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LIST OF SYMBOLS 

Symbols used frequently in Chaps. 3 and 4 
are listed here. (The dimensions mass, length, 
time, and temperature are abbreviated as M, 
L, T ,  and D, respectively. Equation o r  section 
numbers indicate where the symbol first ap- 
pears o r  where additional clarification may be 
found.) 
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Turbulent or eddy viscosity or "Aus- 
tausch " c o e f f i c i e n t (ML-I T-3, 
Eq. 3.7 

Refers to average concentration value 
in discussions of peak-to-average 
ratio, Eq. 3.137 

Area within a concentration or expo- 
sure  isopleth (L'), Eq. 3.150 

Sutton's virtual diffusion coefficients 
(L""), Eqs. 3.78 and 3.80 

Specific heat of air at constant pres- 
sure  (L'T-'D-'), Eq. 3.26 

Distance along y- o r  z-axis of center 
of meandering plume (L), Eq. 3.119 

Depth of laminar sublayer (L), Eq. 
3.11 

Zero-plane displacement (L), Eq. 3.16 
Distance to point of maximum ground 

concentration from an e l e v a t e d  
source (L), Sec. 4-4.1.2 

L a g r a n g i a n  eddy-energy-spectrum 
function (T), Eq. 3.66 

Coriolis parameter (TI), Eq. 3.34 
Gravitational acceleration (Lp), Eq. 

Eddy heat flux [(ML2T2)L-2T1],  Eq. 

Depth of the m i x i n g  layer (LJ, Eq. 
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3.26 

3.133 
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Height of a source above the ground 
(L), Eq. 3.115 

Intensity of turbulence in the x-, y-, 
a n d  z-directions (dimensionless), 
Eq. 4.26, Chap. 2, Sec. 2-6.2.2 

Eddy diffusivity coefficient (L'T-'), 
Eq. 3.45 

Eddy heat c o n d u c t i  v i  t y coefficient 
(L'T-'), Eq. 3.26 

Kinematic eddy-viscosity coefficient 
(L'T-'), Sec. 3-1.2.5 

Von Karman's constant 0.4 (dimen- 
sionless), Eq. 3.12 

Stability -dependent length introduced 
by Lettau, Monin, and Obukhov (L), 
Eq. 3.28 

Lagrangian integral time scale (T), 
Eq. 3.70 

A length scale (L), Table 3.2 
Frequency (T-I), Eq. 3.66 
Sutton's parameter associated with 

stability (dimensionless), Eq. 3.76 
Refers to peak-concentration value i n  

discussions of peak-to-average con- 
centration, Eq. 3.137 

Atmospheric p r e s s u r e (ML-'T"), 
Eq. 3.17 

Source strength; total amount of ma- 
terial released from a point source 
(M or  other units of q u a n t i t y ) ,  
Eq. 3.49 

Source strength; time rate of material 
emission from a continuous point 
source (MT-3, Eq. 3.91 

Source strength; total amount of ma- 
terial emitted per  'unit length from 
a line source (ML-I), Sec. 3-3.5.8 

Source strength; time rate of material 
emission per unit length from a 
continuous line source (ML-IT-'), 
Sec. 3-3.5.3 

Mean value of a conservative air 
property per  unit mass  of air, 
Eq. 3.45 
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V e 1 o c i t  y autocorrelation coefficient 

The Reynolds number (dimensionless), 

Flux form of the Richardson number 

The Richardson number (dimension- 

Temperature (D), Eq. 3.17 
Time (T); appears in various equa- 

tions; in special applications T is 
also used , Eq. 3.108 

Components of the wind in the x-, y-, 
and z-directions, r e s  p ec t i  v e  1 y 
(LT"), Eq. 3.2 

Total wind-motion v e c t o  r (LT-4, 
Eq. 3.1 

Deposition velocity (LT-l), Eq. 4.14, 
Chap. 5, Sec. 5-3.2.1 

Friction velocity (LT-'), Sec. 3-1.2.6 
Positions in a Cartesian coordinate 

system which is usually oriented 
SO that the x-axis is in thedirection 
of the mean horizontal vector wind, 
the y-axis is crosswind, and the 
z-axis is vertical (L), Eq. 3.2 

A distance b e t w e e n particles (L), 
Eq. 3.96 

Roughness length (L), Eq. 3.14 
Lagrangian -Eulerian time-scale ra- 

tio (dimensionless), Eq. 3.104 
Dry adiabatic temperature lapse rate 

and existing temperature lapse, re-  
spectively (DL-'), Eq. 3.21 

Rate of eddy energy transfer (L'T-'), 
Sec. 3-2.2.6 

Dimensionless ratio = z/L, Eq. 3.32 
Potential temperature (D), Eq. 4.19 
Lateral wind-direction angle o r  width 

of sector (expressed a s  degrees, 
radians, etc.), Eq. 3.122 

D y n a m i  c viscosity c 0 e f f i c i e n  t 
(ML-lT-'), Eq. 3.4 

Kinematic viscosity (L'T''), Eq. 3.5 
Atmospheric density (ML-7, Eq. 3.5 
Standard deviation of the distribution 

of material in a plume in the y- and 
z-directions (L), Eq. 3.113 

Standard deviation of the distribution 
of material in a puff in the x-, y-, 
and a-directions (L), Eq. 3.154 

Standard deviation of lateral wind- 
direction distribution (degrees o r  
radians), Sec. 3-3.4.1 

Standard deviation of vertical wind- 
direction distribution (degrees or  
radians), Table 4.2 

Tangential s t ress  on a unit area of 
fluid (ML-lT?, Eq. 3.4 

(dimensionless), Eq. 3.65 

Eq. 3.5 

(dimensionless), Eq. 3.27a 

less), Eq. 3.22 
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0 

- (overbar) 
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(prime) 

Tangential stress in the lowest air 
layers ( M L - ~ T ~ ,  Eq. 3.8 

Geographical latitude, vertical wind- 
direction angle o r  width of sector 
(degrees o r  radians), Sec. 3-1.3 

Concentration at a point (x,y,z) at 
time t (ML-'), Eq. 3.89 

Average concentration (ML-9, Eq. 
3.91 

C r o s s w i n d  integrated concentration 

Fumigation concentration (ML-'), Eq. 
3.133 

Maximum concentration on the ground 
from an elevated source (ML-'), 
Eq. 3.135 

Peak or  center-line concentration val- 
ues (ML-'), Eqs. 3.155 and 3.91 

Exposure (MTL-'); subscripts p and 
CWI have the same meaning as for 
concentration (also referred to as 
the concentration time integral), 
Eq. 3.156 

Angular velocity of earth's rotation 
[(radians)T-'], Sec. 3-1.3 

Space, time, or statistical average, 
Sec. 3-2.3 

Running mean average, Eq. 3.75 
Superscript referring to deviation 

from the mean, i.e., x Z +  x', 
Eq. 3.1; a l s o  used in source- 
strength notation to indicate a re-  
lease rate, Eq. 3.91 

Subscripts referring to conditions 
surrounding a parcel of air and 
within the parcel, r e s p e c t i v e l y ,  
Eq. 3.18 

Subscript r e f e r r i n  g to geostrophic 
flow 

Subscripts r e f e r r i n  g to coordinate 
axes 

(ML4), Eq. 3.143 

Other subscript notation accompanies the notation 
found in the preceding portion of this table. 

3-1 MEAN FLOW IN THE LOWER 
LAYERS OF THE ATMOSPHERE 

3-1.1 Introduction 
The  problem to b e  considered is the  d e s c r i p -  

tion, by means of mathematical -physical mod- 
els, of the role of the earth's lower a tmosphere  
in red is t r ibu t ing  and diluting the radioact ive 
gases and particles that  may b e  introduced into 
i t  as a result of various activities of the atomic 
energy industry.  Although most interest is 
centered  on the  problem of isolated,  more or  
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less continuously emitting sources at o r  near. 
the ground level, such as fixed nuclear reac- 
tors and their associated chemical processing 
plants, the p r o b  1 e m of quasi-instantaneous 
sources, such as might result, for example, 
from a nuclear rocket launch-pad accident, 
will also be considered. The special problems 
created by the radioactive nature of these vari- 
ous sources are most conveniently dealt with 
separately. Therefore the results described in 
this chapter apply equally to nonradioactive air 
contamination, such a s  that created by large 
conventional power plants and many other ac- 
tivities of an industrial society. 

The symbols most frequently used in this 
chapte‘r and in Chap. 4 are  listed and defined 
in the List of Symbols at the beginning of the 
chapter. 

The atmosphere disperses gases and par- 
ticles rapidly because it is turbulent. Turbu- 
lence is the property, easy to recognize but 
difficult to define, of irregular, chaotic motion 
possessed by almost all natural fluid flows. In 
fact, for practical purposes we can best define 
a turbulent fluid flow a s  one that has the 
ability to disperse particles embedded within 
it quite rapidly, at a rate orders of magnitude 
greater than can be accounted for by molecular 
diffusion. Most of the meteorological problems 
(as well a s  certain other technical fluid-flow 
problems, such a s  heat transfer) of the power, 
chemical, and atomic energy industries center 
themselves around the phenomenon turbulent 
diffusion. 

Osborne Reynolds (1895) suggested in 1883 
a device by which such a complex phenomenon 
as a turbulent flow could be reduced to a rela- 
tively manageable mathematical form. Reyn- 
o_lds’ idea was that the total wind-motionvector, 
V, can be thought of-as being composed of a 
constant mean-part v and a fluctuating, o r  
turbulent, part V’, such #at 

+ 

v = v + +  (3.1) 

or, considering the three orthogonal wind com- 
ponents separately, 

u = i j  +u ’  (in the x-direction) 
v = T  + v ’  (in the y-direction) 
w = i+ w’ (in the z-direction) (3.2) 

Components of the natural wind can be mea- 
sured by a sensitive anemometer. Figure 3.1 
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Fig. 3.1-Portion of anemometer record, u(t), made 
at an elevation of 35 m in the atmosphere. 

is a sample of one such measurement made at 
35 m above the ground surface. Notice that the 
fluctuating, o r  turbulent, component of the wind 
is of the same order of magnitude as the fixed, 
or  mean, part; i.e., u’ is about as large as E. 
This is characteristic 01 atmospheric turbu- 
lence and distinguishes it sharply from wind- 
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tunnel turbulence, where U is more likely to 
be IO* to io3 times u‘. 

Equation 3.1 or 3.2 tells us that to specify 
atmospheric turbulence we must first be able 
to specifv the mean state of atmospheric mo- 
tions. Some consideration of the mean state of 
the atmosphere is also necessary because the 
energy supply for atmospheric turbulence lies 
in the organized large-scale mean atmospheric 
motions. Moreover the strength of the mean 
wind is directly related to the capacity of the 
atmosphere for diluting pollutant materials in- 
jected into it. Finally, in the layers of air 
nearest the earth’s surface, extending to ele- 
vations of several kilometers, the mean wind 
pattern itself is determined primarily by tur- 
bulence arising from frictional drag at the 
air-earth interface. Thus it appears that the 
analysis of atmospheric turbulence is deeply 
involved with the mean field of motion on four 
separate counts. A discussion of the mean wind 
structure in the lower layers of the atmosphere 
is clearly required as a preliminary to the 
treatment of the diffusion problem. Although it 
is convenient to proceed as though this mean 
wind can actually be defined over some suitable 
space o r  time domain, it should be noted that 
in the atmosphere, in contrast to the wind tun- 
nel, the method of doing this is neither simple 
nor obvious. Fluctuations of the wind having a 
wide range of periods can and do occur, but 
just how to define the average value is not 
always clear. This problem is discussed at 
some length in Sec. 3-2.3. 

3-1.2 The Mean State of the Wind 
in the Lowest Layers 

3-1.2.1 Viscosity. Assuming for the moment 
a horizontal, straight, parallel, steady mean 
wind flow, fi(z), at some level z, fairly near 
the surface (just how near will be determined 
subsequently), let us t r y  to determine the 
mean wind structure. Upon .what quantities 
should i t  depend? Obviously ii must increase 
with height, e, for at least some distance above 
the earth’s’surface since just at the surface it 
must equal zero. This means that adjacent 
horizontal layers of air must be in motionrela- 
tive to one another, and so certainly ii(z) must 
be expected to depend also on the viscosity of 
the atmosphere. 

Imagine a small volume of air next to the 
surface to be symbolized by a deck of smooth 
new playing cards resting on a table (Fig. 3.2). 
If the top card is slid parallel to thedeck 
while the cards a re  held firmly in contact, the 
bottom card remains fixed, but the remainder 
of the deck is tilted forward, o r  sheared, in 
such a way as to deform the deck into a uniform 
parallelepiped. The horizontal force on the top 
card represents the horizontal (in general, 

Fig. 3.2-Illustration of shear due to a tangential 
force. 

tangential) shearing s t ress  on any small air 
volume. The resistance of the cards to vertical 
hand pressure symbolizes ordinary (normally 
directed) air pressure, and the resistance to 
horizontal slippage of cards symbolizes the 
viscosity of the air. Just as the bottom card 
sticks to the table, so the lowest air layer 
sticks to the surface of the earth. 

3-1.2.2 Shearing Stress. A tangential shearing 
force, or stress,  applied for a certain time 
to the top card p r o d u c e s a certain defor- 
mation of the deck, symbolizing a vertical 
shear of the horizontal wind [dfi(z)/dz]; the 
smaller the viscosity is the greater this effect 
will be. It is reasonable to suppose that 

dii cc (3.3) 
shearing s t ress  - 

dz viscosity 

or, using the symbols ordinarily assigned to 
these quantities and rearranging terms, 

dii r = p  - dz (3.4) 
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This is Newton’s law for molecular fluid vis- 
cosity; T is the tangential s t ress  on a unit area 
of the fluid, and p is called the dynamic vis- 
cosity coefficient because it is a measure of the 
resistance of the fluid to volume distortion re-  
sulting from the stress. 

3-1.2.3 Mechantcai Turbulence. Fluid viscosity, 
which is described in Sec. 3-1.2.1, depends on 
molecular structure; it is a bulk property of the 
fluid, which, however, is determined by in- 
ternal microscopic fluid characteristics. In fact 
it is sometimes called internal friction, and its 
detailed nature can best be elucidated by the 
arguments of kinetic theory, involving transfer 
of momentum from layer to layer of the fluid 
by individual molecules. Molecular viscosity 
accounts adequately for transfer of fluid prop- 
erties very near flow boundaries and, in gen- 
eral, in any small volume of fluid. Considering 
the situation for the flow as a whole, however, 
we have to deal in the lower atmosphere with 
a structure much more complex than the simple 
layered parallel flow we have so far conceived, 
namely, a turbulent flow. For the time being 
let us  regard this turbulence next to the surface 
as purely mechanical in origin and zs deriving 
its energy somehow from the mean flow of the 
air at greater elevations in a way that does not 
depend on the action of thermal buoyancy 
forces. 

3-1.2.4 The Reynolds Number. What is the na- 
ture of low-level turbulent atmospheric mo- 
tions? In a nonturbulent flow, such as water 
issuing at low velocity from a tap, paths of 
adjacent fluid “particles” are essentially par- 
allel, as illustrated in (a) of Fig. 3.3. (By a 
fluid particle, we have in mind a small volume 
of the fluid. Such a volume would contain a 
very large number of molecules, but the mo- 
lecular nature of the fluid does not concern us  
here. We regard the fluid as being microscopi- 
cally continuous, an assumption that permits us 
to apply the definitions and limiting processes 
of ordinary differential calculus to the fluid 
motions.) This nonturbulent flow is called lami- 
nar, the connotation being that adjacent layers 
of fluid remain distinct and identifiable (lami- 
nated) and do not intermix. Physically, the 
laminar stream of water appears smooth and 
coherent; small irregularities remain small 
or  are rapidly damped. Under these conditions 
Newton’s law for viscosity would be obeyed. If 

the velocity of the stream is increased slowly, 

the nature of flow will be observed to ‘“\hq “9;;‘ e 
no change may occur at first, but at some 

radically and suddenly. The smooth appearance 
turns to a rough, irregular one, as  shown in 
(b) of Fig. 3.3. It is obvious that adjacent 

Fig. 3.3-(a) Laminar flow of water from a labora- 
tory faucet. (b) Turbulent flow of water issuing at a 
higher speed from the same faucet as  in part (a). 
(Courtesy J. E. Westcott) 
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particle paths no longer are parallel but are 
intermingled in a highly irregular way. The 
water churns and splatters. We immediately 
recognize the new state of the fluid as tur-’ 
W e n t  and can readily grasp the importance of 
the turbulent fluid state in problems involving 
the transfer of such properties as heat and 
momentum. 

It is possible to learn more from this simple 
experiment. By repeating it with taps having 
openings of different sizes, we would find that 
the water flow issuing from a smaller opening 
stays laminar up to a higher velocity. For 
example, the very fine stream of water issuing 
from a laboratory wash bottle is nearly always 
smooth, i.e., laminar, for considerable dis- 
tances from its tip [(a) of Fig, 3.41. On the 
other hand, the flow from a fire hydrant is in- 
variably turbulent [(b) of Fig. 3.41. Now con- 
sider an experiment otherwise identical but 
performed with some thick liquid, e.g., heavy 
oil or molasses, substituted f o r  water as the 
fluid. We would find that the velocity required 
to produce turbulent flow is in each case higher 
than for water. 

We have now in a highly qualitative way 
established the facts about turbulent flows that 
were found to be significant by Reynolds, who 
made the first systematic study of the onset of 
fluid turbulence:* to change a laminar flow into 
a turbulent flow one must either increase the 
velocity, increase a characteristic reference 
length associated with the flow, or decrease the 
viscosity of the fluid. These factors can be 
combined into a dimensionless ratio known as 
the Reynolds number, Re: 

Re = (a characteristic flow length) 
x (a characteristic flow velocity) 
x (dynamic viscosity/density)-‘ (3.5) 

The denominator of this expression is called 
the kinematic viscosity, v (square centimeters 
per  second), and is related to the dynamic 
viscosity by v = p / p ,  where p is air density. 
The kinematic viscosity is a measure of how 
the intrinsic fluid stickiness, Le., the dynamic 
viscosity, affects the overall flow geometry, 
and consequently it must depend on the inertia 

*The word 66turbulence,” designating a state of 
fluid flow exceeding a certain critical threshold, was 
introduced by Lord Kelvin in 1887 according to Rouse 
and Ince (1957). 

Fig. 3.4-(a) Laminar flow of water from laboratory 
wash bottle with a small nozzle. (b) Turbulent flow of 
water from a fire hydrant. (Courtesy J. E. Westcott) 

of the fluid and hence on the density. The Reyn- 
olds number can also be thought of as the ratio 
of the inertial to the viscous forces acting on a 
small volume of fluid, 

(3.6) 
inertial force 
viscous force Re cc 

The inertial force on a unit volume of fluid is 
equal to/the product of density and acceleration; 
the viscous force equals the viscous stress per 
unit area. 

The way in’which a length characteristic of 
the flow should be specified in the atmosphere 
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is not by any means self-evident. In pipe flows, 
such a s  those Reynolds studied, the pipediame- 
te r  provides a natural reference length, as did 
the size of the opening in the example with 
which the discussion in this section began. In 
airfoil theory the wing chord is a suitable 
reference length; in wind tunnels the size of a 
wire mesh o r  grid used to induce turbulence 
likewise defines a length. With any of these 
definitions, flows characterized by Reynolds 
numbers above about 102 o r  10’ are always 
turbulent. 

What length scale applies in the atmosphere ? 
In the atmosphere there is no particularly ob- 
vious macroscopic external length scale associ- 
ated with the turbulence phenomenon. In fact it 
seems that fluctuating motions can occur over 
a very wide size range. For any reference 
length we might choose a s  a matter of ex- 
pediency (height above the ground, for example), 
we are bound to conclude that the Reynolds 
number of the atmosphere will be very large 
because typical velocities are of the order 
lo2 cm/sec and v equals about 0.15 cm2/sec. 
Consequently we find that atmospheric flows 
are ordinarily turbulent. The degree of turbu- 
lence of the atmosphere can vary over wide 
limits and depends primarily on the vertical 
temperature s t r u c t u r e ,  i.e., upon stability. 
Nevertheless the atmosphere is normally tur- 
bulent. In‘ laminar flow the rate of diffusion of 
molecules o r  particles is proportional to the 
coefficient of molecular viscosit$, or  diffusivity, 
p,. Because atmospheric flows are turbulent, 
diffusion in the atmosphere occurs at a rate 
which is rarely less than several orders of 
magnitude greater than the molecular rate and 
which may be many orders of magnitude greater 
than this value. 

