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TRIANGULAR MESH METHODS FOR THE
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ABSTRACT ?

The methods that are developed in this paper for differencing the die-
crete ordinates equations on a triangulér x-y grid are based on piecewise poly-
nomial representations of the angular flux. .The first class of wmethods dis~- !
cussed here assumes continuity of the angular flux across all triangle inter~ _
faces. A secomd class of methods, which is rhown to be superior to the Zirst
class, allows the angular flux to be discontinuous acrcoss triangle Loundaries.
Mumerical results illustrating the accuracy and stability ¢f iLhese methods are
presented, and numerical comparisons between the above two classes of methods -
are made. The effectiveness »f a fine mesh rebalance acceleration tachnique

is also discussed.



I. INTRODUSTION
A two-dimensional (x,y) neutron transport code based on 2 triangular spa-

tial mesh is currently under deveiopment at Los Alamos. This code will offer
several advantages over present codes, all of which use an orthogonal mesh
grid. By an orthogonal grid, we mean a grid in which all mesh lines meet at
right angles. Many nuclear reactors are designed with hexagonal elements;
these hexagonal geometries can be represented exactly with a triangular mesh by
subdividing each hexagon into four, six, or more triangles. Furthermore, com-
plicated curved geometries can be approximated easily and accurately with tri-
angles,

The increased flexibility of a triangular mesh is not without added cost.
Description of the mesh is more complicated, because the x and y ccordinates of
each vertex must be given. The order in which the meeh unknowns are sclved is
no longer straightforward tut involves determining the direction of flow across
triangle faces. Such determinations must be made repeatedly in the innermost
iteration loops of a tramsport code, and they may ircrease computation times,

The purpose of this paper is to present some cffective new schemes for ob-
taining finite-dimensional approximations to the transport equation on a trian-
gular grid. Difference schemes for the transport equation fall into twc broad
categories, which we wiil refer to as implicit or explicit methods. In an ia-
plicit method no attenpt is made to solve in the direction of the characteris-
tics of the equation, that is, in the direction in which neutrons are streaming.
Instead, variational methods or Galerkin methods are used to determine & set of
linear algebraic equations for all the unknowns. This set of equations i: then
solvud, usually by direct methods, to obtain the final solution. An explicit
method, on the other hand, sweeps once through the mesh, solving for the un-
knovns in the direction in which neutrons are streaming. More properly stated,
an explicit method follows characteristics through phase space. Of course,
this is also equivalent to solving a set of linear algebraic equations, but
here the matrix to be inverted is tioiangular, or at least block triangular.
Perhaps the clearest distincticu between the two methods can be made in the
following way. In an explicit method a perticular mesh cell is coupled only to
those mesh cells vigible when looking backward along the characteristics. An
implicit method couples all adjacent mesh cells with no regard for the direction
of the characteristics. The dizwond difference scheme is an explicit method;
examples of iwplicit methods are given in Ref. 1.

Although both explic ir 3:nd iwplicit methods have been studied thoroughly
for rectangular meshes in x-y geometry, very few triangular mesh methods have
bean suggested, and even fever have actually been tested. Ohniohiz proposes a
Calerkin method with piecewise linear crial functions for the spatial



dependence of the flux coupled with a discretc ordinates treatment of the an-
gular variables, but he does not give numericel results supporting the method.
Several explicit methods ave given fn Ref. 3,

Very good resuil:st' have been obtained with implicit methods for relotively
saell problems, chat ig, for problems in which the total aurber of cells in the
space-angle phase space is about 1000 or fewer. Unfortunately, many real phys-
ical problems involve wuch complicated geometries that several thousand spatial
mesh cells ar: necded to describe accurately the eystem boundaries and inter-
faces. With a relatively crude mesh for the angulor variables, the total num-
ber of cells in phase space can be on the order of scversl tens of thousands.

