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Conduct a thermal analysis of the SNAP lOA reactor core to 
detemine at trtiat time and altitude the fuel elements of the core 
are released as a restilt of disintegration of the grid plates. 

ABSTRACT 

A theraal analysis is carried out to determine the temperature 
distribution throughout a SNAP lOA reactor core,* particularly in 
the Ylclnlty of the grid plates, during atmospheric reentry. The 
transient teaperature distribution of the grid plate indicates when 
sufficient melting occurs so that fuel elements are free to be 
released and continue their descent indlTldually. 

In Chapter III, the flight trajectories and heating functions 
are discussed. Among the topics considered are the aerodynamic drag 
coefficients for different flight orientations, aerodynamic heating 
functions, and reentry flight trajectory parameters. The local 
effect of the fuel elasrant pins on the tfloq̂ erature distribution in 
the frid plate is discussed in Chapter IV. In Chapter V, the 
toHpex̂ ature distributions in the reactor core grid plates during 
reentry are giren. The applicability of the results to different 
flight trajectories is also considered. 

The thermal models dereloped to investigate the above problems 
are used with the TAP-3 (Thermal Analyzer Program) coa9>uter code. 
Fll^t trajectory calculations are carried out by means of the 
RS5TGRZ (Reentering SNAP Trajectory on an Oblate Rotating Earth) 
computer code. 

*"Reaetor core" in this report refers to the fuel element bundle 
and internal berylUum reflectors held together by the grid plates 
and with the contaliaent vessel stripped away due to prior reentry 
heating. 
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I . INTRCDUCTiai 

[rhe (The behavior of the entire SNAP lOA system during atmospheric reentry 

is cvirrently under analysis, particularly with respect to aerodynamic 

heating and the resulting melting and ablation of the various conqjonentŝ  / 

A complex series of events occurs dxirlng the reentry, the general sequence 

being the ejection of the external reflectors, release of NaK, separation 

of the reactor from the shielding and energy conversion unit, melting open 

of the reactor containment vessel and release of the core, breakup of the 

reactor core and separation of the individual fuel elements, ablation and 

breakup of the fuel elements, bumup of fuel fragments, and dispersal of 

the remaining fine particles into the upper atmosphere. 

(This report presents the results of an investigation of one of the 

^̂ jibcve'series of events^the breakup, or disintegration of the reactor 

core. This action separates the fuel elements and allows them to undergo 

ablation individvially. In this report, the term "reactor core*' is taken 

to signify the bundle consisting of the thirty-seven fuel elements, the 

six beryllium internal reflectors, and the two stainless steel grid 

plates, and to exclude the reactor containment vessel which is assumed to 

have been stripped away by prior reentry heating. / 

The simplest, and most desirable mode of reactor core breakup would be 

for the grid plates to simply fall off the fuel element and reflector 

pins. This could very well occur since the initial placement of the grid 

plates on the pins is a rather loose fit. If this were to happen, it 

would be advantageous since It would mean an almost immediate core breakup 

and fuel element separation. lAifortunately, however, such a mode of 

breakup, while possible, cannot be considered to be sufficiently probable 

so that it could be depended upon. It can well be that during the long 

life of the system, the grid plates may have become warped or the fuel 

elements may have swollen or bent in such a way as to make the fuel element 

pins bind in the grid plate holes, causing the entire assembly to hold 

firmly together. If this were to happen, it would be necessary to melt 

719.P 
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away the grid plates holding the fuel elements together in order to bring 

about their separation. This is the process that is Investigated in this 

report. Aerodynamic heating Inputs and transient teo^erature distributions 

in the reactor grid plates are investigated for various reentry trajectory 

conditions. The approximate time and corresponding altitude drop required 

for the removal of the grid plates by melting are determined. This con­

dition, of course, represents a somewhat pessimistic view, since it 

disallows several possibilities. The grid plates could Just fall off 

because of their loose fit (either at the stjurt or at a later time tAieiD. 

some fuel elements idiich may have been caiising the binding have either 

been loosened or released). The heating up of the grid plates might bring 

about their weakening which may cause a warping, tearing, or fracture, thus 

releasing the elements before actual grid plate meltdown. These, and other 

like possibilities are not considered quantitatively because of the 

uncertainty of these events occurring, and the difficulty of predicting 

their occiirrence analytically at this time. At any rate, the model and 

calculations represent, for the most part, a generally conservative 

estimate of the required reactor disintegration time. 

