 3.109, 3.110,
or 3.111 directly with Eq. 3.124. Systematic ex-
ploitation of this idea leads to a number of
particularly simple pairs of formulas for diffu-
sion coefficients:

_=(e\(y
=5 (3)(52)
_f(e\fzm\ _
K,=g (2—)(;) Zm (3.127)
v? =ie (X-’E)z
Xt
_ 2 o
w? =dle (i—'“) (3.128)
T ‘ !
C? = 2xfe (y_“‘ ’
XT
C? = 2xme (Zm) 3.129)
. = 2Epe (= (3.129)
T
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K, = (a Zz_m>(;_:> (3.130)

2
w? = (z_m) (3.131)

2
C! =2xn (z_m> (3.132)
X

In these equations x, is the total plume length
and X, is the distance downwind from the
source at which the maximum plume width or
height, y, or z,, occurs. The utility of these
formulas lies in the fact that many of the sig-
nificant plume dimensions that need to be
determined from visual observations or photo-
graphs appear as ratios and so do not need to
be measured absolutely but only relatively;
and certain of the remaining distances, e.g.,
X and %, in Egs. 3.129 and 3.132, appear as
nth powers (roughly as fourth roots) and con-
sequently need only to.be approximated. A pro-
cedure somewhat similar to this but involving
the K theory was used by Richardson and
Proctor (1925), and further interesting results
were derived by Inoue (1960, 1961), using an
equivalent method in connection with his simi-
larity theory of diffusion.

Examples of diffusion-coefficient determina-
tions at nuclear-reactor sites by the ratio
method, i.e., by one of Eqs. 3.127 through 3.132,
have been given by Bowne (1961), Culkowski
(1961), Gifford, Culkowski, and Hilsmeier
(1963), and Hewson, Gill, and Walke (1963).
When this method is applied to plume photo-
graphs, some form of time averaging of the
smoke-plume observations is desirable. Time-
exposure photographs of plumes through neutral
density filters were described by Culkowski
(1961), who has experimentally determined the
necessary film reciprocity factors for quite
long exposure times. Bowne (1961), Shorr
(1952), Saissac (1958), Richardson (1920), and
Inoue (1960) have also reported long-time-
exposure smoke-plurn.e photographs. Itappears,

on the basis of Culkowski’s example, that a
close approximation to the effect of time av-
eraging can be achieved by estimating the
smoothed envelope of the instantaneous photo-
graph and basing the plume measurements on
this envelope. In view of its real simplicity
and economy and the measure of agreement
with direct diffusion measurements reported
in various of the above references, the ratio
method seems a promising way to obtain plume
diffusion coefficients.

3-3.5 Equations for Calculating
Concentration and Exposure

The equations presented in the first edition
of Meteorology and Atomic Energy for dealing
with various practical diffusion problems that
arise in reactor-hazard analysis and in other
air-pollution problems were based on the widely
used diffusion model formulated by Sutton. A
list of these equations appears in the Appendix
Sec. A.4. Many of these equations were first
presented by Holland (1953). There is a need
for a corresponding list of diffusion equations
based on the simple Gaussian formula,
Eq. 3.116. In this section a number of such
equations will be considered. Most can be con-
verted to the equivalent Sutton form by means
of Egs. 3.79 and 3.81.

3-3.5.1 Characteristic Continuous-source Plume Equa-

tions. Equations for the five characteristic
continuous-source plume types described in
Chap. 2, namely, fanning, fumigation and trap-
ping, looping, coning, and lofting, can be de-

‘veloped as follows.

3-3.5.1.1 Fanning. Fanning is character-
ized by very slow vertical diffusion during
stable conditions. Concentrations can be esti-
mated from Eq. 3.116 with o values corre-
sponding to stable conditions, for which the
horizontal diffusion, ¢,, considerably exceeds
the vertical diffusion, o,. Figure 3.14illustrates
(a) fanning that commenced a very short dis-
tance from the source and (b) fanning that did
not begin for some considerable distance_from
the source.