It is not known whether implicit methods can solve problems of this size effi-~
ciently. Furthermore, implicit methods require the storage of the complete an-~
dular flux. Since each cell in phase gpace usually involves several unknown
function values, the number of storage locations required for the angular flux
for a single encrgy group can excesd 100,000, The storage required for s
100,000 by 100,000 matrix of coefficients can axcaed one million locations,
assuming the matrix has & banl width of sbout 10. These requirements exceed

the fast and externded core capecities of all wmodern computars; so that disc
storage must be used, even for a one-group problem. Present two dimensional }
codes such as TWTRAHS‘ which are bssed on explicit ncthbds store only the scalar
flux and enough moments of the angular flux to generate the scatteriung source.
Tharefore, all paramaters pertinent to a single energy group can usually be con-
teined in fast core, so that a more efficient program is obtained and data
transfer problems are minimized.

Ve are concerned in this paper with methods that are suitable for large
complicated physical problems. For the above reasons, it appears that a:plic:lt"
methods may be superior to implicit methods for such problems. Thus we consid-
er only explicit methods in this paper. :

Although the methods developed in this paper are applicable to a general
triangular mesh, we consider here only "regular" triangular meshes. A regular
triangular mesh Is characterized by requiring that all vertices lie on hori.zon-‘
tal lines, so that horizontal bands of triangles are formed, and by insisting
that each interior vertex be common to six adjacent triangles. An example of
such a mesh is given in Fig. 1. Note that we do not require that triangles be "
equilateral and that a non-rectangular domain is allowed.

There ar= two reasons why we consiler only regular meshes. First, speci-
fication of a regular trfanmlar mesh is much simpler than specification of a
genersl triangulsar mesh., On.y three pieces of data are required: the mesh
spacings (&y) I the x coordinates of the vertices along each horizontal line,
and the or?antation of the first triangle on each band. The orientation of the
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Fig. 1. A typical regular trizngular mesh.
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first triangle on each hand can be specified by indicating whether the triangle

points up or points down. A regular 'triangu.lar mesh is determined uniquely

by the above data. b
The second reason why we consider only regular triangular meshes is relat-

ed to our decision to consider ouly explicit methods. Explicit methods naces-
sarily sveep the mesh in the dire~tion of the characteristics, so that there is
a definite order in which the triangles must be solved, This order depends -
upon the directicn of neutron flow across triangle boundaries and is not
straightforward as for an orthogonal mesh., Thus the direction of flow across

boundaries must be determined and decisions made as to how to progress through --

These decisions are much more complicated and time-consuming for a

the mesh.
Since the order in

general triangular mesh than for a regular triangular mesh.
wvhich the mesh is swept differs with each discrete ordinate directiun, these
decisions must be made repetitively in the innermost loops of a transport code.
If complicated, such decisions would be prohibitively expensive. We restrict
to a regular triangular grid to simplify these decisions as much as possgible
vhile retaining nost of the flexibility of a general mesh. |

t
t

II. THEORY
The one velocity neutron transport equation can be written in x~y geometry -

as
oy, o Y ;
(1] % + 17 9y + oy(: -Y-H,n) - S(X.Y.ll'-"l) ’ 1) =
| |
where we have written the scattering, fission, and inhomogeneous sources simply:
In a multigroup context, S would also include sources due to scattering :,

as S. _ | o __.1 ,,,,,



and fission in other groups. We will utilize the standard discrete ordinates

approximation to the above equation, thus we write

Y o,
L 5 oy (x,y) = 5 (x,y) )" i
where the angular flux qm(x.y) is an approximation to v(x,y,uh,qm) and a set of
M quadrature points (“h’1h> have been selected. For a detailed description of -
the standard quadratures used in two-dimensional discrete ordinates codes see
Ref. 5. This refarence also contains a good description of how the sources
which we have written as Sm(x,y) are generated, We assume the reader has a
basic familiarity with standard discrete ordinates codes and take the liberty
of omitting some of these details. 5

Our task is now the development of a discrete (in x and v) approximation

to Eq. (2) on a triangular mesh., Since we consider only explicit methods, th:lsL
task reduces to the problem of generating an approximation to v (x,y) over a i
single triangle, assuming that i (x,y) 1is known on the tr:l.angle boundaries ;
visible when looking along tiie direction ﬂ determined by L and TLI There are;
two cases that must be considered: one or two faces may be visible depending :

on the orientation of the triangle. These two cases are depicted in Fig. 2. L

/am . |
' .Qm/ -
Qrientation | Orientation 2
(one face visible) (two faces visible)

