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GENERALIZED SUSCEPTIBILITIES AND MAGNETIC

ORDERING OF HEAVY RARE EARTHS!

William Edwin Evenson

Under the supervision of S. H. Liu
From the Department of Physics
Iowa State University

ABSTRACT

Within the framework of Ruderman—Kittel—Kasuya-Yosida
indirect-exchange interaction theory, the generalized suscep-
tibilities, Alq), have been calculated for the heavy rare-
earth metals, Gd, Dy, Er, and Lu, along the line I to A of the
Brillouin zone. The energy bands used in this calculation were
realistic bands obtained by Keeton and Loucks using the rela-
tivistic-augmented-plane-wave method. The matrix elements in-
volved in the susceptibilities were taken to be constants so
that the susceptibilities calculated here contain only informe-
tion from the energy bhands.

To develop a reliable numerical procedure we examined in
detail two sets of energy bands which could be calculated
analytically as well as numerically. These bands were chosen
to give spherical and cubic Fermi surfaces.. The results ob-
-tained from them showed us how to eliminate any spurious fea-

tures in the susceptibilities arising from the numerical

Lusarc Report IS-T-226. This work was performed under
Contract W-7405-eng-82 with the Atomic Energy Commission.



calculation, and once these spurious features were removed
these special bands demonstrated that the numerical procedures
were quite reliable.

Cubic and spherical Fermi surfaces were chosen because
they illustrate two éxtremes in the features of the suscepti-
bilities: the cubic surface has many points separated by the
same wave vector, Q, so there is "nesting" of areas of the
Fermi surface for q = Q; the spherical surface has only point
to point nesting for any particular gq. The nesting of areas
results in a logarithmic divergence in the susceptibility,
whereas the nesting of lines or points results only in a gen-
eral falling off of the susceptibility. Thié fact 1s clearly
illustrated in our two special cases. It is also possible to
relate the features'of the susceptibilities calculated for the
rare earths to the geometries of their Fermi surfaces in the
same way. We have done this and related the maxima of our
calculated susceptibilities to the magnetic ordering periodici-
ty observed experimentally for each of the metals considered.
The agreement between theory and experiment was found to be

guite satisfactory.

TV T —_—



INTRODUCTION

The purpose of. this work is to calculate the generalized
susceptibilities of the heavy rare earths, gadolinium, 4dys-
prosium, erbium, and lutetium, using realistic energy bands in

order to show the effect of the Fermli surface on the determi-

. .

nation of the magnetic structure of these metals. This calcu-

lation will also make a rough check of the energy bands near
the Ferml energy by comparing features of the calculated sus-
ceptibilities, which are véry sensitive to the bands near the
Fermil energy, with experimental information.

Calculations of the spatial extent of the charge densi-
ties of rare-earth atoms and work on cohesive energies of the
rare-earth metals show that the ions in the heavy rare-earth
metals do not overlap appreciably with their neighbors. 1In
fact, the ion cores have radii of the order of 0.5 A while
nearest neighbor separations in the crystals are about 3 to
4 A. Figure'l is plotted from the calculations of Herman and
Skillman (1963) for the gadolinium atom, and is typical of the
spatial exfent of the wave functions for the rare earths: the'
Lf-shell is highly localized, while the 6s-electrons are
smeared through the crystal. The dotted line showé approxi-
mately how the 6s wave function is flattened out in the metal.

An important question to be raised by the absence of a

significant amount of overlap between ions was how can these

metals form periodic moment arrangements, ferromagnetism and
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Figure 1. Atomic wave functions for Gd. The dashed line
approximates the 6s wave function for Gd metal
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various kinds of antiferromagnetism, if the ions do not over-
lap to "tell" each other how each moment 1s pointing? If
there is no overlap, how does an ionic moment "know" where its
- neighbors are pointing? The answer to this duestion lies in
the 1d¢as of "indirect exchange," in which the conduction
electrons are visualized as passing the necessary information
for the lining up of the moments from a given ion to the -
others,

The first important analysis of the indirect-exchange
interaction was done by Ruderman and Kittel (1954) with direct
application to.the case of nuclel interacting via the hyper-
fine interaction with the conduction electrons. In later im-
portant papers Kasuya (1956) and Yosida (1957) applied the
ideas of indirect exchange to magnetic matgrials and developed
what has come to be kﬁown as the Ruderman-Kittel-Kasuya-Yosida
(hereafter RKKY) interaction model for metals such as the rare
earths where the lons have no direct overlap to convey magnef~
ic ordering information from one to another. (See also Liu
1961h) The results of these theories gave an interaction
which depends on 1) the exchange integrals between the local-
ized ionic cores.with their large moments and the conduction-
electron wave functions at the ion sites, and 2) the energy
bands of the conduction electrons and their Ferml surface.

The energy bands of these materials have not been well-known,

so the standard procedure has been to insert free-electron




'f’:S"%&s in the evaluation of the -i‘r';-@,:é?raction. Aﬁé‘ﬁpe_?.approxi-
é“;mation thét.héé been made in tﬁe“ebaluation of.£héfindirect-
-exchange interaction is to put the exchange integrals (matrix
elements) to be constant, or at best functions of [g'-g] only.
Still a third point where lmportant approximations have been
made 1s in the basic assumption at the outset that the charge
clouds are spherically symmetric to a good approximation so
that the Heisenberg S°'s type of interaction Hamiltonian 1is
valid. This is not precisely true in the case of the rare
earths because of the orbital contribution to_fhevmagnetio
moment, as pointed out by E11i0tt a-nd'.'I‘ho'I_‘peh (1968). The
asymmetry and finite size of the charge clouds also affect thc
form of the exchange integrals, and hence the approximation
that they are independent of k and k' (Liu 196la, Specht 1967,
and Kaplan and Lyons 1963). |

Kubo (1957) has done important work on analyzing the re-
sponse of a system to a stimulus in the approximation of
l;near response. Applied to magnetic systems, this theory
gives a generalized susceptibility, X(g), which is the re-
sponse of the magnetization of the electron gas in the metal
to a spatially-varying field characterizeduby wave vector g.
It turns out that this generalized susceptibillty has the same
form as the Fourier tranéform of the BKKY interaction, but with
"~ somewhat different matrix'elementsj;therefo:e,*they differ

Jonly by a consfant\factdr'in the approximation that the matrix



elements are constant and independent of k and k'. Hence, the

generalized susceptibility can be related to the magnetic
interaction energy of the system. It is proportional to the
negative of the magnetic energy, so the maximum in the suscep-
tibility will determine the minimum of the energy and hence
the stable wave vector Q which characterizes the magnetic
ordering. So if the stable magnetic structure in the region
of interest is helical, the wave vector Q at the maximum in
the susceptibility should be just the right size and direction
to reflect the periodicity of the helix. |

The present work takes advantage of the recent availabil-
ity of more realistic energy bands for the conduction elec-
trons in the heavy rare earths (Keeton and Loucks 1968) to

consider the generalized susceptibility and the BKKY inter-

action beyond the free-electron assumption. The other approx-

"imations have remained; we have treated the exchange integral

as though;it were independent of k and k', and we have not
considered the effects of a finite or asymmetric charge cloud.

Because of the negligible overlap between ions, however, we

felt that the worst of the approximations was the use of free-

‘electron bands, the other approximations not being gquite as

important. The results of this work seem to bear out our con-
tention to some extent since we find ordering arrangements for

the heavy rare earths in reasonably good agreement with

experiment.



The use of paramagnetic energy bands iﬁ the calculation of
X limits our conclusions to what is happening very close to the
highest ordering temperature for the particular metal in ques-
tion because we assume that the mégnetic interactions are
small and perturb the bands only weakly. Statistical mechani-
cal treatment of spin correlations shows that thermal fluctué—
tions destroy any net long-range order in the spin system:at a
critical temperature. If:we consider an effective field
approximation to the magnetic interaction, fpllowing'the treat-
-mént of Villain (1959), where the effective field at a lattice
point is proportional to the net magnetization at that point,
then we see that thermal fluctuations make the net magnetiza-
tion, and hence the effective field, small near the critical
temperature. Therefore, when ﬁe are near the critical temper-
ature, the magnetic interaction perturbs‘fhelparamagnetic
bands very weakly, so our perturbation calculation of X.using
paramagnetic bands should be valid. Away frbm the critical
temperature, however, the magnetic interactions become strong,
and the'paramagnetic bands are no longer the correct ones to
use in calculating Y(q).

Lomer (1962) was the first to point outvthe connection
between the Ferml surface and the magnetiCAOrderinglof metals.
Using realistic energy bands to calculate the indirect-exchange
interaction allows us to check this idea quantitatively in
heavy rare earths. It is particularly interestingAto'observe

the trends in the Fermi surfaces along side of the trends in
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the susceptibilities through the ﬁhole series of heavy rare
earths (gadolinium to lutetium). We have studiedlfour of the
metals, Gd, Dy, Er; and -Lu, which should be éuite representa-
tive of the whole series. It will aléo be of interest in the
future when the energy bandsbof the other metals become avail-

able to fill in the gaps.:



THE INDIRECT-EXCHANGE INTERACTION

The Ruderman-Kittel-Kasuya-Yosida Interaction

We can briefly summarize the physical ideas involved in
the indirect-exchange interaction model developed by Ruderman,
Kittel, Kasuya, and Yosida as follows: Ih cases of low concen-
tration magnetic impurities or in the rare-earth metals, i.e.
cases where magnetic ion cores are sufficiently small or far
apart that there is essentially no overlap, the unfilled d- or
f-shells retain.some of their Hund's Rule magnetization in the
's0lid. By an exchange interaction with the s-band conduction
electrons the d- or f-shell moments polarize the spins of the
conduction electrons in the neighborhood of ‘the ion. The con-
duction electrons, constrained by the Pauli exclusion princi-
and

ple, respond with characteristic wavelength A, = 2n/k

F F?
the resulting spin polarization is oscillatory and long-ranged.
The other‘magnetic atoms then‘undergo ferromagnetic or anti-
ferromagnetic interactiohs with the one in question depending
on whether they are in a trough or on a crest of the polariza-
tion wave. The magnitude of the interaction gradually de-
creases with distance. In a crystal where there are many mag-
netic atoms, such as a rare-earthAmetal, it is very difficult
to determine the net relative spin orientation between neigh-
boring ions because this 1s determined by the superposition at
that ion site of the polarization waves in the conducﬁion

electrons due to all the other lons in the crystal. Therefore



we must look at the interaction in quite a lot of detall to

predict the ordering arrangement in a given material.

