

OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

ORNL-TM-2316

MASTER

PHYSICAL PROPERTIES OF MOLTEN-SALT REACTOR FUEL,
COOLANT, AND FLUSH SALTS

Edited by S. Cantor

Contributors:

S. Cantor
J. W. Cooke
A. S. Dworkin
G. D. Robbins
R. E. Thoma
G. M. Watson

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

—**LEGAL NOTICE**—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ORNL-TM- 2316

Contract No. W-7405-eng-26

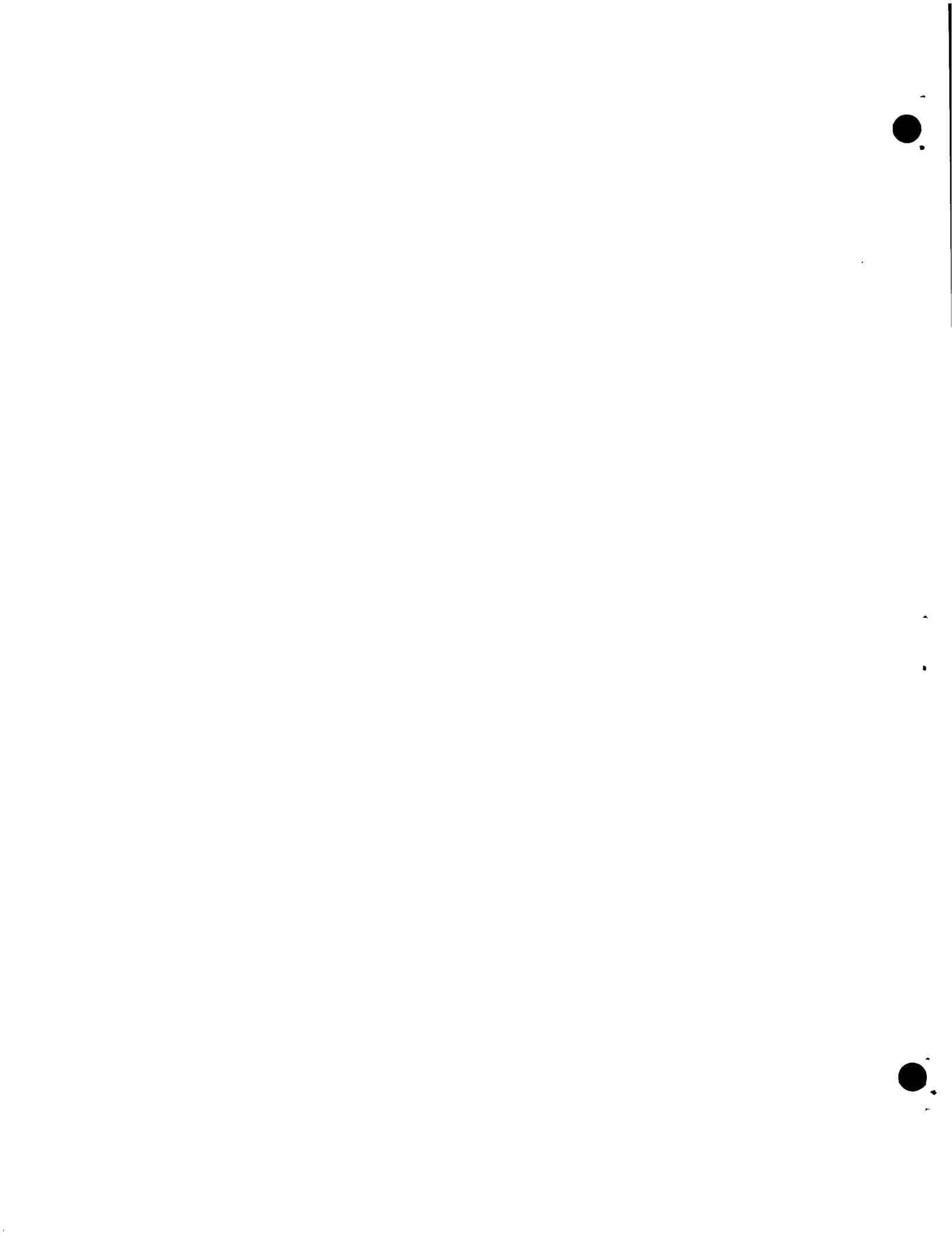
REACTOR CHEMISTRY DIVISION

PHYSICAL PROPERTIES OF MOLTEN-SALT REACTOR FUEL,
COOLANT, AND FLUSH SALTS

Edited by S. Cantor

Contributors:

S. Cantor
J. W. Cooke
A. S. Dworkin
G. D. Robbins
R. E. Thoma
G. M. Watson


AUGUST 1968

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

CONTENTS

	Page
Abstract	1
Composition of Salt Mixtures	2
Introduction	3
Basis for Selecting the Salts	3
Uncertainties Listed with the Physical Properties Values	6
For Further Information	7
Viscosity	8
Thermal Conductivity	11
Electrical Conductivity	14
Phase Transition Behavior	18
Phase Diagram of LiF-BeF ₂ -ThF ₄	20
Phase Diagram of NaBF ₄ -NaF	21
Heat Capacity (at constant pressure)	22
Heat of Fusion	25
Density of Liquid	28
Expansivity (Volume Coefficient of Thermal Expansion)	30
Compressibility	32
Vapor Pressure	33
Surface Tension	36
Solubility of Helium, Krypton, and Xenon	38
Solubility of BF ₃ Gas	41
Appendix	
A. Isochoric Heat Capacity (C _v), C _p /C _v , and Sonic Velocity	43
B. Thermal Diffusivity, Kinematic Viscosity, and Prandtl Number	41
C. Conversion Factors	45
Composition of Salt Mixtures	46

ABSTRACT

For seven molten salt mixtures:

four fuel mixtures, each containing LiF, BeF₂, ThF₄, UF₄
one flush salt, LiF-BeF₂ (66-34 mole %)
two coolant salts, NaBF₄-NaF (92-8 mole %) and single-
component NaBF₄

estimates and/or experimental values are given for the following properties:

viscosity,
thermal conductivity,
electrical conductivity,
phase transition behavior,
heat capacity,
heat of fusion,
density,
expansivity,
compressibility,
vapor pressure,
surface tension,
solubility of the gases, He, Kr, Xe, BF₃ .

From the foregoing properties, the following have also been calculated and appended:

isochoric heat capacity (C_v)
sonic velocity
thermal diffusivity
kinematic viscosity
Prandtl number.

Composition of Salt Mixtures

	Symbol	Mole %				Liquidus Temp. (°C)
		LiF	BeF ₂	ThF ₄	UF ₄	
Fuel-Breeder Mixtures	F ₁	73	16	10.7	0.3	500° ± 5°
	F ₂	72	21	6.7	0.3	500° ± 5°
	F ₃	68	20	11.7	0.3	480° ± 5°
	F ₄	63	25	11.7	0.3	500° ± 5°
Flush Salt (present MSRE coolant)	L ₂ B	66	34	--	--	458° ± 1° (peritectic)

		NaBF ₄	NaF	
Coolants	C ₁	92	8	385° ± 1° (eutectic)
	C ₂	100	-	407° ± 1° (melting point)

INTRODUCTION

In this document we have compiled physical property information, either measured or estimated, on seven salt mixtures that are presently of importance in the design of advanced molten salt reactors. The primary user of this compilation will, no doubt, be the nuclear reactor engineer who requires these data for the design and development of molten salt reactors. Specialists in the chemistry of molten salts may be another audience interested in this report. We earnestly hope that all who critically examine or otherwise use these data will give us the benefit of their advice so that future versions of this document can be greatly improved.

Basis for Selecting the Salts

The choice of salt mixtures has been primarily governed by recent changes in the Molten Salt Reactor Program: (a) the combining of fissile and fertile material within the same circuit (the "single-region" concept), and (b) the testing of coolant salts which are mainly NaBF_4 .

Four mixtures have been selected for possible use as single-region fuel melts. These are:

Salt Mixture	Composition (mole %)			
	<u>LiF</u>	<u>BeF₂</u>	<u>ThF₄</u>	<u>UF₄</u>
F_1	73	16	10.7	0.3
F_2	72	21	6.7	0.3
F_3	68	20	11.7	0.3
F_4	63	25	11.7	0.3

Salts F_1 and F_3 are fuel mixtures appropriate to a prismatic configuration of the graphite moderator; the lesser concentrations of BeF_2 and ThF_4 in F_1 may be more favorable with respect to rare-earth fission product removal by reductive extraction.

Salt F_2 , containing a relatively low concentration of thorium, might be used in a reactor (e.g., with random-packed graphite spheres) where good breeding performance is not a prime consideration. Mixture F_4 , on the other hand, could contribute to improved breeder performance mainly because the higher the beryllium concentration, the greater the opportunity to increase neutrons by the $(n, 2n)$ reaction.

It is worthwhile noting that for the purposes of estimating physical properties of salts F_1 - F_4 , the effects of the small concentration of UF_4 was almost always assumed to be the same as for the corresponding increase in the ThF_4 concentration.

Although no firm decision has been reached as to the exact composition of the fuel salt for the next molten salt reactor, it is highly probable that the concentrations of LiF , BeF_2 and ThF_4 will be within the limits given for these components by the above four mixtures.

Physical property information is also provided for:

$LiF-BeF_2$ (66-34 mole %) symbolized as L_2B .

This mixture has been used in the MSRE as the coolant and as the flush salt for the fuel circuit. The inclusion of L_2B

in this report is justified by the good possibility that it will be a flush salt (and perhaps a coolant) in future molten salt reactors.