A satellite in orbit near the upper boundary of the earth's atmosphere 

has a total energy of about 13,700 Btu/lbm, (this value is based on a 

satellite with a 400,000 foot altitude and a 25,694 ft/sec velocity), with 

most of it in the kinetic form (kinetic energy =13,200 Btu/lbm, potential 

energy =500 Btu/lbm). Essentially all of this energy is converted to 

heat as the body comes to the groimd and in^acts at a relatively low 

velocity. Obviously, this quantity of heat is several times what is 

necessary to vaporize any reentering body. However, a very small fraction 

(on the order of 2 or 3% for blunt shaped bodies) of the total heat 

generated actually is delivered to the object. Most of it is carried 

' off by the air flow stream, particularly in the case of blunt shaped 

bodies >diich induce a strong frontal shock wave. (This, incidentally, is 

vrtiy manned reentry spacecraft have a blunt frontal shape.) In addition, 

as the body heats up, a portion of the heat absorbed is radiated away. 

Kir. NAA-SR-TDR- \I847 
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The results is that, initially, it is not at all apparent whether, as 

a body reenters, it receives and retains sufficient heat to melt it, and 

further, that even if it does, whether the meltdown occurs rapidly enough 

to achieve reactor disintegration at a sufficiently high altitude. This 

thermal behavior for a reentering SNAP lOA reactor core is investigated 

in this report-

II. CORE CONFIGURATION 

The geometric configuration and dimensions of the SNAP lOA reactor 

core are specified in the design drawings (Reference la-le). In 

describing the geometry of the core for trajectory and thermal calcu­

lations, design parameters were followed, except in a few minor cases 

in \rtiich slightly different geometry or properties were assumed for 

simplicity. The core configuration and dimensions used in the calcu­

lations of this report are Indicated in this section. 

Figure 1 shows the overall dimensions of the reactor core. Figure 2a 

and 2b are views of the design details of the upper grid plate. It is 

made of 1/8 inch thick stainless steel, with holes as shown. The lower 

grid plate is constructed somewhat differently. It is formed of two 

parallel plates, each l/l6 inch thick, with studs for structviral support. 

Furthermore, the NaK flow holes are of various sizes (the holes getting 

smaller as one moves out radially on the grid plate) in order to control 

the NaK flow distribution during reactor operation. For the thermal 

calcvilations subsequently shown, it has been assumed that both grid 

plates have the geometry and thermal characteristics of the upper plate. 

The assumed geometry of the fuel elements is shown in Figure 3. It 

can be seen that the geometry of the fuel element has been idejuLlzed 

' some^at, as squaring off the fuel material, assuming a uniform hydrogen 

gap thickness, etc. 

As the reactor core reenters, the outer edges of the grid plate heat 
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up and melt first, so that the beryllium reflectors and the outer ring of 

fuel elements are released first. The remainder of the core, now with a 

different ballistic coefficient (hence a modified trajectory and aero­

dynamic heating) continues on until the grid plate melts away sufficiently 

to allow the next ring of fuel elements to fall away, and so on. Each 

time a cluster of fuel elements comes off the main core body, the 

properties (weight, reference area, and drag coefficient) of the remaining 

parcel changes, with a resxiltant change in the ballistic coefficient. 

Figure 4 shows a portion of the cross-section of the core. The effective 

radii are shown for the cases >diere the reflectors and each successive 

ring of fuel elements are lost. 

Table I siimmarizes the significant geometric parameters of the reactor 

core used in this report. Other values are shown in Figures 1, 2, and 3. 

Table II lists the values of the thermal properties of the reactor core 

materials used in the calculations. 

TABLE I 

Reactor Core Geometric Parameters 

Full Core 

Core with Reflectors 
Gone 

Core with Cue Ring 
Elements Gone 

Core with Two Rings 
Elements Gone 

One Element 

Length 
L 
inch 

13.08 

13 .-08 

13.08 

13.08 

13.08 

Effective 
Diameter 

D 
inch 

8.830 

8.022 

5.7U 

3.426 

1.250 

Reference 
Area 

*Ref 

ft2 

0.4253 

0.3510 

0.1780 

0.0640 

0.00852 

L 
D 

1.481 

1.630 

2.282 

3.817 

10.464 

Mass 
W 
Ibm 

139.41 

129.81 

66.63 

24.53 

3.49 

MD NAA-SR-TDR-11847 
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TABLE I I 

THERMCPHYSICAL PROPBITIES 

(Values Assumed for Calculat ions) 

