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ABSTRACT 

In terms of cylindrical coordinates,· the Navier-Stokes equations 

and the equation of continuity are derived for axisymmetric, incompres-

sible flows wherein the pressure is the only important external force. 

A problem is described in which a cylinder containing fluid and a co-

axial tube are in rotation with one of the cylinder end walls at a con-

stant angular velocity, the other cylinder end wall remaining stationary. 

A successive overrelaxation iterative procedure is described whereby the 

system of partial differential equations involving the classical stream 

function and vorticity are solved at steady-state. · Some observations of 

the solutions thus obtained are made for tangential Reynolds numbers 

from 1 to 2000. Four other methods are discussed by which solutions of 

the problem either have been or may be attempted. 
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CHAPTER I 

INTRODUCTION 

In recent years a great deal of effort has been made to determine 
. . ' 

velocity distributions in a variety of fluid flow problems by numerical 

techniques using digital computers. Such problems are usually represented 

by a system of partial differential equations, at least some of which are 

nonlinear, with appropriate restrictions on the solution at the boundary 

of the region of interest. This thesis will discuss an attempt to find 

the velocity distributions in a fluid which is essentially flowing in a 

potential vortex (a rotating flow in which the tangential velocity varies 

inversely with radial distance) adjacent to a stationary surfact. 

Chapter II contains the basic concepts of fluid flow and the 

derivation of two systems of partial differential equations which de-

scribe a class of fluid flow problems. The derivations are performed 

in cylindrical coordinates but are otherwise carried out in the manner 

of Bird, Stewart and Lightfoot [1]. 

In Chapter III the confined vortex with which this thesis is 

concerned is 1described and boundary conditions are provided for the two 

systems of equations derived in Chapter II. 

For finite difference approximations of the classical stream 

function-vorticity partial differential equations, an iterative method of 

solution is described in Chapter IV. A criterion for the convergence 

of this iterative procedure is provided and some observations of the 

solutions thus obtained are made. 

1 
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Chapter V contains a discussion of four other methods for seeking 

solutions of this confined vortex problem. Two of these methods have 

been tried with little .or no success and the other two methods have not 

been tried but seem promising. 
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CHAPTER II 

DERIVATION OF THE GOVERNING EQUATIONS 

In this chapter we seek to exhibit the basic concepts involved in 

the flow of fluids and, through the use of the principles of conservation 

of mass and momentum, to derive the partial differential equations which 

describe a class of fluid flow problems. 

Consider a fluid containeo between:· two larg·e parallel· plates of 

area A which are separated by a small distance Z, as in Figure 1. 

Imagine that the system is initially at rest and that at time t = 0 

we set the lower "plate in "motion in the r-dire"ctfon with ··a constant ve-

locity V. As time proceeds the fluid gains momentum, and finally the 

steady-state velocity profile shown in Figure 1 is established. When 

this steady-state motion: has· been attained, ·a constant· force F is· required 

to ma1ntain the motion of the lower plate. Provided that. the flow is 

laminar, this force may be expressed as 

F V 
A=~ Z' (2.1) 

This equation states that -~he force J?~:r: .unit area is ;proportional to the 

velocity decrease in the distance z. The constant of proportionality ~ 

is called the "viscosity" of the fluid and characte.:dzes the resistance 

of simple fluids to motion. 

The shear stress exerted in the r-direction on a fluid surface at 

Z = ZQ by the fluid in the region· Z < z0 is. designated by T zr, and 

the r-component of the fluid velocity vector is designated by u . 

3 
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t < 0 Fluid at rest 

t = 0 Lower plate 
set in motion 

Velocity buildup 
Small t during unsteady 

flnw 

Velocity distribu­
Large t tion in steady 

flow 

rigure 1. Buildup to Steady Laminar Velocity Profile for 
Fluid Contained Retween Two Plates, 
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Note that this is not the rate of change of the velocity ~ in the r-

-+ 
d~rection designated by. avjar. Now, Equation (2.1) may be rewritten as 

T zr 
au 

= -lJaz (2.2) 

This equation is known as Newton's law of viscosity and may be stateq 

as, "The shear force per unit area is proportional to the negative of 

the local velocity gradient." All gases and inost simple liquids are 

described by Equation (2.2) and are called "Newtonian" fluids. 

Another interpretation of Equation (2.2) may be obtained by con-

sidering a neighborhood of the moving surface. The fluid in this 

neighborhood acquires a certain amount of r-momentum. The fluid, 

in turn, imparts some of its momentum to the adjacent "layer" of fluid 

causing it to remain in motion in the r-direction. 

transmitted through the fluid in the z-direction. 

Thus r-momentum is 

Now T may be inter­zr 

preted as the viscous flux of r-momerttum in the z-direction. Note that 

momentum tends to go in the direction of decreasing velocity and the 

velocity gradient may be thought of as a "driving force" for momentum 

transport. 

The mass density or mass per unit volume of the fluid is designated 

by p and, since we will later find use for a symbol which represents the 

viscosity divided by the mass density, we define the kinematic viscosity 

'\). by 

'V = ll/P • (2.3) 
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Consider a stationary volume element in cylindrical coordinates, 

as shown in Figure 2, through which fluid is flowing. Conservation of 

mass may be stated as the mass balance 

{

Rate of mass} = 
accumulation {

Rate ~f} _ 

mass 1n {

Rate 

mass 
of} 
out . 

(2.4) 

For the faces of the volume elel)lent indicated by the numbers "1" and "2" 

we may write that the rate of mass in at r is 

rM6zpul 
r 

and the rate of mass out at r+6r is 

(r+~r)6a6zpul 
r+6r 

J 

For the faces indicated by the numbers "3"- and "4", we may write that the 

rate of mass in at a is 

6r6zpvl 
a 

and the rate of mass out at a+M is 

Finally,. for the faces indicated by the numbers "5" and "6", we write that 

the rate of mass in at z is 
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Figure 2. Volume Element in Cylindrical Coordinates. 