3-3.5.1.2 Fumigation and Trapping. Hew-
son and Gill (1944) introduced the term “fumi-
gation” to describe the rapid mixing doWwnward
to the ground of material that has accumulated
aloft during a period of atmospheric stability,

P R
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Fig. 3.14—Two examples of plumes released under
very stable conditions. (a) The plume encountered a
layer of wind shear and exhibited the typical fanning
structure. (Courtesy of Brookhaven National Labora-
tory) (b) A plume released into a stable layer with
little wind shear and almost no evidence of meander-
ing motions. In the upper left-hand corner of the
photograph (about 6.0 km from the source), a sudden
breakdown of the plume into the more typical fanning
structure can be seen. (Courtesy E. W. Hewson, G. C.
Gill, and G. J. Walke)

an occurrence that is common after dawn when
the nocturnal temperature inversion is rapidly
dissipated by warming due to solar heating of
the ground. Concentrations due to the fumiga-
tion effect can be estimated by integrating
Eq. 3.115 with respect to z from 0 to « and
then considering the material in the cloud to be
distributed uniformly through a layer of height
h,. The equation for the fumigation concentra-
tion, X ;, is accordingly

2= e e (-%) (.13
Xr = @rYeun,o, P\ 20Z :

This equation can also be used to describe
the trapping condition during which the effluent
diffuses: rapidly below the base of an elevated
inversion but is prevented by the stable layer
from diffusing to greater heights. For example,
h; could be taken as the height of the base of a
persistent inversion aloft, such as the West

Coast (California) subsidence inversion. Or
h; might be the height of the top of the planetary
boundary layer or of the base of some other
distinct inversion layer, such as a frontal in-
version. Scorer (1959) says that a stable layer
approximately equal to the elevation of ridge
tops often marks the upper boundary of smoke
diffusion in valleys; h; could be identified with
this level.

In the fumigating plume shown in Fig. 3.15,
fumigation occurred within the stable air of'a
lake breeze, a situation analagous to that which
might occur during a sea breeze. Plume trap-
ping from an open burn and from a stack is
shown in- Fig. 3.16. Another instance of trap-
ping, in this case of the combined detritus from
natural and man-made processes operating
over a large area, is shown in Fig. 3.17.

By considering both the ground and the in-

_version base to be reflecting barriers, Hewson,
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Fig. 3.15— An illustration of a fumigating plume near the shore of Lake Michigan. The plume was embedded
in a very stable air flow originating over the lake during late affernoon on a summer day. As the cool stable
air moved inland, it was heated from below, and a fumigation pattern was created. (Courtesy E. W. Hewson,

G. C. Gill, and G. J. Walke)

Gill, and Bierly (1959) derived the following
formula for trapping:

X ot (B, | @hi—h
Q  7o0u xp 207 P 207

+ exp [— (:—ZhTo;l)f]} (3.134)

where h; is the height of the inversion base
and the result is expressed in terms of ¢, and
o, instead of the corresponding Sutton formula
as given by these authors. This equation is a
special case of a more general formula de-
veloped earlier by Hewson, which contains an
infinite series of exponential terms corre-
sponding to the plume reflections. .
A similar result was developed by Albracht
(Lindackers, Bresser, and Albracht, 1965),
Gifford (1961), following proposals by Meade
(1959) and Pasquill (1961), suggested that, in
the event vertical diffusion is restricted by a
strong inversion lid at some height h;, diffusion
could be computed directly from Eq. 3.116 by
assuming that the value of ¢, involved is con-
stant at distances beyond the point where o, =
h;/2.15 = h;/2. This suggested treatment of
trapping, offered purely on the basis of its
simplicity, agrees very closely with Eq. 3.133,
differing only by a small constant factor, at all
downwind distances greater than a few stack

heights. There are, as Lindackers, Bresser,
and Albracht (1965) have shown by carrying
out the calculations, differences betweén the
results of trapping calculations based on such
simple assumptions as these and the results
based on the assumption of multiple reflections
of the plume. Without experimental evidence it
is not possible to make a choice between these
alternatives now.

Two problems may be encountered in the
application of Eq. 3.133 or Eq. 3.116 to trap-
ping or fumigation calculations. First, there is
no direct indication of the minimum distance
from the stack beyond which these equations
may be applied. Judging by qualitative discus-

‘sion in the literature (for example, Bierly and

Hewson, 1962, and Pooler, 1965), there seems
to be some uncertainty about this point although
there is no obvious reason why the distance
should exceed a few stack heights. The second
problem is encountered in the attempt to specify
a value for ¢,. During the fumigation process
the plume is mixed through the increasingly un-
stable layer below the inversion. Therefore the
effective value of o, to be used in estimating
fumigation concentrations should probably be
somewhat greater than the inversion value to
account for this augmented mixing.