An excellent survey of the Ruderman-Kittel-Kasuya-Yosida
indirect-exchange interaction in magnetic mefals is found in
Mattis‘(1965). We will look at the derivation of that inter;
action in this section from about the same point of view as '
Mattis, but including points of special interest to the present
calculation, The'approach is to assume the existence of an
effective ﬁamiltonian for the metal in question and to apply
the exchange intefaction between the ionic moments and the
conduction electrons at the ion sites as a perturbation. The
easiest way to see the form of the interaction is to consider
and B, in some

1 2
ideal, nonmagnetic metal characterized by an s-band effective

a palr of magnetic solute atoms at points R

Hamiltonian. We will call the moments "spins" for simplicity
even though they are made up of both orbital and spin contri-

butions. Internal Hund's Rule coupling maintains S, and S

1

but their relative orientation is determined‘by coupling

2’

through the conduction électrons. Exchange boupling of the
locaiized electrons (f-electrons in our case) with the conduc-
tion electrons (s-electrons) is the perturbation: 4

H' = -3[8;°5,(By) + 8,°8,(R,)], (1)
where J is the exchange integfal between the ions and the s-
electrons and the gc(Bi) are conduction band:spin operators

which are defined in the second quantizationflanguage as follows:
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z 1
s = = -
c 2(N0+ Nc-)’
+ ' :
= 3 .
Se Ce+Ce-r
_ (2)
s = c¥*
c c-cc+’
' ' N = c¥ ¢,
and cm cm - cm

The cgm and Cop BTE the usual creation and destruction opera-

tors for electrons in the conduction band with spin +% or -%-

as m = + or -.
Now we can put the spin operators in the Bloch represen-

- tation for the case where there are several conduction bands

so that
i(k-k')*R,
2 = =4 =T Tl - ol
SolB) = B, T (efrnr+%xms = “krnr-Cxn-)
By K ’ ;
- i(k-k')"R. " ,
+ = & == 0 7L s ‘
Sc(—i) =5 ka' nzn' e ck,n,ic£n¢ , . (3)
' 5 ’ _

where n and n' are band indices. Then we rewrite H' as
2 z z 1. + - - +
H' = -J 121 sZ(R,)8Y + S[sT(R,)S] + si(gi)s.l]”g, (4)
We can now calculate the eigenfunctions and eigenvalues
for the system in the conductioﬁ electron ground state by
ordinary perturbation theory on the s-electron part of the

total Hamiltonian:

H=H +H = xE (KN

e ' (5)
kmn =

using H' as in Equation 4. So we obtain in the Bloch

representation:
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kmn i=1 kk' nn'
\ ) _ i(k-k')°B, §
(Ciz_,n,+cEn+ - Ck'n'-cgn—) + Sie Cg,n,+C£n_ +
i(k~k')"R. :
+ — - —
S;¢ lgi'n'-ckn+]' ' (6)

Now HO does not distinguish between relative spin orientations

for the magnetic ions, so it gives a (2S,+1)x(2S.+1) = r-fold

1 2
degeneracy.of states of the relative orientations of the two
solute spins. What we want to see is how H' affects this de-
generacy and hence stabilizes some particular relative orien-
tation of the solute spins.

We will call our starting wave functions |Ft), indicating
the conduction electrons in the unpolarized Fermi sea ground
state, |F), and the two solute spins in a relative state ‘t)

where t = 1,2,...,r.

The first-order perturbation to the energy is zero:

Eé1)= (tFlE'|Ft) = 0,
since this is just an average over the entire Fermi sea which
has no long-range polarizatioh.
We now look at the second-order perturbation to the energy

which is of the form:

(2) _ -, _l(s'celE|Fe)l?
By 0 = CBZ,t, E(F.sea) - E(C.B.) (7)

where |CB) are conduction band states and |F) is the Fermi sea

ground state.
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The conduction band operators, ci,n, and an’ create
elementary excitations with energy E ,(k') - E (k). Thelir
are unity if En(g) < EF-and En,(g') > EF’ and

‘matrix elements

- .zero otherwise.

So we can put

f.. (1 - °

E(F.sea) - E(C.B.) E

‘Where the fkn

)
1 't " g
(&)~ 5., (£ T’ (8)

are the Fermi-Dirac distribution functions put in

to 11m1t the excitations to the coupling of unoccupled to

occupled states.

The conduction band states are of the form

CB) = F), )
‘ cklnlml Kznzmz‘ 9

where the single-particle states klnl and k2 5 are also sub-

ject to Fermi-Dirac functions like those of Equation 8, i.e.

qonduction band
state below the
above the Fermi
into the matrix

follows:

(t'CcBIH'|Ft) =

ferIsTiel(Fley

- (Flc
l l

k,n,m, %k

krnt— kn+\F)'*(t"S;‘t (Fle¥ 1w °x

states are just like the Fermi sea, but one
Fermi energy has been vacated while a state

energy has been occupied. ‘We put these states

elements of Egquation 7 and evaluate them as

kynym, “kpnpmy “krn+Cunet B

AF)] + t'lS {t) (F\cv«ln o

c
ny *kpnn, Okt o= 11

L0, 0 Xphply

cg'n'+°gn7‘3)}' - (10)
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Now,

* ¢ F) = 6., - 6 5
(Fleg kynqm, Ck,n,m, % rnrm Cnm! ) k', k,°n' 0% ,m,

Bie, . O 5 fkn(l—fg,n,). , (11)

b 1 n’nl m,ml —_—
We put this into Equation 10, dropping the Ferml functions

‘which are already contained in Equation 8, and obtain

1 1k =kp) By
] L = -
(¢*CBIH'IFE) = - 35 £ I, o (k.ky)e

- i 172

Z . +
tr]s2( 6 - - 4+ 8.6
( l i 2,+ ml,+ 6m2,""6m1,—)1 1 m2,—6ml’+
+ 87 8 t). - ' 2
16m2;+ ml,—l ) ' (12)

Now we will replace k, by k and k, by k' and similarly for n

1
and m for simplicity of notation. Putting Equations 8 and 12

into Equation 7, we have

B2 =- 2z 3z 3 .Efk?ifgf%'g'zk) — 12 (Kk')
kk'nn' o' t' “n''= n'=’ 4N
f} el(K _').(Bi-gj)(t'lS?(ém,,+6m’+;— Gm.’_ém’_)
+ szam,,;am’+ + 878, Lop 1881850, L6
=By b L)t STeL. oy L sgam,,+5m’_1t'). (13)

Use closure on the states |t') to perform the t! sum and then

look at the sums on m‘and m':
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fin(1-fxrnt)  1(k-k")'(R,-R,)
EéZ) - _ —li NI WD ) Iin.(EaE') E'_(kFT:E (x) © S
| 4N kk'mn' 1] nt=
Z ' ' | * ’
Inzm'(tl[sj(ém' ’+6m,+ - 6m|’_6m,_) + Sjém"'i'ém’_
- z | *
* Sjémv,—Gm,+][si(6m',+6ma+ B 6m"‘6m")
N o ,
+ Sj_&m' ,_5m,-+ +. Sj_ém' ,+6m,_]lt)' : . (lLl’)

Performing the sums on m and m' in Equation 14, we obtain

. ZoZ '4 b - + -
z (¢l ]?[ 11t) (tlzsjsi *i8,5; 4 sisjlt)

mm '
= 2(tl§j-§ilt). . ' (15)
i ( ) X )+ ( )
fin(l=-fxn? i(k-k')-(R.-R.)
E.t(:2) _ .._.1_2 h b 5 Irzln' (-12,1_{-') = K'n o 1 J
2N” 1j kk' nn' En,(g'),En(g)

(t|§1'§j|t). - (16)

Equation 16 contains a self-energy term when 1 = j. This tern
is independent of relative spin orientations, so it is irrele-

vant to our problem. We will ignore it and replace % r by
. 1)
z where (i,j) refers to all possible pairs of spins. Also,
(i,J) .
we are only looking at two solute atoms to begin with, so i

12

and j can only be 1 or 2. Therefore,
. - . 3 '_ ] .
g(2) - 4 22 () 2T Lk
' nn''=’= En' (E')-En(hj
(tlsy-8,1t). - * (17)
But Equation 17 just gives the eigenvalues of the Hamiltonian

H

1.5. = — J(

R1,18;°5, 5 ~ (18)



where > i(k-k')-R. .

J(R..) == ¢ g 8o fien (1T
Y . ' : *
=1] N2 _ISE' nn' El’l' (K ) - EH(K)

(19)

It should now be clear that the straightforward extension

of this result to N, magnetic atoms will just give

H =- ¥ J(RB..,)S.*S., (20)
I.E. (i,3) ij'=1 =]

with J(Bij) as before. We note, however, that tﬂis extension
is strictly valid only if we treat the ions as points (Elliott
and Thorpe 1968), but this is the approximation made through-
out the present work. |

| When we put free-electron energy bands into Equation 19,

we obtaln the expression often referred to as the Ruderman-

Kittel interaction. This result is

o

kFaO 6‘ (s'1n.221»{}_‘.1:i.1 kFRiiCOSZK BR. .)
m (Zk R, )

J

(B y)p.x.

I
\‘J O\.

where Inn,(g,g') has been taken out asva constanﬁ, J, kF is
the Fermi wave vector, and ag is the Volume;ﬂ‘the unit dell.
Equation 21 can be corrected for finite electronic mean free
path, A, by the inclusion of a factor e"R13/\

| If there is more than one atom in the basis of the unit
cell, we have to consider spin operators at»éach étomic site,

so the operators of Equation 3 become

7, -1 o i(kek")'Rip/ o
o(Bip) = 2N kﬁy éh'e (CK 'n'+ kn+ g'n'-cgn—)’
. x 1 i(k-k")+Rj
s{B..)) =< T 1 e ‘== /21T C* ’. (22)
e \Fir | N _1»_«:_3' ! k n'+ knq:



16

where r is the basis index. The derivation carries through
just as before, but a basis index is included everyplace there
is a cell index.

We Will now consider the Fourier transform of the indirect-
exchange interaction, and.in the next sectidn of this chapter
we will show how it is related to the spin-wave spectrum.