8 

and the rate of mass out at z+6z is 

(r + -2
1 6r)6r68pwl A • z+uz 

The rate of mass accumulation within the volume element is 

1 · ap 
(r + 2 6r)6r686z ·a,t 

and Equation (2.4) may be written as 

1 ap I I (r + 2 6r)6r686z at = 686z {rpu r - (r+~r)pu r+6r} 

(2.5) 

+ 6r6z {pvl 8 - p-vl 8• 68 l + (r + ~ 6r)Ar6e {pwlz - pwlz+6z} • 

. .. 
If we divide both sides of Equation (i.S) by 6rM6z and take the limit as 

6r, 68 and 6z approach zero simultaneously, we obtain 

ap 
r -= at 

which may be written as 

a 
ar(pru) 

a 
ae(pv) 

a 
r az-Cpw) 

ap 1 a 1 a a at + r rz:{pru) + r a-e(pv) + a-z(pw) = 0. (2.6) 

This is the "equation of continuity" and describes the rate of change of 

density·at a fixed point resulting from changes in the mass velocity 
..... 

vector pv. 
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For the same volume element conservation of momentum may be 

written as the momentum balance 

Sum of 

forces actin1. (2. 7) 

on system 

Since we allow the fluid to move through all six faces of the volume ele-

ment in any direction as in Figure 3, we note that Equation (2.7) is a 

vector equation with components in each of the coordinate directions r, 

9 and z. Let us consider the r-component of each term in Equation (2.7). 

Momentum flows into and out of the volume element by convection (i.e., 

bulk fluid flow) and by molecular transfer (i.e. ,velocity gradients). The 

rate at which the r-component of momentum enters the face at r by convec-

tion is 

rMllz (pu)u I , 
r 

and the rate at which it leaves at r+llr is 

(r+llr)l19llz(pu)ul A • r+ur 

There are analagous expressions for the r-component of convective momen-

tum across the other four faces. In addition, fluid motion in the 9-

direction results in an effective force in the r-direction, the 

"centrifugal force," given.by 

llrMllzpv • 
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zr T I z+t.z 

,J.. ...... , ', , ' , ' , ' 
' ' 

rr T I r+t.r 

tar Ia 

Figure 3. Directions. in which the R-Component of Homentum 
is Transported Through a Volume Element. 
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We find that·the net convective r-momentum flowing into the volume 

element is 

+ (r + -2
1 6r)6rt:.e {pwu I - pwu I A } + t:.rt:.et:.zpvv: z Z+uz 

Similarly, the rate at which the r-component of momentum enters the face 

at r by molecular transport is 

rt:.et:.z T 1 rr ' r 

and the rate at which it leaves at r+t:.r is 

(r+6r)696z T 1 . rr r+t:.r 

Analagous to the centrifugal force discussed above, molecular transport 

in the a-direction results in an effective force in the r-direction 

which is given by 

flrt:.et:;z Tee • 

When the r-components of molecular transport momentum are computed for 

the other four faces of the volume element, we find that the net molecular 

transport r-momentum flowing into the element is 
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In many.cases ·the only important external for.ces.acting on the system are 

those arising from the fluid pressure P defined by ~he equation of state, 

p = p (p , T}. , ' 

where Tis th~.temp~rature and 

p = p(r, e, z, t) 

and the gravitational force per unit mass 

+ .... 
g = g ( r , e ,. z ) • 

Since we will later assume that the gravitational force has only a negli-

gible effect on the physical system of interest, we will omit it from the 

remainder of the discussion. The change in the force due to the pressures 

at r and at r+~r is 

and the pressures normal to the surfaces at e and at 9+~9 result in· a 

pressu~e force in the r-direction given by 

2 · ~r~z· P sin(} t{6) 

Now we may write the r-component of the external forces acting on the 

system as 

. 1 
~e~z {rPI - (r+~r)PI A } + 2 ~r~z P sin(-2 ~e) r r+ur 
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Finally, the rate of accumulation of r-momentum is 

1 a (r + 2 t.r)t.rMt.z at (pu) , 

and we may write the r-component of Equation (2.7) as 

p (r+t.r)uu I A } r+ur 

+ t.rt.et.zpvv + t.et.z {rPI - (r+t.r). PI A } + 2 t.rt.z P sin(-2
1 t.e) r r+ur 

+ Mt.z {r< I rr 
r 

(r+t.r)• I } + t.rt.z «e I - 'e I } 
rr r+t.r r a r 9+t.e 

(2. 8) 

If we divide Equation (2.8) by t.rt.et.z and take the limit as these quanti-

ties approach zero simultaneously, we obtain 

= - a a 
ay:(pruu) - aaCPvu) 

a a 
~(pwu) + PVV - ar(rP) 

(2. 9) 

We now divide Equation (2.9) by r, perform portions of the indicated 

differentiation, and collect terms to obtain 
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ap 1 a 1 a a 
u (IT + r a;CP ru) + r ae-CP v) + az-CP w)} 

2 
+ P {au + u au + .! au + w au _ !_} 

at ar rae az . r . 

= - ~ rp - {.!. Lc rr )' + .!. LeT ) 
a r a r . rr . r ae e r 

(2.10) 

Tee 
--+ 

r 

We recognize the first term of Equation (2.10) as the left member of 

equation of continuity, Equation (2.6), hence the r-component is 

{cu au v au . au v2 
p ~ + u - + - - + w -:s- - -} 

a~ ar r ae oZ r 
(2 .11) 

ar 
Tee a - • -cT ) }. r oz zr 

Through similar analyses we obtain·the following expressions for the 

e- and z-c.omponents of Equation (2. 7) 

P {av + u ~ + .! ~ + ~-+ w avl 
at ar r ae r az 

1 ap 
= -·--·· r ae 

(2.12) 

and 

aw aw v ·aw aw .. ap p {- + u -+ --+ w -} = -a-z at ar r ae az. 
(2.13) 

1 a · 1 a a - {- -(rT ) + r aaCTe~) +aCT )} . r ar rz z zz 
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For the physical prob.lem in which we are presently interested 

(and indeed, for a la.rge .n1;1JIIbet: of physical problems) the density p and 

the viscosity ~ can be cqris:idered constan.t ~· Under· this assumption the 

equation of continuity, Equation (2.6), may be written as 

1 a ·· ·1 av aw 
- -(ru) + - - + - - 0 (2. 14) r ar r ae az - t 

the continuity equation for incompressible fluids. Since it is our 

purpose to extract information regarding the velocity distributions from 

Equations (2.11) - (2.13), we must replace the various stresses in these 

equations with expressions in terms of velocity gradients and the vis-

cosity of the fluid~ . F·or incompressible Newtonian fluids with constant 

viscosity these expressions (from Bird, Stewart and Lightfoot [1]) are 

given in Table I. Upon the· ·substitution of these expressions into 

Equations (2.11) - (2.13), we obtain the r-, 9- and z-components of the 

Navier-Stokes equation, given by 

(2.15) 

av av v av uv av 1 ap 
-+ u -+ --+ -+ w- = - pr as at ar r ae r az 

1 a2v 2 (2.16) 

