

195
4-9

61

RFP-1976

RFP-1976
March 12, 1973

MASTER

THE EXOTHERMIC ENTHALPY OF TRIS WITH 0.1M
HYDROCHLORIC ACID-STANDARD REACTION
FOR SOLUTION CALORIMETRY

James D. Navratil

Franklin L. Oetting

DOW CHEMICAL U.S.A.
ROCKY FLATS DIVISION
P. O. BOX 888
GOLDEN, COLORADO 80401

U. S. ATOMIC ENERGY COMMISSION
CONTRACT AT(29-1)-1106

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from the

National Technical Information Service

U. S. Department of Commerce

Springfield, Virginia 22151

Price: Printed Copy \$3.00; Microfiche \$0.95

Printed
March 12, 1973

RFP-1976
UC-4 CHEMISTRY
TID-4500 (56th Ed.)

**THE EXOTHERMIC ENTHALPY OF TRIS WITH 0.1M
HYDROCHLORIC ACID—STANDARD REACTION
FOR SOLUTION CALORIMETRY**

James D. Navratil

Franklin L. Oetting

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

**DOW CHEMICAL U.S.A.
ROCKY FLATS DIVISION
P. O. BOX 888
GOLDEN, COLORADO 80401**

SUBJECT DESCRIPTORS

Solution calorimetry
Exothermic enthalpy

Prepared under Contract AT(29.1)-1106
for the
Albuquerque Operations Office
U. S. Atomic Energy Commission

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

C O N T E N T S

Abstract	1
Introduction	1
Summary and Conclusions	1
Experimental	1
Materials	1
Calorimeter and Procedure	2
Calculation Methods	2
Results and Discussion	4
References	7
Appendix I	9

THE EXOTHERMIC ENTHALPY OF TRIS WITH 0.1M HYDROCHLORIC ACID-STANDARD REACTION FOR SOLUTION CALORIMETRY

James D. Navratil and Franklin L. Oetting

Abstract. The exothermic enthalpy of TRIS [tris (hydroxymethyl) aminomethane] with 0.1M hydrochloric acid at 298.15 K, has been determined under a variety of conditions using a modified LKB reaction calorimeter. The calorimeter and mode of operation were altered in various ways to ensure reliability. For example, a separate electrical energy measurement system was installed for comparison with the LKB system. The Regnault-Pfaundler and modified Dickinson calculation methods for the corrected temperature rise were also compared. Calorimetric results using a vented reaction vessel were compared to those using an unmodified vessel.

Our best enthalpy value of $-7108 \pm 5 \text{ cal}\cdot\text{mol}^{-1}$ for the standard TRIS reaction is compared with other TRIS results reported to date. An enthalpy of $-7077 \pm 6 \text{ cal}\cdot\text{mol}^{-1}$ was measured using hydrochloric acid solution saturated with carbon dioxide.

INTRODUCTION

An LKB reaction calorimeter was obtained to measure various heats of reaction of interest to the nuclear industry. To ensure reliability of the calorimetric measurements and to guard against any possible systematic error in the calorimetric system, the exothermic heat of the standard reaction of TRIS [tris (hydroxymethyl) aminomethane with 0.1M hydrochloric acid was measured at 298.15 K.

Even though the reaction of TRIS with hydrochloric acid is considered to be a standard for solution calorimetry, there is a slight discrepancy in the heat value. The certified value for the TRIS-hydrochloric acid reaction as given by the National Bureau of Standards¹ is almost 0.1% more exothermic than previously reported high precision results.^{2,3} Hopefully the results obtained with our calorimeter would help to resolve the small discrepancy.

Prosen and Kilday¹ have found that anomalous results on the TRIS-hydrochloric acid reaction are obtained if the reaction vessel is not vented. Hubbard, et al.⁴ reported a less exothermic reaction if carbon dioxide is present in a vented system. Therefore, our intention was to examine the TRIS-hydrochloric acid reaction in our calorimeter with regard to these side effects to better understand the capabilities of the instrument and also to become fully aware of its limitations.

To guard against any systematic error in the calorimetric system, an auxiliary electrical energy measurement system was installed for comparison with the unit commercially available on the LKB reaction calorimeter. Also, an examination of two different modes of temperature rise calculations, the modified Dickinson method⁵ and the Regnault-Pfaundler method,⁶ was made to determine which method best suited our needs.

SUMMARY AND CONCLUSIONS

The exothermic enthalpy of TRIS [tris (hydroxymethyl) aminomethane] with 0.1M hydrochloric acid at 298.15 K, has been determined under a variety of conditions using a modified LKB reaction calorimeter. The calorimeter and mode of operation were altered in various ways to ensure reliability. For example, a separate electrical energy measurement system was installed for comparison with the LKB system. No significant difference in results was observed between the two energy measurement stations. The Regnault-Pfaundler and modified Dickinson calculation methods for the corrected temperature rise were also compared. The latter method was found less precise than the former method and the two gave comparable results for fast reactions only. Calorimetric results using a vented reaction vessel were compared to those using an unmodified vessel. The results were similar and showed that the unmodified vessel was indeed vented.