3-3.5.1.3 Looping. Looping is the most
spectacular of plume conditions in appearance.
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Fig. 3.16—Two illustrations of the trapping of smoke from an isolated source within the planetary
boundary layer. (Courtesy D. H. Slade and W. M. Culkowski)

Large loops of the plume are carried down to
the ground and cause momentary bursts of high
concentration, only to be replaced by effluent-
free air as corresponding loops go aloft. The
average concentration during plume looping
probably corresponds to a Pasquill type A con-
dition and can thus be estimated from Eq. 3.116.
Figure 3.18 illustrates looping. Holland (1953)
suggested that the maximum ground concentra-
tion during looping, ¥, . , could be estimated
from the usual plume equation expressed for

the axial concentration, y = 0, due to a ground-
level source, h = 0, where, however, the down-
wind distance from the source is redefined as
x’= (x? + h?)*, x being the actual distance andh,
the source height. Expressed in terms of
Eq. 3.116, Holland’s equation for the maximum
concentration during looping is

— Q'

Yo~ 7o) oG T - (3139
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Fig. 3.17 — Trapping of smoke and haze, which has originated over a broad area, beneath the West Coast
(California) subsidence inversion. (Courtesy W. M. Culkowski)

Because of the great variability of instan-
taneous concentration during looping, it is help-
ful to be able to estimate the peak to average
concentration ratio. This can be done by means
of the fluctuating plume model described in
Sec. 3-3.2. In the fluctuating plume model, the
mean-square diffusion, y?, is separated into
two portions: a part due to the instantaneous
spreading out of the plume, Y%(t), and a part
attributable to the meandering or looping,
D(t), i.e.,

yA(t) = YA(t) + D¥(t) (3.136)

It can be shown (Pasquill, 1962, and Gifford,
1960) that for large travel times D? approaches
some constant value but, according to Batchelor
(1952), Y? will increase indefinitely with time.
This follows from Eq. 3.97. From the ratio of
Eq. 3.119 to Eq. 3.120, it is possible to com-
pute the peak to average concentration ratio.
The peak concentration occurs when y = Dy and
z = D,, i.e., when the receptor is at the center
line of the instantaneous plume. The result is

Peak _P (Y
Average

+
B
2
+———==| (3.137)
2(Y* + D%
If y=z=0, i.e., on the mean plume axis (or,
equivalently, at the ground at a moderate dis-
tance downwind from the source),

b 3.2 (3.138)
Y

Since D? — constant, P/A — 1 for large travel
times.

The effect of stack height on P/A depends on
the term exp [z2/2(Y? + D?)], which involves the
total vertical plume diffusion (Y2 + D?) = 22,
This exponential can be estimated, for example,
from Eq. 3.81 or by reference to observations.
For stack heights of interest, reasonable val-
ues of vertical diffusion indicate that P/A val-
ues at the ground fairly near the stack base
may be one or two orders of magnitude greater
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than those on the mean plume axis. Various
observations of P/A as a function of distance
from the source, the relative level of source
and receptor, and the times over which the
peak and average concentrations were obtained
are discussed in Chap. 4. ’

In principle the theoretical results of
Sec. 3-3.2 on fluctuating plumes and the above
paragraphs apply equally to other diffusion
conditions and not just to looping. The looping
condition, however, makes visually evident the
separation between plume spreading and
meander.

3-3.5.1.4 Coning. Coning is the straight-
forward, relatively uncomplicated case of dif-
fusion in a neutral or slightly stable atmo-
sphere and is handled by means of Eq. 3.116,
evaluated for the Pasquill type C or D condi-
tions. Figure 3.19 shows an instantaneous
photograph and a time exposure of a coning
plume.

3-3.5.1.5 Lofting. Since aground-basedin-
version prevents material from reaching the
surface, lofting is of practical importance
largely as the possible precursor of a fumiga-
tion. A reasonable scheme for estimating con-
centrations in the lofting plume might simply
be to treat the inversion base as the level z =0
and to apply Eq. 3.116 (with h = 0 to obtain con-
centrations along the plume center line) al-

though there are no concentration observations
confirming this suggestion.