Fig. 2. The two possible orientations of a triangle with
respect to a direction

e S

All methods developed in this paper assume that the angular flux over each-

1

triangle is given by a low-order polynomial. That is, |

N N-1
T 35 S R
b

i=0

vhere 7. ~ t- over a given triangle and N is the order of the polynomial, B T
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The form of the approximate solution ;; over the entire system is completely
determined by specifying the continuity conditions across trilangle boundaries.
The two methods considered in this paper differ only in the degree of continuity
imposed on the approximate solution. The first method requires ghat the angu-
lar flux be continuous across all boundaries but does not require continuity of

"any derivatives of the solution. The second methcd imposes no continuity re-

quirements whatsoever across triangle boundaries, that is, the angular flux is
allowed to be discontinuous across all triangle boundaries. The flux on the
boundary is to be the limif of the angular flux as one approaches the boundary
in thé direction qm. The jump then occurs on the other side of the boundary.

We reiterate that the two methods considered in this paper are explicit
methods which utilize piecewise polynomial representations of the angular flux.
The order of the polynomizls is arbitrary, and the effectiveness of higher
order polynomials such as cubics and quartics is investigated numerically in
the next section of this paper.

There are, of course, many ways in which a polynomial in x and y can be
exprescsed. The representation of Eq. (3) is certainly the most common, but it ;
is inconvenient for our purpuses because the coefficients Aij have little phys-i
ical meaning. We prefer, instead, to use a Lagrange representation of the
polynomials with which we work. Let us assume that a set of K = ﬁﬂilgﬁgigl
distinct points (xi,yi) have been placed on the triangle of interest, where N :
is the order of the polynomial to be represented. The placement of these {
points is discussed below. We use K points because there are K linearly in- |
dependent polynomials of order less than or equal N. We define the polynomial
Li(x,y) as the unique polynomial of order less tham or equal N that is unity %
at the point (xi,yi) and is zero at the other K ~ 1 points. We refer to the K
polynomials Li so defined as Lagrange polynomials, If the points (xi.yi) have -
been chosen properly, then the Lagrange polynomials are linearly independent )
and form a basis for the space of polynomials of order less than or equal N,
Thus we can replace Eq. (3) by the following equation with no loss of content:

e —— ey

,i

1

K ' f

7(8-7) - Z 71 Li(x')') ’ . ) g
1=i | 'L

g

where we have suppressed the subscript m. In the above equation, the coeffi-

cients 'i cayi be interpweted as the value of i(x,y) at the point (xi.yi),

hence the notation *i Tt is this physical interpretation for '1 which leads

us to the Lagrange representation for Y&,y j
There are many arrangements of K points on a triangle that will guarantee :

uniqueness and linear independence of the Lagrange polynomials., We choose a

e b
!



' particular placement of these points wnich makes the treatment of the triangle
boundaries simple. For an N'th order polynomial, we place N+l points on each
'face of the triangle, with a point at each vertex. The remaining points are
distributed uniformly in the interior of the triangle. Figure 3 illustrates

the placement of these points for a few low crder polynomials.,

N=3 T N=4

Fig. 3. The triangular point arrangement for a few

low order polynomials., =

Because a polynomial in x and y of order N is determined on a straight line
uniquely by N+l distinct points on the line, the boundary fiux can be deter-
mined by the N+l points on th: houndary, without regard for the other points.
Furtherﬁore, the boundary flux is given by the unique one~dimensional poly- ;
nomial which pasgses through these N+1 points.

We have now given a complete description of the form cf the approximate
solution for the two methods, contimuous and discontinuous, that we discuss In ‘
this paper. What remains t, be described is the manner in which this approxi- :
mate solution is generated in each case. We ccmsider first the continuous
method. i

The point arrangement indicated in Fig. 3 and the representation of Egq.
(4) for T(x,y) over a triangle allow continuity to be imposed upon 7(x.y) with
little effort., %we simply assume that ;;\on all incoming boundaries of a tri-~
angle are known from prior calculation in adjacent cells or from system bound-
ary data. An incoming boundary is a triangle boundarv across which the neutron -
flow is into the cell. Of course, an incoming boundary for one cell ig an out-:
going boundary for the adjacent cell, and the definition of an incoming bound-
ary depends upon the direction 0- under consideration. Since there can be one 4\

e



or two incoming boundaries, either N+l or 2N+1 of the coefficients ?; of Eq.
(4) are determined from continuity at the boundaries. This leaves a total of