3.1.2.5 Eddy Viscosity. By a n a l o g y  with the 
Newtonian law of molecular viscosity (Eq. 3.4), 
Boussinesq (1877) proposed that the effect of 
turbulent viscosity be taken into account by 
introducing an augmented viscosity, 

(3.7) 

The turbulent, or  eddy, viscosity, A, was 
termed by Schmidt (1925) an “Austausch,” o r  
exchange, coefficient. It was, of course, real- 
ized much earlier than this that the Newtonian, 

71 

‘or  molecular, viscosity, p ,  was orders of 
magnitude too small to account for theobserved 
transfer of heat or  momentum in fluids. An 
interesting historical account of the subject 
by Bateman (1956) mentions the studies by 
Dalton in 1799 and Count Rumford in 1806. 
Convection over heated ground was described 
as early as 1749 by Benjamin Franklin, accord- 
ing to Middleton (1965). The meteorologist 
Espey in 1840 also used the idea of convective 
mixing of wind currents to explain the diurnal 
variation of the wind. In line with the molecular 
analogy, it is convenient to define a kinematic 
eddy-viscosity coefficient K M  in terms of A and 
p, A = pK,; KM thus has the same dimensions 
as v but is ,  as we shall see, normally several 
orders of magnitude larger. The subscript M 
indicates that this eddy-exchange process in- 
volves transfer of momentum. 

Notice that a significant new concept, that of 
an eddy,* has just been introduced. An eddy is 
thought of a s  an irregular but somehow identifi- 
able material wind structure, perhaps similar 
to a “puff of wind” or  to a “cat’s pawl’over 
open water, having the ability to transfer a i r  
properties across the flow in a way that can 
conveniently be thought of a s  analogous to trans- 
fer by the air molecules on a much smaller 
scale. At this point we need not try to make 
this idea very much more precise; indeed to do 
so will turn out to be impossible in most re- 
spects although we shall freely discuss from 
time to time various properties of eddies. To 
prevent such looseness of argument from be- 
coming too great a mental o r  aesthetic ob- 
stacle, we need only recollect how much of 
physical theory can be rationalized by assuming 
that molecules behave like little hard balls. 

Assume then an eddy viscosity KM that con- 
trols, through the properties of turbulent eddies, 
the mean structure of the wind over the earth’s 
surface. Very near the surface, height above 
the ground must limit the vertical size of 
eddies. At greater and greater elevations, 
eddies that are larger and larger in their 

*The concept of an eddy is new, of course,only at 
this point in the present discussion. The intuitive 
idea of relating turbulent fluid motion to such an 
entity seems to be very old. Rouse and Ince (1957) 
reproduced a sketch drawn by Leonard0 da Vinci 
clearly illustrating eddies in the wake of an obstacle 
in  a water channel (he, however, attributed properties 
to these eddies that we would not today). 
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vertical dimension can be present, and so it 
is reasonable to expect that KM should depend 
upon z. Moreover K, is related to the tangential 
shearing s t ress  by Eq. 3.7, which may be 
rewritten 

(3.8) 

where the subscript zero indicates that this 
is to apply in the lowest air layers and p is 
neglected as small. 

3-1.2.6 The Logarithmic Wind Profile. I In general, 
the tangential shearing stress,  7 0 ,  will vary 
with height in the lower layers of the atmo- 
sphepe. A s  a simplification we can, however, 
limit the discussion to a layer of air just 
next to the surface through which the vertical 
variation of 7 0  is small enough that 7 0  can be 
considered constant. Then the vertical struc- 
ture of the mean wind, a, for the flow we are  
considering appears to depend on the following 
quantities, which can be chosen as fundamental 
to the flow: the kinematic air viscosity, v ;  
height above the surface, z; air density, p ;  and 
frictional stress, 70.  The quantity K, can be 
expressed in terms of these through Eq. 3.8. 

In particular, the vertical gradient of the 
mean velocity in a uniform, straight, parallel 
flow of air next to the ground, for which the 
energy of the air turbulence is purely mechani- 
cal in origin, involves relations among five 
dimensional quantities: di3/dz, v, z, p, and 7 0 .  

If ordinary principles of dimensional analysis 
are applied to this problem (see Bridgman, 
1931), the well-known ll theorem tells us  that 
two independent dimensionless ratios can be 
formed from these (namely, the number of 
quantities, 5, minus the number of fundamental 
dimensions involved, 3) and that a single un- 
known function of these two ratios may be set  
equal to zero. Of these remaining quantities, 
only 7 0  and p involve mass, and so they must 
enter any dimensionless product as the ratio 
~ ~ / p ,  which has the dimensions of velocity 
squared. Its square root is often termed the 
friction velocity and is given the special symbol 
v,. One dimensionless ratio can thus be written 
as (dU/dz)(z/v,), and the second, as zv,/v. 
Consequently the dimensional analysis provides 
the following result: 

(3.9) 

Since our object is to determine dii/dz, we can 
solve for the ratio containing it: 

dz 

Although simpler than Eq. 3.9, Eq. 3.10 never- 
theless contains a function fi about which i t  is 
not yet possible to speculate on the basis of the 
assumptions made so far ;  f i  may be asimple 
linear function, or it could equally be highly 
transcendental. This is a common impasse when 
dimensional analysis is applied to a compli- 
cated problem and can only be resolved by 
invoking some additional principle or physical 
understanding of the problem. Let us see what 
can be accomplished. 

Very close to the earth's surface the vertical 
structure of ii, the vertical velocity profile, 
must mainly be governed by molecular viscos- 
ity because close enough to the surface the 
turbulence due to eddies must become, negligi- 
ble, there being insufficient height for the 
eddies to come into play. Let us assume that 
this situation holds up to some fixed elevation, 
z = D, and attempt to estimate D. If we sub- 
stitute D into the second of the dimensionless 
ratios, which we should recognize as a form of 
Reynolds number, we see that for  a given flow 
(i.e., a constant value of v,) 

Re = Dv*/v = constant (3.11) 

Because flows for which Re 5 lo2 a re  ordinarily 
turbulent, it follows that an upper limit to D, 
the depth of the laminar sublayer of the atmo- 
sphere, will be of the order of a millimeter 
since v, is known from observations to be of 
the order of 100 cm/sec and v equals about 
10" cm2/sec. 

This means that blades of grass, grains of 
dirt, sticks, twigs, people, and so forth, all 
protrude through the laminar sublayer. In fact, 
except perhaps for flow over very smoothice 
o r  still water, we may ignore the effect on 
dii/dz of zv,/v. Then the equation for the 
gradient of the wind profile near the earth's 
surface simplifies to 

(3.12) 

which will apply to fully turbulent flow over a 
rough surface, i.e., one whose roughness ele- 
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ments protrude through the laminar sublayer. 
Such a surface is sometimes called aerody- 
namically rough; an aerodynamically smooth 
surface is, in contrast, one whose roughness 
elements a re  contained within the laminar sub- 
layer, a case that does not as a rule apply i i ~  
the atmosphere. The universal proportionality 
constant, k, is called von Karman’s constant 
and has been found by experimentation to 
equal 0.4. 

Equation 3.12 can be integrated to obtain the 
wind profile near the earth’s surface in the 
constant-stress layer: 

(3.13) - V 
k u(z) = 2 In z + constant 

The integration constant is usually defined so 
as to introduce the effect of surface roughness 
by requiring that ii = 0 when z = zo; zo is called 
the roughness length because it expressesthe 
effect of varying ground surface roughness on 
the wind profile: 

V V q z )  = 2 (In z -In zg) = 2 In (:) (3.14) k 

Written in this form, the result indicates the 
role of the integration constant, which is to 
translate the wind profile without changing its 
form. This equation is valid only for z 2 zo 
since the dimensional argument applies only 
above the laminar sublayer. 

Sometimes zo is chosen so that n(z) = 0 when 
z = 0. If this is done, the wind profile equation 
takes the form 

(3.15) 

Since, as a practical matter, interest is ordi- 
narily centered on wind at heights where z >> zo, 
the two forms are substantially equivalent. It 
is sometimes necessary to take account of the 
possibility that the actual zero-plane datum 
level used in an experiment may differ from 
the zero-plane implied by Eq. 3.14 either ar- 
bitrarily for experimental convenience o r  be- 
cause the level down to which the effect of the 
wind profile extends (e.g., over thick vegetation) 
does not coincide with the ground surface. This 
is done by formally introducing a zero-plane 
displacement, d, 

(3.16) 

Such precision is not often required in field 
work. The existence of a logarithmic wind 
profile next to the earth, such as these equa- 
tions predict, has been confirmed in numerous 
experiments for the type of flow that we have 
specified, Le., purely mechanical turbulence. 
Values of zo and v* found from such experi- 
ments appear in Table 3.1. 

Table 3.1- TYPICAL VALUES OF PARAMETERS 
GOVERNING THE LOGARITHMIC WIND PROFILE 

NEAR THE EARTH’S SURFACE* 

Type of surface 

Smooth mud flats; ice 
Smooth snow 
Smooth sea 
Level desert 
Snow surface; lawn to 1 c m  

Lawn, grass to 5 c m  
Lawn, grass to 60 c m  
Fully grown root crops 

high 

v+, m/sect 

0.001 
0.005 
0.02 
0.03 

0.1 
1- 2 
4- 9 

14 

0.16 
0.17 
0.21 
0.22 

0.27 
0.43 
0.60 
1.75 

*Based on Sutton (1953), Priest ley  (1959), and 

tFor  ii(2m) = 5 m/sec. 
Pasquill (1962). 

3-1.2.7 Ejjec: of Buoyancy. The effect on the 
wind profile of departures from purely me- 
chanical turbulence must be considered, and 
we should begin by trying to clarify what is 
meant by mechanical turbulence. Because of the 
weight of air, i.e., because of the vertical 
force exerted on any air volume by gravity, the 
pressure of the atmosphere decreases with 
elevation. This vertical pressure variation im- 
plies a certain vertical temperature structure 
governed by the atmosphere’s equation of state, 

p =  pRT (3.17) 

where p is the density, R is the gas constant for 
air, and T is the Kelvin temperature. Specifi- 
cally, the temperature of a volume of dry air 
displaced upward by a process that does not 
add or  remove sensible heat will decrease at  
the linear rate of 1°C per 100 meters, the so- 
called “dry adiabatic lapse rate.” 

The mean vertical temperature structure of 
the lower layers of the atmosphere may under 
certain circumstances happen to possess a dry 
adiabatic lapse rate; if so, a small isolated 
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volume of air, an air parcel, that is undergoing 
adiabatic vertical motion will at all times ad- 
just itself so that it will experience no buoyancy 
force tending to restore it to its original eleva- 
tion. It will always possess just the temperature 
of its environment. Mechanical turbulence in the 
atmosphere is conceived to have just this 
essential property that, no matter how irregu- 
lar the individual eddy motions of which i t  
consists may appear, there are  no net buoyancy 
forces on fluid elements, o r  eddies, due to 
departure from an average adiabatic lapse rate. 

This restriction to mechanical turbulence has 
simplified the analysis considerably up to this 
point, but in the lower atmosphere an adiabatic 
lapse rate is present only a small fraction of 
the total time. This seriously restricts the 
utility of the results obtained thus far. Figure 
2.19 of Chap. 2, illustrating the normal clear- 
day diurnal variation of temperature structure 
of the lower atmosphere, demonstrates that 
the adiabatic state can ordinarily be expected 
only just after dawn and at dusk and will last 
perhaps for a few moments. The reason is that 
the flow of heat to and from the underlying 
surface by radiation, conduction, and convection 
causes the lapse rate in the lower air layers 
to vary from day to night over wide limits. 
During the day vertically displaced volumes of 
air undergoing adiabatic expansion must be 
acted upon by positive buoyant forces, and as a 
result turbulence is enhanced. During the night 
the converse effect tends ordinarily to suppress 
turbulence sharply. Of course, when the normal 
vertical heat flux in the lower layers is re-  
stricted markedly, for instance by a thick low 
cloud layer, the adiabatic state can persist for 
longer periods of time. 

The buoyant force, F, on an air parcel is 
easily calculated, being equal to the weight of 
the displaced air volume, WA, minus the weight 
of the air parcel, Wp, i.e., 

where positive F indicates upward buoyancy, 
g is the gravitational acceleration, and V is the 
volume in question. The resulting acceleration, 
a, of the parcel, i.e., F divided by its mass, is 

(3.19) 

03-1.2 

which, from the equation of state, can be 
written (bearing in mind that pA = p,) 

(3.20) 

where TA and T, are the air and parcel tem- 
peratures, respectively, in degrees Kelvin. 
Since the air parcel is conceived of as acquiring 
buoyancy by changing temperature dry adiabati- 
cally in a diabatic (i.e., nonadiabatic) environ- 
ment, the last equation can also clearly be 
written as follows: 

(3.21) 

where y = existing (in general, diabatic) lapse 
rate in the surrounding air 

r = dry adiabatic lapse rate 
Az = height through which this process 

w = vertical velocity acquired by the air 

The adiabatic lapse rate thus emerges as a 
natural standard of vertical temperature strati- 
fication in the atmosphere. It is of fundamental 
interest In connection with problems related to 
the turbulent structure of the lower layers of 
air because vertical displacements of air par- 
cels, such as occur in turbulent flow, have the 
following character: (1) Vertical displacements 
have neutral stability, and displaced air parcels 
tend neither to fall nor to rise when 

operates 

parcel 

y =--- dT - (Tp = TA) dz 

(2) Vertical displacements are  unstable and are  
amplified by buoyancy when 

(3) Vertical displacements are  strongly damped 
when 

3-1.2.8 The Richardson Number. Previous dis- 
cussion has i n d i c a t e d  that the energy of 
purely \mechanical turbulence is associated 
with vertical wind shear, dE/dz, through the 
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agency of an eddy stress, T ~ .  In the presence of 
a diabatic lapse rate, it now appears that turbu- 
lent energy is also strongly affected by buoy- 
ancy forces. Richardson (1920) suggested that 
turbulence should occur in the atmosphere when 
the production of turbulent energy by the wind 
shear is just large enough to counterbalance 
its consumption by buoyancy forces. He pro- 
posed as a measure, o r  criterion, of the effect 
the dimensionless number Ri that has been 
given his name: 

Ri a (rate of consumption of turbulent 
energy by buoyancy forces) 
x (rate of production of turbulent 
energy by wind shear)-’ (3.22) 

There are several ways to derive the Rich- 
ardson number. Let us once again view the 
problem from the dimensional standpoint, ask- 
ing what are the relevant variables. We have 
seen that mechanical turbulence is controlled 
by the vertical shear, or  gradient, of the mean 
horizontal wind, dii/dz. From Eq. 3.19 we con- 
clude that the effect of consumption of turbulent 
energy by buoyancy will be governed by gravity, 
g, air density, p ,  and the vertical density 
gradient. This follows because Eq. 3.19 can be 
rewritten in the essentially equivalent form 

(3.23) 

where a is now to be interpreted as the re- 
storing force on a unit mass of air resulting 
from its unit vertical displacement (Az = 1) 
from an equilibrium position. From these four 
quantities, involving three fundamental dimen- 
sional units, a single dimensionless ratio can 
be formed, namely, 

This can also be written 

(3.24) 

(3.25) 

which follows from Eqs. 3.21 and 3.23 and 
shows the relation of the Richardson number 
to the departure from an adiabatic lapse rate. 

A second form of the Richardson number is 
often used. In diabatic turbulent shear flow, 
the significant phenomenon has been shown to 
be the departure of the temperature of the 
eddies from that of the surrounding air in 
which they are  conceived as embedded. It fol- 
lows that, in addition to momentum, the eddies 
act to transport heat across the flow. An ex- 
pression for this eddy heat transport, o r  flux, 
H, can be written by analogy with Eq. 3.8 for 
the momentum flux, o r  stress, 

where cp is the specific heat capacity of the 
air at constant pressure and KH is a coefficient 
of eddy heat conductivity. If Eqs. 3.8 and 3.26 
are substituted into Eq. 3.25 for Ri, we find 
that 

KM (3.27) g H  
cp  TA T~ (dii/dz) KH Ri  = 

Thus an alternate definition is the so-called 
“flux form” of the Richardson number, R,, 
where 

- R i K H =  g H  (3.27a) KM Cp TA To (dii/dZ) f -  

3-1.2.9 The Diabatic Wind Profile. The Richard- 
son number, Ri, or R f ,  has come to be used 
as a c h a  r a c t e r i s t i c turbulence parameter 
rather than a s  an absolute criterion of turbu- 
lence. That is, it is regarded as broadly indi- 
cating the nature and to some extent the in- 
tensity of the turbulence rather than specifying 
an exact criterion for turbulence to occur. As 
such, the Richardson number indicates the 
quantities upon which the velocity profile will 
depend in the diabatic case, namely, ti will 
involve z, zo, v*, and k, as before, and, in 
addition, the parameters characterizing the 
diabatic effects, g, p,  cp, H, and T,. Adirect 
dimensional attack on this problem by the 
method we have been employing will evidently 
be fruitless because of the large number of 
dimensionless ratios that can be formedfrom 
the quantities involved. An elegant simplifica- 
tion is, however, possible following the sugges- 
tion made (independently) by Lettau (1949) and 
by Monin and Obukhov (1953). 
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We a re  considering uniform, straight, paral- 
lel turbulent flow near the surface with con- 
stant stress and heat flux. We assume that this 
kind of flow will extend to some elevation 
above the surface, an elevation that has not 
yet been directly specified but will be approxi- 
mated later on. For the time being the depth of 
the layer can be regarded as that depth through 
which the assumptions of constant heat and 
momentum fluxes a r e  applicable. Within this 
region of applicability, which Lettau calls the 
surface layer, the turbulence properties, in- 
cluding the wind and temperature profiles, will 
at any point be under the control of the various 
physical parameters just enumerated. It is 
known from the form of the governing equa- 
tions of motion (Lumley and Panofsky, 1964, 
for example) that the effect of thermal buoyancy 
enters this problem through the buoyancy pa- 
rameter, g/T,. The conditions of constant 
momentum flux and heat flux likewise lead 
(Monin and Obukhov, 1953) to dependence of the 
flow on the dimensional parameters v, and 
H/c,p, respectively. From these three parame- 
ters,  which uniquely characterize the velocity 
and temperature profiles in the surface layer, 
Monin and Obukhov formed the unique length, L, 

The quantity L is a constant, characteristic 
length scale for any particular example of the 
flow; i t  is negative for unstable conditions (up- 
ward heat flux), positive for stable conditions, 
and approaches infinity as y approaches r. Of 
course L, being formed from the sameparame- 
ters as the Richardson number, is closely re- 
lated to Ri or  R,, 

as can easily be verified by substitution. It is 
more convenient to use L than Ri as a stability 
parameter characterizing the diabatic velocity 
profile because Ri must, from Eq. 3.29, vary 
with height. 

Since all quantities having the dimension of 
length associated with this problem must be 
proportional to L, the diabatic wind profile is 
by dimensional analysis found to be 

(3.30) 

Bearing in mind the boundary condition at the 
ground, U = 0 when z = zo provided zo > D, the 
depth of the laminar sublayer, we usually ex- 
press Eq. 3.30 in the equivalent form 

u(z) = -  f - - f  - :[ (L) (31 (3.31) 
- 

because the role of eo as a constant of integra- 
tion is only to shift the velocity profile without 
changing its form (Eq. 3.14). 

In the past few years, a large amount of re- 
search has gone into evaluating the form of the 
universal function f for various regimes of 
atmospheric stability. Such a function can be 
evaluated by means, for example, of a care- 
fully planned program of measurements of Ti(z), 
o r  auxiliary physical o r  mathematical assump- 
tions and principles can be invoked. As ex- 
perience, in the form of detailed observational 
and theoretical studies of the vertical transport 
of heat and momentum in the surface layer, has 
been accumulated, it has become clear that 
three physically more-or-less distinct regimes 
a re  involved in this problem: forced convection, 
free convection, and the inversion o r  stable 
regime. The forced-convection regime is char- 
acterized by the fact that buoyancy does not 
contribute appreciably to the vertical mo- 
mentum or heat diffusivities, these being com- 
pletely dominated by mechanical turbulence and 
accompanied by a nearly adiabatic lapse rate. 
In this kind of turbulence, both heat and mo- 
mentum are  transferred by the action of the 
mechanically driven eddies, and these might be 
expected to occur at approximately equal rates, 
i.e., K, “K,. 

In free convection, on the other hand, the 
vertical flux is mostly produced by buoyant 
motions. Strictly speaking, the term “free 
convection” should be reserved for the case of 
no mean wind shear, Le., the case in which 
turbulence arises solely from the action of 
buoyant eddies. In practice, the term is com- 
monly used to describe a turbulence regime 
that is characterized by the presence of a 
certain amount of forced, o r  mechanical, tur- 
bulence, Le., by some shear. As Webb (1962) 
pointed out, this kind of turbulence should 
probably be called mixed convection in recogni- 
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tion of i ts  composite nature. The term “free 
convection” will be retained in this discussion 
on the grounds that it conforms to current 
usage, but the point is well taken. The immedi- 
ate sources of the energy that drive both me- 
chanical and free convection a re  located at the 
earth’s surface, but, as Scorer (1958, pp. 140- 
141) points out, the character of the turbulent 
a i r  motions involved is necessarily quite dif- 
ferent. In forced convection the turbulent eddies 
appear to be most vigorous within the surface 
layer near the ground. These eddies feed tur- 
bulent kinetic energy both upward and down- 
ward but always in the direction of smaller 
fluctuations. The picture is probably similar to 
that advanced by Townsend (1956, p. 236) in 
describing the energy flow in a wind-tunnel 
boundary layer. On the other hand, buoyant 
elements associated with free convection char- 
acteristically grow larger as they ascend from 
the ground. 