3-3.5.2 Volume-source Formulas. Because of the
possible emission of airborne radiocactive ma-
terial thrdugh leaks in a reactor-containment
structure, Eq. 3.116 should be modified for the
effect of a volume source. In a reactor-hazard
analysis, the source generally consists of some
fraction of the fission products contained in the
reactor core, and the source material is as-
sumed to be distributed uniformly throughout
the volume of the building enclosingthe reactor,
For many power reactors the enclosure is a
large pressure-tight dome designed to have, at
most, some specified leakage rate under the
postulated accident conditions. The source
strength, Q’, is defined, but the location of the
leak and the effect of the building on the source
geometry must be determined.

Reasoning that a reactor building must have
a turbulent wake in its lee, Fuquay (1960) sug-
gested treating the building effect as an initial
dilution factor, Dy,

Dj = cAll (3.139)

where A is the cross-sectional area of the
building normal to the wind. In other words,
any material escaping from the containment
building is assumed to be dispersed rapidly
into a volume equal to c times the building
cross-sectional area times the wind speed. The

i 45
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Fig. 3.19 —(a) Coning plume using an exposure of ¥ sec at the meteorological tower of the Big Rock Point
reactor site near Charlevoix, Mich. (b) The same coning plume photographed with a time exposure of 5 min.

(Courtesy W. M. Culkowski)
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factor ¢ represents an estimation of the rela-
tion of the cross-sectional area of the building
to the size of observed pressure wakes, and
its exact numerical value will have to be de-
termined by suitable experiments. Gifford
(1960) suggested that, as a reasonable estimate,
Y, = ¢ =2, The reason for choosing these par-
ticular bounds, which were actually no more
than a guess, was to provide, in the absence
of suitable experimental data, usable numbers
for concentration estimations. According to
Barry (1954), who made an interesting and use-
ful summary of the results of a number of re-
cent.experiments, studies with wind-tunnel mod-
els have suggested values of ¢ near thelower of
these limits, namely, ¢ =0.50 to 0.67. Of
course) it is not impossible that larger values
of ¢ may be found if suitable full-scale at-
mospheric experiments are performed, par-
ticularly in unstable light-wind conditions. A
comprehensive summary of relevant wind-
tunnel measurements of building dilutio~ > fects
is given in Chap. 5. A few atmospherit. sri-
ments have been reported by lIslitzer (1965)

§3-3.5

and J. E. Martin (1965). A photograph from
'Martin’s paper, Fig. 3.20, illustrates the build-
ing effect on the plume.

The building dilution factor, Dy, is combined
with the atmospheric dilution factor, D, = Q'/X,
in a way similar to Fuquay’s (1958) handling
of stack dilution,

Dtotal = DB + DA (3-140)
Combining Eqs. 3.116, 3,139, and 3.140, one cau
reasonably assume that, as suggested by David-
son (1965),

X - ax,za A 3.14
Q= ZZW e |- (g5 v g (3.141)

where Z and 3, are total diffusion factors
given by
— (2 %
Z,=(0oy +cA/m)

= (o +cA/7r)% (3.142)

Fig. 3.20 — A photograph of a smoke plume released from the top of a building during neutral conditions.
(Courtesy J. E. Martin, 1965).
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Equation 3.141 resembles the volume-source
treatment proposed by Holland (1953) in that
the volume effect is taken into account by
adding a correction to the diffusion term of a
Gaussian distribution. Holland achieved much
the same result by defining a “virtual point

source” that would produce a Gaussian plume,

or puff, having a “width” equal to that of the
actual volume source at the initial point. ,
Various other initial volume-source distri-
bution functions were compared by Gifford
(1955a) with the Gaussian initial distribution.
The conclusions from this study are that the
Gaussian initial volume leads to much simpler
diffusion expressions and that it is conserva-
tive; that is, it leads to downwind concentra-
tions slightly greater than for other volume-
source distributions that were considered,

3-3.5.3 Crosswind Integrated Concentration. The
crosswind integrated concentration, icwp from
a continuous source is obtained by integrating
Eq. 3.116 with respect to y from —« {0 «:

_ B 2‘&Ql h2
Xewt = {nfao,3 ©* (* F) (3.143)

This equation is particularly useful as an in-
terpolation formula in connection with field-
diffusion trials because it contains only one
diffusion parameter, ©,. The same eqdation
describes the concentration due to a continuous
infinite crosswind line source (source strength,
Qf), which might be realized in practice by,
for example, a heavily traveled highway. Some
discussion of the problem of a line source of
finite length has been presented by Elliott and
Barad (1964) among others, and the problem of
a crosswind line source oriented at some angle
to the mean wind direction was discussed by
Barad, Haugen, and Fuquay (1960). Equation
3.143 has also been used as an approximation
for an area source (Turner, 1964).

