
IS - T - 226 

AMES LABORATORY 

Iowa State University 

Ames, Iowa 

AEC Contract No. W - 7405 - eng - 82 

lEG L 0 c -
This report was prepared as an account of Govcn1ment sr.onsored work. Neitin.a· ti•c Unileu 
States, nor the Commission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with respect to the accu­
racy, completeness, or usefulness of the information contained in this report, or that the use 

· of any information, apparatus, method, or process disclosed in this report may not infringe 
privately owned rights; or 

B . Assumes any liabil!ties with respect to the use of, or for damages resulting from the 
use of any information, apparatus, method, _·ocess disclosed in this report. 

As used in the above, "person acting"'· ..,chalf of the Commission" includes any em ­
ployee or contractor of the Commission, or employee of such contractor, to the extent that 
sue employee or contractor of the Commission, or employee of such contractor prepares, 
disseminates, or provides access to, any information pursuant to his employment or contract 
with t.'fJ.e Commission, or his employment with such contractor. 

GENERALIZED SUSCEPTIBILITIES AND MAGNETIC 

ORDERING OF HEAVY RARE EARTHS 

by 

William Edwin Evenson 

Ph. D . Thesis, May, 1968 

D.ISTRIBUTION OF THIS DOCUME~t IS UNllM~T 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



Approved: 

GENERALIZED SUSCEPTIBILITIES AND MAGNETIC 

ORDERING OF HEAVY RARE EARTHS 

by 

William Edwin Evenson 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject: Physics 

In Charge of Major Work 

Head ijf{JV~jor Department 

Iowa State University 
' A.mes, Iowa · 

May 1968 



iii 

TABLE OF CONTENTS 

Page 

ABSTRACT iv 

INTRODUCTION 1 

THE INDIRECT-EXCHANGE INTERACTION 8 

The Ruderman-Kittel-Kasuya-Yosida Interaction 0· 

Ferromagnetic Spin Waves and Their Energy Spectrum 17 

Determination of the Stable Magnetic Structure 22 

Generalized Susceptibility 27 

Application to the Rare Earths 32 

~uMERICAL CALCULATION OF THE GENERALIZED SUSCEPTIBILITY 40 

General Considerations 40 

Relation Between Fermi Surface Geometry and 
the Susceptibility 52 

Cubic and Spherical Fermi Surfaces 57 

·THE GENERALIZED SUSCEPTIBILITIES OF THE HEAVY RARE 
EARTHS G5 

The Calculated Susceptibilities 65 

Comparison with Experiment 79 

SUMMARY AND CONCLUSIONS 85 

REFERENCES 88 

ACKNOWLEDGEMENTS 91 



lV 

GENERALIZED SUSCEPTIBILITIES AND MAGNETIC 

ORDERING OF HEAVY RARE EARTHS1 

William Edv.rin Evenson 

Under the supervision of S. H. Liu 
From the Department of Physics 

Iowa State University 

ABSTRACT 

Within the framework of Ruderman-Kittel-Kasuya-Yosida 

indirect-exchange interaction theory, the generalized suscep­

tibilities, ?\( q), have been calculated for the heavy rare-

earth metals, Gd, Dy, Er, and Lu, along the liner to A of the 

Brillouin zone. The energy bands used in this calculation were 

realistic bands obtained by Keeton and Loucks using the rela-

tivistic-augmented-plane-wave method. The matrix elements in-

valved in the susceptibilities were taken to be constants so 

that the susceptibilities calculated here contain only informa-

tion from the energy bands. 

To develop a reliable numerical procedure we examined in 

d·etail two sets of energy bands which could be calculated 

analytically as well as numerically. These bands were chosen 

to give spherical and cubic Fermi surfaces .. The results ob-

-tained from them showed us how to eliminate any spurious fea-

tures in the ·susceptibilities arising from the numerical 

1 USAEC Report IS-T-226. This work was performed under 
Contract W-7405:....eng-82 with the Atomic Energy Commission. 
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calculation, and once these spurious features were removed 

these special bands demonstrated that the numerical procedures 

were quite reliable. 

Cubic and spherical Fermi surfaces were chosen because 

they illustrate two extremes in the features of the suscepti-

bilities: the cubic surface has many points separated by the 

same wave vector, Q, so there is "nesting" of areas of the 

Fermi surface for q = Q; the spherical surface has only point 

to point nesting for any particular q. The nesting of areas 

results in a logarithmic divergence in the susceptibility, 

whereas the nesting of lines or points results only in a gen-

eral falling off of the susceptibility. This fact is clearly 

illustrated in our two special cases. It is also possible to 

relate the features of the susceptibilities calculated for the 

rare earths to the geometries of their Fermi surfaces in the 

same way. We have done this and related the maxima of our 

calculated susceptibilities to the magnetic ordering periodici-

ty observed experimentally for each of the metals considered. 

The agreement between theory and experiment was found to be 

quite satisfactory. 
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INTRODUCTION 

The purpose of. this work is to calculate the generalized 

susceptibilities of the heavy rare earths, gadolinium, dys-

prosium, erbium, and lutetium, using realistic energy bands in 

order to show the effect of the Fermi surface on the determi-

nation of the magnetic structure of these metals. This calcu-

lation will also make a rough check bf the energy bands near 

the Fermi energy by comparing features of the calculated sus-

ceptibilities, which are very sensitive to the bands near the 

Fermi energy, with experimental information. 

Calculations of the spatial extent of the charge densi­

ties of.rare-earth atoms and work on cohesive energies of the 

rare-earth metals show that the ions in the heavy rare-earth 

metals do not overlap appreciably with their neighbors. In 

fact, the ion cores have radii of the order of 0.5 A while 

nearest neighbor separations in the crystals are about 3 to 

4 A. Figure 1 is plotted from the calculations of Herman and 

Skillman (1963) for the gadolinium atom, and is typical of the 

spatial extent of the wave functions for the rare earths: the 

4f-shell is highly localized, while the 6s-electrons are 

smeared through the crystal. The dotted line shows approxi­

mately how the 6s wave function is flattened out in the metal. 

An important question to be raised by the absence of a 

significant amount of overlap between ions was how can these 

metals form periodic moment arrangements, ferromagnetism and 
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various kinds of antiferromagnetism, if the ions do not over­

lap-to "tell" each other how each moment is pointing? If 

there is no overlap, how does an ionic moment "know" where its 

neighbors are pointing? The ansv;rer to this question lies in 

the ideas of "indirect exchange?" in which the conduction 

electrons are visualized as passing the necessary information 

for the lining up of the moments from a given ion to the 

others. 

The first important analysis of the indirect-exchange 

i~teraction was done by Ruderman and Kittel (1954) with direct 

application to.the case of nuclei interacting via the hyper­

fine interaction with the conduction electrons. In later im­

portant papers Kasuya (1956) and Yosida (1957) applied the 

ideas of indirect exchange to magnetic mater_ials and developed 

what has come to be known as the Ruderman-Kittel-Kasuya-Yosida 

(hereafter RKKY) inter~ction model for metals such as the rare 

earths where the ions have no direct overlap to convey magnet­

ic ordering information from one to another. (See also Liu 

196lh) The results of these theories gave an interaction 

which depends on 1) the exchange integrals between the local­

ized ionic cores.with their large moments and the conduction­

electron wave functions at·the ion sites, and 2) the energy 

bands of the conduction electrons and their Fermi surface. 

The energy bands of these materials have not been well-known, 

so the standard procedure has been to insert free-electron 
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. ' .. .... : 
in .. the evaluation of the ·it?-~E3:raction. 

, . 
An~fther. approxi-.. . . ~.. ' 

.· .. f:·mation that. has been made in the· evaluation of the· indirect-

·exchange interaction is to·put the exchange integrals (matrix 

elements) to be constant, or at.best functions of Jk'-~1 only. 

Still a third point where important approximations have been 

made is in the basic assumption at the outset that the charge 

clouds are spherically symmetric to a good approximation so 

that the Heisenberg £·~ type of interaction Hamiltonian is 

valid. This is not precisely true in the case of the rare 

earths because of the orbital contribution to the ~agnetic 

moment, as pointed out by Elliott and Thorpe. (19.68). The 

asymmetry and finite size of the charge clouds also affect th0 

form of the exchange intee;rals, and hence the approximation 

that they are independent of k and k' (Liu 1961a, Specht 1967, 

and Kaplan and Lyons 1963). 

Kubo (1957) has done important work on analyzing the re-

sponse of a system to a stimulus in the approximation of 

linear response. Applied to magnetic systems, this theory 

gives a generalized susceptibility, x(~), which is there­

sponse of the magnetization of the electron gas in the metal 

to a spatially-varying field characterized by wave vector ~· 

It turns out that this generallzed susceptibility ha$ the same 

form as the Fourier transform of the RKKY interaction, but with 

somewhat different matrix· elements; therefore, ·they differ 

.. only by a constant factor in the approximation that the matrix 
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elements are constant and independent of~ and k'. Hence, the 

generalized susceptibility can be related to the magnetic 

interaction energy of the system. It is proportional to the 

negative of the magnetic energy, so the maximum in the suscep­

tibility will determine the minimum of the energy and hence 

the stable wave vector S which characterizes the magnetic 

ordering. So if the stable magnetic structure in the region 

of interest is helical, the wave vector g at _the maximum in 

the susceptibility should be just the right size and direction 

to reflect the periodicity of the helix. 

The present work takes advantage of the recent availabil~ 

ity of more realistic energy bands for the conduction elec­

trons in the heavy rare earths (Keeton and Loucks 1968) to 

consider the generalized susceptibility and the RKKY inter­

action beyond the free-electron assumption. The other approx-

·imations have remained; we have treated the exchange integral 

as though, ·:1 t were independent of k and ~·, and we have not 

considered the effects of a finite or asymmetric· charge cloud. 

Because of the negligible overlap between ioris, however, we 

felt that the worst of the approximations was the use of free-

·electron bands, the other approximations not being q_uite as 

important. The results of this work seem to bear out our con­

tention to some extent since we find ordering arrangements for 

the heavy rare earths in reasonably good agreement with 

experiment. 
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The use of paramagnetic energy bands in the calculation of 

X limits our conclusions to what is happening very close to the 

highest ordering temperature for the particular metal in ques­

tion because we assume that the magnetic interactions are 

small and perturb the bands only weakly. Statistical mechani­

cal treatment of spin correlations shows that thermal fluctua­

tions destroy any net long-range order in the spin system~at a 

critical temperature. If we consider an effective field 

approximation to the magnetic interaction, following the treat-

·ment of Villain (1959), where the effective field at a lattice 

point is proportional to the net magnetization at that point, 

then we see that thermal fluctuations make the net magnetiza­

tion, and hence the effective field, small near the critical 

temperature. Therefore, when we are near ·the critical temper­

ature, the magnetic interaction perturbs the_ paramagnetic 

bands very weakly, so our perturbation calculation of "/.-using 

paramagnetic bands should be valid. Away from the critical 

temperature, however, the magnetic interactions become strong, 

and the paramagnetic bands are no longer the' correct ones to 

use in calculating X,(,g.). 

Lomer (1962) was the first to point out the connection 

between the Fermi surface and the magnetic ordering of metals. 