The entire subject of the structure of the 
diabatic surface layer is under study by a 
number of investigators, and it is possible to 
give here only a brief sketch of the main re- 
sults that are available. As an asymptotic ap- 
proximation to Eq. 3.31, valid under conditions 
sufficiently near adiabatic, the well-known log 
plus linear law has been derived by several 
workers, 

(3.32) 

where 5 = z/L. This equation implies that f(5) 
in nearly adiabatic conditions is given by 

f(c) = In 5 + as (3.33) 

Although it is usually associated with the simi- 
larity theory, the log plus linear wind profile 
was also deduced independently in the surface- 
layer study by Lettau (1949). In fact, a wind 
profile of this form was suggested by Halstead 
(1943) on empirical grounds. 

Interpolation formulas for velocity profiles 
that provide a smooth transition between the 
forced-convection and the free-convection cases 
have been suggested by Kazansky and Monin 
(1958), Ellison (1957), Yamamoto (1959), Sellers 
(1962), and Businger (1959). Panofsky, Blacka- 
dar, and McVehil (1960) recently showed that 
Ellison’s diabatic profile agrees well with ob- 

servations made in unstable air. The results of 
these studies were summarized in the form of 
the so-called “KEYPS” function described in 
detail by Lumley and Panofsky (1964). The 
case of great stability remains, on the other 
hand, something of an enigma from the theoreti- 
cal standpoint. The general conclusion from the 
above studies is that the log plus linear velocity 
profile, Eq. 3.32, agrees well with observations 
in both stable and forced convection conditions 
for 151 < 0.1 if the value o! = 6.0 is used, but, 
on the side of considerable stability, this good 
agreement seems to fail. The suggestion made 
by Panofsky, Blackadar, and McVehil (1960) is 
that under very stable conditions the velocity 
profile no longer will depend simply on distance 
from the ground a s  is assumed by the simi- 
larity theory. Under very stable conditions 
there seems to be a decoupling of the direci 
linkage assumed in the similarity theory be- 
tween the structure of surface-layer turbulencc 
and the ,physical presence of the ground witl 
the result that the surface-layer flow prop- 
ert ies are  primarily determined by the naturg 
of the air flow at  still higher elevations in t h t  
planetary boundary layer. 

3-1.3 Wind Variation in the Planetary 
Boundary Layer 

Restricting consideration to steady, straight, 
and parallel flow with constant stress and in- 
troducing complications serially makes it pos- 
sible to analyze the average wind structure in 
the surface layer of the atmosphere in some 
detail and to isolate and emphasize the crucial 
phenomenon involved, i.e., that of eddy turbu- 
lence. When this has been done, the mean wind 
has been regarded a s  a given condition super- 
imposed on the flow, so to speak, from above. 
A wind-speed profile showing an increase with 
height above the surface a s  a result of a n e t  
downward transport of momentum by turbulent 
eddies was found. 

On the other hand, it is a matter of common 
experience (e.g., on airplane flights) that the 
effect of turbulence decreases with elevation 
in the lower atmosphere and is usually negligi- 
ble above several thousand feet. Moreover the 
eddy stress has been found by analysis of wind- 
fluctuation observations to decrease with height 
above the surface layer. Furthermore the mean 
wind does not increase indefinitely with height. 
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In the model adopted here, however, Wth tur- 
bulence and the mean wind as a result of the 
assumption of constant s t ress  must, according 
to Eqs. 3.8 and 3.12, increase with height. 
Consequently this model can apply only in the 
lowest part of this region, and the theoretical 
picture requires some m o d i f i c a t  i on and 
elaboration. 

The equations of motion (i.e., the form of 
Newton’s law, ZF = ma) applicable near the 
earth’s surface to a steady horizontal wind flow 
with parallel isobars, according to texts on 
dynamic meteorology, are  

(3.34) l a p  1 a 
p a x  p az 

f7- - -+- -Tz ,  = o  

where f is equal to 2 w  sin cp and is called the 
Coriolis parameter ( w  is the angular velocity 
of the earth’s rotation and cp is geographical 
latitude), p is pressure, and the subscript zx on 
the eddy stress,  7 ,  indicates that it acts to 
transport x-directed momentum in the vertical 
o r  z-direction. Stated in words, the average air 
motion is governed by the sum of three accel- 
erations: the Coriolis acceleration (or the 
apparent acceleration due to the earth’s rota- 
tion), the pressure-gradient acceleration, and 
the frictional acceleration. The sum of these is 
zero because the flow is assumed steady (un- 
accelerated). These equations a re  supposed to 
apply to a unit mass of the atmosphere, and so 
the accelerations a re  equally likely to be re- 
ferred to as forces. 

By analogy with Eq. 3.8, we might suppose 
that 

and 

(3.36) 

(3.37) 

In other words, the eddy viscosity can be gen- 
eralized by breaking it up into x- and y-com- 
ponents. The K’s will, in general, depend on 
height, z. Then Eqs. 3.34 and 3.35 become 

Since we expect the effect of turbulent friction 
to decrease with elevation, the third term in 
these equations, which represents the accelera- 
tions due to eddy turbulence, should become 
negligible at some height in the atmosphere. 
If we orient the x-axis in the direction of the 
wind at this level, 8p/ax = 0, the above system 
simplifies to the following: 

(3.40) 

where the subscript G is introduced to designate 
the level in question. The term tic is called the 
geostrophic wind, from the Greek words mean- 
ing “earth” and “turning,” and Eq. 3.40 is 
known as the geostrophic wind equation. 

Assuming, as the simplest useful approxima- 
tion, that below the geostrophic wind level the 
effect of eddy viscosity on the mean wind struc- 
ture can be expressed by letting diffusivity be 
constant and that the pressure gradient is in- 
dependent of height, the solution is 

u(z) = G c  (1 - e’az cos az) (3.41)1 

(3.42) v(z) = iiG e-a‘ sin az 

where a = (f/2K&’. This can easily be verified 
by substituting into Eqs. 3.38 and 3.39 and 
taking into account Eq. 3.40. Figure 3.5 is a 
plot of this wind distribution, which shows that 
near the ground friction causes the air to flow 
across the lines of constant pressure (isobars) 
in the direction of low pressure. This effect 
decreases with increasing height and disappears 
at t h e  geostrophic wind level zG, which can 
conve ‘ently be defined as the lowest level at 
which v = 0 and therefore the lowest level at 
which the wind is parallel to G,. This must 
occur when az = 8,  from which we can conclude 
since f M sec-‘ and KM is known to be of 
the order of lo4 cm2/sec, that the depth of the 
layer of frictional influence in the atmosphere 
is of the order of hundreds of meters. This 
layer is called the planetary boundary layer. 
Notice also that the eddy viscosity, KM, is five 

- 

Y 
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Po+ I 

Po+ 2 

Fig. 3.5-Schematic wind distribution (Ekman’s spiral) in the planetary boundary layer, assuming K M  = 
constant, according to Eqs. 3.41 and 3.42. Wind vectors a re  plotted from a common origin a t  increasing 
heights, zi, i = 1, 2, etc. 

orders of magnitude larger than v, a fact which 
justifies neglect of the influence of molecular 
viscosity. 

The frictional acceleration in the equations 
of motion is known to be of the same order of 
magnitude as the Coriolis acceleration, about 
lo-’ cgs units; i.e., ((l/p) (87/8z)( lo-‘. Con- 
sequently 87 fi: @z) ,  which e q u a l s  0.1 
dyne/cm2 in 10 m of height. This will usually 
amount to about 10% of T~ as the following 
calculation shows. The magnitude of the total 
eddy stress is given by the sum of Eqs. 3.36 
and 3.37 for the components. The value at the 
surface, T ~ ,  is ,  assuming constant K, 

where the wind shears are to be evaluated at 
the surface. Substituting Eqs. 3.41 and 3.42 
into Eq. 3.43, carrying out the differentiations, 
and letting z = 0, we find that 

Estimating that zc is of the order of lo4 cm 
and iiG fi: lo3 cm/sec, we find that T~ isof the 
order of 1 dyne/cm2. 

From this it can be concluded that the depth 
of the surface layer, i.e., the layer just next 
to the ground through which the s t ress  T~ may 
be considered to be constant, is of the order 

of tens of meters, or about 10% of the depth 
of the planetary boundary layer. Through the 
surface layer the mean wind direction is ap- 
proximately constant, and the speed increases 
with height according to equations derived in 
the preceding sections. Above the surface layer 
the mean wind turns to the right (in the north- 
ern hemisphere) and attains, provided the over- 
lying flow is geostrophic (i.e., governed by 
Eq. 3.40), the direction and speed of the geo- 
strophic wind at elevations of the order of 
hundreds of meters. 

The solution to the wind distribution in the 
planetary boundary layer given by Eqs. 3.41 
and 3.42 was first obtained by Ekman in 1902 
and is known as Ekman’s spiral. It provides a 
reasonably good qualitative explanation of the 
wind structure and an order of magnitude 
estimate of such quantities as zc and K,. But 
we have seen that eddy viscosity, K,, must 
vary with height in the planetary boundary 
layer, increasing just above the ground as 
larger eddies become effective and then de- 
creasing at greater elevations as the general 
influence on the airflow of the surface frictional 
drag decreases. Moreover we can expect, on 
the basis of analysis of the diabatic surface 
layer, that the eddy structure in the planetary 
boundary layer will also be strongly influenced 
by buoyant heat flux. In addition, for many im- 
portant practical situations, it cannot be as- 
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sumed that the governing forces are in balance. 
The sea breeze and mountain and valley winds 
are examples of such accelerated flows. All 
these complicating factors and others are the 
subject of active research studies, and con- 
siderable progress has been made, which, how- 
ever, would take us too far  afield to summarize. 
As  a practical matter, such effects are not 
normally evaluated quantitatively in connection 
with estimates of atmospheric diffusion, and 
so the qualitative discussion given in Chap. 2 
provides an adequate guide. Readers interested 
in further development of this important sub- 
ject will find useful discussions in the papers 
by Estoque and Yee (1963), Blackadar, Panof- 
sky, McVehil, and Wollaston (1960), and Lettau 
(1962). 

3-2 DIFFUSION THEORIES 

Small particles or droplets released into the 
atmosphere will separate more o r  less rapidly 
from one another under the influence of turbu- 
lent eddies, a phenomenon called diffusion. We 
have already investigated the vertical diffusion 
of such intrinsic air properties as momentum 
and heat in Sec. 3-1. Indeed the two phenomena 
are closely related, differing only in that for 
particle diffusion the possibility exists of ef- 
fects arising from the size and inertia of the 
particles involved. In Sec. 3-2 we are con- 
cerned with diffusion of particles from isolated 
sources in the lower atmosphere. 

The problem of turbulent diffusion in the at- 
mosphere has not yet been uniquely formulated 
in the sense that a single basic physical model 
capable of explaining all the significant aspects 
of the problem has not yet been proposed. In- 
stead there are available two alternative ap- 
proaches, neither of which can be categorically 
eliminated from consideration since each has 
areas of utility that do not overlap the other’s. 
The two approaches to diffusion are the gradi- 
ent transport theory and the statistical theory. 
Diffusion at a fixed point in the atmosphere, 
according to the gradient transport theory, is 
proportional to the local concentration gradient. 
Consequently it could be said that this theory 
is Eulerian in nature in that it considers prop- 
erties of the fluid motion relative to a spatially 
fixed coordinate system. On the other hand, 
statistical diffusion theories consider motion 

following fluid particles and thus can be de- 
scribed as Lagrangian. Diffusion theories may 
be classified as either continuous -motion o r  
discontinuous -motion theories, depending on 
whether this particle motion is postulated to 
occur continuously o r  as discrete events. There 
must necessarily be a close connection among 
all these approaches to the diffusion problem 
since obviously there is only one atmosphere. 
W e  will consider here those aspects of each of 
these approaches which have found application 
in the atmosphere. 

3-2.1 The Gradient Transport Approach 
3-2.1.1 Fickian Diffueion. Adolph Fick, a Ger- 

man physiologist, published a paper in 1855 
(Ann. Physik Chem., [2] 94: 59-86) e n  t i t 1 e d 
“ h e r  Diffusion.” These details are given be- 
cause, although Fickian diffusion is spoken of 
quite familiarly by research workers in many 
disciplines, few appear to know who Fick was. 
His  idea stated in his own words [PhiZ. Mug., 
[4] 10: 30-39 (18551 is: “It is quite natural to 
suppose that this law for the diffusion of salt 
in its solvent must be identical with that ac- 
cording to which the diffusion of heat in a 
conducting body takes place; upon this law 
Fourier founded his celebrated theory of heat, 
and it is the same which Ohm applied, with 
such extraordinary success, to the diffusion of 
electricity in a conductor.” The mathematical 
statement of this hypothesis, Fick’s law, has 
(in the one-dimensional case) the form of the 
classical equation of conduction, 

dq a2q 
- = K g  dt (3.45; 

where K (in the atmosphere) is a constant 
eddy-diffusivity coefficient and tj refers to the 
mean value of some conservative air property 
per unit mass of air. One of the many interest- 
ing applications of this useful equation is to 
describe the diffusion of thermal neutrons in a 
nuclear reactor. 

The more general case of diffusion in three 
dimensions in which the diffusion coefficients, 
which are  not necessarily equal, can vary with 
the three spatial coordinates, Le., 
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was first investigated independently by Rich- 
ardson (1926) and by Schmidt (1925). The prob- 
lem of atmospheric diffusion reduced to that of 
solving Eq. 3.45 or  3.46 under appropriate 
boundary conditions is often called the Ktheory. 
If K,, K,,, and K, are constants, the diffusion is 
called Fickian. The K can be thought of as 
measuring the flux of a passive scalar quantity 
q, such as smoke [flux is defined as K,(a?j/ax) 
o r  by a similar expression in y o r  z]. This 
quantity, by definition, does not affect thedy- 
namics of the air motions but is merely carried 
along by them. Consequently, when the turbu- 
lence is largely mechanical, K = Q; but, when 
there is strong thermal convection, K = K H  
would be the better approximation. In view of 
our present limited ability to specify KH, due 
largely to the difficulty of determining atmo- 
spheric heat flux, this distinction is somewhat 
academic. In practice K values are usually 
determined by reference to observed diffusion 
data. 

For a stationary medium Eq. 3.45 in one 
dimension becomes 

- 

(3.47) 

Boundary conditions speclfying a point source 
a re  

(1 ) i j -Oas t -m (- m < x < + m) 

(2) tj - 0  as t - 0 

(for all x except x = 0) (3.48) 

where ij - * such that 

J : q d X = Q  (3.49) 

where Q is the source strength (total release 
of 3. The solution may be obtained by various 
mathematical devices, in particular by the 
method of Fourier series. In fact it is prob- 
ably fair to say that the existence of a large 
variety of solutions to Eq. 3.45 with various 
boundary conditions, from the classical theory 
of heat conduction, has been one of the great- 
est incentives to development of the K theory. 

The fundamental solution of this problem is 
known to be a Gaussian function, i.e., it has the 
form 

(3.50) 
s - 1  = - exp (-y) 
Q at% 

Notice that the factor 2 implies a symmetrical 
cloud and that the factor t-' in the exponent 
satisfies condition (2) of Eq. 3.48. By partial 
differentiation of Eq. 3.50, we can easily show 
that it satisfies Eq. 3.47, and, making use of 
the continuity condition, Eq. 3.49, we find that 
a = (4Ka)% and b = (4K)-'. Since condition (1) 
corresponds to an instantaneous point source 
at t = 0, the solution to Eq. 3.45 for an in- 
stantaneous point source of ij with strength Q is 

This solution would apply to an atmosphere in 
which ii = constant, v = w = 0, and for which the 
coordinates are thought of as moving with the 
mean wind, ii. 

Equation 3.51 may be extended to three 
dimensions and generalized to the case (non- 
isotropic diffusion) where K, * K, f K,. The 
resulting solutions to Eq. 3.46 are, for K , =  
K, = K, = K and x2 + y2 + z2 = r2, 

- 
-- q(r't) - (4nKt)-' exp (-5) (3.52) Q 4Kt 

and, for the nonisotropic case, 

xexp [ (L K, +I'+"] K, K, (3.53) 

These are the fundamental building blocks of 
Fickian diffusion theory. Integration of one of 
these instantaneous-point-source solutions with 
respect to space yields equations for instan- 
taneous volume sources (bomb bursts, for ex- 
ample). Integration of the instantaneous-point- 
source equation with respect to time gives the 
continuous-point-source solutions. These may, 
in turn, be integrated with respect to, say, the 
y-axis to give the crosswind infinite-line- 
source equation, or  they may be integrated with 
respect to the horizontal plane, and so  on. 
Probably because of the essentially tractable 
nature of the mathematics involved, almost 
every laborer in the vineyard of atmospheric 
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diffusion theory has worked out a solution or 
two for the Fickian case. As a result, this 
branch of the subject is now fairly complete. 

3-2.1.2 The K Theory. The assumption of con- 
stant eddy diffusivity, although it may be of 
considerable use in the free atmosphere, can 
hardly apply to the planetary boundary layer, 
which, as we have seen, is characterized by 
pronounced shear of the mean wind and large 
variations in vertical temperature gradients 
due to heat flux. The K theory of diffusion has 
addressed itself to these problems. 

Equation 3.46 may be simplified by assuming 
the steady state, i.e., aa//at = 0. If we take an 
infinite crosswind line source, for which, at 
ground level, 

" ( K , $ ) = O  BY (3.54) 

(recalling that w = V = 0 if the mean wind blows 
along the x-axis) and assume, as is reason- 
able, that a(Kdq/ax)/ax << ii aq/ax, i.e., the x- 
transport by the mean flow greatly outweighs 
the eddy flux in that direction, then we can re-  
duce Eq. 3.46 to 

(3.55) 

rhis equation, together with the boundary con- 
iitions 

:1) q- 0 as z + G O  

(2) ij- 0 as x -  0 for all z > 0 but q--"O as 

x - 0, z - 0 such that lim J0 uq dz = Q 
0 0 -  

x-c 0 

(3) K, aq/az - 0 as z - 0 for all x > 0 (3.56) 

the latter implying zero flux at the ground, has 
been used as the basis for many investigations. 

The effect of shear of the mean wind was 
taken into account by Roberts, who solved 
Eqs. 3.55 and 3.56 together with a power-law 
form of K,; the solution can be found in Sutton's 
(1953) book. On the basis of the assumption 
that the surface layer is about 10 m deep, it 
has been supposed that power-law solutions to 
Eq. 3.55 would be strictly valid to a distance 
of about 100 m from a ground-level source 
since beyond that the diffusing cloud would be 
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likely to be growing out of the surface layer. 
It now appears from DeMarrais' (1959) study 
that as a practical matter such solutions may 
be valid to considerably greater distances. 
DeMarrais shows that wind profiles can be fit 
by power functions to elevations of about 100 m, 
which implies that K, can also be represented 
by a power function to this height. 

Extension of the K theory to account for 
surface-roughness effects was undertaken by 
Calder (1949), who assumed the power-law wind 
profile 

(3.57) 

and chose the constants r' and a ' s 0  as to give 
the best €it to the logarithmic wind profile. 
His  solutions are complicated, but over level 
uniformly rough ground good experimental veri - 
fication is obtained to distances up to a kilome- 
ter from the line source in adiabatic condi- 
tions. 

Varying atmospheric stability was introduced 
into the problem by Deacon (1949), who gave a 
solution for an infinite line source based at the 
surface, using 

U* 

ii(z) = v*r*(t)  (3.58) 

and determining p and a* from observed (dia- 
batic) wind profiles. A solution for an infinite 
elevated crosswind line source has also been 
given, as has a solution for a finite line source 
oriented along the mean wind. Finite and infinite 
plane sources are considered extensively in 
evaporation theory; a review of much of this 
material can be found in the monograph by 
Anderson, And e r s on, and Marciano (1950). 
Lettau (1952) developed a shearing advection 
correction to the K theory which takes into 
account the apparent diffusion that results from 
the presence of shear of the -mean wind in the 
planetary boundary layer. Davies (1954), Gee 
and Davies (1963), and Saffman (1962, 1963) 
have also discussed the effect of shear. Some 
progress has recently been made on solutions 
to Eq. 3.46 for a continuous point source, both 
at the groun_d and aloft, by Rounds (1955) and 
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Smith (1957). This work has been extended in 
the papers by Godson (1958) and Davidson and 
Herbach (1962) to include stable conditions, 
elevated point sources, and the effect of par- 
ticle settling. 