Material 

SS 316 

Be 

Fuel 

Barrier 

Thermal 
Conductivity 

k 
Btu/sec in . "F 

3 . 4 X 10"^ 

1.18 X 10"^ 

3 .08 X 10"^ 

1.85 X 10"^ 

Heat 
Capacity 

^ \ 
Btu/ in .^ "F 

0.038 

0.0416 

0.035 

-

Spec i f i c 
Heat 

/ P 
Btu/lbm -F 

0.138 

-

-

-

Melting 
Temperatiure 

T m 

2600 

-

-

-

Radiative Qniss iv i ty , 6 

€ (Surface t o Ambient) = 0.333 

€ (Grid Plate to Fuel Cap) = 0.447 

€ (Between Fuel Elements) = 0.333 

Radiation Factor, 

3^ = 0.333 

J = 0.288 

^ = 0.200 

Convection Coefficient 

1 mil hydrogen gap, 
(Assumed Gap Thickness) 

Air: 

5 X 10' -3 Btu 

sec in. "F 

k = 7.8 X 10' 

Cp = 0.25 

r7 Btu 
sec in. "F 

Btu 
Ibm "F 

The approximation was made that these properties did not vary with temperat\u:e. 

719-P 
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III. FLIGHT TRAJBCTCRIES AND HEATING FUNCTIONS 

A. Aerodynamic Drag Coefficients 

1. Derivation of Drag Coefficients on a Cylinder 

The aerodynamic drag on a plane surface (assuming a continuum 

flow regime) oriented normally to the flow stream can be determined 

easily (see Figure 5a). The momentum balance on a column of incoming 

air is 

r ^ lit j ^ -(̂ ^ -̂1) 

from which 

F = ^ ^ ) ( v - o ) . i A V ^ . 

The drag coefficient is defined by the expression 

2gc 

...(1II-3) 

Thus, one finds that for a surface normal to the flow stream (stagnation 

point), the drag coefficient is: 

r ^h - ^AY.' 
^' 23. " 3. ' ...(III-4») 

so. 

r=C.=Z ' ...(iii-4b) 

719.P 
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If the plane surface is not normal to the flow stream (see Figure 5b), 

the momentum balance yields 

p = ^ ^ A V = , — — - (Vs>.r^j= — , ...(III-5) 
% ' ^' g 

so that 

C o = Cp = ? ^ ' ^ ^ ^ = C p , S ' n ^ ^ ^ C p ^ c o s V • . . . ( I I I -6) 

In deriving an expression for the aerodynamic drag (and drag 

coefficient) on a right circular cylinder, two forces are determined, 

and then their components in the direction of the velocity are found and 

combined. The two forces are the drag acting on the end of the cylinder, 

normal to that surface, F^ (the axial force), and the force acting on 

the cylindrical s\u:face normal to the axis, F̂ , (see Figure 5c). 

The force F̂  (Figure 5c) is acting normal to the plane surface on 

the end of the cylinder. In the manner indicated by Figure 5b and 

Equations (III-5) and (III-6), F̂  is found to be 

F.= (^)Aco.V = 2 g ) A - ^ - ...(xn-7) 

To determine the force acting on the cylindrical surface, refer to 

Figures 5d and 5e. The conqjonent of the flow velocity, V, acting normal 

to the axis at any point is V sincX , and the component of that vAiich is 

also acting normal to the siurface at any point is V sin oi cos 71 . The 

force acting at any small increment of surface area, dA, (see Figtire 5F) 

can be written 

IT 

P= d ^ f P - C A V5,n̂ »(cos>clA ...lUI-B) 

TT 

• I 

719-P 
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With 

d A = R L cos 'r\ cl?| , 

(see Figure I I I - 5 f ) , from >*iich i t follows that 
TT 

2 

. . . ( I I I - 9 ) 

F , - C p ( - | ^ ] ^ ^ s i . ^ ^ jcos'?! cin 5 ...(iii-io) 

and f ina l ly 

^^4-C,g)RLs:.-.=l(f>L..V . . . ( I l l - l l ) 

Since we are interested in the total drag force, F.̂  , in the 

direction of the flow velocity, we determine the proper components of the 

axial and normal forces, F^ and F^ , and combine them for F-p as shown 

in Figure 5c, 

fp = V^5mo( + f̂  cos o<. . ...(III-12) 

Applying Equations (III-7) and (Ill-ll), Equation (III-12) becomes 

Recalling the definition of the drag coefficient, Ĉ ^ , 

r = , — , . . . ( I I I - 3 ) 

719.P 
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and arbitrarily defining the reference area, as that of the cross-section 

of the cylinder. 