K = {(N+1) or K - (2N+1) unknown coefficients ?; per triangle, depending upon
the orieatation of Fig, 2. Let NN equal the number of unknowns in a given tri-
angle. This parameter is tabulated in Table I for a few cases., We see from
Table I that for linear polynomials and a triangle with two incoming boundaries

there are no unknowns to be determined. We believe this situation to be un~

desirable and thus restrict our attention to poclynomlals of order greater than

or equal two for the continuous method.

TABLE 1

THE NUMBER OF UNKNOWNS NN IN A TRIANGLE
AS A FUNCTION OF ORIENTATION AND ORDER OF POLYNOMIAL

ORIENTATION ORDER OF POLYNOMIAL
1

(I I A h"%

NN N R e
WO W N

We must now derive a set of NN equations for the NN unknowns on the given
triangle, This is accomplished in the following manner. The assumed form of
the solution is inserted in the discrete ordinate equation for the pﬁrticular
direction qmtuﬂer congsideration. The resulting equation is then muitiplied
successively by each of a set of NN weight functions and integrated over the
triangle. For the moment the weight functions are arbitrary and are denoted
Nh(x,y). With a proper choice of linearly independent weight functions, the
above procedure gives the desired set of NN equations. This set of equations’

takes the form

i ;"m (“'J”:;i>+"m (%;?)

i=1
* o(wj.L1>§ FENCHCE I ()

3= 2, ... NN ,



where the inner product (a,b) represents the integral of ab over the triangle

~

of interest, Note that some of the coefficients Yi appearing on the left side
of Eq. (5) are known from boundary data, so that in reality this equation re-

presents an NN by NN linear algebraic system of equations for the unknown

fluxes. With a proper cholce of weight functions this system is nonsingular

and can be solved routinely by any mecthod appropriate for small lirear systems,
such as Gaussian elimination. ‘
A good choice of weight functions is crucial to the success of the above
method. We believe that the best weight functions are the polynomials of order
less than or equal N-1 or N-2, depending upon whether the triangle is of orien-

tation 1 or 2, respectively. One can easily verify that there are precisely NN

of these polyncmials in either case, so that we obtain the same number of weight

functions as we have unknowns., Another possible choice of weight functions are

the Lagrange rolynomials that are unity at the unknown points. Numerical re-
sults in the next section indicate that the method does not perform as well with
these Lagrange weights as with the low order polynomial weights. It is, of
~course, pcssible to choose weights so that the resulting method is unstable, in
the sense that errors are amplified as oune sweeps through the mesh. We have no
theoretical results bearing on this problem, but we have never observed an in-
stability with either of the above two choices of weights,

VWe consider next the second method in which the flux is allowed to be dis~

continuous across triangle boundaries, We again use the Lagrange representation

of Eq, {4) for the flux and the point arrangement of Fig. 3. In this case, how-
ever, points lying on the triangle boundaries are thought of as actually lying
in the interior of the triangle but arbitrarily close to the boundary., 1In this
manner each boundary point splits into two or more points which are each asso-
--clated with different triangles. We attempt to illustrate this point arrange-
ment in Fig. 4. For this method the total number of unknowns is larger than
that for the continuous method. It is clear that the number of unknowns per

. direction 1s in fact equal to K times the total number of triangles in the mesh.

Fig. 4, A typical point arrangement for the discontinuous
method. Boundary points are actually arbitrarily

close to the bounrdary.



We now proceed in precisely the same manner as in method one. The assumed
form of the solution in a given triangle is inserted in the transport equation,
which gives a smooth function plus a Dirac delta function at the incoming
boundaries due to the jump discontinuity at these boundaries., The resulting
equation is multiplied by NN = K weight functions and integrated over the tri-~
angle., Again we obtain an NN by NN linear algebraic system for the NN unknowns
in each triangle, and with a proper choice of welght functions these equations
are nonsingular and can be solved for the unkaowns. Note that for this method
the number of weight functions required is equal to the number of linearly in-
dependent polynomials of order less than or equal N. Our choice of basis is
therefore immaterial, and any set of functions spanning the space of polynomi-
als of order less than or equal N will give the same answer when used as weight
functicns., We have not investigated the use of more complicated non-polynomial
welght functions for either of our methods. Agailn, we find experimentally that
this discortinuous method is stable when polynomial weight functions are used.

