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Abstract

VRaptor, a VR system for situational training that
uses trainer-defined scenarios is described. The trainee
is represented by an avatar; the rest of the virtual world
is populated by virtual actors, which are under the con-
trol of trainer-defined scripts. The scripts allow reac-
tive behaviors, but the trainer can control the overall
scenario. This type of training system may be very
useful in supplementing physical training.

1. Introduction

This paper presents VRaptor (VR assault planning,
training, or rehersal), a VR system for situational
training. VRaptor lets the trainer define and redefine
scenarios during the training session. The trainee is
represented by an avatar; the rest of the virtual world
is populated by virtual actors, which are under the con-
trol of trainer-defined scripts. The scripts allow reac-
tive behaviors, but the trainer can control the overall
scenario.

VRaptor supports situational training, a type of
training in which students learn to handle multiple sit-
uations or scenarios, through simulation in a VR envi-
ronment. The appeal of such training systems is that
the students can experience and develop effective re-
sponses for situations they would otherwise have no
opportunity to practice. Security forces and emergency
response forces are examples of professional groups that
could benefit from this type of training. A hostage res-
cue scenario, an example of the type of training sce-
nario we can support, has been developed for our cur-
rent system and is described in Section 3.

Since control of behaviors presupposes an appropri-
ate representation of behavior and means of structuring
complex behaviors, we survey related work on behavior
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simulation in Section 2.

In the Virtual Reality / Intelligent Simulation
(VR/IS) lab, our basic VR system [16] allows multi-
ple human participants to appear in embodied form (as
avatars) within a common, shared virtual environment.
The virtual environment may also contain virtual ac-
tors. Using this infrastructure, we have developed the
VRaptor system. VRaptor adds oversight and session
control by a trainer, through a workstation interface.
This interface, described in Section 4, allows selection
of roles and actions for the individual virtual actors,
and placement of them in the scene.

In Section 5 we present the architecture of the simu-
lation component of VRaptor, and in Section 6 discuss
the representation of scenarios in terms of scripts and
tasks.

2. Related work

Since our focus in this research is on the scripting
and control of virtual actors, we survey work toward
building animations or behaviors which are either au-
tomated or reactive, and especially work which offers
hope of allowing realtime implementations.

2.1. Behavioral animation

Behavioral animation has developed from the early
work of Reynolds [15], on flocking and schooling behav-
iors of groups of simulated actors; recent work in this
vein includes that of Tu and Terzopoulos [17]. Systems
that deal with smaller groups, or individual behaviors,
are reviewed in the following sections.

2.2. Ethologically-based approaches

Ethologically-based (or biologically-based) ap-
proaches deal with action selection mechanisms. Since
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intelligent behavior should emerge naturally in this
approach, some form of reactive planning may be
used. An approach that included reactive planning
in a system providing simulation capabilities was
developed by Maes [7], and subsequently extended
into a distributed form in the work of Zeltzer and
Johnson [18, 19]. Maes has demonstrated a sys-
tem called ALIVE which provides simulated actors
responding to users’ gestures (see Maes et al [8]).
Blumberg [3] describes a ethologically-based system
which is embedded in the ALIVE framework.

2.3. Other approaches

Alternative approaches for simulation of reactive,
situated actors have also been developed by Bates and
Loyall [6], Becket and Badler [2], the Thalmanns and
their group {11], and Booth et al [4]. The system of
Bates and Loyall does not do any actual planning, al-
though it does allow a range of actions to be reactively
invoked, and supports the implementation of simu-
lated simple actors that have an extensive repertoire
of behaviors and include simulated emotional states.
The system appears to make programming action se-
quences, as behavior segments, relatively straightfor-
ward. The system of Becket and Badler uses a net-
work of elements (PaT Nets) to get reactivity. There
is a higher-level, nonreactive planning component. The
Thalmanns have explored some behavioral features in
conjunction with synthetic actors, and they use a re-
active selection of (fine-grain) strategies in association
with synthetic vision in the cited work.

The work of Booth et al proposes a design for a state
machine engine, which hierarchically combines state
machines and constraint resolution mechanisms. This
mechanism is described more fully in Ahmad et al [1].

