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ABSTRACT

In terms of cylindrical coordinates, the Navier-Stokes equations
“and the equation of cdntinuity are derived for axisymmetric, incompres-
sible flows wherein fhe pressure is the only important externai force.

A problém‘is described in which a cylinder containing fluid and a Eo-
axial tube are in rotation with one of the cylinder end walls at a con- -
stant angular velocity, the other cylinder end wall remaining stationary.
A successive overrelaxation iterative procedure is described whereby the
system of partial differential equations involving the classical stream
function and vorticity are solved at steady-state. Some observations of
the solutions thus obtained are made for tangential Reynolds numbers
from 1 to 2000. Four other methods are discussed by which solutions of

the problem either have been or may be attempted.
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CHAPTER I
INTRODUCTION

In fé;ént ;eaféia greatideal of efféré'hés been ﬁade to determine
velocity distributions in a variety of fiuidifiéw prbbiéms by numerical
techniques using digital computers. .Such problems are usually represented
by a system of partial differential equations, at least some of which are
nonlinear, with appropriate restrictions on the solution at the boundary
of the region of interest. This thesis will discuss an attempt to find
the velocity distributions in a fluid which is essentially flowing in a
potential vortex (a rotating flow in which the tangential velocity varies
inversely with radial distance) adjacent to a stationary surfact.

Chapter II contains the basic concepts of fluid flow and the
derivation of two systems of partial differential equations which de-
scribe a class of fluid flow problems. The derivations are performed
in cylindrical coordinates but are otherwise carried out in the manner
of Bird, Stewart and Lightfoot [1].

In Chapter III the confined vortex with which this thesis is
concerned is'described and boundgry conditions are provided for the two
systems of equations derived in Chapter II.

For finite difference approximations of the classical stream
function-vorticity partial differential equations, an iterative method of
solution is described in Chapter IV. A criterion for the convergence
of this iterative procedure is provided and some observations of the

solutions thus obtained are made.



Chapter V contains a discussion of four other methods for seeking
solutions of this confined vortex problem. Two of these methods have
been tried with little .or no success and the other two methods have not

been tried but seem promising.



CHAPTER II
DERIVATION OF THE GOVERNING EQUATIONS

In.this cﬁapter we seek to exhibit the basic concébts involved in
the flow of fluids and, through the use of the principles of conservation
of mass and momentum, to derive the partial differential equations which
describe a class of fluid flow problems.

Consider a fluid contained between two large parallel plates of
area A which are separated by a small distance Z, as in Figure 1.
imagine that the system is initially at rest and that at'fime t=20
we set the lower pldte in motion in the r-direction with a constant ve-
locity V. As time proceeds the fluid gaiﬁs momentum, and finally the
steady-state velocity'profile shown in Figure 1 is established. When
this steady-state motion has been attained, 'a constant force F is required
to.maintain‘the motion of the lowef plate. Provided that the flow is

laminar, this force may be expressed as

2.1)

>
u
) =
Ny <

This equation states‘thqt‘phe fgrce Egywunit_éreg;is proportional to the
velocity decrease in the distance Z, The constant of proportionality u
is called the '"viscosity'" of the fluid and ch;racterizeg the resistance
of simple fluids'to motion.

The shear stress exe;ted in the'r-direction on a fluid surface at

z by the fluid in the region z <z, is designated by T s and

=zo
the r-component of the fluid velocity vector is designated by u.
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L3 0 3 -’ .
Note that this is not the rate of change of the velocity v in the r-

direction designated byvaCVar. Now, Equation (2.1) may be rewritten as

_ .du '
TZI‘ = - E . (2.2)

This equation is known as Newton's law gf viscosity and may be stated
as, "The shear force per unit area is probortional to the negative of
the local velocity gradient." Al; gases and most simple liquids are
described by Equation (2.2) and are called 'Newtonian'" fluids.

Another interpretation of Equation (2.2) may be obtained by con-
sidering a neighborhood of the moving surface. The fluid in this
neighborhood acquires a certain amount of r-momentum. The fluid,
in turn, imparts some of its momentum to the.adjacént "layer'" of fluid
causing it to remain in motion in phe r-direction. Thus r-momentum is
transmitted through the fluid in the z-direction. Now T,y May be inter-
preted as the viscous flux of r-momeritum in the z-direction. Note that
momentum tends to go in the direction of decreasing velocity and the
velocit} gradient may be thought of as a "driving force' for momentum
transport.

The mass density or mass per unit volume of the fluid is designated
by p and, since we will later find use for a symbol which represehts the
viscosity divided by the mass density, we define the kinematic viscosity

v. by

v = u/p . ﬁ ' (2.3)



Consider a stationary volume element in cylindrical coordinates,
as shown in Figure 2, through which fluid is flowing. Conservation of

mass may be stated as the mass balance
Rate of mass Rate of Rate of B
- : > . (2.4)
accumulatlon mass in mass out : '
For the faces of the volume element indicated by the numbers '1'" and '"2"

we may write that the rate of mass in at r is

rA6Azpu|
T

and the rate of mass out at r+Ar is

(r+Ar)ABAzZpU .
T+AT

J

For the faces indicated by the numbers '3" and '4'", we may write that the

rate of mass in at 6 is .

ArAzpv R
]

andAthe rate of mass out at 6+A8 is

ArAzpv .
6+A86

Finally, for the faces indicated by the numbers '5'" and "6', we write that

the rate of mass in at z is



Figure 2. Volume Element in Cylindrical Coordinates.



(r + %—Ar)ArAepwlz ,

and the rate of mass out at z+Az is

1 .
(r + E'Ar)ArAeprz+Az .

The rate of mass accumulation within the volume element is

1, 3p
(r +_§-Ar)ArAeAz_3€ ,

and Equation (2.4) may be written as

]
(r + l-Ar)ArAeAz 3%-= ABAz {rpu_lr - (r+ar)pu|

2 r+Ar}
(2.5)
+ ArAz {pvle - pv|e+Ae} + (r + %—Ar)ArAe {pw|z_- pw1z+Az} .