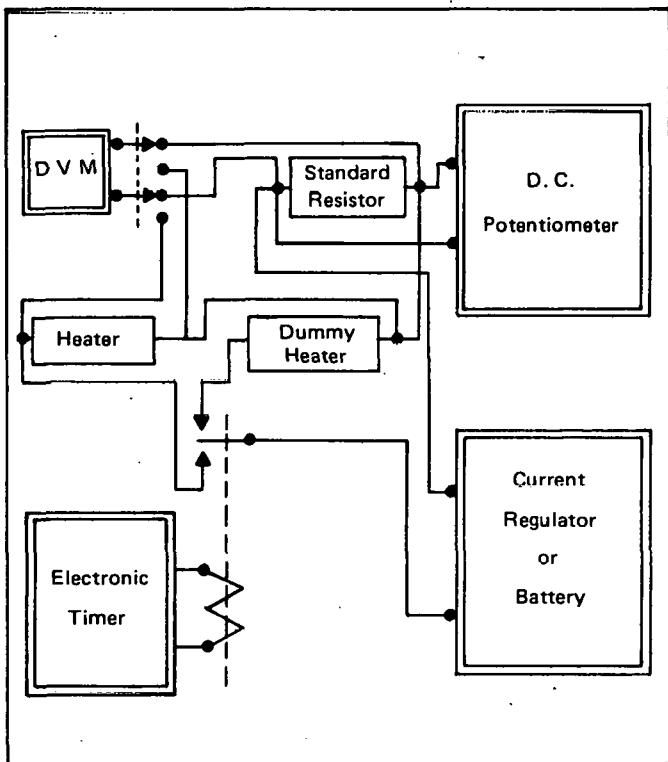
Our best enthalpy value of $-7108 \pm 5 \text{ cal}\cdot\text{mol}^{-1}$ for the standard TRIS reaction is in excellent agreement with other TRIS results reported to date. An enthalpy of $-7077 \pm 6 \text{ cal}\cdot\text{mol}^{-1}$ was also measured using hydrochloric acid solution saturated with carbon dioxide.

EXPERIMENTAL

Materials

The "Solution Calorimetry Standard," TRIS, NBS Standard Reference Material No. 724, stated purity of 99.94 ± 0.01 mole percent, was stored over saturated magnesium nitrate solution at least 2 weeks prior to use.⁷ The molar mass of $121.137 \text{ g}\cdot\text{mol}^{-1}$, density of $1.35 \text{ g}\cdot\text{cm}^{-3}$ for weight correction to *in vacuo*, and purity of 100%, were used.

Solutions of 0.1M* hydrochloric acid were prepared from Baker "Ultrex" hydrochloric acid and doubly distilled water. During storage, the hydrochloric acid was protected against carbon dioxide absorption by use of sodium hydroxide-coated asbestos in guard-tubes.


Calorimeter and Procedure

An LKB 8700-1 reaction calorimeter of the isoperibol type was used for the measurements. Various components such as the standard resistors, wheatstone bridge, potentiometer, timer, and standard cell were checked or calibrated by certified components of the Physical Metrology Laboratory at Rocky Flats, which are traceable to standards at the National Bureau of Standards. The stability of the constant-temperature bath was found to be $\pm 0.001^\circ\text{C}$ during an 8-hour period. LKB claims a precision of $\pm 0.003\%$ and an accuracy $<0.02\%$, in general, for the heat measurements.

The calorimeter heater circuit was modified as shown in Figure 1 to include an auxiliary electrical energy measurement station and the capability of increased power from batteries. The extra measurement unit was installed for comparison with the LKB system and was necessary for power measurements when the LKB power supply was

*M = 1 mol·dm⁻³; cal = 4.184 abs joules.

Figure 1. Simplified Wiring Schematic of Heater.

disconnected and replaced by two 12-volt batteries in series. The increased power was necessary to better match the calibration resistance-time curves with the reaction curves. However, for proper operation of the heater, the power was kept below one watt.

During most of the calibration runs, the LKB electrical energy measurement unit was used simultaneously with the auxiliary measurement unit. The auxiliary station consisted of a Hewlett-Packard 3450A Multi-Function Meter, coupled with a 5050B Digital Recorder, which recorded voltages across the heater and standard resistor via a relay switching every 4 to 6 seconds.

Temperature measurements were made with a thermistor which was calibrated in degrees at six different temperatures between 24.9 and 25.5°C with a National Bureau of Standards calibrated platinum-resistance thermometer. These measurements were fitted to both a straight line by least squares and to the equation

$$R = A \cdot e^{B/T} \quad (1)$$

where R and T are the resistance and temperature, respectively, and A and B are constants obtained by a computer fit of the data. No significant difference in calibrations, using either equation, was observed.

A typical experiment consisted of breaking a one milliliter glass ampoule, containing 0.5 g of TRIS, into 100 ml of 0.1M hydrochloric acid after allowing the calorimetric system to come to thermal equilibrium (20 to 30 minutes). To properly define the resistance-time curve, about ten resistance and time measurements were taken during the initial and final periods, and as close together as possible during the main period. After each run, the side of the reaction vessel was cooled to the pre-reaction temperature with cool, dry air. At least two calibration runs were performed either before or after the reaction experiment where the mean or initiation temperature was 298.15 ± 0.001 K, respectively.

