

HEDL-SA-508

Cont-730611-2

EFFECT OF IRRADIATION TEMPERATURE ON VOID FORMATION
IN COLD WORKED TYPE 316 STAINLESS STEEL

By

H. R. Brager and J. L. Straalsund

Handford Engineering Development Laboratory
Westinghouse Hanford Company
Richland, Washington

3753600

7015
2906800

December 1972

This paper is based on work performed by Hanford Engineering Development Laboratory, Richland, Washington, operated by Westinghouse Hanford Company, a subsidiary of Westinghouse Electric Corporation, under United States Atomic Energy Commission Contract AT(45-1)-2170.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

fcy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

THE EFFECT OF IRRADIATION TEMPERATURE ON VOID FORMATION
IN COLD WORKED TYPE 316 STAINLESS STEEL

By

H. R. Brager and J. L. Straalsund

Experimental results indicate that the effect of irradiation temperature on void formation in neutron irradiated cold worked Type 316 stainless steel is significantly different from that in solution treated steel. The difference appears to be related to the thermal instability of the cold worked micro-structure.

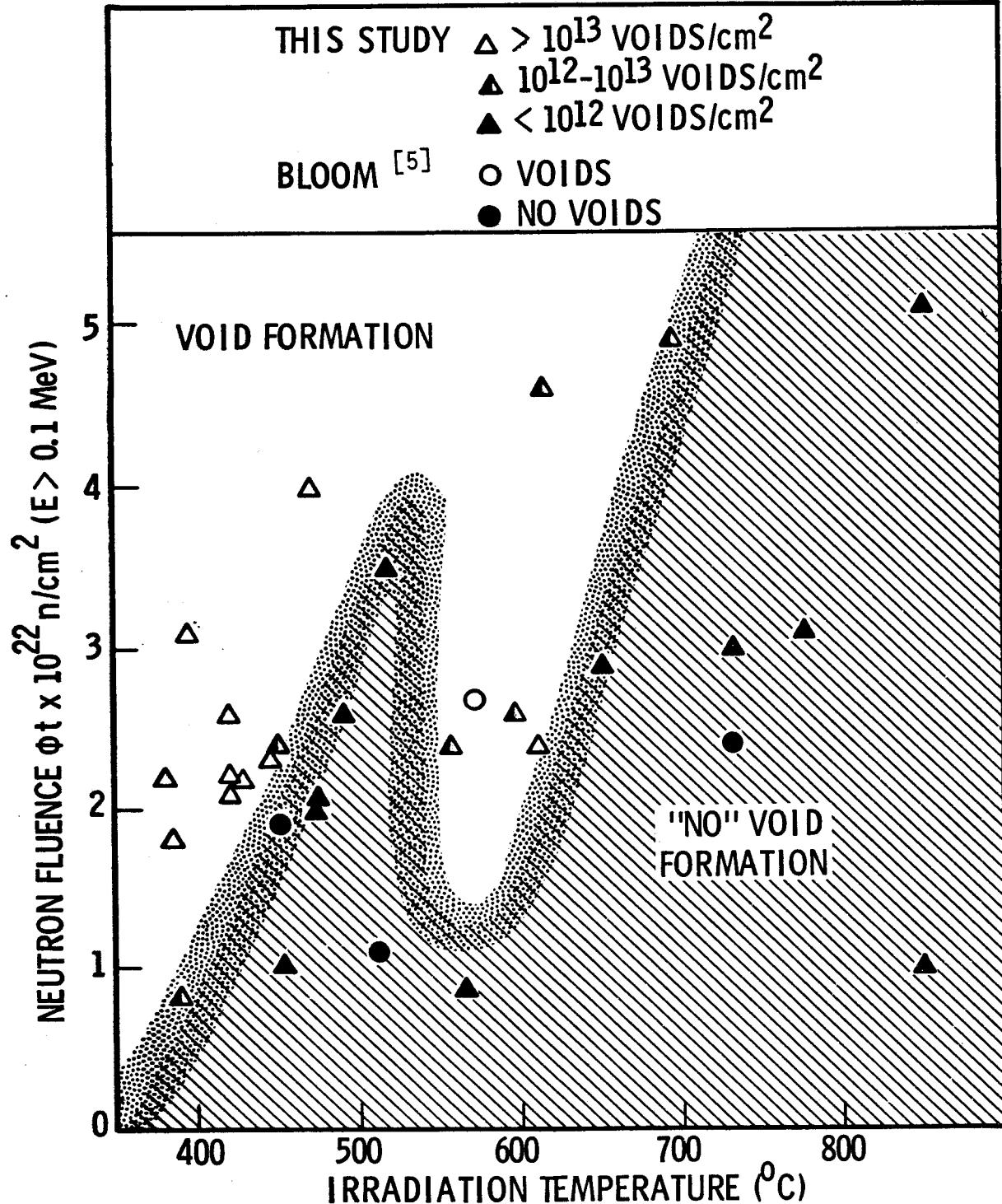
The irradiation temperatures and neutron fluences for which voids were either absent or present in 20 to 27% cold worked Type 316 stainless steel samples are mapped in Figure 1. The figure shows that in this material, void formation occurs in two distinct irradiation temperature regions. To avoid the problem of evaluating possible stress effects and other environmental factors peculiar to fuel pin cladding, only data from samples irradiated under stress free conditions are included.