In general, systems such as those developed by
Zeltzer and Johnson, Bates and Loyall, and Becket and
Badler assume an underlying stratum that deals with
continuous, feedback-controlled domains, and provides
a set of constituent actions (perhaps constituted from
smaller primitive actions). The set of constituent ac-
tions are invoked by the reactive planning component.
That is, these authors separate the creation of single,
continuous actions from the selection and invocation of
those actions. Nilsson [9, 10] combines both aspects of
action in one formalism, called teleo-reactive programs.
Multiple levels of more detailed specification are pro-
vided through procedural abstraction.

2.4. Individual behaviors and expressive movement

Recent work by Perlin [12, 13] has shown that to
an interesting extent, relatively simple kinematic tech-
niques can create movement that is both natural and
expressive, the latter being made apparent through
the example of a dancer figure animated by his tech-
niques. More recent work by Perlin and Goldberg [14]
has extended their work into multiple figures using a
distributed system.

3. Testbed scenario

Hostage rescue, our testbed scenario, is the sort of
operation an organization such as the FBI Hostage Res-
cue Team is called upon to perform. For a simple initial
capability, we assume the rescue should take place in
a single room. This type of operation is called a room
clearing. Traditionally, training of response teams for
such scenarios involves the use of a “shoothouse”, a
physical facility that models typical rooms and room
arrangements, and is populated with manikins or pa-
per cartoon drawings for the adversaries. Such facilities
lack the flexibility and limit the degree of interesting in-
teraction (the manikins may move only in simple ways,
if at all). Our shoothouse scenario exhibits an alterna-
tive in which figures can move through a range of pro-
grammable actions. In addition, the physical facility
is rather expensive to operate; our VR system should
provide a more cost effective training option. (How-
ever, we do not foresee entirely replacing the physical
shoothouse with a virtual one in the near future.)

3.1. Components of a room clearing operation

A room clearing operation proceeds in the following
steps:

1. Breach through door(s) or wall to create an entry
into the room.

2. Toss a stun grenade (or flashbang) into the middle
of the room. This creates a diversion, and as the
name implies, stuns the inhabitants of the room
with blast and light.

3. Forces enter the room in pairs, each member of
the pair to cover either the left or right side of the
room from the breached opening. Each steps into
the room along the wall and then forward. Thus
each can clear his own section of the room.

4. Commands are given to the room occupants to
“get down”, and not resist.
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Figure 1. Allowed Virtual Actor Locations

5. Shoot armed adversaries.

The total attack time may be only a few seconds for a
single room.

3.2, Training for a room clearing operation using
VR

There will be one or more trainees who will be prac-
ticing the room clearing operation; these will be the
intervention forces. The trainees will be using immer-
sive VR.

The trainers will control the training session by set-
ting up scenarios and monitoring the trainees’ perfor-
mance. The trainers will use a multiple-windows work-
station display that provides a 3D graphics overview of
the virtual environment (i.e. the room) and a user in-
terface to define the scenario and start the session.

The room occupants will be simulated using virtual
actors. These actors will carry out roles and actions
assigned by the trainer, subject to reactive changes as
the scenario proceeds, such as an actor getting shot.

4. VRaptor user interfaces
4.1. The trainer’s interface

The user interface for the trainer consists of a 3D
viewing window of the virtual environment and a set
of menus. Using the menus, the trainer can control
the placement of the actors in the room, assign them
roles of either terrorist or hostage, and select scripts
for each actor. The scripts are subject to constraints
of applicability to the current position and pose of the
figure. The menu choices adjust dynamically to re-
flect the current actor placements and scenario. Fig. 1
shows possible starting locations for the virtual actors.
Views of the actors from within the room are shown in
Figures 2 and 3. Typical menu choices for the actors’
responses when the shooting starts are:

Figure 2. Virtual Actors in Room

Figure 3. Another View of Actors
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o give up and put hands in air, then on head

dive for the floor and give up

do nothing - i.e. dazed

fight (if adversary)

Except where noted, the actor may be either a hostage
or an adversary.

4.2. The trainee’s interface

The trainee is immersed in the scene. The trainee is
provided with a Head-Mounted Display (HMD)! and
views the scene from the eye point of the appropriate
avatar. The trainee holds a weapon which is currently
a Baretta 9mm replica instrumented to detect trigger
pulls and clip insertion or removal. This weapon pro-
vides the weight and feel of a real Baretta, but is lack-
ing the recoil. The headmount and gun each have an
electromagnetic tracker mounted on it, and in addition,
electromagnetic trackers are mounted on the hand not
holding the gun, as well as the lower back.

