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ABSTRACT 

The methods that are developed in this paper for differencing the dis­

crete ordinates equations on a triangular x-y grid are based on piecewise poly­

nomial representations of the angular flux. The first class of methods dis­

cussed here assumes continuity of the angular flux across all triangle inter­

faces. A second class of methods, which is *hown to be superior to the first 

class, allows the angular flux to be discontinuous across triangle boundaries* 

Numerical results illustrating the accuracy and stability of these methods are 

presented, aad numerical comparisons between the above two classes of "lethods * 

are made. The effectiveness jf a fine mesh rebalance acceleration technique 

is also discussed. 

i 
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I. INTRODUCTION 

A two-dimensional (x,y) neutron transport code based on a triangular spa­

tial mesh is currently under development at Los Alamos. This cod«j will offer 

several advantages over present codes, all of which use an orthogonal mesh 

grid. By an orthogonal grid, we mean a grid in which all mesh lines meet at 

right angles. Many nuclear reactors are designed with hexagonal elements; 

these hexagonal geometries can be represented exactly with a triangular mesh by 

subdividing each hexagon into four, six, or more triangles. Furthermore, com­

plicated curved geometries can be approximated easily and accurately with tri­

angles. 

The increased flexibility of a triangular mesh is not without added cost. 

Description of the mesh is more complicated, because the x and y coordinates of 

each vertex must be given. The order in which the eeeh unknowns are solved is 

no longer straightforward but involves determining the direction of flow across 

triangle faces. Such determinations must be made repeatedly in the innermost 

iteration loops of a transport code, and they may increase computation times. 

The purpose of this paper is to present some effective new schemes for ob­

taining finite-dimensional approximations to the transport equation on a trian­

gular grid. Difference schemes for the transport equation fall into two broad 

categories, which we will refer to as implicit or explicit methods. In an im­

plicit method no attempt is made to solve in the direction of the characteris­

tics of the equation, that is, in the direction in which neutrons are streaming. 

Instead, variational methods or Galerkln methods are used to determine a set of 

linear algebraic equations for all the unknowns. This set of equations is then 

solvod, usually by direct methods, to obtain the final solution. An explicit 

method, on the other hand, sweeps once through the mesh, solving for the un­

knowns in the direction in which neutrons are streaming. More properly stated, 

an explicit method follows characteristics through phase space. Of course, 

this is also equivalent to solving a set of linear algebraic equations * but 

here the matrix to be inverted Is triangular, or at least block triangular. 

Perhaps the clearest distinction between the tvo methods car), be made in the 

following way. In an explicit method a (.articular mesh cell is coupled only to 

those mesh cell* visible when looking backward along the characteristics. An 

implicit method couples all adjacent mesh cells with no regard for the direction 

of the characteristics. The diamond difference scheme is an explicit method; 

examples of implicit methods are given in Ref. 1. 

Although both explic J-r 2nd Implicit methods have been studied thoroughly 

for rectangular meshes in x-y geometry, very few triangular mesh methods have 
2 

been suggestedr and even fewer have actually been tested. Ohnlshi proposes a 

Galerkin method with piecewise linear trial functions for the spatial 



dependence of the flux couples! with a discrete ordinate* treatment of the an­

gular variables, but he does not give numerical results supporting the method. 

Several explicit methods are given in Ref. 3. 
4 

Very good results have been obtained with implicit methods for relatively 

small problems, that is, for problems in which the total nutsber of cells in the 

space-angle phase space is about 1000 or fewer. Unfortunately, many real phys­

ical problems involve such complicated geometries that several thousand spatial 

mesh cells ar« needed to describe accurately the system boundaries and inter­

faces* With a relatively crude mesh for the angular variables, the total num­

ber of cells in phase space can be on the order of several tens of thousands. 