A = - ^ , ...(III-14) J T P ' 

4-

the drag coefficient of the cylinder, with the angle of attack as defined 

by Figure 5c, is fotind to be 

C = ^^s•^Y^'o( -f Zco^^U • ...(III-15) 

2. Drag Coefficients for Various Flight Orientations 

Equation (III-15) gives the drag coefficient for a right 

circular cylinder based on the cross-section as the reference area. 

The coefficient is given as a function of the angle of attack, o( . The 

value of Cp for various flight orientations is to be determined. 

a) End-On 

With the cylinder oriented end-on in the flow stream, <=< = 0. 

From Equation (III-15), it follows that 

C , =2.0 ...(III-16) 

End-On 

b) Side-On (Cross-flow) 

If the cylinder is oriented side-on (flow stream normal to 

the axis), o< =90°, and Equation (III-15) indicates 

Side-On 

719-P 
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c) Minimum O D 

The value of Cj, varies with the angle of attack, »( . It 

is of interest to determine where its minimum and maximum values 

lie. Differentiating Equation (III-15), one obtains 

dot T T D 
...(III-18) 

= 0, and checking the sign of the second Setting — T — -
a °̂  

derivative, one finds that local maxima for C p occur at c< = 0 
- 1 /'3Tr D \ 

and o( = 90°, and the minimum occurs at cX = tan \~~g, c J-

C. 
,,(, .it I o< = tan ( - ^ ^ 

. . . ( I I I - 1 9 ) 

d) End-Over-Bnd Tumbling 

The mean value of the drag coefficient for end-over-end 

timbling can be writ ten 
TV 

Cp ^ck 

C. = 
k 

. . . ( I I I - 2 0 ) 
^ 

since each angular position is equally probable. Thus, Equation 

(III-20) becomes 

C = ̂ j 3TT D 

64 L 
^TT^ D 

+ 
)TT 

...(III-21) 

719-P 
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TABLE I I I 

DRAG COEFFICIENT EXPRESSIONS 
FOR RIGHT CIRCULAR CYLINDERS 

GENERAL: 

END-ON: 

-jTr V 

Co = 2.0 

SIDE-ON: C, 
fc L 

3TT V 

^ 64- L , 8 
END-OVER-END: C o = ""5"^ ^FT "*" "̂ ^ 

7rr V oTT 

RANDOM TUMBLING» Co = i - T 

Reference Area is Cylinder Cross-section; 

A..f 
•V 

ANGLE 
OF 

AITACK 

V 

^n 
-.1 m ' 01 

AWTin.;;:!.:o CLASSincr} 
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e) Random Timibling 

When random tumbling occurs, the end point of the cylinder 

describes a spherical surface. At any particular instant, that end 

point has an equal probability to be at any point on the sphere. 

(Note that this means that the probability of X = 90° is a maximimi, 

and oC = 0° is a minimum, whereas for end-over-end tumbling, all 

values are equally probable.) Therefore, the mean value of C^ for 

random tumbling is defined by 

C,= 
A 

...(Ill-21a) 

Referring to Figure 6, the area increment is given as 

JA = Zlli sincX ^d . . . ( III-22) 

so that Eq\iation (III-21) becomes 

c. ^ . 3 ^ 
^ S'^r^-^ <Jo< + Zcos^oi d ^ 

3TTD 
Sin o( 

ZrrX I sin5<cio( 
. . . ( III-23) 

and 

c. = . , - ^ SlA o<, do<. - ( - 2 I COS d. S^^ oL 6'i^ . . . ( I II-24) 
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and finally 

D 
C = ( ^ + ^ i • ...(rii-25) 

Random 
Tumbling 

Table III summarizes the expressions for the drag coefficient, 

^D-

3. Nimerical Evalxiation of Drag Coefficients and Ballistic Coefficients 

Drag coefficients and ballistic coefficients are evaluated for 

the reactor core reentering in different orientations, and for the partially 

disintegrated core under random tianbling conditions. The results are sum­

marized in Table IV. It is interesting to note that for the particular 

dimensions of the reactor core, the drag coefficients for end-on and random 

tumbling are nearly the same. 

Figure 7 shows the variation of C_. with cK for the full core. 
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Full Core: 

End-On 

Side-On 

End-Over-End 

Random Txmbling 

TABLE IV 

Ba l l i s t i c Coefficient 

W 

^ *Ref 

i = 1.481 

^ 

2.0 

2.514 

1.916 

1.981 

^ e f = 0-^25 ft2 

W 

V 
163.9 

130.4 

171.1 

165.5 

L Random Tumbling (C^ = ^ + i ) 

If JL 
D CjjA 

Full-Core 1.481 165.5 

One Ring Gone 2.282 134.5 

Two Rings Gone 3.817 88.76 

Three Rings Gone 10.464 37.36 
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B. AerodyTiamic Heating Correlations 

The basic aerodynamic heating relationship used in making the calcu­

lations reported herein is the Detra-Hidalgo correlation. 

