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Abstract

An organized systems design approach is dictated by the increasing complexity of computer based
systems. Computer based systems are unique in many respects but share many of the same
problems that have plagued design engineers for decades. The design of complex systems is
difficult at best, but as a design becomes intensively dependent on the computer processing of
external and internal information, thé design process quickly borders chaos. This situation is
exacerbated with the requirement that these systems operate with a minimal quantity of
information, generally corrupted by noise, regarding the current state of the system. Establishing
performance requirements for such systems is particularly difficult. This paper briefly sketches a
general systems design approach with emphasis on the design of computer based decision
processing systemé subject to parameter and environmental variation. The approach will be
demonstrated with application to an on-board diagnostic (OBD) system for automotive emissions
systems now mandated by the state of California and the Federal Clean Air Act. The emphasis is

- on an approach for establishing probabilistically based performance requirements for computer

based systems.

PRI ANt AT TR ACTIMINT 1S UNLIMITED M AS TE R |
Background %

Establishing the performance requirements for a computer based system can be extremely difficult.
The traditional approach is presented in Figure 1. In this case the requirements are established

based vague system objectives, insufficient system modeling effort and on limited exposure to
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alternative implementation techniques. This approaéﬁ fésults in requirements that may not be

realistic or cost effective,

Figure 2 presents an alternative ,; S Model
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approach based on the well known Reality

precepts of systems engineering. In ]

this case, all interested parties are
involved with requirements definition
(via the systems engineering Figure 1. Typical Process for Regulation Development
modeling and analysis), a physical

model is exercised to evaluated alternative solutions, and an optimum set of requirements are

presented to the decision maker(s). While both approaches are iterative in nature, the first
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Figure 2. Systems Engineering Process for Regulation Development

approach is hindered by a lack of clear objectives and limited modeling. These deficiencies
severely restrict communication of the regulatory impact on solving the ~pr6blem (since the problem

is never truly understood).




The design pr ¢§‘s:f(?)\r systems subject to uncertainty present some unique problems. The
definition ofreqmrements 1s complicated by the need to specify the performance of such systems in
probabilisticutéﬁﬁs.“ This difficulty arises primarily with the limited familiarity of most design
engineers w1th the | |
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algorithms embedded in

the computer system software.

Figure 3 depicts the overall performance matrix of a typical decision process for a system subject to
failure of system components combined with failure of the diagnostic algorithm. The upper left
corner represents the situation where a system element has failed and the computer system correctly
identifies the failure. The lower left corner represents the situation where the system has failed but
the computer system fails to diagnose the failure either through failure of the computer hardware or

a diagnostic error commonly referred to as a Type I error.

The upper right corner depicts the situation where no fault has occurred and the computer system
falsely indicates a failure. This type of error is commonly referred to as a Type II diagnostic error.
Finally, the lower right corner is the situation where not only has a system element not failed, but

the computer does not indicate a failure: a very desirable state for the consumer.




For a time dependent system, it 1S necessary to maximize the time spent in the lower right corner
or, similarly, minimize the time spent in the other three quadrants. Therefore, one design goal is to
minimize the likelihood of being in the left hand column. This requires that the reiiability of the
hardware and software associated with the system, including the computer processor being used,
be considered simultaneously with other performance objectives. In addition to the hardware
reliability requirement, is the need to minimize the time the system spends in the upper right and
lower left quadrant due to errors in the computer algorithm. Design of a robust diagnostic software
system must be considered concurrently with reliable hardware design. The next section discusses
an example where this approach to the design of computer based diagnostic system is sucessfully

being applied.

Application
The California Air Resources Board has recently instituted

the requirement that all passenger cars sold in California
have the capability to diagnose emission system failure.
These rules are known collectively as On-board
Diagnostics I (OBD-II). While the primary function of
the automotive OBD-II system is reduced automobile
 emissions, the diagnostic requirements affect several
major vehicle systems including engine control, exhaust,
evaporative purge and electronic transmission

components. At the request of a colalition of Chrysler,
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Ford and General Motors, Sandia National Laboratories
has been investigating alternative modeling and analyis Figure 4. Diagnostic System
schemes for the design of alternative OBD-II systems.