Calculation Methods

A combined computer program was used to calculate heats of reaction by treating the experimental data in two ways. The program contained both the method of Dickinson⁸ as modified by Fitzgibbon et al.⁵ and the Regnault-Pfaundler method, as described by Wadso⁶, for the calculation of the corrected temperature rise.

A typical resistance-time curve for an experiment, shown in Figure 2, visualizes the terms of the equation,

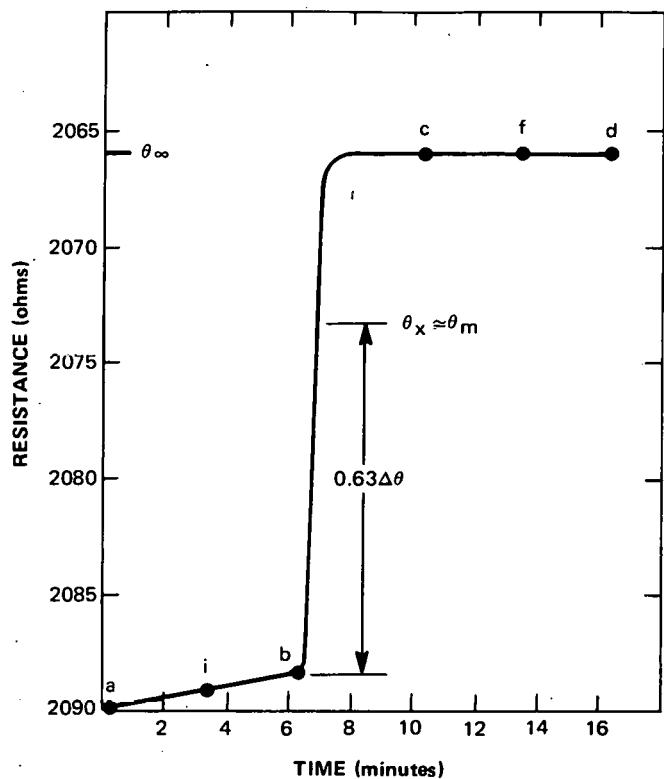


Figure 2. Resistance-Time Curve for the TRIS-Hydrochloric Acid Reaction.

$$\Delta R = \theta_c - \theta_b - [g_1 (t_x - t_b) - g_3 (t_c - t_x)] \quad (2)$$

where ΔR is the corrected resistance change of the modified Dickinson method. The t_x value was calculated from the equation,

$$t_x = (\theta_x - A_2)/g_2 \quad (3)$$

where θ_x was taken as $\theta_x = \theta_b - (\theta_b - \theta_c) 0.5$ and $\theta_x = \theta_b - (\theta_b - \theta_c) 0.63$ for calibration and reaction runs, respectively. The remaining terms are defined in Table 1. The terms within the brackets of Equation 2 are the corrections for the heat of stirring, heat leakage, and heat generated by the thermistor. All the θ and t values in the initial and final periods were fitted to a straight line by a linear-least-squares sub-routine to obtain the corresponding intercept at $t = 0$ and mean slope values. The initiation time (t_b) of the reaction or calibration was used to calculate the corresponding θ_b value by use of the equation,

$$\theta_b = A_1 + g_1 t_b \quad (4)$$

Since the resistance change in the final period was small, θ_c was taken as the first resistance value where a steady

Table 1. Definition of Symbols.

θ :	Resistance in ohms at beginning of initial period (θ_a), mean of initial period (θ_i), start of main period (θ_b), mean of the main period (θ_m), end of main period (θ_c), mean of final period (θ_f), end of final period (θ_d), and at equilibrium (θ_∞).
t :	Time in minutes with subfixes corresponding to the same periods as the θ values.
g :	Slope $d\theta/dt$, of the initial (g_1), main (g_2), and final (g_3) periods.
A :	Intercept at $t = 0$ of the initial (A_1), main (A_2), and final (A_3) periods.
K :	Heat leakage constant $= (g_1 - g_3)/(\theta_f - \theta_i)$.
Δt :	Calibration time in seconds.
$\text{EMF}_{(h)}$:	EMF across heater.
$\text{EMF}_{(s)}$:	EMF across standard resistor.
i :	Current.
$R_{(s)}$:	Resistance of standard resistor.
$R_{(HL)}$:	Resistance of the heater leads.
n :	Number of moles.

state condition was reached. Selection of the θ_c value was confirmed by comparing the uniformity of $\Delta \ln(\theta - \theta_\infty)/\Delta t$ values calculated for the last five data points in the main period, and all the data points in the final period after the method of Coughlin.⁹ Next, t_c was calculated from the relation,

$$t_c = (\theta_c - A_3)/g_3 \quad (5)$$

Only a few points in the linear portion of the main period (40 to 70% of ΔR) were used to calculate A_2 and g_2 .