Poi.t 

•which is presented in Reference 2. Equation (III-26) is for the stagnation 

point heating on a sphere of radius, R, and velocity, V, in flight through 

air of density, O . The terms R , P ^ , and V are reference parameters. 

The reference radius, R , is one foot, the reference velocity, V , is 

10,000 ft/sec, and the reference air density, P^^ , is that of standard 

air at sea level, 0.07647 Ibm/ft"̂ . 

Detra and Hidalgo claim that their correlation is accurate to lOjK 

in the velocity range of 26,000 to 6,000 ft/sec, and the range of air 

density, 8 x 10~ ^ V P — l-O. The velocity range restriction causes 

no difficulty. The initial velocities for the trajectories considered are 

somewhat under 26,000 ft/sec, and by the time the body has been slowed 

down to a velocity of 6,000 ft/sec, the stagnation point heating rate is 

decreasing rapidly and is approximately 10^ of its peak value, while 

about 99^ of the total heat to be deposited in the body has already been 

delivered, (Q ). On the other hand, some of the aerodynamic heating 

calculations that follow do not fall completely within the air density 

range stipulated. The range of 8 x lO"'' ̂  vp :^ 1.0 dictates an 

altitude range of 230,000 feet to sea level. A good deal of the region 

of concern in this report is above 230,000 feet. However, Elliott (see 

Reference 3) indicates that there is considerable evidence to justify 

using the Detra-Hidalgo relation, Equation (III-26) to substantially 

higher altitudes. 

The final term of the Detra-Hidalgo expression is called the 
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"hot wall correction factor," and accotints for the fact that the higher 

the temperatxire of a surface, the less heat will flow to it from the 

heat source (which is presumably at the stagnation temperature of the 

air). The hot wall correction factor is: 

HOT W A L L 

C O R RE c i lo M 

F A C T O R 

M 1"/.LL 

H - H ...(Ill-27a) 

or, assuming a constant specific heat, c , 

H.W. C.F.I = 
T - T 
T. 54 0°R 

...(Ill-27b) 

-^ , is called the "size correction factor," with R^ 

a nominal one foot radius, and R the radius of the projectile under 

consideration. 

SIZE 
C o R RtcT lo IJ 

R. 
K 

...(III-28) 

Equation (III-29) defines the reference aerodynamic heating. 

I Ke-fVs'^ f^^ ^̂^ ̂  ̂  6G5' ^ V 
,3.15 

?, . I V. ...(III-29) 
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It can be noted that the reference heating relation is the same as 

Equation (III-26) except that the hot wall correction factor (which is 

dependent on the body tenqserature) and the size correction factor have 

been excluded. The result is that the reference heating is a function 

only of the velocity and altitude of the body. It is essentially the 

stagnation point heating for a cold (T = 540°R) spherical body with a 

one foot radius. 

While the stagnation point heating on a sphere is a reference quantity, 

in the problem of the reentering reactor core we are concerned with the 

aerodynamic heating all over the sxirface of a cylinder (particularly the 

ends). As a result, the use of various geometric correlation factors is 

necessary in order to obtain the desired result. These corrections are 

discussed in detail by Klett in Reference 4, and also by Kemp, Rose, and 

Detra in Reference 5. Those which are used in this study are presented 

below. 

The term, F̂ ^ , is the ratio of the stagnation point heating at the 

center of the disk end of a cylinder with end-on flow, to the stagnation 

point heating for a sphere with the same radius. According to Klett 

(Reference 4, Page 21), this ratio is equal to ̂ . 

F = Air - 1 = Stag Pt. Heating. End of Cylinder. End-On Flow z-..̂-. __v 
"̂  t^b ^ ^**S ̂ *' Heating, Sphere of Same Radius ...UH-Ju; 

The term, F, , describes the local heat distribution on the disk end 

of a cylinder in end-on flow. F, is the ratio of local heating to 

stagnation point heating, and is given by Klett, Page 23, to be: 

F = _kL = 1 0 + 0 6 (-1 = Local Heating on Disk. End-On Flow 
b q ^ ' ' ^R' Staff Pt. Heatine. End of Cvllnder. Stag Pt. Heating, aid of Cylinder, aid-On Flow 

...(III-31) 
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Integration of F, over the area of the disk end of the cylinder 

yields the term, F , which is the ratio of average heating on the end 

disk of the cylinder to the stagnation point heating, with end-on flow. 