It iM not known whether implicit methods can solve problems of. this size effi­

ciently. Furthermore, Implicit methods require the storage of the complete an­

gler flux. Since each cell in phase space usually Involves several unknown 

function values, the number of storage locations required for the angular flux 

for a single energy group can exceed. 100,000. The storage required for a 

100,000 by 100,000 matrix of coefficients can exceed one million locations, 

assuming the matrix has a band width of about 10. These requirements exceed 

the fast and extended core capacities of all modern computers! so that disc 

storage must be used, even for a one-group problem. Present two dimensional 
5 

codes such as TWOTRAN which are based on explicit methods store only the scalar 

flux and enough moments of the angular flux to generate the scattering source. 

Therefore, all parameters pertinent to a single energy group can usually be con­

tained in fast core, so that a more efficient program is obtained and data 

transfer problems are minimized. 

We are concerned in this paper with methods that are suitable for large 

complicated physical problems. For the above reasons, it appears that explicit 

methods may be superior to implicit methods for such problems. Thus we consid­

er only explicit methods in this paper. 

Although the methods developed in this paper are applicable to a general 

triangular mesh, we consider here only "regular" triangular meshes. A regular ._ 

triangular mesh is characterized by requiring that all vertices lie on horizon­

tal lines, so that horizontal bands of triangles are formed, and by insisting 

that each interior vertex be common to six adjacent triangles. An example of 

such a mesh is given in Fig. 1. Note that we do not require that triangles be 

equilateral and that a non-rectangular domain is allowed. i 

There are two reasons why we consiJer only regular meshes. First, speci­

fication of a regular ti;far."<ilar mesh is much simpler than specification of a 

general triangular mesh. Oniy three pieces of data are required: the mesh 

•pacings (Af)j» the x coordinates of the vertices along each horizontal line, 

and the orftntation of the first triangle on each band. The orientation of the 



Fig. 1. A typical regular triangular nesh. 

first triangle on aach hand can be specified by indicating whether the triangle 

points up or points down. A regular triangular taesh is determined uniquely 

by the above data. !_ 

The second reason why we consider only regular triangular meshes is relat­

ed to our decision to consider ouly explicit methods. Explicit methods neces­

sarily sweep the mesh in the direction of the characteristics, so that there is 

a definite order in which the triangles must be solved. This order depends 

upon the direction of neutron flew across triangle boundaries and is not 

straightforward as for an orthogonal mesh. Thus the direction of flow across 

boundaries must be determined and decisions made as to how to progress through ••-

the mesh* These decisions are much more complicated and time-consuming for a 

general triangular mesh than for a regular triangular mesh. Since the order in 

which the mesh is swept differs with each discrete ordinate direction, these 

decisions must be made repetitively in the innermost loops of a transport code. 

If complicated, such decisions would be prohibitively expensive. He restrict 

to a regular triangular grid to simplify these decisions as much as possible 

while retaining uost of the flexibility of a general mesh. 

II. THEORY ! 

The one velocity neutron transport equation can be written in x~y geometry * 

AS 

u U + 111* + «*(: ,y,u,TD - s(x,y,u,iD . (l) L 

j 
where we have written the scattering, fission, and inhomogeneous sources simply; 

i 
as S. In a multigroup context, S would also include sources due to scattering ._ 



and f i s s ion in other groups. We wi l l u t i l i z e the standard d i s c r e t e ord ina tes 

approximation to the above equation, thus we wr i te 

*t. d* 

m 5 ? + \ ST + W"* " Vx'*> (2) 

where the angular flux • (x,y) i s an approximation to f(x,y,p. , Ti ) and a se t of1 

M quadrature poin ts (\i , 1|) have been se l ec ted . For a de ta i led desc r ip t i on of 

the standard quadratures used in two-dimensional d i s c r e t e ord ina tes codes see 

Ref. 5. This reference a l so contains a good desc r ip t ion of how the sources 

which we have wr i t t en as S (x,y) a r e generated. We assume the reader has a 

basic f ami l i a r i t y with standard d i s c r e t e ord ina tes codes and take the l i b e r t y 

of omitt ing some of these d e t a i l s . ' 

Our t ask i s now the development of a d i s c r e t e ( in x and y) approximation 

to Eq. (2) on a t r i angu la r mesh. Since we consider only e x p l i c i t methods, t h i s 

task reduces to the problem of generating an approximation to V (x,y) over a 

s ing le t r i a n g l e , assuming t h a t • (x,y) i s known on the t r i a n g l e boundaries 

v i s i b l e when looking along the d i r e c t i o n 0 determined by u and T| . There a r e 

two cases t ha t must be considered: one or two faces may be v i s i b l e depending 

on the o r i e n t a t i o n of the t r i a n g l e . These two cases a r e depicted in F ig . 2 . 