As intermediate coolant (in this case the fluid which transports heat from the fuel salt to the steam generators) the salts which presently appear attractive contain mostly NaBF_4 . Two such salts are considered:

<u>Coolant</u>	Composition (mole %)	
	<u>NaBF_4</u>	<u>NaF</u>
C_1	92	8
C_2	100	

The salt symbolized as C_1 is a eutectic composition which melts at 385°C (725°F). Although a lower melting fluoroborate mixture would be desirable, it is not presently clear how much and which additive will substantially depress the melting temperature. Moreover, it seems likely that lower melting fluoroborate mixtures will not be very different from C_1 ; hence mixture C_1 seems, at present, the leading candidate for the next coolant to be tried in a molten salt reactor.

Another salt for which estimates are tabulated in this report is "pure" NaBF_4 , symbolized as C_2 . Since stoichiometric NaBF_4 does not exist in the molten state without a very high partial pressure of BF_3 gas, C_2 cannot be considered a practical coolant. However, estimations of the physical properties of hypothetically pure molten NaBF_4 are useful for evaluating the contributions of NaBF_4 as a component in

a salt mixture. In solution, $[BF_4]^-$ ion may be imagined to behave like a halide ion, slightly larger and more polarizable than iodide ion. By applying this analogy, several properties of C_2 were estimated from the measured properties of molten NaI.

For convenience, a list of salt compositions and their corresponding liquidus temperatures are given after the abstract (page 2) and at the end of this report (page 46).

Uncertainties Listed with the Physical Property Values

Each contributor has stated what he believes is the error associated with the experimental result or with the estimated quantity. For most cases, the uncertainty represents considerably more than either "goodness of fit" of an interpolation or internal consistency available from thermodynamics. Instead, the uncertainty may be considered as the largest probable combination of systematic and random errors associated with the value given for the property. Where the listing is a property-temperature equation, the uncertainty is for the property calculated at the temperature substituted in the equation. In properties where the number of significant figures are not justified by the specified uncertainties, the extra significant figures are given to aid the reader in judging whether a particular salt is "less than" or "greater than" another salt for the property in question.

Although the magnitudes of the uncertainties are highly intuitive and often disappointingly large, they should be

taken seriously. Each contributor, while not necessarily qualifying as "expert" in the physical property, either possesses long experience in measuring the property or has carefully (and usually critically) reviewed the literature for that property. In other words, for each property the person whose name is given is at least a very interested observer and may also be an active participant.

For Further Information ---

It is best to contact the person (or persons) listed under the property heading. The editor hopes to provide addenda to this report as newer, more reliable, data become available.

VISCOSITY

S. Cantor

Viscosity-Temperature Equation

Salt	η in Centipoise, T in $^{\circ}$ K	Uncertainty
F_1	$\eta = 0.084 \exp (4340/T)$	25%
F_2	$\eta = 0.072 \exp (4370/T)$	25%
F_3	$\eta = 0.077 \exp (4430/T)$	25%
F_4	$\eta = 0.0444 \exp (5030/T)$	25%
$L_2 B$	$\eta = 0.116 \exp (3755/T)$	15%
C_1	$\eta = 0.04 \exp (3000/T)$	50%
C_2		

Sources of Data and Methods of Estimation

Salts F_1 - F_4 : Estimated empirically from viscosities in the system $\text{LiF-BeF}_2\text{-UF}_4$ (ref. 1) and also from measurements of $\text{LiF-BeF}_2\text{-ThF}_4$ (71-16-13 mole %).² It was assumed that the effect of ThF_4 concentration on viscosity was the same as that observed for UF_4 .

$L_2 B$: Measured³

C_1 and C_2 : The equation was derived from (a) preliminary measurements of NaBF_4 ,⁴ and (b) assuming that the temperature variation of viscosity for NaBF_4 is equal to that of NaI .⁵ Given the rather large uncertainty, the contribution of NaF (in C_1) to the viscosity may be considered negligible.

Discussion

Viscosities of Reactor Fuel Mixtures

From the reported viscosity measurements¹ of the system LiF-BeF₂-UF₄, two trends can be observed:

(a) for LiF concentrations of 60 mole % or greater, substitution of UF₄ for BeF₂ (at const. temp.) causes an increase in viscosity,

(b) increasing LiF from 60 to 70 mole %, at const. temp. and at const. UF₄ concentration, decreases the viscosity by, at most, a factor of 1/2; for most compositions the factor is closer to 3/4.

The data and trends observed for the system LiF-BeF₂-UF₄ can serve to predict reliably (i.e., to within 25%) the viscosities in the slightly different system, LiF-BeF₂-MF₄ (M is Th and/or U). Assuming that all single-region fuel mixtures will be restricted to the following ranges of component composition:

62 - 73 mole % LiF

15 - 30 mole % BeF₂

6 - 16 mole % MF₄ ,

then one may conclude that the predicted viscosities have a rather narrow range of values, e.g.,

at 600°C, 9 - 16 Centipoise

at 700°C, 5 - 9 Centipoise

References

1. B. C. Blanke et al., "Density and Viscosity of Fused Mixtures of Lithium, Beryllium, and Uranium Fluorides," MLM-1086, Dec. 1956.
2. Molten Salt Reactor Program Quar. Progr. Rept. Oct. 31, 1959, ORNL-2890, p. 21.
3. S. Cantor and W. T. Ward, Oak Ridge National Laboratory, unpublished measurements.
4. L. J. Wittenberg, Mound Laboratory, Miamisburg, Ohio. Oscillating-cup viscometry.
5. G. J. Janz et al., "Molten Salt Data. Electrical Conductance, Density and Viscosity," Technical Bulletin Series Rensselaer Polytechnic Institute, Troy, N. Y., July 1964, p. 79.

THERMAL CONDUCTIVITY

J. W. Cooke

<u>Salt</u>	<u>Thermal Conductivity^a</u> <u>in watt/(cm-⁰C)</u>	<u>Uncertainty</u>
F ₁	0.01 ₀ ^b	≥ ± 25%
F ₂	0.01 ₁ ^b	≥ ± 25%
F ₃	0.008 ₃ ^b	≥ ± 25%
F ₄	0.007 ₀ ^b	≥ ± 25%
L ₂ B	0.010	± 10%
C ₁	0.005 ₂	± 50%
C ₂	0.005 ₁	± 50%

^a

As a first approximation, the temperature dependence of thermal conductivity may be neglected. Although the thermal conductivity of molten salts does vary somewhat with temperature, uncertainties in measurements at a given temperature are usually greater than the temperature dependence over the whole range of temperature (usually an interval of 200⁰C).

^b

Before assuming anything about the relative values of the four fuel melts, please read the caveat in the Discussion.

Sources of Data and Methods of Estimation

Salts F₁ - F₄: Estimated by means of a theoretical expression derived by Rao¹ and adapted to molten salts by Turnbull.² The expression is

$$k \text{ (in w cm}^{-1} \text{ } ^{0}\text{C}^{-1}) = 11.9 \times 10^{-3} \frac{T_m^{1/2} \rho_m^{2/3}}{(M/n)^{7/6}}$$

where T_m = melting point (°K), ρ_m = liquid density in g cm⁻³ at T_m, M = average molar weight and n = average number of discrete

ions per molecule. Part of the expression,

$$11.9 \times 10^{-3} T_m^{1/2} \rho^{1/3} / (M/n)^{5/6} ,$$

is a good approximation to the average maximum Debye lattice frequency for single ionic salts.² It was found for eleven molten mixtures (nitrates or chlorides) that the above expression agreed with experimental results, on the average, to within 15%. For two fluoride melts, one L_2B ,³ the other, $LiF-BeF_2-ThF_4-UF_4$ (71.2-23.5-.8 mole %),³ the theoretical expression yielded values approximately 25% less than experimental. Note that the latter is very similar in composition to F_2 .

In applying the theoretical expression the liquidus temperature was substituted for T_m ; in computing n , the following ions were assumed: Li^+ , F^- , $(BeF_4)^{2-}$, $(ThF_5)^{-1}$, $(UF_5)^{-1}$. Assumption of the more plausible ions, $(ThF_7)^{-3}$ and $(UF_7)^{-3}$ leads to a lower and less reliable estimated thermal conductivity. Also, 15% was added to the estimated value because of the previously noted discrepancy for the cases of the two similar fluoride mixtures.

L_2B : Measured³

C_1 , C_2 : Very preliminary measurement³ on C_2 agrees with the theoretical expression.

Discussion

The relative conductivities of the four fuel mixtures, F_1-F_4 , are not more reliable than the absolute values. The tabulated conductivities were obtained from a theoretical

equation that was greatly extended to apply to these mixtures. The dearth of accurate experimental data prevents adequate testing of the extended theoretical expression either absolutely or relatively.

References

1. M. Rama Rao, Indian Journal of Physics 16, 30 (1942).
2. A. G. Turnbull, Australian Journal of Applied Science 12, 324 (1961).
3. J. W. Cooke, Oak Ridge National Laboratory, unpublished experimental results. The method of measurement is given on p. 15 in Proceedings of the Sixth Conference on Thermal Conductivity, Dayton, Ohio, Oct. 19-21, 1966.