Using .realistic energy bands to calculate the indirect-exchange 

interaction allows us to check this idea quantitatively in 

heavy rare earths. It is particularly interesting to observe 

the trends in the Fermi surfaces along side of the trends in 
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the susceptibilities through the whole series of heavy rare 

earths (gadolinium to lutetium). We have studied four of the 

metals, Gd~ Dy, Er, and Lu, which should be quite representa­

tive of the whole series. It will also be of interest in the 

future when the energy bands of the other metals become avail­

able to fill in the gaps.· 
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THE INDIRECT-EXCHANGE INTERACTION 

The Ruderman-Kittel-Kasuya-Yosida Interaction 

We can briefly summarize the physical ideas involved in 

the indirect-exchange interaction model develope~ by Ruderman, 

Kittel, Kasuya, and Yosida as follows: In cases of low conceri­

tration magnetic impurities or in the rare-earth metals, i.e. 

cases where magnetic ion cores are sufficiently small or far 

apart that there is essentially no overlap, the unfilled d- or 

f-shells retain some of their Hund's Rule magnetization in the 

.solid. By an exchange interaction with the s-band conduction 

electrons the d- or f-shell moments polarize the spins of the 

conduction electrons in the neighborhood of the ion. The con­

duction electrons, constrained by the Pauli exclusion princi­

ple, respond with characteristic wavelength AF = 2n/kF' and 

the resulting spin polarj,zation is oscillatory and long-ranged. 

The other magnetic atoms then undergo ferromagnetic or anti­

ferromagnetic interactions with the one in question depending 

on whether they are in a trough or on a crest of the polariza­

tion wave. The magnitude of the interaction gradually de-. 

creases with distance. In a crystal where there are many mag­

netic atoms, such as a rare-earth metal, it is very ·difficult 

to determine the net relative spin orientation between neigh­

boring ions because this is determined by the superposition at 

that ion site of the polarization waves in the conduction 

electrons due to all the other ions in the crystal. Therefore 
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we must look at the interaction in quite a lot of detail to 

predict the 6rdering arrangement in a given material. 

An excellent survey of the Ruderman-Kittel-Kasuya-Yosida 

indirect-exchange interaction in magnetic metals is found in 

Mattis (1965). We will look at the derivati6n of that inter-

action in this section from about the same point of view as 

Mattis, but including points of special interest to the present 

calculation. The approach is to assume the existence of an 

effective Hamiltonian for the metal in question and to apply 

the exchange interaction between the ionic moments and the 

conduction electrons at the ion sites as a ·perturbation. The 

easiest way to see the form of the interaction is to consider 

a pair of magnetic solute atoms at points B1 and R2 in some 

ideal, nonmagnetic metal characterized by an s-band effective 

Hamiltonian. We will call the moments "spins" for simplicity 

even though they are made up of both orbital and spin contri-

butions. Internal Hund's Rule coupling maintains s1 and s 2 , 

but their relative orientation is determined by coupling 

through the conduction electrons. Exchange coupling of the 

localized electrons ( f-ele.ctrons in our case) with the conduc-

tion electrons (a-electrons) is the perturbation: 

( 1) 

where J is the exchange integral between the ions and the a­

electrons and the s (R.) are conduction band spin operators -c -1 
' ' which are defined in the second quantization. language as follows: 
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z 1 
) ' s = 2(Nc+ - N c c-

+ 
ci~ c · s = c c+ c-' 

( 2 ) 
s = ci~> c c+' c c-

and N = c* c 
em em em 

The c* and c are the usual creation and d~struction opera-em em 

tors for electrons in the conduction band with spin+~ or . c.. 
1 

as m = + or -. 

Now we can put the spin operators in the Bloch represen-

tation for the case where there are several conduction bands 

so that 

sz(R.) = 1 L: L: 
c -1 2N k k' , _,__ n,n 

i(k-k')·R. 
e -- -1(c~'n'+ckn*:- c~'n'-ckn_), 

i (k-.k') ·R. · 
- - -1 

e ck' n' + ckni=' ' --
( 3) 

where nand n' are band indices. Then we ·rewrite H' as 

2 . 

t z z 1 .+ - + 1 H' = -J L: s (R. )S. + -
2
[s (R. )S. + s:-(R. )S.] . . c -1 1 c -1 1 1 -1 1 1=1 

( 4) 

We can now calculate the eigenfunctions and eigenvalues 

for the system in the conduction electron ground state by 

ordinary perturbation theory on the s-electron part .of the 

total Hamiltonian: 

H = H
0 

+ H' = ~ E (k)N + H~, n- knm kmn -
(j) 

using H' as in Equation 4. So we obtain in the Bloch 

representation: 



H = I: E (k)Nk n - nm kmn -

1 2 
- 2N I: I: 

i=l kk' 
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I: 
nn' 

i(k-k') ·R. z - - -l I , (k,k' )[S. e 
nn - - l 

i(k-k')·R. 
(Ck'n'+Ckn+ - Ck'n'-ckn-) + Sle -- -lCk'n'+Ckn- + 

( 6) 

Now H doas not distinguish between relative spin orientations 
0 . 

for the magnetic ions, so it gives a (2S1+l)x(2S2+1) = r-fold 

degenerac~ of states of the relative orientations of the two 

solute spins. What we want to see is how H' affects this de-

generacy and hence stabilizes some particular relative orien-

tation of the solute spins. 

We will call our starting wave functions }Ft), indicating 

the conduction electrons in the unpolarized Fermi sea ground 

state, jF), and the two solute spins in a relative state \t) 

where t = 1,2, ... ,r. 

The first-order pert~rbation to the energy is zero: 

since this is just an average over the entire Fermi sea which 

has no long-range polarization. 

We now look at the second-order perturbation to the energy 

which is of the form: 

E(2) = I:' \(t'CB!H'\Ft)\
2 

t. CB,t' E(F.sea - E(C.B.) 
( 7) 

where \CB) are conduction band states and \F:) is the Fermi sea 

ground state. 
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The conduction band operators, c~ 1 n 1 and c~n' create 

elementary excitations with energy En 1 (k 1
) - En(k). Their 

matrix elements are unity if En(~)< EF ·and En 1 (k 1
) > EF' and 

zero otherwise. So we can put 

1 fkn(l - fk 1 n 1:) 

E (F. sea) - E (C. B. ) = E ( k) - E- , ( k 1 ) ' · n- n -
( 8) 

where the fkn are the Fermi-Dirac distribution functions put in 

to limit the excitations to the coupling of unoccupied to . . 

occupied states. The conduction band states are of the form 

( 9). 

where the single-particle states ~1n1 and ~2n2 are also sub­

ject to Fermi-Dirac functions like those of Equation 8, ·i.e. 

conduction band states are just like the Fermi sea, but one 

state below the Fermi energy has been vacated while a state 

above the Fermi energy has b~en occupied. ·We put these states 

into the matrix elements of Equation 7 and evaluate them as 

follows: 

( t I CB \HI I Ft) lr: L: L: 
2N i kk 1 nn 1 

i(k-k 1 )·R. 
- - -l 

Inn ' ( ~ ; k I ) e 

r ( t ' I s ~ I t )[ ( F \ c k* c k . c l~~ I I +c 1 +. \ Ii'} L 1 _ 1n 1m1 _ 2n 2m2 ~ n ~n · 

- (Fick-r~ ck c
1
lt 1 ,.- .. c 1 .·,lF)] + (t'\st-·lt)(F\ck-l~ 

-lnlml -2n2m2 ~ n,~.~n- l -lnlml 

+ (t'IS~\t)(Flc~ n m ck n m 
-1 1 1 -2·2 2 

(10) 



13 

Now, 

(F(c*k n m ck n m c~k~'n'm'cknm\F) = 0k' k 0n' n °m' m 
-1 1 1 -2 2 2 - - '-2 ' 2 ' 2 

We put this into Equation 10, dropping the Fermi functions 

which. are already contained in Equation 8, and obtain 

1 i(Jsl..;.k2)·.Ei 
(t'CB\H'lFt)

1 
=- 2N ~ Inn (k1 ,Js2 )e 

. l 1 2 

(11) 

(t'IS~(o +o +- o ·o ) + s~o ·o 
l m2 , m1 , m2 ,- m

1
,- . l m2 ,- m1 ,+ 

(12) 

Now we will replace k1 by Js and ,!s2 by Js' and similarly for n 

and m for simplicity of notation. Putting Equations 8 and 12 

into Equation 7, we have 

- - ~ ~ 
k k' nn' 

~ 
mm' 

i(k-k') · (R. -R.) 
- - -l -J ,

1 
z 

~ e ( t S. ( o , +o + - o , o ) ij l m , m, · m ,- m,-

+ s:o , ·o· + + s:-o , t-o \t)(t\s~(o , +o + 
l m ,- mt · l m ,- m,- J rn , m, 

-·o, o ) + s-:o, o + + s~o, +o ·lt'). (13) m ,- m,- J m ,- m, J m , m,-

Use closure on the states It') to perform the t' sum and then 

look at the sums on m and m': 
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1 fkn(l-fk'n') 
- t= t= L: r;n' (~,~·) E ~("k' )-E (k) 
4N2 k k' nn' i j n - n -

i(k-k') •(R. -R.) 
. -- -l -J e 

I 
z . + 

t= (t [s.(o, +o +- o, o ) + s.o, +o 
mm' J m , m, m ,- m,- J m , m,-

- . z + s . o , o +J [ s. ( o , +o + - o , ·o ) J m ,- m, l m , m, m ,- m,-

+ + s. o , o + + s-:- o , +o Jl t) . 
l m ,- m; l m , m,- (14) 

Performing the sums on m and m' in Equation 14, we obtain 

L: ( tl [ ]: [ ) ( I z z + - + -1 ) J1t = t 2sjsi + sJs1 ·+ sisj t 
mm' 

So 

E(2) 
t 

= 2(tiS.·S.lt). -J -l 

1 
2 .L: L: L: 

2N ij k k' nn' 
r 2 ( k k' ) 
nn' -'-

fkn(l-f.k'n') 
-------e 
E , ( k' ) ,-E; ( k) n - -n-

(15) 

i( k-k') · ( R. -R .) 
- - -l -J 

(tls. ·S.It). . (16) 
-l -J 

Equation 16 con~ains a self-energy term when i = j. This term 

is independent of relative' spin orientations, so it is irrele­

vant to our problem. We will ignore it and replace 1. L: by 
2 ij 

L: where (i,j) refers to all possible pairs of spins. Also, 
( i ' j ) 
we are only looking at two solute atoms to begin with, so i 

and j can only be 1 or 2. Therefore, 

E
( 2 ) _· .1:_ " 2 . , fkn(l-fk'n') · i(,!-k')·E12 
t - - 2 L., L: ·rnn' (~ '~ ) E ( k' ) -E ( k) e 

. . N k k' nn' n' - n -

(17) 

But Equation 17 just gives the eigenvalues of the Hamiltonian 

(18) 
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J(R .. ) = 1 2:: 2:: 
-l J N2 k k' nn' 

I
2 

(k k') 
nn' -'·-

i(k-k') ·R .. 
-- -lJ ( ) 

e fkn 1-fk'n' 
(19) 

where 

E ,(k')- E (k) 
n - n-

It should. now be clear that the straigh,tforward extension 

of this result to NM magnetic atoms ~ill just give 

H = -I.E. 2:: 
( i 'J) 

J(R .. )S. ·S., -lJ -l -J 
(20) 

with J(R .. ) as before. We note, however, that this extension 
-lJ 

is strictly valid only if we treat the ions as points (Elliott 

and Thorpe 1968), but this is the approximat.ion made through-

out the present work. 