The Regnault-Pfaundler method for the calculation of the corrected temperature rise was taken from Wadso.⁶ Equations 6 and 7 are equivalent and give the corrections for the heat of stirring, heat leakage, and heat generated by the thermistor.

$$\Delta\theta_1 = [g_1 - K(\theta_m - \theta_i)] (t_c - t_b) \quad (6)$$

$$\Delta\theta_2 = [g_3 - K(\theta_m - \theta_f)] (t_c - t_b) \quad (7)$$

The symbolism in Equations 6 and 7 are defined in Table 1. The mean resistance, θ_m , is determined by the trapezoid rule given by the equation,

$$\theta_m = \frac{(t_2 - t_1) \left[\frac{(\theta_1 - \theta_2)}{2} \right] + (t_3 - t_2) \left[\frac{(\theta_2 - \theta_3)}{2} \right] + \dots + (t_{n+1} - t_n) \left[\frac{(\theta_n - \theta_{n+1})}{2} \right] + \dots}{(t_2 - t_1) + (t_3 - t_2) + \dots + (t_{n+1} - t_n) + \dots} \quad (8)$$

Finally, the corrected resistance change is given by either of the following equivalent equations,

$$\Delta R_1 = \theta_c - \theta_b - \Delta \theta_1 \quad (9)$$

$$\Delta R_2 = \theta_c - \theta_b - \Delta \theta_2 \quad (10)$$

The energy equivalent, ϵ , given by the equation,

$$\epsilon = Q/\Delta T \quad (11)$$

was utilized since it was not always possible to match the calibration and experimental resistance-time curves exactly. The value ΔT , the corrected temperature rise, is defined by the equation,

$$\Delta T = \frac{\Delta R T_m^2}{C \theta_m} \quad (12)$$

and is used to account for the nonlinear relationship between changes of resistance and degrees; T_m and θ_m are the mean temperature and resistance values of the main period, respectively, where the former is calculated from Equation 1, and $C = 3348$, a constant calculated from the calibration of the thermistor in degrees. The calibration energy, Q , is given by the equations,

$$Q = \frac{\Delta t \left[\left(\frac{R(s) \cdot \text{EMF}(h)}{\text{EMF}(s)} \right) - R(HL) \right] i^2}{4.184 \text{ J} \cdot \text{cal}^{-1}} \quad (13)$$

$$Q = \frac{\Delta t \cdot \text{EMF}(h) \cdot \text{EMF}(s)}{R(s) \cdot 4.184 \text{ J} \cdot \text{cal}^{-1}} - \frac{R(HL) \left(\frac{\text{EMF}(s)}{R(s)} \right)^2 \Delta t}{4.184 \text{ J} \cdot \text{cal}^{-1}} \quad (14)$$

Equation 13 corresponds to data taken from the LKB measurement station. A current of 0.02 amp is first set by adjusting the current from the power supply until the EMF drop across the standard resistor (49.996 ohms) is 1.00000 V. Then the EMF across the heater is measured. Five different standard resistors can be connected in the

circuit for the calibration runs and in each case the current is adjusted prior to the run until the potential drop across the standard resistance is 1.0000 V. Calibration time (Δt) is measured by an electronic timer. The heater lead resistance [$R(HL)$], 0.0130 ohms, was taken from half the product of the lead length (10 cm) and lead resistance (0.26 ohm/meter). Equation 14 is used for the DVM measurements where the EMF drop across the heater and standard resistor is measured. The remaining terms are defined in Table 1. The final ΔH ($\text{cal} \cdot \text{mol}^{-1}$) value was calculated from the equation,

$$\Delta H = \frac{\epsilon(\Delta T)_{\text{exp}}}{n} \quad (15)$$

where ΔT_{exp} is the corrected temperature rise of the experiment.

RESULTS AND DISCUSSION

Table 2 contains the mean and twice the standard deviation of the mean, $2 [\sum d^2/n(n-1)]^{1/2}$, for each group of experiments performed under a variety of conditions (details of the individual experiments are contained in Appendix I). The operational or experimental conditions were changed after some groups of measurements. Calibration of the standard cell and DVM was performed prior to experiments 25 and 12, respectively. A new reaction

Table 2. Average Enthalpy Results Obtained Under Various Conditions.

Conditions	$-\Delta H_{298.15 \text{ K}} \text{ (cal} \cdot \text{mol}^{-1}\text{)}$
^a Regnault-Pfaundler calculation method	7111.2 ± 3.5
^a Modified Dickinson calculation method	7111.4 ± 3.8
^b Initial Experiments (2-12)	7114.8 ± 3.5
Experiments 13-15	7112.4 ± 0.2
Vented Reaction Vessel Experiments (17-19)	7117.6 ± 3.7
Battery Power Source (21-22)	7115.9 ± 2.5
^c Final Experiments (25, 26, 29, 32, 35, 36, 38)	
LKB Station	7106.6 ± 4.9
DVM Station	7108.7 ± 4.9
CO ₂ Experiments (28, 31, 33, 34, 37)	7077.4 ± 6.0

^aAll experiments were averaged except for the values from the DVM power measurements and CO₂ experiments.

^bAverage results are taken from Regnault-Pfaundler calculations.

^cResults shown are from LKB and DVM power measurements, respectively.

vessel was introduced before experiment 25. The hydrochloric acid concentrations were 0.0991 and 0.0998M for experiments numbers 2 through 12 and 13 through 38, respectively. The experiments, numbered 1, 5, 11, 16, 20, 23, 24, and 27, were omitted because of instrument or experimental difficulties and/or anomalous heat leakage constants.