F(g)

s J(R.)et3 Bj
;T

, 1(k ') Bj
f1n(l-fxrn')  54.R.
=Xz = oz (kK" 7 )krEl _ n'’ _ig-Rj
N™ J kk' nn' Epo (K n'=
=L £ £ ° (x k') T {1 -fkn) z 'el(E'E"+9)'Bj
- [ Wted Beded °
W kw nnt ™0 (B J-E (K] 5
(23)
But
i(k-k'+q) B,
L e ) = No(ktg+K -k'),
J

where K  is the reciprocal lattice vector necessary to reduce
5+9+Ko to the first Brillouin zone 1like k'. - Then
,(k+g_+K )= ETk)

2
T oI2, (_12,5+9+§O>

Fq) = = %
k nn'

(24)

When we have more than one atom in the basis, we obtain
other terms like F(g) as shown in Equation 24 but correspond-
ing to lattice sums connecting inequivalent atoms from one cell
to the next. If we define 6. as the basis vector from the
lattice site in a given cell to the rth atom in the basis in

that cell, reference to Equations 19 and 22 allows us to define

. . ia (R +5 ) S
F.(q) = % J(§j+gr) . | (25)
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1 2 ei(-]‘?‘-lf')'(Bj"ér)fkn(l—fkvnv)
F (9_) =5 X 1 !(E!}S') TATRY —
r ¥ § k,k' a0 E (K )-E, (k)
elg-(3j+§r) |
TNl , 2y an' == 0 E O (k")-E, (k) F .
N~ kk' nn n' ‘= n‘=’j
So F_(g) has an extra factor el(k-k'*g)dr _ ~1Ko'br

structure factor dependent on the nature of the basis in the

unit cell. = We write, then,
‘ f. (1-f
2

kn
£ I, (k,k+g+K )

it Trigek nt) -1k s
z : e
k nnt O o Epy (krg+K )-E, (k)

° 7T (26)

_ 1
Flr(g.) - —I\T

As we mentioned earlier, we will make the approximation
of point ions so that Iin,(g,g')_; IZ, a constant that can be

taken out of the sums in Equations 19, 24, and 26,

Ferromagnetic Spin Waves and Their
| Energy Spectrum
Ferromagnetic spin waves consist physically of a preces-

Sioniof each spin about its z-axis, sweeping out a cone in
time 2n/w(g). The radius of the cone is'the'amplitude, A, of
the spin wave, and actually w(g) = w(g,A); but the'amplitude
dependence of the spin-wave frequencies'is negligible for
small-amplitude spin waves. The phase difference bétween
nearest neighbors separated by a distance a is ¢ = qa. In'fhe
small-amplitude approximation we can find the spiﬁ-wave fre-
quencies in the caée where the Hamiltonian'fbr the magnetic

excitations 1s the indirect-exchange Hamiltonian of EQuations
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19 and 20. The quantized spin waves are called "magnons", and
they will be the excitations of the diagonalized Hamiltonian,

H = £ J..8,+8, = Zw(g)bﬁbk + constants, (27)

I=

where bﬁ and bk are magnon creation and annihilation operators.

We proceed as follows:

Constants of the motion of H include toﬁal,spin,32=(2§j)%
and the z-component,,&z==28§u :
J
§%10) = ns(ns + 1)}0),
' (28)

where N 1s the total number of spins and they are all lined up
ferromagnetically in the ground state.

We also note that Sx’ Sy’ and SZ are not independent but
are connected by S-S = S(S+1), quantum mechanically. To go to
independent operators, we use the Holstein-Primakoff tranéfor-

mation (Holstein and Primakoff 1940):

1
a¥a . 2
+._
Sj = JZS (1 - —%§l] aj,_
1 (29)
_ a¥a . 2
= * S A |
3 = {25 a¥% [1 - =54
S? =35 -~ a%*a..
J JJ

Holstein and Primakoff showed that the a¥* and a were boson
operators satisfying the commutation relations

¥7 —.

[al,aJJ élJ’ .

%] = 0. ' (30)

[a:i”,'aj'] = [a¥ ,aq
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It can also be shown (Mattis 1965, for exampie) that the a*
and a of the Holstein-Primakoff representatién are very close-
ly related to Schwinger's harmonic oscillator operators in his
coupled-boson representation (Schwinger 1952). 1In the Bioch
picture we get V

ik-R

e da ,

b, = .
J

L
E oW
]

[bK)h

| I
—~
L®Y)
l,_!
—

A
'L_{’.&l b}

= [b*,b%,] = 0.

[bk’bk'] k, k'

Now, we are considering small-amplitude spin waves, so
there is not much spin reversal, and we can expand the square

roots in Equations 29 to lowest order in the bk:

-ik-R >
4! i e bk + 0(b°),

5 B ! . : .
,I T e bﬁ + O(b ), - - (32)
k L
i(k-k')-B.
s2=8-% % e Joro, |
J Y kK - £2

- But J =S ;, S0
J J: .

£2'= NS - ib*bk. - (33)

I~

Xz can-only have the values NS,NS-1,NS-2,...., as is clear

from Equation 28. Therefore,'bi";bk must be an integral occupa-

tion number operator for a state k. The bﬁ and bk are creation

and annihilation operators for elementary excitations charac-

terized by a wave-vector k, and a frequency w(g). These
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elementary excltations are spin waves or magnons, and the bk
are the magnon operators of Equation 27.

We can write H in magnon variables as

' 1 i(K'E')'B'l 1 I(E’K')BJ :
H=- ¢ J,.[(s=-% % e b¥b. ,)(S - T e b¥*Db. )
(i,j) iJ Nl{.,k:" .]‘EE' N}SE' Egv
5 -1k-B; 1K“B. ik-B; -ik'-R,
+5 L (e e kabﬁ, + e e Jbibk')]'
kK == ==
> g i(k-k') B, i(k-k') RJ
= - - — * +*
= (i?j)Jij[S Nkzk'(e, bgb_lg' + e bg_b_lg'
-ik+R, ik'-R, ik-R, -ik'-R. ~
- € Te kabi, - e e Jbibk,)] (34)
The first term is just a constant term, - T JijSZ, and we
(1,J)
will drop it for the time being. Then :
i(k-k')-B, i(k-k')-B, -ik'-R, ik-B,
11=% N (e ie - e e 7 7
(1,3) "9 K,k
ik-B, -ik'-R, ik+(R.-R, ) .
- e e J)bl’“f:bk, + 3 e J 1, (35)

~where we have used the coumutation rules of Equations 31. Now

-

S == $'and ©J.. = J.T where J. is the same as J.. but with
(i,3) ij it Ji J +J
some fixed origin in place of Ei' So the last term of Equation

'35 is just a constant which we will drop for now, and

S
H = = Jd. X N§ + N§
ZN%-; J k k' ( k,k' k,k'
-ik'-B, 1k'R
-2% e e Jy BEby o - (36)



-ik'-B. 1k-R i(k-k')-B, ik-R
Te ie J = e le Ji
i i
iE'Bj : '
= NGK’E,e - (37)
So

ik-R, '

H=S5g J. o(l-e Jyp*b, . (38)
;3 dx _ k'k

And. reférring back to Equation 23 we see that

k k

H = S £[F(0) - F(k)]Ib¥*b._ . (39)

n =

So that w(g) S[F(0) - F(g)]. v (40)
An alternative derivation of the magnon spectrum, Equation 40,
makes usé of the physical meaning of the maghon operators, bg
and bg' It became clear in Equation 33 that the b's were
magnon operators such that b;lo) is the one-magnon state for a
magnon of wave-vector g. Then we can see that the magnon

energy must satisfy

Hb§|0)~- bSHlO) = w(g) b§|o),
i.e. [H,bajlo)‘= w(g) b§ o). - (41)

We can then evaluate the commutator of Equation 41 to'find
w(g). The result is, of course, identical with Equation 40.
The magnon energies are hw(q) with w(g) given by Equation
40 for the ferromagnetic ground state. If these energies are
not positive for all g, there will be an instability in the
ferromagnetic grqund,sﬁate, and some other type of ground

state wili actually occur. - Equation 40 shows that we will

.
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have a negative magnon energy whenever we have F(g) greater
than F(0) for some g. In the next section we relate the

stable magnetic state of the system to the maximum in F(g).

Determination of the Stable Magnetic Structure

Villain (1959) has treated the problem of determining the
stable magnetic structure of a metal neglecting all inter-
actions (e.g. magnetoelastic) except the exchange interaction.
We will‘follow his statistical mechanical treatment here. The
starting point is an effective fleld approximation in which we
take the effect of the ion at a point R, on the spin orienta-
tion at that point to be equivalent to a magﬁetic field pro-
portional to the effect at the site 1 of all: the moments in
the lattice, so that '

h(R,) = ==— % J.. 8., (42)
J

where g is the gyfomagnetic ratio (= 2), Mg 1s the Bohr
magneton, and J.lj is the exchange interaction. The usual
statistical mechanical treatment shows that S, satisfies the
equation ,
' gugS
s, = HiSBs(TB—T‘lE@i)l )s B (43)

where BS is the Brillouin function for spin S, kB is the

Boltzmann constant, and

I
H .
I
II'\
[o| |t
g LV

|
~—

(L&)

T I
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We take the case where {S,| << S, i.e. near the ordering tem-

perature so that guBSIE(Biﬂ << k

BT and the argument of BS in
Equation 43 is small. For small ¥,
~ (S+1) .
BS(Y) ~ —3-8-— N : (45)
Therefore, Equation 43 is linearized as follows:
_ 25(S+1)
87 Tt &y (46)

We can Fourier transform this equation using F(g) as defined
in Equation 23, the Fourier transform of Jij; and defining the

g-dependent magnetization as

ig.R. ‘
olg) =T 8,6 7, ~ (47)
1 ' ) .
so that
olgq) = 2505H1) p(q) 4(q). (48)

3kgT
The systems of equations defined in Equations 46 and 48
have nontrivial solutions only below some critical temperature,
To, such that |
23 (

_ 25(s+1) .
kT = B E— F(Q),_ | (49)

F(Q) being theAmaximum of F(q). lFor simplification here, and
also because this is the éasevfor the experimentallyiobserved
structures in fhe rare earths, We.will‘ﬁakejg so that there are
only two vectors, *+Q, in the Brillouin zone for which F 'is
maximum. Then»at T = T, Equation 46 becomes.