+ ~ rLc.!. ~Crv)) · 2 au ~} + ---+ 2a1i + , . p ar r ar r 2 ae 2 az 2 r 

and 
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TABLE I 

STRESSES IN TERMS OF VELOCITY GRADIENTS AND 
VISCOSITY FOR INCOMPRESSIBLE 

NEWTONIAN FLUIDS 

-2u 
au T = ar rr 

1 av ~) Tee = -2u(-- + r ae r 

-'2U 
aw T = az zz 

-li(r ~(~) 1 au T = Ter = + --) re ar r r aa 

av · 1 aw 
Tez = T = -u(- +- -) ze az r ae 

Caw au) T = T = -u- +-zr rz . ar az 
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aw aw v aw . aw 1 ap 
rt + u rr + r n- + w .az = - 'P rz 

(2.17) 

It should be noted that Equations (2.14) - (2.17) are four partial 

differential equations in. the. four dependent variables u, v, w and P 

which are functions of the four independent variables r, e, z and t. 

Equation (2.14) is ~linear first o~der partial differential equation, 

and Equations (2.15) - (2.17) are second order semi-linear elliptic 

partial differential equations. 

Until now the equations that have been developed describe in­

compress .. ible. flow situations in which the effects due to the gravita-

tiona! force are negligible •. For reasons which will become apparent 

later, we now limlt the discussion _to problems which possess axial 

synunetry, i. c_~_, no a-dependence. .We also seek to rephrase Equations 

(2.14) - (2.17) in terms of the classical stream function lJi and the 

vorticity ~. First, define the function r by 

r(r,z,t) = rv(r,z,t) (2.18) 

and recall the definition of the kinematic viscosity given by Equation 

(2.3). Then Equations (2.14) - (2.17) canbe written.as 

1 a aw r ar(ru)+ az = 0 (2.19) 
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au au r2 au 1 ap a 1 a a 2u 
rt+ urr- 3+ w rz = --rr+v <-arC- ar-Cru) )+-} P r r r r 2 r az 

(2.20) 

ar ar ar {r ~c! ~) a2t 
rt+ u rr + w rz = v + -2} ar r. ar az . 

(2.21) 

aw aw aw 1 aP {! 2....cr aw) a2w -+ u-+ w -= - ~- + v + --} at ar · az · paz r ar ar . . 2 . 
az · · 

(2.22) 

We can eliminate the pressure P from th~se equations by differentiating 

Equation (2_.20) with respect to z and Equation (2.22) with respect to 

r and by subtracting the results to obtain 

a [au aw] au[au aw] a [au aw] + aw[au - aw] a [au aw] 
at az - rr + rr rz - ar +. uar rz - ar az az ar + waz- rz - ar 

"
2 

au " + 2...-[-- - :_wr]} • 2 az a ·az · .· 

We define the vorticity ~ by 

~ (r' 
au aw 

z, t) - az- - rr , 

and note that, for any constant C, 

c au c aw = _ c ~ , 
ar + az . r. 

from Equation (2.19). Now Equation (2.23) may be written as 

(2. 23) 

(2.24) 

(2. 25) 
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ar; 
-+ at (2.26) 

To express Equations (2.19), (2.21) and (2.26) in terms of nondimensional 

quantities we define the variables.· 

r' = r/L 

z' = z/L 

u' = u/LQ 
(2.27) 

v' = v/LQ 

w' = w/LQ , 

and 

t' = Qt 

where L is some (problem dependent) characteristic length and Q is some 

characteristic angular velocity. We note that the equation of continuity, 

Equation (2.19), in terms of these variables is identically satisfied, 

for 

(2.28) 

In terms of the nondimensional variables Equation (2.21) is 

ar•. ar• w' ar• v {, a· 1 ar• 
at'+ u' aT'"+ az' = L2Q r ar' (T' ar') (2. 29) 
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and Equation (2. 26) may be written as 

ar,;• 
u' 

ar,;• 
w' 

ar,;• U I 1',; I 
2 

r• ar• 
at'+ ar• + azr- !="'- -3- az• 

r' 

v a2r,;, 1 ar,;• 1',; I a2r,;, 
= 

L
2n 

{-.-2 + rr ar• - --+ -} 
I 2 az•2 ar• r 

(2. 30) 

We now introduce a dimensionless stream function w' = $'(r' ,z',t') 

defined by 

1 a$ 1 

u' = rr;rzr-' 1 a$' 
w' = - rr aT' . (2.31) 

Note that the equation of continuity, Equation (2.28), is identically 

satisfied, for 

1 a$' 1 3$' 1 32$ 1 

7 w + --2 w- rr ar•az• - o. (2•32) 
r r' 

·we define the dimen.sionless tangential Reynolds number Re by 

Re = --v (2.~3) 

Now Equatjon (2~28) is 

a r. • 1 a $ • a r • 1 . a$ • a r • 1 · 1 a r • 
at• + rr az• ar• - rr or' azr = Re {t.r•,- rr ~} (2.34) 



Equation (2.29) is 

21 

:.!.... {Arl 1 az;•. 1 
Re u., + ··F ar• - 7 z;'} 

r 

and Equation (2.24) :is 

1 c!JJ' .. ,,,, - r'r' , 
Uljl - rr ar-r - ., 

where 

(2.35) 

(2.36) 

We will drop the primes in Equations (2.34) - (2.36) and will remember 

that any boundary and initial conditions must be express-ed in terms of 

the dimensionless quantities. We have the three second order semi-linear 

partial differential equations 

and 

~ + 1 c!JJ ar .!. ~ ~ = .!.... {tJ.r 
at r az aT - r ar az Re 

= .!..._ { /J.!; 
Re 

1 ar; 
+ ---r ar 

(2.37) 

(2.38) 
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· 1 o!JJ 
lllJJ - r or = rl; ' (2.39) 

where 

We have developed two systems of partial differential equations 

(one ·given by Equations (2.19)- (2.22) and the other by Equations (2.37)­

(2.39)) which describe axisymmetric, incompressible flow problems in 

which the effects due to the gravitational force are negligible. 