The K theory has great appeal to research 
workers in atmospheric turbulent diffusion, 
judging by the papers just cited as  wellas many 
related ones found in the bibliographies that 
the papers contain. Because the fundamental 
differential equation involved, Eq. 3.46, can be 
considerably simplified by eliminating one o r  
more of the space coordinates, K theory is 
widely applied in studies of evaporation and 
heat conduction from the earth’s surface, which 
is considered to be an extended, horizontal, 
plane source. Study of the momentum distribu- 
tion in the planetary boundary layer has  like- 
wise suggested the use of K theories. The 
abundant literature on this phase of the subject 
was reviewed by Priestley (1959) [see also 
Priestley, McCormick, and Pasquill (1958)l. 

Since, in planetary-boundary-layer heat con- 
duction, the source, o r  driving term, is a 
sinusoidal time function, the mathematical com- 
plexity of some of these solutions is consider- 
able. Staley (1956) described certain K theories 
quite accurately as “a mathematical extrav- 
aganza.” It seems that the attraction exerted 
by the K theory may stem as much from the 
opportunity it provides for obtaining mathemati- 
cally explicit results as from its intrinsic 
physical correctness. All ramifications of the 
K theory depend ultimately on the validity of the 
assumption of simple gradient transport, which 
is the notion that the flux of a quantity is pro- 
portional to the g r  a d i e n t  of this quantity. 
Priestley (1959) points out that there is no 
precise physical basis for the use of this as- 
sumption as the foundation for a description of 
turbulent diffusion in the atmosphere, and con- 
sequently the validity of the K theory “is nor- 
mally j u d g e d  from the degree of success 
achieved in . . . predicting particular diffusion 
phenomena.” Calder (1965) studied the appli- 
cability of the diffusion equation to  the atmo- 
spheric case and concluded that the standard 
K-theory form, Eq. 3.46, cannot be generally 
valid, Russian workers, e.g., Monin (1959), 
refer to K theory as a semiempirical theory 
of diffusion. The basic nature of K theory must 
be kept in mind as the chain of deductions from 

the original equation grows longer and more 
involved. 

This being said, it must hastily be added 
that K theory provides many useful, practical 
results. For example, an approach to the diffi- 
cult problem of the deposition of polydisperse 
aerosols (Davidson and Herbach, 1962) can be 
made via K theory. Barad (1951) presented a 
K theory of the complicated problem of diffu- 
sion of a bent-over stack plume in very stable 
atmospheres. There are many other examples. 
Corrsin has aptly summarized the situation by 
pointing out that K theory is not useful in 
principle but only in practice. 

3-2.2 Statistical Theories 
of Turbulent Diffusion 

Today the statistical theory of fluid turbu- 
lence comprises a large and important body of 
literature, and its results are  applied in many 
areas from oceanography to cosmology. The 
study of turbulence by this method actually 
began, however, with the investigation of tur- 
bulent diffusion by Taylor (1921). The statisti- 
cal approach to the diffusion problem differs 
considerably from K theory. Instead of studying 
the material o r  momentum flux at a fixed space 
point, one studies the histories of the motion of 
individual fluid particles and tries to determine 
from these the statistical properties necessary 
to represent diffusion. 

3-2.2.1 Diffusion by Discontinuolls Motiorr M a n y 
of the essential characteristics of statistical 
diffusion theory can be introduced by the fol- 
lowing classroom experiment in diffusion by 
discontinuous motion. The instructor takes a 
number of pennies and distributes them to the 
class as follows. He tosses one and, according 
to whether it comes up heads or  tails, passes 
it out to the student on his right or  on his left 
in the middle of the first row. The student, in 
turn, repeats this, passing the penny over his 
right o r  left shoulder, and so on, until finally 
the penny reaches the back row. The instructor 
continues tossing more pennies and passing 
them out. Of course, after a time the students 
in the back row of the classroom will receive 
pennies in some more o r  less regular pattern 
with most of the pennies going to students near 
the middle of the row and fewest to those near 
each end. This experiment, simple and obvious 
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as it is, nevertheless brings out a number of 
important features of the diffusion problem: 

1. The stochastic, or probabilistic, nature of 
diffusion: this is illustrated by the process used 
to distribute the pennies. 

2. Continuity: the diffusion process must 
satisfy a continuity condition (Le., all the 
pennies should be returned at the end of the 
experiment). 

3. Deposition: occurs if  a penny is dropped. 
4. Attenuation: at any step, a penny might be 

removed permanently from the diffusion process 
(for radioactive particles the analogy is radio- 
active pecay). 

5. Effect of sampling: the actual distribution 
of pennies at the back row is not aperfectly 
symmetrical distribution. It could be skewed 
o r  perhaps bi- or  multimodal. Since only a 
relatively small sample (just a few pennies) 
was used, the observed distribution will depart 
from the ideal, symmetrical pattern. 
This experiment can be formalized (see 

Chandrasekhar, 1943). The probability, P, that 
a penny will move right or  left equals ‘/2. After 
n steps, the penny can be at any of the points 
-n, -n + 1, . . .,-1,0,1, . . ., n - 1,n. The num- 
ber of possible paths in n steps is 2n, and P = 
2-q i.e., all are equally probable. Let x = mh 
and t = nk, then the probability of apenny’s 
reaching any given point mh, at step nk is 
P(mh,nk) = 2-” (number of possible paths). The 
grid spacing, h and k, can be chosen as unity 
and ignored. Let r equal the number of steps 
right and 1 equal the number of steps left in a 
path. Then I = r - m (number to left = number 
to right minus total lateral distance), and I = 
(n - r) (total number of steps minus number to 
right), i.e., r - m = n - r, or m + n = 2r, and 
r = .  ‘/z (m + n). The number of paths equals 
(F), i.e., the number of combinations of r ele- 
ments or  n; so 

(3.59) - 1 n! -- 

which is Bernoulli’s distribution. For large 
values of n, this distribution approaches the 
normal distribution, normal e r ror  curve, o r  
Gaussian distribution: 

P(m,n) = (&r exp (-c) (3.60) 

If Eq. 3.60 is plotted for successive values of 
n, the familiar bell-shaped curves of the 
normal e r ror  law result. It is of interest that 
the coin-tossing, o r  Monte Carlo, method was 
originally developed by von Neuman and Ulam 
in connection with complex problems arising in 
the calculation of diffusion of neutrons through 
absorbing and shielding media. 

The simple discrete-step stochastic diffusion 
model (sometimes called “the drunkard’s walk”) 
implied by the above discussion is far from 
irrelevant to the atmosphere. Its molecular 
analog describes Brownian diffusion. On the 
other hand, actual turbulent atmospheric mo- 
tions tend to be rather highly self-correlated, 
in marked contrast with Brownian motion. The 
approximation that successive diffusion events 
are uncorrelated is not a good one in the case 
of atmospheric turbulence except when the 
time scale of the problem is large compared 
with the time scale of the diffusion process. 
The consequences of a direct application of the 
Brownian-motion analogy to atmospheric diffu- 
sion have been investigated by Obukhov (1959), 
Lin (1960), and Chadam (1962). 

The. uncorrelated kind of diffusion process 
described by Eq. 3.60 corresponds closely to 
Fickian diffusion; consequently it must be gov- 
erned by a parabolic type of differential equa- 
tion, such as Eq. 3.47. Physically, parabolic 
differential equations characterize equalization 
processes, of which the heat-conduction prob- 
lem provides the classical example. Solutions 
of parabolic equations have the character that 
some effect is felt everywhere except at the 
initial instant, t = 0, as is shownby Eq. 3.51. 
The implication is that diffusion proceeds in 
some sense with infinite velocity. Generaliza- 
tions to more realistic discrete-step diffusion 
models in which successive events are corre- 
lated (drunkard’s walk with a memory) have 
been discussed by Taylor (1921), Goldstein 
(1951), Gavies and Diamond (1954), Davies, 
Diamond, and Smith (1954), and Monin (1955). 
These studies indicate that atmospheric diffu- 
sion should obey the “telegrapher’s equation” 
rather than a simple parabolic equation of the 
heat-conduction type. Since, in the diffusion 
application, the telegrapher’s equation is hyper- 
bolic like the wave equation rather than para- 
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bolic, it  describes diffusion that proceeds at a 
finite velocity. Thus there will be a definite 
limit to the distance that fluid particles can 
disperse in a given amount of time in contrast 
to the conclusion from Eq. 3.51 that the effect 
of diffusion is felt everywhere to some extent 
for all values of t > 0. It cannot be denied that 
finite diffusion is physically more realistic 
although the practical difference, as shown in 
Sec. 3-3, is probably not great. 

3-2.2.2 Dijfusion by Continuous Motion. T a y 10 r 
(1921) derived a fundamental diffusion theorem 
that has had very great influence on all sub- 
sequent work in this field, both theoretical 
and practical. Taylor's result applies to dif- 
fusion in one space dimension or to the pro- 
jection onto a single space axis of two- or 
three-dimensional diffusion in a stationary, 
homogeneous turbulent flow. A homogeneous 
turbulent flow is one in which the statistical 
properties are  independent of position. Sta- 
tionary turbulence is homogeneous in time. 
Properties of the turbulence, such as the trans- 
verse (to the mean-flow direction) root-mean- 
square velocity, (v")', would be expected to be 
invariant anywhere in such a flow. Turbulence 
in the upper portion of the planetary boundary 
layer may approximate the homogeneous type, 
but surface-layer turbulence is decidedly in- 
homogeneous. The idea of turbulence homogene- 
ity is a simplification introduced into thetheory 
to permit further progress to be made. 

Taylor's calculation involves the motion (con- 
tinuous) of a fluid particle, which is assumed 
to be somehow identified o r  tagged. On the 
other hand, we might consider a dynamically 
and chemically inert particle of negligible size 
and mass which is being transported by the 
atmosphere. The distance, y, that this particle 
is carried away from an origin by turbulent 
wind fluctuations, VI, during a time interval, t, 
is equal to 

(3.61) 

(We will not introduce a separate symbolism 
to distinguish the particle-attached, o r  La- 
grangian, motion from the fixed-point Eulerian 
motion since this would greatly complicate the 
notation. The distinction should always be kept 
clearly in mind, however.) This straightforward 
process is pictured in Fig, 3.6. By the trans- 
formation t = x/U, we can also visualize the 

Y 

Fig. 3.6-Path of a tagged particle displaced a dis- 
tance y in time t by the action of random turbulence. 

motion as taking place relative to a fixed 
space axis extending downwind from the origin. 
A physical example of this phenomenon would 
be the motion of a smoke particle emitted from 
a chimney in a steady mean wind. 

The simplest meaningful statistical measure 
of this irregular, random process that we can 
compute is the mean-square diffusion that 
would result from a large number of indepen- 
dent repetitions, i.e., the variance, o r  second 
moment, of the resulting distribution of par- 
ticles along the y-axis. By squaring both sides 
of Eq. 3.61 and taking the average over many 
repetitions of the experiment (the statistical, or 
ensemble, average), we a re  led to Taylor's 
result: 

The mathematical steps a re  given in many 
references, e.g., Pasquill (1962). 

The function R(5) is called the one-point 
Lagrangian velocity correlation coefficient, La- 
grangian because it refers to the velocity of a 
particle rather than the velocity at a fixed 
space point, and coefficient because it has be= 
normalized, Le., adjusted, by dividing by v'' 
so that R(0) = 1: 

(3.63) v' t vyt + 0 
R(5) = ( )  p 

Batchelor (1949) generalized Eq. 3.62 to three 
dimensions. In this form the mean-square diffu- 
sion becomes a tensor, a!,, with indices ranging 
from 1 to 3, and? 3 6&. Computation - of higher 
'order moments, such as y3, could be carried 
out by the same straightforward process al- 
though with rapidly increasing complexity. 
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Since R(0) = 1 and, for sufficiently small 
diffusion time, R(t) W 1 because R is a correla- 
tion coefficient, i t  follows that when t is small 

(3.64) 

When t is large, i t  may be supposed that the 
autocorrelation function, R, must approach zero 
sufficiently rapidly that 

- 
v” lim SOf R(t3 dtl = K1 

e-“ 
(3.65) 

where K, is some constant. The particle must 
ultimately “forget” its original motion. There 
a r e  several ways to see why this should be 
true. Perhaps the most obvious is the one dis- 
cussed in the following paragraphs. 

Consider the Fourier cosine transform F(n) 
of R: 

F(n) = 4 st R(t) cos(2n nt)dt (3.66) 

where F(n) is called the Lagrangian eddy- 
energy spectrum. The eddy-energy spectrum 
expresses the distribution as a function of 
frequency, n, of turbulent kinetic energy corre- 
sponding to the various Fourier components of 
the (in this case) one-dimensional Lagrangian 
turbulent velocity field. The simpler term 
“eddy” will be used from now on to denote a 
Fourier component of the turbulent velocity 
field characterized by a certain time o r  length 
scale. Although it is always more convenient to 
speak of ,an eddy of some size (or of some 
time scale proportional to n-‘), it  should not 
be inferred that such a Fourier component 
necessarily has a separate, identifiable mate- 
rial existence such as we have previously 
imagined is possessed by eddies. It must be 
remembered that two meanings of the term 
“eddy’) exist and that they a re  often confused in 
the meteorological literature. The interested 
reader should consult Corrsin (1959) for a con- 
cise discussion of the meaning of the spectrum 
representation of a turbulent velocity field; a 
complete discussion of atmospheric energy- 
spectrum properties is contained in the books 
by Pasquill (1962) and by Lumley and Panofsky 
(1964). 

At zero frequency (n = 0), we can see from 
Eq. 3.66 that 

F(0) = 4 Jc R(t) dt (3.67) 

Even without further discussion of the prop- 
erties of the energy s p e c t r u m ,  it seems 
clearly to be required that F(0) a Kl < 00. 

Otherwise the eddy kinetic energy would be in 
some sense infinite. Consequently we may de- 
rive the limit of Eq. 3.62 for large diffusion 
times: 

- 
y2(t) 2K1t (3.68) 

where K1 is a constant. 
The derivative of Eq. 3.68, i.e., ‘/z dg/dt, 

has the dimensions of a diffusivity. It might be 
argued therefore that Kl plays a part similar to 
that of the K of Fickian theory and that 

d7- K, = K (3.69) 

where K has the original meaning assigned to 
it, an eddy diffusion coefficient. Comparing 
Eqs. 3.69 and 3.68, the conditions for the 
applicability of the K theory in the atmosphere 
can be appreciated. The quantity/; R dt de- 
fines a time-scale characteristic of the turbu- 
lence called the Lagrangian integral time scale, 
9: 

2 dt 
! 

= Jm R(t) dt (3.70) 

This argument makes it appear reasonable that 
Fickian theory, in which K is constant, should 
apply when the diffusion time, t, is large com- 
pared to P. 

There appears to be no basic way of evalu- 
ating the precise points at which the limits of 
Taylor’s diffusion theorem for small and large 
times will  apply in the atmosphere. If it were 
possible to measure the Lagrangian autocorre- 
lation function, R, with precision, the applicable 
diffusion times could be determined, buf this 
is very difficult to do. In fact most of the re- 
liable knowledge of the form of R has been 
inferred, by applying Eq. 3.68 inversely, from 
diffusion experiments (Panofsky, 1962; Mickel- 
sen, 1955: and Baldwin and Mickelsen, 1961). 

Taylor’s theorem can also be written in 
terms of the eddy-energy spectrum by com- 
bining Eq. 3.62 and the inverse transform of 
Eq. 3.66. then follows that the mean-square 
diffusion, y2, is 

0 
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It can be seen from this not only that F(t) 
depends on the entire energy spectrum, F(n), 
for any value of t but also that the larger t is, 
the more the diffusion is dominated by the low- 
frequency contributions to F(n). This follows 
because the spectrum in Eq. 3.71 is weightedby 
the function 

(3.72) 

which is largest for small values of nt and 
rapidly approaches zero for other values. The 
larger t is, the smaller n must become in 
order that this weighting factor differ much 
from zero. In other words, it appears that the 
large eddies (Fourier components of the motioii 
having low frequency) dominate atmospheric 
diffusion when this is calculated with reference 
to a fixed source o r  axis. In this day and age 
of high-fidelity sound equipment, there will be 
general understanding of the statement that the 
diffusion process acts like a filter for high- 
frequency spectrum components, having the 
band-pass characteristic of Eq. 3.72. 

3-2.2.3 Method of Moving Averages. H a y a n d  
Pasquill (1959) noticed that the integrand of 
Eq. 3.71 is similar in form to the expression 
by which a computed turbulence energy spec- 
trum is corrected for the effect of averaging 
the raw data over a time interval a; 

(3.73) 

where Fa (n) is the observed spectrum obtained 
from a wind-velocity -fluctuation record that 
has been averaged over the time interval a. The 
averaging might, for example, reflect the re- 
sponse characteristic of the particular ane- 
mometer used or the interval between diffusion 
measurements. 

If the averaging interval is selected to be 
equal to the time of travel, or diffusion time, t, 
it follows that 

By definition ? 1; F,(n) dn is just the total 
turbulence energy contained in a velocity signal 
that has been subjected to a moving average 
over the time +. Thus Eq. 3.74 can be written 

- 

y2(t) = (P), t2 (3.75) 

a form fully equivalent to the autocorrelation 
and spectrum forms, Eqs. 3.62 and 3.71. The 
symbol (), indicates that (one component of) 
the single-point Lagrangian velocity, v', is to 
be subjected to a moving average over t prior 
to computation of the variance. 

3-2.2.4 Sutton's Diffrurion Model. From the lim- 
iting cases for small and large diffusion times 
of Taylor's theorem, Eqs. 3.64 and 3.68, it 
appears that the limit for large diffusion time 
may not be attained very rapidly since there 
is room in the atmosphere, at least in the 
horizontal direction, far quite large eddies to 
come into play. This fact led Sutton to propose 
his well-known model of averaged plume diffu- 
sion. Sutton (1953) reasoned that the Lagrangian 
single-particle autocorrelation function, R ( t ) ,  
must depend only on the intensity of turbulence, 
?, on viscosity, v ,  and on 5.  Since R(0) = 1 and 
R (m) = 0, he proposed on dimensional grounds 
the following simple interpolation formula for 
R: 

(0 < n < 1) (3.76) 

If Eq. 3.76 is combined with Eq. 3.62 and if 
terms of the order of v are  ignored, it develops 
that 

2u" 
(1 - n)(2 - n)v S"(t) = 3 ( 2 t ) Z - n  (3.77) 

Defining a constant q, called by Sutton a 
virtual diffusion coefficient, 

we find that 

(3.79) 

Sutton further introduced the concept of macro- 
viscosity, N = v, zo, to replace the molecular 
viscosity, v ,  for flow in the atmosphere in 
which the effect of molecular viscosity can be 
ignored. 

Sutton originally studied diffusion in the 
lower few meters, in what we now call the 
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surface layer. Since this region of theplanetary 
boundary layer is characterized by marked 
vertical shear of the mean wind, the question 
might be raised whether Sutton's application of 
Taylor's result, which is based on the assump- 
tion of turbulence homogeneity, can conceivably 
be correct. Certainly the assumption of hori- 
zontal turbulence homogeneity at a fixed level 
is a reasonable one. Therefore it is also rea- 
sonable to expect that an expression of theform 
of Eq. 3.79 might apply in the atmosphere. 

Sutton also assumed that similar expressions 
hold for 2 and 2. For example, 

and 

(3.81) 

- Notice that since n > 0 Sutton's expressions for 
y2 and 2 grow with time at a rate much more 
rapid than is true for Fickian d i f f u s i o n  
(Eq. 3.68). In view of Eq. 3.71, suchbehavior 
could very well be a generally desirable prop- 
erty for an atmospheric diffusion model to 
have in some suitably restricted range of t, as 
Batchelor (1949) pointed out. 

In order to introduce the effect of stability 
on the wind profile, it was originally assumed 
that n could be determined from the following 
relation: 

(3.82) 

where the subscripts refer to two different 
elevations. The justification for identifying n as 
a stability factor is that this exponent does 
exhibit a marked variation with stability. On the 
other hand, no satisfactory direct relation be- 
tween n as defined by Eq. 3.82 and as defined 
by Eq. 3.76 isapparent since Eq. 3.76 assumes 
a homogeneous turbulence field that is true for 
Eq. 3.82 only if n = 0 and Eq. 3.76 involves 
Lagrangian wind statistics. Equation 3.82 in- 
volves the Eulerian wind field. Furthermore, 
for very large diffusion times, the autocorrela- 
tion defined by Eq. 3.76 must be questioned by 
the same argument that was used in deriving 
the limit for large time of Taylor's theorem. 

