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ABSTRACT

A popular method for updating finite element models with modal
test data utilizes optimization of the model based on design
sensitivities. The attractive feature of this technique is that it
allows some estimate and update of the physical parameters
affecting the hardware dynamics. Two difficulties are knowing
which physical parameters are important and which of those
important parameters are in error. If this is known, the updating
process is simply running through the mechanics of the
optimization. Most models of real systems have a myriad of
parameters. This paper discusses an implementation of a tool
which uses the model and test data together to discover which
parameters are most important and most in error. Some insight
about the validity of the model form may also be obtained.
Experience gained from applications to complex models will be
shared.

NOMENCLATURE

FEM Finite Element Model

S Matrix of sensitivities of frequencies to
parameters

Ap Vector of predicted changes in parameters to
update the model

AF Vector of differences between test frequencies
and model frequencies

Wy Weight matrix applied to frequency vector

w, Weight matrix applied to reduce parameter
changes

COVAp Covariance matrix for parameters

m Number of frequencies

n Number of parameters

PESTDY Parameter Estimation for Structural
Dynamics

SSP Statistically Significant Parameters
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Ccf Variance of the Af vector calculated as
T _
Af Af/(m—-n)
STD Standard Deviation

INTRODUCTION AND MOTIVATION

The IMAC has as one of its major focus technologies the
reconciliation of Finite Element Models (FEMs) with results from
modal test data.  Typically, the strongest element of the
reconciliation is the attempt to match (or at least reconcile) the
frequencies of the FEM with the modal test frequencies. One
approach is to utilize the design sensitivities of particular physical
parameters of the FEM to predict how much the parameters should
be changed to enable the FEM to more closely match the test
frequencies{1]. This approach is popular because it allows the
analyst to develop physical insight to the hardware, which may be
of significant value for future design changes, particularly at the
prototype stage. The problem can be cast into a linear formulation
to be solved with the least squares approach

SAp = Af ¢))

where S is the matrix of sensitivities of the frequencies to the
parameters, Ap is the vector of changes required to the parameters

and Af is the vector of differences in the FEM and test
frequencies. To get a unique solution, Ap must be shorter than

AF so that the system of equations is overdetermined. (Also, S
must be of full column rank). In a Bayesian formulation, the
analyst can assign weights to the various frequencies and weights
to the parameters.
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Weights on the frequencies, Wy, increase the effort of the solution
to reduce more highly weighted frequency errors, and weights on
the parameters, W, make the more highly weighted parameters
resistant to change. These matrices are usually square and
diagonal. A major point of the philosophy of the following
approach is that we desire the model to tell us as much as possible

about itself, so we do not include parameter weights, W, in the
analysis for this work. (Parameter weights are usually derived by
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the analyst’s judgment and can significantly bias the outcome of
the analysis. The analyst can apply judgment about the parameter
weights after the parameter selection analysis is complete). We do
allow frequency weights, since the analyst may be much more
interested in the model matching certain frequencies than others.
The basic starting equation for this work is then

W SAp = W rAf 3)
which is still of the standard form AX=b . For a well-conditioned

least squares solution of AX =D, we like for vector b to be very
Iong (corresponding to many frequencies being compared between
the FEM and test) and for vector x to be comparatively short (i.e. a
relatively small number of parameters). Generally there is not a lot
of control over how many frequencies are being compared, so we
would like to solve for as few parameter changes as possible.
There are a myriad of parameters in most complex finite element
models, so this raises the question: Which parameters are both
important and in error? If a parameter is not important, but in
error, it makes little difference in the final solution. If a parameter
is important, but not in error, then there is no need to change it in
the FEM, and therefore no need to include it in the parameter
change vector. So how can we determine which parameters in the
FEM are both important to the solution and in error? With some
assumptions, there is a way to approach this using statistics.