When we put free-electron energy bands into Eq_uation 19, 

we obtain the expression often teferred to as the Ruderman-

Kittel interaction. This result is 

32 16 ( kFao) 6 ( sin2kFR .. - 2kFR .. cos 2kFR .. ) 
J(R ) . lJ lJ lJ - · · R K = E J 2 • ___ _,.,;;;.......__ __ ~4-----'"-

l J • • F n ( 2k R ) 
F .. 

lJ 

(21) 

where I ,(k,k') has been taken out as a constant, J, kF is nn --

the Fermi wave vector, and a~ is the volume of the unit cell. 

Equation 21 can be corrected for finite el~ctronic mean free 

path, A, by the inclusion of a factor e-Rij/A. 

If there is more than one atom in the basis of the unit 

cell, we have to consider spin operators at each atomic site, 

so the operators of Equation 3 become 

s7.(R.) = 1 ,. ~· i(:!£ ... _!£'')•.Bir(··-~ c -c~~ c ) 
c -lr 2N 6 6 e ck'n'+ kn+ k'n'- kn- ' 

k k' nn' 

· s±(R. ) = 1 2:: 2:: ei (k-k'') ·Jhr c* c 
c -l r N k k, nn , _!£' n ' + kn -=F. ' ·· 

(22) 
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where r is the basis index. The derivation carries through 

just as before, but a basis index is included everyplace there 

is a cell index. 

We will now consider the Fourier transform of the indirect-

exchange interaction, and in the next section of this chapter 

we will show how it is related to the spin-wave spectrum. 

) iq·R· F(g_) ~ E J(R. e -J 
. -J 
J 

1 fkn(l-fk•n•) 
= E E I 2 ( k k' ) - - E 

N
2 nn' - '- E , ( k' ) -E ( k) k k' nn' n - n - j 

But 

i ( k-1;;·' +r1 ) • RJ· e - - .:l. - • 

(23) 

where K is the reciprocal lattice vector necessary to reduce -o 

k+.9.+~0 to the first Brillouin zone like k' .. Then 

F(q) (24) 

When we have more than one atom in the basis, we obtain 

other terms like F(.9.) as shown in Equation 24 but correspond-

ing to lattice sums connecting inequivalent atoms from one cell 

to the next. If we define ~r as the basis vector from the 

lattice site in a given cell to the rth atom in the basis in 

that cell, reference to Equations 

. i.9.· (R .+o ) 
) -J -r F (.9.) ~ E J(R.+o e · · 

r j -J -r 

19 and 22 allows us to define 

(25) 
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F ( ) = l 2:: 2:: 2:: I
2 

( k k' ) 

i(k-k').(RJ·+or)f (l f ) e -- - - kn - k'n' 

r ~ N2 j k k' nn' nn' -'-
-'-

E ,(k')-E (k)· n - n-

e i ~ . ( R j + .2..r ) 

1 
fkn(l-fk'n') · i(k_;k'+n)·(R.+o) 2 -- .::~.. -J -r 

= - 2:: 2::· . 1nn' ( 1f '1f' ) E , ( k' )':E ( k) 2:: e . 
N2 k k' nn ' n - n - _j 

i(k-k'+n)·o -iK ·o So Fr(~) has an extra factor e -- ~ _r ~e _o -r, a 

structure factor dependent on the nature of the basis in the 

unit cell. We write, then, 

-iK · o -o -r e (26) 

As we mentioned earlier, we will make the approximation 

of point ions so that r 2 ,(k,k')_ ~ r 2 , a constant that can be nn - -

taken out of the sums in Equations 19, 24, and 26. 

Ferromagnetic Spin Waves and Their 

Energy Spectrum 

Ferromagnetic spin waves consist physically of a preces-

sion of each spin about its z-axis, sweeping out a cone in 

time 2n/w(~). The radius of the cone is the amplitude, A, of 

the spin wave, and actually w(~) = w(~,A), but the amplitude 

dependence of the spin-wave frequencies is negligible for 

small-amplitude spin waves. The phase difference between 

nearest neighbors separated by a distance a is ~ = qa. In the 

small-ampli.tude approximation we can find the spin-wave fre­

quencies in the case where the Hamiltonian for the magnetic 

excitations is the indirect-exchange Hamiltopian of Equations 
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19 and 20. The quantized spin waves are called "magnons", and 

they will be the excitations of the diagonalized Hamiltonian, 

= I:w(]:s_)bkbk + constants, 
k --

(27) 

where bk and b~ are magnon creation and annihilation operators. 

We proceed as follows: 

Constants of the motion of H include total. spin,12=(I:S.)~ .-J 
J 

~nd the z-component) 

NS ( NS + 1 ) l 0 ) , 
(28) 

NS I 0)' 

where N is the total number of spins and they are all lined up 

ferromagnetically in the ground state. 

We also note that S , S , and S are not independent but 
X y Z 

are connected by§:§.= S(S+l), quantum mechanically. To go to 

independent operators, we use the Holstein-Primakoff transfor-

mation (Holstein and Primakoff 1940): 

1 
ai~a. 2 S; = {2S [ 1 - -1sl] a j, 

1 
ai~a. 2 
-1slJ 

s~ = s - ai~a .. 
J J J 

Holstein and Primakoff showed that the a* and a were boson 

operators satisfying the commutation relations 

[ai,a·:p =·oij' 

[a~;aj·] = [aJ,a1] = 0~ 

(29) 

(30) 
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It can also be shown (Mattis 1965, for example) that the a* 

and a of the Holstein-Primakoff representation are very close-

ly related to Schwinger's harmonic oscillator operators in his 

coupled-boson representation (Schwinger 1952). In the Bloch 

picture we get 
ik·R. 

1 -J 
bk = .JN ~ e a j , 

[ ;... h{~ J 
'·'k; "'k' (31) 

Now, we are considering small-amplitude spin waves, so 

there is not much spin reversal, and we can expand the square 

roots in Equations 29 to lowest order in the bk: 

+ = ~ 2S' 2: 
-ik·R. 2 -J s. e bk + 0 ( b ) ' 

J N k 

ik·R. 
0 ( b

2
) ' s-: = ~2: e -Jb~~ + 

J k k (32) 

s~ 1 i(k-k')·R. 
s 2: - - -J = - 'N e .. b~bk'. J k k' 

But .J '7 

= I:S":', so 
z j J. 

J = NS - 2:b~bk. z k--
(33) 

J can·only have the values NS,NS-l,NS-2, .... , as is clear 
z 

from Eg,uation 28. Therefore~· b~blc must be an integral occupa-

tion number operator for a state k. The b~ and bk are creation 

and annihilation operators for elementary excitations charac­

terized by a wave-vector k, and a frequency w(~). These 
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elementary excitations are spin waves or magnons, and the bk 

are the magnon operators of Equation 27. 

We can write H in magnon variables as 

H = 

= 2 ,.., i(k-k')·R. i(k-k')·R. 
0 ( - - -l + e - - -Jb*b 2: .J. . [ S - N 2: e b~ bk ' k k ' 

(i,j) lJ kk' 

(34) 

2 The first term is just a constant term, - 2: J .. S , and we 
(i,j) lJ 

will drop it for the time being. Then 

i(k-k')•ll. i(k-k')·R. -ik'·R. ik·R. 
II = -N8 2: J. . [ 2: ( e - - -l + e - - · - J - e - 1 e --:- - J 

(i ') lJ k k' 'J _,_ 

ik·R. · -ik' ·R. ik· (R .-R. ) 
e - - 1 e - -J)b*b - -J -l ] 

k k' + 2: e ' 
k 

(35) 

where we have used the commutation rules of Equations 31. Now 

1 
2: -

2 
2:' and I:J .. = J .2: where J. is the same as J .. but with 

(i,j) ij i lJ Ji J lJ 

some fixed origin in place of R. . So the last term of Equation 
-l 

35 is just a constant which we will drop for now, and 

H s 
Jj 2: (Nok k' + Nok k' = 2N ~ 

J k k' _,_ _,_ 

-ik'·R. ik•R. 
- 2 2: e -le - -J) b~bk'. (36) 

i 



So 

-i~' ·.!!i i~·Rj 
L:e e 
1 
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i(k-k')·R. ik•R .. : 
- - -J. - -JJ. = L:e e 

i 

= No~,~,e 
ik·R - -j 

ik·R. 
H = s L: J . l: ( 1 - e - - J ) bk bk . 

j J k 

And referring back to Equation 23 we see that 

H =- S L:[F(O) - F(~)]bkbk. 
k . --

So that w(g) = S[F(O) - F(g)]. 

(37) 

(38) 

(39) 

(40) 

An alternative derivation of the magnon spectrum, Equation 40, 

makes use of the physical meaning of the magnon operators, 

and b . It became clear in Equation 33 that the b's were 
g 

magnon operators such that b*IO) is the one-magnon state for a 
g 

magnon of wave-vector g. Then we can see that the magnon 

energy must satisfy 

i.e. 

Hb1~ IO). -
9. 

[H,b~jfo) 

b*Hlo) 
9. 

= w(g) 

= w (.g.) b* I o ) , g 

b~ 10) • (41) 

We can then evaluate the commutator of Equation 41 to find 

w(g). The result is, of course, identical with Equation 40. 

The magnon energies are ~w(g_) with w(g) given by Equation 

40 for the ferromagnetic ground state. If these energies are 

not positive for all g, ·there will be an instability in the 

ferromagnetic ground. state, and some other type of ground 

state will actually occur. ·Equation 40 shows that we will 
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have a negative magno~ energy whenever we have F(~) greater 

than F(O) for some~· In the next section we rel~te'the 

stable magnetic state of the system to the maximum in F(g). 

Determination 'of the Stable Magnetic Structure 

Villain (1959)'has treated the problem of determining the 

stable magnetic structure of a metal neglecting all inter­

actions (e.g. magnetoelastic) except the exchange interaction. 

We will fo1low his statistical mechanical treatment here. The 

starting point is an effective field approximation in which we 

take the effect of the ion at a point R. on the spin orienta­
-l 

tion at that point to be equivalent to a magnetic field pro-

portional to the effect at the site i of all: the moments in 

the lattice, so that 

2 2: J .. s., 
gi-lB j lJ -J 

where g is the gyromagnetic ratio(= 2), 1-lB is the Bohr 

magneton, and J . . is the exchange interaction. The usual lJ . 

(42) 

statistical mechanical treatment shows that S. satisfies the 
-l 

equation 
. g!--lBS . 

s. = u. SBs(-k T fH(R. )I ) , -l -l - -l 
B 

where BS is the Brillouin function for spin S, kB is the 

Boltzmann constant, and 

(43) 

(44) 
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We take the case where I~J << S, i.e. near the ordering tem­

perature so that g~BSIH(~i)\ << kBT and the argument of B8 in 

Equation 4.3 is smali. For small y, 

(45) 

Therefore, Equation 4.3 is linearized as follows: 

(46) 

We can Fourier transform this equation using F(~) as defined 

in Equation 2.3, the Fourier transform of Jij'' and defining the 

~-dependent magnetization as 

(47) 

so that 

(48) 

The systems of equations defined in Equations 46 and 48 

have nontrivial solutions only below some critical temperature, 

T , such that 
0 

(49) 

F(S) being the maximum ofF(~). For simplification here, and 

also because this is the case for the experimentally observed 

structures in the rare earths, we will ~ake_·Q so that therea~e 

only two vectors,: ±Q, in the Brillouin·z·one·for whi.ch F··is· .. · 

maximum. Then at T·= T
0

, Equation 46 b~comes 

iQ•(R.-R.) -iO·(R.-R.) · 
S. 2::: J. . [ e - - J -l + e .::!< - J -l ] = 
-l j lJ 

(50) 
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for which we have solutions of the form: 

s~ = ~ cos (Q·R. - ~ ), 
1 a - -1 a 

with a = x,y,z. 