The corrections applied to the results included a temperature correction to 25.00°C for experiments 2 through 22. Corrections for the heat of ampoule breaking were stated by the manufacturer as less than 0.002 calories for 90% of the ampoules, and our measurements on several empty ampoules confirmed their result. Since there was no change in air pressure upon breaking the ampoules during the TRIS experiments, only small condensation and vaporization corrections need be made. The condensation correction can be neglected since there is no change in ionic strength during the neutralization reaction of TRIS. The vaporization correction was calculated as 0.0060 and 0.0142 calories for conditions relating to the TRIS experiments and empty ampoule breaking experiments, respectively. The heat of breaking the ampoules and saturation of the air in the ampoules with water vapor was determined simultaneously by breaking 14 ampoules containing air (22% relative humidity). The measured endothermic heat was 0.0113 ± 0.0068 calories. The combined heat of vaporization and breaking correction for the TRIS experiments (0.0042 calories) was calculated by multiplying the measured value (0.0113 calories) by the ratio of the calculated vaporization heats (0.0060/0.0142), under the respective conditions. The correction in calories (1.0), obtained by dividing the combined value (0.0042) by the mean number of moles (0.00411), was added to the enthalpy values in Table 2.

As shown in Table 2, the results calculated from the Regnault-Pfaundler and modified Dickinson methods are in excellent agreement. Hill et al.² also reported that within experimental uncertainties, the two methods gave identical results. However, it is of interest to note that the results from using the modified Dickinson method are less precise as shown by the error limits. This is probably not too surprising since the modified Dickinson method does involve the approximation of θ_x . Also, the approximate method should be avoided for reaction times greater than 5 minutes,⁶ for example, heats of solution of beryllium in 1M H₂SO₄, with reaction times of ~20 minutes, were 1.3 percent less exothermic using the modified Dickinson method as compared to the Regnault-Pfaundler method.¹⁰ However, the Regnault-Pfaundler method is sensitive to erroneous heat leakage constants.⁶

The results of the initial experiments, 2-12 (-7114.8 ± 3.5) compared to the final experiments, 25, 26, 29, 32,

35, 36, and 38, (-7106.6 ± 4.9) are significantly different. The former experiments were obtained under conditions where the TRIS weights were only to four places, large temperature corrections to 25.00°C were necessary, and where condensation of liquid on the neck of the reaction vessel was possible since the bath temperature was not maintained above the final reaction temperature. The latter group of experiments was done under conditions which avoided all these experimental difficulties. In addition, the cooling tube was altered to direct the stream of cool air at the base of the reaction vessel to prevent condensation of liquid on the neck of the vessel, and the outer can surrounding the vessel was evacuated to 30-100 microns during the final group of experiments to eliminate significant heat transfer by convection and conduction. It was thought that the last experimental condition was the most important cause for the difference in the initial and final experiments since the magnitude of free convection for our calorimeter was a significant factor. For the LKB calorimeter, $\ell^3 (T_1 - T_2)$ was calculated as 65 cm³ deg., where ℓ is the width of the gas space, and $T_1 - T_2$ is the observed temperature change. For air near room temperature and atmospheric pressure, $\ell^3 (T_1 - T_2) < 11$ cm³ deg K assures that heat transfer is directly proportional to temperature difference.¹¹ Therefore, based on the above, it was felt that the final group of experiments were the most reliable.

Comparison of the next two sets of experiments (13-15) versus (17-19) in Table 2 shows the effect of venting the reaction vessel (through notches in the gasket located between the vessel and the top of the outer can) over the normal venting through the stirrer. The difference in the results is probably not significant, indicating that our calorimeter is indeed vented and not sensitive to the pressure effects reported by others.¹

Calibration runs in the next group of experiments (21-22) were obtained using a battery power source where calibration times were comparable to reaction times. The difference of these results compared to the above results is probably not significant since only two experiments were performed. Also, since an energy equivalent was utilized in the calculations, there should not be any difference in results when the calibration curve differs somewhat from the experimental curve.⁶

The CO₂ experiments were obtained using hydrochloric acid purged with carbon dioxide. The 0.0998M HCl increased in proton concentration to 0.118M. Our enthalpy values (-7077.4 ± 6.0 cal·mol⁻¹) are in agreement with the results of the Argonne workers⁴ (-7082 cal·mol⁻¹). Figure 3 shows resistance-time plots of the last part of the main period and the final period of representative normal