According to this argument the Lagrangian 
integral scale of turbulence corresponding to 
Eq. 3.76 is 

g = $- dtl = 00 (3.83) v + V'2t1 

which by Eq. 3.67 implies infinite eddy energy 
density at zero frequency, i.e., F(0) ==. This 
is in conflict with Eq. 3.68 as well as with 
observed power spectra. 

Notwithstanding these purely theoretical dif- 
ficulties, Sutton's model has been widely proved 
in practice and sanctioned by usage. It should 
certainly be regarded as something better in 
the sense of being more useful, theoretically 
oriented, o r  physically motivated than, say, a 
purely empirical interpolation formula. But it 
should not be accorded the unequivocal status 
of a law of nature; it should be used with due 
regard for its several ad hoc features, and 
verification over some restricted range of 
distance and meteorological conditions should 
not be taken as an open invitation to an uncriti- 
cal, universal application. Good verifications of 
diffusion predictions by Sutton's method have 
been obtained for distances of the order of 
several kilometers under neutral o r  unstable 
conditions. 

Attempts have been made to extend the 
applicability of Sutton's scheme empirically to 
greater distances by introducing the separate 
parameters, n,. and n,, for each direction 
(Schmidt, 1960; Leonard, 1957; and Barad and 
Haugen, 1959). Barad and Haugen were able to 
improve agreement considerably with data on 
diffusion from a source very near the ground 
while at the same time emphasizing the basi- 
cally empirical nature of such extensions to 
Sutton's formulation. -_ , 

3-2.2.5 A Similarity Theory of Dijfusion in the Slrr. 
face Layer. The statist ica diffusion inethods 
discussed so  far depend on stationary, ho- 
mogeneous turbulence. ' The planetary boundary 
layer, particularly the surface layer, however, 
is characterized by marked inhomogeneity 
of turbulence in the vertical direction as a re-  
sult of wind shear and stability. Vertical in- 
homogeneity of the surface layer is taken into 
account in the K theories of Calder (1949), 
Deacon (1949), Frost (1948), Rounds (1955), and 
Smith (1957) by assuming some variation of 

1 J 
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ii(z) and consequently of K(z), usually a pcwer 
law. This amounts to recognizing the problem 
of vertical inhomogeneity without solving it 
since the coefficients of the assumed power 
laws, or  some related parameters of the prob- 
lem, are  invariably left to be determined from 
suitable observations. Ellison (1959), prompted 
by a remark by Batchelor (1959), applied a 
dimensional method to the determination of the 
diffusion downwind from a continuous point 
source in a logarithmic (adiabatic) surface 
layer. Batchelor (1959a) obtained the same re- 
sults as Ellison (unpublished note; see also 
Batchelor, 1964). Subsequently Gifford (1962) 
attempted to extend the method to the diabatic 
surface layer, and Cermack (1963), Calder 
(1963), and Yaglom (1965) presented further 
results. The remaining paragraphs in this 
section outline the reasoning involved in these 
studies, which are important because they 
treat surface -layer diffusion without postulating 
a diffusivity. 

The Eulerian (spatially fixed) characteristics 
of surface-layer turbulent flow are, as we have 
seen in the mean-wind field, particularly sim- 
ple, being completely characterized by the fric- 
tion velocity, v*, and the stability length, L. 
Since any characteristic surface-layer velocity 
must therefore be proportional to v* times a 
universal function of the dimensionless length, 
S = z/L, Kazansky and Monin (1957) and Monin 
(1959) reasoned that the maximum vertical 
velocity of a smoke particle in a diffusingplume 
emanating from a source at ground level, w*, 
must be given by 

dz 
- = w, = h’v* (P(5)  dt (3.84) 

where p(b) is a universal function, A’ is a uni- 
versal constant, and z refers to the motion of a 
smoke particle at the upper boundary of the 
plume. It is reasonable to suppose that the 
equation for the horizontal velocity of a smoke 
particle at the upper plume boundary is dx/dt = 
ii; the shape of the upper boundary of the plume 
can be described (recalling Eq. 3.31) by 

Monin evaluated the function p(H) from the 
turbulent-energy-balance equation and found 

(3.86) 

Using Eq. 3.86 and suitable equations for 
f(g),  Monin integrated Eq. 3.85 numerically to 
obtain the shape of the upper boundary of the 
plume from an infinite crosswind line source at 
ground level as a function of stability. A result 
similar to Monin’s was obtained by Kao (1960) 
with, however, differences in the numerical 
values involved. 

The concentration distribution of a diffusing 
plume is a statistical function of the Lagrangian 
(particle-attached) fluid v e 1 o c i t  i e s. If La- 
grangian statistical properties of the surface- 
layer flow are assumed to obey the hypothesis 
of dynamical similarity, as do the above Euler- 
ian properties, then we may proceed asfollows. 

Let the mean position of a particle be F(t), 
y(t), E(t). (If we choose the downwind direction 
to coincide with X, then f E 0.) Assume that 

dX 
dt 
- = E(%) (3.87) 

i.e., that at any point the horizontal part of the 
particle’s motion equals the average wind speed 
(see, however, the discussion of this point by 
Yaglom, 1965). Following a dimensional line of 
reasoning, we can also conclude that the mean 
vertical velocity of a particle, W, is given by 

_ 
dE 
dt - _  - W= b v* ‘Pi ( k )  (3.88) 

where ‘pi is a universal function that has usually 
been assumed to coincide with p of Eq. 3.86 
although this cannot be justified a priori and b 
is a universal constant. A s  Ellison (1957) 
pointed out, the role of zo in surface-layer 
turbulence is restricted to that of a horizontal 
translation of the mean flow, as in Eq. 3.87. 
Consequently neither E nor the concentration 
depend on zo. 

Now apply dimensional reasoning to de- 
termining the probability of a particle’s reach- 
ing some distance r = ($ + y’ + .’)’ from the 
mean particle position @,O,E). This is the same 
as inquiring what the concentration distribution, 
x, would be following the instantaneous release 
of Q particles from the coordinate origin, 
where x is measured from the mean particle 
position and averaged over a very large num- 
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ber of repetitions of the experiment and the 
x-axis is oriented along the mean wind direc- 
tion. In addition to x and Q, the relevant 
variables are the displacements, x - E, y - = 
y, z - E; the parameters characterizing the 
turbulence, v, and L; and the mean time of 
particle travel to point (Z,O,Z), t. 

For the special case of the axial ground 
concentration, y = z = 0. From the remaining 
variables we can form the following: 

xE3 x - x  z v t 
F3 (v T, %, +) = 0 (3.89) 

Solving for the ratio containing x , we find 

To find the continuous -point -source axial 
concentration, j r ,  , we would have to integrate 
Eq. 3.90 with respect to time from 0 to *. 
Since all the remaining dimensionless ratios 
are functions of time and nothing whatsoever is 
known about F4, this becomes a difficult prob- 
lem. In the adiabatic case, however, L = m and 

= 1, and the integration can readily be per- 
formed: 

where Q' is the continuous-source strength. 
By changing the integration variable, we find 
that 

F4 ( 7 0 , O )  X - X  d (F) 
(3.92) x-X d% 

A t  a sufficient distance downwind, the diffusing 
particles will be swept past any point rapidly 
compared with the time taken to reach that 
point, and we may assume that x * X. With this 
simplification it is easily shown that 

- 
XP 1 - '* a 
Q' Z'[(%/Z) + &%b)] 

where, from Eqs. 3.87 and 3.88, 

(3.93) 

% = ' [ E ( l * ~ - l ) ]  - 
kb (3.94) 

This is the result found by both Ellison and 
Batchelor. 

By evaluating Eq. 3.93, these authors showed 
that in the adiabatic surface layer the downwind 
concentration from a continuous point source 
varies as xp, where p varies approximately in 
the range -1.8 to -1.9. For a continuous, in- 
finite crosswind line source, the downwind con- 
centration was found to vary as x-'. These 
results are quite interesting. They provide an 
alternative to Sutton's solution that leads to 
essentially the same result and, in the adiabatic 
surface layer, is known to be in excellent 
agreement with data. It is also interesting to 
note that the surface -layer diffusion proceeds 
at a rate quite close to the limiting prediction 
for homogeneous turbulence, Eq. 3.64, Le., as 
x - ~  (since x = Et). 

In the diabatic case the last two of the 
dimensionless ratios of Eq. 3.90 cannot be 
expected to disappear so conveniently. By, in 
effect, assuming that even in the diabatic case 
the function F4 does not depend strongly on 
these two ratios, Gifford (1962) proposed that 

which is the counterpart to Eq. 3.93 for a non- 
adiabatic surface layer. For a relation between 
axial ground concentration and downwind dis- 
tance, f, to be obtained, a relation between fl 
and E must be established. This follows from 
integration of Eq. 3.85 for &/G. Details have 
been given by Gifford (1962), and the results 
are in reasonably close agreement with de- 
tailed experimental atmospheric-concentration 
.measurements. Wind-tunnel diffusion studies 
by Cermak (1963) have provided additional 
verification. 

3-2.2.6 Relative Atmospheric D#uswn. Taylor's 
expression for diffusion measured from a 
fixed origin or axis, Eq. 3.62, is completely 
characterized by the statistics of the motion 
of a single fluid particle. The statistical av- 
eraging that Taylor had in mind was inde- 
pendent of any single particular realization of 
the experiment, that is, of any single set of 
initial conditions of the turbulent flow. The 
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motions of any two or  more fluid particles 
during a diffusion time t should be completely 
independent from the point of view of Eq. 3.62. 
But, if  one is interested in the spreading out of 
an isolated cloud of fluid particles, this re- 
quirement cannot hold. Because the particles 
all start out together, the motions of particles 
in a cloud, puff, o r  cluster will at first be 
strongly correlated. In fact, if  it is required 
that particles start out infinitely close together 
(an instantaneous-point-source condition), they 
will (in principle) never separate since at all 
times they are acted upon by the same fluctua- 
tion. Thus Richardson concluded that a spread- 
ing dot is unsuitable as a model for cloud 
diffusion. A second mode of diffusion, based on 
the rate of spreading of a cluster of fluid 
particles relative to their mutual center of 
gravity, must be calculated. 

Consider two dispersing fluid particles, the 
simplest case of the diffusion of a cloud of n 
particles (Fig. 3.7). Stationary and homogene- 
ous turbulence conditions are again assumed. 
One can calculate 9, the mean-square value 
of the spreading, or  the relative, diffusion. The 
procedure is exactly the same as for the cal- 
culation of ? (Eq. 3.62), the single-particle 
dispersion parameter. The distance between 
the particles, Y, is given by 

Y = yi - yz = YO + v[(ti)dti 
- vz)(ti)dti (3.96) 

where Yo is the initial separation between the 
particles and the subscripts on y and v’ refer 
to the particles. The corresponding mean- 
square relative diffusion is 

The detailed steps are essentially the same as 
those for the one-particle case. Generalization 
to a cloud of particles is given by Batchelor 
(1952). 

Comparison of Eqs. 3.97 and 3.62 shows mat 
the separation between two particles depends on 
two factors in addition to the single-particle 
Lagrangian time correlation, R(.$). These are 
the i n i t i a l  separation, Yo, and the relative 
(two-particle) L a g r a n g i a n  correlation term, 
v[(ti) v$(tz). Notice that if two particles initially 

Y 

Fig. 3.7-Relative diffusion of two tagged particles 
(see Eq. 3.96). 

occupy the same position-in the fluid then Yo = 0 
and vi = vi. As  a result Y2= 0, and the particles 
will never disperse relative to one another. By 
Taylor’s diffusion theorem, Eq. 3.62, they will, 
however, disperse on the average with respect 
to a fixed axis. 

From the foregoing arguments it appears that 
relative diffusion, that is, the spreading out of 
a cloud of fluid particles o r  the spreading of a 
plume from its center line, is described by the 
joint Lagrangian statistics of two dispersing 
particles. Single -particle Lagrangian statistics, 
on the other hand, describe the average spread- 
ing of a plume about a fixed axis. The plume 
photographs shown in Fig. 3.8 (Culkowski, 1961) 
may make the distinction between relative and 
average dispersion clearer. Part a, Fig. 3.8, 
is an instantaneous (1/50 sec) exposure of a 
plume. The spreading of this plume relative 
to its irregular, undulating center line is de- 
scribed by Eq. 3.97. Part  b, Fig. 3.8, is a 5-min 
time exposure of the same plume. The average 
diffusion about the horizontal plume center 
line, which is obviously oriented in the direction 
of the mean wind, is appropriately described 
by Taylor’s diffusion equation (Eq. 3.62). 

Qualitatively, relative diffusion should de - 
pend on’ the action of eddies approximately as  
large as a puff or,  as in (a) of Fig. 3.8, as large 
as the width of the instantaneous plume. We 
have, on the other hand, noticed (Eq. 3.71) that 
average plume diffusion rapidly becomes de- 
pendent on quite large eddies. This distinction, 
first made by Richardson, was reemphasized 
by Yudine (1946), Brier (1950), and particularly 
by Batchelor in h is  definitive theoretical treat- 
ment (Batchelor, 1949, 1950, 1952). Richardson 
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Fig. 3.8-Plume photographs. (a) Instantaneous (1/50-sec) exposure photograph of a plume. (b) Time exposure 
(5-min) of same plume. (From Culkowski, 1961.) 

(1926) observed horizontal eddy diffusivities, 
K, of particle clusters with widely divergent 
sizes and arranged his K values according to a 
length scale, 1, corresponding to the size of the 
clusters involved, as shown in Table 3.2. The 
K values clearly increase with I, and Richard- 

% son proposed the empirical equation K = 0.21 
to describe these observed values. Somewhat 
unexpectedlv, the spreading of puffs o r  clusters 

appears to depend upon the scale of the diffusion 
event, i.e., on the separation between repre- 
sentative dispersing particles. A formal ex- 
planation for Richardson’s discovery was given 
by Obukhov (1941), who pointed out that the law 
K a If$ follows by a dimensional argument from 
the assumption that in the inertial range the 
structure of eddies governing cloud o r  cluster 
spreading is controlled by the rate of eddy- 
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Table 3.2-VALUES OF HORIZONTAL EDDY 
DIFFUSIVITIES AT VARIOUS SCALES* 

Scale ( I ) ,  cm K,  cm*/sec Source of data 
~~ 

5 X 1.7 x lo-' Molecular diffusion 
1.5 x i o 3  3.2 x lo3 Low-level wind shear  
1.4 x 104 1.2 x los Low-level wind shear 

5 x 104 6 x lo4 Pilot balloons, 100 to 

2 x 106 1 x lo8 Manned and unmanned 

5 x 106 5 x lo8 Volcanic ash 
1 x 108 1 x 1011 ' Cyclonic storms 

800 m 

balloons 

*From Richardson, 1926. 

energy transfer, E (cm2/sec3); K (cm2/sec) 
must be proportional to ~ ~ 1 ' .  

The useful concept of an inertial range of 
eddies, i.e., a range of eddy sizes in which the 
properties of turbulence are dominated by the 
transfer of energy by inertial forces and are 
independent of viscous dissipation, was intro- 
duced by Kolmogorov (1941) andObukhov (1941). 
Like so much of significance in atmospheric 
turbulence and diffusion theory, it has its origin 
in Richardson's early work. Richardson stated 
the basic idea in characteristically unorthodox 
form, the frequently quoted (Shaw, 1942; Sutton, 
1949; and Batchelor, 1950, to give but a few 
examples) quatrain: 

Great whirls have little whirls 
That feed on their velocity; 
And little whirls have lesser whirls, 
And so on to viscosity. 

These lines, a parody of a well-known verse 
by Swift, represent in all probability the only 
example of the statement of a fundamental 
physical principle in doggerel. There is ample 
room in the atmosphere for whirls (eddies) that 
are quite large, at least in their horizontal 
dimensions. Between the largest of these (pos- 
sibly comparable to the scale of great cyclonic 
storms) and the smallest (the very small scale 
of viscous dissipation), there is a wide range of 
eddy sizes available for the eddy-energy cas- 
cade process described so neatly by Richard- 
son's rhyme. In a sufficiently restrictedportion 
of this size range, the turbulence properties 
must be independent of both the manner of 
energy supply to the large-scale eddies and 
the manner of eddy-energy dissipation at very 
small scales by viscosity. Consequently the 
turbulence properties in this range must be 
determined only by the rate of eddy-energy 

transfer, E (cm2/sec3). This range of small- 
scale high-frequency eddies, lying in size just 
above the dissipative range of eddy sizes, is 
called the inertial range. The available evi- 
dence on the limits of the inertial range of 
eddy sizes in the atmosphere has been sum- 
marized by MacCready (1962). From his work 
we can conclude that eddies ranging in size 
from several times height above the surface 
down to well below the resolving power of 
ordinary wind-measuring equipment should be 
inertial in character. 

Batchelor argued that in theiner t ia l  range 
the rate of relative diffusion, dY2/dt, can de- 
pend only on the initial separation, Yo, on the 
diffusion time, t, and on the rate of eddy-energy 
.transfer per unit mass, E .  Furthermore, for t 
greater than some value t*, the diffusion rate 
will be independent of the initial separation. 
Provided this also occurs within the inertial 
.-ange, purely dimensional considerations re- 
sult in the following predictions concerning the 
rate of relative diffusion: 

- 
d Y Z K E  t 2  
dt 

(t < t*) (3.98) 

(t > t*) (3.99) 

t* m y ?  e-% (3.100) 

Integrating Eqs. 3.98 and 3.99, we get 

- 
YZ(t) -?(O) 0 2  t 2  (t < t*) (3.101) 

- 
Y2(t) a t S  (t > t*) (3.102) 

Not much credence was attached at first to 
these predictions of relative diffusion since the 
extent of the inertial range of eddy sizes was 
thought to be quite small. Until very recently 
researchers have attempted to explain the dif- 
fusion of puffs near the surface o r  the in- 
stantaneous spreading of a plume by applying 
a. 3.62. Note that Eq. 3.64 should never 
predict diffusion any faster than t2, in marked 
contrast to the prediction of Eq. 3.102. The 
reanalysis of data on puff spreading and con- 
centration from several experiments by Gifford 
(1957) has confirmed the validity of the relative- 
diffusion predictions in the atmosphere. 
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BY studying the relative accelerations rather 
than the velocities of particle pairs, Lin (1960, 
1960a) derived a relative diffusion law of the 
same form as Eq. 3.102 without, however, 
making explicit use of the inertial-range con- 
cept. Lin found that 

(3.1 03) 

where D is a quantity having the dimensions of 
energy dissipation (E), i.e., cm2/sec3. The 
proof is quite similar to that of Taylor’s dif-  
fusion theorem. Since Eq. 3.103 is not re- 
stricted to the inertial range, it is presumably 
valid over a greater spatial domain and may 
contain the explanation for Richardson’s em- 
pirical diffusion law, which can be derived 
from it. Furthermore D is a Lagrangian pa- 
rameter, i.e., i t  ar ises  in a Lagrangian de- 
scription of diffusion; whereas E is Eulerian in 
nature. Consequently Ldn’s r e s u l t  appears to be 
a conceptual improvement. Smith and Hay (1961) 
also studied relative diffusion by assuming a 
certain form of the relative-velocity correlation 
and assuming that the material distribution in 
a cluster is Gaussian. They derived a particu- 
larly simple relative-diffusion formula that 
has been useful in several field studies (see 
Chap. 4). 

It is interesting that the concept of relative 
diffusion has been employed by oceanographers 
to explain the spreading of dye patches on the 
sea surface (see the excellent summary of this 
area of research by Okubo, 1962). Relative dif- 
fusion has also been invoked indiscussing the 
spreading of sodium vapor trails in the lower 
ionosphere (e.g., Cot6, 1963, and Zimmerman 
and Chaxhpion, 1963). 

3-2.3 The Problems of Averaging 

Two distinct kinds of averages have so far 
been used in discussing diffusion: the time 
average of the instantaneous turbulent velocity 
field, on which Reynolds’ average-wind defini- 
tion was based, and the statistical, or ensemble, 
average, which was introduced in connection 
with Taylor’s diffusion theory. In addition, a 
distinction must be made between two distinct 
systems of reference before averaging can be 
performed. These are  the spatially fixed, o r  

Eulerian, system and the particle-attached, or 
Lagrangian, system. 