Orientation I 
(one face visible) 

Orientation 2 
(two faces visible) 

Fig. 2. The two possible orientations of a tr iangle with 
respect to a direct ion fl . 

Al l nethods developed in th i s paper assume that the angular flux over each 
i 

tr iangle i s given by a low-order polynomial. That i s , j 

N H-l 

i-o yZ 
<3) 

where T » * oyer a given triangle and N is the order of the polynomial , , _ j . . 



The form of the approximate solution * over the entire system is completely 

determined by specifying the continuity conditions across triangle boundaries. 

The two methods considered in this paper differ only in the degree of continuity 

imposed on the approximate solution. The first method requires Chat the angu­

lar flux be continuous across all boundaries but does not require continuity of 

any derivatives of the solution. The second method imposes no continuity re­

quirements whatsoever across triangle boundaries, that is, the angular flux is 

allowed to be discontinuous across all triangle boundaries. The flux on the 

boundary is to be the limit of the angular flux as one approaches the boundary 

in the direction ft . The jump then occurs on the other side of the boundary. 

We reiterate that the two methods considered in this paper are explicit 

methods which utilize piecewise polynomial representations of the angular flux. 

The order of the polynomials is arbitrary, and the effectiveness of higher 

order polynomials such as cubics and quartics is investigated numerically in 
i 

the next section of this paper. ! 

There are, of course, many ways in which a polynomial in x and y can be : 

expressed. The representation of Eq. (3) is certainly the most common, but it : 

is inconvenient for our purposes because the coefficients A., have little phys-

ical meaning. We prefer, instead, to use a Lagrange representation of the 
_ (N+1)(N+2) ' polynomials with which we work. Let us assume that a set of K = -*-—£r ~ 

distinct points (x.,y.) have been placed on tho triangle of interest, where N , 

is the order of the polynomial to be represented. The placement of these ; 

points is discussed below. We use K points because there are K linearly in- ' 

dependent polynomials of order less than or equal N. We define the polynomial 

L.(x,y) as the unique polynomial of order less than or equal N that is unity 
x i 

at the point (x.,y.) and is zero at the other K - 1 points. We refer to the K 
polynomials L. so defined as Lagrange polynomials. If the points (x.,y.) have ~ 

been chosen properly, then the Lagrange polynomials are linearly independent 

and form a basis for the space of polynomials of order less than or equal N. 

Thus we can replace Eq. (3) by the following equation with no loss of content: .. K . I 
T(x,y> - ̂  7 ± L±(x,y) , (4) I 

i-1 

where we have suppressed the subscript m. In the above equation, the coeffi­

cients • . car* be interpreted as the value of <Kx,y) at the point (x.,y.), 

hence the notation f.. It is this physical interpretation for f. which leads 

us to the Lagrange representation for t(x,y). 

There are many arrangement* of K points on a triangle that will guarantee 

uniqueness and linear independence of the Lagrange polynomials. We choose a 

L. 
! 



particular placement of these points which makes the treatment of the triangle 

boundaries simple. For an N'th order polynomial, we place N+l points on each 

face of the triangle, with a point at each vtartex. The remaining points are 

distributed uniformly in the interior of the triangle. Figure 3 illustrates 

the placement of these points for a few low order polynomials. 

N » I N = 2 

K * 3 N«= 4 

Fig. 3. The triangular point arrangement for a few 
low order polynomials. 

Because a polynomial in x and y of order N is determined on a straight line 

uniquely by N+l distinct points on the line, the boundary flux can be deter­

mined by the N+l points on tb boundary, without regard for the other points. 