THE STANDARD DEVIATION OF THE MEAN OF EACH
PARAMETER

First we make an assumption that will be evaluated later. Assume
that the FEM is the best possible fit of the model form selected, so

that any errors in Af are because of random measurement errors or
model form problems. Then a standard deviation (STD) can be
calculated for the differences in frequencies. This STD can be
related through equation (3) to give a STD of the mean of each
parameter included in Ap. The math is shown here, but the

important point is the relationship between the STD of the
frequencies and the STD of the parameter means in equations (9)
and (10). Premultiplying equation (3) by 87 yields
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Solving for Ap gives

_ T -1 T -
Ap=[S WsS] S WgAf. 5)
Now postmultiply by Ap 7.

_ T T -1 T _ T 1T _T
ApAp =[S WgS] S WyrAM[[S WgS] S Wraf] (6)
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Take the expected value of (7), and assume the expected value of
- .T
WyAFAf  becomes the weighted STD of the frequency error

vector times the identity matrix. The expected value of ApAp is
then the estimated covariance matrix for the parameters.

_ T -1T2 o T T
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Because the bracketed matrices are symmetric (8) reduces to

_ 2T -1
COVAp=07IS WyS] . )
The diagonals of the covariance matrix of Ap are the variances of

the parameters. Reference [2] provides another concise
explanation of the derivation of the covariance matrix (without the
weighting matrix). The STD of the mean of each parameter is just
the square root of each variance divided by m where m is the
number of rows in equation (2). So the estimated vector of STDs
of the means of the parameters is .

O jnean (Ap) = sqri(diag(COVAP)/ m) (10)

In equation (10) the frequencies as a group are most sensitive to
changes in the parameters with low STDs of the mean. From
equation (9) it can be seen that in general the inverse of a large
sensitivity number will give a low variance and resulting STD.
This does not give any information about which parameters may be
in error. So how do we use this to determine which parameters are
both important and in error in our FEM?

DETERMINING THE IMPORTANT PARAMETERS USING
THE STD OF THE PARAMETER MEAN AS A BASIS

Now we calculate the actual changes in the parameters from
equation (5). Remember that we made an assumption that the FEM
was the best fit of the model to the data in order to calculate the
STD of the parameters above. If this was a good assumption, we
would expect that the change in the parameters from equation (5)
would not deviate “very far” from the initial parameter values.
How much is “very far” can be determined statistically using the
results from equation (10). A typical value chosen to represent
“very far” by statisticians is 2 STD of the mean of the parameters.
If the FEM really was a best fit, then there should be about a 95%
probability that equation (5) would not yield any parameter
changes that were more than 2 STD of the mean away from the
initial value for each parameter. Therefore, if equation (5) predicts
changes greater than 2 STD of the mean away from the parameter,
the assumption that the FEM is a best fit is an erroneous
assumption and such parameters should be changed. The relative
importance of these parameters is calculated with a z-score, which
is the value of each parameter change divided by that parameter’s
STD of the mean.

2=A8p /G jmean(Bp) )

So the z-score is just the number of STDs of the mean which
equation (5) predicts the parameter should be adjusted. If the z-
scores for all parameters are low, then the FEM is as good as it can
reasonably be with the parameters chosen for the calculation in (5)
and (10) above. If this is not acceptable to the analyst, then other
parameters must be chosen which are more important, or the FEM
model form must be changed to be more representative of reality.
This is very important information.

At this point the analyst can make key decisions to answer the
following questions.  Should I continue with the model
reconciliation utilizing some or all of these parameters? Should I
go back and select other parameters because these do not appear to
be important? Should I change the FEM form to make it more
representative of reality? Answering these questions appropriately
can save a lot of wasted effort on a poor model, or on FEM runs
utilizing many unimportant or wrong parameters. The value of this
type of analysis, sometimes called analysis of variance, is that with




one number, the z-score, the analyst can see which parameters are
both important and in error.

An understandable explanation of the basic concepts explained
above, sometimes called “tests of significance”, is given in
reference [3]. A more thorough explanation of estimation of
multiple parameters for engineers is provided by Benjamin and
Cornell [4]. At previous IMACs, others have presented more
complete work on analysis of variance [5] and Bayesian estimation
techniques to determine weighting matrices [6].