When we put Equation 51 into the effective field of 

Equation 42, we obtain 

h(R. ) 
- -l 

2 = - F(Q)S .• 
gi-!B - -l 

So we can treat the problem in terms of an effective field 

proportional to the magnetization at a particular lattice 

point. 

(51) 

(52) 

Now we need to consider the stability of magnetic $true-

tures of the form of Equation 51. The free energy of the 

system is 

L: J. . S. ·'S . + C 
lJ -l -J ij 

~ JkB T S~ S .. S . 
2S(S+l) ~ -1 - iL.j Jij -1 -J +C. 

The equilibrium condition, aE/iS~ = 0, gives Equation 46. 
. l 

Taking the second derivative of E, we obtain 

~s~os~ 
l J 

(53) 

(54) 

(55) 

The variation, ·oE, in free energy for small variations oS. is 
-l 



= I:[F(Q)6 .. - J . . ]6S. ·6S. 
- lJ lJ -l -J ij 

2 = ~ [ F ( g ) - F ( 0 ) ] ( 6 ~i' ) • 
l 
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(56) 

So 6E is non-negative, and the spin system of Equation 51 will 

By a proper choice of axes, Equations 51 can be rewritten 

as 

s::C = Ax cos ( Q· R. - cp) ' l - -l 

s;r = Ay sin (Q·R.), 
l. - -l 

(57) 

sz = o. 
l 

This spin system has three different basic forms: 1) helical, 

with Ax·= Ay =sand cp = 0; 2) ferromagnetic or antiferromag­

netic commensurate with the lattice, Ax= s, Ay = 0, cp = 0; 

3) a more complicated periodic structure of wave vector g.for 

which other considerations are necessary to determine the 

exact structure. We will see that these various magnetic 

structures occur in the rare earths, and the present work 

seeks to find the wave vector g for the rare earth case. 

We are also interested in the generalized susceptibility, 

X (,g.), of the conduction electron system. ·We' can write the 

magnetic energy of the conduction electrons in terms of ~~) 
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and an effective field which polarizes the electron gas as 

follows: 

1 1 12 H = - 2 L: .!:!.9. X( .9. ) ' 
.9. 

(58) 

with (59) 

In Equation 59 h is the Fourier transform of the effective 
-.9. 

field at R. aoting on the electrons: 
-l 

h(R. ) 
- -l 

J =- s .. 
f.l -l B 

(60) 

J is an exchange parameter; N is the number of atoms in the 

crystal. We can now put Equation 59 into Equation 58 to obtain· 

H - -
i.9.• (R. -R .. ) 

-l -J 1. L: S. •S. L: e (.9.). 
-l -J ij .9. 

(61) 

Our previous consideration of the s-f interaction showed that 

it could be expressed as a spin-spin Hamiltonian of the form 

(Equation 20): 

1 
-2 L: Jl. J' s . . s .. -l -J ij 

H - - (62) 

We eq_uate Equations 61 and 62 ·to find that, apart from con-

stant factors which we drop for future convenience, X(.9.) is 

just the Fourier transform of Jij' so 

'X( .9. ) = 1'' ( .9. ) • (63) 

Ia Lb~ ue.xL :::;eeLlon we will discuss 'XCg) t'rom. the point 

of view of Kubo's general linear response formalism, but we 

see here that we can identify it with F(.9.) derived earlier, 
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Equation 24, and hence the maximum in x(~) will determine the 

stable magnetic structure of a metal. We should note that, in 

Equation 24, we have used paramagnetic energy bands to express 

F(g_), and now )((~). In order for these bands to be the correct 

ones to use in X(~), the polarizing field ot Equation 59 must 

be weak. Equations 47 and 59 show that the polarizing field 

is proportional to the magnetization. Therefore, h will be 
-£_ 

weak only very near the critical temperature, and so our cal-

culation applies only to the initial ordering of the ionic 

spins. 

Generalized Susceptibility 

A very general treatment of linear response in solids, 

including the generalized magnetic .susceptibility, was given 

by Kubo (1957). We will restrict our treatment to the points 

of interest in this work, i.e. the ~-dependent magnetic sus-

ceptibility omitting consideration of any frequency dependence 

(sow= 0 here). It should be pointed out here that besides 

Kubo's paper there are excellent discussions of linear response 

formalism in Kittel (1963) and Tyablikov (1967). 

·We begin by assuming a Hamiltonian of the form 

H=H +H'(t), 
0 

H ' ( t ) = - }'1· h e i ~ · Ee E: t /1'1 • (64) 

We want to look at the system at zero temperature because we 

are not interested in the effect of temperature in this par-

ticular problem. ·In this case we are only interested in the 
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ground state: )G) = U(O,-ex>) !o), where )0) is the unordered 

ground state of H and U(t,t ) is the time development operator 
0 0 

from time t to time t. (See, for example, Messiah (1961) 
0 

where he calls this the "evolution operator.") Also, we are 

interested in linear response, so we will look only at linear 

terms in the expansion for the susceptibility. We want to 

know the :response to a field whose spatial variation is de-

scribed by a wave vector .9., so we will Fourier analyze the 

magnetization to lo·ok at the .9.th Fourier component of the sus­

ceptibility. Then~= X(£.)Q.9.' and the system is isotropic to 

the spins, so we can consider· only z-components of ~ and g, 

obtaining X( g) H describes a nonmagnetized system, 
0 

and.we want to know what is the magnetization, M, that takes 

place with a small field applied as a perturbation; therefore, 

we can look at the response in the interaction picture: 

. 0 

u1 (0,-ex>) = 1 - ~ J Hf(t)dt + higher terms, (65) 
-ex> 

iH t/h -iH t/fi' 
H±(t) = e 0 H'(t)e 0 

• (66) 

Then the expectation value of the magnetization is 

. . 0 

Mz = (GIMziG) = (0\(1 + ~ j Hf(t)dt) Mz 
-<X1 

. 0 

( 1 - _f; .{ Hf ( t) d t ) \ 0 ) 
-ex> 

. 0 

= (OIMziO) + ~ j (OI[Hf(t),Mz~\O)dt. (67) 
-ex> 
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The first term in this equation is zero since \0) is unmag-

netized. We will consider the two parts of the commutator in 

the second term separately s6 [ , ] =(I) -·(II).· First, we 

write Mz in second quantization language: 

M ( r) z -
1 i(k-k')·r · · 

= 2Nk2::k' ;n,e --. _-u~,(r)uk(.r)(c~,n'+ckn+- c}f'n'-c~n_)' 

( 68) 

where the uk(,E) are Bloch functions with the lattice periodici-

ty. Then 
iH t/fl ig_·r' et/1'1 -iH t/1'1 

( I ) = - e 0 

2
1 jdr ' M ( r ' ) h e - e e 0 M ( r ) . n - z -. z z -

(69) 

But eiHot/fl M e-iHot/n is just the interaction representation 
z 

form for Mz' and in that case 

in Equation 68, where C'k'~ . ( t) nm 

we get operators c*(t) and c(t) 

= eiEn(k)t/1i c~• and c (t) = 
·· knm knm 

-iE (t)/11 
e n ck . nm So we can pull out the time dependence to do 

the time integral of Equation 67 separately. Now 

(Oj (I) \0) 

in·r' he .::l.-

Jl jdr' ~z--=---
2n - 4N2 

i [ En , ( .!f ' ) -En ( .!f ) ] t /'11 
e 

2:: 2:: 2:: . 2:: 
k k' nn' ,!s1 k2 n1 n 2 

i ( k -k ) · r 
e -l - 2 -u*k (r) uk (r)(OJ (ck~~, '+ck + -c·k*' , ck ) _ 2n2 - _1 n1 - _ n . _n . _ n - _n-

(70) 

We use Equation 11 to evaluate the matrix el.ement above and do 

the sums on n1 , n 2 ,·,t1 , and k2 . We can also' do the integral 
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on r' as follows: 

ig: .E.' 
J dr' e 

i (_!s-_!s I ) • _E! 
e u ~• ( r 1 

) ukn ( r ' ) k 1 n 1 
-

i(k-k 1 +g)·R. J d' i(k-k' +g)•r * (r) = L: e - - -l r e - - - uk, n 1 _ ukn (£) 
i . cell . -

(71) 

where 
-iK ·r 

f -o-= d£ e 
cell 

We then put this into Equation 67 and Fourier transform on r 

~o get a second term like Equation 71 and finally obtain 

= 

o -1[En,(,!s+~+K0 )-En(,!s)]t/~ et/~ 
.f e e dt (73) 

-oo 

f kn ( 1-f k+n + K. n I ) 

2 - - .:::~. -o 
K ,(k,k+g_+K )~.------------~-------

nn -- -o _.!.[E (k+n+K )-E (k)]+.f..· 
1'1 n 1 - .:::~. -o n - 11 . 

(74) E ,(k+n+K )-E (k)+ie" n· -.:::1.-o n-

In a similar way we find 

Then 

h z 
2N L: L: 

. k nn 1 

f_!sn(l-f~+g_+~onl.) 
K2 . 

nn 1 E 1 (k+~+K )-E (k)-ie" n - -o n -
( 75) 
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'X.( g.) 

. 1 1 
[E 

1 
(k+n+K ) - E (k)+ie + E 1 (k+n+K ) - E (k) - ie] n - .::~. -o n - n - .::~. -o n -

(76) 

We have assumed e .small in which case Equation 76 is just the· 

definition of the principle-value integral, so we finally have 

fkn(l-fk+n+K n 1 ) 

1 2 - - .::~. -o 
)!.(g_) = N 2::

1 
L:' Knn 1 0:£d:£+g_+~o) E (k+g_+K)- E (k)' (77) 

k nn 1 n 1 
- -o n -

where we use 2:: 1 to mean that we take principle values whenever 

the denominator goes to zero. 

We see that except for the matrix elem~nts, K2 or r 2 , X(£.) 

is the same as F(g_) in Equation 24. We showed in the last 

section of this chapter that X(.g,) should be the same as F(g_) 

and that the energy of the spin system goes as the negative of 

these quanti ties. We now see how X(g_) is .iust the linear re­

sponse of the system to a small g_-dependent field. We will 

make the approximation that the matrix elements, K and I, are 

constant and will .factor them out. For the rest of this work 

we will refer to 
f .!£n ( 1-f ~+g_+~on 1 ) 

1 2::1 2::1 
N k nn 1 E 1 (k+n+K) - E (k) n - .::~. -o n -

( 78) 
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as%(~). X will then have the dimensions o~ the density of 

states (states/Rydberg/atom) for the purposes of this 

investigation. 