Furthermore, the boundary flux is given by the unique one-dimensional poly­

nomial which passes through these N+l points. 

We have now given a complete description of the form of the approximate 

solution for the two methods, continuous and discontinuous, that we discuss in 

this paper. What remains t_> be described is the manner in which this approxi­

mate solution is generated in each case. We consider first the continuous 

method. 

The point arrangement indicated in Fig. 3 and the representation of Eq. 

(4) for 1(xty) over a triangle allow continuity to be Imposed upon t(x,y) with 

little effort. «e simply assume that 1. on all incoming boundaries of a tri­

angle are known from prior calculation in adjacent cells or from system bound­

ary data. An incoming boundary Is a triangle boundary across which the neutron 

flow is into the cell. Of course, an incoming boundary for one cell is an out­

going boundary for the adjacent cell, and the definition of an incoming bound­

ary depends upon the direction ft under consideration. Since there can be one 



or two incoming boundaries, either N+l or 2N+1 of the coefficients <L of Eq. 

(4) are determined from continuity at the boundaries. This leaves a total of 

K - (N+l) or K - (2N+1) unknown coefficients *}. per triangle, depending upon 

the orientation of Fig. 2. Let NN equal the number of unknowns in a given tri­

angle. This parameter is tabulated in Table I for a few cases. We see from 

Table I that for linear polynomials and a triangle with two incoming boundaries 

there are no unknowns to be determined. Wa believe this situation to be un­

desirable and thus restrict our attention to polynomials of order greater than 

or equal two for the continuous method. 

TABLE I 

THE NUMBER OF UNKNOWNS NN IN A TRIANGLE 

AS A FUNCTION OF ORIENTATION AND ORDER OF POLYNOMIAL 

ORIENTATION ORDER OF, POLYNOMIAL NN 

.1 1 1 

1 2 3 

1 3 6 

2 1 0 

2 2 1 

2 3 3 

We must now derive a set of NN equations for the NN unknowns on the given 

triangle. This is accomplished in the following manner. The assumed form of 

the solution is inserted in the discrete ordinate equation for the particular 

direction Q under consideration. The resulting equation is then multiplied 

successively by each of a set of NN weight functions and integrated over the 

triangle. For the moment the weight functions are arbitrary and are denoted 

W (x,y). With a proper choice of linearly independent weight functions, the 

above procedure gives the desired set of NN equations. This set of equations 

takes the form 

+ oCWj.L^J *£ - (Wj»Sm) , (5) 

3 - 1, 2, ... NN , 



where the inner product (a,b) represents the integral of ab over the triangle 

of interest. Note that some of the coefficients Y. appearing on the left side 

of Eq. (5) are known from boundary data, so that in reality this equation re­

presents an NN by NN linear algebraic system of equations for the unknown 

fluxes. With a proper choice of weight functions this system is nonsingular 

and can be solved routinely by any method appropriate for small lirear systems, 

such as Gaussian elimination. 

A good choice of weight functions is crucial to the success of the above 

method. We believe that the best weight functions are the polynomials of order 

less than or equal N-l or N-2, depending upon whether the triangle is of orien­

tation 1 or 2, respectively. One can easily verify that there are precisely NN 

of these polynomials in either case, so that we obtain the same number of weight 

functions as we have unknowns. Another possible choice of weight functions are 

the Lagrange polynomials that are unity at the unknown points. Numerical re­

sults in the next section indicate that the method does not perform as well with 

these Lagrange weights as with the low order polynomial weights. It is, of 

course, possible to choose weights so that the resulting method is unstable, in 

the sense that errors are amplified as one sweeps through the mesh. We have no 

theoretical results bearing on this problem, but we have never observed an in­

stability with either of the above two choices of weights. 