IIX, NUMERICAL RESULTS
A one-group, isotropic scattering, discrete ordinates code was written to

implement the methods of Sec. II. In this section, we present numerical results
obtained with this code for several simple problems. An S2 angular quadrature
wag used in all calculations.

The first test problem was designed to exhibit the accuracy that can be ob-
taingd with these methods. It consists of a one mean free path square contain-
ing a pure absorber. The source is isqtrOpic and constant over the square, and
boundary conditions are vacuum. Calculations were performed using the 200 tri-
angle mesh of Fig. 5 and a similar 800 triangle mesh for both the cdntinuous
and discontimsous methods with the polynomial order N varying from one to four.
Because we emphasize in this paper the spatial differencing of the-transport
equation, we choose to compare our computed results with the exact solution of
the Sn eguations, thus eliminating from consideration any errors introduced in
the Sn approximation itself, The exact solution of the S2 equations can be ob-
tained easily for this simple homogeneous problem. 1In Table II we present the
percentage difference between the total absorption computed from our numerical
solutions and the total absorption computed from the exact 82 solution. We
note from the results of this table that the percent error decreases rapidly as
the polynomial order is increased and that high order polynomial methods appear
to be more efficient for obtaining answers accurate to many decimal places than

low order polynomial methods.
We also note from the results of Table IT that the high order polynomial

methods are no more than second order accurate, This is seen in the following
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Fig. 5. Pure absorbing square 200 triangle mesh.

TABLE II

PERCENTAGE ERRORS IN TOTAL ABSORPTION
FOR A PIECEWISE POLYNOMIAL APPROXIMATION
TO THE SOLUTION OF THE TRANSPORT EQUATION P
FOR A PURE ABSORBER IN-A SQUARE WITH UNIFORM
SOURCE. WEIGHT FUNCTION'S ARE LOW ORDER POLYNOMIALS.

Order of Coﬁputation
Method Polynomial Time (CDC-7600) 2 Error
Continuous 2 0.52 sec .005202
Continuous 3 1.50 sec 000514
Continuous 4 4.12 sec .000062
Continnous 2 1.98 sec 001156
Continuous 3 5.45 sec .000086
Continuous 4 13.57 sec .000012
Discontinuous 1 «67 sec .006565
Piscontinuous 2 1.84 sec 000294
Discontinuous 3 4.79 sec .00017%
Piscontinuous 4 11.44 sec 000044
Discontinuous . 1 2.61 sec .001330
Discontinuous 2 6.20 sec .000065
Piscontinuous 3 17.30 sec’ .000027 -



manner., An increase in the number of triangles from 200 to 800 represents a
halving of mesh spacings. We see from Table II for any order of polynomial
that such a halving of mesh spacings yields about a factor of four reduction in
the percent error. Thus all these methods are second order accurate in their
predictions of total absorption rates. A closer examination of the flux shepes
-for this problem yilelds the result that these methods are in fact only first
order accurate in their prediction of point values of the scalar flux but are
second order accurate when predicting any integral parameter such as the total
absorption or an eigenvalue.

The results of Table II were obtained using low order polynomials as
weighting functions. Use of the Lagrange polynomials as weighting functions in
the coatinuous method yields errors in the total absorption at least twice as
large as those reported in Table II. For the discontinuous method, the choice
of low order or Lagrange weights is immaterial.