Application to the Rare Earths 

As we mentioned previously, the f-shells of the rare-earth 

atoms in the metals have radii of the order of one-tenth of the 

11.ea1·est-11eighbor distances .su that Ll1t::t.·~;:; l::; rw ::;lgulflu::HlL 

overlap between atoms in the crystal. Because of this fact we 

know that the mechanism for magnetic orde;ring must involve the 

conduction electrons, and therefore the s-f indirect-exchange 

interaction should be applicable to the rare earths. So, in 

principle, we want to calculate the eigenvalues and eigen­

functions of the indirect-exchange Hamiltonian in the case 

where the spins occupy the site of a regular crystal structure, 

such as hexagonal-close-packed (hcp) for the heavy rare earths 

we have considered in this work. (In the rest of this dis­

·cussion the term "rare earths" will be used to refer to the 

particular heavy rare earths we have studied in the present 

calculation, i.e. gadolinium, dysprosium, erbium, and lutetium.) 

In the rare earths we find that the angular momentum of 

the 4f-shell is not significantly quenched, as can be observed 

by measuring the magnetic moment of an essentially free rare­

earth ion in a nonmagnetic matrix and comparing it with the 

measure'd moment per ion of the me tal. The angular momentum 

that is specified in this case is J and not simply S. The 
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magnetic degrees of freedom of each atom are described by 

2j+l eigenfunctions rather than 2s+l. To take this effect 

into account, we make use of the Lande g-factor. For states 

of definite j we have 

(jml J. + 8.1 jm'), 
-l -l 

where M. is the magnetic moment operator of the ion. The ex­
-l 

change interaction couples only the spins of the i~ns with the 

spins of t_he conduction electrons, so in the interaction 

Hamiltonian we simply replaceS. by (g.-l)J. (unless j = 0). 
-l l -l 

The factor (g.-1) may be either positive or negative and acts 
l 

as a sort of 11 spin charge., 11 allowing an extra degree of free-

dom in alloyed magnetic rare earths. De Gennes (1958) was the 

first to point out that S should be replaced by (g-l)J and Liu 

(I96la) discussed this point in more detail. For future ref-

erence, we have given relevant angular momentum data for the 

rare earths in Table 1. 

·We show the magnetic structures for those of the heavy 

rare earths which have some periodic antiferromagnetic phase 

in Figure 2 (Koehler 1965). Gadolinium has only a ferromag-

netic phase, and lutetium has no moment, so these are not in-

eluded in the figure. ·As can be seen from the figure, all 

these periodic magnetic structures can be described by a wave 

vector~ which has only a z-component. This is also true for 

lutetium when a small amount of some other element such as 

terbium is added to provide a moment (Child et al. ~196'.5). 
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Table 1. Angular momenta and g-factors of rare earths 

Number of electrons 
in f-shell 'Rare earth s 1 j g-1 (g-l)j 

7 Gd 7/2 0 7/2 1 7/2 

8 .Tb 3 3 6 .1/2 3 

9 Dy 5/2 5 15/2 1/3' 5/2 

10 Ho 2 6 8 1/1.1. 2 

11- Er 3/2 6 15/2 1/5 3/2 

12 Tm 1 5 6 '1/6 1 

14 Lu 0 0 0 

Therefore, the interesting part of x(~) will be for~= (O,O,q), 

for it is in this region that the maximum in 'J- should occur to 

stabilize the energy of one ·of the magnetic structures of 

Figure 2. The Brillouin zone for the hexagonal lattice is 

shown with the symmetry points and lines labeled in the usual 

way in Figure 3. In the notation of that figure, then, the 

interesting range of g's is from f to A. In all later discus­

sions we will confine ourselves only to x(q) where it is 

understood that q is the magnitude of a wave-vector~ which is 

chosen along the line 1 to A. 

The hcp crystal structure has two atoms in the unit cell. 

Therefore, the susceptibility, X(q,), ·Will have two oranches in 

the primitive Brillouin zone. These two branches correspond 

to two different combinations of the two allowed kinds of 

I 
t 

' 
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(~ ~ CL) c~ 

6 ·,6 cp «b ~ C3 I 
~ 
I Eb. cp I \6 9 E) C3. 

I ' I \ 

~ ' cp I ~ 9 ~ C3 I 
I ' .·· ' I \ I 6 ~~ Q\ ~-~_! Q) C3 r _j I 

cb I . I 
Q/ C) C3 I 

I I 

!6. I cb cb qj CZ>· C3 
I I 

!6 
I ·cb ~ . I 

·/C!::> C3 C3 
I I 

16 { c+_) c9 c1 ' C3 C3 
Tm Er,Tm Er Ho,.Er Tb, Oy, Ho Gd, Tb,Dy 
(a) (b) (c) (d) (e) (I) 

Figure 2. Ma~neti~ structures o~ rare-earth metals 
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coupled initial and final states, k and~+~ in the expression 

derived earlier for X(q), Equation 78. Watson et al. (1968) 

point out that, if spin-orbit coupling is ignored, the allowed 

coupling corresponds to coupling 1) within the same band inside 

the first zone and 2) between adjacent bands from the first 

to the second zone. These are just the kinds of coupling ob-

tained naturally in the dpuble-zone representation for the 

bands; therefore, we need to fold out the electron bands to 

perform the evaluation of "}..(q) in the double-zone scheme. The 

question then arises as to the validity of this folding out of 

the bands. If there is no spin-orbit coupling, the structure 

factor is everywhere zero on the AHL zone face, and the fold-

ing out of the bands ~into the double zone is a correct pro­

cedure (Mott and Jones 1958). In fact when spin-orbit coupling 

is neglected, the double-zone ·representation is the one most 

often used because of its convenience. However, the introduc-

tion of spin-orbit coupling produces gaps in the electron bands 

on the AHL face of the Brillouin zone and raises questions 

about the validity of the double-zone scheme. The largest 

gaps are at the point H of the zone, while· they go to zero 

along the line A to L (Cohen and Falicov 1960). Examination 

of the gap at H shows that it is quite small relative to typi-

r.aJ hand widths. In fact, the numerical convergence of the 

present relativistic APW bands is not quite ·suffiqient to 

properly resolve the splitting (Keeton 1966). ~his seems to 

I 
'l 

! 
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indicate that the double-zone representation is probably quite 

a good approximation even with the relativistic energy bands 

we are using. We should note, however, that. the relativistic 

band calculation does introduce changes in the relative shapes 

and spacings of the bands which are important to this investi­

gation~ particularly as they are reflected in the rather sig­

nificant differences in the Fermi surfaces from what is calcu­

lated nonrelativistically (Keeton 1966). 

To conclude our discussion of the considerations needed 

to properly apply the ideas of generalized susceptibility and 

indirect exchange to the rare earths, we present the ordering 

temperatures and the experimentally determined magnetic wave 

vectors, Q, for the heavy ~are earths at their, initial order­

ing points in Table 2 which is made up from information re­

ported by Koehler (1965). In the rest of this work we will 

refer to the stable -magnetic q, the maximum in X(q), as Q. 
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Table 2. Magnetic ordering properties of the heavy rare-earth 
metals: the Neel temperature (TN), the Curie tem-
perature (Tc), the paramagnetic Curie temperature 
(8p), the interlayer turn angle at the initial 
ordering point (wi), and the magnetic wave vector at 
the initial order1ng point (Q). (The periodic struc­
ture for lutetium is extrapolated from data for 
Tb-Lu alloys. The information in this table is 
taken from Koehler 1965.) 

Metal TN(oK) TC(oK) 8p(°K) 

Gd 29}.2 317 

Tb 229 221 224 

Dy 178.5' 85 153 

Ho 132 20 83 

Er 85 19.6 42 

Tm 55 22 20 

Lu 

wi ( deg. ) 

0 

20.5 

44 

51 

51.4 

51.4 

48 

Q(n/c) 

0 

.23 

.49 

.57 

.57 

.57 

.53 
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NUMERICAL CALCULATION OF THE GENERALIZED SUSCEPTIBILITY 

General Considerations 

We recall the form of the generalized susceptibility from 

Equation 78: 

'X,( q ) = ~ L: ' 
knn' 

f p1 ( 1-f ~+g_+~on, ) 
E , ( k+n + K ) - E ( k ) • n - ~ -o n -

( 78) 

The fkn are Fermi-Dirac functions and are quite close to step 

fu.nctions of value l for En (k) smaller than EF and of value 0 

for En(k) greater than EF throughout the temperature range we 

are concerned with. ·In fact, the smearing of the fkn with in­

creasing temperature only has an effect on the susceptibility 

of the order of (kT/EF) 2 , which is very small in all the cases 

we are considering. Keeton and Loucks (1968) find EF to be 

typically about 0.4 Rydberg above the bottom of the bands, 

I 5 0 which gives EF k,..... 10 K, a much higher temperature than any 

in Table 2. We will assume in the future.that the fkn are 

simply the step functions described here. 

The energy bands in Eq.uation 78 must be provided numeri-

cally. We have used bands calculated by Keeton and Loucks 

(1968) using the relativistic-augmented-plane-wave method for 

gadolinium, dysprosium, erbium, and lutecium. The bands for 

dysprosium and erbium were each calculated twice, using two 

different potentials. Keeton and Loucks have labeled these 

Dyl, Dy2, Erl, and Er2; we will use the same labels and 
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.consider all six sets of bands. The bands for Dy2 are typical 

of the whole series and are given in Figure 4. 

When we consider a macroscopic crystal with of the order 

of 1023 atoms, there are 1023 points ~ in the Brillouin zone 

over which we must perform the summation of Equation 78. For 

all practical purposes, this is a continuous distribution of 

states k in the zone and the sum can be changed to a principal-

value integral. The summations over the bands are relatively 

·easy to perform since we only deal, in general, with a small 

number of bands. For example, the rare-earths are tri-valent, 

so there are one and one-half bands below the Fermi energy (in 

the double-zone scheme) and, in the case of Dy2 shown in Figure 

4, -two and one-half bands above the Fermi energy have been 

calculated, for a total of four bands. Higher bands are like-

ly to be very free-electron like since the potential is felt 

less as excitation energies become higher. 

The real problem, then, in the evaluation of the suscep-

tibility is the computation of the integral over states k for 

the numerical energy bands. The energy bands were aqtually 

calculated on levels 1, 3, 5., and 7 of the mesh shown in the 

l/24.th zone in Figure 5. With fifteen points per level we have 

sixty ·points where the bands have actually been calculated in 

the l/24th zone or 1200 points in the entire zone. We are 

interested in obtaining as fine a mesh as possible in the k -z 
direction so that we can know X(q) at as many points on the 

l 
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Figure 4. Energy bands for Dy2 along the symmetry 
axes of the Brillouin zone. The dashed 
line indicates.the Fermi energy· 
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Figure ). · l/24th Brillouin zone showing the 
calculation. mesh 
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line 1:::, as possible. We cannot know X(q.) any better than we 

know E(kz) because both the points }t and _!t+.9.+K
0 

must be in any 

mesh we·use to approximate the integral of Equation 78. Given 

the unce:r·tainty in the energy bands to begin with, the simplest 

approximation to the integral is probably as well as we need 

to do. This would correspond to the trapezoidal rule for 

ordinary one-dimensional quadrature (Pennington 1965, p. 191, 

for example) which in three dimensions would amount to taking 

each point in the mesh to be representative of the volume ele-

ment at which it is centered and summing the terms of Equation 

78 for each point times. the differential volume of the point's 

volume element·with respect to the whole zone. This, in fact, 

is what we have done after developing appropriate interpolation 

schemes to extend.our mesh to one convenient for the calcula-

tion of ,X(q) on the line /:::,. The fact that we have a principal-

value integral means we need to avoid zero energy denominators 

(as we clearly must do to compute the sum in any case). Because 

of this we restrict E (k) < EF and E ,(k+.9,.+K) > EF' never n - n - -o 

allowing them to be equal. We will discuss below how well we 

can expect this kind of scheme to work. 