At moderate fluences, two maxima in the swelling-temperature curve for cold worked Type 316 steel arise due to a superposition of the normal temperature dependence associated with void formation, as in the solution treated material, and the temperature dependence for recovery of the cold worked micro-structure. For low temperature irradiation, voids and Frank faulted loops are produced in the cold worked Type 316 stainless steel. Voids are produced in a manner similar to that in, but at a lower rate than, solution treated steels. At higher temperatures, the defect supersaturation decreases because of the increased thermal equilibrium vacancy concentration and defect mobility while the sink density (dislocation, and/or Frank loops) remains high. However, the void nucleation rate is critically dependent upon defect

supersaturation. Hence, void nucleation rate in the cold worked steel should decrease rapidly with increasing temperature and results in the suppression of void formation in this intermediate region.

At still higher irradiation temperatures, the cold worked microstructure becomes thermally unstable. The dislocation density decreases due to mutual annihilation of mobile dislocations. At these higher irradiation temperatures voids are preferentially formed in localized regions which have had substantial dislocation recovery. Finally, at the highest irradiation temperatures, void formation is suppressed irrespective of the microstructure--even in solution treated steel.

There are two major conclusions from the present study:


1. The irradiation temperature dependence of cold worked Type 316 stainless steel is different from that of the solution treated steel and from that of the previously reported empirical swelling equation for cold worked steel.^[1] This difference in temperature dependence may be important in the analysis of the distortion of fast reactor core components.
2. The difference in the temperature dependence of void formation is related to the thermal instability, or recovery kinetics, of the cold worked microstructure. In this regard, the swelling of cold worked stainless steel due to high energy particle bombardment^[2-4] must be critically evaluated as to its use for simulating fast reactor induced void formation in cold worked materials.

References

1. A. Boltax, P. Murray, and A. Biancheria, Nucl. Appl. & Tech., 9 (1970) 326.
2. D. Mazey, J. A. Hudson, and R. S. Nelson, Journal Nuclear Materials, 41 (1971) 257.
3. See various papers in Radiation-Induced Voids in Metals, Editors: J. W. Corbett and L. C. Ianniello, Albany (1971) U.S.A.E.C. Symposium Series 26.
4. See various papers presented at Sixth International Symposium on Effects of Radiation on Structural Materials, ASTM, Los Angeles (1972), to be published.
5. E. E. Bloom and J. O. Stiegler, presented at Sixth International Symposium on Effects of Radiation on Structural Materials, ASTM, Los Angeles (1972), to be published.

IRRADIATION CONDITIONS FOR VOID FORMATION

COLD WORKED TYPE 316 STAINLESS STEEL