3-3.5.4 Long-period Average Concentration. Over a
period of time, the direction of the mean
wind shifts. The wind rose, which gives the
joint wind-speed and direction-frequency dis-
tribution, is therefore a useful indicator of the
characteristic features of the climate of a
particular place. To obtain an estimate of the
average concentration over a period that is
very long compared with that over which the
mean wind is computed, multiply the integrated

concentration formula, Eq. 3.143, by the fre-
quency with which the wind flows toward a
given sector and divide by the width of that
sector at the distance of interest:

2)‘é 0.01 f Q’

0.0(27x/n)
2
X exp (_ 2%) (3.144)

X ) = <_
ong-term av, i

where the frequency, f, is expressed in per-
cent, 2rx/n is the sector width, and Q’, ¢,, and
u are averages over the long time period. An
expression equivalent to this forms the basis
for the calculations by Meade and Pasquill
(1958) of annual SO, concentrations in the
vicinity of the Staythorpe Power Station (using
the corresponding Sutton formula) and is simi-
lar to one proposed by Culkowski (1960) (see
also Lowry, 1951)

3-3.5.5 Maximum Concentration and Its Distance from
the Continuous Elevated Source. Because 0y and o,
are not necessarily the same functions of x,
in general, it is not possible to obtain simple
explicit formulas for the maximum ground
concentration and its distance from the source,
However, in the special caseo,=o,, i.e., for
neutral or slightly unstable conditions, these
maximum values can be specified. Differenti-
ating Eq. 3.116 with respect to x and setting
the result equal to zero in the usual way gives

_ 2Q’

Xmelx. = m (3145)

when h? = 202, In the slightly more general case
characterized by o, = ao,,do,/dx = ado, /dx, i.e.,

where the vertical and horizontal cloud growths
are simply proportional, which again occurs

~ when h? = 20, the result is

= __2Q" o,
max. ~ rhleq gy,

(3.146)

Because the maximum concentration occurs

1 . s
when h = 2%0,, this formula may also be written
in the following form

2%Q’

= 3.147
Xmax. heu(oy)max . ( )

where the notation indicates that the value of
0, to be used is the one applying at the maxi-
mum concentration distance.
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Alternatively, Fig. A.4 of the Appendix, which
presents evaluations of Eq. 3.116 withthe oyand
0, values of Figs. 3.10 and 3.11, can be used.

3-3.5.6 Concentration Isopleths: Plume Width and
Height Formulas. Practical computations with
diffusion formulas often require the construction
of concentration isopleths, for example, in con-
nection with calculation of total population dos-
age (Gomberg, 1958). For this purpose it is
convenient to know the distance z, or yp where
the concentration has dropped to p% of its value
on the plume axis, For the generalized Gaussian
plume model, the following formulas are an
obvious application of Eq. 3.116:

100\*
¥, = (203 In —p—> (3.148)

and

Y%
z,= (zoﬁ In 1}‘?) (3.149)

From these, with p = 10%, itcanbe seen that
- H, as defined by Eq. 3.121, is equal to 2z, and
that a similar relation exists between y, and 6.

On the basis of plots of concentration iso-
pleths, Hilsmeier and Gifford (1962) have com-
puted areas enclosed by various concentration
values, X, for sources located at the surface.

They followed the generalized Gaussian for--

mula, Eq. 3.116, and used the diffusion-parame-
ter values of Figs. 3.10 and 3.11. The results
are shown in Fig. 4.32 of Chap. 4 together with
observed isopleth areas from the Prairie Grass
and Green Glow programs, as analyzed by
Elliott (1959) and by Elliott and Nickola (1961).