CHAPTER III 

CONFINED VORTEX PROBLEM 

A reactor 'concept involving an annular cloud of fissionable 

material suspended by·a vortex flowin a cylindrical container has been 

of interest to the Oak Ridge National Laboratory because of its propul­

sion and power generation applications. This concept has been studied 

by Kerrebrock and Keyes [2], Kerrebrock and Meghreblian [3] and Keyes 

[4]. As a result of the experimental observations of Kendall [5], and 

Rosenzweig, Lewellen and Ross [6], it was decided that it was necessary 

to examine in detail the interaction of this axisymmetric vortex flow 

with the end walls of the containing cylinder. As described in his dis­

sertation,· Kidd [7] simulated such a reactor with a cylinder (containing 

water) the walls of which were in rotation with a constant angular velo­

city ·while one of the cylinder end walls remained stationary. Fluid was 

passed into the cylinder in the radial direction along the outside cylin­

der wall and was allowed to pass out of the cylinder at a porous center 

tube along the axis of the cylinder. ·Experimental measurements of the 

velocity distributions near the stationary end wall were obtained. 

After an attempt was made to determine these velocity distribu­

tions_from the equations of motion by means of a similarity transforma­

tion (to be discussed in Chapter V), it was decided that an effort should 

be made to solve the equations of motion numerically. Such an approach 

seemed plausible for, since the advent of large-memory, high-speed 

digital computers, a number of flow problems have been successfully 

23 
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investigated by numerical methods. In 1963, Fromm [8] proposed a 

numerical method for treating transient flow problems and, in particular, 

examined the development of the Karman vortex street. In an expository 

paper, Pearson [9] discussed the stability of a numerical t.echnique for 

solving a fourth-order partial differential equation involving the 

classical stream function. Th~n, Pearson .[10, 11] used this technique 

to solve problems which included vortex formation and flow between 

rotating, coaxial disks. In a dissertation, Tejeira [12] discussed the · 

use of a numerical technique to solve equations analogous to Equations 

(2.36) - (2.38}. It ~hould be noted that the papers mentioned above are 

all concerned with two-dimensional, incompressible, transient flow 

problems. 

As an initial step toward finding a numerical 'solution we examine 

a problem .. similar to that of Kidd except that there is no flow into or 

out of the cylinder. For the present work we ~eek solutions of this 

probl.em at steady-state. _ 

In terms of the velocity components and the pressure, the partial 

differential equations (from Equations (2.19) - (2.22)) are 

and 

1 a aw 
- o;s-(ru) + o;s-z = 0 , r or a 

au v2 au 1 ap a 1 a 
v{-(- -(ru)) ar r ar u---+w-=---+ ar r az p ar 

av uv av u-+-+w-·.= · ar r az 
a 1 a 

v{-(- -(rv)) ar r ar 

(3.1) 

(3.2) 

(3.3) 
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1 ap 
- --+ 

p az 
1 a aw a2 

v{- -(r -) + --...!} 
r ar ar az2 

(3.4) 

with boundary conditions for the velocity components given by 

(3.5) 

(3.6) 

u(r,O) = w(r,O) = o, v(r,O) = rn, for·R1 ~ r ~ R0 , . (3. 7) 

and 

u(r,L) = v(r,L) = w(r,L) = 0, for R
1 

< r < R 
- - 0 J 

(3.8) 

where R0 is the radius of the containing cylinder, Q is the constant 

angular velocity of the containing cylinder, L is the height of the 

cylinder, and R
1 

is the radius of the center tube. 

·In terms of the dimensionless stream function and vorticity, 

the ·partial differential equations (from Equations (2.37) - (2.39)) 

are 

1 aljl ar .!. ~ ~ = .!._ {~r ·.:. .!. ~} r az ar - r ar a z Re r ar 

1 = Re {M,; 
1 al; 

+ ---r ar 
.!._l;} 

2 
r 

(3.9) 

(3.10) 
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1 aljl rr; t.ljl --- = J r ar 

with boundary conditions for r J r; and ljl given by 

and 

Ro R 
(L0)2, rcr-,z) = 

·R . R I c-f-) 2, rcr-,z) = 

r (r, 0) 
2 = r ' 

·R Ro -L a2ljl Ro 
o, 0 lji(L,z) = z;(L,z) = R-2(L,z} 

o ar 

for 0 < z < 1 J -
RI RI L a2ljl RI 

= 0, lji(L,z) z;(L,z) =- --(-· z) 
RI ar2 L ' 

for 0 ~ z ~ 1 , 

ljl(r,O) = 0, z;(r,O) 
2 

= !. Ucr o) 
r 2 ' az 

RI RO 
for -·- < r < - , 

L - :- L 

·rcr,l) 1 a2ljl 
= ljl(r,l) = 0, . r;(r,l) = r -2 (r,l) 

az 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

These latter boundary conditions are obtained from Equations (3.5) -

(3.8) with the aid of the definitions given in Equations (2.18), (2.24) 

and (2.30) and the transformation giv.en in Equation (2.27). 
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In the particular problem for which solutions were attempted, 

R
0 

= o.5 ft.·, (3.16) 

R1 = 0.03125 ft., (3.17) 

L = 1. 0 ft., (3.18) 

2 v = 0.0364 ft~ /hr. (3.19) 

and Q is determined for any tangential Reynolds number Re from Equation 

(2.33). It should be noted that Kidd [7] defined the tangential Reynolds 

number by 

= --v 
(3.20) 

and it is clear from Equations (3.16), (3.18) and (3.19) that 

ReK = 0.25 Re . (3.21) 



CHAPTER IV 

THE CLASSICAL APPROACH 

For two problems very similar to the one posed in Chapter III, 

Pao [13] has made an attempt to solve both the steady-state equations 

(given by Equations (3.9) - (3.11)) and the_transient equations (given 

by Equations (2.37) - (2.39)) numerically. In the problem_of interest 

to Pao which is more closely related to the problem of Chapter III. the 

only differences are the absence of the center tube and incidental di-
• A ., ' 

mension~ •. Her~~fter, all references to Pao [13] are to be understood 

as references to the solution of the steady-state version of this 

problem, unless otherwise noted. In his other problem only one end 

wall is rotating, i.e., the outside cylinder wall is held stationary 

with the other end wall. It is interesting to note that these two 

problems arose during an investigation of the dynamics of a cyclone or 

tornado over fixed ground. 