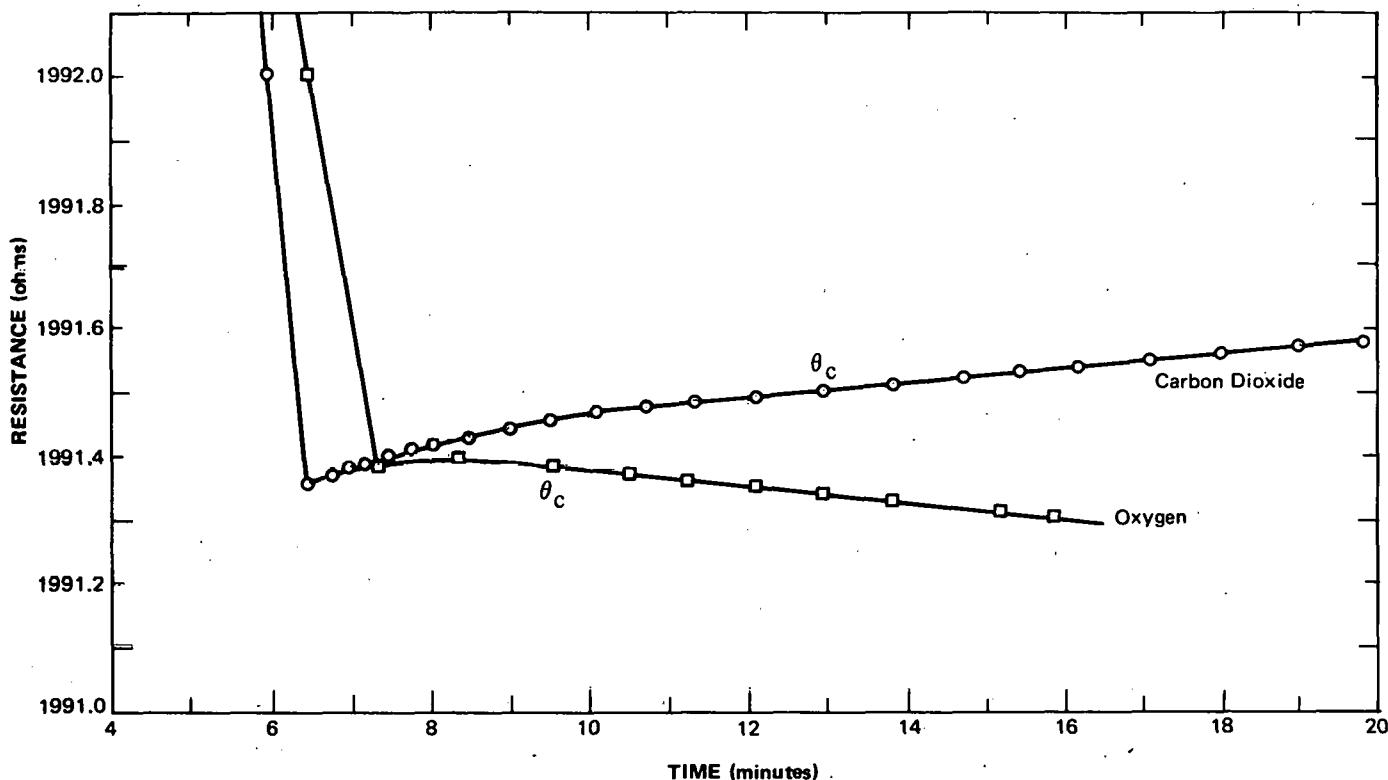


Figure 3. Resistance-Time Curves of Reaction Runs using Oxygen and Carbon Dioxide Purged HCl. (θ_c is resistance value where steady state conditions were reached.)

and CO_2 experiments. In the CO_2 experiments, equilibrium was not attained right after the main period as in the normal experiments, and the slope is reversed. Based on this and the increased proton concentration in the CO_2 -purged HCl, there is probably a slow-endothermic reaction taking place between the TRIS and H_2CO_3 , thus giving low enthalpy results. Therefore, since the reaction of TRIS with carbon dioxide containing hydrochloric acid gives low results, investigators should be aware of this effect. However, when the system is not vented, the presence of CO_2 reportedly gives more exothermic results.¹

The two electrical energy measurement stations are compared in the final group of experiments shown in Table 2. There was no significant difference in results between the two energy measurement stations which indicates the LKB station was operating properly. The auxiliary unit did indicate an erroneous calibrated standard cell in one group of experiments, and an erratic current owing to power source fluctuations in another case. Therefore, it did prove as a valuable check on the LKB electrical energy measurements.

Since the final group of experiments (25, 26, 29, 32, 35, 36, and 38) were thought the most reliable, the mean result ($-7108 \pm 5 \text{ cal}\cdot\text{mol}^{-1}$) will be taken as our best value.

Table 3 compares our corrected best enthalpy value with reported high precision results. The first result¹² was corrected for a reported calculation error.¹³ The results of the Lund workers^{2, 12, 13, 17} using a constant-temperature-environment-type calorimeter, and Gunn^{3, 14} using a rocking bomb calorimeter, are in excellent agreement and were reproduced over a period of 5 years. Furthermore, most of the results shown in Table 3 are in excellent agreement. This is very impressive since the TRIS used was of different

Table 3. Comparison of our Average Enthalpy Value with Reported Results.

Investigator	$-\Delta H_{298} \text{ cal}\cdot\text{mol}^{-1}$
Irving and Wadso ¹² (1964)	7108 ± 4
Gunn ¹⁴ (1965)	7107 ± 1
Sunner and Wadso ¹³ (1966)	7111 ± 2
Vacca and Arenare ¹⁵ (1967)	7109 ± 1
Fitzgibbon and Holley ¹⁶ (1968)	7111 ± 5
Hill, Öjelund, and Wadso ² (1969)	7109 ± 1
Gunn ³ (1970)	7107 ± 1
Layne, Ringner, and Sunner ¹⁷ (1970)	7110 ± 1
Hubbard, et al. ⁴ (1971)	7109 ± 2
Kilday and Prosen ¹ (1971)	7116 ± 1
Brunetti, Prosen, and Goldberg ¹⁸ (1971)	7119 ± 3
Robie and Hemingway ¹⁹ (1972)	7098 ± 11
Our Work (1972)	7108 ± 5

purity, different calculation methods were used, calibrations in relation to experiments were performed differently, etc. Therefore, it appears that the TRIS-HCl reaction is the most convenient one available to check the performance of reaction calorimeters compared to previous standards.¹⁴