19-(B;-R;)  -1Q-(B,-R;)_

T J..le +e Tl =357
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for which we have solutions of the form:

Sa

; = Ay coS (Q'Bi - wa), | (51)
with a = X,¥,2. ‘ .,
When we put Equation 51 into the effective field of
Equation 42, we obtain | ‘
n(R,) = éfg F(Q)8, - (52)
So we can treat the
proportioﬂél to the

problem in terms of an effective field
point.

magnetization at a particular lattice
Now we need to

consider the stability of magnetic struc-
tures of the form of Equatibn 51. The free energy of the
system 1is
= % (53)
E=%k,TZXZ B x)dx - £ J,., S.vS. + C 53
B Y S ij 1 =1 =j
3kBT >
Z5(s¥1) * 21 T fSJﬁj 88+ C. (54)
The equilibrium condition, BE/BS§ =

= 0, gives Equation 46.
°E
3s% sk

1 J

Taking the second derivative of L, we obtain

kT,
S(s+1) %ap %15 ~ %913 %qp-

(55)
The variation, 8E, in free energy for small ﬁariations 6§i is
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¥°E

1 B _
E == % § — 857 o5 : (65, T J. .85, 68,
213 oB Bsiasg‘ S(S+15 BT RET R

]

- J,. 188, -85,
ig[F(g)éij 713708 " 08

z[F(Q) - F(0)](e8

2
: i) :
1

(56)
So 8E is non-negative, and the spin system of Equation 51 will
be stable.

By a proper choice of axes, Equations 51 can be rewritten

as
X
Si = )\X cos (Q'Bi - CP), A
;. | . | . A
sy = xy sin (Q Bi)’ (57)
s = o.
i

This spin system has three different basic forms: 1) helical,
with xx‘= xy = s and ¢ = 0; 2) ferromagnetic or antiferromag-
netic commensurate with the lattice, Xx = 8, A.. = 0, v = 03

y
3) a more complicated periodic structure of wave veéctor Q. for
which other considerations are necessary to determine the
exact structure. We will see that these various magnetic
structures occur in the rare earths, and the present work
seeks to find the wave vector Q for the rare'earth case.
We are also interested in the generalized susceptibility,

X(q), of the conduction electron system. ‘We can write the

magnetic energy of the conduction electrons in terms of YX(g)
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and an effective field which polarizes the electron gas as
follows:

H= - %31%[2)«9), (58)

J 19°R,

ith h = —— 17535, e i 1 ' (59)
" T O .

In Equation 59 Eg is the Fourier transform of the effective

field at Bi ooting on thc clcebrons:

n(R,) = -2 (60)

_— i @§l'
J is an exchange parameter; N is the number of atoms in the

crystal. ‘We can now put Equation 59 into Equation 58 to obtain-

2 ig+ (R, -R.)
H= - —3— % 5,8, 5 e L ). (61)
202N 1] q | |

Our previous consideration of the s-f interaction showed that
it could be expressed as a spin-spin Hamiltonian of the form
(Equation 20):

1 :
H=-3 2 J.,. S.°*S..
2 ij 1) =1 =j

(62)
We equate Equations 61 and 62 to find that, apart from con-
stant factors which we drop for future convenience, )(g) is

T so

X(a) = r(q). (63)

In lhe nexl secllon we will discuss Y(g) trom the point

just the Fourier transform of Ji

of view of Kubo's general linear response formalism, but we

see here that we can identify it with F(g) derived earlier,
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Equation 24, and hence the maximum in ¥(g) will determine the
stable magnetic structure of a metal. We should note.that, in
Equation 24, we have used paramagnetic energy bands to express
F(g), and now )Kg){ In order for these bands to be the correct
ones to use in }Kg), the polarizing field of Equation 59 must
be weak. Equatiéns 47 and 59 show that the polarizing field'
;s proportional to the magnetization. Therefore, Qﬂ will be
weak only very near the critical temperature, and so our cal-

culation applies only to the initial ordering of the ionic

spins.

Generalized Susceptibility.

A.Very general treatmént.of linear réspbnse in solids,
including the generalized magnetic .susceptibility, was given
by Kubo (1957). -We will restrict our treatment to the points
of interest in this work, i.e; the g-dependent magnetic sus-
ceptibilify omitting consideration of any frequency dependence
(so w = 0 here). It should be pointed out here that besides
Kubo's paper there are excellent discussions of linear response
formalism in Kittel (1963) and Tyablikov (1967).

-We begin by assuming a Hamiltonian of the form

H = H6 + H'(t),

H'(t) =-M-h elq Tet/n (64)
We want to look at the system at zero temperature because we
are not interested in'the effect of temperature in this pér-

ticular problem. ‘In this case we are only interested in the
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ground state: [|G) = U(0,-=)[0), where |0) is the unordered
ground state of HO and U(t,to) is the time development opérator
from time t_ to time t. (See, for'example, Messiah (1961)
where he calls this the "evolution operator.”) Also, we are
interested in linear‘response, so we will ldok only at linear
tefms in the expansion for the susceptibility. We want to
know the response to a fleld whose spatial ﬁariation is de-
scribed by a wave vector g, so we will Fourier analyze the
magnetizat&on to look at the gth Fourier component of the sus-
ceptibility. Then Mg = xxg)gg, and the system is isotropic to
the spins, So we can consider only z-components of M and h,
-obtaining ¥(q) = Mg/hg. H_  describes a nonmagnetized systenm,
and .we want to know what is the magnetization, M, that takes
place with a small field applied as a perturbation; therefore,
. we can look at the response in the interaction picture:

. © :
UI(O,-w) =1 - %:/;DHi(t)dt + higher te?ms, (65)

iH t/% -iH t/%
Hi(t) = e © H'(t)e ©° . (66)

Then the expectation value of the magnetization is

M
z

il
I

. . O
(clmdc) = (012 + 7 [ Hi(t)at) M,

.o j
(1 -%./’_mHi(t;)vdt)\O)

. 0O
(ofm o) + & [ (of[H}(t),M ]l0)dt. (67)
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The first term in this equation is zero since |0) is uﬁmag—
netized. We will consider the two parts of %he commutator in
the second term separately so [ , 1 = (I) -%(II).‘ First, we
write MZ in second‘quantization language:

1 L(k-k')-x
AMz(E) ='§ﬁbfg' g;ve o UE'(E)UE(r)( k n'+ kn+ g'nﬂ-ggn—%

(68)

where the uk(g) are Bloch functions with the lattice periodici-

ty. Then " ,
_ iHot/h 1 iger' et/n -iHot/h
= - —— ' . '
(1) e = jﬁz MZ(E_)hZe e e Mz(z).
(69)
But elHot/df1 M e-iHot/ﬁ is Jjust the interaction representation

Z
form for Mz, and in that case we get operators c*(t) and c(t)

in Equation 68, where c¥ (%) = 1B, (k) b/,

krim
-. /
lE (t)/n . So we can pull out the time dependence to do

3 =
thm and cknm(t)

knm
the time integral of Equation 67 separately Now
l hzelg. 2'
= e r
(0j(1){0) = - 5= faxr D S

2 ' !
4N kk' m' ki k, nn,

i[E_,(k")-E _(k)]t/A et/ i(k-k')-r
e o u e € _ou¥

l{-!n! — I—{In —
3 3 -
° W ngE) U n (BN R i1 = O inr Opn)
(c3 ' - )]0). 4 (70)
k2n2+ klnl+ k2 o= k2n2—

We use Equation 11 to evaluate the matrix element above and do

the sums on 1, nz,'gl, and k

> We can also:do the integral

B Y
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on r' as follows:

ig‘r' i(k—_lﬁ')'r'

fazte ™ T e T T ug, (2wt
i(k-k"+q)*BR. p ...  i(k-k'+q)'r
=5 et V&£ =1 [ dr et'EE =u¥,  (r) u_(r)
1 ‘ 0411_ . k' kn
= N 6(k'-k-g-K ) K__,(k,k+a+K_), (71)
. Where
, . -iK -z
Koo (s kFaHK ) = céﬁlz e u§+9+_1§on.(z) Uy (2) - (72)

We then put this into Equation 67 and Fourier t

ransform on I

Yo get a second term like Equation 71 and finally obtain

1 2 <

T LN

z (2)

it

(1-f
.IS nn' l_{n

o -i[E ,(k+g+K )-E _(k)]1t/A et/n

)

]
k+g+K n

e e dat (73)
, . Fion - Tprgeg nr)
= -5 h_ = & K& ,(k,k+tg+K )—
2Nh 'z nn'*=’="=2"'=0" 1 €.
k mn' - $UE,, (K+a+K ) -E, (k)
h fkn(l'fk+9+K )
o B N e o E R IETE (74)
k nn' n' 2T, n'= €
In a similar way we find
' h FrnI=Truagik nr)
M (q) = - w2 Kfm" (e +K_7-E_(()k)-'l ' (75)
z .k nn' nt \ETATS, /TN EI T

Then

R,
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Xa) = 355 3 Ko, (kkiavk ) £, (1€ )

T '

1 + 1 ]
o0 (koK ) - E (kK)+ie © E ,(k+a+K ) - E (k) -1ic

k 5+g+§o) fgn(l-f5+g+gon')

[E, ., (k+a+K_)-F_(k)]

[E,, (k+g+K )-E (k)] + €”

We have assumed e -small in which case Equation 76 is just the:

definition of the principle-value integral, so we finally have

fkn(l fk+g+K n')

1 2
(&K - E_(E)’ (77)

Wy=ﬁix§}mJ@?T%)

where we use £' to mean that we take principle values whenever

the denominator goes to zero.

We see that except for the matrix elements, K2 or 12

, X(a)

is the same as F(g) in Equation 24. We showed in the last
section of this chapter that X(gq) should be the same as F(g)
and that the energy of the spin system goes as the negative of
these quantities. We now see how X(g) is just the linear re-
sponse of the system to a small g-dependent field. We will
make the approximation that the wmatrix elements, K and I, are
constant and will factor them out. For the rest of this work

we will refer to

f 1-f

kn( k+Q+K n')

1
E_ . (k*qTK_ ) - E (k) . ' (78)

_Z' Z'
N k nn'
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as %(q). X will then have the dimensions of the density of
states (states/Rydberg/atom) for the purposes.of this

investigation.

Application to the Rare Earths

As we mentioned previously, the f-shells of the rare-earth
atoms in the metals have radii of the order of one-tenth of the
nearest-neighbor distances sov that Lhere 1s nu siguniflcant
overlap between atoms in the crystal. Because of this fact we
know that the mechanism for magnetic ordering must involve the
conduction electrons, and therefore the s-f indirect-exchange
interaction should be applicable to the rare earths. 8o, in
principle, we want to calculate the eigenvalues and eigen-
functions of the indirect-exchange Hamiltonian in the case
where the spins occupy the site of a regular crystal structgre,
such as hexagonal-close-packed (hcp) fof the.heavy'rare earths
we have considered in this work. (In the rest of this dis-
cussion the term "rare earths" will be ﬁsed to refer to the
particular heavy rare earths we have studied in the present
calculation, i.e. gadolinium, dysprosium, erbium, and lutetium.)