SYSTEMATIC IMPLEMENTATION

At Sandia National Laboratories, a code with the acronym
PESTDY (Parameter Estimation for STructural DYnamics)
implements the Bayesian Estimation in a MATLAB-based set of
routines. The systematic approach to determine the important
parameters is implemented in a module called SSP (Statistically
Significant Parameters) as follows. First equation (1) is normalized
so that the Ap changes will be fractional changes required to be

applied to each initial parameter value. The Af values are
differences between the model and test frequencies divided by the
initial model frequencies. Then sensitivity matrices, S, are
calculated for every parameter that is uncertain and possibly
important. Frequency weights, Wy, are set based on the analyst’s
interest in certain frequencies. If there are no specifically important
frequencies, the identity matrix is used. Then the analysis
described above is run for one parameter, that is, equations (5) and
(10) are solved where the parameter vector has a length of one.
The results are saved and the analysis is run for the next parameter.
This proceeds until all parameters have been analyzed. The
parameter with the highest z-score is then declared the most
important parameter and is used for the rest of the analysis. The
same process is repeated for a parameter vector length of two
utilizing the most important parameter in combination with every
other parameter. Two z-scores are produced for every set of two
parameters. The lower of the two z-scores is retained from every
set. The set with the largest low z-score determines the second
most important parameter, and this parameter is used for the rest of
the analysis. This process is repeated with sets of three parameters
and so on until the largest low z-score is below a user specified
value, typically two. When the low z-scores get below this value,
the model is telling the analyst that little additional improvement to
the model can be obtained with additional parameters, i.e. all the
important parameters have been identified.

ADDITIONAL TOOLS HELPFUL FOR PARAMETER
SELECTION

In addition to the approach for calculating z-scores, a plot of the
predicted final frequency STD is generated vs the number of
parameters used in the analysis based on the z-score selection
technique described above. In some instances it has been found
that an obvious knee in the curve shows that the number of
parameters could be limited to less than those selected using a
criterion of a low z-score of two. Next, a calculation is made to
determine which parameters have highly correlated effects with
those that are chosen to be important from the z-score analyses.

The correlation calculation from Branham [2] is given from
calculations on the S matrix with only the two columns of interest.

T -1
b=[S S§] (12)
= 1/4/b(L1) 0 (13)
0 1/,/b(2,2)
cor = cxb*c 14y

The correlation coefficient is the off diagonal term of the cor 2x2
matrix. All possible combinations of two parameters are anatyzed.
A list of other parameters with correlation coefficients above .8
absolute value is printed with each important parameter from the z-
score analyses. Parameters with high correlation values could
produce results similar to the important parameters with which they
are paired. Another way to state it is that two parameters with a
correlation coefficient near 1 have frequency sensitivity vectors that
are close to parallel. This is important, since experience has shown
that sometimes parameters correlated with those chosen as
important from the z-score analyses are actually the major cause of
the model’s inaccuracies. The analyst then has the option of
including these correlated parameters in the model reconciliation
with (or in lieu of) the important parameters. A final tool that helps
decide on the appropriate parameters is a plot of the sensitivities of
all the important parameters. Sometimes this will lead to further
culling. In the PESTDY code, at the end of the SSP module, the
sensitivity matrix can be trimmed to the sensitivity vectors of the
parameters that the analyst has decided are important. Then
parameter weights may be applied and the Bayesian estimation
completed.

AND LIMITATIONS

REQUIREMENTS OF THE

APPROACH

The basic requirement is to determine the sensitivity matrix of all
possible important parameters. This can be performed fairly
automatically in some codes such as MSC/NASTRAN. In other
codes a finite difference approach is required where there is a
baseline eigenvalue run, and then a run for a small deviation of
each parameter. This approach requires n+1 eigenvalue solutions
of the code where » is the number of parameters being considered.
Of course, then the frequency differences between the test and
initial FEM must be calculated.