We consider next the second method in which the flux is allowed to be dis­

continuous across triangle boundaries. We again use the Lagrange representation 

of Eq. (4) for the flu:: and the point arrangement of Fig. 3. In this case, how­

ever, points lying on the triangle boundaries are thought of as actually lying 

in the interior of the triangle but arbitrarily close to the boundary. In this 

manner each boundary point splits into two or more points which are each asso­

ciated with different triangles. We attempt to illustrate this point arrange­

ment in Fig. 4. For this method the total number of unknowns is larger than 

that for the continuous method. It is clear that the number of unknowns per 

direction is in fact equal to K times the total number of triangles in the mesh. 

Fig. 4. A typical point arrangement for the discontinuous 
method. Boundary points are actually arbitrarily 
close to the boundary. 



We now proceed in precisely the same manner as in method one. The assumed 

form of the solution in a given triangle is inserted in the transport equation, 

which gives a smooth function plus a Dirac delta function at the incoming 

boundaries due to the jump discontinuity at these boundaries. The resulting 

equation is multiplied by NN =» K weight functions and integrated over the tri­

angle. Again we obtain an NN by NN linear algebraic system for the NN unknowns 

in each triangle, and with a proper choice of weight functions these equations 

are nonsingular and can be solved for the unknowns. Note that for this method 

the number of weight functions required is equal to the number of linearly in­

dependent polynomials of order less than or equal N. Our choice of basis is 

therefore immaterial, and any set of functions spanning; the space of polynomi­

als of order less than or equal N will give the same answer when used as weight 

functions. We have not investigated the use of more complicated non-polynomial 

weight functions for either of our methods. Again, we find experimentally that 

this discontinuous method is stable when polynomial weight functions are used. 

III. NUMERICAL RESULTS 

A one-group, isotropic scattering, discrete ordinates code was written to 

Implement the methods of Sec. II. In this section, we present numerical results 

obtained with this code for several simple problems. An S~ angular quadrature 

was used in all calculations. 

The first test problem was designed to exhibit the accuracy that can be ob­

tained with these methods. It consists of a one mean free path square contain­

ing a pure absorber. The source is isotropic and constant over the square, and 

boundary conditions are vacuum. Calculations were performed using the 200 tri­

angle nesh of Fig. 5 and a similar 800 triangle mesh for both the continuous 

and discontinuous methods with the polynomial order N varying from one to four. 

Because we emphasize in this paper the spatial differencing of the transport 

equation, we choose to compare our computed results with the exact solution of 

the S equations, thus eliminating from consideration any errors introduced in 

the S approximation itself. The exact solution of the S^ equations can be ob­

tained easily for this simple homogeneous problem. In Table II we present the 

percentage difference between the total absorption computed from our numerical 

solutions and the total absorption computed from the exact S. solution. We 

note from the results of this table that the percent error decreases rapidly as 

the polynomial order is increased and that high order polynomial methodt- appear 

to be more efficient for obtaining answers accurate to many decimal places than 

low order polynomial methods. 

We also note from the results of Table II that the high order polynomial 

methods are no more than second order accurate. This is seen in the following 



°+ = o*a = 1*0 

Fig . 5. Pure absorbing square 200 t r i a n g l e mesh. 

TABLE II 

PERCENTAGE ERRORS IN TOTAL ABSORPTION 

FOR A PIECEWISE POLYNOMIAL APPROXIMATION 

TO THE SOLUTION OF THE TRANSPORT EQUATION 

FOR A PURE ABSORBER IN -A SQUARE WITH UNIFORM 

SOURCE. WEIGHT FUNCTIONS ARE LOW ORDER POLYNOMIALS, 

Number of 
Triangles 

200 

200 

200 

800 

800 

800 

200 

200 

200 

200 

800 

800 

800 

Method 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

Discontinuous 

Discontinuous 

Discontinuous 

Discontinuous 

Discontinuous , 

Discontinuous 

Discontinuous 

Order of 
Polynomial 

2 

3 

4 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

Computation 
Time (CDC-7600) 

0.52 sec 

1.50 sec 

4.12 sec 

1.98 sec 

5.45 sec 

13.57 sec 

.67 sec 

1.84 sec 

4.79 sec 

11.44 sec 

2.61 sec 

6.90 sec 

17.30 sec 

X Error 

.005202 

.000514 

.000062 

.001156 

.000086 

.000012 

.006565 

.000294 

.00017". 