The results of Table II do not indicate a clear superiority of either the
continuous methods or the discontinuous methods. Although the discontinuous
methods are somewhat more accurate for a given polynomial order than are the
continuous methods, the latter utilize substantially fewer unknowns and require
much less computation time. Nevertheless, we do believe that the discontinuous
methods possess advantages whlich recommend their use, 1In particular, we f£ind
that the discontinuvous methods are more stable than the continuous'methods and
that the acceleration method known as coarse mesh rebalance works better with
the discontinuous methods. These claims will be substantiated by the next few
test problems.,

Transport theory methods based on continuous representations of the flux
have great difficulty treating optically thick regions without using 5 fine
mesh spacing. The diamond difference scheme can be derived by using a plecewise
linear, continuous representation of the flux, and the tendency of this method
to produce flux oscillations in such regions is well known. ZIransport codes
~based on this method always include some type of fixup scheme to eliminate these
oscillations and the negative fluxes they produce, whenever possible. To examine
the behavior of the discontinuous methods under such conditions, the first prob-
lem was repeated with a hundred-fold increase in the total cross section. The
linear, discontinuous method, using the 200 triangle spatial mesh of Fig. 5,
gave an error in the total absorption of 0.0027%. The TWPTRAN code (based on
the continuous, diamond difference scheme), uging a 100 square mesh, gave an
errer in the total absorption of 0.29%Z. The scalar flux along one half of the
center plane is plotted in Fig. 6. The TWPTRAN solution is observed to
oécillate about the infinite medium solution (0.0l1), whereas the aiscontinuous,
triangular mesh solution rapidly damps to the infinite medium solution. The
oscillation irn the TWATRAN solution would be more apparent if cell edge fluxes
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were plotted.
The stability of the discontimucus method is demonstrated again by Problem

3, diogrammed in Fig. 7. The trianpgular mesh calculations were performed with

a 200 triangle mesh identical to Fig. 5. The TWOTRAN mesh consisted of 225
equally spaced squares. Scalar fluxes along onc half of the center plane are
plotted in Fig. 8. The contimuous triangular mesk scheme exhibits large, slowly
damped oscillations. Although the lincar discentirucus method results in nega-
tive fluxes, they are relatively small in wagnitude 2:d vapidly damped. The
negative flux fixup in TWETRAN eliminates the difficultics of negative fluxes

and osci{llations in thisc case.

=10 =095 S=10

o;*tOO
0‘330
§$=0

e 0.6 ¢ '

f——— lem ——

Fig. 7. Geonmetry for Problem 3.

The ability of a triangular mesh to treat curved boundaries accurately is
illustrated by Problem 4, diagrammed in Fig. 9. The orthogonal TWATRAN mesh of
Fig. 10 gives a poor approximation to the curved boundary of the interior re-
gion. The triangular meshes shown in Figs. 11, 12, and 13 approximate the cir~
cular boundary in a much more accurate fashion. The total absorption fcr the
various models is tabulated in Table II1. The errors given are the errors in
the absorption from the most accurate model, namely the 648 triangle mesh with
the discontinuous, cubic difference scheme. We see that the continuous
quadratic scheme gives significantly less accurate absorption rates than the
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’ equations must be solved for the rebalance factors.

the discontinuous, linear scheme. The TWSTRAN square equivalent in Table III
is the result for the problem in which the circular area is converted to a
square of equal area. Both TH¢TRAN results indicate the inability of a rela~
tively ccarse orthogonal grid to treat curved boundaries accurately.

Convergence of the inner or within-group iteration in a transport code can
be slow if optically thick regions with scattering ratio near unity zce present,
In such situations the use of an acceleration technique is essential for rea-
sonable computation times. One of the most effective acceleration methods is
coarse mesh rebalance.5 This method multiplies the fluxes in each coarse mesh
zone by a factor for that zone chosen so that neutron balance over all zones is
obtained. By neutronr balance, we mean that for every zone the leakage plus
absorption must equal the source. It is known that this acceleration can yield
a divergent algorithm in some cases.6 The convergence of the accelerated
iteration appears to be related to the stability of the difference method, with
the more stable schemes yielding the more rapidly convergent accelerated algo-
rithms.6 For this reason we expect our discontinuous methods to couple nicely
with the rebalance acceleration technique to yield a rapidly convergent algo-
rithm in almost all cases. The next problems are designed to test this hypoth-
esis.,

