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Abstract

Microscopic calculations of the absorption/gain and luminescence spectra are
presented for wide bandgap Gaj—_,IngN/GaN quantum well systerns. Whereas
structures with narrow well widths exhibit the usual excitation dependent
bleaching of the exciton resonance without shifting spectral position, a signif-
icant blue shift of the exciton peak is obtained for wider quantum wells. This
blue shift, which is also present in the excitation dependent luminescence spec-
tra, is attributed to the interplay between the screening of a strain induced
piezoelectric field and the density dependence of many-body Coulomb effects.
The calculations also show an over two orders of magnitude increase in the
spontaneous electron-hole-pair lifetime with well width, due to the reduction
of the electron-hole wavefunction overlap in the wider wells. The resulting de-
crease in spontaneous emission loss is predicted to lead to improved threshold

properties in wide quantiim well lasers.
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The physical properties of wide bandgap group-III quantum-well systems are currently
under intense investigation, mostly because of their substantial application potential as
light emitters and semiconductor lasers in the ultraviolet to blue-green wavelength region.
[1] Additionally, these materials exhibit interesting excitation dependent nonlinear behavior
due to thé intricate interplay between the strong attractive electron-hole Coulomb interac-
tion, which lead to significant excitonic signatures in the optical spectra, and the quantum-
confined Stark effect caused by piezoelectric fields. Such fields are present, for example, in
wurtzite Gaj_;In,N/GaN systems because of the strain induced lattice mismatch. [2] The
relative magnitude of excitonic and piezoelectric effects depends sensitively on quantum-well
width and plasma density, because of many-body interactions leading to effects including
screening, dephasing, bandgap renormalization and phase-space filling. [3,4]

In this paper, we present a theoretical investigation of the intricate interplay of the
different nonlinear effects and study their influence on the absorption/gain and luminescence
spectra, as well as intrinsic spontaneous carrier lifetime. For this purpose, we use a previously
developed microscopic theory for the excitation dependent optical response. [4] This theory is
based on the semiconductor Bloch equations [3] where the damping and dephasing processes
are treated at the level of quantum kinetic theory. The resulting equations have been applied
successfully to analyze a wide variety of semiconductors under high excitation conditions.
[5] 6] In the present calculations, bandstructure effects are treated at the level of k - p
theory, with the effects of the screened piezoelectric field systematically included by the
simultaneous solution of the coupled Poisson equation and the‘Luttinger Hamiltonian in the
envelope approximation. [7]

Numerically solving the semiconductor Bloch equations under small signal conditions [5]
and for the material parameters of 2nm and 4nm GagIngsN/GaN quantum wells [6] yields
the gain/absorption spectra shown in Figs. la and 2a, respectively. For the narrow quan-
tum well (Fig. 1a), we see that the low density exciton resonance is gradually bleached with
increasing carrier density. For high densities, optical gain develops in the spectral vicinity of

the original exciton resonance. As is usual in intrinsic quantum well systems, there is negli-
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gible shift of the excitonic peak spectral position during the plasma bleaching process. This
excitation independent exciton energy is a consequence of the strong cancellation between
the weakening of the exciton binding energy and the reduction of the bandgap energy, i.e.
between the non-diagonal (field renormalization) and diagonal (self energy) contributions in
the microscopic polarization equations. [3] [4]

As shown in Fig. 2a, the situation is quite different in the 4nm Gag2IngsN/GaN quan-
tum well structure. Because of the weaker quantum confinement in this relatively wide
quantum well, the piezoelectric field is able to significantly reduce the overlap between the
quantum confined electron and hole wavefunctions. Consequently, the interband dipole ma-
trix element or oscillator strength is substaﬁtially smaller than is the case for the narrow
2nm quantum well. This intrinsic quantum confined Stark effect (QCSE) also significantly
red shifts the exciton absorption peak relative to the flat band situation. As the plasma
density increases, the screening of the QCSE increases the electron-hole wavefunction over-
lap, and hence, the exciton oscillator strength. Simultaneously, there is a weakening of the
piezoelectric field induced red shift, leading to the net blue shift in the exciton resonance
and absorption edge with increasing plasma deﬁsity, as shown in Fig. 2a. These piezo-
electric field related nonlinearities occur in addition to the usual many-body nonlinearities.
Due to the stronger piezoelectric field effects in the 4nm quantum well, the compensation
between self-energy and field renormalization contributions to the microscopic interband
polarization is perturbed, resulting in the excitation dependent blue shifting of the exciton
resonance and absorption edge. A similar blue shift, also resulting from a perturbation of
the above mentioned compensation effects by a real space charge separation, was observed
and microscopically analyzed for type-II quantum wells [8]. Figure 2(a) also shows that
the interband absorption, i.e. that part of the spectra well above the absorption edge, in-
creases with increasing excitation density. This again reflects the increasing electron-hole
wavefunction overlap resulting from the gradual screening of the intrinsic QCSE.