ELECTRICAL CONDUCTIVITY

G. D. Robbins

Salt	Specific Conductivity - Temperature Equation	Uncertainty
κ in $(\text{ohm}\cdot\text{cm})^{-1}$, t in $^{\circ}\text{C}$		
F_1	$\kappa = 1.72 + 8.0 \times 10^{-3} (t-500)$	$\pm 20\%$
F_2	$= 1.63 + 7.3 \times 10^{-3} (t-500)$	$\pm 20\%$
F_3	$= 1.66 + 6.4 \times 10^{-3} (t-500)$	$\pm 20\%$
F_4	$= 1.94 + 7.1 \times 10^{-3} (t-500)$	$\pm 20\%$
$L_2\text{B}$	$= 1.54 + 6.0 \times 10^{-3} (t-500)$	$\pm 10\%$
C_1	$= 2.7 + 13 \times 10^{-3} (t-500)$	$\pm 50\%$
C_2	$= 1.92 + 2.6 \times 10^{-3} (t-500)$	$\pm 20\%$

Sources of Data and Method of Estimation

For 6 salts κ was estimated empirically from data on related or analogous salt melts. Often the assumptions employed were not those which seemed physically most reasonable, but those which resulted in the most self-consistent correlation of the data. Therefore, estimated κ 's are believed to have relatively large uncertainties. The number of significant figures in the equations for κ vs. t are not meant to contradict the listed uncertainties, but rather are intended to show differences between salt mixtures whose conductivities are predicted to be very similar.

Salts F_1 - F_4 : The following equations were employed in these estimates:

$$\Lambda_{\Theta} = \kappa_{\Theta} \cdot \frac{M_e}{\rho_{\Theta}}$$

$$\Theta = \frac{T_{\Theta} ({}^{\circ}\text{K})}{T_{\text{liquidus}} ({}^{\circ}\text{K})}$$

$$M_e = X_{\text{LiF}} M_{\text{LiF}} + \frac{1}{4} X_{\text{ThF}_4} M_{\text{ThF}_4} + \frac{1}{2} X_{\text{BeF}_2} M_{\text{BeF}_2}$$

Λ_Θ = equivalent conductivity at a corresponding temperature Θ
 κ_Θ = specific conductivity at Θ
 ρ_Θ = density at Θ
 M_e = equivalent weight of a mixture
 M = formula weight of a component
 X = mole fraction
 X' = equivalent fraction

At several values of Θ smoothed curves of Λ_Θ vs X'_{ThF_4} were obtained from conductivities of the system LiF-ThF₄ measured by Brown and Porter.¹ Liquidus temperatures reported in references 2 and 3 were used in calculating Θ . Similar curves for LiF-BeF₂ were derived by plotting the experimental results for a single composition (66 mole % LiF)⁴ and assuming that the variation of Λ_Θ with X' in the LiF-BeF₂ system was equal to that in LiF-ThF₄. (For these estimates UF₄ was treated as indistinguishable from ThF₄.) The equations of κ vs. t given above were then derived by assuming that Λ_Θ is additive in X'_{ThF_4} and X'_{BeF_2} for a given concentration of LiF.

L₂B: Preliminary measurements.⁴

C₂: The ratio $\Lambda_{\text{ONaI}}/\Lambda_{\text{OKI}}$ appeared relatively constant in the range $\Theta = 1.05 - 1.20$ (data for NaI and KI from ref. 5). Assuming that $\Lambda_{\text{ONaBF}_4}/\Lambda_{\text{OKBF}_4} = \Lambda_{\text{ONaI}}/\Lambda_{\text{OKI}}$, specific conductance data of Winterhager and Werner⁶ for KBF₄ were combined with density estimates for KBF₄ and NaBF₄⁷ to obtain values of Λ_{ONaBF_4} vs. Θ (liquidus temperatures, from reference 8).

C₁ : Specific conductivity data in the range 47 to 77 mole % NaBF₄ in the NaF-NaBF₄ system⁹ were combined with those calculated for pure NaBF₄ (see C₂) to interpolate κ for the composition NaBF₄-NaF (92-8 mole %). The large uncertainty listed reflects a lack of confidence in the data reported in reference 9.

Discussion

Specific conductivity is determined from resistance measurements according to the relation

$$\kappa = \frac{1}{R_{\infty}} (\ell/a)$$

where (ℓ/a) is the cell constant. For a given apparatus and set of experimental conditions, the measured value of resistance can vary with the frequency of the applied potential wave form.¹⁰ The values of κ listed above are valid for resistance extrapolated to infinite frequency (denoted as R_{∞}). Thus predicting the resistance of the melt which will be measured in a particular experimental arrangement not only requires a value for conductivity κ , but also presupposes a knowledge of the frequency dispersion characteristics of the measuring device.

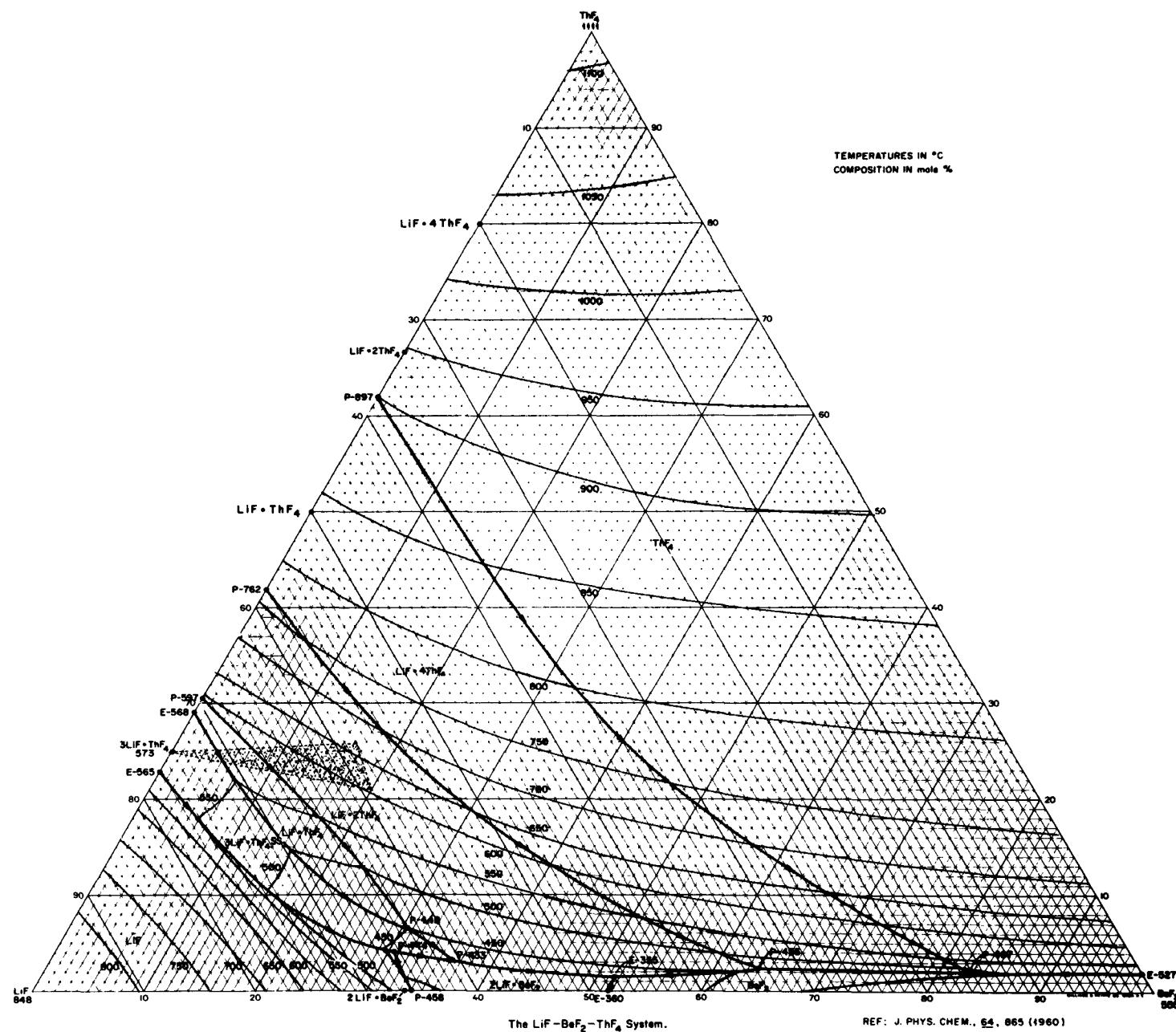
REFERENCES

1. Brown, E.A. and B. Porter, U.S. Bureau of Mines Report of Investigations 6500 (1964).
2. Thoma, R.E., H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, J. Phys. Chem. 63, 1266 (1959).
3. Thoma, R. E., et al, ibid., 64, 865 (1960).
4. Robbins, G. D. and J. Braunstein, Molten Salt Reactor Program Semiannual Progress Report for Period Ending February 29, 1968, ORNL-4254.
5. Yaffe, I. S. and E. R. Van Artsdalen, J. Phys. Chem., 60, 1125 (1956).
6. Winterhager, H. and L. Werner, "Forschungsber. des Wirtschafts u. Verkehrsministeriums Nordrhein - Westfalen, No. 438, 1956.
7. Cantor, S., this report.
8. Barton, C. J., L. O. Gilpatrick, J. A. Bornmann, H. Insley, and T. N. McVay, Molten Salt Reactor Program Semiannual Progress Report for Period Ending August 31, 1967, ORNL-4191, p. 158.
9. Selivanov, V. G. and V. V. Stender, Russian J. Inorg. Chem., 4, 934 (1959).
10. Robbins, G. D., "Electrical Conductivity of Molten Fluorides. A Review," ORNL-TM-2180, March 26, 1968.