F 

_ Avg. Local Heating. Bid of Cylinder. End-On Flow , TTTT-'̂ Pa'i 
Stag. Pt. Heating, End of Cylinder, End-on Flow •••̂ -LJ-'- J>^J 

F̂  = - ̂ y^" - ° T̂  = L 2 2 G 4 . ...(iii-32b) 
J A Z T T . C J . 

KLett, on Page 23, shows the plot of average heat transfer to a disk 

at varying angles of attack as compared to the same disk normal to the 

flow (end-on flow). That is, 

AJ^ =^ f(o^} • ...(m-33) 

This plot is shown in Figure 8, and it can be seen that at o(, = 90», 

d̂ ^^(<x=o») °-^^ 
...(III-34) 

_ Avg. Local Heating. End of Cylinder. Cross Flow ( =90°) . 
Avg. Local Heating, End of Cylinder, End-On Flow ( =0") 
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On Page 19, Klett points out that the ratio of aerodynamic heating at 

the stagnation line of a cylinder in cross flow to the heating of a 

sphere of the same radius (other conditions assumed to identical) is 

0.747: 

%. (c^=90») 
Fg = = 0.747 = 

bss ...(III-35) 

- Stag. Line Heating. Cylinder Side. Cross Flow . 
Stag. Pt. Heating, Sphere of Same Radius 

Klett, on Page 20, gives a plot of the ratio of the heating on the 

side of a cylinder in cross-flow to the stagnation line heating. This 

curve is reproduced in Figure 9: 

o*- (°^^^^ _ ^ ̂ ^̂  ^ Local Heating. Side of Cylinder ...(III-36) _ - fris _ Local Heating. Side of Cylinder 
^^^ Stag. Line Heating, Side of Cylinder 

Integrating the curve of Figure 9, one determines the average value 

of the local heating on the side surface of a cylinder in cross flow 

(o^= 90») as con̂ Dared to the stagnation line heating and it is found to 

be 0.385: 

= U.3K> = 

(III-37) 

F. = = 0.385 = 

_ Avg. Heating on Cylinder Side Svirface, << =90° 
Stag. Line Heating, Cylinder in Cross-Flow, d =90° 

The average heating ratio on the end of a cylinder while in random 

timibling flight can be determined by properly integrating the curve of 

Figure 8, (in the s€ime manner as Equation III-21 and Figure 6). 
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b KT 
SI ̂•aJB-

sin-0- clO" 

F = 
g 

sine- C-̂ )̂ 
, ...(Ill-38a) 

%' 

V,. 
= 0.5226 = 

...(Ill-38b) 

Avg. Heating on End of Cylinder. Random Tumbling 
Avg. Heating on End of Cylinder, End on Flow, (^=0° 

Klett, on Page 22, gives a plot of the average heating to the side of 

an end-on cylinder ( o( =0°) to stagnation point heating to a sphere of 

the same radius. This curve is shown in Figure 10. On the basis of this 

plot, F. is defined: 

F." ° d--o )Sr 

ss I 
^ " ' J ( ^ ) = f ( i ) •••<-̂ -3'»' 

„ _ Avg. Heating on Side of Cylinder. aid-On Flow (Q̂  =0°) fiTi-^qb^ 
*h Stag. Pt. Heating on Sphere . ...v :>y i 

There is relatively little data available on heat transfer to yawed 

cylinders. However, KLett, on Page 24, suggests the use of the expression 

l ( ^ ) . 
l)« 

= Avg. Heating on Side of Cylinder. Angle of Attack 
Stag. Point Heating, Sphere 
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( r ^ ) See Ê  CM-25)) t T. Ue T . 

T .̂ 

/^IC/A4J^- no / DI 

/ • j r ; i 3 - ; - : : o j ^ 



ATOMICS INTERNATIONAL 
A Division of North Amorlcan Aviation, Inc. 

Kin NAA-SR-TDR-118^7 
nATF 2-16-66 
PAr.F 3 4 OF 1 4 4 

Avg. Heat Rat io \ 
on Cylinder Side 

a t o< = 0" / 
(end-on) / 

2 / cos o< + 

[ M cos o(. 

fAvg. Heat Rat io 
'on Cylinder Side 

a t CX = 90° 
(c ross - f low) 

N sin^o< 

( I I I - 4 0 ) 

Eqxiation (III-40) describes the average heating on the side of cylinder 

which is at a particular angle of attack, oi . In order to determine the 

average heating under conditions of random tumbling, an integration 

similar to that done in Equations (III-21, 22, and 23) and Figure 6 must 

be carried out. 