Using the absorption/gain spectra in Figs. la and 2a, and applying a phenomenological

relationship between stimulated and spontaneous emission, [9] we obtain the spontaneous
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emission spectra shown by the solid curves in Figs. 1b and 2b. These spectra show the
increasing spontaneous emission with increasing plasma density. Whereas an excitation in-
dependent peak energy of the luminescence is obtained for the narrow quantum well system,
the wide quantum well luminescence exhibits the excitation dependent blue shift, whose
origin is as discussed for the absorption/gain spectra. Our approach for obtaining the spon-
taneous emission spectra is of course not rigorous. However, it does circumvent the complex-
ities associated with quantizing the electromagnetic field, which then allows the inclusion
of the details of the multiband quantum well bandstructure into the numerical calculations.
To show the accuracy of this phenomenological approach, we plotted the results (dashed
curves) using the semiconductor quantum luminescence theory developed recently by Kira
et al.. [10]. Due to its numerical complexity, this theory can currently only be evaluated
for a two-band effective mass model, and using effective dephasing rates extracted from the
semiclassical quantum kinetic calculations. The former limits the comparison to low plasma
densities, where multiband as well as bandmixing effects are negligible. Comparison of the
solid and dashed curves shows that for low densities, where strong excitonic resonances are
present in the optical spectra, we obtain deviations between the quantum theory results
and the phenomenological conversion. As discussed in [10] these differences are expected.
For increasing densities the agreement improves considerably, being almost quantitative for
elevated densities where optical gain is present.

The ordinates of Figs 1 and 2 show absorption and spontaneous emission amplitudes
that differ considerably between wide and narrow quantum wells. This difference should
appear in the radiative carrier lifetime, which is relatively straightforward to measure in
experiments. Integrating the luminescence spectra in Figs. 1b and 2b gives the spontaneous
emission rate, ws, = [y~ dw se(w) ,which is the inverse of the radiative carrier lifetime
Tsp- The circles is Fig. 3 shows the results from the luminescence spectra obtained via
the phenomenological conversion approach. At low carrier densities where the two-band
effective mass model is valid, the carrier lifetime can also be obtained from the quantum

luminescence theory by directly computing the total radiative decay rate of electron-hole

4



pairs. The results are shown by the squares, which confirm that both approaches yield close
to identical results. These results show that while the narrow 2nm well has lifetimes typical
of conventional IT1I-V materials, the wide 4nm quantum well shows radiative lifetimes at low
plasma densities and room temperature that are two orders of magnitude larger. Similar
trends have been observed experimentally for the GaN/AlGaN system at low temperature
[11]. This long lifetime is a direct consequence of the electron-hole wavefunction separation
which is substantial in the wide quantum wells. The figure also shows the carrier density
dependence of the radiative lifetime. Here the lifetime decreases with increasing plasma
density, due to increased screening of the quantum confined Stark effect and to increased
carrier-carrier collisions.

The well width and excitation dependent oscillator strength due to the quantum confined
Stark effect have important implications to group-III nitride lasers. On the one hand, the
QCSE reduces the gain in the wide quantum wells. On the other hand, it also reduces their
spontaneous emission losses. Figure 4 shows the peak gain versus spontaneous emission
contribution to the current density, for the 2nm and 4nm quantum wells. The spontaneous
emission current is given by Jy, = edws,, where € is the electron charge, and d is the quantum
well width. These curves give the theoretical limit to the threshold current density for a
given threshold gain, Gy, = Gp. From the figure, we see that the reduction in spontaneous
emission loss more than compensates the gain reduction in the Wide‘quantum well, so that for
typical threshold gains of Gy = 10% to 103cm™, J;, for the wide well is far lower than that
for the narrower well system. Hence, the reduced electron-hole dipole matrix element in the
wide GagalnggN/GaN quantum well systems actually benefits laser operation. Comparison
~ of the two curves close to transparency illustrates the very different physical mechanisms
leading to the onset of gain. In the 2nm quantum well, the onset of gain is due to band
filling. In contrast, a significant population inversion already exists in the dnm quantum
well at the onset of gain. Here, the appearance of gain is due to the switch on of the
interband dipole matrix element by the screening of QCSE. We wish to emphasize that in

an experiment, gain in the 4nm quantum well will not occur as close to the origin as shown
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in Fig. 4, because of the presence of nonradiative losses.

In summary, the microscopic calculations of the optical absorption/gain and luminescence
properties of wide bandgap Gag 2lngsN/GaN quantum well systems predict interesting well-
width dependent nonlinearities. A blue shift with increasing plasma density in absorption
and luminescence in relatively wide wells occurs as a consequence of the screening of the
piezoelectric field induced quantum confined Stark effect. The quantum confined Stark effect
also results in carrier lifetimes in the wide wells that are significantly longer than in typical
ITI-V semiconductors. This effect reduces spontaneous emission loss in wide quantum well
structures, and can benefit laser threshold properties.
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Figure Captions

Figure 1. Calculated (a) TE absorption/gain for 2nm IngsGagsN/GaN quantum well at
T = 300K, and carrier densities N = 102 cm=2 to 6 x 10'% in 10" cm™? increments . (b)
shows the spontaneous emission spectra for the densities 1,2 and 3 x 10* em™2. The solid
lines are obtained from the absorption/gain spectra, and the dashed lines are obtained from
the semiconductor luminescence equations [10], see text. The material parameters are taken
from [6].

Figure 2. Same as Fig. 1, but for a 4nm structure. The densities in (b) are 1,3 and
5x 1012 em™2.

Figure 3. Radiative lifetime versus carrier density for 2nm and 4nm Ing2GagsN/GaN quan-
tum well at 7 = 300K. The circles are computed from the absorption/gain spectra of
Figs. 1 and 2, and the squares are obtained directly from the semiconductor luminescence
equations.

Figure 4. Peak gain vs. spontaneous emission current density for 2nm and 4nm

Ing2GagsN/GaN quantum well at T = 300K.
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