REFERENCES

1. E. J. Prosen and M. V. Kilday, Certificate of Analysis Standard Reference Material 724a for Solution Calorimetry, Nat. Bur. Std., Washington, D. C. private communication, October 1971.
2. J. O. Hill, G. Öjelund, and I. Wadsö, *J. Chem. Thermodynamics*, 1, 1969, 111.
3. S. R. Gunn, *J. Chem. Thermodynamics*, 2, 1970, 535.
4. W. N. Hubbard, P. A. G. O'Hare, G. K. Johnson, M. Ader, J. L. Settle, A. D. Tevebaugh, and R. C. Vogel, "Chemical Engineering Division, Thermochemical Studies Semiannual Report," ANL-7821, p 19, January-June 1971.
5. G. C. Fitzgibbon, D. Pavone, E. J. Huber, Jr., and C. E. Holley, Jr., "A New Solution Calorimeter," LA-3031, March 13, 1964.
6. I. Wadsö, *Science Tools*, 13, 1966, 33.
7. Standards Committee, U.S. Calorimetry Conference, Recommendations for Investigation of THAM as a Reference Substance for Solution Calorimetry, 1967.
8. H. C. Dickinson, Nat. Bur. Std., (U.S.), *Bull. 11*, 1914, 189.
9. J. P. Coughlin, "Experimental Thermochemistry," Volume II, H. A. Skinner, (Ed.), Interscience Publishers, New York, 1962, p 308.
10. J. D. Navratil, and F. L. Oetting, *J. Inorg. Nucl. Chem.*, in press.
11. D. C. Ginnings, and E. D. West, in "Experimental Thermodynamics," Volume I, J. P. McCullough, and D. W. Scott, (Eds.), Plenum Press, London, 1968, p 103.
12. R. J. Irving and I. Wadsö, *Acta Chem. Scand.*, 18, 1964, 195.
13. S. Sunner and I. Wadsö, *Science Tools*, 13, 1966, 1.
14. S. R. Gunn, *J. Phys. Chem.*, 69, 1965, 2902.
15. A. Vacca and D. Arenare, *J. Phys. Chem.*, 71, 1967, 1495.
16. G. C. Fitzgibbon and C. E. Holley, Jr., Los Alamos Scientific Laboratory, private communication, January 1968.
17. J. Laynez, B. Ringner, and S. Sunner, *J. Chem Thermodynamics*, 2, 1970, 603.
18. A. P. Brunetti, E. J. Prosen, and R. N. Goldberg, Second International Conference on Calorimetry and Thermodynamics, Orono, Maine, July 1971.
19. R. A. Robie and B. S. Hemingway, Geological Survey Professional Paper 755 (1972).

RFP-1976

APPENDIX I. Enthalpy of Neutralization of TRIS in 100.0 ml of 0.1M HCl.