If we divide both sidés of Equation (2.5) by ArA6Az and take the limit as

Ar, A® and Az approach zero simultaneously, we obtain

p _ d 3 3
r 3t 3p(PTu) - 75(ev) - 1 =(ow) ,

which may be written as

3p

—_—

t

|w
1
o

Z(oTu) + = =(ov) + S—(ow) = (2.6)

R
@

This is the ''equation of continuity' and describes the rate of change of
density-at a fixed point resulting from changes in the mass velocity

->
vector pv.



For the same volume element conservation of momentum may be

written as the momentum balance

Rate of Rate of Rate of . Sum of
momentum = <momentum » - < momentum > + <forces acting>. (2.7)
accumulation in out on system

Since we alloﬁ the fluid to ﬁove through all six faces of the volume ele-
ment in any direction as iﬁ Figﬁre 3, we note that Equation (2.7) is a
vector equation with components in each of the coordinate directions r,

8 and z. Let us consider the r-compohent of each term in Equation (2.7).
Mohentum flows into and out of the volume element by convection (i.e.,
bulk fluid flow) and by molecular transfer (i.e.,velocity gradients). The
rate at which the r-component of momentum enters the face at r by convec-

tion is
rAeAz(pu)ulr s

and the rate at which it leaves at r+Ar is

(r+Ar)AeAz(pu)u|r+Ar

There are analagous expressions for the r-component of convective momen-
tum across the other four faces. In addition, fluid motion in the 6-
direction results in an effective force in the r-direction, the

"centrifugal force," given by

ArAOAzpvV .



r+Ar

Figure 3. Directions. in which the R-Component of Momentum
'is Transported Through a Volume Element,
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We find that -the net convective r-momentum flowing into the volume

element is

sesz {pruul_ - p(r+aruul } + ardz {ovuly - ovul .}

1 : )
+ (r + E-Ar)ArAe {pwulz - °wu|z+Az} + ArAbAzpvv.

Similarly, the rate at which the r-component of momentum enters the face

at r by molecular transport is

rAdAz T ,
TT
r

and the rate at which it leaves at r+Ar is

(r+Ar)A6AzZ Tor .
r+Ar
Analagous to the centrifugal force discussed above, molecular transport
in the 6-direction results in an effective force in the r-direction

which is given by

ArABAz Tee .

When the r-components of molecular transport momentum are computed for
the other four faces of the volume element, we find that the net molecular

transport r-momentum flowing into the element is

A88z {rt - (r+Ar)T | } + Araz {x -1 | }
Ty rr T+AT : °r|e or 0+A0
1
+ (r + 5 AT)ATAB {rzr| - Tzrl } + araesz T .
: z zZ+Az
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In many.cases 'the only important external forces.acting on the system are

those arising from the fluid bressure P defined by the equation of state,
P =P, T),
where T is the temperature and
p = ?(r, 8, z,.t) s
and-the gravitational force per unit mass
g =32, 0,z .

Since we will later assume that the gravitational force has only a negli-

gible effect on the physicai system of interest, we will omit it from the

‘remainder of the discussion. The change in the force due to the pressures
at v and at r+Ar is

b,

264z {rPIr - (r+Ar)P|r+Ar

and the pressures normal. to the surfaces at 8 and at 8+A6 result in a
~ pressure force in the r-direction given by

.. 2 ArAz P sin(%-&e) .

Now we may write the r-component of the external forces acting on the

system as

AeAz'{rPfr - (r+Ar)P|r+Ar} + 2 ArAz P sin(%-A6)°.
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Finally, the rate of accumulation of r-momentum is

(r + %-Ar)ArAeAz %f-(pu) ,

and we may write the r-component of Equation (2.7) as

1 3 - ru
(r + 3 Ar)ArA6Az m=(pu) = 884z {p ulr - p(r+Ar)uu|r+Ar}
) 1
+ ArAz~{ovu|9 - °VU|e+Ae} + (r + 7 Ar)brad {pwulz N pwulz#Az}

ArAGAzpvy + A6Az {rPlr - (r+Ar)P|r+Ar} + 2 ArAz P sin(%-Ae)

+
(2.8)
'+ A6Az {rT ' - (r+Ar)T l } + Araz {Te l - T, | }
rr T r r+Ar Tlg Tlo+n0
. 1, |
+ (r + 7 Ar)Arae {Tzr| - Tzrl } o+ ArABAzT o .
, z z+Az

If we divide Equation (2.8) by ArA6Az and take the limit as these quanti-

ties approach zero simultaneously, we obtain

rz—(pu) = - :—r(omu) - %(pVU) - rg—z(owu) + pvv - g;(rP) |
(2.9)

)
+ P - -5-1;-(r'rr

d 9
r) - 5§{T9r) - ri?"zr) * Top -

We now divide Equation (2.9) by r, perform portions of the indicated

differentiation, and collect terms to obtain



T4

90 129 13 d
{ Tt T ﬁ(orU) + ;W(DV) + a—z("w)}
+ {é}i-.- ua_u4. lau + u Vz
o {53 rtrae t Yz T (2.10)
_ 3P 13 13 Y00 . 3
T {r ar(nrr) * ;ﬁ(Ter) - ¢ BT(Tzr)}

We recognize the first term of Equation (2.10) as the left member of

equation of continuity, Equation (2.6), hence the r-component is

. Y
du u v 3du du v
Pl tusr Tt Yoy - )
P | (2.11)
3P 13 Yoo

=- X

13 3
or - Ty * 7 3e(Ter) - 37Ty

Through similar anélyses we obtain 'the following expressions for the

6- and‘ z-components of Equation (2.7)

@AV, v, v3v uv o dvy o 19P
T ar 1r 36 T 9z r 36
(2.12)
1 o9, 2 -1 3 0
- o ar(rg) * 5 a5(Tee) * 37 (L' b
and
0w oW Vv-Iw ow.- 3P
Pl rusrtret YT o 57
. ’ o (2.13)
129 123 ) d
- {7 W(r rz) + ?ﬁ(Tez) * a_z'(Tzz)}
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For the physical problem in which we are presently interested
(and indeed, for a large'ngmber of physical problems)‘the density p and
the viscosity u can be con51dered constant Under this assumption the

equatlon of continuity, Equatlon (2 6), may be written as

%--a-—(ru) l—V-+ v 0 , ‘ : (2.14)