In the rare earths we find that the angular momentum of
the 4f-shell is not significantly quenched, as can be qbserved
by ﬁeasuring the magnetic moment of an essentially free rare-
earth ion in a nonmagnetic matrix and comparing it with the
measured moment per ion of the metal. The angular momentum

that 1s specified in this case is J and not simply S. The
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magnetic degrees of freedom of each atom are described by
2j+1 eigenfunctions rather than 2s+1l. To take this effect
into account, we make use of the Lande g-factor. For states

of definite j we have

(JufM, | Ju') = g

, (ul gy fam) = (Gufgy + 8] dur),

where Mi is the magnetic moment operator of the ion. The ex-

change interaction couples only the spins of the ilons with the

spins of the conduction electrons, so in the‘interaction
Hamiltonian we simply replace S, by (gi—l)gi“(unless j=0).
The factor (gi-l) may be either positive or negative and acts
as a sort of "spin éharge," allowing an extré degree of free-

dom in alloyed magnetic rare earths. -De Gennes (1958) was the

first to point out that S should be‘replaced by (g-1)J and Liu

(1961a) discussed this point in more detail. For future ref-
erence, we have given relevant angular momentum data for the
rare earths in Table 1.

‘We show the magnetic structures for those of the heavy
‘rare earths which have some periodic antiferromagnetic phése
in Figure 2 (Koehler 1965). Gadolinium has only a ferromag-
netic phase, and lutetium has no moment, so these are not in-
cluded in the figure. -‘As can be seen ffom the figure, all
these periodic magnetic structures can be described by a wave
vector g which has only a z-component. This is also true for
lutetium when a small amount of.some other element such as

terbium is added to provide a moment (Child et al. 1965).
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Table 1. Angular momenta and g-factors of rare earths

Number of electrons

in f-shell ‘Rare earth s .Al J | g-1 (g-1)3J
7 Gd 7/2 0 7/2 1 7/2
8 - m 5 3 6 1/2 3
9 | Dy 5/2 5 15/2 1/3  5/2
10 " Ho 2 6 8 1/ 2
1 Er 3/2 6 .15/2 1/5 3/2
12 | T 15 6 1/6 1
14 ILu 0 0 0

Therefore, the interesting part of X(g) will be for g = (0,0,q),
for it is in this region that the maximum in X should occur to
stabilize the energy of one of the magnhetic structures of
Figure 2. The Brillouin zone for the hexagonal lattice is
shown with the symmetry points and lines labeled in the usual
way in Figure 3. In the notation of that figure, then, the
interesting range of g's is from I’ to A. In all later discus-
sions we will confine ourselves only to~X(q)rwhere it is
understood ﬁhat q is tﬁe magnitude of a wave-vector g which is
chosen along the line I" to A.

The hcp crystal structure has two atoms in the unit cell.
Therefore, the susceptibility, X(q),vwill have two branches in
the primitive Brillouin zone. These two braﬁches correspond

to two different combinations of the two allowed kinds of
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coupled initial and final states, g.and k+gq in the expression
derived earlier for X(a), Equation 78. Watson et al. (1968)
point out that, if spin-orbit coupling is ignored, the allowed
coupling corresponds to coupling 1) within the same band inside
the first zone and 2) between adjacent bands from the first

to the second zone. These are just the kinds of coupling ob;
tained néturally in the double-zone representation for the
bands; therefore, we need to fold out the electron bands to
perform the evaluation of Xﬂq) in the double-zone scheme. The
question then arises as to the validity of this folding out of
the bands. "If there is no spin-orbit coupling, the structure
factor is everywhere zero on the AHL zone face, and the fold-
ing out of the bands:into the double zone is a correct pro-
cedure (Mott and Jones 1958). In fact when spin-orbit coupling
1s neglected, the double-zone representation is the one most
often used because of 1ts convenience. ‘However, the introduc-
tion of spin-orbit eoupling produces gaps in the electron bands
on the AHL face of the Brillouln zone and raises questions
about the validity of the double-zone scheme. The largest
gaps are at the point H of the zoné, while they go to zero
along the line A to L (Cohen and Falicov 1960). Examination
of the gap at H shows that 1t 1s quite small relative to typi-
ral hand widths., In fact, the numerical convergence of the
present relativistic APW bands is not quite Euffiqient to

properly resolve the splitting (Keeton 1966). This seems to
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indicate that the double-zone representation is probably quite
a good approximation even with the relativistic energy bands
we are using. We should note, however, that the relativistic
band calculation does introduce changes in the relative shapes
and spacings of the bands which are important to this investi-
gation, particularly as they are reflected iﬁ the rather sig;
nificant differences in the Fermi surfaces from what is calcu-
lated nonrelativistically (Keeton 1966).

To conclude our discussion of the considerations needed
to properly apply the ideas of generalized susceptibility and
indirect exchange to the rare earths, we presenﬁ the ordering
temperatures and the experimentally determined magnetic wave
vectors, Q, for the heavy rare earths at their- initial order-
ing points in Table 2 which is made up from information re-
ported by Koehler (1965). In the rest of this work we will

refer to the stable magnetic q, the waximum in X(g), as Q.
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Table 2. Magnetic ordering properties of the heavy rare-earth
metals: the Neel temperature (TN), the Curie tenm-
perature (TC), the paramagnetic Curie temperature
(6p), the interlayer turn angle at the initial
ordering point (w:), and the magnetic wave vector at
the initial ordering point (Q). (The periodic struc-
ture for lutetium is extrapolated from data for
Tb-Lu alloys. The information in this table is
taken from Koehler 1965.)

o o, o

Metal TN( K) TC( K) eP( K) wi(deg.) Q(m/c)
Gd 293.2 317 ' 0 0

Tb 229 221 224 20.5 .23
Dy 178.5. 85 153 Ly 49
Ho 132 20 ' 83 51 .57
Er 85 ' 19.6 42 51.4 .57
Tm 55 22 20 - 51.4 .57
Lu 48 .53
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NUMERICAL CALCULATION OF THE GENERALIZED SUSCEPTIBILITY

General Considerations
We recall the form of the generalized susceptibility from

Equation 78:
fin " Tieegug nt)

L

gnn'

=l

The fkn are Fermi-Dirac functions and are quite close to step

functions of value 1 for E (k) swaller than Ep and of value 0

F
for En(g) greater than EF throughout the temperature range we

are concerned with. "'In fact, the smearing of the fkn with in-

creasing temperature only has an effect on the susceptibility
of theé order of (kT/EF)Z, which is very small in all the cases
we are considering. Keeton and Loucks (19685 find Ep to be
tyﬁioally about 0.4 Rydberg above the bottom of the bands,
which gives EF/k ~ 105 OK, a much higher temperature than any

in Table 2. We will assume in the future that the fyn

are
simply the step functions described here.

The energy bands in Equation 78 must be provided numeri-
cally. We have used bands calculated by Keeton and Loucks
(1968) using the relativistic-augmented-plane-wave method for
gadolinium, dysprosium, erbium, and lutecium. The bands for
dysprosium and erbium were each calculated twice, using two
different potentials. Keeton and Loucks havé labeled these

Dyl, Dy2, Erl, and Er2; we will use the same labels and
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consider éll six sets of bands. The bands for Dy2 are'typical
of the whole series and are given in Figure 4.
When we consider a macroscopic crystal With of the order

23

of 10 atoms, there are 1023 points k in the Brillouin zone
over wnich we must perform the summation of Equation 78. For
‘all practical purposes, this is a continuous distribution of'
states k in the zone and the sum can be changed to a principal-
value integral. The summations over the bands are relatively
‘easy to perform since we only deal, in general, with a swmall
number of bands. For example, the rare-earths are tri-valent,
so there are one and one-half bands below the Fermi energy (in
the double-zone scheme) and, in the case of Dy2 shown in Figure
4, two and one-half bands above the Férmi energy have been
célculated, for a total of four bands. Higher bands are like-
ly to be very free-electron like since the potential is felt
less as excitation energies become higher.

The real problem, then, in the evaluation of the suscep-
tibility is the computation of the integral over states k for
the numerical energy bands. The energy bands were actually
calculated on levels'l, 3, 5, and 7 of the mesh shown in the
1/24th zone in Figure 5. With fifteen points per level we have
sixty points where. the bands have actually been calculated in
the 1/24th zone or 1200 points in the entire zone. We are
interesteq in obtaining as fine a mesh as poésible in the kz—

direction 'so that we can know ¥X(q) at as many points on the
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- Figure 5. 1/24th Brillouin zone show1ng the
: calculatlon mesh ‘




Ly

line A as possible. We cannot know X(q) any better than we
know E(kz) because both the points k and k+g+K must be in any
mesh we -use to approximate the integral of Equation 78. Given
the uncertainty in the energy bands to begin with; the simplest
approximation to the integral is probably‘as well as we need

to do. This would correspond to the trapezoidal rule for
ordinary one-dimensional quadrature (Pennington 1965, p. 191,
for example) which in three dimensions would amount to taking
each point in the mesh to be representative of the volume ele-
ment at which 1t 1s centered and summing the terms of Equation
78 for each point times. the differential volume of the point's
volume element with respect to the whole zone. This, in fact,
is what we have done after developing appropriate interpolation
schemes to extend our mesh to one conveniént for the calcula-
tion of X(q) on the line A. The fact that we have a principal-
value integral means we need to avold zero energy denominators
(as we clearly must'do to compute the sum in any case). Because
of this we restrict En(g) < EF and En,(g+g+50).> EF’ never
allowing them to be equal. We will discuss below how well we
can expect this kind of scheme‘td work.