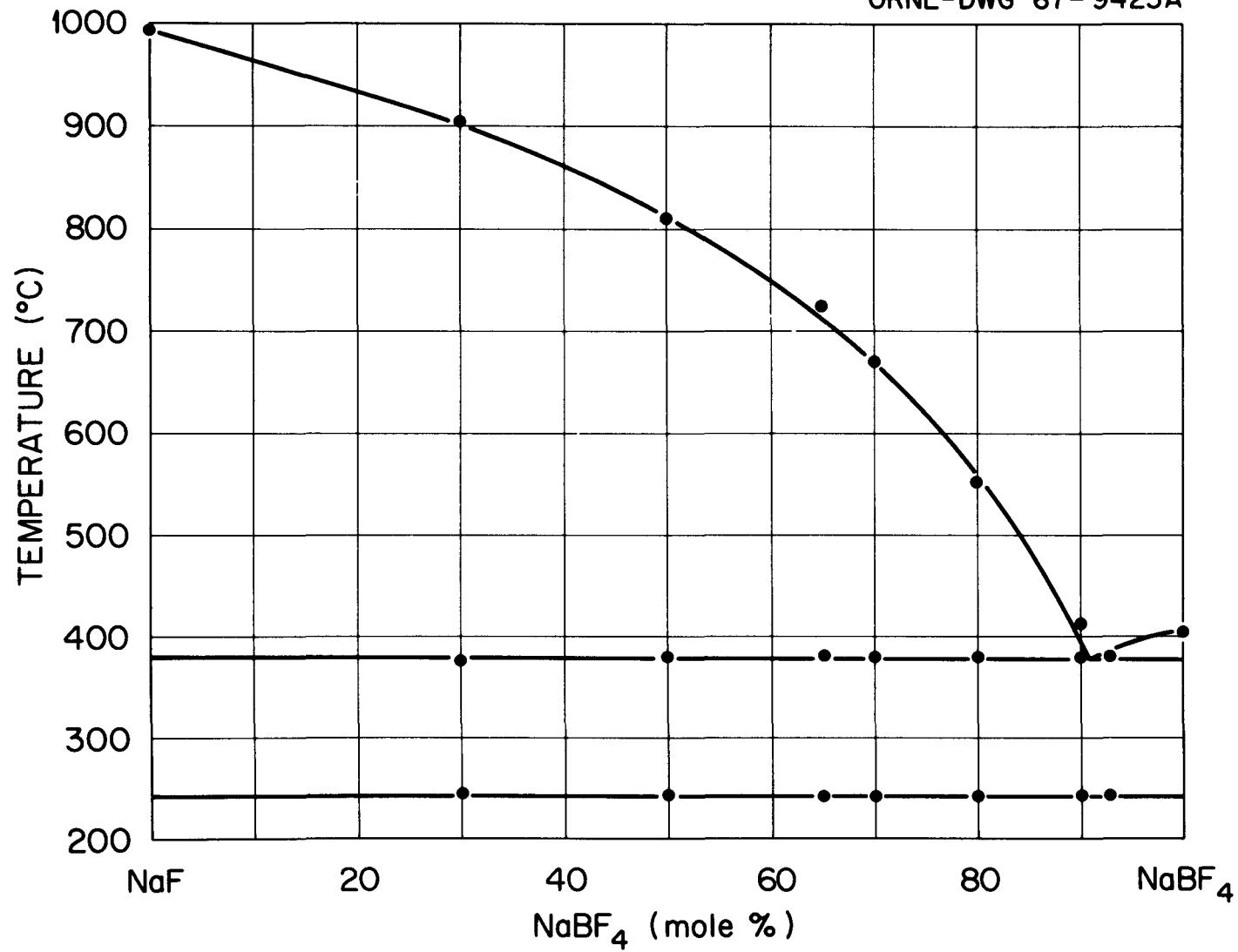
PHASE TRANSITION BEHAVIOR

R. E. Thoma

<u>Salt</u>	<u>Type of Transition</u>	<u>Temp. (°C)</u>	<u>Crystallization Sequence at Equilibrium</u>
F ₁	Liquidus	500±5	$\text{Liq} \rightleftharpoons \text{LiF} + \text{L}_3\text{T}^a + \text{Liq}$
	Solidus	444±5	Btwn 500-444: $\text{LiF} + \text{L}_3\text{T} + \text{Liq}$ $\text{LiF} + \text{L}_3\text{T} + \text{Liq} \rightleftharpoons \text{LiF} + \text{L}_3\text{T} + \text{Li}_2\text{BeF}_4$
F ₂	Liquidus	500±5	$\text{Liq} \rightleftharpoons \text{LiF} + \text{Liq}$ Btwn 500-495: $\text{LiF} + \text{Liq}$
	Solidus	444±5	Btwn 495-444: $\text{LiF} + \text{L}_3\text{T} + \text{Liq}$ Same as for F ₁
F ₃	Liquidus	480±5	$\text{Liq} \rightleftharpoons \text{L}_3\text{T} + \text{LT}^b + \text{Liq}$ Btwn 480-448: $\text{L}_3\text{T} + \text{LT} + \text{Liq}$
	Solidus	440 ^c	Btwn 448-440: $\text{L}_3\text{T} + \text{Liq}$ $\text{L}_3\text{T} + \text{Liq} \rightleftharpoons \text{L}_3\text{T} + \text{L}_2\text{B}$
F ₄	Liquidus	500±5	$\text{Liq} \rightleftharpoons \text{LT}_2^d + \text{Liq}$ Btwn 500-495: $\text{LT}_2 + \text{Liq}$
	Solidus	448±5	Btwn 495-490: $\text{LT}_2 + \text{LT} + \text{Liq}$ 490: $\text{LT}_2 + \text{LT} + \text{Liq} \rightleftharpoons \text{L}_3\text{T} + \text{Liq}$ Btwn 490-448: $\text{L}_3\text{T} + \text{Liq}$ $\text{Liq} + \text{L}_3\text{T} \rightleftharpoons \text{Li}_2\text{BeF}_4 + \text{L}_3\text{T}$
L ₂ B	Peritectic	458±1	$\text{Liq} \rightleftharpoons \text{Li}_2\text{BeF}_4 + \text{Liq}$
	Solidus	360±3	Btwn 458-360: $\text{Li}_2\text{BeF}_4 + \text{Liq}$ $\text{Li}_2\text{BeF}_4 + \text{Liq} \rightleftharpoons \text{Li}_2\text{BeF}_4 + \text{BeF}_2$
C ₁	Eutectic Solid-Solid	385±1 245±1	$\text{Liq} \rightleftharpoons \text{NaBF}_4(\text{cubic}) + \text{NaF}$ $\text{NaBF}_4(\text{cubic}) + \text{NaF} \rightleftharpoons \text{NaBF}_4(\text{orthorhombic}) + \text{NaF}$
C ₂	Melting Point Solid-Solid	407±1 245±1	$\text{Liq} \rightleftharpoons \text{NaBF}_4(\text{cubic})$ $\text{NaBF}_4(\text{cubic}) \rightleftharpoons \text{NaBF}_4(\text{orthorhombic})$


- a. L₃T is an abbreviation for the solid solution, Li₃(Th,Be)F₇, shown as the peppered triangle in the accompanying phase diagram of LiF-BeF₂-ThF₄ system.
- b. LT is the abbreviation for LiThF₅.
- c. No precision has been assigned because this temperature has not been experimentally established.
- d. LT₂ is the abbreviation for LiTh₂F₉.

Sources of Data


Phase equilibria in the system, $\text{LiF-BeF}_2\text{-ThF}_4$ - see next page.

Phase equilibria in the system, LiF-BeF_2 - R. E. Thoma, H. Insley, H. A. Friedman, and G. M. Hebert, Journal of Nuclear Materials 27, in press 1968.

Phase equilibria in the system, $\text{NaBF}_4\text{-NaF}$ - C. J. Barton, L. O. Gilpatrick, et al., MSRP Semiann. Progr. Rept. Feb. 29, 1968, USAEC Report ORNL-4254. The phase diagram is given on page 21.

ORNL-DWG 67-9423A

The System NaF - NaBF₄.

HEAT CAPACITY (at constant pressure)

A. S. Dworkin

<u>Salt</u>	<u>C_p in cal. $g^{-1} \text{ } ^\circ\text{C}^{-1}$; t in $^\circ\text{C}$</u>	<u>Uncertainty</u>
F_1 liquid	0.34	\pm 4%
solid	$0.22 + 12.7 \times 10^{-5} \text{ } t$	\pm 10
F_2 liquid	0.39	\pm 4
solid	$0.27 + 12.7 \times 10^{-5} \text{ } t$	\pm 10
F_3 liquid	0.33	\pm 4
solid	$0.21 + 12.7 \times 10^{-5} \text{ } t$	\pm 10
F_4 liquid	0.33	\pm 4
solid	$0.21 + 12.7 \times 10^{-5} \text{ } t$	\pm 10
L_2B liquid	0.57	\pm 3
solid	$0.317 + 3.61 \times 10^{-4} \text{ } t$	\pm 3
C_1 liquid	0.360	\pm 2
solid ($243-381^\circ\text{C}$)	0.34	\pm 3
solid ($25-243^\circ\text{C}$)	$0.23 + 5.8 \times 10^{-4} \text{ } t$	\pm 6
C_2 liquid	0.36	\pm 2
solid ($243-406^\circ\text{C}$)	0.33	\pm 3
solid ($25-243^\circ\text{C}$)	$0.23 + 6.0 \times 10^{-4} \text{ } t$	\pm 6

Sources of Data and Methods of Estimation

Salts $\text{F}_1 - \text{F}_4$: Liquid heat capacities were estimated by assuming mole-fraction additivity and assigning 16, 24, and 44 cal mole $^{-1} \text{ } ^\circ\text{C}^{-1}$ for the respective contributions of LiF , BeF_2 , and ThF_4 . The heat capacities for the solids were estimated by assuming that (a) temperature coefficient and (b) difference in C_p between liquid and solid are the same as that measured for $\text{LiF-BeF}_2\text{-ThF}_4$ (72-16-12 mole %).¹

L_2B : Liquid C_p is the average of two independent sets of measurements. Hoffman² obtained 0.577 cal. $g^{-1} \text{ } ^\circ\text{C}^{-1}$; Douglas and Payne³ obtained 0.56 cal $g^{-1} \text{ } ^\circ\text{C}^{-1}$. The solid heat capacity

is that of Douglas and Payne.