Problem 5 is a 10 mean free path square with a scattering ratio of 0.999, a
unit source throughout the region, and vacuum boundary conditions. The linear
discontinuous method and the 200 triangle mesh of Fig. 5 were used for the tri-~
angular mesh calculations. A 121 square mesh was used for the TWHTRAN calcula-

tions. The number of iterations and CDC~-7600 computation time required for a

. point-wise flux convergence to 10"8 are given in Table IV for several rebalance

schemes.
These schemes differ only in their definition of a coarse mesh zome. Each

triangle 1s a separate coarse mesh zone in what we call fine mesh rebalance. In

"whole system rebalance the entire system comprises a single coarse mesh zone,

and each band is & zone in band rebalance.
For the case of band or fine mesh rebalaice, a linear algebraic system of
An iterative method is

used to solve these equations, and €rebal is the convergence precision of these

iterations. Since a tight convergence on the rebalance factors is unnecessary

for the earlier inner iterations, a variable rebalance precision was examined in

which erebal was chosen as

€. pa1 = 0-01 * mix 1 - fil ,

“with
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“cebal = 10 .

1072
The f1 are the fine mesh rebalance factors from the previous inner iteration.,
An extrapolation procedure on the rebalance factors was also investigated
vhereby a corrected fine mesh rebalance factor i3z taken as

corr
fi - a(f1 ~-1+1 ,

0sasx1l .

Choice of a = 1 corresponds to fine mesh rebalance and o = 0 corresponds to no
rebalance, An appropriately chosen o tends to dampen the oscillation of the

rebalance factors from one inrei iteration to the next,

Problem 6 is identical to Problem 5 except that the scattering ratio is
unity and the gquare is 100 mean free paths wide., A compariscon of the rebalance
technqives for this problem is shown in Table V.

Tables IV and V indicate that a large reduction in the number of inner
iterations may result from the application of fine mesh rebalance. In particu-
lar, the gains appear to be much larger for the discontinuous difference schemes
as opposed to the continuous difference scheme of TWSTRAN. For these problems
the variable rebalance precision offers no savings in computation, whereas the
extrfpolation procedure effects a significant reduction in the number of inner

iterations.
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TABLE III1

TOTAL ABSORPTION FOR FROBLEM 4

MODEL ABSORPTION % ERROR
TWATRAN, 100 square mesh 0.1064 3436 ~-0,282%
TWSTRAN Square equivalent, 1600 square mesh  0.1059 4559 -0,233%
50 triangle mesh, Continuous, Quadratic 0.1001 7172 40,3442
150 triangle mesh, Contimuous, Quadratic 0.1030 5362 +0.056%
648 triangle 0.1033 8129 40.023%
50 triangle mesh, Discontinuous, Linear 0.1029 0304 40,0712
150 triangle mesh, Discontinuous, Linear 0.1034 5378 +0.,016%
648 triangle mesh, Discontinuouss Linear 0.1037 1294 ~0,010Z
648 triangle mesh, Discontinuous, Cubic 0.1036 1253 -
TABLE IV
INNER ITERATIONS REQUIRED FOR CONVERGENCE OF PROBLEM 5
’ COMPUTATION
ACCELERATIONR METHOD JITERATIONS TIME (SEC)
TWATRAN Mesh
Whole system rebalance 82 1.96
Fine wesh rebalance 47 6.60
Fine mesh alternating with whole system rebalance 44 2.80
Triangular Mesh _ _-
No rebalance 306 23,02
Whole system rebalance 87 6.72
Band rebalance 80 6.24
Fine mesh rcbalance, € ebal ™ 1073 42 3.9?
Fine mesh altermating with whole system rebalance 41 3.60
Pine mesh, variable €rebal 54 7.25
21 2.70

Fine mesh, variable ¢ p o= 0.70

reba




[ BY

« TABLE V

INNER ITERATIONS REQUIRED FOR CONVERGENCE OF PROBLEM 6

COMPUTATION
ACCELERATION METHOD ITERATIONS TIME (SEC)
THATRAN, Fine mesh altcrnmating with whole system rebalance > 1200 -
Triangular Mesh
No rebalance 892 66,94
Whole system rebalance 455 34.32
Band rebalance * -
Fine mcsh rebalance, ¢, . = 1073 ) 71 7.99
Fine mesh alterracing with whole system rebalance 75 6.90
Fine mesh rebalance, variable c:"ebal’ a = 0,70 5 12.39

*I terations diverge
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