0 « i 
'RT 

ZT [hcos^j<Sir^o< + Nsm'^lcla<> 

. . .(Ill-aa) 

This l eads t o : 

%. 

ss 

= "3 h 4- f N = C,r^+GN ...(ni-4ib) 

>riiere C i = ^ ^'^^ C j — - ^ 
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Equation (lll-41b) can be rewritten in the form: 

_ Avg. Heat. Cylinder Side. Random Tumb _ 
i Stag. Pt., Sphere 

(> '̂ 4 T ( ^<^ ^-^-^ 
M N 

. . . ( I l l - 4 2 a ) 

which i s seen to be 

i.Wk,i4^*) 4 c J ^ i M : : ] i ' .-(-w )̂ 

and for ^ = 1.481, F = 0.114, and Equation (lll-42b) yields. 

^^ ^ '"ti ° )" ̂ "'"̂  ' l(»'̂ ^̂ )("̂ )̂j = aZ30. ...(xn-*.c) 

For end over end tumbling, expressions analogous to Equations (III-38) 

and (III-41) can be obtained, if desired, by carrying out the appropriate 

integration, as in Equation (III-20). 

The average heating ratio on the end of a cylinder in end over end 

tumbling flight is determined by integrating the curve of Figure 8. 
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, ( l l l -43a) 

1 - .<=o j J-& 2 1 , (^^^ 

F - D*- "̂̂^ = 0 15̂ 2 - Avg. Heat on End of Cylinder. End Over End Tumb 
J q u.54<: - ŷ.yĝ  fjĝ ^ Qjj Q̂ jj Qf Cylinder, End on Flow, o< =0 

,..(lll-43b) 

To determine the average heating on the side of a cylinder in end 

over end tumbling. Equation (III-40) must be integrated. 

(MCOS'O), + NslKv̂ ot) il< I M + H U 

^-4 yu i ^'' ' 

- A ^ ) = CafrA+N)^ wKere C^ = -~ - ...(lll-44b) 

) ^ ^ '£/ 

Equation (III-44) can be rewritten: 

Avg. Heat. Cylinder Side. End/End t-- \ )r { r \ . r / r Vr 
Stag. Pt. , Sphere = ^ ^ " ^ j ^ (^A^^)^ ^H^H^^f 

\A N 

which, as in the case of Equation (III-42), can be seen to be 
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which yields, for ^ = 1.481, 

...(Ill-45a) 

F̂ =̂  ( 4 ^ ) = [i(°-"^) -̂  i(o.^47)(o.385)j^ 0.20). ...(Ill-45b) 

The correlation factors presented in the preceding section are 

summarized in Table V. These factors were used in establishing the 

aerodynamic heating distribution inputs in the thermal model presented 

later in this report. 

It should be pointed out that the correlation factors of Table V do 

not take into account the fact that the heat input may vary along the 

side of the cylinder as a function of the distance from the end. Only 

average heating values are used. On the other hand, heat input variation 

with position on the end of the cylinder is taken into account by F, . 

As a result, the heat input on the ends of the cylinder are probably 

represented somewhat better by this correlation. In the thermal problem 

investigated later in this report, it is the heating at the ends of the 

cylinder vAiich is of primary significance, since the meltdown of the grid 

plates is being studied. 

The RESTORE (Re-entering SNAP Trajectory on an Oblate Rotating Earth) 

computer program (see References 6 and 7) vias used to calculate the tra­

jectory of the reentering reactor core, depending on its ballistic 

coefficient, (W/C^A), and its initial velocity and position conditions. 

Among the trajectory parameters determined are the altitude, velocity. 
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flight angle, longitude, latitude, azimuth, and range as a function of time. 

It is not the purpose of the code to determine aerodynamic heating, but as 

a side calculation, it determines and tabulates the reference heating, 

qp -, and the stagnation enthalpy, H . These quantities are functions 

solely of the projectile velocity and sdr properties, (which are functions 

of auLtitude), and are used, along vdth the aerodynamic heating distribution 

factors of Table V, in determining the heat input functions for the thermal 

model of the reentering core presented in a later section. 

The aerodynamic heat input to each surface node is determined by the 

equation. 