The next question is how to interpolate to obtain the 

mesh we want. We could simply use linear or quadratic inter-

polations to find points between those calculated. In view of 

the inherent uncertainties in the bands, and hence in the 

whole calculation, these may not be too bad.: We have, in fact, 
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made use of linear interpolations done by· Keeton (1966) in each 

of the levels of Figure 5 to extend the mesh to 45 and 90 

points per level. Along the k -direction, however, we felt z 

that we needed to do as well as possible because it is the way 

in which q connects states along this direction that deter­

mines X. The only reasonable criteria for this interpol.ation 

which would be suggested by the physical properties of the 

bands are that they be smooth and that they have zero slope at 

the zone boundaries. The standard method for doing smooth 

interpolations is the "spline interpolation" (Pennington 1965, 

p. 404) which is a good approximation to stretching a perfect­

ly elastic, ·thin line' through all the points., fixing the bound-

ary conditions, and minimizing the strains. This amounts to a 

piecewise cubic polynomial approximation of the bands. We 

tried two different variations of the spline fit: one in 

which we used our judgment to choose the points at the zone 

boundaries and then required the bands to have zero slope at 

those points, and the other in which we did not put in the 

points at the zone boundaries but used the symmetry of the 

bands about the zone boundaries to fit them at the end points, 

still requiring them to have zero slope there. The results 

obtained for X(q) for Dy2 in the two interpolation schemes were 

entirely similar in the important features, so we did all 

further work using the second scheme which is the easier to. 

apply. Using this interpolation scheme, we extended the mesh 
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for the energy bands from four levels in Figure 5 to twenty­

nine. We believe that the criteria used in this extension of 

the mesh are reasonable and the interpolated bands provide a~ 

good a basis for the calculation of the susceptibility as is 

at present available. 

Given the interpolated bands on a mesh that provides a 

reasonable coverage for q_, and given the three-dimensional 

analogue of the trapezoidal rule for the integration, we can 

proceed to calculate the susceptibility and to consider the 

reliability of the results. We have done this for Dy2, and as 

.we will see from the similarity of the final results for the 

other metals with those for Dy2, the conclusions we draw from 

various considerations in the calculation should apply to the 

whole set of metals we are study1ng. 

First we considered the effect of the summations over the 

bands. We did the calculation in three different cases: with 

the four calculated bands, with the four calculated bands plus 

two additional free-electron bands. on top, and with only the 

band which determines the.Fermi surface. The results obtained 
' 

in the three calcul·ations contained exactly the same features 

in ,X(q) so that the magnetic ordering Q predicted was exactly 

the same in all three cases. In fact, within the confidence 

we have in the calculation, the differences were q-independent, 

so that X was shifted in magnitude only. The reason for this 

is that, as seen in Figure 4, the bands are rather flat, and 

J 
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as we get far from the Fermi energy, the energy denominators 

in Equation 78 become quite small, so that each term contrib­

utes very little to j((q) and is not able to distinguish vari­

ous q's very well. In fact these small terms have a kind of 

random fluctuation through the whole range of q_' s which is q-

independent on the average. In view of this result, all fur­

ther calculations were done using only the bands at the Fermi 

surface and the summations over bands were dropped from 

Equation 78. Using only the bands at the Fermi surface also 

has the advantage of allowing a more direct comparison than 

would otherwise be possible of the value of X(O) with the 

density of states at the Fermi energy, N(EF), as we will see 

below.· This comparison will indicate the degree of consistency 

between the calculations of ')((q) and N(EF) using the same 

energy bands. We can examine the relationship between the 

density of states at the Fermi energy and "'f..(O) by considering 

·the limit of X(q) as q goes to zero: 

'J..(O) = lim 
q---?0 

f~(l-fk+g_+Ko) 
1 'I'' 
N k .E(~+g_+~0 ) - E(~) 

For small enough g_, we can·take .!f
0 

= Q, and we can use the 

first two terms of the Taylor expansion for fk+ : _9.. 

' 

~fk 

~E(~) 

) 

+ ••.. 

(79) 

(80) 
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· Then 

(81) 

(82) 

Equation 82 just counts all the states on the Fermi surface and 

divides by 2N, so 

(83) 

Keeton and Loucks (1968) calculated N(EF) for their bands, and 

the· value.s they obtained are given in Table 3. The uncertain­

ties in N(EF) are rather large (of the order of 25%) because 

of the· histogram approach to the calculation and the uncer­

tainties in the bands to begin with, so values of ~(0) between 

about 10 and 18 states/Rydberg/atom would be consistent with 

the densities of states given in Table J. We shall see that 

the limit X(q) in our calculations is consistent with N(EF). 
q-?0 

We have shown how X(O) is related to the density of states 

at the Fermi energy, N(EF). Actually, in the numerical calcu­

lation of the susceptibility x(o) can never be calculated 

correctly because all the terms with denominators E(~) - E(k) 

are eliminated from the integral, making X(O) go to zero. In 

the limit of q going to zero, however, the numerator of the . 
integrand is also zero and the integrand has a finite limit 

1 equal to 2 N(EF)' as we have seen above. ·It should be pointed 

out that even for small but non-zero q_ there may be terms that 

are eliminated from the· integral but show up in the density of 
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Table 3. Density of states at the Fermi energy, N(EF), for 
the heavy rare earths (Keeton and Loucks 1968) 

N(EF) 

Metal (States/Rydberg/atom) 

Gd 28.5 

Dyl 27-7 

Dy2 2'~. 3 

Erl 24.3 

Er2 23.6 

Lu 25.5 

states. These terms arise from portions of the Fermi surface 

that are parallel to .9. so that there are states k and ~+.9. 

both on the Fermi surface. As we have shown for 1(.( 0), the 

1 susceptibility due to this kind of· term is· just 2N(EF) times 

the differential area of Fermi surface involved in this cou-

pling. For a strange Fermi surface like a cube, which we will 

discuss further on, there will be q~ite a large portion of 

Fermi surface involved in this kind of coupling for a rather 

large range of q's; however, for the usual rather complicated 

Fermi surface, such as in the rare earths, these terms should 

not be very important. We will see that N(EF) gives a J(O) 

which is quite consistent with the rest of the susceptibility 
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in the cases we have. calculated, indicating that these density 

of states terms are insignificant except for q = 0. 

The next consideration we gave to the calculation was of 

the effect of changing meshes in the approximation of the inte­

gral. We had ninety points interpolated in each triangular 

section of the l/24th zone (Figure 5) which we divided into 

two groups of forty-five points each. This gave a total of 

1305 points in the l/24th zpne or 2565 points in the l/12th 

zone. We actually have to sum over 5130 points in l/12th of 

the double zone, from r to A tor to A tor. This mesh is 

equivalent to 27,216 points in the primitive Brillouin zone. 

The differences in ')((q) between these two meshes were insig­

nificant, so that we feel that the mesh chosen is fairly repre­

sentative'of the actual energy band system. One of the meshes 

fits the symmetry of the zone better than the other one, so for 

our final results we weighted the better mesh twice as heavily 

as the other one and averaged the two calculations. We will 

see when we discuss the susceptibil~ty for free-electron 

energy bands that the choice of mesh can be important in intro­

ducing spurious peaks in the susceptibility because of the 

particular relationship of the chosen mesh to the Fermi surface. 

Our approximation to the integral over the Brillouin zone 

assumes that the energy at the mesh point is representative of 
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the energy in the volume element surrounding that point, so 

the Fermi functions in the integral cause it to act as if the 

Fermi surface does. not cut any of the volume elements but goes 

only along the boundaries between the volume elements. In 

special cases this may cause severe_distortions of the Fermi­

surface and introduce spurious features into the susceptibil­

ity. We have investigated various schemes for improving this 

situation and have determined that the accuracy of the bands 

and the inherent accuracy of the calculation of the suscepti­

bility do not at present warrant the very considerable amount 

of work required to do just a little better in this regard. A 

simple comparison of calculations with two different meshes, 

however, should reveal shifts in certain features of the sus­

ce~tibility if the relation of the mesh to the Fermi surface 

is responsible for those features. This is indeed evident in 

our calculations, most strikingly in the free-electron case 

where· the effect is most severe because of the spherical shape 

of the Fermi surface, as we will point out in the discussion 

below. So comparison of the calculations with several meshes 

sho11ld allow us to eliminate spurious features from X(q). In 

the next section we will discuss the relation between the fea­

tures of the susceptibility ahd the geometry of the Fermi sur­

face which will also allow us to eliminate spurious features 
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in X(q) when there is no corresponding peculiarity in the 

Fermi surface. 

Relation Between Fermi Surface Geometry 

and the Susceptibility 

Roth et al. (1966) have used a very sophisticated treat-

ment to show the nature of the relationship between the Fermi 

surface and the shape of the generalized susceptibility. We 

shall simply look at some different Fermi surface geometries 

for special·bands to convey the important ideas of the theory. 

We shall consider three types of Fermi surface near a station-

ary value of q (q still being restricted to the k -direction z 

which is sufficient for the purposes of this discussion): 1) 

spherical, where Q will be a diameter of the sphere giving 

coupling, or "nesting," of one point on the surface into an-

other on the other side, 2) cylindrical, where Q will again be 

a diameter, but now it nests a whole line of points, and 3) 

parallel sheets, k = constant planes, so that Q nests areas z 

into each other. We are only assuming the Fermi surfaces to 

be like this over a small region so a complicated real Fermi 

surface may contain all three types of nesting. 

For the spherical Fermi surface we consider 

f 
= _o_ j' dk k 

4.
11

3N - E(:!f+_g.) - E(:!f)' (84) 

and we will omit all constant factors from here on. We will 

choose the origin of coordinates in ~-space such that Q is 
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along the k -axis,and sufficiently close to the Fermi surface z 
we will take E(t) = k

2
. So 

X(q) ro j(over·points far from the Fermi surface) 

k -1+6~ 
+ r F k2dk·f d~ 

:KF-6k -1 

l (85) 2 2 • 
( l:s_+g.) - k . 

We want to see the effect of nesting points,· so dropping the 

first term we have 

l kF k2dk f-l+t.~ d~ 
X(q) oc - f -

q R -t.k -1 2k~ + q 

But q_ 

F 

oc 1.J F kdk ln ·. 9 + 2k(t.~-l) · . k I l 
q ,q_- 2k . . k -t.k 

F 

= Q + oq = 2k + oq, so F 

X(oq_) cc constants + oq ln t 26k
6

;_ oq\· (86) 

When oq_ goes to zero, X goes to a constant, but its slope goes 

to -oo. We see, however, that this type of nesting does not 

produce a maximum in the susceptibility at Q. In fact, the 

slope is everywhere negative for the part of X due to· a spher-

ical piece of Fermi surface which indicates that the ferromag-

netic state would tend to stabilize when only point_ to point 

nesting exists on the Fermi surface. 

For the cylindrical Fermi surface we again use Equation 

~4, but we will do the integral in cylindrical coordinates with 

the cylindrical axis the kx-axis. Choose the origin of 

coordinates such that Q is along the k -axis and take E(k) = k 2 
z 
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sufficiently close to the Fermi surface. Then 

')(( q) oc J (over points far from the Fermi surface) 

L k n+~8 

. + .f dkx J F kdk J d8 
-L kF-~k TT-~8 

Dropping the first term, 

k ~8 

'X ( q_) oc 1. J F kdk I ~~ 
q k:F-~k 0 q - cos a. 