An extensive numerical computation of areas
within concentration isopleths, based on Sutton’s
diffusion model, Eq. 3.116 taken in combination
with Egs. 3.79 and 3.81, was undertaken by
Rosinski (1958). Rosinski’s computation allowed
for the effect of varying deposition rates. A
gsimilar computation using Sutton’s model was
performed by Velez (1961), who allowed for the
effects of varying source heights and radio-
active decay of mixed fission products. Nishi-
waka (1959) likewise employed Sutton’s model
to estimate concentration-isopleth areas and,
in addition, provided several useful approxima-
tions to the isopleth area based on the areas of
equivalent ellipses. His formulas, which give

§3-3.5

the area A within a concentration isopleth,
X = constant, for a surface-level source, are:

Ay m (7217—5) Cy exp [—2—;—%—/2)] »)*e? (3.150)
Ay~ g Cye % (p)+d (3.151)
A~ % Zn/zcy(ln 2)‘/1 (Y)Z-(n/Z) (3.152)
where

(3.153)

I
v= ()'(ﬁnCyC,

and the other parameters have their usual
meanings. The error of these useful approxi-
mations is =3% for A, and Ay and <6% for A,
as compared with areas calculated directly
from Sutton’s formula.

3-3.5.7 Multiple and Area Sources. Many . of the
large nuclear installations already face the
problem of emissions from several isolated
sources. If there are only a few sources, it is

‘a simple matter to compute their concentra-

tions individually and sum these to obtain their
joint effect. The arithmetic can in some cases
be simplified by taking advantage of a circum-
stance that seems first to have been pointed
out by Bosanquet and Pearson (1936). Because
of symmetry with respect to the x-axis, Gauss-
ian diffusion models possess the property that,
if the source and receptor locations are inter-
changed, the numerical value of the concentra-
tion is not affected. This means that the con-
centration at a point downwind from a number
of isolated sources can be computed by imagin-
ing all the sources to be combined and located
at the receptor point and summing the resulting
(computed) concentrations at the actual source
points after reversing the mean wind direction,
d. Culkowski (1960) has shown that this scheme
can also be applied to annual average concen-
trations from multiple sources. A plastic over-
lay, or template, of concentration isopleths
expedites the calculation.

On the other hand, sources may be sonumer-
ous that they can be considered mosteffectively .
as an area source, and the point-source plume
formula may be integrated over this area. This
procedure was followed by Lucas (1958). If
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there are a very large number of individual
sources, it may be desirable, as Turner (1964)
has done, to combine them into a smaller num-
ber of virtual area sources and then to sum
the concentrations that result from these.

3-3.5.8 Instantaneous-source Diffusion Equations. In
addition to procedures for average plume dif-
fusion, a procedure for calculating the diffusion
from sudden, explosive, or very short term re-
leases of material to the atmosphere is often
required. Although the so-called “hot-cloud”
accident, an instantaneous release of all the
nuclear and chemical energy of a reactor to the
atmosphere, is no longer considered credible
because of reactor-containment features, other
possibilities for generating sources of this kind
exist. Some examples are the short-term con-
trolled release of fission products from a con-
tained accident, explosive accidents occurring

during nuclear-fuel reprocessing, accidental

criticalities, launching-pad accidents involving
nuclear (or chemical) rockets, and nonnuclear
explosions of all kinds.

Equation 3.113 for the instantaneous puff
concentration, x, can be written

X(x:y;z) = Q 2—%7’_%(03(10;1101[)_1
. x—ut)® y bt
X exp{— [721—— + EXT voor|p (3.159)

O'yI 2

Here Eq. 3.113 has been multiplied by 2 to
account for the assumed ground reflection so
that it will be consistent with the plume equa-
tion, Eq. 3.116. For reasons discussed in
Sec. 3-2.2.6, it is to be expected that, in gen-
eral, the puff standard deviations o,; and o,; will
differ from the corresponding plume o, and
0,. Appropriate values based on recent experi-
mental data are presented in Sec. 4-10.3.

Since the processes of puff creation are
frequently associated with some degree of
violent expansion (typically an explosion or
short and rapid burning), it will usually be
necessary to consider the diffusion of a puff
that has some finite initial volume. This can be
done by combining an initial volume dilution
with the atmospheric value. In this case the
equation for the concentration at the puff center,
where x = W, y = z = 0, and V is the initial
volume, is

Xp(x’Y;z) = 2_%77_%Q (OXIUyIOzI + V)_1 (3.155)

The consequence to a receptor subjected to
the passage of an airborne cloud of radioactive
or other contaminants is frequently expressed
in terms of the integrated concentration, some-
times called the exposure, . The exposure is
the integral of the concentration over a speci-
fied time interval, '