The next question is hqw to*interpolate:to obtain the
mesh we want. We could simply use linear or quadratic inter-
polations to find points between those calcuiated. In view of
the inherent uncertainties;in the bands, andghence in the
whole calculation, these may not be too bad.. We have, in fact,

{
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made use of linear interpolations done by Keeton (1966) in each
of the levels of Figure 5 to extend the mesh to 45 and 90
points per level. Along the kz-direction, however, we felt
that we needed to‘do as well as possible becéuse it is the way
in which q connécts states along this direction that deter-
mines X. The only reasonable criteria for this interpolatioh
which would be suggésted by the physical properties of the
bands are that they be smooth and that they have zero slope at
the zone boundaries. The standard method for doing smooth
interpolations is the "spline interpolation":(Pennington 1965,
p. 404) which is a good approximation to stretching a perfect-
ly elastic, thin line' through all the points, fixing the bound-
ary conditions, and minimizing the strains. ‘This amounts to a
pliecewise cubic polynomial approximation of the bands. We
tried two different variations of the spline fit: one in
which we used our judgment to choose the points at the zone
boundaries and then required the bands to have zero slope at
those points, and the other in which we did not put in the
points at the zone boundaries but used the symmetry of the
bands about the zone boundaries to fit them at the end points,
still requiring them to have zero slope there. The results
~obtained for X(q) for Dy2 in the two.interpolation schehes were
entirely similar in the lmportant features, so we did all
further work using the second scheme which 1s the easier to.

apply. Using this interpolation scheme, we extended the mesh



L6

for the energy bands from four levels in Figure 5 to twenty-

nine. We believe that the criteria used in this extension of
the mesh are reasonable and the interpolated bands provide as
good a basis for the calculation of the suscéptibility as 1is

at present available;

Given the interpolated bands on a mesh that proviaes a
reasonable coverage.for q, and given the three-dimensional
analogue of the trapezoidal fule for the integration, we can
proceed to calculate the susceptibility and to consider the
reliability of the results. We have done this for Dy2, and as
we will see from the similarity of the final results for the
other metals with those for Dy2, the conclusions we draw from
various considerations in the calculation should apply to the
whole set of metals we are studying.

First we considered the effect of the summations over the
bands. We did the calculation in three different cases: with
the four calculated bands, with the four calculated bands plus
two additional free-electron bands on top, and with only the
band which determines the.Fe{mi surface. The results obtained
in the three calculations containedlexactly the same features
in.XKq) so that the magnetic ordering Q predicted was exactly
the same in all three cases. 1In fact, within the confidence
we have in the calculation, the differences were g-independent,
so that X was shifted in magnitude only. The reason for this

is that, as seen in Figure 4, the bands are father flat, and



i

as we get far from the Fermi energy, the energy denominators
in Equation 78 become quite small, so that each term contrib-
utes very little to )Kq) and is not able to distinguish vari-
ous q's very well. 1In fact these small terms have a kind of
random fluctuation through the whole range of q's which is g-
independent on the average. In view of this result, all fur-
ther calculations were done using only the bands at the Fermi
gurface and the summations over hands were dropped from
Equation 78. Using only the bands at the Fermi surface also
has the advantage of allowing a more direct comparison than
would otherwise be possible of the value of X(O) with the
density of states at the Ferul energy, N(EF), as we will see
below. This'comparison will indicate the degree of consistenqy
between the calculationé of X(q) and N(EF) using the same
energy bands. We can examine the relationship between the
density of states at the Fermi energy and Y(0) by considering
the limit of Y(q) as g goes to zero:

o _ )

(0) X(q) I S 53
0) = lim qQ) = lim F I , —
K q—0 q—0 N k 'E(K+9+§o) - Elk)
Y T = Tirgek o)
= == lim %' - . 79
2N =0 k E(ktg+K ) - E(k)"

For small enough g, we can take Ko.= 0, and we can use the

first two terms of the Taylor expansion for fk+g:

>f ~
feq = T * [E(kra) - E()] ﬁy 4 ..., (80)
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* Then
_ A R Tk
X(0) = =5 i [- SETETJ ' (81)
= == Z 6(E(k) - Ep). | (82)

Equation 82 just counts all the states on the Fermi surface and

divides by 2N, so ‘
X0) = 2 N(E,). (83)

Keeton and Loucks (1968) calculated N(EF) for their bands, and
the values they obtained are given in Table 3. The uncertain-
ties in N(EF) are rather large (of the order of’25%) because
of the histogram approach to'the calculation and the uncer-
tainties in the bands to begin with, so values of ¥(0) between
about 10 and 18 states/Rydberg/atom would be consistent with
the densities of states given in Table 3. We shall see that

the 1limit X(q) in our calculations is consistent with N(EF).
q—=>0

We have shown how X(0) is related to the density of states
at the Fermi energy, N(EF}. Actually, in the numerical calcu-
lation of the susceptibility )Y(0) can never be calculated
correctly because all the terms with denominators E(k) - E(k)
are eliminated from the integral, making Y(0) go to zero. 1In
the liwmit of q going to zero, hoqever, the numeratof of the
integrand is also zero and the integrand has a finite limit
£ N(E,), as we have seen above. It should be pointed

out that even for small but non-zero g there may be terms that

equal to

are eliminated from the integral but show up in the density of
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Table 3. Density of states at the Fermi energy, N(EF), for
the heavy rare earths (Keeton and Loucks 1968)

N(EF)
Metal (States/Rydberg/atom)
Gd | 28.5
Dyl . 27.7
Dy2 2.3
Erl - | 24,3
Er2 . 23.6
Lu : : . ' 25.5

states. fhesé terms arise from portions of the Fermi surface
thaf are parallel to g so that there are states k and k+q
both on the Fermi surface. As.we have shown for Y¥(0), the
susceptibility due to this kind of'term iS'jﬁst %N(EF) times
the differential area of Fermi surface involved in this cou-
pling. For a strange Fermli surface like a cube, which we will
discuss further on, there willvbe quité é large portion of
Fermi surface involvedvin this kind of coupling for a rather
large range oqu's; however, for the usual rather complicated
Fermi surface, such as in the rare earths, these terms should
not be very imporfant.' We will see that N(EF) gives a X(O)

which is quite consistent with the rest of the susceptibility
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in the cases we have calculated, indicating that these density
of states terms are insignificant except for q = 0.

The next consideration we gave to the calculation was of
the effect of changing meshes in the approximation of the inte-
gral. We had ninety points interpolated in each triangular
section of the 1/24th zone (Figure 5) which we divided into
two groups of forty-five points each. This gave a total of
1305 points in the 1/24th zone or 2565 points in the 1/12th

zone. We actually have to sum over 5130 points in 1/12th of

the double zone, from I' to A to T to A to I'. This mesh is
equivalent to 27,216 points in the ﬁrimitive Brillouin zone.
The differences in YX(q) between these two meshes were insig-
nificant, so that we feel that the mesh chosen is fairly repre;
sentative of the actual energy band system. .One of the meshes
fits the symmetry of the zone better than the other one, so for
our final results we weighted the better mesh twice as heavily
as the other one and averaged the two calculations. We wili
see when we discuss the suéceptibility for free-electron

energy bands that the choice of mesh can be important in intro-
ducing spurious peaks in the susceptibility 5ecause<of the
particular relationshipAof the chosen mesh to the Fermi surface.
Our épproximation to the integral over the Brillouin zone

assumes that the energy at the mesh point is representative of
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the energy in the volume element surrounding that point, so
the Fermi functions in the integral cause it to act as if the
Fermi surface does not cut any qf the volume elements but goes
only along the boundaries between the volume elements. In
special cases this may cause severe distortions of the Fermi.
surface and introduce spurious features into the susceptibil-
ity. We have investigated various schemes for improving this
Situation and have determined that the accuracy of the bands
and the inherent accuracy of the calculation of the suscepti-
bility do not at present warrant the very obnsiderable amount
of work required to do just a little better in this regard. A
Simple comparison of‘calculations with two different meshes,
however, should reveal shifts in certain features of the sus;
ceptibility if the relation of the mesh to the Fermi surface
is responsible for those features. This is indeed evident in
our calculations, most strikingly in the free-electron case
where the effect is most severe because of the spherical shape
of the Fermi surface, as we will point out in the discussion
below. So comparison of the calculatipns with several meshes
should allow us to eliminate spurious features fromAX(q). In
the next section we will discuss the relation between the fea-
tures bf the susceptibility and the geometry of the Fermil sur-

face which will also allow us to eliminate spurious features
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in X(q) when there is no corresponding peculiarity in the

Fermi surface.

Rélation Between Fermi Surface Geometry
and the Susceptibility

Roth et al. (1966) have used a very sophisticated treat-
ment to show the nature of the-relationsﬁip between the Fermi
surface and the shape of the generalized susceptibility. We
shall simply look af some different Ferml surface geometries
for special bands to convey the important ideas of the theory.
We shall consider three types of Fermi surface near a station-
ary value of g (q still being restricted to the kz—direction
which is sufficient for the purposes of this discussion): 1)
spherical; where Q will be a diameter of the sphere giving
coupling, or "nesting," of one point on the surface into an-
other on thekother side, 2) cylindrical, where Q will again be
a diameter, but now it nests a whole line of points, and 3)
parallel sheets, kz = constant planes, so that Q nests areas
into each other. ‘We are only assuming the Fermi surfaces to
be like this over a small region so a complicated real Fermi
surface may contain all three types of nesting.

For the spherical Fermi surface we consider

_ f :
Xa) = 5 [ ok T (84)

and we will omit all constant factors from here on. We will

choose the origin of coordinates in g-space'such that Q is
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along the kz-axis,and sufficiently close to the Fermi surface

we will take E(k) = k%, So

X(a) e [(over ‘points far from the Fermi surface)

k -1+Ap ,
+ [P xfaxf du . - (85)
kp-0k -1 (k+q)® - ¥

We want to see the effect of nesting points, so dropping the
first term we have '
-1+Ap -

1 5F 2. d
X(q) oc —-j’ k~dk [& EEEE:—E

q + 2k(Au-1)
q - 2k

oc l‘f F o opax lné
94 “k_-pk

But g = Q@ + 8q = 2kF + 69, So

X(8q) « constants + 85q 1n ‘EKEQ%_EE" (86)

When &g goes to zero, X:goes to a constant, but its slope goes
to -». We see, however, that this type of nesting does not
produce a maximum in the susceptibility at Q. In fact, the
slope 1s everywhere negative for the part of X due to a spher-
ical piece of Fermi surface which indlcates that the ferromag-
netic state would tend to stabilize when only point to point
nesting exists on the Fermi surface.

For the cylindrical Fermi surface we again use Equation
84, but we will do the integral in cylindrical coordinates with
the cylindrical axié the kx—axis. Choose the origin of

coordinates such that Q is along the kz-axié and take E(_lrg)==k2
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sufficiently close to the Fermi surface. Then
y(q) a:‘f (over points far from the Fermi surface)

L Kp m+Al 1
o+ [ak, [ kdak [ ae . (87)

-L kF-Ak m-A8 2kq cos B + q2

Dropping the first term,

X(a) o }-ko kdk ‘fAe da
: - q kF—Ak o 4 - 2k cos a
A .
o ?ql'f kdk £

kF-Ak . 4q - Lk~ ,

where A\ = min(q/Z,kF). So

) 1, 5 0,
¥(q) . q < (88)

P

X(q) o 1 - [1 - (ZkF/q.)2] » ba > 0.