The overall objective of this désign effort is the development of a robust OBD-II system with at

least 150,000 mile expected lifetime. As depicted in Figure 4, information from approximately 32




different sensors is collected and processed through the on-board computer system. The current
state of the sensor suite must be collected and decisions regarding the performance of the emission
system made in real-time. Based on estimates of the current system state, a malfunction indicator
light (MIL) is illuminated on the driver console. The consumer is then required to take the vehicle
in for inspection and more detailed diagnosis by a repair technician. This technician must have the
proper service equipment necessary to down load information from the computer system and

interpret the associated diagnostic codes.

Establishing the performance requirements of such a system is difficult due to the competing nature
of the system objectives. On the one hand, the regulatory agencies wish to assure that the public is
protected from excess automotive emissions. The desire is for the MIL to be illuminated at the first
indication of emission system failure. Alternatively, the automotive companies would prefer that

the MIL be illuminated on a minimum number of occasions. Caught in the middle is the consumer.

Data collection and processing systems are inherently noisy and are compounded with variation in
the manner and environment in which the consumer operates the vehicle. Temperature, humidity
-and even barometric pressure can all have a significant impact on the ability of a diagnostic system
to evaluate the current state of an emission system. Vibration and corrosion are only two of the
many factors which can significantly influence the failure characteristics of emission hardware. All
of these factors must be considered when developing a general set of performance requirements for

computer based automotive diagnostic systems.

Solution Approach

Working in conjunction with automotive design engineers from Chrysler, Ford and General
Motors, analysts at Sandia National Laboratories are successfully applying a systems engineering

approach to the design of the computer based diagnostic system. This specific approach involves

e the development of an evolutionary conceptual model,




e problem definition, including design constraints and alterables, and

e identification of the players involved (regulatory agencies, automotive companies, consumer,

maintenance technicians, etc.).

The particular emphasis of this effort was the modeling and control of the uncertainty in the
performanc¢ of the computer based diagnostic system (i.e. the OBD). Two simultaneous
initiatives were undertaken: 1) modeling of hardware and software failure probabilities and 2)
modeling of diagnostic error rates. As seen in Figure 3, these two efforts were necessarily
inseperable in addressing the issues associated with the design of a robust computer based

diagnostic system.

System Reliability

Two fundamental techniques were used for the reliability analysis of the system. The first
involved the use of fault trees for modeling and analysis of the complex interaction of the system
elements. However,
the traditional fault tree
approach was |

insufficient due to the

limited information

available regarding the

failure characteristics of
the various emission

system components.

For this reason, a

Figure 5. Typical Fault Tree

Bayesian approach was
incorporated into the fault tress analysis. This permitted the issues associated with data collection
to be addressed objectively and quantitatively (How much failure information is needed? On what

subsystems? What is the most cost effective scheme for collecting failure information?). Each




reliability characteristic therefore also had an asSmﬁtéd uncertainty distribution. A generic fault
tree approach was coupled with a Bayesian analySis scheme and incorporated into a reliability

modeling software tool. Figure 5 depicts the very top level view of a typical fault tree.

Diagnostic Accuracy
A methodology based on the statistical concepts associated with power curves was used to develop

a set of metrics for each of the system objectives. Power curves provide a simple, transportable
means of evaluating the diagnostic performance of the OBD alternative. Power curves represent

the likelihood of making a decision error assuming a true state of the system exists.

Figure 6 depicts a typical decision situation where two scenarios might exist: H, and H,. The null

hypothesis, H,, represents the hypothesis that the vehicle is performing normally and the emission

system performance characteristic is a random variable with mean i, and variance 6;. An
alternative situation exists where, for some reason, the vehicle may not perform as expected and

- the performance characteristic increases such that it is now a random variable with mean |1, and

variance 7. Periodically a decision must be made regarding the state of the vehicle: Is it operating

correctly or has something happened to influence the performance characteristic?