T 096 8z

the continuify,equation for incompressible fluids. Since it is our
purpose to extract information regarding thé'vélocity distributions from
Eduations (2.11) - (2.13), we must replace the various stresses in these
equations with expressions in terms of'Qelocity gradients and the vis-
cosity of the fluid. ‘For“incompressible<N¢wtonian fluids with constant
viscosity these expressi§ns (ffom.Bird, Stewart and Lightfoot [1]) are
given in Table I. Upon the'substiﬁution of these expressions into:.
Equations (2.11) - (2.13), we obtain the r-, 8- and z-components of the

Navier-Stokes equation, given by

Bu, 3 vdu vi, du_ 13p
ot 9T T 30 T "%z ~ p or
' ' 5 ) (2.15)
¥ 9 ,1 09 2 9dv 3 u
+ = (== 5=(ru)) + 5 — - 5 57 },
o] r'r ar r2 392 2 36 az2
, v dv.  vidv u odv 1 3P
ot ) rde r 9z  pr 96
2 2 (2.16)

v g_ Ju 3°v
r~ 96 T 9z

and
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TABLE 1

STRESSES IN TERMS OF VELOCITY GRADIENTS AND
VISCOSITY FOR. INCOMPRESSIBLE
NEWTONIAN FLUIDS

] Jdu

T
1 3v u

Yoo = 2u(;-3§_ 2

) ow
T22 =2u 9z

_ gm0V ‘1 3u
Tre = Tor - M @ + 739
ov 1 dw, .

T =T

oz =Tz = MGz * T390

T =
ir rz
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w 8w vdw 3w _ 123P
B R A RS TR T
(2.17)
2 2
uw,ld . dwy, 1 3w 3w
+ = {= (r )+ e —— ¢ ‘}.
p T or Oor 2 362 az§

It should be noted that Equations (2.14) - (2.17) are four partial
differential equations in. the four dependent variables u, v, w.and P
which are functions of the four independent variables r, 6, z and t,
Eduation (2.i4) is a linear first ordef partial differential eduation,
and Equations‘(Z.IS)‘- (2.1%) are second order semi-linear elliptic
partial differential equations.

Until now the equations that have been developed describe in-
cohp*eséiﬁle'flow.situatiohs in which the effects dué'tb the gravita-
tional force are»negligible; . For reasons thch will become apparent
later, we ﬁow limit thg'discugsion‘ﬁo pfoblemé which possess axial
symmetry, i.e.,no e-dependence._,We also seek to repﬁrasé'ﬁquations
(2.14) - (2.17) in terms of the classicai‘stream function ¢ and the

vorticity ¢. First, define the function T by
r(r,z,t) = rv(r,z,t) , (2.18)

and recall the definition of the kinematic viscosity given by Equation

(2.3). Then Equations‘(2.14) - (2.17) can bé written as

13 ow ' '
;ﬁ:(m)* 35 = 0, (2.19)
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2 2
du u T 3ju_ 19 3 13 3%u
TR IR e n Y g, @220
ar aT ar _ 9 18r,  a°r
R S P TR 2 (2.21)
- | 2
ow ow ow 1 9P 193 ow "W
— — —— - — —a—(r — — 2,22
T2 TR TR T Z 5l ar)»+é-z2}.'." (2.22)

We can eliminate the pressure P from these equations by differentiating
Equation (2.20) with respect to z and Equation (2.22) with Tespect to

r and by subtracting the results to obtain

ow dw . du aw

3 .du dw, _ du du | ow 3 du 9 Jdu ow
3az © %t hrlsz T an T Vswlsz C 3n) * %zlsz T ar * “arlsz T o
2_rp . v{___azl [3_‘3." LA lg;[a_u'_'a_w]- I L R T
T T3 3z T 249z T or r or'dz or'  _2'9z  Or :
r ar . o T : .
. 82 [32 _ 8w]
2'9z dr
We define the vorticity ¢ by
- - du W g
C(r: z, t) = a_z' - H » (2024)
and note that, for any3qonstaht c,
cu, v -ck, | (2.25)

AR T

from Equation (2.19). Now Equation (2.23) may be written as
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2 2

14 14 3¢ ug r ar _ (3%t 13z ¢ 3°L
ttUw Ve T 23w VIt vt (226
T Ry T dz

To express Equations,(z.lg), (2.21) and (2.26) in terms of nondimensional

quantities we define the variables =

r' =r/L,
z' = z/L ,
u' ;:u/LQ , .(2.27)
v = v/La
W"= w/LQ ,
and
t' =t ,

where L is some (problem dependent) characteristic length and 2 is some
characteristic angular velocity. We note that the equation of continuity,
Equation (2.19), in terms of these variables is identically satisfied,

for

Q
[~

aw' _ =1.9u  u  dw., _
sprzalEE e e D) = 0, (2.28)

Q)|
",

+
s

In terms of the nondimensional variables Equation (2.21) is

2
ar'.. ., Ar' . A" _ v .. 3 1 ar'.  a°r g
et st W s s o I g (s t— s (2.29)

L az'



20"

and Equation (2.26) may be written as

acl u';'

azg! , 9%' R r' ar' -
Tt W Tt W o - 2 o3 9z
2 . 2
v % 1 e s pr L acr =
T Gt Tow T Tt T (2.30)

! P A

We now introduce a dimensionless stream function ¢' = $'(r',2',t")

defined by
_ 1 ay C_ 13y
u' = F-a—z—'- ) w!' = - ?'-5-1"-,— . (2.31)

Note that the equation of'contihuity, Equation (2.28), is identically

satisfied, for

dut u' o dwt 1 8%t 1w 1 a1 8% o (2.32)
or' T' z' ~ r' 9r'adz’ r,2 9z' r,2 9z' r' 3r'az' T 77 '
We define the dimensionless tangéntial Reynolds number Re by
Re = =2 | D . (2.33)
Now Equation (2.28) is
ar! 1 3y ar 1 9y ar 1 1 or'.
—+———-———=—{§T',-;TW} s (2.34)

at! r' 3z' ar' r'! Brf az' Re
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Equation (2.29) is

g' 1 3y'ar' 1 3y'dg' 1 ., 3y 2_ o, 3r
3t T %2 or  rvoer 9z | _,2° %' 30 3%
(2.35)
1 D S I AT U :
=g 88! g agr -~z ),
. Tr
and Equation (2.24) is = .- .
! 1 u! . o : . )
AY' - ;w-ng =r'g' , (2.36)
where
2 2
pz 2 5 + 3 7 -
ar' 3z’