The slope of X(q) herc is everywhere zero or negative, and
again we do not obtaln a maximum in the susceptibility at Q.
So a nesting line does not stabilize the magnetic energy at
nonzero Q.

We can use more general bands without undué complication
in the case of parallel sheets on the Fermi surface. We again
use Equation 84 and orient the coordinates sb that the parallel
sheets are kz = constant planes. This time we will expand
E(k) in a Taylor series, take only the first term and use
E(k) = E(kz) when we are close enough to the Fermi surface; we

also note that E(kF) = E(kF+Q). "Then we have
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X(a) o« [ (over points far from the Fermi surface)

ko dk,

. (89)
koot BU6g70) - B(K,)

L, Ly
+-jiL de.[Ly dky

E(k,*tq) = E(kp*tQ -8k _+06q) = E(kp+Q) - v,(8k, -8q),
. (90)
E(k,) = E(kp-6k,) = E(ky) - v,0k,, |

where v, and v, are the band velocities at kﬁ and ky '+ Q re-

spectively. So

jpk d(sk,)
X(6q) o —
o (Vp-vylok, + v 8q
(v,=v, )Ak + v, 6q
cc 1 1n e 1 1 . (91)
VomVy V109

In this case we see that ¥(gq) goes logarithmically to +» at Q.
Nesting of areas of the Ferml surface is what is required to
stabilize the magnetic energy at some nonzero Q, so we can look
for parallel sheets of Fermi surface which are nearly kz =
constant planes to identify the peaks we observe in our calcu-
lated susceptibility. This connection to the Fermi surface

can also serve as a guide to help in the elimination of extran-
eous peaks ihtroduced by the numerical procedures.

The above calculations for the three different local Fermi
surface geometries are very similar to doing the complete cal-
cculation of the susceptibility analytically in the case of
three-, two-, and one-dimensional perfectly free-electron
bands. The results of this calcuiation are shown in Figure 6.

(Kasuya 1966 is a good reference for more details on the
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Figure 6.

Generalized susceptibilities for completely
free-electron energy bands in (1) one
dimension, (2) two dimensions, and (3)
three dimensions. These correspond to

" planar, cylindrical, and spherical Fermi

surfaces
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free-electron susceptibilities, although the calculations are

straightforward from the above work.)

In order to allow comparison of the features of the sus-

ceptibilities with the Fermi surface geometries,

we have pre-

pared a computer program which determines the intersections of

the Fermi surface with each of the fifty-eight planes in our

interpolated mesh in the double zone. We have intersections

of the Fermi surface with the symmetry planes of
plotted so we can correlate these with the peaks
lated susceptibilities. Results for these Fermi

will be presented in the next chapter along with

the zone
in the calcu-
surface plots

the suscepti-

bilities. One advantage of this type of procedure is that we

can change the Fermi energy and see its effect on both the

susceptibility and on the Fermi surface by simply changing the

Fermi energy read into the appropriate programs.
discuss the effect of varying the Fermi energies

chapter.

Cubic and Spherical Fermi Surfaces
We have alluded to the results for the cubic

Fermi surfaces in the above discussion. We will

~

We will also

in the next

and spherical

present here

the analytical and the numerical calculations for these two

geometries assuming a simple cublic lattice of side a, taking

q = (0,0,q) in the first zone, and considering only the band

that determines the Fermi surface, so when we go

out of the
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zone we make use of a reciprocal lattice vector Ko to comeb
back to the same bands.

The cubic Fermi surface may be obtained from the following
set of bands: |

E(k) = |k}, » (92)

where ki means the largest component of k in absolute magnitude,
and in a simple cubic-lattice we require -n/é <k < n/a. To
properly put everything in the first zone, we will assume

kF < nn/(3a), where the cubic Fermi surface has side 2kF. Then

from Equation 78:
. . f_lg(l-fyygo)
X(aq) = LMTBN f dk E(E+9.+_Igo) - BE(X) ' (93)

We will break Y(q) into three barts:

(@) = == [(1) + (2) + (3)], (94)
4~ N

where (1) is the part with ki =k (2) has both ki and

Z,

(ratiy)y = Yy oF ky» and (3) has Xy =k ox ky and (kgkg), =

X
kz+q. In (2) we consider the low temperature limit as the
Ferml surface becomes perfectly sharp, whichzwill give density
of states terms like those referred to earlier in this chapter
that must be added to the numerical calculation. (1) and (3)
are rather complicated, but (2), which we,nepd to add to. the
numerical calcu;ation, is simply

(2) = 8k§. - Hkpq, 0<q<2Kkp,

(95)

=0, o q> 2kg.
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We obtain for a final result

.0 . 2.2 2
X(Q) = LLnBN [ 3 q  + 12kF] ’ O<Q.<kF9
Y [iEg + 17k2-7; + (4%2 - 14%) 1n (522—)]
= iy o4 “F Fd F-29 2kp-q' "’
kp <q < 2Kg
Q 4kg 2 . 2 12y ., .q
N F
i)
ZkF<q<-a- - kF,
-0 A m3 M2 L6k = 2k2 _ 9qT + 242
- 14,1']’31\]' [3q (a) + 5(8.) 6kFa ZkF_ 7qa + 3q
2 ‘ .
- 3% 1n (T=w;) * (23 * 2 - %qz) In (gt
' E ' ?‘ka‘q
s
Tox
+ 407 1 () + (B 4D 1n (FE——)
a “F Eat
;lméln(%_ - F‘)],%-l%gq<%.
| = " kp - a .

The contributions (1), (2), and (3) are plotted in Figure 7,
where we have taken a = m Bohr radil and EF = 0.200 Rydberg.
In Figure 8 we show the total X(q) along with the numerical
calculation (with contribution (2) added to the numerical cal-
culation) using the two different meshes that we referred to

earlier, each with forty-five points per level for the levels

of Figure 5.
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The spherical‘Fermi surface may be obtained from free-

electron bands:

E(k) = ak®, - (97)

where k is restricted to a cubic zone of side 2m/a. We will
assume that kF<:ﬂ/(2a), where 2kp 1is the diameter of the Fermi
surface. Then we use the following form for. X(q):

. T
| Q k
Xa) = 25y ok sEmE) - ) (98)

ﬂjN
Performing the integrations just as in Equations 84 to 86, but

for the whole of occupied k-space thiS'time;‘we obtain

2
k -y g+2k :
-0 E_ __F ' LU
Xa) = —F— U + (3 - ) In | q_ZKFlJ, 0<q<l - K,
2 ' 2
X q-2k k A -2k
__20 ‘F X A °F F
- G- | ¢ -5 | | o9
2 T
k K ()
F F oo a il 2
e (A -kp) + o (3 +a) - e (- a7
;—T-- kF<q< R

where A = %g - q. We have plotted ]«q) for a = 3, a = 2 Bohr

radii, and Ep = 0.066 Rydberg in Figure 9 along with two numer-
ical calculations for the same two meshes as. for the. cubic
Fermi surface.

We can see that spurious peaks occur in the calculations
for the spherical Fermi surface as was.mentiéned earlier.A

However, using our criterion that peaks whose positions are
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mesh-dependent are not real would cause us to eliminate two of
the three bad features in this case. If we cared to calculate
over still other meshes, the third peak would undoubtedly be
removed also, but this is not nebessary because we can simply
examine the Fermi surface and discover that there are no
parallel sheets aﬁd therefore eliminate the third peak as
arising from the numerical procedures rather than from the
energy bands. We notice that the background in both numerical
calculations falls quite close to thé analytical result, so
the simple elimination of the extra peaks as described above
will give us a reasonably good picture of the susceptibility.

We have examined the effect of the bands, various meshes,
and different Fermi surface geoﬁetries in the calculation of
the susceptibility in this chapter. The integral~for Aaq)
seens to have converged quite well for the mesh we are using;
the effect of bands other than those right at the Fermi energy
is g-independent, and our knowledge of the Fermi surfaces
allows us to eliminate spurious features that may appear in the -
calculation due to the numerical procedures.. -When we finally
take a look at the calculation for the spherical and the cubic
Fermi surfaces, which can also be done analyfically, we see
that the procedure we have followed seems indeed fo be reliable
in showing the major features of the susceptibility and, in

particular, in predicting the maximum in.X(q), Which interests

us because of its relation to stable magnetic ordering

arrangements.
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THE GENERALIZED SUSCEPTIBILITIES OF THE HEAVY RARE EARTHS

The Calculated Susceptibilities

Following the procedures outlined in the preceeding chap-
ter, we have calculated the generalized sﬁsceptibilities of
the heavy rare-earth metals: Gd, Dyl, Dy2, Erl, Er2, and Lu,
where Dyl, Dy2 and Erl, Er2 correspond to two different poten-
tials used in the band calculations (Keeton and Loucks 1968).
The results of these calculations are shown in Figures 10
through 15 in the double-zone representation. In Figures 16
through 21 we show the intersections of the Ferml surface with
symmetry planes of the double zone for comparison with the
features of the susceptibilities. The dimensions labeled on
the Fermi surface sections correspond to the labels on the
graphs of X(q).

Examination of the Fermi surfaces and comparison with the
other calculated susceptibilities indicatss-that the only real
problem with a spurious peak seems to be in Er2, where the
first peak in Figure 14 should be eliminated. With the first
peak of Er2 removed, there is very little difference between
Erl of Figure 13 and ErZz. (There seém to be other spurious
peaks in the series of susceptibilities, but they are small
enough not to appreciably affect either the shapes of the
curves or the analysis of them, so we will not be cqncerned
with them further.) There is also very little difference

between the general forms of the Susceptibilipyes of Dy, Er,
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and Lu, as one might expect by referring back to Table 2 and
to Figure 2. This similarity in susceptibilities quite clear-
ly reflects the strong similarity in Fermi surfaces, as seen
in Figures 17 throﬁgh 21.

If we coupare the densities of states (times %) 1istéd in
Table 3 with the values of the susceptibilities in Figures 16
through 15 for small q, we see that they are all within a few
percent of each other, so that any density of states terms
like term (2) in the calculation of the cubic Fermi surface
susceptibility must be small enough to be neglected within the
accuracy of present bands and the present susceptibility
calculation. |

Gadolinium is clearly different from the other heavy rare
earths in both its Ferml surface and its susceptibility. We
shall discuss it separately in some detaill in the next section,
since it differs from the others in its experimentally deter-
mined properties as well as in these theoretical calculations.

