skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ICRF antenna modeling and simulation. Final report, March 1, 1993--May 31, 1996

Technical Report ·
DOI:https://doi.org/10.2172/448072· OSTI ID:448072

SAIC has undergone a three year research and development program in support of the DOE Office of Fusion Energy`s (OFE) program in Ion Cyclotron Range of Frequencies (ICRF) heating of present, next generation, and future plasma fusion devices. The effort entailed advancing theoretical models and numerical simulation technology of ICRF physics and engineering issues associated predominately with, but not limited to, tokamak Ion Cyclotron Heating (ICH) and fast wave current drive (FWCD). Ion cyclotron heating and current drive is a central element in all current and planned large fusion experiments. In recent years, the variety of uses for ICRF systems has expanded, and includes the following: (1) Heating sufficient to drive plasma to ignition. (a) Second-harmonic T heating. (b) He{sup 3} minority heating. (2) Second-harmonic He{sup 4} heating in H plasma (for non-activated phase). (3) Detailed equilibrium profile control minority heating. (a) Ion minority (He{sup 3}) CD (for profile control on inside of plasma). (b) Ion minority (He{sup 3}) CD (for profile control on outside of plasma). (4) Ion-ion hybrid regime majority ion heating. (5) Electron current drive. (6) Mode conversion to drive current. (7) Deuterium minority heating. (8) Sawtooth instability stabilization. (9) Alpha particle parameter enhancement. (10) The generation of minority tails by ICRF to simulate D-T plasma particle physics in a deuterium plasma. Optimization of ICRF antenna performance for either heating or current drive depends critically on the complex balance and interplay between the plasma physics and the electromechanical system requirements. For example, ITER IC rf designs call for an IC. system frequency range from 20 MHz to 100 MHz. Additionally, antenna designs and operational modes that minimize impurity production and induced sheath formation may degrade current drive efficiency. Such effects have been observed in experiments involving it versus zero antenna phasing.

Research Organization:
Science Applications International Corp., McLean, VA (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
FG05-93ER54201
OSTI ID:
448072
Report Number(s):
DOE/ER/54201-T1; SAIC-96/1168; ON: DE97003620; TRN: 97:006557
Resource Relation:
Other Information: PBD: 30 Aug 1996
Country of Publication:
United States
Language:
English

Similar Records

ICRF heating
Journal Article · Fri May 01 00:00:00 EDT 1992 · Fusion Technology; (United States) · OSTI ID:448072

Modeling of EAST ICRF antenna performance using the full-wave code TORIC
Journal Article · Thu Dec 10 00:00:00 EST 2015 · AIP Conference Proceedings · OSTI ID:448072

ICRF heating and transport of deuterium-tritium plasmas in TFTR
Technical Report · Sat Dec 31 00:00:00 EST 1994 · OSTI ID:448072