Yo = JooTx, dT (3.156)

where T refers to the time of exposure and the
subscript s is introduced as a reminder that
sources of different types may be involved.
The average concentration over the interval T
is found by dividing ¥; by T. This concept -
would be too obvious to belabor were it not for
the following interesting fact. Consider a puff,
i.e., an instantaneous point source, as specified
by Eq. 3.154. The total exposure that would be
experienced by a receptor at a point (x,y,0)
when the puff passes by is given by

¥ = f;a X(x—ut,y,0) dt (3.157)

If the usual assumption is made that the puff
passes rapidly overhead so that o,; and 04 will
be effectively constant during the time of puff
passage (compare with Eqs. 3.113 and 3.114),
it follows that

2 2
_ —1 y h
Y =Q(mo,;0410) " exp [- (—2-2% + 2—2—%>] (3.158)

Thus the equation for the exposure is seen to
have the same mathematical form as the equa-
tion for the continuous-plume concentration,
and methods of calculation that provide the
latter also can be used to compute the former.

The crosswind integrated concentration from
an instantaneous point source may be obtained
by integrating Eq. 3.142 with respect to y from
—o to ©, The resulting equation is

_Q (x —ut)? h?
Xewr = P exp {— T +E]} (3.159)

The equation for the exposure from a cross-
wind integrated instantaneous point source fol-
lows from integration of Eq. 3.158:

Y 2
Yewr = (%) (chﬁ exp (— -2%%) (3.160)
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A diffusion equation of possible interest is
that for an instantaneous infinite crosswind line
source. Although an actual source of this type
can be conceived only by a considerable ex-
ercise of the imagination, this mode of release
is approximated by the effluent from a rapidly
traveling rocket or an airplane or by the ex-
haust from an automobile traveling along a
highway. The equations for concentration and
exposure from the instantaneous infinite cross-
wind line source are identical with Egs. 3.159
and 3.160, respectively, with the exception that
the source strength, Q (amount), must be re-
placed by the appropriate line-source value,
Q. (amount per unit length).

3-3.5.9 Nonideal Characteristics of Atmospheric Dif-
fusion. In all the previous discussion, it has
been assumed that particles or gases diffusing
in the atmosphere behave as if they were
identical with ideal fluid particles or points.
The diffusing material is, in effect, identical
in its physical properties with the assumed
fluid continuum, possessing neither extension,
inertial, nor buoyant properties of its own. For
practical purposes gases and submicron par-
ticles can be assumed to behave in this way and
can therefore be expected to obey laws of
diffusion calculated on such a basis.

On the other hand, many diffusing particles
of interest lie in a size range that does not
encourage the ideal fluid-point assumption.
Moreover there are certain removal processes,
e.g., deposition, washout, and radioactive decay,
that can significantly affect diffusion, and it is
desirable to give these processes some con-
sideration. In most cases it will not be possible
to go much farther than aqualitative description
of the significant physical processes, which are

§3-3.5

often characterized by considerable complexity
and subtlety and for which in many cases an
extended theoretical treatment is not yet
available.

A heavy diffusing particle (i.e., one that does
not follow the ideal fluid-point assumption) falls
under the action of gravity. In the absence of
turbulent mixing, the particle reaches a termi-
nal velocity given quite accurately by Stokes’
law. In the presence of turbulence, however,
this orderly settling process is markedly
changed. This conclusion follows from the read-
ily observable. fact that particles of various
kinds are present in the atmosphere in equilib-
rium amounts, having diameters such that they
wauld rapidly settle out if Stokes’ law applied.

The problem of the diffusion of heavy par-
ticles .in a turbulent fluid turns out to be very
difficult in theory. Physically, the reason is
that the path of such a particle is not a function
of any particular set of boundary or initial
conditions. Rather, the problem has to be
formulated in a way that recognizes that the
path of the particle at any instant depends
continuously on its trajectory during its prior
travel through the turbulent medium. The
integro-differential equations resulting from
this formulation are not easily simplified. In
addition to gravitational settling, the effects of
particle inertia, the inertia of the displacedair,
and the possible boundary-layer effects on the
particles come into play. It is not surprising
that there are few reliable, practically useful
results on the turbulent diffusion of heavy
particles. The reader interested in fundamental
aspects should be aware of Tchen’s (1947) for-
mulation and. Lumley’s (1957) discussion. Ap-
plied studies have been presented by F. B.
Smith (1959), Yudine (1959), and Liu (1956).