We have also calculated both the susceptibilities and the
Fermi surfaces for all these metals for Fermi energies .005
Rydberg above and below the Fermi energy calculated by Keeton
(1966). The trends are interesting; they seem to be just what
one would expect from a simple inspection of‘the bands. The
changes in Ferml surface are such as to make G4 look more like
Dyl when the Fermi energy of Gd is decreased, so with the

various Fermi energies we seem to get a set of Fermi surfaces
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that make a gradual transition from the gadolinium surface of
Figure 16 to the lutetium surface of Figure 21. We will dis-
cuss these various surfaces and their susceptibilities more in

detail in the following section.

Comparison with Experiment

In Table 2 we have shown some of‘the magnetic ordering
‘properties of the heavy rare earths including the magﬁetic
wave vector (Q) at the highest ordering temperature for each-
of the metals in the series. In Table 4 we éhow the magnetic
wave vectors obtained from the maxima in the calculated sus-
ceptibilities in comparison with the experimental values. We
see that the calculated Q for Lu using the calculated Fermi
energy 1s very close to the experimental Q. Those for Dy and
Er are slightly larger than the experimental values, but in-
creasing the Fermi energy by .005 Rydberg improves the agree-
ment considerably. The uncertainties in the bands and in the
numerical calculation of the susceptibilitieé are such that we
cannot really eXxpect better:quantitétive agreement between the
expérimental and the theoretical Q's than is exhibited for the
Q's obtained using the correct Fermi energies. However, the
agreement is good enough in each case to give reasonable con-
fidence in the calculation.‘

When we 1oék at the susceptibilitiés along side of the
Fermi surfaces, with the important nesting qis labeled in both

figures, we see that the beginning of the major peak for Dy,
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Table 4. Magnetic ordering wave vectors (in units of w/c) as
determined from experiment (Koehler 1965) and from
the maximum in the theoretical susceptibilities

Q . 'cheory
Q theory (with Ep increased by .005
Metal “expt (with calculated EF) Ryd from calculated EF)

Dyl . .60 ' .53

49
Dy2 .60 | .53
Erl .61 .56
.57
Er2 .61 . 5L
Lu .53 .54 .50

Er, and Lu, is in each case determined by thé o} labeléd (1). _
This has been called.the "webbing" q (Kecton and Loucks 1968)
because it corresponds to a "webbing" between arms of the Fermi
surface. The magnetic Q seems to be greatly influenced Dby the
size of the webbing, and, as we wilill see in gadolinium, the
absence of webbing tends to smear out the features of the sus-
ceptibility so that no non-zero Q is selecfed out from the
curve as stabilizing a periodic magnetic structure. The peak
in the right half of the susceptibilities of‘Dy,rEr, and Lu
seems to come .from nesting between pieces of Fermi Surface in
the same half of the double zone, but the relation of these
pieces to the webbing seems to indicate that the webbing also

enhances this particular feature of the X's. Again, couparison

with gadolinium seems to bear out this conclusion.
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The approximation that all the matrix elements are con-
stants may not be very good. We would expect them to be
slightly decreasing functions of q.simply because as q increas-
es there should be more and more oscillations in the electron
polarization within the 4f-shells of the ions, giving more and
more of a tendency for the overlap integrals to cancel out, |
so that these integrals become smaller as g becomes larger.
This should be true even when the sum over reciprocal lattice
vectors is carried out, since almost all the terms in such a
sum should be smaller for'larger g. In a more refined calcula-
tion where the g-dependence of the matrix elements could be
included, their effect should be to cause the peaks in the cal-
culated susceptibilities to shift slightly‘to the left as the
curve is pulled down, héiping to obtain agreement with expecri-
ment ‘in Dy, Er, and Lu.

We noted earlier in discussing the kinds of ordering pres-
ent in the rare earths that Gd has no antiferromagnetic phase
but becomes ferromagnetic directly from its paramagnetic phase.
This fact would imply that the maximum in the generalized sus-
ceptibility of Gd should come at Q = 0. If we examine the
form 6f the susceptibility of Gd in Figure 10, we see that,
guite different from the susceptibilities for the other metals,
Gd has no apparent peaks but is quite flat across the whole
range of q. The effect of a matrix elemenf which is a decreas-

ing function of q would be to pull down the Whole curve and
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emphasize the stability of the Q = 0 (ferromagnetic) structure.
The flatness of the gadolinium susceptibility seems to come
from the fact that there are many rather smail nesting areas
on the Fermi surface (see Figure 16) for a very wide range of
q's. This is apparent in Figure 10 as we look at the many in-
portant q's which contribute across the susceptibility graph.
When the webbing feature 1s introduced, as in Dy, Er, and Lu,
the nesting area for a much smaller range of g's around thc
webbing q becomes dominant, and we get the peaks which stabil-
ize the periodic magnetic structures in the heaviér metals.

We pointed out earlier that the generalized susceptibility
is approximately proportional to the magnon spectrum. It can
also be shown that the same features of the Fermi surfaces that
appear in the magnon spectra and the susceptibilities will
appear in the phonon spectra. Therefore, we can look at mea-
sured magnon and phonon spectra to see-if the same peaks occur
in them that we obtain in our theoretical susceptibilities.
"Experiments have been done on the magnon spectra of Tb (Mgller
and Houmann 1966), Tb-Ho (Mgller et al. 1967 and 1968), and Er
(Woods et al. 1967), and on the phonon spectrum of Y (Brun
et al. 1968). 1In each of these cases, bumps (or peaks) are
found at Q's equal to the magnetic wave vector for fhe particu-
lar material involved in the study. The experimental existence

of these bumps certainly lends support to the shapes we have
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/

calculated for the generalized susceptibilities in the heavy
rare earths.

The magnitude of the exchange integral necessary to fit
eleétrical resistivity data is of the order of 0.5 eV (Elliott
1965). 1If we use a Simple effective field approximation we

find that

, |
xr, = 554 x(q), (100)

where Tc is the appropriate critical temperature; Q is the
magnetic wave vector for the structure at Tc’ S = (g-1)J, and
I is the exchange integrai. We do not know the absolute value
of X(Q) because we have dropped many g-independent terms, and
we only know relative values, like X(Q) - X(0), under the
assumption of constant matrix elements. Therefore, we can

look at
2

k(T -0p) = TS rx(a) - X(0)] (101)

and compare the magnitude of I with the experimental value to
get some idea of how much the g-dependence of the matrix ele-
ments must pull down the peaks in X(q). Examiﬁation of the
susceptibilities presented in Figures 11 through lh‘gives

' )KQ) - X(0) about 6 Rydberg_l for dysprosium and about 4.5

Rydberg_l for erbium. Table 2 gives T and~eP for these metals,

N
-and Table 1 gives (g-1)J. When we put these'values into Equa-
tion 101, we find I about .04 eV for Dy and about .09 eV for

-Er. This would seem to suggest that the matrix element pulls

the peak down so that [X(Q) - X(0)] is about 10% to 20% of the
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value we have calculated or even slightly less. This is
probably reasonable since the effective mass of terbium mag-
nons as estimated from the data of Mgller and Houmann (1966)
seems to be about 1500 electron masses, indicating a reasonably
steep increase for the magnon spectrum, and hence a rather
steep fall-off for the susceptibility.

When we look at a variety of Fermi energies for the vari-
ous metals we see that increasing tlie Fermi energy tends to make
the heavier metals look more like Gd and decrease the magnetic
Q (this 1s apparent in Table 4). Decreasing the Fermi energy
has the opposite effect, and in fact the Fermi surfaces for Gd
with Fermi energy decreased by .005 Rydberg and for Dyl are
almost identical. There are, however, some subtle differences
between the energy bands for these metals, so that the whole
story cannot be told simply by changing Ferﬁi energiés for one

of the sets of bands.
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SUMMARY AND CONCLUSIONS

We have calculated the generalized susceptibilities of
the heavy rare earths, Gd, Dy, Er, and Lu, using the energy
bands of Keeton and Loucks (1968). This calculation has born
out general conclusions drawn previously (Roth et al. 1966 and
Keeton and Loucks 1968) about the connection between the Fermi
surface geometry and the magnetic wave vector of the periodic
magnet;c structures observed in these metals. The webbing
feature of the Fermi surfaces of Dy, Er, and Lu was pointed out
by Keeton and Loucks as being possibly important in the deter-
mination of the magneﬁic wave vector for these materials. Our
results have shown, by comparison with the case of G4 where
the webbing is not present and by observation of the relation
between the size of the magnetic Q and the thickness of the
webbing, that the webbing i1s indeed crucial both in fhe deter-
mination of Q and in the stabilization of the periodic struc-
tures observed in these metals.

The energy bands near the Ferml energy as calculated at
present seem to give a reésonably consistent picture of the
magnetic properties of the heavy rare earths as reflected in
our calculated susceptibilities. Quantitative comparison of
fhe susceptiblilities with experimental magnon spectra is not
at present possible because of our lack of knowledge of the
exact form of the g-dependent matrix elements involved in the
magnetic eﬁergy of these systems and also because of our

\.

SR Mt N L - gL e L e R e S e S gl T i 2 e g Rt S A i e



86

incomplete understanding of the effects of anisotropy and mag-
netoelastic interactions. This type of careful comparison of
the calculations with ekperiment is really necessary before we
can say much more about the validity of the energy'bands.
However, the one plece of experimental information with which
there is rather direct comparison 'is the value of the magnetic
Q that should be observed in the periodic structures for these
metals. The Q's predicted by our calculation are in quite
reasonable agreement with those determined experimentally; this
gives confidence in the bands as well as in our’generalized
susceptibilities.

The existence of bumps in the experimentally measured
magnon and phonon spectra (corresponding to the major bumps in
our susceptibilities) for these materials adds credence to this
theory. It appears that most of the important effects for the
" determination of the periodic structure for a giveﬁ metal at
its Neel point are contained in the bands and are expressed
through the indirect exchange interaction much as we have
developed it. The g-dependence of the exchange matrix elements
is, of course, still a major obstacle to detailed quantitative
comparison of the susceptibilities with the éxperiments, but
the fact that the important features come out of the bands and
appear in our calculations indicates that the matrix elements
are probably smoothly decreasing functions of»q which will not

change the conclusionsiwe draw from the susceptibilities.
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As we pointed ogt in the introduction, there are still
many approximations involved in the present calculation of the
susceptiblilities aside from neglecting the g-dependence of the
natrix elements which we héve discussed in some detail. There
is a great deal of theoretlical work to be done before all
these approximations are fuily,understood and thelr effects
are taken into account. We are pleased that.the improvement
we have made thfough the substitution of reélistio énergy bands
for free-electron bands seems to correspond so well with the

experiments in its prediction of the magnetic wave vectors for

thése metals.
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