C₁: Measured¹

C₂: Measured.¹ Agrees within experimental error with that derived from C₁ by subtracting enthalpy contribution of NaF⁴ assuming negligible heat of mixing between NaBF₄ and NaF.

Discussion

The values of 16 and 24 cal mole⁻¹ °C⁻¹ were chosen for the respective C_p contributions of LiF and BeF₂ because 8 cal (g-atom)⁻¹ °C⁻¹ is the average observed for alkali and alkaline earth halides.⁵ The C_p of 44 cal mole⁻¹ °C⁻¹ for the contribution of ThF₄ was assumed from the average value of 8.8 cal (g-atom)⁻¹ °C⁻¹ for lanthanide halides.⁶

The validity of using the indicated additive contributions for estimating liquid heat capacities was checked by comparing with measured values of three related salts:

Salt Mixture	Estimated C _p	Measured C _p	References
L ₂ B	0.57 cal g ⁻¹ °C ⁻¹	0.57	2, 3
LiF-BeF ₂ -ThF ₄ 72 - 16 - 12 m %	0.32 ₆	0.324	1
LiF-ThF ₄ 75 - 25 m %	0.24	0.25	7

References

1. A. S. Dworkin, Oak Ridge National Laboratory, unpublished measurements.
2. H. W. Hoffman and J. W. Cooke, Oak Ridge National Laboratory, unpublished measurements.
3. T. B. Douglas and W. H. Payne, Natl. Bur. Std. Report No. 8186, Washington, D. C., pp. 75-82.
4. K. K. Kelley, U. S. Bureau of Mines Bulletin 584, (1960) p. 171.
5. S. Cantor, Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1965, ORNL-3913, pp. 29-32.
6. A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 67, 697 (1963); 67, 2499 (1963).
7. R. A. Gilbert, Oak Ridge National Laboratory, unpublished measurements.

HEAT OF FUSION

A. S. Dworkin

Salt	ΔH_{fusion} (cal g ⁻¹)	Uncertainty
F ₁	62	± 10%
F ₂	67	± 15
F ₃	58	± 15
F ₄	63	± 15
L ₂ B	107	± 3
C ₁	31	± 2
C ₂	29	± 2
ΔH of solid transition (cal g ⁻¹)		
C ₁	14.5 (at 243°C)	± 2%
C ₂	14.7 (at 243°C)	± 2

Sources of Data and Methods of Estimation

Salts F₁ - F₄: Although there is no isothermal heat of fusion, estimations were made as if all the melting (or freezing) occurred at 500°C. The salts were treated as additive mixtures of the components, Li₂BeF₄, Li₃ThF₇, and LiF or ThF₄. Li₂BeF₄ was considered to be "formed" first from the BeF₂ present and the appropriate quantity of LiF. The remainder of the mixture was then considered to consist of Li₃ThF₇ and either LiF or ThF₄, whichever was "in excess." For example, for 1 mole of salt F₁, .16 moles of BeF₂ and .32 moles of LiF form .16 moles of Li₂BeF₄ while .11 moles of ThF₄ and the remaining .41 moles of LiF give .11 moles of Li₃ThF₇ and .08 moles of LiF. The estimation is then made on the basis of .16 moles Li₂BeF₄, .11 moles ThF₄ and .08 moles LiF.

The following heats of fusion were used in making the estimations:

Li_2BeF_4	10,600 cal mole ⁻¹	(ref. 1)
Li_3ThF_7	13,960 cal mole ⁻¹	(ref. 2)
LiF	6,470 cal mole ⁻¹	(ref. 3)
ThF_4	11,000 cal mole ⁻¹	estimated by assuming the entropy of fusion is the same as that of UF_4 (ref. 4)

L₂B: Measured.¹

C₁ and C₂: Measured.⁵ C₂ agrees within experimental error with that calculated by subtracting the contribution of the heat of fusion of NaF ⁶ from C₁.

Discussion

Although the assumptions used in estimating ΔH_{fusion} for salts F₁ - F₄ are highly intuitive, it is encouraging to note that the estimated and measured⁷ ΔH_{fusion} are respectively 57.5 and 59 cal g⁻¹ for the salt mixture $\text{LiF-BeF}_2\text{-ThF}_4$ (72-16-12 mole %).

For salts F₁ - F₄, to obtain the heat necessary to convert the solid at the solidus temperature to the melt at the liquidus temperature, an additional 10 to 15 cal g⁻¹ should be added to the above listed heats of fusion. For convenience in calculating the quantity of heat necessary to raise the salt from room temperature to any desired temperature, the following heat content equations (based on measurements) are included:

$\text{LiF-BeF}_2\text{-ThF}_4$ (72-16-12 mole %) - ref. 5

Solid: $H_t - H_{25}$ (cal g^{-1}) = $-5.28 + .207t + 6.33 \times 10^{-5}t^2$;
 $(25 - 440^\circ\text{C})$

Liquid: $H_t - H_{25}$ (cal g^{-1}) = $11.34 + .324t$ ($500 - 750^\circ\text{C}$)

LiF-BeF_2 (66-34 mole %)

Solid: $H_t - H_{0^\circ\text{C}}$ (cal g^{-1}) = $0.3179t - 1.806 \times 10^{-4}t^2$;
 $(0 - 472^\circ\text{C})$ - ref. 1

Liquid: $H_t - H_{0^\circ\text{C}}$ (cal g^{-1}) = $32.632 + 0.561t$; ($472 - 600^\circ\text{C}$) -
ref. 1

$H_t - H_{30}$ (cal g^{-1}) = $33.62 + 0.577(t-30)$; ref. 7

$\text{NaBF}_4\text{-NaF}$ (92-8 mole %) - ref. 5

Solid: $H_t - H_{25}$ (cal g^{-1}) = $-5.90 + .230t + 2.90 \times 10^{-4}t^2$;
 $(25 - 243^\circ\text{C})$

$H_t - H_{25}$ (cal g^{-1}) = $0.40 + .337t$; ($243 - 381^\circ\text{C}$)

Liquid: $H_t - H_{25}$ (cal g^{-1}) = $22.1 + .360t$; ($381 - 600^\circ\text{C}$)

References

1. T. B. Douglas and W. H. Payne, Natl. Bur. Std. Report No. 8186, Washington, D. C., pp. 75-82.
2. R. A. Gilbert, J. Chem. Eng. Data, 7, 388 (1962).
3. T. B. Douglas and J. L. Dever, J. Am. Chem. Soc. 76, 4826 (1954).
4. E. G. King and A. U. Christensen, U. S. Bureau of Mines Report of Investigations 5709, 1961.
5. A. S. Dworkin, Oak Ridge National Laboratory, unpublished measurements.
6. K. K. Kelley, U. S. Bureau of Mines Bulletin 584, (1960) p. 171.
7. H. W. Hoffman and J. W. Cooke, Oak Ridge National Laboratory, unpublished measurements.

DENSITY OF LIQUID

(S. Cantor)

Density-Temperature Equation

Salt	ρ (in g/cm ³)	t (in °C)	Uncertainty
F ₁	$\rho = 3.628 - 6.6 \times 10^{-4} t$		3%
F ₂	$= 3.153 - 5.8 \times 10^{-4} t$		3
F ₃	$= 3.687 - 6.5 \times 10^{-4} t$		3
F ₄	$= 3.644 - 6.3 \times 10^{-4} t$		3
L ₂ B	$= 2.214 - 4.2 \times 10^{-4} t$		2
C ₁	$= 2.27 - 7.4 \times 10^{-4} t$		5
C ₂	$= 2.26 - 7.4 \times 10^{-4} t$		5

Sources of Data and Methods of Estimation

Salts F₁ - F₄ - Estimated by additivity of molar volumes (see Ref. 1). The following molar volumes were used:

	<u>600°C</u>	<u>800°C</u>	<u>Ref.</u>
LiF	13.411 cm ³	14.142 cm ³	2
BeF ₂	23.6	24.4	1, 3
ThF ₄ and UF ₄	46.43	47.59	2

Salt L₂B - Three experimental determinations have been reported; refs. 5 and 6 were over a wide temperature range with the densities of ref. 6 averaging 3% higher than ref. 5. Reference 4 reports densities at 649°C which vary from 1.87 to 2.02 g cm⁻³. The density-temperature equation given above

was derived from additive molar volumes; this equation yields densities that are approximately the average of the densities of refs. 5 and 6.

Salt C₁ - Preliminary pyknometric measurements.⁷

Salt C₂ - The relatively small concentration of NaF in C₁ would be expected to increase the density slightly over that for "pure" NaBF₄. The density-temperature equation was calculated by subtracting the contribution of NaF (ref. 1) from the molar volume of C₁.