The essential details of Pao's approach to the-problem are as 

follows: 

(1) Cover the rectangle of interest (Figure 4) with a. network of 

parallel grid lines which are uniformly spaced by an amount 

h in both the r- and z-directions. 

(2) Write finite difference equations (see [14]) which are 

analogous to Equations (3.9) -:- (3.ll) and which give values 

for r, ~and~ at each node (the intersection of two grid 

lines) of the grid in terms of the values of r, ~and~ 

at neighboring nodes. 

28 
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i ,j +1 

i-1,j i,j i+1,j 

i,j-1 

0 
r 

Figure 4. Structure of the Grid Network. 
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(3) For a given value of the Reynolds number and for a given 

initial guess for r, r,; and ljJ at each of the nodes use a 

Gauss-Seidel procedure (see [14]) to solve for r, r,; and ljJ 

iteratively until some convergence criterion has been 
( 

satisfied. Each iteration involves solving the finite 

difference equations for r ' r,; and ljJ at each interior node' 

in turn. Because of the nature of the r,; boundary conditions 

given in Equations (3.12) - (3.15), a new set of boundary 

conditions for r,; must be determined at the .end of each 

iteration. 

(4) Once "convergence" has been attained, use finite difference 

analogues of Eq~ations (2.18) and (2.31), in conjunc.tion with 
·, 

the transformations of Equation (2.27), to obtain the radial, 

tangential and axial velocities.at the nodal points. 

(5) Use the values of r, r,; and ljJ for the case of the Reynolds 

number just concluded as an initial guess for the case of 

the next larger Reynolds number of interest. 

We note that Pao defined.the tangential Reynolds number as in Equation 

(2.33) and that increasing the Reynolds number in effect magnifies the 
• • • • •· ! .•• 

importance of the nonlinear terms in Equations (3.9) arid (3.10). Indeed, 

increasing the Reynolds number in these equations ultimately results in 

a numerical instability (i.e~, divergence .rather th~n cqnvergence) which 

is directly analogous to the instability (i.e., turbulent flow) which 

ultimately results from increasing the Reynolds number (by increasing the 

angular velocity n of the outer cylinder) during an experiment. Since it 

·' 

• 



is often possible to observe experimentally an upper limit on the Reynolds 

number for laminar flow, the goal of the mathematici'an is the development 

of finite difference representations of the partial differential equations 

and iterative procedures which also remain stable until the limiting 

Reynolds number is reached. 

For any interior nodal point (designated by the indices i, in 

the r-direction,. and j, in the z-direction) the finite difference equa-

tions analogous to Equations (3.9) - (3.11) can be written as 

and 

4hr .. 
1,J 

2 
(r.) 

1 

r .. 
1,J 

1 
= -4{r. 1 · + r~ 1 ·. + r. · ·1 + r. ·· 1} 1+ ,J 1- ,J 1,]+ 1,]-

- ~{[·'· 2h][ 16r. "'i,j+l -.. ljJi,j-1 +.Re ri+l,j'- ri-l,j] 
1 

- (ljJ. 1 · - tjl. 1 .][r. · 1·- r. · 1]} , 1+ ,J 1- ,J 1,J+ 1,J-

1;;.. 
1,J 

1 . 
= {-4[~. 1 . + ~- 1 . + ~- . 1 + ~- . 1] 1+ ,J 1- ,J ,1,J+ 1,]-

( tjl. 1 . - tjl. 1 .')( ~ :. . 1 -- ~ . . 1) 1+ ,J 1- ,J 1,]+ 1,]-

(4 .1) 

(4. 2) 

cr .. 1 - r .. 1)]} 
l,J+ 1,]-

• {1 + (tj11 .. J:'-l- ljJ .. 1 + R2h) hRe 2} 
• 1,J+ e 8(r.) 

1 
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1 . . 
tjl. . = -4{tjl. 1 . + tjl. 1 . + tjl. . 1 + tjl. . 1} 
1,] . 1+ ,] 1- ,J .1,]+ .. . 1,]-

h . 2 . 
- -8 -{2(r.) h l; • • + tjl. 1 . - tjl. 1 . } , 

r. 1 1,J 1+ ,J 1-:- ,J 
1 

(4. 3) 

when central difference approximations are used for the required 

derivatives. 

Pao applied these finite difference equations to each nodal point 

of a grid which covered the unit square and had the mesh size h = 0.025. 

The boundary conditions used are those given in Equations (3.12) -

(3.15) except that the boundary at r = 0 is stationary, hence r = l; = 0 

at r = 0. For this problem Pao was able to obtain solutions for Re < 400 

and found that the computation diverged at Re = 400. He then suggested 

that Re = 400 is the upper limit for the steady-state approach, since 

he was able to obtain a solution for the analogous transient problem 

at Re = 5000. His calculations were carried out in single precision 

on an IBM 7040 digital computer. 

Obviously, the success reported by Pao suggested that the classical 

stream function-vorticity approach might provide a reasonable degree of 

success in an attack upon the problem at hand. Indeed, there was justi-

fication for anticipating an extension of his results to higher Reynolds 

numbe'rs. It has been noted that Pao used a Gauss-Seidel iteration pro-

cedure. For a number of linear partial differential equations it can be 

shown (see [15]) that the method of Successive Overrelaxation (S.O.R.) is 

far superior. In fact, this method has been used' by Tej.eira [12], among 

others, to accelerate convergence for some Reynolds numbers and to 

... 
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decelerate the numerical process in order to prevent divergence at other 

values of the.Reynolds number in the solution of flow problems. In 

addition to the use of the S.O.R. iterative method, it was decided that 

a smaller mesh size (namely, h = 0,015625 = 1/64) and double precision 

arithmetic would be used. in hopes that, while the accuracy of the results 

obtained by Pao could be ~nhanced, a~y instability resulting from round-

off errors could be overcome. Since the machine that was to be used is 

the IBM Model 360/,75,._ these alterations.are certainly within practical 

limits with-regard to memory size and operating speed. 