We will drop the primes in Equations (2.34) - (2.36) and will remember
that any boundary and initial conditions hust be expressed in terms of
the dimensionless quantities., We have the three second order semi-linear

partial differential equations

oT 1 3y aT 1 3¢y aT 1 1 8T
STt T325r " rorar - ke AT - w3 (2.37)
3,123 13wdg 1 3w _2 .3
9t T 9z or T or 0z 2 ° 93z 3 Z
T r
(2.38)
_ 1 19z 1
-R{Ac"? r-rZC} ’

and
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Loy . ) .
where
2 .2
Az -2"+ LA 5 .
or 9z"

We have developéd two systems of partial differential equations
(one given.by Equations (2.19) - (2.22) and the other by Equations (2.37)-
(2.39)) which describe axisymmetric, incompressible flow problems in

which the effects due to the gravitational force are négligible.



CHAPTER III
CONFINED VORTEX PROBLEM

" A reactor ‘concept involving an annular cloud of fissionable
material suspended by-a vortex flow in a cylindrical container has been
of interest to the Oak Ridge National Laboratory because of its propul-
sion and power geﬁeration‘applications. This concept has been studied
'by Kerrebrock and Keyes [2], Kerrebrock and Meghreblian [3] and Keyes
[4]. As a result of the experimental observations of Kendall [5], and
' Rosenzweig, Lewellen and Ross [6], it was decidéd that it was necessary
to examine in detail the interaction of this axisymmetric vortex flow
with the end walls of the containing cylinder. As described in his dis-
sertation, Kidd [7] simulated such a reactor with a cylinder (containing
water) the walls of which were in rotation with a constant angular velo-
city while one of the cylinder end walls remained stationary. Fluid was
passed into the cylinder in>the>radia1 direction along the outside cylin-
" der wall and was allowed to pass out of the cylinder at a porous center
tube along the axis of the cylinder. ‘Experimental measurements of the
velocity distributions near the stationary end wall were obtained.

After an attempt was made to defermiﬁe these velocity distribu-
tions from the equatiqns of motion by means of ‘a similarity transforma-
tion (to be discussed in Chépter V), it was decided that an effort should
be made to solve the equations of motion numerically, Such an approach
seemed plausible foé, since the advent of large-memory, high-speed

digital computers, a number of flow problems have been successfully

23
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investigated by numerical methods. In 1963, Fromm [8] prbposed'a
numerical method for treating transient flow problems and, in particular,
examined the development of the Karman vortex street. In an expository
paper, Pearson [9] discussed the stability of a numerical technique for
solving a fourth-order partial differential equatipn involving the
classical stream function. Then, Pearson [10, 11]_used this technique
to solve problems which included vortex-formationland flow between
rotating, coaxial disks. In a dissertation, Tejeira [12] discussed'the'
use of a numerical technique to solve eduations analogdus to Equations
(2.36) - (2.38}. It should be noted that the papers mentioned above. are -
all concerned with two-dimensional, incompressible, transient flow
problems., |

As an initial step toward findiﬂg‘a numerical solution we examine
a problem.similar to that of Kidd except that there is no flow into or
out of the cylinder. For the present work we seek solutions of this
problem at steady-state.§ Ty

In terms of the velocity éomponents and the pressure, the partial

differential equations (from Equations (2.19) - (2.22)) are

19 ow
rart) v 57 =0, | (.1
2 2
du v Ju _ 1 3P 9
VT E YR pE VGG RO P, G2
-av uv  dv 3 19 ' 32v S
AN S TSR o (3.3)

and
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2
dw . 3w _ 1 3P 13 w w
LA P A S i (3.4)

with boundary conditions for the velocity components given by

0, v(RO,z) = R,2, for 0 <z <L, (3.5)

utRO{£)2§ W(Ro,z) = ot
ury,2) - w(Ry,2) = 0, v(Ry,2) - R}2, for 0 czsL, (3.6)
uh(r,.O) - W(r,0) = 0, v(r,0) = %, for R, < r < R, (3.7)
and
u(r,L) = V(r,L:)..é w(r,L) = 0, for Ry iri Ry (3.8)

where R0 is the radius of the‘containing‘cylinder, 2 is the constant
angular velocity of the containing cylinder, L is the height of the
cylinder, and RI is the radius of the center tube.

"In terms of thé dimensionless stream function and vorticity,
.the partial differential equations (from Equations (2.37) - (2.39))

are

~.£?l3_1"-.1_3.¢13_1"=l.{1xr‘.’.1_3_11: , ©(3.9)

T
(3.10)
_1 19z 1
"re ety -z
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oY _ ' :
3 rg |, (3.11)

=

Ay -

with boundary conditions for I, ¢ and ¢ given‘by

R "2

R. R R, - R
0 _ 0.2 0 _ 0 L 37y 0
r(-L—,Z) = (L—) ’ W(r,z) = 0: C(r:z) = R Z(L—.’z)' ’
- 0 dr :
(3.12)
for 0 <z <1,
R, R R ' R 2 R
I _ 1.2 I _ I _L 97y, 1
I'(g=2) = ) vz =0, -2 = g —5-2) .,
) _ I 3ar™ |
(3.13)
for 0 <z <1,
2 1 82
r(r,0) = r°, ¥(r,0) =0, t(r,0) = =>%(r,0) ,
. . . . ) 3z
R R" (3.14)
for él-< r < —il
L -~ —L °?
and
1 3%y
-vr(r,l)-= ‘1’(1‘,1) = O,'. C(I‘,l) =y (rsl) ’
: . ) : r 2 !
92z
(3.15)
Ry R

for f—g: T fuf— .