References

1. S. Cantor, Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1965, USAEC Report ORNL-3913, pp. 27-29.
2. D. G. Hill, S. Cantor, and W. T. Ward, J. Inorg. Nucl. Chem. 29, 241 (1967).
3. C. T. Moynihan, S. Cantor, unpublished measurements at Oak Ridge National Laboratory, 1966.
4. MSR Program Semiann. Progr. Rept. Aug. 31, 1965, USAEC Report ORNL-3872, p. 31.
5. B. C. Blanke et al., "Density and Viscosity of Fused Mixtures of Lithium, Beryllium and Uranium Fluorides," USAEC Report MLM-1086, Dec. 1956, p. 18.
6. B. J. Sturm and R. E. Thoma, Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1965, USAEC Report ORNL-3913, pp. 50-51.
7. S. Cantor and J. Bornmann, unpublished measurements at Oak Ridge National Laboratory, 1968.

EXPANSIVITY (VOLUME COEFFICIENT OF THERMAL EXPANSION)

S. Cantor

<u>Salt</u>	<u>Estimated Value at 600°C^a</u>	<u>Uncertainty</u>
F ₁	2.0 ₄ x 10 ⁻⁴ /°C	25%
F ₂	2.0 ₇	25
F ₃	1.9 ₇	25
F ₄	1.9 ₃	25
L ₂ B	2.1 ₄	20
C ₁	4.0	40
C ₂	4.0	40

^aFor estimating the expansivity at other temperatures, please substitute in the appropriate density-temperature equation. (see discussion below).

Sources of Data and Methods of Estimation

The expansivity is defined as

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$$

where V, T and P are volume, temperature and pressure. Since density is inversely proportional to volume, the expansivity is usually derived from density-temperature data:

$$\alpha = - \frac{1}{\rho} \frac{d\rho}{dT} \quad (P \text{ ordinarily one atm.})$$

Most density data for liquids are linear with and decrease with temperature, i.e.,

$$\rho = \rho_0 - a t \quad (1)$$

ρ_0 and a are constants; t is usually in degrees Celsius. Thus,

expansivity is very simply

$$\alpha = \frac{a}{\rho} \quad (2)$$

The tabulated expansivities are consistent with the corresponding density-temperature equations in the "Density of Liquid" section of this report. To calculate the expansivity for any temperature, substitute in equations (1) and (2). As a rough approximation, the expansivity is one half to one third of the temperature coefficient of density as given by the constant a in eqn. (1).

References

Same as for the "Density of Liquid" section, page 29.

COMPRESSIBILITY (ISOTHERMAL)^a

S. Cantor

Compressibility-Temperature Equation

Salt

 β_T in $\text{cm}^2 \text{dyne}^{-1}$, T in $^{\circ}\text{K}$ F_1 F_2 F_3 F_4 $L_2\text{B}$

$$\beta_T = 2.3 \times 10^{-12} \exp (1.0 \times 10^{-3} T)$$

 C_1 C_2

$$\beta_T = 9.0 \times 10^{-12} \exp (1.6 \times 10^{-3} T)$$

The compressibilities pertain to the liquid and are all estimated; the uncertainty is a factor of 3.

^aIsothermal compressibility is a function of pressure as well as temperature. The tabulated equations are less reliable at higher pressures (>50 atm).

Methods of Estimation

Salts $F_1 - F_4$, $L_2\text{B}$: Estimated empirically from the compressibility-temp. equations of LiF and Li_2SO_4 (see ref. 1).

C_1 and C_2 : Assumed to be slightly more compressible than NaI (see ref. 1).

Reasonable values derived for C_p/C_v and for sonic velocities (see Appendix A of this report) lend support to these estimated compressibilities.

References

1. S. Cantor, Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1966, ORNL-4076, pp. 24-25.

VAPOR PRESSURE

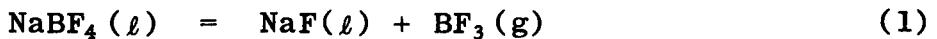
S. Cantor

Salt ^a	Pressure-Temperature Equation (P in torr, T in $^{\circ}$ K)	Uncertainty in Pressure
F_1	$\log P = 8.0 - \frac{10,000}{T}$	A factor of fifty from 500-700 $^{\circ}$ C
F_2		
F_3		
F_4		
$L_2 B$	$\log P = 9.04 - \frac{10,500}{T}$	A factor of ten from 500-700 $^{\circ}$ C
C_1	$\log P$ (of BF_3 vapor) ^b = $9.024 - \frac{5,920}{T}$	$\pm 10\%$ from 400-700 $^{\circ}$ C
C_2	Pressure of BF_3 depends on amount of salt and on vapor volume (see Discussion below)	

^aIn no case is the composition of the vapor congruent with the composition of the melt.

^bThe pressures given by the equation are those in equilibrium with a melt whose composition is fixed at $NaBF_4$ - NaF (92-8 mole %).

Sources of Data and Methods of Estimation


Salts F_1 - F_4 : Estimated empirically from vapor pressure data of the LiF - BeF_2 system¹ and of LiF - UF_4 (73-27 mole %).² Although the uncertainty is relatively large, please note that the vapor pressures for the 500 - 700 $^{\circ}$ C temperature range are quite low (between 10^{-2} and 10^{-5} torr).

$L_2 B$: Estimated from data in the LiF - BeF_2 system.²

C_1 : Experimentally determined.³

Discussion - The Dissociation Pressure of NaBF₄

When NaBF₄ is thermally equilibrated at a temperature above its melting point the following dissociation occurs:

The dissociation product, NaF, dissolves in the NaBF₄. The system described by the above equation is bivariant; thus, a constant partial pressure of BF₃ above the melt requires that the temperature and the melt composition both be constant. For reaction (1) the BF₃ pressure is related to the composition of the melt by the equation:

$$P_{\text{BF}_3} = K \frac{a_{\text{NaBF}_4}}{a_{\text{NaF}}} \quad (2)$$

where K is the equilibrium constant and a_i is activity. The temperature dependence of K has been derived from experimental data³ and is given by

$$\ln K \text{ (in atm)} = \frac{-29,800}{RT \text{ (in } ^\circ\text{K)}} + \frac{26.41}{R} \quad (3)$$

[29,800 cal and 26.41 cal (°K)⁻¹ are the enthalpy and entropy of the reaction; R, the gas constant, is 1.98717 cal (°K)⁻¹ (g-mole)⁻¹].

A consequence of the bivariance of the NaBF₄-NaF system is that the equilibrium BF₃ vapor pressure is difficult to predict for melts in which the concentration of NaBF₄ is very large (>98 mole %). For these concentrations, a_{NaBF_4} is virtually unity, but a_{NaF} is very small (<0.1); hence, by

equation (2), P_{BF_3} tends to be quite high. Thus for any experiment in which crystalline $NaBF_4$ is encapsulated, the temperature of the sample should be kept as low as necessary or else sufficient vapor space should be included so as to permit the dissociation reaction (1) to occur.

References

1. S. Cantor, D. S. Hsu, and W. T. Ward, Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1965, ORNL-3913, pp. 24-6.
2. S. Cantor, Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1966, ORNL-4076, p. 26.
3. S. Cantor, C. E. Roberts, and H. F. McDuffie, Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1967, ORNL-4229, pp. 55-57.

SURFACE TENSION

J. W. Cooke, S. Cantor

Salt	Surface Tension-Temperature Equation γ in dynes/cm, t in $^{\circ}\text{C}$	Uncertainty
F_1		
F_2		
F_3		
F_4		
$L_2\text{B}$		
	$\gamma = 260 - 0.12 t$	+30, -10%
C_1	$\gamma = 130 - 0.075 t$	$\pm 30\%$
C_2	$\gamma = 120 - 0.075 t$	$\pm 25\%$

Sources of Data and Methods of Estimation

Salts F_1 - F_4 , $L_2\text{B}$: Estimated primarily from maximum bubble pressure measurements on NaF-BeF_2 , ¹ $\text{LiF-BeF}_2\text{-ThF}_4\text{-UF}_4$, ² LiF , ³ and ThF_4 ³ melts. Measurements at one temp. (480°C) of LiF-BeF_2 (63-37 mole %)⁴ by the ring method tends to support bubble pressure values. Sessile drop measurements⁵ on $L_2\text{B}$, on $\text{LiF-BeF}_2\text{-ZrF}_4\text{-ThF}_4\text{-UF}_4$ (70-23-5-1-1), and on other fluoride melts would have led to higher predicted values. The higher uncertainty in the positive direction expresses the possibility that the sessile drop investigations might have yielded more accurate surface tensions.

Salt C_1 and C_2 : Assumed that NaBF_4 (C_2) and NaI ⁶ exhibit (a) equal surface tensions at their melting points, (b) equal temperature coefficients of surface tension. Then

it was assumed that NaF in C₁ increased the surface tension over that of C₂ by 10%.

References

1. MSRP Quar. Progr. Rept. July 31, 1960, ORNL-3014, p. 83.
2. MSRP Quar. Progr. Rept. April 30, 1959, ORNL-2723, p. 42.
3. G. J. Janz and J. Wong, "Molten Salts: Surface Tension Data," Troy, N. Y., Nov. 1967. Preprint of critical review of surface tension data of single-salt melts for the Standard Reference Data Project of the National Bureau of Standards.
4. B. J. Sturm, MSRP Quar. Progr. Rept. Oct. 31, 1958, ORNL-2626, p. 94.
5. P. J. Kreyger, S. S. Kirslis, F. F. Blankenship, Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1964, ORNL-3591, pp. 38-42.
6. R. B. Ellis, "Surface Tension, Viscosity, and Raman Spectra of Fused Salts," U. S. Atomic Energy Commission Report ORO-2073-12, April 14, 1967, p. 3.