Convergence of the solutions for r, ~and~ was considered to 

have occurred when . ' 

max 
G 

~-..1.-~~___,-..:..<:-l.... < e: 
max 

G 

(4. 4) . 

where G is the set of the interior nodal points of the grid, the super-

script N den9tes the current iteration, and usually e: = 0,001,_ although 

occasionally e: = 0.0001. It has been observed that ~ is the most sensi-

ti ve of the three variables, . i.e., . when the stream function distribution 

satisfies th& inequ,lity of Equation (4.4), the ~ and r distributions 

satisfy analogous convergence criteria. Since-one of the primary objec-

tives of this effort was to obtain solutions for as large values of the 

tangential Reynolds number as possible, the primary interest in the 

solution at any particular Reynolds number was that it provide a suf-

ficiently good. initial guess for the ~elutions at the next larger 

Reynolds number. For this reason the stated value of e: was chosen 

rather than a smaller. value • 
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For the first case (Re = 1) it was assumed, as an initial guess, 

that the majority of. the fluid was in solid-body rotation, i.e;, 

u = w = o, v = rn , 

and that as z -+ 1, v-+ 0 and u = w = O; The relaxation factor w was 

found to vary inversely with·''the Reynolds number. For Re = 1, the use of 

w = 1.5 led t6 cotivetg~n~e of the solution well within 200 iterations and 

it was found that the· iterative pro~edure could be successfully over-

relaxed for Reynolds ntimbers· as large 'as· Re = 364, although the number of 

iterations required for convergence gradually inci•eased to ~600 iterations 

at Re = 364. Convergence of the solution at Re = 400 required 2600 

iterations with w = 1.0. It' should be noted that Re = 400 was. the value 
• -.· • '. D 

of the Reynolds number for which Pao [13'] observed divergence of the 

solution. Since the use of w =·1 in the S.O.R. iterative procedure is 

equivalent to the use of the Gauss-Seidel procedure, the reasons for this 

"paradox" are not evident, for the importance of the accuracy of the 

initial guess, the grid size and the type of floating point arithmetic 

(single vs. double· precision} to convergence have not been fully explored 

for nonlinear partial difference equations. However; during the con-

vergence of the Re = 4oo·case it was observed that 

max 
G 

max 
G 

I N N-1, ~- • - IJJ • • 1,] 1,] 

increased over several hundred iterations before decreasing to conver-

gence. 

.. 
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For Re > 400, underrelaxation (w < 1) has been found to be a 

requirement for numerical stability and ultimate convergence of the 

solution. This fact reiterates the "special" nature of this value of 

the tangential Reynolds number for this problem. To date solutions 

have been·obtained for Reynolds numbers as.high as 2000, the value of 

the relaxation factor has decreased to w -0.05 ·and the number of 

iterations required for solution:has·been uniformly 600-800 iterations 

for Re > 400. · 



CHAPTER V 

OTHER APPROACHES 

While the nUffierical solution of the stream functi9n~vorticity 

equations was the first approach. to. the sol:ut~.on of the pro.blem of 

Chapter II I that has provided a reasonab 1 ~ degree of success, .there. are 

other approach.es which have provided 1i ttle .o.r no .succes~, or which 

seem promising but have yet to be tried. 

The first attempt at obtaining solutions for the problem of 

interest was made through a similarity transformation (mentioned in 

Chapter III), the basis for which is discussed by Rosenhead [16]. The 

form of the solution of the Navier-Stokes equations is assumed to be 

known, and then a suitable transformation is found which reduces the 

Navier-Stokes equations to a system of ordinary.differential equations. 

Hopefully, these equations can th~n be integrated to obtain detailed 

velocity data. However, experimental verification of the results thus 

obtained is usually necessary since it is not always possible to obtain 

physically realistic velocity distributions. We consider the similarity 

transformation made by Kidd and Farris (17] which met with limited 

success. The classical stream function ~ w~s defined such that 

1 a~ 
u = --r az J 

(5.1) 

and it was assumed that 

(5. 2) 

36 
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(5.3) 

P = P (p , ~0 , n , r) p ( n) , (5 .4) 

and 

n = n(R0, n,. z, v, r) . (5. 5) 

where f is a dimensionless stream function, g is a dimensionless angular 

velocitY,.P .is a dimensionless pressu~e, and n.is a dimen~ionless dis-

tance. By means of a dimensional analysis of Equations (3.2) - (3.4) 

for the problem of interest it is found that we must have 

and 

v = r!'lg(n) 

2 . Ron 2 
P =PC-) pCnr r 

n = (R . ) 1/2 .:_ 
eK r 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

where ReK is defined by Equation (3.20). Upon the substitution of 

Equations (5.6) - (5.9) into Equations (3.2) - (3.4), we obtain the 

system of ordinary differential equations 



and 

Jl 

2 
(1 + .!l._) f' ' ' = 

ReK 

38 

2 n . , 
(1 + -·-}g'' = 

ReK ~ (f + -~= )g' 
K 

(1 + n2 )p' = __ 1_(1 
ReK · ReK 

2 Tif' f . 
+ !l._jfl I + --"-2- -. -2 ;.. 

ReK ReK ReK 

(5.10) 

(5.11) 

2 
ff 1 3!!£. _ ng 
-R - R -R ' (5.12) eK . eK eK 

. . 
where the primes indicate differentiation with respect to the singfe 

variable n, e.g., 

f1 I I 

For the idealized-potential vortex of Kidd [7] the boundary conditions 

are as follows: 

(1). The radial and tangential velocities (u and v, respectively) 

vanish at the stationary end wall. 

(2). The stream function 1lJ vanishes at the stationary end wall. 

(3). The radial velocity_u vanishes far from the end wall. 

(4). The tangential velocity approaches a potential vortex far 

from the end wall, i.e., 

. . 

rri terms of the dimensionless quantities f, g and p, these boundary 

conditions are 

"' 
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f(Oj = f'(O) = g(O) = f'(=) = 0, 

. g (=) = 1 J 

and 

np'(=) + 2p(=) = -1 . 

With these boundary conditions, Equations (5.10) - ·(5.12) were numerically 

integrated to obtain values for f, g and p from which values for u, v, 

w and P may be obtained. Unfortunately, solutions could not be obtained 

for ReK > 4.75. 

As is indicated by Equations (3.5) - (3,8)~very little is known 

about boundary conditions for the pressure Pin Equations (3.1) - (3.4). 