Eulerian coordinates can be fixed with re- 
spect to a certain location, e.g., an anemome- 
ter. Consequently the Eulerian fixed-point sys -  
tem is the natural system for experimentalists 
to use. On the other hand, the Eulerian refer- 
ence frame can be thought of as attached to 
and moving along with the mean wind. In this 
system the mean wind components vanish, and 
only the turbulent components remain. Of these, 
fluctuations in either space o r  time o r  a com- 
bination of both can be discussed. Most of the 
statistical theory of turbulence is developed in 
the Eulerian space o r  space -time system.* 

3-2.3.1 Taylor’s Hypothesis. Because the mean 
wind speed in wind-tunnel flows is very large 
compared with the root mean square of the 
turbulent fluctuations, Taylor (1938) proposed 
transforming from the experimentally conve- 
nient Eulerian fixed-point coordinates to the 
Eulerian space s c h e m e  by introducing the 
transformation x = Gt, where x is the distance 
covered in t seconds. This transformation is 
valid in .wind-tunnel work, where Ci  >> (v’2)’. In 

*A suitable designation of these various Eulerian 
frames of reference has caused meteorologists some 
difficulty. For example, it has been suggested that 
what we here call the “Eulerian time” system, in 
accordance with the usage of fluid-turbulence theo- 
reticians, should be called a “pseudo-Lagrangian” 
system (Pasquill. 1963) or a “pseudo-Eulerian” sys- 
tem (Frenkiel, 1948). Adding to the confusion. what 
is here termed the “Eulerian fixed-point” system has 
commonly been designated the “ Eulerian time” sys- 
tem in meteorological literature; Pasquill (1963), on 
the other hand, proposes calling it the ‘‘quasi- 
Eulerian” system. 

Without pretending that it solves all possible prob- 
lems of turbulence nomenclature, I urge that meteo- 
rologists use the system suggested in the text above 
for the following reasons: 
1. The terms “Eulerian” and “Lagrangian” should 

refer only to the basis of the coordinate system. If 
this i s  particle attached, the te rm “Lagrangian” is 
appropriate; the term “ Eulerian” is properly applied 
to all other cases without the need for qualifying 
prefixes of questionable relevance. 

2. The term “fixed point” unambiguously char- 
acterizes the commonest type of Eulerian reference 
o r  measurement system, that in which the measuring 
probe i s  located ab a fixed point in space. 
3. The term ‘‘Eulerian time” should mean the 

same thing to specialists in both atmospheric and 
wind-tunnel turbulence; moreover, it should be in- 
telligible a s  a special case of the term “Eulerian 
space-time,’’ which is generally understood to apply 
to a reference system that is at  rest with respect to 
the mean flow. 
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the atmosphere, where U fi: (p)’ and the mean 
wind may vary, the applicability of this trans- 
formation is not so obvious although it has been 
widely employed. It is probably valid, at least 
for turbulence fluctuations of comparatively 
high frequency . 

3-2.3.2 Eulerian-Lagrangian Averages. Before 
wind-fluctuation statistics can be applied to the 
diffusion problem, a method must be devised to 
convert these statistics, measured at a point by 
an anemometer, bivane, or other device, into the 
corresponding Lagrangian values that apply to 
the motion of a fluid particle. This problem, 
which in principle is a purely mathematical one, 
is notoriously difficult. Hay and Pasquill (1959) 
suggested as a working approximation that the 
Langrangian time, [ , is approximately linearly 
related to the time, t, of the Eulerian fixed- 
point reference system, Le., 

5 = P t  (3.104) 

where p is a dimensionless Lagrangian-Euler- 
ian time-scale ratio. This proposal is closely 
related to the result of an earlier study by 
Gifford (1955), who showed that 

where nE and nL are Eulerian fixed-point and 
Lagrangian frequencies, respectively, ref erring 
to the corresponding energy spectra. It appears 
that by an order-of-magnituge approximation of 
the turbulence intensity, (v”)‘/ii, we can ex- 
pect 2 5 P 5 12. In fact Hay and Pasquill (1959), 
on the basis of a series of eight short-range 
low-level diffusion observations, computed val- 
ues of P ranging from 1.1 to 8.5. 

Values of .p  can be computed directly from 
diffusion observations by introducing the scale 
transformation Eq. 3.104 into Eq. 3.71, 

where F,(n) is the Eulerian energy spectrum 
corresponding to velocities v’(t) measured at 
a fixed point. The integrand in Eq. 3.106 is 
evidently equivalent to the spectrum of a fixed- 
point Eulerian velocity record that has been 
averaged over a time interval t/p. If the total 

Lagrangian turbulence energy, p, were equal 
to the corresponding value for the fixed-point 
Eulerian velocities, Eq. 3.106 would be equiva- 
lent to 

(3.107) 

by the same argument that led to Eq. 3.75. 
For incompressible, stationary, and homogene- 
ous turbulence conditions, the equality was 
proved by Lumley (1957). Observations of dif- 
fusion can be compared to ?(t) as calculated 
from the Eulerian fixed-point wind-fluctuation 
moving-average variances of Eq. 3.107, (Vf)t/,3, 
for various values of t/p. Since the diffusion 
time, t, is known from the distance involved in 
the experiments (x = tit), this procedure de- 
termines P. 

In addition to data on diffusion over a length 
scale of several hundreds of meters, Hay and 
Pasquill (1959) also examined diffusion data on 
a scale of a thousand miles (Durst, Crossley, 
and Davis, 1957) and on the very small scale of 
wind-tunnel diffusion (Mickelsen, 1955). For 
both these sets  of data, the computed P values 
lie in the range 1 to 10, and so it appears that 
p “is evidently at least of the same order for 
an enormous range in the scale of turbulence” 
(Hay and Pasquill, 1959). Thus the practical 
utility of this s i m p 1 e Lagrangian -Eulerian 
transformation seems on the whole to be quite 
well established. Further comparisons of at- 
mospheric diffusion and wind-fluctuation data 
indicate that a lower limit, e.g., P = 1, should 
be employed in unstable conditions and a p 
value approaching an upper limit of 10, in 
stable conditions. Haugen (1960) has reported a 
tendency for computed B values to increase 
with distance from the source in stable condi- 
tions. Wippermann, Gburcik, and Klug (1962) 
found P values less than unity for diffusion on 
a hemispheric scale. Fortunately, as Pasquill 
(1962) pointed out, moderate departures from 
the average value of p = 4 have little practical 
effect on diffusion estimates. 

3-2.3.3 Finite Sampk-Znfinite Sarnpk Averages. It 
would seem, ideally, that samples obtained 
over very long times or throughout very large 
volumes might be s u b s t i t u t e d  for the en- 
semble averages demanded by statistical tur - 
bulence theory provided the turbulence fluid 
flow possesses stationary, homogeneous statis- 
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tical properties. Practically, however, such 
ideally long samples are not ordinarily obtained 
in the atmosphere, either because of the diffi- 
culty of making and analyzing extensive ob- 
servations or because some change in the ex- 
ternal flow situation violates the stationarity 
condition. Frenkiel (1952a) discussed the latter 
problem and provided an interesting example of 
the marked changes that can actually occur. 
The lower layers of sthe atmosphere rarely 
maintain a state of turbulence that approxi- 
mates a statistically stationary condition for 
more than, perhaps, a few hours. Even if gross 
changes in the large-scale wind field (passage 
of a front, onset of a sea breeze, etc.) do not 
occur, the duration of a quasi -stationary con- 
dition is limited to a few hours by the marked 
diurnal variation of low-level turbulence. For 
this reason it is essential to be able to form 
some idea about the effect of finite sampling 
periods on turbulence statistics. 

The effect of finite sampling on turbulence 
statistics has been studied by Ogura (1957), 
Kahn (1957), Pasquill (1962), and Smith (1962) 
in terms of correlations o r  spectra. The prin- 
cipal result of these studies, given by both 
Ogura and Pasquill, is the following expression 
for the ensemble average diffusion over a dif - 
fusion time t computed with respect to a sam- 
pling period T: 

} dn (3.108) sin2 1~ nt 
(d2 X 

As T becomes large, this equation reduces to 
Eq. 3.71. Pasquill has pointed out that the term 
multiplying F(n), amounts to a filtering of the 
spectrum, which effectively suppresses the 
contributions to diffusion from spectral fre- 
quencies much higher than l / t  and lower’than 
1/T (see Pasquill, 1962, Sec. 1-4 for a com- 
plete discussion). The interpretation of finite 
diffusion in terms of s p e c t r u m  filtering 
(Eq. 3.108) suggested to Jones and Pasquill 
(1959) the so-called “sigma meter,” a very 
useful and practical device for estimating dif- 
fusion from wind-fluctuation records (Chap. 6, 
Sec. 6-4.2.2). 

Some sort  of assumption about the functional 
form of the turbulence statistics, Le., auto- 

correlation, spectrum, or running-mean vari- 
ance, must be made before more specific theo- 
retical results can be obtained. (The reader is 
referred to Ogura’s study for an idea of what 
can be accomplished along this line.) In such 
practical applications as the analysis of diffu- 
sion experiments, the opportunity to perform 
an averaging that corresponds even remotely 
to the ensemble average usually does not exist. 
Nevertheless the above discussion gives at 
least a qualitative idea-of the effect on the 
mean-square diffusion, y2, of the relation be- 
tween diffusion time and time of sampling so 
far as departures from ideal diffusion statistics 
a r e  concerned. 

The experimentalist, of course, wants to 
know how to interpret this discussion in practi- 
cal terms. There seems to be no better guide 
than o r d i n a r y statistical sampling practice 
combined with common sense. For example, 
suppose we have a record of the transverse 
wind-velocity fluctuation, v‘, over a period of 
time equal to T from which we wish to estimate 
the Eulerian fixed-point autocorrelation, RE(t) . 
We would probably restrict t to values of about 
go or  of T at most in order to have reason- 
ably well-behaved statistics; even so our con- 
fidence in the computations of RE for t in the 
neighborhood of T/10 would be very low indeed. 
Naturally we would also require that no gross 
changes in the character of the turbulence had 
occurred during this period T that would violate 
the stationary condition. This means that the 
record should not reflect the passage of frontal 
systems, changes from land to sea breeze or 
valley to mountain wind regimes, changes from 
mechanical to convective turbulence or from 
stable to unstable conditions, o r  any other 
marked disturbance of the external forces 
driving the turbulence. 

Similarly, we might wish to interpret mea- 
surements of the path of a single floating bal- 
loon in terms of Lagrangian turbulence statis- 
tics, as has recently been proposed by Angel1 
(1963) and by Pack (1962). For this purpose we 
would probably employ segments no longer than 
‘/zo to ‘/lo of the total length of an observed 
balloon trajectory so that the estimated auto- 
correlation, R( t) ,  or diffusion, y2, for example, 
would have reasonable statistical stability. We 
would likewise make certain that none of the 
occurrences that affect the external forces 
driving the turbulence had taken place during 
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the run. Furthermore, to combine various seg- 
ments of a single trajectory statistically, we 
would have to ascertain whether or  not the 
segments were located over similar underlying 
terrain. All  these factors impose very serious 
and very real  limitations on our ability to  per- 
form reproducible turbulence or  diffusion ex- 
periments in the lower atmosphere, particularly 
at large scales, and it is essential to keep them 
in mind when planning, making, or  interpreting 
such experiments. 

3-3 ATMOSPHERIC DIFFUSION 
MODELS AND APPLICATIONS 

3-3.1 The Gaussian Plume Diffusion 
Model 

The object of all the preceding discussion 
has been to arrive at useful mathematical 
formulas describing atmospheric diffusion. The 
main theories of atmospheric diffusion have 
now been mentioned, and we have seen that the 
well-known normal, o r  Gaussian, distribution 
function provides a fundamental solution to the 
Fickian diffusion equation. The Gaussian dis- 
tribution has been assumed as a continuous- 
source d i f f u s i o n  model by Sutton (1932), 
Frenkiel (1953), and many other workers. Com- 
bination of the Gaussian assumption with one 
of the following expressions for the mean- 
square particle diffusion, 

= 2Kt (3.109) 

(3.110) 

(3.111) 

(and similar expressions for 2 and 2) forms 
the basis for most of the practical plume- 
diffusion formulas that are found in the litera- 
ture on applications. 

- Strictly s p e a k i n  g, the Gaussian diffusion 
-_ model applies only in the limit of large diffusion 

time and for homogeneous, stationary condi- 
tions, for which, we have observed, the diffu- 
sion problem may be stated in the form of the 

z- simple Fickian differential equation. Batchelor 
(1949) conjectured, however, that the Gaussian 
function may provide a general description of 

- 

average plume diffusion because of the essen- 
tially random nature of this phenomenon by 
analogy with the central limit theorem of 
statistics. Lin and Reid (1963) pointed out that 
for very small diffusion times the distribution 
of particles should take the same form as the 
wind-fluctuation distribution since the particle 
trajectories coincide with the instantaneous 
wind; in the atmosphere this approximates a 
Gaussian distribution fairly closely. Moreover 
recent experimental diffusion studies by Hay 
and P a s q u i l l  (1957), Cramer, Record, and 
Vaughan (1958), and Barad and Haugen (1959) 
indicate that the Gaussian plume formula should 
have a wide area of practical applicability in 
the atmosphere. 

The usual way of deriving average-plume- 
diffusion formulas starts with the assumption 
of an instantaneous point source of material 
diffusing in three d i m  e n  si on  s. The source 
strength is Q in grams o r  curies; the concen- 
tration is x = x(x,y,z,t); x, y, and z a re  the 
usual coordinate axes, the point (O,O,O) being a 
fixed origin; and t is the time of travel of the 
cloud. If ut is the variance of the distribution 
and if it is assumed that x = Et, which makes 
the a's functions of x, then the Gaussianformula 
for an instantaneous point source of material is 

x(x,y,z,t) = ~ ( 2 s u ; P  exp (-r2/2$ (3.112) 

where r2 = [(x - Ut)2 + y2 + z2], and it is assumed, 
for the moment, that uy = a, = uz, i.e., that the 
diffusion is isotropic. If this may not be as- 
sumed, a s  is clearly the case under stable 
meteorological conditions o r  in the presence 
of boundary effects, it is usually assumed that 
the diffusion takes place independently in the 
three coordinate directions. Then 

Equations 3.112 and 3.113 have been written 
in terms of the standard deviation symbols 
a,, a,,, and uz to stress the following point. 
According-to its derivation Taylor's diffusion 
function, y2, specifically applies to the one- 
dimensional problem. When it is used to de- 
scribe the average diffusion of a real three- - 



98 METEOROLOGY AND ATOMIC ENERGY -1968 

dimensional cloud, it correctly describes the 
diffusion of the marginal projection s n  the 
y-axis of this cloud. Likewise, and z2 must 
be regarded as applying to marginal distribu- 
tions on their respective axes. Consequently 
Eqs. 3.112 and 3.113 contain the implicit as- 
sumption that the distribution of the diffusing 
cloud is, in the terminology of mathematical 
statistics, jointly as well as separately normal. 
This is equivalent to the assumption that cross- 
product terms such as j% do not contribute to 
diffusion. As indicated in Sec. 3-2, Batchelor 
extended Taylor’s theory formally to provide a 
general theoretical expression for the diffusion 
tensor, including such terms as jfZ; but such 
terms will naturally depend on Lagrangian cor- 
relations more complicated than R(5). If we 
assume joint normality, we may write the 
diffusion equations with ut = y2, and so on. 

A further restriction to the applicability of 
Eqs. 3.112 and 3.113 in c o n n e c t i o n  with 
Eqs. 3.109, 3.110, and 3.111 follows f r o m  the 
discussion of the phenomenon of relative diffu- 
sion in Sec. 3-2. In principle these formulas 
may not be conceived as describing the spread- 
ing of a single puff of material o r  of an en- 
semble of puffs relative to their centers of 
mass. Application of these equations to such 
puff, o r  cluster, spreading is valid only when 
the average diffusion is calculated over an 
ensemble of puff experiments relative to a 
fixed axis. By Eq. 3.64 the maximum rate of 
average diffusion from a fixed axis is propor- 
tional to t2, but by Eq. 3.102 the average diffu- 
sion about the center of mass of a puff can be 
as great as ts when it occurs in the inertial 
range. Consequently, in principle, quantitative 
e r ro r s  can result if the two phenomena a re  
confounded. In fact data s u m m a r i z e d  in 
Fig. 4.38 show that puffs do have a somewhat 
greater growth rate, particularly at shorter 
distances (Le., at smaller times), than do 
plumes (Fig. 4.21). 

The method of obtaining a continuous-point- 
source diffusion formula from Eq. 3.112 or 
3.113 proceeds according to the principle of 
superposition. The plume is regarded as re- 
sulting from the addition of an infinite number 
of overlapping averaged puffs, carried along the 
x-axis by the mean wind, U, asin(a) of Fig. 3.9. 
Each puff is in reality composed of the average 
over an ensemble of puffs which have diffused 
for a time t and consequently have reached the 

position (x,O,O) . Mathematically this corre- 
sponds to integration of Eq. 3.113 with respect 
to t from 0 to a. This integration is not con- 
venient because the values of u, in general, 
depend on t and hence on x because x = Et. As a 
practical matter, diffusion along the x-axis is 
always neglected by comparison with the gross 
transport along the x-axis by the mean wind, 
producing what Frenkiel (1953) has termed the 
spreading-disk diffusion model for a continuous 
point source, (b) of Fig. 3.9. With this simplifi- 

I 

d x = G  d t  

Fig. 3.9-(a) Schematic formation of plume from- 
superposition of i nd  i v i d u a 1 averaged elements. 
(b) Schematic spreading-disk plume model obtained 
by neglecting x-diffusion. (c) Appearance of naturally 
occurring plumes, with “real” puff elements indi- 
cated. (d) Fluctuating plume model. 
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cation integration of the equation can readily be 
carried out: 

where 0, (3)' and uz = (2)'. The continuous- 
source strength, &', is in grams o r  curies per 
second, and the quantities a, and a, can now be 
regarded as functions of x. 

Since most isolated continuous sources are 
located at o r  near the earth's surface, it is 
necessary to account for the presence of this 
physical barrier to the flux. This has usually 
been done by the technique, borrowed from 
heat-conduction theory, of assuming an image 
source located symmetrically, with respect to 
the ground plane, to the actual source. The 
result is 

where h is the elevation of the source above the 
ground plane. If the receptor is located at the 
ground level (z = 0), then 

- 
- _ -  X -  exp [-(2 + ")I (3.116) Q' su,u,ii 202, 20: 

which is the form of the Gaussian plume model 
most usually used. 

By combining Eqs. 3.109 through 3.111 with 
Eq. 3.114, we can obtain the continuous-point- 
source diffusion formulas of Roberts, Frenkiel, 
and Sutton. The same generalized Gaussian 
plume equation, moreover, serves as auseful 
interpolation formula for the interpretation of 
field diffusion trials, as in Cramer's studies 
(1957, 1959). Cramer combined Eq. 3.116 with 
the assumed power laws 

u, a x p  (3.117) 

and 

and obtained best fits to the Prairie Grass and 
Round Hill  diffusion data (Chap. 4, Sec. 4-4.2.1). 

Barad and Fuquay (1962) compared several 
d e t  a i  1 e d plume-concentration measurements 
made under very stable atmospheric conditions 
with the bivariate normal distribution function. 
In their study the usual implicit assumption, 
discussed previously, that the distribution of 
diffusion in the y- and z-directions is jointly 
as well as  separately normal, was not made. 
Their results indicate that the plume distribu- 
tion was not jointly normal in this extreme 
case but that the vertical and horizontal distri- 
butions are separately normal. 

3-3.2 A Fluctuating Plume Model 
The spreading-disk plume model of Eq. 3.116 

describes diffusion averaged over some period 
of time. Practical experience indicates that 
this period of time is at least several minutes 
(see Fig. 3.8). The appearance of real plumes 
is quite different from that predicted by this 
assumed model, especially during unstable con- 
ditions when the entire plume, at any instant, 
meanders or  fluctuates about some mean posi- 
tion, as in (c) of Fig. 3.9. Accordingly, a 
fluctuating plume model has been proposed 
(Gifford, 1958, 1959a) which differs from Eq. 
3.114 in that the centers of the disk elements 
are conceived of a s  distributed a t  random 
around their mean position, (d) of Fig. 3.9. 
The basic Gaussian equation for the instanta- 
neous concentrations is 

In this equation D, and D, a re  distances to the 
center of the instantaneous plume from the axis; 
4, and 4 are  assumed also topossessGaussian 
distributions with variances 3. As defined in 
Sec. 3-2, Y2 is a relative diffusion parameter, 

The mean value of x/Q', assuming 2 = = 
$, is found to be 

[ - 2 ( $ t  3) ] (3.120) 



where r = (y2 + z2)’. A similar result was ob- 
tained by Hilst (1957). Extension to the case 
where # @ is straightforward. The mean 
value of x/Q’ has exactly the same form as 
Eq. 3.114, but the diffusion has been separated 
into a mean and a fluctuating part. In addition 
to the mean values, more complex statistics, 
in particular the variance and the distribution 
of x/Q’, can be calculated (Gifford, 1959a). 
Further results based on this model have been 
presented in p a p e r s  by Moore (1963) and 
Scriven (1965). 