Experiment Number and Stirring ^a	Mass of TRIS (g)	K ^b (10 ⁻⁵)	R.P.ε (cal·Ω ⁻¹) ^c		M.D.ε (cal·Ω ⁻¹) ^c		Δθ(Ω) ^d	θ ^e (Ω)	ΔT ^f (10 ⁻² °C)	Corr. to g 298.15K (cal·mol ⁻¹)		-ΔH _{298.15K} (cal·mol ⁻¹)	
			Before	After	Before	After				R.P.h	M.D.h		
			98.863	—	98.899	—				7110.6	7094.7		
2L	0.5124	606	—	—	—	—	0.964	22.132	30.298	+ 28.9	—	—	—
		609	—	—	—	—	0.904		30.216				
3L	0.5753	621	—	99.131	—	99.188	0.232	25.860	34.020	+ 10.4	7112.0	7111.3	—
		624	—	—	—	—	0.215		33.997				
4M	0.5492	603	99.028	99.169	99.083	99.206	0.119	24.779	32.422	+ 16.1	7102.7	7109.0	—
		620	—	—	—	—	0.130		32.436				
6H	0.4868	613	—	99.157	—	99.190	0.003	22.266	28.823	+ 4.7	7116.1	7117.2	—
		664	—	—	—	—	0.007		28.818				
7H	0.4954	618	—	99.168	—	99.198	0.012	22.677	29.338	+ 4.4	7119.2	7113.8	—
		671	—	—	—	—	0.035		29.307				
8H	0.4760	644	—	99.130	—	99.164	0.040	21.688	28.189	+ 6.8	7117.7	7118.0	—
		673	—	—	—	—	0.033		28.180				
9H	0.4465	654	—	99.151	—	99.200	0.112	20.198	26.399	+ 9.0	7110.6	7109.5	—
		670	—	—	—	—	0.099		26.382				
10M	0.4371	672	98.963	99.096	99.004	99.104	0.126	19.858	25.886	+ 11.2	7116.0	7120.0	—
		666	—	—	—	—	0.133		25.894				
12M	0.58456	604	99.642	—	99.705	—	0.032	26.478	34.382	+ 19.5	7118.9	7121.1	—
		602	—	—	—	—	0.024		34.371				
13M	0.50167	604	—	—	—	—	0.072	23.199	29.588	+ 0.47	—	—	7111.4
		606	99.446	99.639	99.454	99.642	0.071		29.590				7112.2
14M	0.55161	598	—	—	—	—	0.062	25.500	31.064	+ 0.90	—	—	7111.6
		602	99.461	99.667	99.487	99.669	0.069		32.529				7110.7
15M	0.56031	601	—	—	—	—	0.039	25.879	33.050	+ 0.74	—	—	7111.2
		610	99.385	99.681	99.470	99.701	0.043		33.044				7113.7
i17M	0.50460	612	—	—	—	—	0.093	23.380	29.762	+ 1.44	—	—	7113.6
		619	99.505	99.657	99.513	99.667	0.091		29.764				7114.7
i18M	0.49796	608	—	—	—	—	0.064	23.059	29.404	+ 5.26	—	—	7120.0
		609	99.464	—	99.471	—	0.069		29.399				7119.2
i19M	0.49615	598	—	—	—	—	0.068	22.969	29.270	+ 4.78	—	—	7116.3
		605	99.511	—	99.467	—	0.067		29.272				7113.5
j21M	0.60001	600	—	—	—	—	0.071	23.149	29.482	+ 1.87	—	—	7116.2
		618	99.579	99.731	99.576	99.722	0.077		29.475				7113.9
j22M	0.50279	628	—	—	—	—	0.024	23.204	29.643	+ 0.88	—	—	7113.6
		595	99.542	99.687	99.504	99.698	0.041		29.622				7107.4
25H	0.50149	610	—	105.29	—	105.33	0.088	22.315	27.930	0.0	7107.8	7106.3	—
		630	—	105.32	—	105.30	0.071		27.968				7109.7
26H	0.50008	611	—	105.19	—	105.23	0.076	22.237	27.862	0.0	7100.0	7102.5	—
		616	—	105.21	—	105.24	0.075		27.864				7101.1
k28H	0.49828	605	—	105.26	—	105.30	0.022	21.958	27.633	0.0	7071.3	7072.9	—
		613	—	105.26	—	105.30	0.018		27.628				7071.2
29H	0.47340	642	—	105.21	—	105.24	0.099	21.086	26.378	0.0	7101.6	7107.0	—
		630	—	105.25	—	105.28	0.089		26.390				7103.9
30H	0.50402	629	—	—	—	—	0.116	22.436	28.064	0.0	—	—	7098.7
		640	—	105.25	—	105.25	0.110		28.071				7101.0
k31H	0.49663	598	—	—	—	—	0.060	21.969	27.543	0.0	—	—	7069.7
		617	—	105.23	—	105.27	0.062		27.541				7071.8
32H	0.50359	662	—	105.26	—	105.27	0.098	22.426	28.074	0.0	7107.9	7112.4	—
		678	—	105.28	—	105.30	0.088		28.088				7109.9
k33H	0.50246	701	—	105.26	—	105.33	0.058	22.116	27.878	0.0	7074.6	7076.7	—
		688	—	105.30	—	105.37	0.049		27.867				7077.1
k34H	0.50164	711	—	105.23	—	105.23	0.038	22.107	27.841	0.0	7074.9	7072.3	—
		696	—	105.26	—	105.26	0.030		27.831				7077.1
35H	0.50166	696	—	105.15	—	105.17	0.079	22.307	27.948	0.0	7096.4	7097.6	—
		712	—	105.19	—	105.20	0.078		27.949				7098.6

APPENDIX I. (continued)

Experiment Number and Stirring ^a	Mass of TRIS (g)	K ^b (10 ⁻⁵)	R.P.ε		M.D.ε		θ ^e (Ω)	ΔT ^f (10 ⁻² °C)	Corr. to ^g 298.15K (cal·mol ⁻¹)	-ΔH _{298.15K} (cal·mol ⁻¹)	
			Before	After	Before	After				R.P. ^h	M.D. ^h
36H	0.50278	698	—	105.29	—	105.28	0.075	22.380	28.045	0.0	7114.2
		712	—	105.32	—	105.32	0.075		28.045		7116.3
k37H	0.50480	662	—	105.24	—	105.30	0.013	22.327	28.056	0.0	7085.3
		672	—	105.26	—	105.32	0.018		28.049		7087.1
38H	0.49639	705	—	105.29	—	105.30	0.083	22.099	27.679	0.0	7111.6
		720	—	105.33	—	105.34	0.083		27.679		7114.4
											7115.6

^aStirring Speeds: L = Low; M = Medium; and H = High.^bK is the heat leakage constant for experiment and calibration, respectively.^cR.P.ε and M.D.ε are the electrical energy equivalents using the Regnault-Pfaundler and modified Dickinson calculation methods, respectively.^dThe top and bottom values are taken from the LKB and DVM electrical energy measurement stations, respectively.^eΔθ is the stirring energy correction. The top and bottom values are for the R.P. and M.D. calculation methods, respectively.^fθ is the uncorrected reaction resistance change.^gΔT is the corrected reaction temperature change. The top and bottom values are for the R.P. and M.D. calculation methods, respectively.^hCorrection to 298.15K using Cp = 41.55 cal·deg⁻¹·mol⁻¹.ⁱThe top and bottom ΔH values correspond to LKB and DVM ε respectively.^jVented reaction vessel.^kBattery power supply^lCO₂ purged HCl.