There are several important limitations of the approach. The
foremost is that a poor FEM may not yield much information,
particularly if an important physical phenomenon is not modeled at
all. If this is the case, no important parameters may be evidenced
in the analysis, or worse, a parameter that is not truly in error, but
helps to change a frequency with large error, may be identified as
important. This is where engineering judgment and other methods
to validate parameters, such as simple measurements, are of value.
Another limitation is the fact that the analyses cannot distinguish
between errors in highly correlated parameters. If these parameters
are parallel stiffnesses, a more basic measurement of each of the
parallel stiffnesses may be required. If these parameters are not
stiffnesses in parallel, sometimes mode shape information is
valuable in determining where the major error lies. Finally, these
analyses tend to focus on a relatively small number of parameters.
(This is a weakness as well as the major strength.) If there are truly
many parameters with large errors, this approach focuses on the




smallest number of parameters that can be adjusted to remedy the
frequency differences. Therefore, one parameter may be correcting
for more than its share of the error.

ANALYTICAL EXAMPLE

To demonstrate, let us consider a simple analytical example which
is not even a structural dynamics problem, but will make it easy to
illustrate the process. We arbitrarily declare that the response of
some system is:
y=14x/2+sinx +cosX . (15)
We measure the response accurately at 11 equally spaced points

between x=0 and 7. Figure 1 shows the x-y plot of this “measured
data”.

5- Hypothetical Measured Response
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Figure 1 - Accurately “Measured” System Response

We have a model that we have generated to represent this system
which is simply the polynomial series
_ 2 3 4

Y=P1+P2X+paX +p4X"+PpsX (16)

where the least squares fit yields the parameters p;=1.97, p,=2.61,
p3=-1.94, p;=42 and ps=-.027. This fit of the model response is
plotted along with the “measured” system response in figure 2.
This comparison simply shows that it is possible with this model
form to achieve a reasonable, though not perfect, fit to the
measured data.
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Figure 2 - Best Fit Model Response Compared with “Measured”
Response

Now, let us consider the typical situation in which there is some
uncertainty about the parameters. For sake of argument suppose
that our initial estimate of parameter p, is 10% high and parameter
D4 is 10% low. Let us use the approach that has been described to
determine which parameters should be most important to update in
our system identification code, PESTDY. We assume that we have
no advance knowledge of which parameters need to be updated.
Figure 3 shows a plot of our initial model compared with the
“measured” data. The comparison shows that the model is
significantly in error.
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Figure 3 - Initial Model vs. “Measured” Data

The sensitivity of each y with respect to each parameter is
generated. We run the PESTDY code to predict updated
parameters. In the process the SSP module is run to determine
which parameters are important to update. The results of the z-
score analysis show that only one parameter survives with a z-score
> 2, and that is ps with a z-score of 10.5. The SSP module has
selected the wrong parameter! (Of course, we do not know this




yet). However, that is not all the data provided by SSP. It also
shows that ps is highly correlated with p, with a correlation
coefficient of .993. This information shows that it could also be p,
that is in error, or that it could be a combination of p, and ps. That
is all that the analysis can tell us. Let us say that we decided to
ignore the correlation and proceed with the solution using only ps.
PESTDY is run and the change for ps is calculated as -23.1%. This
change is put into the model and the new comparison is shown in
figure 4. As a matter of fact, it turns out that updating ps by itself
provides a better fit than updating py4 by itself, which is the reason
that the SSP module selected ps over py.
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Figure 4 - Comparison of First Iteration Of Updated Model

Now we will proceed with the second iteration. Sensitivities are
calculated again, and we execute the PESTDY code. This time the
SSP module is run, and the new results show that three parameters
survive the z-score > 2 requirement. These are ps, ps and p,. So
now SSP has selected the two parameters that should be changed,
P4 and p,, in addition to the parameter that we wrongly modified in
the first iteration, ps. In figure 5 the plot of the STD of the
difference between the measured response and the model response
is plotted vs the number of parameters included in the analysis
based on the z-score approach.