5. Virtual actor system

The virtual actor simulation is a distributed set of
cooperating components. There are two types:

1. An actor/scenario controller component
2. A puppet server component

The simulation requires one actor/scenario component
for the application, and one puppet/server component
for each virtual actor. Basic supporting behaviors are
installed in the lower-level (‘puppet server’) support
modules. Higher-level behaviors appear as tasks dis-
patched on an actor-specific basis (see Sec. 6).

5.1. The actor/scenario controller

The actor/scenario controller manages all the actors
and tracks the state of the simulated world. Higher-
level behaviors are programmed as tasks in this com-
ponent. These tasks are determined by a trainer us-
ing the menu system. Each actor is represented in the
controller component by an object, which communi-
cates to the appropriate puppet server for that actor.
The controller sends commands to the puppet server,
which carries out the command by animating the fig-
ure of the actor appropriately. Figure 4 illustrates this
concept. This figure shows two actors, but in general
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Figure 4. Virtual Actor Components

there can be many. The appropriate components (and
processes) would be replicated for each actor. The ac-
tor/scenario controller implementation uses the Umbel
Designer? environment. This environment allows an
object-oriented design approach.

The actor/scenario controller contains a component
which evaluates the gun position and orientation at
trigger pull event time to determine which (if any) ac-
tors were hit. When an actor is hit, the actor/scenario
controller overrides the current activity of that actor
to force an appropriate response to the hit; e.g. the
actor falls dead in a manner appropriate to its current
position.

5.2. The puppet server

The puppet server component uses the NYU kpl
language interpreter modified to provide I/O that is
compatible with the VR/IS system (see Sec. 7.3). It
runs kpl code rewritten to extend Ken Perlin’s orig-
inal ”dancer” code [12, 13] with new behaviors and
with techniques for building more elaborate behav-
iors through chaining simple behavior elements. Com-
mands are sent from the actor/scenario controller by
TCP/IP connections to the specific puppet server
through an intermediate proxy for that puppet server
(not shown in Fig. 4). This indirect route accomodates
a lower-level menu interface to the individual puppet
server for development of new basic behaviors. (Per-
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lin’s original interface creates tcl/tk menus; essentially
the same kind of code interfaces with the proxy.)

6. Scripts and multitasking

Central to our research is provision of user-
manipulatable scripting. To provide this, we use the
task abstraction at the actor/scenario controller level.
The mapping of script to tasks is one-to-many; multiple
concurrent tasks may be required in general to realize
all aspects of a particular script. For simple cases, one
task may do.

There are also once-per-timestep condition checks
taking place. These checks are a type of callback proce-
dure registered with the simulation control mechanism
of the actor/scenario controller. These check proce-
dures can set variables, suspend or terminate a task,
or signal a semaphore to wake up a task. An example
of a task is given in figure 5.

6.1. Tasks and threads of control

We use Umbel Designer to provide a simulation-
time task capability. Tasks have the ability to consume
simulated time, while procedures are (conceptually at
least) instantaneous. This task abstraction allows for
both sequencing actions and pausing for either a speci-
fied delay time or until some condition is satisfied. One
task can call another, which causes the calling task to
wait for completion of the called task. In addition,
tasks can be started so that they run asyncronously
with the caller. Generally when a task terminates, at
the end of its code block, the thread of control running
that task terminates. In the case that the task was
called from another task, the calling task resumes.

Tasks are implemented in terms of simulated time,
but we constrain the simulated time to match real time.
Obviously this can only be done if the real time re-
quired to do the tasks’ computation is not too great.
Thus runtime efficiency can be a major issue. This is
somewhat alleviated in our architecture by having the
division into large-grain high level control on the part
of the actor/scenario controller and the fine-grain con-
trol on the part of the puppet servers. The latter run
in parallel with the tasking computation.