To overcome that lack of knowledge one may differentiate Equation (3.2) 

with respect to z and Equation (3.4) with respect to r and subtract the 

results to obtain 

(au + ow) (au - ow) 
or az az or 

l...caw _ au)} 
2 ar az 

r 

which, with. Equations(3.1) and (3.3), provid~s a system of three 

(5.13) 

partial differential equations, one of w~ich is linear_ and first order, 

one of which is semi-linear and second order, a~d the other of which is 

semi-linear and third order .. An attempt was made by Farris, Lick and 

Dunphey [18] to s.olve Equations (3 .• 1), _(3.3) and (5.13), with the 

boundary conditions of Equations (3.5) - (3.8), using the S.O.R. 
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iteration·procedure on a grid with rectangular spacing, i.e., while the 

spacing of the grid lines was constant in the r-direction and in the z­

direction, the spacing in the r-direcfion differed from that in the z-

direction. This approach was numerically unstable, even when the proce-

dure was severely under-relaxed, i.e., the relaxation factor w was given 

values on the order of 0.01, and'when the finite difference analogues 

of the complic?ted derivatives in Equation (5.13) were altered. The 

reasons for this total numerical instability are not yet known, but 
', . . :. 

several possible explanation~ e~ist. The finite difference analogues 

of the third order partial derivatives in Equation (5.13) may contribute 

inherent nUJllerical instability, or perhaps the difference analogues of 

these and other derivatives should be forward or backward differences 

rather than central differences. The use of rectangular rather than 

square grid spacing may contribute sufficient divisions by "small" 

quantities so that numerical instability is the result. In this regard, 

note that in Equations (4.1) - (4.3) the grid size h never appears in · 

a denominator. 

A most promising method which has not yet been tried for the 

problem of interest is the MAC method of Welch, Harlow, Shannon arid 

Daly [19]. This approach differs from the majority of the literature 

treating the numerical solution of the Navier-Stoke.s equations in that 

it seeks to solve the equations directly for the velocity and pressure 

distributions rather than indirectly from·solut'ions to the stream 

function-vorticity equations. Recall from Chapter II that the Navier­

Stokes equations are partial differential equations which result from 
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conserving mass and momentum in an incremental element of volume. The 

'finite difference analogues of partial derivatives most often used are 

those which result from the truncation of Taylor ~eries expansions of the 

unknown functions about nodal points of the grid, and the errors usually 

considered in the approximations· thus·obtained are the errors which re-

suit from this truncation process. A great deal of the success obtained 

by the ·authors of' the MAC method can be attributed to the fact that the 

relation of the poi~ts at which the unkn"own functions are to be evaluated 

to the grid structure is such that the. finite difference equations con-

serve both mass and momentum. One may imagine these finite difference 

equations as having been obtained from an application of conservation 

of mass and momentum to a finite volume element, as in Chapter II, thus 

omitting.the intermediate step of writing the partial differential equa-
" . 

tions. For the m'oment we consider transient flow and write Equations 

(2.20) - (2.22) as 

au au 2 au a~ a 1 a 2 v ~} -.+ u --· -+ w- = - -+ v{-(- -(ru)) + <lt' ar · r· az ar ar r ar az 2 (5.14) 

av av. av a 1 a 2 uv ~} -+ u -+ -+ w -= v{-(- -(rv)) + at ar r az ar .. r ar · az 2 (5.15) 

and 

aw ·aw. aw a~ 1 a aw 2 
-+ u -+ w -= - -+ v{--(r -) + ~} at ar az az r· ar ar az 2 (5.16) 

where 
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~(r, z, t) 
1 - P P(r, z, t} . (5.17) 

Equation (2 .19) may be written as 

D(r, z, t) 
1 a aw 

= r. at(ru) + az J (5.18) 

where the incompressibility condition is satisfied when the discrepancy 

D = 0. The terms in Equations (5.14) - (5.16) of which vis the coef-. 
·. + + 

ficient are respectively the r-., e-; and- z-components of tJ.v, where v 

is the velocity vector. The incompressibility condition can be writteri 

vectorially as 

+ v • v = 0 J 

where V is the vector differential operator 

1 a : a A 

v - r ar rl. + az k 

and i and k are unit vectors in the r~ and z-directions, respectively. 

We now use the vector identity 

+ + .. + 
V X V X V = V(V • v) - !J.V 

to rewrite Equations (5.14) - (5~16) as 

au au v2 au a~ 
~t + u - - - + w.- = - - + a ar r . az· ar {a (au aw)} v------az az ar (5.19) 

(5.20) 
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and 

aw aw aw a~ 1 a aw au 
at+ u -ar+ w az-=- az-+ v{rarCrCar- az-))} (5.21) 

Note that the nonlinear terms- in the left member of Equation (5 .19) may 

be written as-

. . ' . . . 

au· ~u 1 a· (. 2) 
u~r+w~z=--ru + 

0 0 r ar . 

a . 
az-Cuw) (5.22) 

,, . . . . . 
with the aid of the incompressibility condition. Similar· expressions· 

niay 'be obtained for the 'nonlinear t~~s in. the l~ft 'members of'Equations 

(5.20) and (5.21), and Equations (5.i9) - ·cs.21) may be written as 

and 

au 1 a 2 a 
· -· + - -(ru }'+ ·-· -(uw) at r ar az 

2 
.V 

- ·-·= r 

a v 1 a C ) a C ) . uv {a C 1 a C ) ) 
at + r ar ruv + az vw + r = \) ar r ar rv 

2 
+ ~} . 2 

az 

= _ ~+ v{.!.~caw _au))} 
.az·· · r a:r.ar a:z 

(5.23) 

(5.24) 

. (5.25) 

We now obtain an expression for the time rate of change in the discrepancy 

D from Equation (5.18), given by 

(5.26) 

into which we substitute the expressions for au/at and awjat, given by 

Equations (5.23) and (5.25), and obtain 
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a2~ 
+ -- =-2 az 

2 a a ao - r ar(r ar(uw)) - at ' 
(5.27) 

which may be recognized as a cylindrical coordinate Poisson's equation 

for ~. The procedure of the MAC methoc! ilivol ves 'solving Equation (5. 2'7) 

iteratively for the pressure term ~ at any given time step and substi-

tuting t:he values thus obtained -in Equations (5.23) and (5.25) to 

determine the radial and axial velocities at the next time step. Finally, 

the angular velocity at the next time _step may be determined from 

Equation (5.24). 