1 A. 1 
oc -q J kdk 4 2 2. ' 

. k -Ak 4k F u q - . 

where A. = min ( q/ 2 , kF ) . So 

t(q) oc 1, oq < 0, 
1 

'f.(q) oc 1 - [1 - (2kF/q)2]2 
' 

1 
2" 2kq cos 8 + q 

oq > o. 

The slope of ~(q) here io everywhere zero or negative, and 

(87) 

(88) 

again we do not obtain a maximum in the susceptibility at Q. 

So a nesting line does not stabilize the magnetic energy at 

nonzero Q. 

We can use more general bands without undue complication 

in the case of parallel sheets on the Fermi surface. We again 

use Equation 84 and orient the coordinates so that the parallel 

sheets are k = constant planes. This. time we will expand 
z 

E(~) in a Taylor series, take only the first term and use 

E(~) = E(k ) when we are close enough to the Fermi surface; we z 
also note that E(kF) = E(kF+Q). ·Then we have 

f 
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'X( q) cc J (over points far from the Fermi 

L L dk
2 + J x dkx J y 

-L -L 
dk f~ 

y kF-6k E(k
2 

+q) -
X y 

E(k
2 

+q) = E(kF+Q- ok
2 

+ oq) = E(kF + Q) 

E(k
2

) = E(kF- ok
2

) = E(~) ·-· v 2ok
2

, 

surface) 

E( k
2

) • 
(89) 

(90) 

where v 2 and v1 are the band velocities at kF and kF + Q re-

specti v:ely. So 
6k d(ok

2
) 

X( oq) cc ~ (v 
2
-v

1
) ok

2 
+ v

1 
oq 

cc 1 ln I (v2-vl)6k + vloql· 
v 2-v1 v1 oq (91) 

In this case we see that ~q) goes logarithmically to +ro at Q. 

Nesting of areas of the Fermi surface is what is required to 

stabilize the magnetic energy at some nonzero Q, so we can look 

for parallel sheets of Fermi surface which are nearly k
2 

= 

constant planes to identify the peaks we observe in our calcu-

lated susceptibility. This connection to the Fermi surface 

can also serve as a guide to help in the elimination of extran-

eous peaks introduced by the numeri.cal procedures. 

The above calculations for the three different local Fermi 

surface geometries are very similar to doing the complete cal-

cculation of the susceptibility analytically in the case of 

three-, two-, and one-dimensional perfectly free-electron 

bands. The results of this calculation are shown in Figure 6. 

(Kasu.ya 1966 is a good reference for more details on the 
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Figure 6. 
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Generalized susceptibilities for completely 
free-electron energy bands in (l)" one 
dimension, (2) two dimensions, and (J) 
three dimensions. These correspond to 
planar, cylindrical, and spherical Fermi 
surfaces 
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free-electron susceptibilities, although the calculations are 

straightforward from the above work.) 

In order to allow comparison of the features of the sus­

ceptibilities with the Fermi surface geometries, we have pre­

pared a computer program which determines th~ intersections of 

the Fermi surface with ea~h of the fifty-eight planes in our 

interpolated mesh in the do~ble zone. ·We have intersections 

of the F'ermi surface with the symmetry planes of the zone 

plotted so we can correlate thes~ with the peaks in the calcu­

lated susceptibilities. Results for these Fermi surface plots 

will be presented in the next chapter along with the suscepti­

bilities. One advantage of this type of procedure is that we 

can change the Ferml energy and see its effect on both the 

susceptibility and on the Fermi surface by simply changing the 

Fermi energy read into the appropriate programs. We will. also 

discuss the effect of varying the Fermi energies in the next 

chapter. 

Cubic and Spherical Fermi Surfaces 

We have alluded to the results for the cubic and spherical 

Fermi surfaces in the above discussion. We will present here 

the analytical and the numerical calculations for these two 

geometries assuming a simple cubic lattice of side a, taking 

~ = (O,O,q) in the first zone, and considering only the band 

that determines the Fermi surface, so when we go out of the 
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zone we make use of a reciprocal lattice vector K to come -o 

back to the same bands. 

The cubic Fermi su.rface may be obtained from the following 

set of bands: 

(92) 

where ki means the largest component of kin absolute magnitude, 

and in a simple cubi~·lattice we require -n/a < k. < n/a. ~o 
- l 

properly put everything in the first zone, we will assume 

kF < n/(3a), where the cubic Fermi surface has side 2kF. Then 

from Equation 78: 
f k ( 1-f k+ + K ) . 

"' · 0 J - -· 9.. -o 
"( q ) = 4 3 N d~ E ( k+.9.. + K ) E ( k ) • 

n - -o -

We will break 'XJq) into three parts: 

1(q) ~ ~ [(1) + (2) + (3)], 
4n N 

(93) 

(94) 

where (1) is the part with ki = k
2

, (2) has both ki and 

(~+.9..+~0 )i = kx or ky' and (3) has ki .= kx or ky and (~+.9..+~0 )i = 

k
2

+q_. In (2) we consider the low temperature limit as the 

Fermi surface becomes perfectly sharp, which will give density 

of states terms like those referred to earlier in this chapter 

that must be added to the numerical calculation. (1) and (3) 

are rather complicated, but (2), which we.need to add to the 

numerical calculation, is simply 

( 2) 0 < q < 2kF, 

(95) 
= o, 
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We obtain for a final result 

0 < q < kF, 

4k3 
__ 0 F 2 (4 2 1 2) · . q . ) J -- [- + k + kFq· + k __, ln ( -l l F F -. 2':1. q_-2kF ' 4n- N - q 

(96) 

= 0 [ 4 (:!!) 3 + _5 (!!.) 2 _ 6kFn 
4n3N 3q a a a 

2k 2 7 n + .?.q2 
F- qa 3 · 

~-< q < ~-

The contributions (1), (2), and (3) are plotted in Figure 7, 

where we have taken a = n Bohr radii and EF = 0.200 Rydberg. 

In Figure 8 we show the _total X(q) along with the numerical 

calculation (with ~ontribution (2) added to the numerical cal-

culation) using the two different meshes that we referred to 

earlier, each with forty-five points per level for the levels 

of Figure 5. 
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The spherical Fermi surface may be obtained from free-

electron bands: 

where k is restricted to a cubic zone of side 2n/a. We will 

assume that kF < n/( 2a), where 2kF is the diameter of thG Fermi 

surface. Then we use the following form fo~ X(q): 

. 0 . fk 
'X. ( q) = -3- J d}i E ( k+g + K ) - E ( }i) • 

4n N - -o 
(98) 

Performing the integrations just as in Equations 84 to 86, but 

for the whole of occupied k-space this· time, we obtain 

. 'X( q) = 

= 

0 
2 8n Na 

0 
2 8n Na 

+ 
kF 
A 

.I q+2kFI 
~) ln q-2kF ] , . O<q<~- kF, 

k2 
ln lq-~kFI [(~-1) 

. q . 

k2 
(A - kF) +.....E 

qA 
(!!. + 
a 

n 
a 

q) 

2 
+ A kF 

(4 -T) 

(~) n 
- qA . (a 

n 
kF < q <a'. 

I A -2kF I 
ln q_ 

2 - q) J, 

(99) 

2n where A = a - q. We have plotted X( q) for a = 3, a = 2n Bohr 

radii, and EF = 0.066 Rydberg in Figure 9 along with two numer­

ical calculations for the same two meshes as for the. cubic. 

Fermi surface. 

We can see that spurious peaks occur in the calculations 

for the spherical Fermi surface as was mentioned earlier. 

However, using our criterion that peaks whose positions are 
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mesh-dependent are not real would cause us to eliminate two of 

the three bad features in this case. If we cared to calculate 

over still other meshes, the third peak would undoubtedly be 

removed also, but this is not necessary because we can simply 

examine the Fermi surface and discover that there are no 

parallel sheets and therefore ·eliminate the third peak as 

arising from the numerical procedures rather than from the 

energy bands. We notice that the background in both numerical 

calculations falls quite close to the analytical result, so 

the simple elimination of the extra peaks as described above 

will give us a reasqnably good picture of the susceptibility. 

We have examined the effect of the bands, various meshes, 

and different Fermi surface geometries in the calculation of 

the susceptj_billty j_n thjs chapter. 'T'he :integ:r.al fo:r· 'X(q) 

seems to have converged 'quite well for the mesh we are using; 

the effect of bands other than those right at the Fermi energy 

is q-independent, and our knowledge of .the Fermi surfaces 

allows us to eliminate spurious features that may appear in the 

calculation due to the numerical procedures •. ·When we finally 

take a look at the calculation for the spherical and the cubic 

Fermi surfaces, which can also be done analytically, we see 

that the procedure we have followed seems indeed to be reliable 

in showing the major features of the susceptibility and, in 

particular, in predicting the maximum in X(q) ,-which interests 

us because of its·relation to stable magnetic ordering 

arrangements. 
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THE GENERALIZED SUSCEPTIBILITIES OF THE HEAVY RARE EARTHS 

The Calculated Susceptibilities 

Following the procedures outlined in the preceeding chap-

ter, we have calculate~ the generalized susceptibilities of 

the heavy rare-earth metals: Gd, Dyl,·Dy2, Erl, Er2, and Lu~ 

where Dyl, Dy2 and Erl, Er2 correspond to two different poten­

tials used in the band calculations (Keeton and Loucks 1968). 

The results of these calculations are shown in Figures 10 

through 15 in the double-zone representation. In Figures 16 

through 21 we show the intersections of the Fermi surface with 

symmetry planes of the double zone for comparison with the 

features of the susceptibilities. The dimensions labeled on 

the Fermi surface sections correspond to the labels on the 

graphs of X( q) . 

Examination of the Fermi surfaces and comparison with the 

other calculated susceptibilities indicates that the only real 

problem with a spurious peak seems to be in Er2, where the 

first peak in Figure 14 should be eliminated. With the first 

peak of Er2 removed, there is very little difference between 

Erl of Figure 13 and Er2. (There seem to be other spurious 

peaks in the series of susceptibilities, but .they are small 

enough not to appreciably affect either the shapes of the 

curves or the analysis of them, so we will not be concerned 

with them further.) There is also very little difference 

between the general forms of the susceptibilities of Dy, Er, 
' .} 
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Figure 17. Intersections of the Dyl Fermi surface with symmetry planes 
of the Brillouin zone in the double-zone representation . 
Crosshatched areas are holes 
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Figure 19. Inte~sections of the Erl Fermi surface with symmetry planes 
of the Brillouin zone in t~'1e double-zone representation. 
Crosshatched areas are holes 



Figure 20. Intersections of Fermi surface with symmetry planes 
of the Brillouin zone in the double-zone representation. 
Crosshatched areas are holes 



Figure 21 . Intersections of the Lu Fermi surface with symmetry planes 
of the Brillouin zone in the double-zone representation. 
Crosshatched areas are holes 
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and Lu, as one might expect by referring back to Table 2 and 

to Figure 2. This similarity in susceptibilities quite clear­

ly reflects the strong similarity in Fermi surfaces, as seen 

in Figures 17 through 21. 