SOLUBILITY OF HELIUM, KRYPTON, AND XENON

G. M. Watson

Unit of solubility - 10^{-8} moles of inert gas per (cm³ melt-atm).

Salt	Temperature (°C)	He	Kr	Xe
F_1	500	6.6	0.13	0.03
F_2		10.6	0.55	0.17
F_3		15.1	1.7	0.67
F_4		20.1	4.4	2.0
L_2B	800			
C_1	500 600 700 800	44	20	12
		52	40	28
		60	69	54
		66	106	91
C_2	500 600 700 800	52	32	21
		61	61	46
		69	100	84
		75	148	136

All solubilities are estimated; the uncertainty
is a factor of ten or greater.

Sources of Data and Methods of Estimation

Solubilities of noble gases were estimated by a method originally proposed by Blander et al.¹ The expression used in estimating the values given above is:

$$K_p = \frac{1}{RT} \text{ (polarization correction)} \exp \left(\frac{-18.08 r^2 \gamma}{RT} \right)$$

where

K_p = moles of gas/(cm³ melt-atm)

r is the radius of the noble gas in Angstroms

γ is the surface tension of the liquid in dyne cm⁻¹

R in the pre-exponential term = 82.0561 cm³-atm (°K)⁻¹

(g-mole)⁻¹; in the exponential term R = 1.98717 cal

(°K)⁻¹ (g-mole)⁻¹

T is the absolute temperature in °K.

The numerical values for the radii and for the "polarization corrections" are:

	He	Kr	Xe
Radius (Angstroms)	1.22	2.0	2.18
Polarization correction	0.14	1.0	1.34

The polarization corrections were determined empirically by comparison of experimental and calculated noble gas solubilities in NaF-ZrF₄ (53-47 mole %),² NaF-KF-LiF eutectic,^{1,3} and LiF-BeF₂ (64-36 mole %).³ The surface tensions used appear in this report on page 36.

The rather large uncertainty in the gas solubilities can be rationalized from the following considerations:

- a. Experimental¹⁻³ and calculated (using the equation given in the previous paragraph) solubilities agreed to within a factor of three,
- b. Calculated solubilities depend exponentially on the assumed value of the surface tension; for the salts of this report the surface tension, in each case estimated, has a large uncertainty.

References

1. M. Blander, W. R. Grimes, N. V. Smith, and G. M. Watson, J. Phys. Chem. 63, 1164 (1959).
2. W. R. Grimes, N. V. Smith, and G. M. Watson, J. Phys. Chem. 62, 862 (1958).
3. G. M. Watson, R. B. Evans III, W. R. Grimes, and N. V. Smith, J. Chem. Eng. Data 7, 285 (1962).

SOLUBILITY OF BF_3 GAS

S. Cantor, G. M. Watson

Unit of Solubility - 10^{-4} moles BF_3 per (cm^3 melt-atm)

Salt	Temperature ($^{\circ}\text{C}$)			
	500	600	700	800
F_1	3.4	1.1	0.44	0.19
F_2	3.4	1.1	0.44	0.19
F_3	2.8	0.95	0.39	0.20
F_4	2.4	0.83	0.35	0.18
L_2B	3.2	1.0	0.38	0.18
C_1	See section on Vapor Pressures, page 33.			
C_2				

All solubilities are estimated; the uncertainty is a factor of ten or greater.

Sources of Data and Methods of Estimation

Solubilities of BF_3 were assumed to be analogous to solubilities of HF. For $\text{LiF-BeF}_2\text{-ZrF}_4\text{-ThF}_4\text{-UF}_4$ (65-28-5-1-1 mole %) the measured BF_3^1 and HF^2 solubilities both exhibited negative temperature dependence (inert-gas solubilities in fluoride melts are much smaller and show positive temperature dependence). The ratio of BF_3 to HF solubility in the range 500-800 $^{\circ}\text{C}$ for this melt was the multiple used to estimate the

BF_3 solubility in L_2B from the measured values of HF solubility.³

Solubility of HF in $\text{F}_1\text{-F}_4$ was estimated by assuming the same "free fluoride" concentration dependence as had been observed for LiF-BeF_2 mixtures.⁴ (For $\text{F}_1\text{-F}_4$, free fluoride is defined as X_{LiF} minus $(2X_{\text{BeF}_2} + 3X_{\text{MF}_4})$, where X is mole percent; for LiF-BeF_2 mixtures, free fluoride equals X_{LiF} minus $2X_{\text{BeF}_2}$). The BF_3 solubilities were then calculated by multiplying the estimated HF solubilities by the same ratios that were derived from the melt where both gas solubilities had been measured.

References

1. J. H. Shaffer, W. R. Grimes and G. M. Watson, Nucl. Sci. Eng. 12, 337 (1962).
2. J. H. Shaffer and G. M. Watson, Reactor Chem. Div. Ann. Prog. Rept. Jan. 31, 1961, ORNL-3127, pp. 13-14.
3. P. E. Field and J. H. Shaffer, J. Phys. Chem. 71, 3218 (1967).
4. J. H. Shaffer and G. M. Watson, Reactor Chem. Div. Ann. Prog. Rept. Jan. 31, 1960, ORNL-2931, pp. 31-32.

APPENDIX A

ISOCHORIC HEAT CAPACITY (C_V), C_p/C_V , AND SONIC VELOCITY

Salt	Temp. °C	C_V^a			C_p/C_V	μ^b (m sec ⁻¹)
		cal g°K	cal (g-mole)°K	cal (g-atom)°K		
F_1	500	0.29 ₅	17.8	7.1 ₅	1.1 ₅	2650
	600	0.29 ₂	17.6	7.0 ₈	1.1 ₆	2560
	700	0.28 ₈	17.3	6.9 ₇	1.1 ₈	2480
F_2	500	0.33 ₇	16.9	6.9 ₈	1.1 ₆	2850
	600	0.33 ₂	16.6	6.8 ₈	1.1 ₇	2760
	700	0.32 ₈	16.4	6.7 ₉	1.1 ₉	2670
F_3	500	0.28 ₉	18.5	7.2 ₂	1.1 ₄	2610
	600	0.28 ₅	18.3	7.1 ₃	1.1 ₆	2520
	700	0.28 ₂	18.1	7.0 ₆	1.1 ₇	2440
F_4	500	0.29 ₀	18.9	7.2 ₃	1.1 ₄	2620
	600	0.28 ₇	18.7	7.1 ₅	1.1 ₅	2530
	700	0.28 ₄	18.5	7.0 ₈	1.1 ₆	2440
L_2^B	500	0.48 ₉	16.2	6.9 ₁	1.1 ₇	3420
	600	0.48 ₉	15.9	6.8 ₁	1.1 ₈	3310
	700	0.47 ₅	15.7	6.7 ₂	1.2 ₀	3200
C_1	500	0.31 ₂	32.6	5.7 ₄	1.1 ₅	1400
	600	0.30 ₈	32.2	5.6 ₇	1.1 ₇	1330
	700	0.30 ₅	31.8	5.6 ₀	1.1 ₈	1260
Theoretical C_V^c cal mole ⁻¹ (°K) ⁻¹						
C_2	500	0.31 ₂	34.2	30.47	1.1 ₆	1400
	600	0.30 ₈	33.8	30.92	1.1 ₇	1330
	700	0.30 ₄	33.3	31.46	1.1 ₉	1260

a. Calculated from the equation,

$$C_V = C_p - \frac{\alpha^2 T}{\rho \beta_T} \quad \text{where } \alpha \text{ is expansivity; } \rho, \text{ density; } \beta_T \text{ isothermal compressibility.}$$

b. Calculated from the equation,

$$\mu = \left(\frac{p}{C_V \beta_T \rho} \right)^{1/2} \quad \text{where } \mu \text{ is sonic velocity.}$$

c. Calculated by assuming

$$C_V = 6.R \text{ (harmonic oscillation of 2 ions)} + 1.5R \text{ (free rotation of } BF_4^- \text{ ion)} + \text{Vibrational*heat capacity of } BF_4^-.$$

* Vibrational frequencies obtained from K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, N. Y., 1963, p. 106.