These latter boundary conditions are obtained from Equations (3.5) -
(3.8) with the aid éf'the definitions given in Equations (2.18), (2.24)

and (2.30) and the transformation given in Equation (2.27).
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In the particular problem for which solutions were attempted,

R, = 0.5 ft., ' (3.16)

Ry = 0.03125 ft., (3.17)

L =1.0 ft., ' (3.18)
-,

= 0.0364 ft:“/hr. 4 (3.19)

<
I

and Q is determined for any tangential Reynolds number Re from Equation

(2.33). It should be noted that Kidd [7] defined the tangential Reynolds

number hy
"R(z)n
. ReK == (3.20)
and it is clear from Equations t3.16), (3.18) and (3.19) that
Re, = 0.25 Re . . . (3.21)

K



CHAPTER 1V
THE CLASSICAL APPROACH

For two problems very similar to the one posed in Chapter III,
Pao [13] has made an attempt to_sblve both the stéady—state equa;ions
(given by Equations (3.9) - (3.11)) and the transient equations (gﬁven
by Equations (2.37) - (2.39)) numerically. In the problem of interest
to Péo which is more closely relatedvto the problem of Chapter III, the
only differencgs are the.absehge of the center tube and incidental di-
mensions. . Hereafter, all references to Pao [13] are to be understood
as references to the solution of the steady;state version of this
problem, unless otherwise noted. In his other problem'oﬁly one end
wall is rotating, i.e., the outside cylinder wall is held stationary
with the other end wall. It is interesting to note that these two
problems arose durihg an investigatioﬁAof fhe Ayﬁamics of‘é cyclone ér
" tornado over fixed ground.
The essential details of Pao's approach to the problem are as
follows:
tl) Cover the rectangle of interest (Figure 4) with a network of
parallel grid lines which are uniformly spaced by an amount
h in both the r- and z-directions,
(2) Write finite difference equations (see [14]) which are
analogoﬁé to Equatidns,(3.9) - (3.11) and which give values
for T, ¢ and ¢ at each node (the intersection of two grid

lines) of the grid in terms of the values of I, § and ¢

at neighboring nodes.

28
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i,j+1

i-1,j

i+l,j

i,j-1

Ry/L

Figure 4. Structure of the Grid Network.

RO/L
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(3) For a given value of the Reynolds number and for a given
initial guess for ', £ and ¢ at each of the nodes use a
Gauss-Seidel procedure (see [14]) to solve for T, ¢ and ¢
iteratively until some convergence criterion has been

~-satisfied. Each iteration involves-solving the finite
difference equations for I', ¢ and y at each interior node,
_in'turn. _Because.pf the nature of.thel; ﬁoundary_conditions
given in Equations (3.12) - (3.15), a new set of boundary
conditions for g must be determined at the end of each
iteration.

(4) Once ”convergencé" has been attained, uselfinite difference
analogues of Equations (2.18) and (2.31), in conjuhdtion with
the'transformétiénsAof Equétiéﬁ'(2.27), to obtain the radial,
fhngential‘and éxial_yelocifies,at the nodal points.

(5) Use the values of T, ¢ and y for the case of the Reynolds
number just concluded as an'initiél guess for the case of
the next larger Reynolds number of inferest.

We note that Pao defined the tangential Reynolds number as in Equation
(2.33) and that_incxeaéing‘theJReyﬁéi@s npmber iﬁ-éffeéf.magni%ies the
impoftance of the nonlinear terms in Equations (3.9) and (3.10). Indeed,
increasing the Reynolds number in these equations ultimately results in

a numerical instability‘(i.e,,-divergence,rather thgn convergence) which
is directly aﬁalogous to the instability (i.e., turbulent flow) which
ultimately results from increasing the Reynolds number (by increasing the

angular velocity @ of the outer cylinder) during an experiment. Since it
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is often possible to observe experimentally an upper limit on the Reynolds
number for laminar fléw,'thé'goal of the mathematician is the development
of finite difference representations of the partial differential equations
and iterative procedures which also reﬁain stable until the limiting
Reynolds number is reached.

For any interior nodal point (designated by the indices i, in
the r-direction, and j, in the z-direction) the finite difference equa-

tions analogous to Equations (3.9) - (3.11) can be written as

o 1 o
P, . =Xr, .+, . .aT, .
1,] 4{ 1+1’J * rl"l:J * rl,J"'l * rl’J'l}
Re - 2h
- —16ri'{“’i,j+1 “V¥5,5-1 PR Tien,5 7 Tion 5! (4.1)
Wiy Vi e - Tyl
., . = {-l-[r,. .+, + L +z 1
1,)] 4 1+1)J 1"1’j ,i’j"'l ‘ isj"l
- Re 2h
- "16ri[("’i,j+1 " ¥, T ' Gaen,y 7 %ie1,5)
) | 4.2)
7 Wy 7 ¥y, 6 e TR0
4nTy 2h, hR
- L R SRS 5 R 6 N ¢ N S L
2 i,j+1 i,ji-1 i,j-1 i,j+1  Re 2"
(?i) ’ ’ ’ 8(r;)

and
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- . 1 ' .
Vi3 T 7T When,5 et Yie Y5
. | 4.3)
_ h 2 , (
BT U W R R R BRI

when central difference approximations are used for the required
derivatives. |

Pao appliedfthese finite difference:équations to each nodal point
of a grid which covered the unit square and had the mesh size h = 0.025.
The boundary conditions used are'those given in Equations (3.12) -

(3.15) except that the béundary at r = 0 is stationary, hence T = ¢ = 0
at r = 0. For this problem Pao was able to obtain solutions for Re < 400
and found that the computation diverged at Re = 400. He then suggested
that Re = 400 is fhe upper limit for-the steady-state approach, since

he was able to obtain a solution for the analogous transient problem
at'Re‘= 5000. His calculations were carried out in single precision

on an IBM 7040 digital coﬁﬁuter.