.000044 

.001330 

.000065 

.000027 



< ". manner. An increase in the number of triangles from 200 to 800 represents a 

halving of mesh spacings. We see from Table II for any order of polynomial 

that such a halving of mesh spacings yields about a factor of four reduction in 

the percent error. Thus all these methods are second order accurate in their 

predictions of total absorption rates. A closer examination of the flux sh?pes 

for this problem yields the result that these methods are in fact only first 

order accurate in their prediction of point values of the scalar flux but are 

second order accurate when predicting any integral parameter such as the total 

absorption or an eigenvalue. 

The results of Table II were obtained using low order polynomials as 

weighting functions. Use of the Lagrange polynomials as weighting functions in 

the continuous method yields errors in the total absorption at least twice as 

large as those reported in Table II. For the discontinuous method, the choice 

of low order or Lagrange weights is immaterial. 

The results of Table II do not indicate a clear superiority of either the 

continuous methods or the discontinuous methods. Although the discontinuous 

methods are somewhat more accurate for a given polynomial order than are the 

continuous methods, the latter utilize substantially fewer unknowns and require 

much less computation time. Nevertheless, we do believe that the discontinuous 

methods possess advantages which recommend their use. In particular, we find 

that the discontinuous methods are more stable than the continuous methods and 

that the acceleration method known as coarse mesh rebalance works better with 

the discontinuous methods. These claims will be substantiated by the next few 

test problems. 

Transport theory methods based on continuous representations of the flux 

have great difficulty treating optically thick regions without using a fine 

mesh spacing. The diamond difference scheme can be derived by using a piecewise 

linear, continuous representation of the flux, and the tendency of this method 

to produce flux oscillations in such regions is well known. Transport codes 

based on this method always include some type of fixup scheme to eliminate these 

oscillations and the negative fluxes they produce, whenever possible. To examine 

the behavior of the discontinuous methods under such conditions, the first prob­

lem was repeated with a hundred-fold increase in the total cross section. The 

linear, discontinuous method, using the 200 triangle spatial mesh of Fig. 5, 

gave an error in the total absorption of 0.0027%. The TW0TRAN code (based on 

the continuous, diamond difference scheme), using a 100 square mesh, gave an 

errrr in the total absorption of 0.29%. The scalar flux along one half of the 

center plane is plotted in Fig. 6. The TW0TRAN solution is observed to 

oscillate about the infinite medium solution (0.01), whereas the discontinuous, 

triangular mesh solution rapidly damps to the infinite medium solution. The 

oscillation in the TW0TRAN solution would be more apparent if cell edge fluxes 
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Fig. 6. Center plane scalar flux for Problem 2. 



were plotted. 

The stability of the discontinuous Method is demonstrated again by Problem 

3, diagrammed in Fig. 7. The triangular mesh calculations were performed with 

a 200 triangle mesh identical to Fig. S. The TW0TRAN mesh consisted of 225 

equally spaced squares. Scalar fluxes along one half of the center plane are 

plotted in Fig. 8. The continuous triangular mesh scheme exhibits large, slowly 

damped oscillations. Aitiiough the linear discontinuous method results in nega­

tive fluxes, they are relatively small In magnitude a.ad rapidly damped. The 

negative flux fixup in TH0TRAN eliminates the difficulties of negative fluxes 

and oscillations in this ease. 

«T| * 1.0 erc » 035 S « L0 

er{ «100 
Og" 0 
S » 0 

0.6 cm -

I cm 

Fig. 7. Geometry for Problem 3. 