A network of grid lines with_equal spacing is constructed in the 

region of interest forming a set of cells each of which is bounded by 

. "' ' 
two. parallel grid lines· in the r-direction ·a~d by two parallel grid 

lines in the z-direction, as in Figure 5. Let the indices i (r-dire~tion) 

and j (z-direction) denote the center of any cell in the set., then the 

relation of the variables u, v, w, -~ and 0 to the i,j-cell is that shown 

in Figure 5. The finite differen<:e representations of·Equations (5.23), 

(5.24), (5.25) and (5.27) are written as 

,., 

,-



wi,j+l/2. 

ui-l/2,j 

wi,j-1/2 

Figure s. Relation of Field Variables to Grid Structure 
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1 { N+ 1 · N .} 1 { ( 2) 
ot ui+1/2, j - ui.+i/2 ,j = -r 

1
-.• -

1
'""'
1

...,
2

h.-1. ru i ,j 
. 2 . . . 
(ru ) . 

1 
• } 

. 1+ ;J 

1 .· 
+ h{(uw)i+1/2,j-1/2 } i 2 . 

(uw)i+l/2,j+1/2. + -r
1
-.+-

1
-
1

-
2 

(v )i+1/2,j 

+ ~{~i,j .:. ~i+1,j} + ~2{ui+1/2,j+1 + ui+1/2,j-1 - 2ui+l/2,j 

- w1.+1,J'+1/2 + w. 1 · 1/2 + w. · ·1. /2 .. w. · 1/2} ' . 1+ ,J- . . . 1;J+ . 1,J- . 

1 N+1 
rt{v .. 
u 1,J 

N 1 : 
.. v .. } = ~{(ruv)._112 .- (ruv) 1:.112 ,J.} 

1,J rin. 1 ,J. 

(5.28) 

" { 1 r· ) . . + -2 (rv . 1 . 
h ri+1/2 . 1 + ,J 

1 
(rv). .1 '" --[ (rv). . 

1,J ri-1/2 1,J 

(5. 29) 

(i'v). 1 .] 
1- ,J 

+ v
1 
.• ·. J .•. 1 + v; . 1 - 2v. . } , l,J- 1,J 
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1 N+l N 1 
o t {w i , j + 1 I 2 - w i , j + 1 I 2 } = rJi"< ( ruw) i -1 I 2 , j + 1 I 2 - ( ruw) i + 1 I 2 , j + 1 I 2 } 

1 

1 . 2 2 1 
+ d (w ) . . - (w ) . . 

1
} + -h{ <L . - ~. . 

1
} n 1,J 1 1 J+ 1,J 1,J+ 

- ri-ll2(wi,j+ll2 .- wi-l,j+ll2 - ui-ll2,j+l + ui-ll2,j)} ' 

·and· 

1 . 
-. -2{r. 112(~. 1 · - ~ .. ) - r. 112(~. · - ~- 1 .)} r.h 1+ 1+ ,J 1,J 1- . 1,J 1- ,J 

1 

1 
+ -2{~ .. 1 + ~- .. 1 h 1,J+ 1,J-

1 2 
+ ~2 {(v ). 1· • Lr.n 1+ ,J 

1 

1 2 2 
2~ .. } = ----.:-{2(ru) .. - (ru ) . 1 . 1,J r;n 1,J 1+ ,J 

1 

. 2 } 1 { 2 (v ) . 
1 

. + - 2 2 (w ) . . 
1- ,J h 1 ,J 

2 
(w ) . . 1 1,J+ 

2 (ru ). 
1 

.} 
1- J J 

2 
(w ) . . 1} 
. 1 ,J-

(5.31) 
2 { ( ) + ( r. uw) 1· -1 I 2 .. J. + 1 I 2 - ( ruw) 1· + 1 I 2 . J. + 1 I 2 + ---h2 ruw i+112~j-ll2 ' ' 

r. 
1 

( ) } 1 (DN. + 1. _ 0N_ ... ) 
"" ruw i-.1l2,j-ll2 - 6t 1,J 1,J 

where h is the grid size for the spatial coordinates, ot is the time 

increment, and the superscripts. N :md N+1 denote the times Not and 

(N+l)Ot, respectively. A superscript of N is to be understood in quan-

tities for which a superscript is not written. Values of the variables 
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required at points of the grid at which they are not defined are computed 

as average values, e.g., 

(uw)i+l/2,j-l/2 

Suitable finite difference equations for the steady-state problem may 

be obtained by setting the time differences in Equations (5.28) - (5.31) 

to zero and solving Equations (5.28) - (5.30) for the variables ui+l/ 2,j, 

v: . and w .. 112 , respectively. After t.he provision of boundary condi- · 1,J 1,J+ ' ' 

tions for the pressure term ~~ a possible iteration procedure for the 

steady-state problem would be as follows: 

(1) • 

(2). 

Solve Equation (5.31) for the $ •. in an iterative fashion 
. 1 ~J . ,1 i ' . ,, •. 

(perhaps S.O.R.) ~ntil some. convergence criterion has been 

satisfied. 

Use the values fo:r·· th~ ~~. .' just calculated to .determine new 
1,J 

values for u, v and w. 

(3)~ Use .the new values for:u, v and w to determine a new 4>-

distribution and continue the process until u, v and w have 

also satisfied some convergence criteria.· 

The MAC method was designed to handle time-dependent, incompres-

sible, viscous fluid- flow problems which involve free surface boundaries 

(such as air or another fluid) as well as solid boundaries (such as the 

problem at hand). That the MAC method is capable of successfully treat­

ing a wide variety of problems is attested to by the problems· discussed 

in [19], and ~ertainly'the problem of present interest to this auth6r 

would fail to use ali the features available in. the method. 

.• 

.. 
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In two recent papers, Chorin [20, 21] proposes a numerical method 

involving an implicit alternating direction scheme (see (14]) for solving 

either the transient or the steady-state Navier-Stokes equations 

directly for the velocity and pressure distributions. He states that 

the method is equally applicable to .problems in two and three space 

dimensions, although his preliminary results indicate that there are 

important differences between the behavior of the solutions in two and 

three space dimensions. 
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