% Standard deviation of frequency vector vs # parameters
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Figure 5 - STD of Predicted Frequencies with Addition of More
Parameters Using Z-score Selection Criteria

It can be seen that this plot confirms the z-score analysis, since
with the addition of a fourth parameter the STD actually starts to
increase. (This can happen because the variance of the responses is
the total squared error/(sm-n) where m is the number of responses
and » is the number of parameters being evaluated. The total
squared error may continue to decline with the addition of
parameters, but at some point the denominator declines faster).

Figure 6 shows the resulting model response after the parameters
are updated the second time. After this update the parameters
match the best fit parameters listed immediately after equation (16).
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Figure 6 - Comparison of 2nd Iteration Of Updated Model

This example demonstrates two important points. The first point is
that as the model becomes more accurate, the z-score approach to
parameter selection works better. This is partially because the
linear estimates of parameter STD are more accurate near the point
of best fit of the model to the measured data. The second point is
that the method can make wrong decisions and select highly




correlated parameters as most important. That is why the
calculation of high correlations between the selected parameters
and other parameters is valuable information for the analyst.

Now let us pose one more hypothetical scenario using the same
data for the ‘“measured” response. Let us suppose that we
developed only a cubic polynomial model this time, but we
estimated the four parameters perfectly and got a least squares fit to
the data. This comparison is shown in figure 7.
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Figure 7 - Best Cubic Polynomial Fit to “Measured” Data

At this point we do not “know” that we have the best fit that this
model form can provide, so we run PESTDY to begin the model
updating process, since some of the modeled responses are as high
as 30% off. The execution of the SSP module yields no parameters
with a z-score > 2. This shows that none of the considered
parameters are worth the effort to adjust, because the model form
does not have the capability to fit the data any better. If the analyst
is not satisfied with the model, such information tells the analyst
that the model form must be changed or that the parameters
evaluated are not the important ones in the model. In this case the
former is true, since all the parameters have been considered.

In a real application, the analyst selects several uncertain
parameters to evaluate from possibly tens or hundreds in a complex
FEM. If the SSP module indicates-that there are no important
parameters, the analyst may need to go back and include some
more that were missed the first time. At least the SSP module has
stopped the model updating process before time is wasted on futile
FEM updating runs. One might say that, for the examples shown
here, it would be easier to simply solve for the least squares
solution. This is true, but in real applications, there are usually
more parameters to investigate than there are response frequencies.
To get a unique solution, the number of parameters must be
reduced to a number less than or equal to the number of
frequencies, and this is part of the reason for the approach taken.

EXPERIENCE FROM ACTUAL APPLICATIONS

The author has experience utilizing the approach with four actual
reconciliations of FEMs with modal test data. There were between

5 and 16 modes utilized for each application. Some general
experience from these can be provided. In some cases there were
points in the updating process where the PESTDY predictions
indicated that the chosen parameters did not have the capability to
bring the model to a point of satisfactory accuracy, so efforts were
made to go back and find other parameters to evaluate. This led to
finding parameters that significantly improved the model.

In another significant experience, the most important parameter
selected by the z-score criterion was highly correlated with three
other parameters. Through materials tests it was found that three of
the four correlated parameters had large errors. Any method based
on the design sensitivity approach prefers the more frequency
sensitive parameters to less frequency sensitive correlated
parameters. All parameters highly correlated with parameters
surviving the z-score analysis should be considered in the model
updating process. Where distinctions cannot be made, further
testing to identify the correlated parameters should be performed.

CONCLUSIONS

Statistical tests of significance have been applied to FEM
parameters used in the Bayesian estimation process for FEM
reconciliation. The particular method has been designed to reduce
a large number of possible parameters to a number that is less than
the number of responses being matched to make the least squares
solution as robust as possible. The goal is to determine the
parameters that are both important and in error. This goal may not
be met if: 1. the model form does not represent the physical
phenomena; 2. the model response is far from the true system
response; 3. some parameters are highly correlated to another
important parameter. The parameter correlations are calculated to
provide knowledge that the third hindrance to the goal may be an
important issue. Other tools utilized to help in parameter selection
are plots of STD of frequencies vs the number of parameters
analyzed and plots of frequency sensitivity for statistically
important parameters.
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