100 METEOROLOGY AND ATOMIC ENERGY -1968 63-3.3 

principle. It should be clearly understood, how- 
ever, that anomalies in diffusion data, sucn as 
those arising from the presence of marked 
wind shear (Barad and Fuquay, 1962) or  the 
irregular departures from smooth concentra- 
tion contours noted by Elliott (1959), are not 
to be explained as an effect of finite speed of 
diffusion. Because Gaussian plume models have 
proved to be, by and large, reasonably success- 
ful in explaining observed concentration pat- 
terns, it seems reasonable to continue to em- 
ploy them in practice. 

3-3.3 Remark on Non-Gaussian Diffusion 
Models 

The virtues of the Gaussian distribution 
function are considerable, and the temptation 
to employ it exclusively is correspondingly 
great. Statistically it is completely determined 
by its second moment, i.e., by 2. It has many 
highly useful purely mathematical properties; 
for instance, it possesses a self-reciprocal 
Fourier transform. Moreover, as noted earlier, 
it agrees reasonably well with much, although 
not all, of presently available atmospheric 
diffusion data. Non-Gaussian diffusion distri- 
butions arise from the various K theories and 
also from the statistical diffusion theories of 
Goldstein, Monin, and Davies mentioned briefly 
in Sec. 3-2. It is natural to ask whether these 
may not be better than the Gaussian model 
discussed at some length in the previous sec- 
tion. For example, we might ask whether non- 
Gaussian diffusion models agree better with 
diffusion observations. Elliott (1960) compared 
the Prairie Grass data with Calder’s non- 
Gaussian K theory diffusion model and with 
Sutton’s Gaussian model. His  conclusion is that, 
although Sutton’s model gives a slightly better 
fit to the Prairie Grass data, the differences 
are quite small from any practical point of 
view. Pasquill (1962) also showed that the re -  
sulting plume center -line concentration formu- 
las of Calder’s model and Monin’s (1959) 
limited-diffusion v e 1 o c i t  y model, differ but 
little. 

On the other hand, the basic theoretical point 
emphasized by Monin (1959) and others, namely, 
that the speed of a real diffusion event like the 
spreading out of a smoke plume must neces- 
sarily ‘be less than some finite value, such as 
the speed of sound, is certainly correct in 

3-3.4 Estimation of Diffusion Coefficients 
For practical use to be made of diffusion 

formulas numerical values for the diffusion 
coefficients uy and u, must be determined. 
Various theoretical expressions were derived 
for this purpose, particularly Eqs. 3.64, 3.68, 
3.75, 3.79, and 3.81. Equation 3.64, corre- 
sponding to the limiting case of Taylor’s for- 
mula for small diffusion times, has been used 
by Frenkiel (1952, 1952a, and 1953). It un- 
doubtedly gives reliable predictions for diffu- 
sion times up to at least a few minutes. At the 
opposite limit Eq. 3.68, corresponding to the 
case of large diffusion times, has been used to 
solve the problem of diffusion on scales ranging 
from continental to global (Machta, 1958). Val- 
ues of K appropriate to various scales were 
given in Table 3.2. Equations 3.79 and 3.81, 
Sutton’s model, have frequently been applied 
in reactor-hazard analyses and air-pollution 
studies, and there has been considerable ex- 
perience with Sutton’s diffusion coefficients. 
The theoretical limitations of this model have 
been discussed in Sec. 3-2, and examples 
of observed parameter values are noted in 
Chap. 4. 

Equation 3.75, the moving average variance 
method, seems a promising development in that 
(1) it specifies diffusion coefficients by a de- 
tailed analysis of atmospheric turbulence mea- 
surements, (2) it does not involve adjugtable 
empirical constants, (3) it is compar&vely 
free from debatable physical assumptl_otk, and 
(4) it is not, in principle, limited to a particular 
range of diffusion times. It is, howeveelimited 
as are all applications of Taylor’s theorem, 
Eq. 3.62, to stationary, homogeneous tuiulence 
conditions. The condition of homogeneity in 
particular limits its effectiveness in estimating 
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vertical diffusion from sources neartheground. just these 10% values. The 10% value is only 
It also appears practically desirable to be able an estimate. It may or  may not apply to smoke 
to estimate diffusion coefficients from meteoro- plumes in general; the point has never been 
logical data more universally available than studied exhaustively. Moreover, since many of 
detailed wind-fluctuation measurements or  even the clouds and plumes that interest us are in- 

Table 3.3-RELATION OF TURBULENCE TYPES 
TO WEATHER CONDITIONS 

A- Extremely unstable conditions 
B- Moderately unstable conditions 
C- Slightly unstable conditions 

D- Neutral conditions* 
E- Slightly stable conditions 
F- Moderately stable conditions 

Nighttime conditions 
Thin overcast 

o r  ’44, 5 3/* 
Surface wind Daytime insolation 
speed, m/sec Strong Moderate Slight cloudinesst cloudiness 

<2 A A- B B 
2 A-B B C E F 
4 B B- C C D E 
6 C C- D D D D 
>6 C D D D D 

~ 

*Applicable to heavy overcast, day o r  night. 
tThe degree of cloudiness is defined as that fraction of the sky above 

the local apparent horizon which is covered by clouds. 

to make diffusion estimates based on only a 
general knowledge of a location. The various 
series of field-diffusion experiments described 
in Chap. 4 provide considerable guidance for 
such estimates. 

3-3.41 Pasquill’s Dqjudion Curves. On the basis 
of available data, including the Prarie Grass 
experiments, and guided by theoretical ex- 
pectations, Pasquill suggested in an unpub- 
lished note in 1958 a practical scheme for 
the estimation of diffusion which is particularly 
suitable for practical applications. The sub- 
stance of this note is contained in the papers 
by Meade (1959, 1960) and by Pasquill (1961, 
1962). The general idea can, as well, be ex- 
pressed in terms of uy and 0,; moreover it can 
be related to results derived earlier in this 
chapter. 

The visible edge of a diffusing cloud has 
often been assumed to coincide roughly with the 
lateral point at which the concentration falls 
to 10% of its axial value and could, in any event, 
be defined as this point, as was  done by Pasquill 
(1961) and Holland (1953), for example. For 
smoke screens the visible smoke-plume edge 
is approximated by this figure (Gifford, 1959). 
Pasquill and Meade define a smoke-plume ele- 
vation, H, and an angular spread, 6, which are  

visible, there appears to be no special virtue 
to this definition. If, instead, we define plume 
concentration distributions in terms of their 
standard deviations, we find, in Pasquill’s nota- 
tion, that, 

H = 2.14 uz (3.121) 

and, for fairly small values of 8 ,  

4.28 ~y 
X 

(3.122) 

The numerical coefficient 2.14 is just the 10% 
ordinate of the normal e r ror  curve. 

Figures 3.10 and 3.11 exhibit families of 
curves of uy and uz for various stability cate- 
gories, based on the values of H and 8 given 
originally by Pasquill. The manner of relating 
these curves to prevailing conditions of average 
wind speed and to the estimated radiation bal- 
ance is set out in Table 3.3, which was also 
presented in the papers by Pasquill and Meade. 
An evaluation of Eq. 3.116 for various values 
of stack height, employing the uy and u, values 
of Figs. 3.10 and 3.11, has been carried out by 
Hilsmeier and Gifford (1962) (these results 
are reproduced in Sec. A.3 of the Appendix). 
The studies by Beattie (1961), Couchman(l961), 
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Fig. 3.10 -Lateral diffusion, u,, vs. downwind distance from source for Pasauill's 
turbulence types. 

and Bryant (1964) have also employed these 
values of u in plume diffusion analyses. 

Sections 4-4.3 and 4-4.4 of Chap. 4 indicate 
that Pasquill's curves fi t  the experimental data 
collected since the Prairie Grass experiments 
quite well. Furthermore the experimental data 
discussed in these sections demonstrate that 
the standard deviation of the horizontal wind 
direction, Ue, for a short averaging time and 
for the sampling times used in these experi- 
ments (10 min to 60 min) can be related em- 
pirically to the measured values of plume width 
or to normalized average concentration o r  ex- 
posure from continuous sources. On the basis 
of these data, Pasquill's stability categories 

can be relabeled approximately in terms of 
measured values of ue as follows: 

Pasquill stability categories 

A, extremely unstable 25.0' 

C, slightly unstable 15.0" 

E, slightly stable 5.0" 
F, moderately stable 2.5" 

B, moderately unstable 20.0" 

D, neutral 10.0" 

Pasquill's method of estimating diffusion is 
well suited to field use because a simple re- 
cording wind vane and anemometer erected at 
a proposed site can, when used with the wind- 
direction range theory (Chap. 2, Sec. 2-6.2.3), 
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Fig. 3.11 -Vertical diffusion, a,, vs. downwind distance from source for Pasquill's 
turbulence types. 

furnish climatologically useful estimates of 
ue rapidly. Only simple manual data processing 
is necessary. The wind-measuring system will, 
moreover, furnish data for other climatological 
wind statistics for the site, such as wind roses, 
and will also serve as the necessary wind- 
velocity monitoring equipment for permanent 
installation when the reactor or other plant is 
in operation. 

3-3.42 Quantitative Use of Smoke Observations to 

'Determine Diffusion Coefficients. Visual and photo- 
graphic observations of smoke plumes and 
puffs have always appealed to workers in at- 
mospheric diffusion as a useful research tool. 
Characteristically Richardson (1920) worked 

with time-exposure photographs of smoke puffs 
very early in the history of diffusion study. 
The use of smoke as a diffusion index continues 
to be widespread to this day. Quantitative in- 
terpretations of smoke observations (Sutton, 
1932, Holland, 1953, Kellogg, 1956, Frenkief 
and Katz, 1956, Gifford, 1957, 1959, Saissac, 
1958, Inoue, 1960, and Hogstrom, 1964) have 
usually exploited Roberts' (1923) opacity theory 
in which the visible edge of the smoke plume 
or puff is supposed to represent a constant 
threshold density of smoke particles along the 
line of sight. 

The total density of smoke particles is 
obtained, according to the opacity idea, by inte- 
gration of the concentration-distribution equa- 



104 METEOROLOGYAND 

tion along a line of sight. For the generalized 
Gaussian plume distribution, Eq. 3.116, assum- 
ing that the plume is being viewed from a 
fairly great vertical distance, this procedure 
would give 

Q' exp (-y2/2u3 dz = 2nuyu,ii 

If there is a fixed threshold value of the 
integrated concentration, x,, corresponding to 
the visible plume edge and located a distance 
y,(x) from the plume axis, then it can be shown, 
using the condition for a maximum value, that 

(3.124) 

where ym is the maximum Value Of y e  b). Then 

where e is the base of natural logarithms. 
Figure 3.12 illustrates the meaning of the vari- 
ous lengths used. 

An equation equivalent to Eq. 3.125 for the 
case of plume observations made at a great 
horizontal distance, following a line of sight 
integration in the y-direction, is 

Corresponding equations for smoke puffs based 
on Eq. 3.125 have also been given (Gifford, 

Fig. 3.12-Meaning of various quantities used in 
smoke-plume analysis. 
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Fig. 3.13-Plot of the equation In p = ap. 

1958). All these transcendental equations cdn 
be solved for u,,(xfa) or u,(x/o) if there are  
visual o r  photographic observations of smoke 
plumes from which ye and z,, the plume half- 
width and half-height, can be determined. The 
computations a re  facilitated by Fig. 3.13, which 
is a graphical solution of the equation In p = 
ap. No assumption about the analytical form of 
ay or  uz is necessary. 

A simpler procedure when, as in the smoke 
s t u d i e s  by Sutton (1932), Kellogg (1956), 
Frenkiel and Katz (1956), Holland (1953), Moses 
and Clark (1956), and others, one is willing to 
choose in advance a specific form for the dif- 
fusion function, was suggested by Gifford (1959). 
It is to combine, for example, Eq. 3.109, 3.110, 
or  3.111 directly with Eq. 3.124. Systematicex- 
ploitation of this idea leads to a number of 
particularly simple pairs of formulas for diffu- 
sion coefficients: 

(3.128) 

(3.129) 
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2 c; = 2xg (2) 
c: =2x+) 2 

(3.130) 

(3.131 

(3.132) 

In these equations + is the total plume length 
and xm is the distance downwind from the 
source at which the maximum plume width o r  
height, ym o r  z,, occurs. The utility of these 
formulas lies in the fact that many of the sig- 
nificant plume dimensions that need to be 
determined from visual observations o r  photo- 
graphs appear as ratios and so do not need to 
be measured absolutely but only relatively; 
and certain of the remaining distances, e.g., 
xT and x, in Eqs. 3.129 and 3.132, appear as 
nth powers (roughly as fourth roots) and con- 
sequently need only to be approximated. A pro- 
cedure somewhat similar to this but involving 
the K theory was used by Richardson and 
Proctor (1925), and further interesting results 
were derived by Inoue (1960, 1961), using an 
equivalent method in connection with his simi- 
larity theory of diffusion. 

Examples of diffusion -coefficient determina- 
tions at nuclear-reactor sites by the ratio 
method, i.e., by one of Eqs. 3.127 through 3.132, 
have been given by Bowne (1961), Culkowski 
(1961), Gifford, C u l k o w s k i ,  and Hilsmeier 
(1963), and Hewson, Gill, and Walke (1963). 
When this method is applied to plume photo- 
graphs, some form of time averaging of the 
smoke-plume observations is desirable. Time- 
exposure photographs of plume s through neutral 
density filters were described by Culkowski 
(1961), who has experimentally determined the 
necessary film reciprocity factors for quite 
long e x p o s u r e  times. Bowne (1961), Shorr 
(1952), Saissac (1958), Richardson (1920), and 
Inoue (1960) have also reported long-time- 
exposure smoke-plur,,e photographs. It appears, 

on the basis of Culkowski’s example, that a 
close approximation to the effect of time av- 
eraging can be achieved by estimating the 
smoothed envelope of the instantaneous photo- 
graph and basing the plume measurements on 
this envelope. In view of its real simplicity 
and economy and the measure of agreement 
with direct diffusion measurements reported 
in various of the above references, the ratio 
method seems a promising way to obtain plume 
diffusion coefficients. 

3-3.5 Equations for Calculating 
Concentration and Exposure 

The equations presented in the first edition 
of Meteorology and Atomic Energy for dealing 
with various practical diffusion problems that 
arise in reactor-hazard analysis and in other 
air-pollution problems were based on the widely 
used diffusion model formulated by Sutton. A 
list of these equations appears in the Appendix 
Sec. A.4. Many of these equations were first 
presented by Holland (1953). There is a need 
for a corresponding list of diffusion equations 
b a s e d  on the simple G a u s s i a n  formula, 
Eq. 3.116. In this section a number of such 
equations will be considered. Most can be con- 
verted to the equivalent Sutton form by means 
of Eqs. 3.79 and 3.81. 

3-3.5.1 Characteristic Continuous-source Plume Equa- 
tions. Equations for the five characteristic 
continuous -source plume types described in 
Chap. 2, namely, fanning, fumigation and trap- 
ping, looping, coning, and lofting, can be de- 
veloped as follows. 

3-3.5.1.1 Fanning. Fanning is character- 
ized by very slow v e r t i c a l  diffusion during 
stable conditions. Concentrations can be esti- 
mated from Eq. 3.116 with u values corre- 
sponding to stable conditions, for which the 
horizontal diffusion, cry, considerably exceeds 
the vertical diffusion, o z .  Figure 3.14illustrates 
(a) fanning that commenced a very short dis- 
tance from the source and (b) fanning &at did 
not begin for some considerable distancgzom 
the source. 

3-3.5.1.2 Fumigation and Trapping. Hew- 
son and Gill (1944) introduced the term “funli- 
gation” to describe the rapid mixing doxward  
to the ground of material that has accumulated 
aloft during a period of atmospheric stability, 
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Fig. 3.14-Two examples of plumes released under 
very stable conditions. (a) The plume encountered a 
layer of wind shear and exhibited the typical fanning 
structure. (Courtesy of Brookhaven National Labora- 
tory) (b) A plume released into a stable layer with 
little wind shear and almost no evidence of meander- 
ing motions. In the upper left-hand corner of the 
photograph (about 6.0 km from the source), a sudden 
breakdown of the plume into the more typical fanning 
structure can be seen. (Courtesy E.  W. Hewson,G. C. 
Gill, and G. J. Walke) 

an occurrence that is common after dawn when 
the nocturnal temperature inversion is rapidly 
dissipated by warming due to solar heatingof 
the ground. Concentrations due to the fumiga- 
tion effect can be estimated by integrating 
Eq. 3.115 with respect to z from 0 tom and 
then considering the material in the cloud to be 
distributed uniformly through a layer of height 
hi. The equation for the fumigation concentra- 
tion, X F, is accordingly 

This equation can also be used to describe 
the trapping condition during which the effluent 
diffuses rapidly below the base of an elevated 
inversion but is prevented by the stable layer 
from diffusing to greater heights. For example, 
hi could be taken a s  the height of the base of a 
persistent inversion aloft, such as the West  

Coast (California) subsidence inversion. Or 
h, might be the height of the topof the planetary 
boundary layer o r  of the base of some other 
distinct inversion layer, such as a frontal in- 
version. Scorer (1959) says that a stable layer 
approximately equal to the elevation of ridge 
tops often marks the upper boundary of smoke 
diffusion in valleys; hi could be identified with 
this level. 

In the fumigating plume shown in Fig. 3.15, 
fumigation occurred within the stable air of'a 
lake breeze, a situation analagous to that which 
might occur during a sea breeze. Plume trap- 
ping from an open burn and from a s tackis  
shown in Fig. 3.16. Another instance of trap- 
ping, in this case of the combined detritus from 
natural and man-made processes operating 
over a large area, is shown in Fig. 3.17. 

By considering both the ground and the in- 
version base to be reflecting barriers, Hewson, 
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Fig. 3.15-An illustration of a fumigating plume near the shore of Lake Michigan. The plume was embedded 
in a very stable air flow originating over the lake during late afternoon on a summer day. As the cool stable 
air moved inland, it was heated from below. and a fumigation pattern was  created. (Courtesy E. W. Hewson, 
G. C. Gill, and G. J. Walke) 

Gill, and Bierly (1959) derived the following 
formula for trapping: 

(3.134) (-2hi - h)2 
+ [- 2 4  1) 

where hi is the height of the inversion base 
and the result is expressed in terms of uy and 
a, instead of the corresponding Sutton formula 
as given by these authors. This equation is a 
special case of a more general formula de- 
veloped earlier by Hewson, which contains an 
infinite series of exponential terms corre- 
sponding to the plume reflections. 

A similar result was developed by Albracht 
(Lindackers, Bresser, and Albracht, 1965). 
Gifford (1961), following proposals by Meade 
(1959) and Pasquill (1961), suggested that, in 
the event vertical diffusion is restricted by a 
strong inversion lid at  some height hi, diffusion 
could be computed directly from Eq. 3.116 by 
assuming that the value of az involved is con- 
stant at distances beyond the point where uz= 
hi/2.15 SJ hi/2. This suggested treatment of 
trapping, offered purely on the basis of its 
simplicity, agrees very closely with Eq. 3.133, 
differing only by a small constant factor, at  all 
downwind distances greater than a few stack 

heights. There are, as Lindackers, Bresser, 
and Albracht (1965) have shown by carrying 
out the calculations, differences between the 
results of trapping calculations based on such 
simple assumptions as these and the results 
based on the assumption of multiple reflections 
of the plume. Without experimental evidence it 
is not possible to make a choice between these 
alternatives now. 

Two problems may be encountered in the 
application of Eq. 3.133 or  Eq. 3.116 to trap- 
ping or  fumigation calculations. First, there is 
no direct indication of the minimum distance 
from the stack beyond which these equations 
may be applied. Judging by qualitative discus- 
sion in the literature (for example, Bierly and 
Hewson, 1962, and Pooler, 1965), there seems 
to be some uncertainty about this point although 
there is no obvious reason why the distance 
should exceed a few stack heights. The second 
problem is encountered in the attempt to specify 
a value for uy. During the fumigation process 
the plume is mixed through the increasingly un- 
stable layer below the inversion. Therefore the 
effective value of uy to be used in estimating 
fumigation concentrations should probably be 
somewhat greater than the inversion value to 
account for this augmented mixing. 