Obviously, thé success reported by Pao suggested that the classical
stream function-vortici;y approach might provide a.reasbnable degree of
success in an attack upon the probleﬁ at hand. Indeed, there was justi-
fication for anticipating an exteﬁsion of his results to higher Reynolds
numbers. it has been.notgd that*Pao'uséd a~Gaus§TSeide1 iteration pro-
cedure. For a number ofllinear partial differential equations it can be
shown (see [15]) that the method‘of Successive Overrelaxation (S.0.R.) is
far superior. In fact, this method has been used by Tejeira [12], among

others, to accelerate convergence for some Reynolds numbers and to
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decelerate the numerical process in order to prevent divergence at other
values of the Reynolds number in the solution of flow problems. In
addition to the use of the S.0.R, iterative method, it was decided that
a smaller mesh size (namely, h = 0.015625 = 1/64) and double precision
arithmetic would be used.in hopes that, while the accuracy of the results
obtained by Pao could 5e enhanced, any instability resulting from round-
~ off errors could be overcome. .Since the machine that was to be used is
the IBM Model 360/75, these alterations.are certainly‘within practical
limits with-regard to memory size and operating speed. |
Convergence of the solutions for T, ¢ and ¢ was considered fo

have occurred when . a

max | N N-1

AW I ¥5 1 (4.4)
'max ¢§ .] ' '

G 2] . _

where G is the set of the interior nodal points of the grid, the super-
script N denofes the current iteration, and usually € = 0,001, although
occasionally € = 0.0001. It has been observed that y is the most sensi-
tive. of the three variables, i.e., when the stream function distribution
satisfies the-inequality'of Equatiop_(4.4), the ¢ and T distributions
satisfy analogous convergence criteria. Since-one of the primary objec-
tives of this effort waé to obtain solutions for as large values of the
tangential Reynolds number as possible, the primary intefest in thé
solution at any particular Reynolds number was that it provide a Suf;
ficiently good initial guess for the solutions at the next lafger
'Reynolds nuhber. For this reason the st;ted value of € was chosen

rather than a smaller value.
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For the first case (Re = 1) it was assumed, as an initial guess,
that the majority of the fluid was in solid-body rotation, i.e:,
u=w=20, v=rQ,

and that as z > 1, v >0 and u=w = 0. The relaxation factor w was

found to vary inversely With”the Reynolds numbér. For Re = 1, the use of
w= 1.5 led to convergenté éf the solution well withinl200 iterations and
it was found that the'iterativé‘protedure'could.bé successfully over-
relaxed for Reynolds numbers as 1afge~as)Ré =" 364, although the number of
iterations required for cohvefgehée'graddailyiindieased to ~600 iterations
at Re = 364. Convergence of thelsolution at Re = 400 required 2600
_iterations with & = 1.0. Itféhopld belngged that Re = 400 was. the value
of the Reynolds number for which PaoA[13ﬂ.6bserved divergence of the
solution. Since the use of w =1 in the S.0.R. iterative procedure is
equivalent to the use of the Gauss-Seidel procedure, the reasons for this
"pafadqx" are not eVident, for the importance of the accuracy of the
'initial'guess, the grid size and the type of floating point arithmetic
(single vs. double precision) to convergence have not been fully explored
for nonlinear partial difference equations. However, during the con-

vergence of the Re = 400 case it was observed that

max

N N-1
6 |%i,i " ‘“i.j|.
max N.
G “’i.j]

increased over several hundred iterations before decreasing to conver-

gence,
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For Re > 400, underrelaxation (w < 1) has been found to be a
requirement for numerical stabili;y and ultimate convergence of the
solution. This fact reiterates the ''special’ nature of this value of
the tangential Reynolds number for this problem. To date solutions
have been obtained for Reynolds numbers as high as 2000, the value of
‘the relaxation factor has decreased to w ~0.05 and the number of
iterations required for solution has'been uniformly 600-800 iterations

for Re > 400.



CHAPTER V

OTHER APPROACHES

While the numerical solution of the stream fungtiqneyofticity
equations was the first approach to the solution of the problem of
Cﬁapter III that has provided a reasonablg degree'of success,.theféAare
other approaches which have brovidedvlittle,or no .success, Or which
seem promiging but have yet to be tried.

The first éttempt at pbtainiﬁg solutions for the problem of
interest was made through a similarity fransformation (mentioned in
Chapter III), the basis for which is discussed by Rosénhead [16]. The
form of the solution 6f the Navier-Stokes equatioﬁs is assumed to be
knowﬁ,'and then a suitable transformation is found which reduces the
Navier-Stokes equations tb a system of ordinary differential equations.
Hopefully, these equations can then be.integrated to obtain detailed
velocity data. However, experimental verification of the results thus
obtained is usuaily necessary since i;‘is not always possible to 6btain
physically realistic velocity distributibns. We consider the similarity
transformation made by Kidd and Far;is [17] which met with limited

success, The classical stream function ¥ was defined such that

oo _lay o _ 13y ’

UsTa s YT TEr ~ (5.1)
and it was assumed that

b= bRy, 9, v, TIE(N) (5.2)

36
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v = Vv(R,, 9, v,‘r)g(n) , - (5.3)
P =P, Ry, 2, r)P(n) , (5.4)

and
n ='ntR0,AQ,';, v, ), - (5.5)

where f is a dimensionless stream function, g is a dimensionless angular
velocity, p .is a dimensionless pressure, and n is a dimensionless dis-
tance. By means of a dimensional analysis of Equations (3.2) - (3.4)

for the problem of interest it is found that we must have

v = (ReK)I/2 vr f(n) , (5.6)
v =g , (5.7)
2
P =07y, (5.8)
and
n= Re)V? L, (5.9)

where ReK is defined by Equation (3.20). Upon the substitution of
Equations (5.6) - (5.9) into Equations (3.2) - (3.4), we obtain the

system of ordinary differential equations
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n? .. 2 31 2 »
(1s g = -(£)7 - (£ # g = g” - mp! - 2p,  (5.10)
K : K -

2 - A ) .
..n.__" = & SL ' ’ .
1+ ReK)g (f + ReK)g , o G
and
2 : 2. . A 2
n 1 noy nf! f ' ff' 2np ng
1+ 3=)p' = 5=—(1 + >—)f"" + - — - - - -, (5.12)
ReK ReK | ReK | Re2 Re2 ReK- .ReK ReK )

kK " %

where the primes indicate differentiation with réspectfto'the single

variable n, e.g.,

TEr = 2

For the idealized-potenfial vorte#jof Kidd [7] the boundary conditions
are as follows: | |
(1). The radial and tangential velocities (u'and v, respeétively)
‘vanishAat the stationary end wall. |
(2). The stream function w vanishes at the stationary end wall.
(3). The radial veldcity_u vanishes far from tﬁe end wall. ) <
(4). The tangential veloéitylapbroachés a poténtialnvortex far

from the end wall, i.e.,
-iv.=;rQ-.