The ability of a triangular mesh to treat curved boundaries accurately is 

illustrated by Problem 4, diagrammed in Fig. 9. The orthogonal TW0TRAN mesh of 

Fig. 10 gives a poor approximation to the curved boundary of the interior re­

gion. The triangular meshes shown in Figs. 11, 12, and 13 approximate the cir­

cular boundary in a much more accurate fashion. The total absorption for the 

various models is tabulated in Table III. The errors given are the errors in 

the absorption from the most accurate model, namely the 648 triangle mesh with 

the discontinuous, cubic difference scheme. We see that the continuous 

quadratic scheme gives significantly less accurate absorption rates than the 
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the discontinuous, linear scheme. The TW0TRAN square equivalent in Table III 

is the result for the problem in which the circular area is converted to a 

square of equal area. Both TW0TRAN results indicate the inability of a rela­

tively coarse orthogonal grid to treat curved boundaries accurately. 

Convergence of the inner or within-group iteration in a transport code can 

be slow if optically thick regions with scattering ratio near unity ere present. 

In such situations the use of an acceleration technique is essential for rea­

sonable computation times. One of the most effective acceleration methods is 

coarse mesh rebalance. This method multiplies the fluxes in each coarse mesh 

zone by a factor for that zone chosen so that neutron balance over all zones is 

obtained. By neutron balance, we mean that for every zone the leakage plus 

absorption must equal the source. It is known that this acceleration can yield 

a divergent algorithm in some cases. The convergence of the accelerated 

iteration appears to be related to the stability of the difference method, with 

the more stable schemes yielding the more rapidly convergent accelerated algo­

rithms. For this reason we expect our discontinuous methods to couple nicely 

with the rebalance acceleration technique to yield a rapidly convergent algo­

rithm in almost all cases. The next problems are designed to test this hypoth­

esis. 

Problem 5 is a 10 mean free path square with a scattering ratio of 0.999, a 

unit source throughout the region, and vacuum boundary conditions. The linear 

discontinuous method and the 200 triangle mesh of Fig. 5 were used for the tri­

angular mesh calculations. A 121 square mesh was used for the TW0TRAN calcula­

tions. The number of iterations and CDC-7600 computation time required for a 
—8 

point-wise flux convergence to 10 are given in Table IV for several rebalance 

schemes. 

These schemes differ only in their definition of a coarse mesh zone. Each 

triangle is a separate coarse mesh zone in what we call fine mesh rebalance. In 

whole system rebalance the entire system comprises a single coarse mesh zone, 

and each band is e zone in band rebalance. 

For the case of band or fine mesh rebalai.ee, a linear algebraic system of 

equations must be solved for the rebalance factors. An iterative method is 

used to solve these equations, and e is the convergence precision of these 

iterations. Since a tight convergence on the rebalance factors is unnecessary 

for the earlier inner iterations, a variable rebalance precision was examined in 

which e , was chosen as 
rebal 

\-obal " °*01 * max Jl " fJ ' 

with 

http://rebalai.ee
file:///-obal


10~l * « . , * 10"8 . 
rebal 

The f. are the fine mesh rebalance factors from the previous inner iteration. 

An extrapolation procedure on the rebalance factors was also investigated 

whereby a corrected fine mesh rebalance factor is taken as 

f i 0 " " a ( fi - « + * • 

Choice of or* 1 corresponds to fine mesh rebalance and c - 0 corresponds to no 

rebalance. An appropriately chosen or tends to dampen the oscillation of the 

rebalance factors from one inner Iteration to the next. 

Problem 6 is identical to Problem 5 except that the scattering ratio is 

unity and the square is 100 mean free paths wide. A comparison of the rebalance 

technqiues for this problem is shown in Table V. 