6.2. Task dispatching

Tasks must be dispatched based on both the partic-
ular actor involved and his assigned script. In addi-
tion, overall scenario control may require one or more
tasks to control scenario startup and monitor progress
through the scenario. For an example, see Figure 5.

task terrorist_sitting fight (a: actor);
var i: integer;
begin
{ Assume have initially action_sit_relax }
{ flashbang has already occurred, so cringe: }
choose_puppet_action( a.puppet,
action_cover_face_sit );
delay( 1.5 {secs} );
choose_puppet_target( a.puppet,
target_snl_human_1 );
choose_puppet_attention_mode( a.puppet,
attn_looking );
delay( 0.25 {secs} );
choose_puppet_action( a.puppet,
action_sit_shoot );
while an_avatar_lives do

for i := 1 to num_rounds_terrorist_has
while an_avatar_lives do
begin

delay( 0.5 {secs} );
actor_fires( a );
end;
choose_puppet_action( a.puppet,
action_sit_relax );
delay( 0.45 {secs} );
choose_puppet_attention_mode( a.puppet,
attn_alone );
end;

Figure 5. Simple Task Example

The task terrorist_sitting fight can be part of
an actor’s assigned script. It is called only after the
main simulation task has caused the flashbang to oc-
cur. Hence the timing in this task is relative to that
occurrence. (The procedure calls that refer to the ac-
tor’s puppet send control messages to the puppet server
for this actor.) Should the actor controlled by this task
be shot, the task will be not be allowed to continue con-
trolling the actor, and an appropriate dying action will
be invoked from the puppet server for the actor.

7. VR environment modules

Our current VR environment combines different
types of simulation modules with specialized display
and sensor-input modules in a distributed architecture.
The term modules here means separate executables,
with each typically running as a single Unix process,
but frequently with multiple threads of control. The
module types include the following:

1. The VR Station display

2. Polhemus tracker input module.




3. An avatar driver
4, Virtual actor modules as described in Sec 5.

The first three types of modules above will be described
in more detail in the following sections. The VR en-
vironment consists of multiple instances of these types
of modules.

7.1. The VR Station

The VR Station is the display driver module for the
user. It provides an immersive view of the world, with
remotely-driven real-time updates of the positions and
orientations of objects and subobjects in the world.
Typically, there are multiple instances of the VR Sta-
tion running on separate CPUs, each with its own
graphics pipeline hardware (typically an SGI Crim-
son with Reality Engine, or Onyx with Reality Engine
2). A VR Station instance is used by a participant
in the scene (with an avatar), who in our testbed sys-
tem would be a member of the intervention forces. VR
Stations can also be used by observers who have no
visible representation in the simulated world (stealth
observers). The trainer’s view is of this type.

7.2. The avatar driver and tracker input

The avatar driver is based on that described in High-
tower [5], modified to accomodate placement of the
right hand tracker on the gun held by the trainee.
This placement of the tracker maximizes accuracy in
evaluation of the aim of the weapon. There are also
trackers on the left hand, the small of the back, and
the head. An auxiliary module acquires the tracker
data and sends it to both the avatar driver and the VR
Station instance that supplies the HMD view for the
participant. There is an avatar driver instance and a
tracker input module instance for each trainee.

7.3. Communication from avatar and actors to the
VR Station

All of the VR Station instances “see” the same
world, although each VR Station can show a different
view of it. Thus, the communication from the figure
drivers (avatar driver and the puppet server modules)
to the VR Station must allow this sharing. This re-
quirement, is met in the current Ethernet implementa-
tion using multicasting of UDP datagrams.

Bach VR Station instance independently loads data
files that describe the world and the figures in it. Each
figure driver (avatar or actor) loads a corresponding

file that describes the part of the world that it con-
trols. The major output data from the figure drivers is
transforms for the figure’s joints and placement in the
world. Thus figure drivers can move the figures that
they control simultaneously in all views.

8. Summary and future work

This paper has presented VRaptor, a VR system for
situational training, that lets the trainer define and re-
define scenarios during the training session. Trainees
are represented by avatars; the rest of the virtual world
is populated by virtual actors, which are under the con-
trol of trainer-defined scripts. The scripts allow reac-
tive behaviors, but the trainer can control the overall
scenario.

Initial feedback from potential users is promising.
Future work includes adding features and improving
the trainer’s control. We want to extend the trainer’s
interface to allow selection and juxtaposition of more
basic behavior elements through icons, which would ex-
tend the trainer’s control of scripts to a finer-grained
form. For deployment in actual training, monitoring
and logging the trainee’s performance would be necess-
sary. This would allow performance review with or
without the trainee present, and allow the trainer to
evaluate scenarios with respect to difficulty or need for
improvement. Also, the system could be used in plan-
ning an assault, and this monitoring capability would
then be one way of accessing competing plans of attack.
We hope to eventually evaluate the VRaptor system for
training effectiveness.
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Caption: Trainer’s view of the shoothouse