In terms of the dimensionless quanfities f, g and p, these bouﬁdary

conditions are
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£00) = £1(0) = £(0) = £r(>) = 0,
g=) =1,
and
np' (=) + 2p(=) = -1 .

With these boundary conditions,‘Equatiohs (5.10) - (5.12) weré numerically
integrated to obtain values for f, g and'ﬁ from which valﬁes for u, v,

w and P may be obtained. Unfortﬁnately, solutions could not be obtained

for ReK > 4,75,

"As is indicated by Equationé (3.5) - (3.8), very little is known
about boundary conditidns for the pressure P in Eqﬁations (3.1) - (3.4).
To overcome that lack 6f kﬁleedge.one may differentiate Equation (3.2)

with respect to z and Equation (3.4)‘with respect to r and subtract the

'resuits to obtain

(.?B . Eﬂ) (a_“ - 3_"’.) + 'u(azu - azw) . w(azu - 2%w ) - v v
ar 9z” ‘9z ar 9rdz 27 - 2 ardz T 02z
ar 9z
R . . S - (5.13)
Cou 2w, 2w 2% 1% afw 1w 2wy,
-3 T 9roz aiZ r2 9r 02z ’

3z 3r3' '8rzaz 3razz

which, with Equations (3.1) and (3.3), provides a system of three
partial differential equations, one of which is linear and first order,
one of which is semiflinear and second order, and the other of which is
semi-linear and third order. .An attempt was made by Farris, Lick and
Dunphey [18] to solve Equations (3.1), (3.3) and (5.13), with the

boundary conditions of Equations (3.5) - (3.8), using the S.O.R.
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iteration‘procedure'on a grid with rectaﬁgular spacing, i.e., while the
spacihg of the grid lines was éonstant in the r-direction and in the z-
direction, thg spacing in the r-direction differed from that in the z-
direetion. This approach was numerically unstable, even when the proce-
dure was severely undér-relaxed, i.e., the relaxation factor w was givén
values on the order of 0,01, and when the fihifé différencelanalogues
of the complicgted derivatives in EQuatioﬁ (5,13) were altered. The
reasons for th;svtonI numerical(instability;épg not yet known, but
several possible‘explanétions exist. The f%nite difference analogues
of the'third order partial dérivatives'in Equation (5.13) may contribute
inherent numerical instability, or perhaps the difference analogues of
these and other derivativgs should be forQard or backward differences
rather than central differences. The use of rectangular rather than-
square grid spacing may contribute sufficient divisions by ''small"
quantities so that numerical instability is the result. In this regard,
note that in Equatioﬁs (4.1)‘-_(4.3) the gfid size h never appears in~
a denominator. |

A most promising method which has not yet been tried for the
probiem of interest is the MAC method of Welch, Harlow, Shannon and
Daly [19]. This approach differs from thé majority of the literature
treating the numerical solution of.the Navier-Stokes equations in that
it seeks to solve the equations directly for ;he velocity and pressure
distributions rather than-indirectly from solutions to the stream
function-vorticity equations. Recall from Chapter II that the'Névier-

Stokes equations are partial differential equations which result from
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conserving mass and momentum in an incremental element of volume. The
‘finite difference analogues of pértial derivatives most often used are
those which result from the truncation of Taylor series expansions of the
unknown functions about nodal points of the grid, and tﬁe errors usually
considered in the apperimatidhs?thus'obtained are the errors which re-
sult from this truncation process. A great deal of the success obtained
by the hﬁthoré 6f:tﬁé MAC method can be attributed io the fact that the
reiatiohiof the.ﬁoiht; at which the unkngwh functibns.are tb be evaluated
to thé.éfid structufe is such.that the finite difference edﬁations con-
serve both mass and‘momentuh.: One may iﬁaginé these finite difference
equations as having been obtained from an application of conservation

of mass and momentum to a finite volume element, as in Chapter II, thus
omitting‘the intermediate step of writing the partial differential equa-
tions. For the moment we consider transient flow ana write Equations

(2.20) - (2.22) as

o , , | ,
du ju v du 9o 9 139 3 u, .
ErA T PR TS T ol e G D azz} » (5.14)
v v uv v a 132 azv
ity Ve VM EEaEv) s (5.15)
and
d 3 3 30 139 3 52
w ‘OW. w w w
é?*“ﬁ*”'a?"sf*"{;'a?(rs?)*;jz‘}' (5.16)

where
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o(r, z, t) = %-P(r, z, t) . (5.17)

Equation (2.19) may be written as

- 13  aw S
D(r, z, t) = ;53;{ru) * 37 4 (5.18)

where the iﬁcbmpressibility'coh@ifion is satiéfiéd’when the discrepancy
D = 0. The terms in Equation;'(5.14)"# (5.16) of‘which v is the coef- .
ficient are respectively the_f;, 8-, and- z-components of Az, where ;~

is the velocity vector;' The inéombréssibility ¢ondition can be written

vectorially as

where V is the vector differential operator

> 1,09
3r * T 32

L

k

a]

and i and k are unit vectors in the r- and z-diréctions, respectively.