Tables IV and V indicate that a large reduction in the number of inner 

iterations may result from the application of fine mesh rebalance. In particu­

lar, the gains appear to be much larger for the discontinuous difference schemes 

as opposed to the continuous difference scheme of TW0TRAN. For these problems 

the variable rebalance precision offers no savings in computation, whereas the 

extrapolation procedure effects a significant reduction in the number of inner 

iterations. 
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Fig. 9. Geometry for Problem 4. 
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Fig. 10. TW0TRAN mesh for Problem 4. 
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Fig, 11. Problem 4 50 triangle mesh 

150 Iriongle mesh 

Fig. 12. Problem 4 150 triangle mesh 
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Fig. 13. Problem 4 648 triangle mesh 



TABLE I I I 

TOTAL ABSORPTION FOR PROBLEM 4 

MODEL ABSORPTION 2 ERROR 

TW0TRAN, 1 0 0 s q u a r e mesh 0.1064 3436 -0.282Z 

TW0TRAN Square equivalent , 1600 square mesh 0.1059 4559 -0.233Z 

50 t r i a n g l e mesh, Continuous, Quadratic 

150 t r i a n g l e mesh. Continuous, Quadratic 

648 t r i a n g l e 

0.1001 

0.1030 

0.1033 

0.1029 

0.1034 

0.1037 

7172 

5362 

8129 

0304 

5378 

1294 

+0.344Z 

+0.056% 

+0.023Z 

+0.071Z 

+0.016% 

-0.010Z 

50 t r i a n g l e mesh, Discontinuous, Linear 

150 t r i a n g l e mesh, Discontinuous, Linear 

648 t r i a n g l e mesh, Discontinuous, Linear 

648 t r i a n g l e mesh, Discontinuous, Cubic 0.1036 1253 

TABLE IV 

INNER ITERATIONS REQUIRED FOR CONVERGENCE OF PROBLEM 5 

ACCELERATION METHOD ITERATIONS 
COMPUTATION 
TIME (SEC) 

TW0TRAN Mesh 

Whole system rebalance 82 1.96 

Fine mesh rebalance 47 6.60 

Fine mesh alternating with whole system rebalance 44 2.80 

Triangular Mesh 

No rebalance 

Whole system rebalance 

Band rebalance 
_3 

Fine mesh rebalance,e . , -10 
* rebal 

Fine mesh alternating with whole system rebalance 

Fine mesh, variable e . , 

rebal* 

306 

87 

80 

42 

41 

54 

21 

23.02 

6.72 

6.24 

3.97 

3.60 

7.25 

2.70 
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TABLE V 

INNER ITERATIONS REQUIRED FOR CONVERGENCE OF PROBLEM 6 

ACCELERATION METHOD ITERATIONS 
COMPUTATION 
TIME (SEC) 

TW0TRAN, Fine mesh alternating with vhole system rebalance > 1200 

Triangular Mesh 

Ho rebalance 

Vhole system rebalance 

Band rebalance 

Fine ncsh rebalance, c 
rebal 10 r3 

Pine mesh alternating with whole system rebalance 

Fine Mesh rebalance, variable e ' . -, a 0.70 

892 
455 
* 

71 

75 
75 

66,94 

34.32 

-

7.99 

6.90 

12.39 

Iterations diverge 

REFERENCES 

1 . William H. Reed, Nucl. Sc i . Eng. 4_5, 309 (1971). 

2. T. Ohnishl, "Application of F i n i t e Element Solution Technique to Neutron 
Diffusion and Transport Equat ions," Proceedings, Conf. on New Developments 
i»t Reactor Mathematics and Appl ica t ions , CONF-710302, Idaho F a l l s (1971). 

3 . Wm. H. Reed, "Triangular Mesh Difference Schemes for the Transport Equa­
t i o n , " Los Alamos Sc i en t i f i c Laboratory repor t LA-4769 (1971). 

4. W. F. Mil ler , J r . , E. E. Lewis, and E. C. Ressow, "The Applicat ion of Phase-
Space F i n i t e Elements to the Two-Dimensional Transport Equation in X-Y 
Geometry," submitted to Nucl. Sc i . Eng. for pub l i ca t ion . 

5 . K. D. Lathrop and F. W. Brinkley, "Theory and Use of the General-Geometry 
TWOTRAN Program," Los Alamos Sc ien t i f i c Laboratory repor t LA-4432 (1970). 

6 . W. H. Reed, "The Effectiveness of Accelerat ion Techniques for I t e r a t i v e 
Methods in Transport Theory," Nucl. Sc i . Eng. 45_, 245 (^971). 