A decision point must be established, whereby if the observed performance characteristic is above
that value, it is decided that the vehicle is not opefating correctly (point C in Figure 6). However,
if therobserved misfire rate is H, H,

below the critical value, the
vehicle is assumed to be

operating correctly. Now, if

the vehicle is operating

satisfactorily, since the

Figure 6. Uncertainty Characterization of System State

performance characteristic

rate is assumed to be a random variable, there is a non-zero probability that the estimate of the




misﬁfq rate will exceed the critical level. It is then decided that the vehicle is not operating correctly

and a'ﬁialfunction indicator light will be illuminated. The probability of making this incorrect

decisidn 1s o and is generally referred to as a Type I error or the false alarm rate.

A similar situation can occur if the vehicle is not operating correctly and the decision statistic is less

than the critical value. In this case, an error is made in assuming the vehicle is operating correctly

when in reality a problem has developed. The probability of making this incorrect decision is § and
is generally referred to as a Type II error or the miss rate.

The power curve combines these two errors into a convenient format. Define p; as the misfire rate

under hypothesis H, . The power of a particular statistical test is defined to be:

Pr{rejecting H | H, is true}= pbwer

By fixing the critical test statistic, C, and 1.0

B{__T.

varying the underlying misfire rate p,, it
is possible to generate a function which

completely characterizes the errors

Power

associated with this particular hypothesis
test. Figure 7 depicts a sample of such a

curve. Statements regarding the Type I

error 0‘{
0.0

‘ Ho . H, oo
(or) and Type I error (B) can then be Misfire Rate

made and an independent comparison of Figure 7. Power Curve with Type 1

the robustness of various decision and Type II Errors

algorithms can be accomplished by simply

comparing the associated power curves.




Results
As a result of the application of a systems approach to the design of a robust computer based

diagnostic system, a preliminary characterization of both the hardware and software reliability of
the system was possible. Figure 8 depicts a typical output from a reliability analysis of one

diagnostic. A sample of a comparison between different diagnostic strategies is depicted in

Figure 9.
Bl ostwhpmie [] Mean Sth P’ Tile
1. OS C capacity
Fraction 2. Pre-HEGO
count low
0.30 3. Fuels, gas,poinsons
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1 2 3 4 5 6 7
Figure 8. Pareto Analysis of Top Contributors to System Failure
Conclusion

As aresult of the above effort, CARB is reviewing the current requirements for OBD-II to permit
alternatives to the existing regulations. Efforts are continuing to refine the reliability analysis tools
as well as the statistical tools necessary for evaluating diagnostic software algorithms. These tools
are allowing the automotive manufacturers to accelerate the pace at which alternative diagnostic

sensors and algorithms are identified and evaluated.
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Figure 9. Typical Power Curve

It is clear that proper application of a systems engineering approach to the design of computer
based systems can lead to shorter development time and more realistic, cost effective solutions.
While foreign to most design engineers, the use of statistically based methods can provide a set of
metrics that permits inclusion of uncertainty during the design process. This uncerta;inty is inherent
in all real-world applications of computer based systems and without adequate consideration could
lead to systems that are overly sensitive to variation in the operating environment. Inclusion of
uncertainty also assists in the identification of critical factors within the design and permits these
problems to be addressed in an objective fashion. Since most designs are evolutionary in nature,

by addressing the problems identified by the uncertainty metrics, the data collection and feedback

- process can be focused during the redesign effort, resulting in much shorter development times.

The systems approach and the uncertainty analysis techniques are not in themselves particularly
difficult, but require design engineers to have an open mind when dealing with new applications of

computer based engineering systems. The result will be increased communication flow of critical
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issues throughout the design process resulting in a product reaching the market sooner and robust

to both anticipated as well as unanticipated operating conditions.
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