APPENDIX B

THERMAL DIFFUSIVITY,^a KINEMATIC VISCOSITY,^b AND PRANDTL NUMBER^c

Salt	Temp. (°C)	Therm. Diffy. (cm ² sec ⁻¹)	Kin. Visc. (cm ² sec ⁻¹)	Prandtl Number
F ₁	500	2.1 ₃ x 10 ⁻³	6.9 ₈ x 10 ⁻²	32.8
	600	2.1 ₇	3.7 ₅	17.2
	700	2.2 ₂	2.2 ₉	10.3
F ₂	500	2.3 ₅ x 10 ⁻³	7.1 ₇ x 10 ⁻²	30.4
	600	2.4 ₀	3.8 ₃	15.9
	700	2.4 ₅	2.3 ₄	9.5
F ₃	500	1.7 ₉ x 10 ⁻³	7.0 ₅ x 10 ⁻²	39.4
	600	1.8 ₂	3.7 ₃	20.5
	700	1.8 ₆	2.2 ₆	12.1
F ₄	500	1.5 ₂ x 10 ⁻³	8.9 ₂ x 10 ⁻²	58.6
	600	1.5 ₅	4.3 ₂	27.8
	700	1.5 ₈	2.4 ₄	15.4
L ₂ B	500	2.0 ₉ x 10 ⁻³	7.4 ₄ x 10 ⁻²	35.6
	600	2.1 ₄	4.3 ₆	20.4
	700	2.1 ₈	2.8 ₆	13.1
C ₁	500	1.8 ₂ x 10 ⁻³	1.0 ₂ x 10 ⁻²	5.6
	600	1.8 ₉	0.6 ₈	3.6
	700	1.9 ₇	0.5 ₀	2.5
C ₂	500	1.7 ₉ x 10 ⁻³	1.0 ₂ x 10 ⁻²	5.7
	600	1.8 ₆	0.6 ₈	3.7
	700	1.9 ₃	0.5 ₀	2.6

Calculated from the equations:

a. $X = \frac{k}{\rho C_p}$ where k is thermal conductivity; ρ , density; C_p , specific heat.b. $\nu = \frac{\eta}{\rho}$ where η is viscosity in poise (g cm⁻¹ sec⁻¹).c. $Pr = \frac{\nu}{X} = \frac{\eta C_p}{k}$

APPENDIX C
CONVERSION FACTORS

	<u>Multiply</u>	<u>By</u>	<u>To Obtain</u>
Viscosity	centipoise	2.419	$1b_m/hr \cdot ft$
Thermal Conductivity	watts/ $^{\circ}C \cdot cm$	57.8	Btu/hr \cdot ft \cdot $^{\circ}F$
Heat Capacity	cal/gm \cdot $^{\circ}C$	1.0	Btu/ $1b_m \cdot ^{\circ}F$
Heat of Fusion	cal/gm	1.8	Btu/ $1b_m$
Density	gm/cm ³	62.43	$1b_m/ft^3$
Compressibility	cm ² /dyne	6.894×10^{-4}	in ² / $1b_f$
Pressure	torr	0.019337	$1b_f/in^2$ (psia)
Surface Tension	dyne/cm	6.85×10^{-5}	$1b_f/ft$
	dyne/cm	2.203×10^{-3}	$1b_m/sec^2$

Composition of Salt Mixtures

	Symbol	Mole %				Liquidus Temp. (°C)
		LiF	BeF ₂	ThF ₄	UF ₄	
Fuel- Breeder Mixtures	F ₁	73	16	10.7	0.3	500° ± 5°
	F ₂	72	21	6.7	0.3	500° ± 5°
	F ₃	68	20	11.7	0.3	480° ± 5°
	F ₄	63	25	11.7	0.3	500° ± 5°
Flush Salt (present MSRE coolant)	L ₂ B	66	34	--	--	458° ± 1° (peritectic)
Coolants	C ₁		NaBF ₄	NaF		385° ± 1° (eutectic)
	C ₂		100	-		407° ± 1° (melting point)

ORNL-TM- 2316

INTERNAL DISTRIBUTION

1. R. K. Adams	78. L. T. Corbin
2. G. M. Adamson	79. B. Cox
3. R. G. Affel	80. J. L. Crowley
4. L. G. Alexander	81. F. L. Culler
5. J. L. Anderson	82. D. R. Cuneo
6. R. F. Apple	83. J. M. Dale
7. C. F. Baes	84. D. G. Davis
8. J. M. Baker	85. R. J. DeBakker
9. S. J. Ball	86. J. H. DeVan
10. C. E. Bamberger	87. S. J. Ditto
11. C. J. Barton	88-92. A. S. Dworkin
12. H. F. Bauman	93. I. T. Dudley
13. S. E. Beall	94. D. A. Dyslin
14. R. L. Beatty	95. W. P. Eatherly
15. M. J. Bell	96. J. R. Engel
16. M. Bender	97. E. P. Epler
17. C. E. Bettis	98. D. E. Ferguson
18. E. S. Bettis	99. L. M. Ferris
19. D. S. Billington	100. A. P. Fraas
20. R. E. Blanco	101. H. A. Friedman
21. F. F. Blankenship	102. J. H. Frye, Jr.
22. J. O. Blomeke	103. C. H. Gabbard
23. R. Blumberg	104. R. B. Gallaher
24. E. G. Bohlmann	105. R. E. Gelbach
25. C. J. Borkowski	106. J. H. Gibbons
26. G. E. Boyd	107. L. O. Gilpatrick
27. C. A. Brandon	108. H. E. Goeller
28. M. A. Bredig	109. W. R. Grimes
29. R. B. Briggs	110. A. G. Grindell
30. H. R. Bronstein	111. R. W. Gunzel
31. G. D. Brunton	112. E. D. Gupton
32. D. A. Canonico	113. R. H. Guymon
33-62. S. Cantor	114. J. P. Hammond
63. W. L. Carter	115. B. A. Hannaford
64. G. I. Cathers	116. P. H. Harley
65. O. B. Cavin	117. D. G. Harman
66. A. Cepolino	118. W. O. Harms
67. F. H. Clark	119. C. S. Harrill
68. W. R. Cobb	120. P. N. Haubenreich
69. C. W. Collins	121. R. E. Helms
70. E. L. Compere	122. P. G. Herndon
71. K. V. Cook	123. D. N. Hess
72. W. H. Cook	124. J. R. Hightower
73-77. J. W. Cooke	125. M. R. Hill

126. B. F. Hitch
 127. H. W. Hoffman
 128. D. K. Holmes
 129. P. P. Holz
 130. R. W. Horton
 131. T. L. Hudson
 132. H. Inouye
 133. W. H. Jordon
 134. P. R. Kasten
 135. R. J. Kedl
 136. O. L. Keller
 137. M. T. Kelley
 138. M. J. Kelly
 139. C. R. Kennedy
 140. T. W. Kerlin
 141. H. T. Kerr
 142. S. S. Kirslis
 143. J. W. Koger
 144. A. I. Krakoviak
 145. T. S. Kress
 146. J. W. Krewson
 147. C. E. Lamb
 148. J. A. Lane
 149. J. J. Lawrence
 150. M. S. Lin
 151. R. B. Lindauer
 152. A. P. Litman
 153. G. H. Llewellyn
 154. E. L. Long
 155. M. I. Lundin
 156. R. N. Lyon
 157. R. L. Macklin
 158. H. G. MacPherson
 159. R. E. MacPherson
 160. J. C. Mailen
 161. D. L. Manning
 162. C. D. Martin
 163. T. H. Mauney
 164. H. McClain
 165. R. W. McClung
 166. H. E. McCoy
 167. H. F. McDuffie
 168. C. K. McGlothlan
 169. C. J. McHargue
 170. L. E. McNeese
 171. J. R. McWherter
 172. H. J. Metz
 173. A. S. Meyer
 174. R. L. Moore
 175. D. M. Moulton
 176. T. R. Mueller

177. H. A. Nelms
 178. J. P. Nichols
 179. E. L. Nicholson
 180. E. D. Nogueira
 181. L. C. Oakes
 182. P. Patriarca
 183. A. M. Perry
 184. T. W. Pickel
 185. H. B. Piper
 186. B. E. Prince
 187. G. L. Ragan
 188. J. L. Redford
 189. M. Richardson
 190-194. G. D. Robbins
 195. R. C. Robertson
 196. W. C. Robinson
 197. H. C. Roller
 198. K. A. Romberger
 199. M. W. Rosenthal
 200. R. G. Ross
 201. H. C. Savage
 202. W. F. Schaffer
 203. C. E. Shilling
 204. Dunlap Scott
 205. J. L. Scott
 206. H. E. Seagren
 207. C. E. Sessions
 208. J. H. Shaffer
 209. W. H. Sides
 210. M. J. Skinner
 211. G. M. Slaughter
 212. A. N. Smith
 213. F. J. Smith
 214. G. P. Smith
 215. O. L. Smith
 216. P. G. Smith
 217. I. Spiewak
 218. R. C. Steffy
 219. W. C. Stoddard
 220. H. H. Stone
 221. R. A. Strehlow
 223. J. R. Tallackson
 224. E. H. Taylor
 225. W. Terry
 226-230. R. E. Thoma
 231. P. F. Thomason
 232. L. M. Toth
 234. D. B. Trauger
 235. J. S. Watson
 236-240. G. M. Watson
 241. H. L. Watts

242. C. F. Weaver	251. Gale Young
243. B. H. Webster	252. H. C. Young
244. A. M. Weinberg	253. J. P. Young
245. J. R. Weir	254. E. L. Youngblood
246. W. J. Werner	255. F. C. Zapp
247. K. W. West	256-257. Central Research Library
248. M. E. Whatley	258-259. Document Reference Section
249. J. C. White	260-285. Laboratory Records (LRD)
250. L. V. Wilson	286. Laboratory Records - Record Copy (LRD-RC)

EXTERNAL DISTRIBUTION

287-288.	D. F. Cope, AEC-ORNL, R.D.T. Site Office
289.	J. W. Crawford, AEC-RDT, Washington
290.	C. B. Deering, AEC-ORO
291.	A. Giambusso, AEC, Washington
292.	W. J. Larkin, AEC-ORO
293.	C. L. Matthews, AEC-ORO
294-295.	T. W. McIntosh, AEC, Washington
296.	C. E. Miller, Jr., AEC, Washington
297.	B. T. Resnick, AEC, Washington
298.	H. M. Roth, AEC-ORO
299.	Milton Shaw, AEC, Washington
300.	W. L. Smalley, AEC-ORO
301.	R. F. Sweek, AEC, Washington
302-317.	Division of Technical Information Extension (DTIE)