If we compare the densities of states (times ~) listed in 

Table 3 with the values of the susceptibilities in Figures 10 

through 15 for small q, we see that they are all within a few 

percent of each other, so that any density of states terms 

like term (2) in the calculation of the .cubic Fermi surface 

susceptibility must be small enough to be neglected within the 

accuracy of present bands and the present susceptibility 

calculation. 

Gadolinium is clearly different from the other heavy rare 

earths in both its Fermi surface and its susceptibility. We 

shall discuss it separately in some detail in the next section, 

since it differs from the others in its experimentally deter­

mined properties as well as in these theoretical calculations. 

We have also calculated both the susceptibilities and the 

¥ermi surfaces for all these metals for Fermi energies .005 

Rydberg above and below the Fermi energy caiculated by Keeton 

(1966). The trends are interesting; they seem to be just what 

one would expect from a simple inspection of the bands. The 

changes in Fermi surface are such as to make Gd look more like 

Dyl when the Fermi energy of ·Gd is decreased,, so with the 

various Fermi energies we seem to get a set of ·Fermi surfaces 
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that make a gradual transition from the gadolinium surface of 

Figure 16 to the lutetium surface of Figure 21. We will dis­

cuss these various surfaces and their susceptibilities more in 

detail in the following section. 

Comparison with Experiment 

In Table 2 we have shown some of the magnetic ordering 

properties of the heavy ·rare earths including the magnetic 

wave vector (Q) at the highest ordering temperature for each 

of the metals in the series. In Table 4 we show the magnetic 

wave vectors obtained from the maxima in the calculated sus­

ceptibilities in comparison with the experimental values. We 

see that the calculated Q for Lu using the calculated Fe~mi 

energy is very close to the experimental Q. Those for Dy and 

Er are slightly larger than the experimental values, but in­

creasing the Fermi energy by .005 Rydberg improves the agree­

ment considerably. The uncertainties in the bands and in the 

numerical calculation of the susceptibilities are such that we 

cannot really expect better quantitative agreement between the 

experimental and the theoretical Q's than is exhibited for the 

Q's obtained using the correct Fermi energies. However, the 

agreement is good enough in each.case to give reasoriable 'con­

fidence in the calculation. 

When we look at the susceptibilities along side of the 

Fermi surfaces, with the important nesting q's labeled in both 

figures, we see that the beginning of the ma·jor peak for Dy, 
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Table 4. Magnetic ordering wave vectors (in units of n/c) as 
determined from experiment (Koehler 1965) and from 
the maximum in the theoretical susceptibilities 

Metal Qexpt 

Dyl 

Dy2 

Erl 

Er2 

.49 

.57 

Lu .53 

Qtheory 
(with calculated EF) 

.60 

.60 

.61 

.61 

.54 

. Qtheory 
(with EF increased by .005 

Ryd from calculated EF) 

.53 

.53 

.56 

.54 

.so 

Er, and Lu, is in each case determined by the q labeled (1). 

This has been called the "webbing" q. (Keeton and Loucks 1968) 

because it corresponds to a "webbing" between arms of the Fermi 

surface. The magnetic Q seems to be greatly influenced by the 

size of the webbing, and, as we will see in gadolinium, the 

absence of webbing tends to smear out the features of the sus-

ceptibility so that no non-zero Q is selected out from the 

curve as stabilizing a periodic magnetic structure. The peak 

in the right half of the susceptibilities of Dy, Er, and Lu 

seems to come .from nesting ·between pieces of Fermi surface in 

the same half of the double zone, but the relation of these 

pieces to the webbing seems to ind.icate that the webbing also 

enhances this particular feature of the x•s. Again, comparison 

with gadolinium seems to bear out this conclusion. 
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The approximation that all the matrix elements are con­

stants may not be very good. We would expect them to be 

slightly decreasing functions of q simply because as q increas­

es there -should be more and more oscillations in the electron 

polarization within the 4f-shells of the ions, giving more and 

more of a tendency for the overlap integrals to cancel out, 

so that these integrals become sm~ller as q becomes larger. 

This should be true even when the sum over reciprocal lattice 

vectors is carried out, since almost all the terms in such a 

sum should be smaller for larg~r q. In a more refined calcula­

tion where the q-dependence of the ~atrix elements could be 

included, their effect should be to cause the peaks in the ca~ 

culated susceptibilities to shift slightly to the~left as the 

curve is pulled down, helping to obtain agreement with experi­

ment in Dy, Er, and Lu. 

We noted earlier in ~iscu~sing the kinds of ordering pres­

ent in the rare earths that Gd has no antiferromagnetic phase 

but becomes ferromagnetic directly from its paramagnetic phase. 

This fact would imply that the maximum in the generalized sus­

ceptibility of Gd should come at Q = 0. If we examine the 

form of the susceptibility of Gd in Figure 10, we see that, 

quite different from the susceptibilities for the other metals, 

Gd has no apparent peaks but is quite flat across the whole 

range of q. The effect of a matrix element which is a decreas­

ing function of q would be to pull down the whole curve and 
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emphasize the stability of the Q = 0 (ferromagnetic) structure. 

The flatness of the gadolinium susceptibility seems to come 

from the fact that there are many rather small nesting areas 

on the Fermi surface (see Figure 16) for a very wide range of 

q's. This is apparent in Figure 10 as we look at the many im­

portant q's which contribute acros~ the susceptibility graph. 

When the webbing feature is introduced, as in Dy, Er, and Lu, 

the nesting area for a much smaller range of q's around the 

webbing q becomes dominant, and we get the peaks which stabil­

ize the periodic magnetic structures in the heavier metals. 

We pointed out earlier that the generalized susceptibility 

is approximately proportional to the magnon spectrum. It can 

also be shown that the same features of the Fermi surfaces that 

appear in the magnon spectra and the susceptibilities will 

appear in the phonon.spectra. Therefore, we can look at mea-· 

sured magnon and phonon spectra to see-if the same peaks occur 

in them that we obtain in our theoretical susceptibilities. 

-Experiments have been done on the magnon spectra of Tb (M~ller 

and Heumann 1966), Tb-Ho (M~ller et al. 1967 and 1968), and Er 

(Woods et al. 1967), and on the phonon spectrum of Y (Brun 

et al. 1968). In each of these cases, bumps (or peaks) are 

found at Q' s eq_ual to the magnetic wave vector for the particu­

lar material involved in the study. The experimental existence 

of these bumps certainly lends support to the shapes we have 
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calculated for the generalized susceptibilities in the heavy 

rare earths. 

The magnitude of the exchange integral necessary to fit 

electrical resistivity data is of the order of 0.5 eV (Elliott 

1965). If we use a simple effective field approximation we 

find that 
2 

kTC =I ~(S+l) X(Q), (100) 

where Tc is the appropriate critical temperature, Q is the 

magnetic wave vector for the structure at Tc' S = (g-l)J, and 

I is the exchange integral. We do not know the absolute value 

of X(Q) because we have dropped many q-independent terms, and 

we only know relative values, like 'X(Q) - 'X,(O), under the 

assumption of constant matrix elements. Therefore, we can 

look at 

(101) 

and compare the magnitude of I with the experimental value to 

get some idea of how much the q-dependence of the matrix ele­

ments must pull down the peaks in X(q,). Examination of the 

susceptibilities presented in Figures 11 through 14 gives 

X(Q) - X(O) about 6 Ry~berg-l for dysprosium and about 4.5 

-1 Rydberg for erbium. Table 2 gives TN and ·ep for these metals, 

·and Table 1 gives (g-l)J. When we put these values into Equa­

tion 101, we find I about .04 eV for Dy and about .09 eV for 

-Er. This would seem to suggest that.the matrix element pulls 

the peak down so that CX(Q) - X(O)] is about 10.% to 20.% of the 
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value we have calculated or even slightly less. This is 

probably reasonable since the effective mass of terbium mag­

nons as estimated from the data of M¢ller and Heumann (1966) 

seems to be about 1500 electron masses, indi_ca ting a reasonably 

steep increase for the magnon spectrum, and hence a rather 

steep fall-off for the susceptibility. 

When we look at a variety of Fermi energies for the vari­

ous metals we see that increasing the F'ermi energy tends to make 

the heavier metals look more like Gd and decrease the magnetic 

Q (this is apparent in Table 4). Decreasing the Fermi energy 

has the opposite effect, and in fact the Fermi surfaces for Gd 

with Fermi energy decreased by .005 Rydberg and for Dyl are 

almost identical. There are, however, some subtle differences 

between the energy bands for these metals, so that the whole 

story cannot be told simply by changing Fermi energies for one 

of the sets of bands. 
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SUMMARY AND CONCLUSIONS 

We have calculated the generalized susceptibilities of 

the heavy rare earths, Gd, Dy, Er, and Lu, using the energy 

bands of Keeton and Loucks (1968). This calculation has born 

out general conclusions drawn previously (Roth et al. 1966 and 

Keeton and Loucks 1968) about the connection between the Fermi 

surface geometry and the magnetic wave vector of the periodic 

magnetic structures observed in these metals .. The webbing 

feature of the Fermi surfaces of Dy, Er, and Lu was pointed out 

by Keeton and Loucks as being possibly important in the deter­

mination of the magnetic wave vector for these materials. Our 

results have shown, by comparison with the case of Gd where 

the webbing is not present and by observation of the relation 

between the size of the magnetic Q and the thickness of the 

webbing, that the webbing is indeed crucial both in the deter­

mination of Q and in the stabilization of the periodic struc­

tures observed in these metals. 

The energy bands near the Fermi energy as calculated at 

present seem to give a reasonably consistent picture of the 

magnetic properties of the heavy rare earths as reflected in 

our calculated susceptibilities. Quantitative comparison of 

the susceptibilities with experimental magnon spectra is not 

at present possible because of our lack of knowledge of the 

exact form of the q.-dependent rna trix elements involved in the 

magnetic energy of these systems and also because of our 
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incomplete understanding of the effects of anisotropy and mag­

netoelastic interactions. This type ·of careful comparison of 

the calculation~ with experiment is really necessary before we 

can say much more about the validity _of the energy bands. 

However, the one piece of experimental information with which 

there is rather direct comparison is the value of the magnetic 

Q that should be observed in the periodic structures for these 

metals. The Q's predicted by our calculation are in quite 

reasonable agreement with those determined experimentally; this 

gives confidence in the bands as well as in our generalized 

susceptibilities. 

The existence of bumps in the experimentally measured 

magnon and phonon spectra (corresponding to the major bumps in 

our susceptibilities) for these materials adds credence to this 

theory. It appears that most of the important effects for the 

determination of the periodic structure for a given metal at 

its Neel point are contained in the bands and are expressed 

through the indirect exchange interaction much as we have 

developed it. The q-dependence of the ~xchange matrix elements 

is, of course, still a major obstacle to detailed quantitative 

comparison of the susceptibilities with the experiments, but 

the fact that the important features come out of the bands and 

appear in our calculations indicates that the matrix elements 

are probably smoothly decreasing ··functions of q which will not 

change the conclusions we draw from the susceptibilities. 
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As we pointed out in the introduction, there are still 

many approximations·involved in the present calculation of the 

susceptibilities aside from neglecting the q-dependence of the 

matrix elements which we have discussed. in some detail. There 

is a great deal of theoretical work to be done before all 

these approximations are fully understood and their effects 

are taken into account. We are pleased that the ·improvement 

we have made through the substitution of rea~istic energy ban~ 

for free-elec.tron bands seems to correspond so well with the 

experiments in its prediction of the magnetic wave vectors for 

these metals. 
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