3-3.5.1.3 Looping. L o o p i n g  is the most 
spectacular of plume conditions in appearance. 
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Fig. 3.16-Two illustrations of the trapping of smoke from an isolated source within the planetary 
boundary layer. (Courtesy D. H. Slade and W. M. Culkowski) 

Large loops of the plume are carried down to 
the ground and cause momentary bursts of high 

- concentration, only to be replaced by effluent- 
- free air as corresponding loops go aloft. The 

average concentration during plume looping 
probably corresponds to a Pasquill type A con- 
dition and can thus be estimated from Eq. 3.116. 
Figure 3.18 illustrates looping. Holland (1953) 
suggested that the maximum ground concentra- 
tion during looping, X,,,. , could be estimated 
from the usual plume equation expressed for 

- the axial concentration, y = 0, due to a ground- 
level source, h = 0, where, however, the down- 
wind distance from the source is redefined as 
X J  = (x2 + h2fh, x being the actual distance andh, 
the source height. Expressed in terms of 
Eq. 3.116, Holland's equation for the maximum 
concentration during looping is 

\ 

(3.135) - - Q' 
xmax*- T U,(X') uz(x') ii ' 
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Fig. 3.17-Trapping of smoke and haze, which has originated over a broad area,  beneath the West Coast 
(California) subsidence inversion. (Courtesy W. M. Culkowski) 

Because of the great variability of instan- 
taneous concentration during looping,. it is help- 
ful to be able to estimate the peak to average 
concentration ratio. This can be done by means 
of the fluctuating plume model described in 
Sec. 3-3.2. In the fluctuating plume model, the 
mean-square diffusion, g, is separated into 
two portions: a part due to the instantaneous 
spreading out of the plume, ?(t), and a part 
attributable - to the m e a n d  e r i n  g or looping, 
D2(t), i.e., 

?(t) = F(t) + S( t )  (3.136) 

It can be shown (Pasquill, 1962,and Gifford, 
1960) that for large travel times D2 approaches 
some constant value but, according to Batchelor 
(1952), Y2 will increase indefinitely with time. 
This follows from Eq. 3.97. From the ratio of 
Eq. 3.119 to Eq. 3.120, it is possible to com- 
pute the peak to average concentration ratio. 
The peak concentration occurs when y = D, and 
z = D,, Le., when the receptor is at the center 
line of the instantaneous plume. The result is 

Z2 + -~ --] (3.137) 
2(Y2 + D2) 

If y = z = 0, i.e., on the mean plume axis (or, 
equivalently, at the ground at  a moderate dis- 
tance downwind from the source), 

- 
(3.13 8) P. ?+;;2 D2 

A -  - 
- 1 s = > 1  

Y2 Y2 

Since i7 -constant, P/A - 1 for large travel 
times. 

The effect of stack height on P/A depends on 
the term exp [z2/2(? + $)I, which involves the 
total vertical plume diffusion (9 + 3) = z2. 
This exponential can be estimated, for example, 
from Eq. 3.81 or by reference to observations. 
For stack heights of interest, reasonable val- 
ues of vertical diffusion indicate that P/A val- 
ues at the ground fairly near the stack base 
may be one o r  two orders of magnitude greater 
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Fig. 3.18 -Two illustrations of looping plumes observed at the Brookhaven National Laboratory. 
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than those on the mean plume axis. Various 
observations of P/A as a function of distance 
from the source, the relative level of source 
and receptor, and the times over which the 
peak and average concentrations were obtained 
are discussed in Chap. 4. 

In p r i n c i p l e  the theoretical results of 
Sec. 3-3.2 on fluctuating plumes and the above 
paragraphs apply equally to other diffusion 
conditions and not just to looping. The looping 
cnndition, however, makes visually evident the 
s e p a r a t i  on  between plume spreading and 
meander. 

3-3.5.1.4 Coning. Coning is the straight- 
forward, relatively uncomplicated case of dif-  
fusion in a neutral or  slightly stable atmo- 
sphere and is handled by means of Eq. 3.116, 
evaluated for the Pasquill type C or  D condi- 
tions. Figure 3.19 s h o w s  an instantaneous 
photograph and a time exposure of a coning 
plume. 

3-3.5.1.5 Lofting. Since aground-basedin- 
version prevents material from reaching the 
surface, lofting is of practical importance 
largely as the possible precursor of a fumiga- 
tion. A reasonable scheme for estimating con- 
centrations in the lofting plume might simply 
be to treat  the inversion base as the level z = 0 
and to apply Eq. 3.116 (with h = 0 to obtain con- 
centrations along the plume center line) al- 

though there are  no concentration observations 
confirming this  suggestion. 

3-3.5.2 Volume-source Formulas. Because of the 
possible emission of airborne radioactive ma- 
terial through leaks in a reactor-containment 
structure, Eq. 3.116 should be modified for the 
effect of a volume source. In a reactor-hazard 
analysis, the source generally consists of some 
fraction of the fission products contained in the 
reactor core, and the source material is as-. 
sumed to be distributed uniformly throughout 
the volume of the building enclosing the reactor. 
For many power reactors the enclosure is a 
large pressure-tight dome designed to have, a t  
most, some specified leakage rate under the 
postulated a c c i d e n  t conditions. The source 
strength, Q', is defined, but the location of the 
leak and the effect of the building on the source 
geometry must be determined. 

Reasoning that a reactor building must have 
a turbulent wake in its lee, Fuquay (1960) sug- 
gested treating the building effect as an initial 
dilution factor, DB, 

DB = cAQ (3.139) 

where A is the cross-sectional area of the 
building normal to the wind. In other words, 
any material escaping from the containment 
building is assumed to be dispersed rapidly 
into a volume equal to c times the building 
cross-sectional area times the wind speed. The 

Fig. 3.19-(a) Coning plume using an exposure of y25 sec at the meteorological tower of the Big Rock Point 
reactor site near Charlevoix, Mich. (b) The same coning plume photographed with a time exposure of 5 min. 
(Courtesy W. M. Culkowski) 
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factor c represents an estimation of the rela- 
tion of the cross-sectional area of the building 
to the size of observed pressure wakes, and 
its exact numerical value will have to be de- 
termined by suitable e x p  e r i m  e n t  s. Gifford 
(1960) suggested that, as a reasonable estimate, 
1/2 5 c 5 2. The reason for choosing these par- 
ticular bounds, which were actually no more 
than a guess, was to provide, in the absence 
of suitable experimental data, usable numbers 
for concentration estimations. According to 
Barry (1994), who made an interesting and use- 
ful summary of the results of a number of re- 
cent experiments, studies with wind-tunnel mod- 
els have suggested values of c near thelower of 
these limits, namely, c = 0.50 to 0.67. Of 
course: it is not impossible that larger values 
of c may be found if suitable full-scale at- 
mospheric experiments a re  performed, par- 
ticularly in unstable light-wind conditions. A 
comprehensive s u m  m a r y of relevant wind- 
tunnel measurements of building diluti0'- ' *ects 
is given in Chap. 5. A few atmospherii A- 
ments have been reported by Islitzer (1965) 

and J. E. Martin (1965). A photograph from 
Martin's paper, Fig. 3.20, illustrates the build- 
ing effect on the plume. 

The building dilution factor, D,, is combined 
with the atmospheric dilution factor, D, = Q'/x,  
in a way similar to Fuquay's (1958) handling 
of stack dilution, 

Combining Eqs. 3.116, 3.139, and 3.14G, one car  
reasonably assume that, a s  suggested by David- 
son (1965), 

where E, and 2, are total diffusion factors 
given by 

u xy = (0; + cA/r) 

w C = (02, + cA/r) (3.142) 

Fig. 3.20-A photograph of a smoke plume released from the top of a building during neutral conditions. 
(Courtesy J. E .  Martin, 1965). 
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Equation 3.141 resembles the volume-source 
treatment proposed by Holland (1953) in that 
the volume effect is taken into account by 
adding a correction to the diffusion term of a 
Gaussian distribution. Holland achieved much 
the same result by defining a “virtual point 
source” that would produce a Gaussian plume, 
or  puff, having a “width” equal to that of the 
actual volume source at the initial point. 

Various other initial volume-source distri- 
bution functions were compared by Gifford 
(1955a) with the Gaussian initial distribution. 
The conclusions from this study are that the 
Gaussian initial volume leads to much simpler 
diffusion expressions and that it is conserva- 
tive; that is ,  it leads to downwind concentra- 
tions slightly greater than for other volume- 
source distributions that were considered. 

3-3.53 Crosswind Integrated Concentration. The 
crosswind integrated concentration, xcwI, from 
a continuous source is obtained by integrating 
Eq. 3.116 with respect to y from --m to *: 

This equation is particularly useful as an in- 
terpolation formula in connection with field- 
diffusion trials because it contains only one 
diffusion parameter, u,. The same equation 
describes the concentration due to a continuous 
infinite crosswind line source (source strength, 
QL), which might be realized in practice by, 
for example, a heavily traveled highway. Some 
discussion of the problem of a line source of 
finite length has been presented by Elliott and 
Barad (1964) among others, and the problem of 
a crosswind line source oriented at some angle 
to the mean wind direction was discussed by 
Barad, Haugen, and F’uquay (1960). Equation 
3.143 has also been used as an approximation 
for an area source (Turner, 1964). 

3-3.5.4 Longperiod Average Concentration. Over a 
period of time, the direction of the mean 
wind shifts. The wind rose, which gives the 
joint wind-speed and direction-frequency dis- 
tribution, is therefore a useful indicator of the 
characteristic features of the climate of a 
particular place. To obtain an estimate of the 
average concentration over a period that is 
very long compared with that over which the 
mean wind is computed, multiply the integrated 

concentration formula, Eq. 3.143, by the fre- 
quency with which the wind flows toward a 
given sector and divide by the width of that 
sector a t  the distance of interest: 

- 0.01 f Q’ 
X long-term av. 

x exp (-5) (3.144) 
where the frequency, f,  is expressed in per- 
cent, 2nx/n is the sector width, and &’, u,, and 
ii are  averages over the long time period. An 
expression equivalent to this forms the basis 
for the calculations by Meade and Pasquill 
(1958) of annual SOz concentrations in the 
vicinity of the Staythorpe Power Station (using 
the corresponding Sutton formula) and is simi- 
lar to one proposed by Culkowski (1960) (see 
also Lowry, 1951) 

3-3.5.5 Maximum Concentration and Its Distance from 
the Continuous Elevated Source. Because uY and a, 
a re  not necessarily the same functions of x, 
in general, it is not possible to obtain simple 
explicit formulas for the maximum ground 
concentration and its distance from the source. 
However, in the special caseu,=a,, Le., for 
neutral or slightly unstable conditions, these 
maximum values can be specified. Differenti- 
ating Eq. 3.116 with respect to x and setting 
the result equal to zero in the usual way gives 

(3.145) 

when h2 = 2 4 .  In the slightly more general case 
characterized by oy = ao,, doy/& = adu, /dx, Le., 
where the vertical and horizontal cloud growths 
are simply proportional, which again occurs 
when h2 = 2u:, the result is 

(3.146) 

Because the maximum concentration occurs 
when h = 2Haz, this formula may also be written 
in the folluwing form 

where the notation indicates that the value of 
oY to be used is the one applying at  the maxi- 
mum concentration distance. 
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the area A within a concentration isopleth, Alternatively, Fig. A.4 of the Appendix, which 
presents evaluations of Eq. 3.11 6 with the a, and 
uz values of Figs. 3.10 and 3.11, can beused. 

3-3.5.6 Concentration Isopleths: Plume Width and 
Height Formulas. P r a c t i c a 1 computations with 
diffusion formulas often require the construction 
of concentration isopleths, for example, in con- 
nection with calculation of total population dos - 
age (Gomberg, 1958). For this purpose it is 
convenient to know the distance zp or yp where 
the concentration has dropped to p% of its value 
on the plume axis, For the generalized Gaussian 
plume model, the following formulas are  an 
obvious application of Eq. 3.116: 

(3.148) yp = (25 In T) 100 ?6 

and 

zp = (23 In ,) 100 (3.149) 

From these, with p = lo%, itcanbe seen that 
H, as defined by Eq. 3.121, is equal to 2zpand 
that a similar relation exists between yp and 8. 

On the basis of plots of concentration iso- 
pleths, Hilsmeier and Gifford (1962) have com- 
puted areas enclosed by various concentration 
values, F, for sources located at the surface. 
They followed the generalized Gaussian for- 
mula, Eq. 3.116, and used the diffusion-parame- 
ter values of Figs. 3.10 and 3.11. The results 
a r e  shown in Fig. 4.32 of Chap. 4 together with 
observed isopleth areas from the Prairie Grass 
and Green Glow programs, a s  analyzed by 
Elliott (1959) and by Elliott and Nickola (1961). 

An extensive numerical computation of areas 
within concentration isopleths, based on Sutton’s 
diffusion model, Eq. 3.116 taken in combination 
with Eqs. 3.79 and 3.81, was undertaken by 
Rosinski (1958). Rosinski’s computation allowed 
for the effect of varying deposition rates. A 
similar computation using Sutton’s model was 
performed by Velez (1961), who allowed for the 
effects of varying source heights and radio- 
active decay of mixed fission products. Nishi- 
waka (1959) likewise employed Sutton’s model 
to estimate concentration-isopleth areas and, 
in addition, provided several useful approxima- 
tions to the isopleth area based on the areas of 
equivalent ellipses. His  formulas, which give 

X = constant, for a surface-level source, are: 

(3.1 52) 

where 

and the other parameters have their usual 
meanings. The e r ro r  of these useful approxi- 
mations is 53% for Az and A, and ~ 6 %  for Ai, 
as compared with areas calculated directly 
from Sutton’s formula. 

3-3.5.7 Multiple and Area Sources. Many of the 
large nuclear installations already face the 
problem of emissions from several isolated 
sources. If there are  only a few sources, it is 
a simple matter to compute their concentra- 
tions individually and sum these to obtain their 
joint effect. The arithmetic can in some cases 
be simplified by taking advantage of a circum- 
stance that seems first to have been pointed 
out by Bosanquet and Pearson (1936). Because 
of symmetry with respect to the x-axis, Gauss- 
ian diffusion models possess the property that, 
i f  the source and receptor locations are  inter- 
changed, the numerical value of the concentra- 
tion is not affected. This means that the con- 
centration at a point downwind from a number 
of isolated sources can be computed by imagin- 
ing all the sources to be combined and located 
at  the receptor point and summing the resulting 
(computed) concentrations at the actual source 
points after reversing the mean wind direction, 
U. Culkowski (1960) has shown that this scheme 
can also be applied to annual average concen- 
trations from multiple sources. A plastic over- 
lay, or template, of concentration isopleths 
expedites the calculation. 
On the other hand, sources may be sonumer- 

ous that they can be considered mosteffectively 
as an area source, and the point-source plume 
formula may be integrated over this area. This 
procedure was followed by Lucas (1958). If 
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there are a very large number of individual 
sources, it may be desirable, as Turner (1964) 
has done, to combine them into a smaller num- 
ber of virtual area sources and then to sum 
the concentrations that result from these. 

3-3.5.8 Instantaneous-source Dijfusion Equations. In 
addition to procedures for average plume dif- 
fusion, a procedure for calculating the diffusion 
from sudden, explosive, or  very short term re-  
leases of material to the atmosphere is often 
required. Although the so-called “hot-cloud’’ 
accident, an instantaneous release of all the 
nuclear and chemical energy of a reactor to the 
atmosphere, is no longer considered credible 
because of reactor-containment features, other 
possibilities for generating sources of this kind 
exist. Some examples a re  the short-term con- 
trolled release of fission products from a con- 
tained accident, explosive accidents occurring 
during nuclear-fuel reprocessing, accidental 
criticalities, launching-pad accidents involving 
nuclear (or chemical) rockets, and nonnuclear 
explosions of all kinds. 

Equation 3.113 for the instantaneous puff 
concentration, x, can be written 

Here Eq. 3.113 has been multiplied by 2 to 
account for the assumed ground reflection so 
that it will be consistent with the plume equa- 
tion, Eq. 3.116. For reasons discussed in 
Sec. 3-2.2.6,  it is to be expected that, in gen- 
eral, the puff standard deviations uyI and uJ will 
differ from the corresponding plume ay and 
0,. Appropriate values based on recent experi- 
mental data are presented in Sec. 4-10.3.  

Since the processes of puff creation are 
frequently associated with some degree of 
violent expansion (typically an explosion o r  
short and rapid burning), it wil l  usually be 
necessary to consider the diffusion of a puff 
that has some finite initial volume. This can be 
done by combining an initial volume dilution 
with the atmospheric value. In this case the 
equation for the concentration at  the puff center, 
where x = Ift, y = z = 0, and V is the initial 
volume, is 

x$x,y,z) = 2-%7r-%Q (uxIuyIud + V)-’ (3.155) 

The consequence to a receptor subjected to 
the passage of an airborne cloud of radioactive 
o r  other contaminants is frequently expressed 
in terms of the integrated concentration, some- 
times called the exposure, +. The exposure is 
the integral of the concentration over a speci- 
fied time interval, 

(3.156) 

where T refers to the time of exposure and the 
subscript s is introduced as a reminder that 
sources of different types may be involved. 
The average concentration over the interval T 
is found by dividing JlS by T. This concept 
would be too obvious to belabor were it not for 
the following interesting fact. Consider a puff, 
i.e., an instantaneous point source, a s  specified 
by Eq. 3.154. The total exposure that would be 
experienced by a receptor a t  a point (x,y,O) 
when the puff passes by is given by 

11, = k7E X(x-iit,y,O) dt (3.157) 

I€ the usual assumption is made that the puff 
passes rapidly overhead so that uY1 and ud will 
be effectively constant during the time of puff 
passage (compare with Eqs. 3.113 and 3.114), 
it follows that 

I I ,  = Q(auyIu,ii)-’ exp [ - (&I 7 + 7 gJ)] (3-158) 

Thus the equation for the exposure is seen to 
have the same mathematical form as the equa- 
tion for the continuous-plume Concentration, 
and methods of calculation that provide the 
latter also can be used to compute the former. 

The crosswind integrated concentration from 
an instantaneous point source may be obtained 
by integrating Eq. 3.142 with respect to y from 
--oo to ==. The resulting equation is 

XCwI = 1T(T,I(TzI Q { - [“-“‘.$I} 2a2,I 2UJ (3.159) 

The equation for the exposure from a cross- 
wind integrated instantaneous point source fol- 
lows from integration of Eq. 3.158: 

$CWI = (:r exp (-$) (3.160) 
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A diffusion equation of possible interest is 
that for an instantaneous infinite crosswind line 
source. Although an actual source of this type 
can be conceived only by a considerable ex- 
ercise of the imagination, this mode of release 
is approximated by the effluent from a rapidly 
traveling rocket o r  an airplane o r  by the ex- 
haust from an automobile traveling along a 
highway. The equations for concentration and 
exposure from the instantaneous infinite cross- 
wind Iine source are  identical with Eqs. 3.159 
and 3.160, respectively, with the exception that 
the source strength, Q (amount), must be re-  
placed by the appropriate line-source value, 
QL (amount per unit length). 

3-3.5.9 Nonideal Characteristics of Atmospheric Dif- 
fusion. In all the previous discussion, it has 
been assumed that particles or gases diffusing 
in the atmosphere behave as if they were 
identical with ideal fluid particles or points. 
The diffusing material is, in effect, identical 
in its physical properties with the assumed 
fluid continuum, possessing neither extension, 
inertial, nor buoyant properties of its own. For 
practical purposes gases and submicron par- 
ticles can be assumed to behave in this way and 
can therefore be expected to obey laws  of 
diffusion calculated on such a basis. 
On the other hand, many diffusing particles 

of interest lie in a size range that does not 
encourage the ideal fluid-point assumption. 
Moreover there are  certain removalprocesses, 
e.g., deposition, washout, and radioactive decay, 
that can significantly affect diffusion, and it is 
desirable to give these processes some con- 
sideration. In most cases i t  will not be possible 
to go much farther than aqualitative description 
of the significant physical processes, which are  

often characterized by considerable complexity 
and subtlety and for which in many cases an 
extended t h e o r e t i  c a 1 treatment is not yet 
available. 

A heavy diffusing particle (Le., one that does 
not follow the ideal fluid-point assumption) falls 
under the action of gravity. In the absence of 
turbulent mixing, the particle reaches a termi- 
nal velocity given quite accurately by Stokes’ 
law. In the presence of turbulence, however, 
this o r d e r l y  settling process is markedly 
changed. This conclusion follows from the read- 
ily observable fact that particles of various 
kinds a r e  present in the atmosphere in equilib- 
rium amounts, having diameters such that they 
would rapidly settle out if Stokes’ law applied. 

The problem of the diffusion of heavy par- 
ticles in a turbulent fluid turns out to be very 
difficult in theory. Physically, the reason is 
that ‘the path of such a particle is not a function 
of any particular set of boundary o r  initial 
conditions. Rather, the problem has to be 
formulated in a way that recognizes that the 
path of the particle at any instant depends 
continuously on its trajectory during its prior 
travel t h r o ugh  the turbulent medium. The 
integro-differential equations resulting from 
this formulation a r e  not easily simplified. In 
addition to gravitational settling, the effects of 
particle inertia, the inertia of the displaced air, 
and the possible boundary-layer effects on the 
particles come into play. It is not surprising 
that there a re  few reliable, practically useful 
results on the turbulent diffusion of heavy 
particles. The reader interested in fundamental 
aspects should be aware of Tchen’s (1947) for- 
mulation and Lumley’s (1957) discussion. Ap- 
plied studies have been presented by F. B. 
Smith (1959), Yudine (1959), and Liu (1956). 