We now use the vector identity
> > -
Vx99 xvs=90".v)-Ayv

to rewrite Equations (5.14) - (5.16) as

3u dJu v¢ . 30 3 ,9u  dw
FrR T S PR TS T C il 2R B CIE L)
av v .uv . v 3 19 %y
Tty t T Y = VarE s v)) =), (5.20)

8z
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and

ow ow W 90 13 ow  du ’
-a—t+ u-a—;-& w-é—z-- - -a—z-"' v{;s-;(r(s}-- -3?))} . (5.21)
Note that the nonlinear terms- in the left member of Equation (5.19) may

be written as-

Nau" " du

ST T
mu —t+ W ——--A;-s;(rua) T'sz{uw) > _ (5.22)

ar 9z
with the aid of the incompressibility condition. Similar expressions’
may be obtained for the nonlinear terms in the left members of Equations

(5.20) and (5.21), and Equations (5.19) - (5.21) may be written as

2

du 123 2'H 3 v _ .9 9. . OWyq

3t T Ar(TY )t gp(w) -ipm= miam e v lsr < 5P (5.29)

v 1 uv 3 ‘ 2
st T (ruv) +-——(vw) + o= v{ar = ar( rv)) + az > (5.24)

- -and
aw 10 3 .2 3 . 13 dw
364 T apTw) + 5z () = - ao e Vs aGer - ))} - (5025

We now obtain an expression for the time rate of change in the discrepancy

D from Equation (5.18), given by

? u
37 50 * 3G

aD 1
T % (5.26)
into which we substitute the expressions for 3u/3t and 3w/3t, given by

Equations (5.23) and (5.25), and obtain
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which may be recognized as a cylindrical coordinate~Poisson'siequation
for ¢. The procedure‘of thé MAC method involves solving Equéfion (5.27)
iteratively for the pressure term 0 af any given time stép and substi-
tuting the values thus obtained -in Equations t5{23)-and (5.25) to
determine the radial and axial.velocities at the next time step. iFinally,
the angular velocity at the next time step may be determined from
Equation (5.24).

A network of grid lines with.equal,spacing'is constructed in the
‘ region of intefést forming a.set of cells each of which is bounded by
two.parallel‘grid linesfin.the r-direétion-aﬁd'by two ﬁafallellgrid
lines in the z-directiOn, as in Figure's. Let ihe indices i (r-direction)
and j (z-direction) dénote the center of.anyAcell in the set, then the
relation of the variaﬁies u, V, w{'¢ and D to the i,j-cell islthat shown
in Figure 5. Tﬁé finite‘differengéfrepresentations»of*Equatiéns (5.23),

(5.24), (5.25) and (5.27) are written as

1
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Yi,j+1/2 .-

Yi-1/2,j N 1 Yis1/2,j
| | N

i,j

Yi,j-1/2

Figure 5. Relation of Field Variables to Grid Structure
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(gw)1+1/2 j*l/2°

—750172,541 *

1+1/2,J —"‘-1;‘[1. 1)z (ru )

} 4

i
i+1/2

Yi+41/2,j-1

“i,541/2 7 "1,

(ru )

- 2u.
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2

Trrrs O Jis1/2,5

i+1/2,j
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(5.28)
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1 { N+1 " N
= tw,

1
5t Mi,j+1/2 wi,j+1/2} = ?;E[(r“w)i-1/z,j+1/2 - (rw); 072 54172

1,02 2 1
SRy O R - )
. (5.30)
* ;fgi{ri+1/2(wi+1,j+1/2.' i,5+1/2 T Yis1/2,5+1 * Yie1/2,3)
i

s

S Tii172M Ge172 7 Yis1, 54172 T Yio1/2,541 * Yie1/2,50)

and

1

4;f;7{ri+1/2(¢i+l,j = %5,50 T Tic12@®y 5 %o,y
i : :

1 1 2 2 2
—1¢, . - - . .1 = .. - . . - . .
+ hz{'1’3+1 + i,5-1 2¢1’J} ;Eﬁiz(ru_)l,J (ru )1+1,J (ru )1_1,3}

1 2 . 2 1 7 2 - 2 2
+ E;ZF{(V )i+1,j f‘(v )ifl,j} + ;§{Z(W )i,j - W)

i,j+1 - W) }

i,j-1

o o : ‘ : (5.31)

2 . . - . .
0301 72,5072 ¢ T Y2302 T Tia2,50002

+

T.
1

- {ruw).

i-1/2,j-1/2

"5t O35 - Py

where h is the grid size for the spatial coordinates, dt is the time

increment, and the superscripts N and N+1 denote the times Nét and

(N+1)6t, respectively. A superscript of N is to be understood in quan-

tities for which a superscript is not written. Values of the variables
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required at points of the grid at which they are not defined are computed

as average values, e.g.,

21 .
(Wi172,5-172 = 7Mie172,5 * Yie172,5-1 Miar,5-172 * ¥i-1,5-172)

Suitable finite difference equations for the steady-state problem may

be obtained by setting the time differences in Equations (5.28) - (5.31)

to zero and solving Equations (5.28) - (5.30) for the variables ﬁi+1/2 i
) ’

\'# and we j41/2° respectively. ‘After the provision of boundary condi-
. =t e

i,]
tions for the pressure term ¢, a possible iteration procedure for the
steady-state problem would be as follows:

(1). Solve Equation (5.31) for the ¢i;' ?n an.iterapive fashion'
(perhaps S.O.R.) antil Somé.coﬁvéféé;ce érit;rion has been
satisfiqd.‘

(2). Use thgivalues forﬁthéidi,g just“éalculated to-determine new
valhes_for u, v and w.

(3). Use the new value; for’u, v and w to determine a hew ¢-
distribution and continue the process until u, v and w‘have
also satisfied some cqnvergen§e criteria.

The MAC method was designéd to handle time-dependent, inc0mpres-
sible; viscous fluidlflow problems which inyol?e free surface boundaries
(such as air or another fluid) as well as solid boundaries (such as the
problem at hand). Tha; the MAC method is capable of successfully treat-
ing a wide yarietylof problems is'aftested.to by the problems discussed
in [19], and éeftainly‘the pfobleh’of'pfesent interest tofthis author

would fail to use éli the features available in the mefhod. -
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In two recent papers, Chorin [20, 21] proposes a numerical method
involving an implicit alternating direction scheme (see [14]) for solving
either the transient or the steady-state Navier-Stokes equations
direcfly for the velocity and pressure distributions. He states that
the method is equally applicable to problems in two and three space
dimensions, although his preliminary results indicate that there are
important differences between the behavior of the solutions in two and

three space dimensions.
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