Q"(-)^p/|A.cf { 
or . . . (III-46a) 

Q~-Y(^-^"^H(^Ky/|A.3)(x-x) 
vd.th 

A . i . . . ( I l l -46b) 

and 

I- T7(F0 . . . ( I I I -A6c) 

•virtiere A is the nodal surface area, and J is the product of the appropriate 

F factors of Table V, and q_ - and T are determined by the RESTORE code 

for any particular trajectory. Table VI indicates the proper F factors 
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which combine to form the T aerodynamic heat distribution terms for 

various flight orientations. 

C. Trajectories 

The aerodynamic heating of a reentering body is, of course, dependent 

on the particular trajectory that the projectile follows. There are an 

infinite number of possible paths, depending on the initial conditions 

(velocity, luLtitude, flight angle, etc.) and properties of the body (mass, 

projected area, drag coefficient). In order to study the problem of a 

reentering SNAP lOA reactor core, a set of reference trajectories were 

chosen, and the thermal analysis was based on the these. 

It was initially assumed that a reentering body containing the 

reactor core had W/CLA = 100, descending from a polar orbit, with the 

initial position of the projectile immediately over the north pole at an 

altitude of 400,000 feet, a velocity of 25,693-94 feet per second, and a 

flight angle of 0 degrees. As this orbit decays, the altitude decreases, 

until the point is reached vrtiere it is considered that the containment 

vessel has broken open, and that the reactor core is released. From this 

point, a new trajectory calculation is initiated, based on the ballistic 

coefficient of the released body (the reactor core), and with the same 

orbital parameters that the original trajectory had at the particular 

release point. 

As indicated in Table IV, the ballistic coefficient of the reentering 

reactor core under conditions of random tumbling is equal to 165.5. Tra­

jectories for W/C_.A = 165.5 were determined for starting altitudes of 

230,000, 240,000, 250,000, 275,000, and 300,000 feet, with initial velocity, 

position, and orientation parameters as indicated by the base trajectory 

(alto = 400,000 ft, W/C_A = 100). Data on projectile velocity, altitude, 

etc. versus time were obtained in both printout and CRT form. This 

information is available from the author, but it was not included here 

because it is not the information of principal interest in this study. 

The concern here is with the aerodynamic heating. In Figure 11, the 
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reference heating, a -, is plotted versus altitude for the six trajectories 

mentioned above. The five trajectories representing the reactor core 

indicate very nearly the same reference heating as a function of altitude 

(vrtiich is essentially equivalent to saying that the velocity versus 

altitude is the same). The reference heating curve for the W/CL.A = 100 

trajectory lies below those for W/Cj,A = 165.5, which is qualitatively 

what one would expect. The more massive (it can be considered that C_A 

are the same for the two projectiles, and the difference in W/(L.A are the 

same for the two projectiles, and the difference in W/(L.A can be attributed 

to W) projectile is decelerated less rapidly and therefore maintains a 

high velocity (high (-̂  j term) longer, yielding a higher reference 

heating. An alternative way of looking at it is to recall that for given 

velocity and altitude conditions, a projectile has a given total (kinetic 

and potential) energy per unit mass. Thus, the total energy to be re­

leased by aerodynamic heating should be in proportion to the ballistic 

coefficient. (In fact, it is found that the peak heating and the 

integrated heat delivered to the projectile vary approximately as the 

square root of the ballistic coefficient. Only about 2% to 3% of the 

total energy released by the reentry is deposited in the projectile.) 

It is interesting to note from Figiure 11, that in the altitude range 

between 300,000 and 200,000 feet, the reference heating varies almost 

linearly with altitude. 

Figure 12a and 12b show curves of integrated heating, Q.^r, versus 

time and altitude for the reentering reactor core for initial altitudes 

of 250,000, 275,000 and 300,000 feet. Integrated heat is defined as 

\^slT 

1̂1 
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It can be observed from Figures 12a and 12b that over quite a wide range, 

the integrated heat (total heat per unit area delivered to the stagnation 

point of a cold sphere) is directly proportional to the drop in altitude, 

even though different lengths of time are involved. This fact will prove 

useful later on. For instance, if one finds that if a body is released 

at 250,000 feet, melting of a certain portion occurs at 225,000 feet, one 

can say, with reasonable accuracy, that if the body were to be released 

at 270,000 feet instead, it again would take approximately a 25,000 foot 

drop to deliver the same integrated heat, though it may take somewhat more 

time. 

For example, consider the reactor core released at an altitude of 

250,000 feet. (Figure 13 shows the altitude versus time for this descent 

trajectory.) In 70 seconds it has descended to an altitude of 22A,919 feet, 

a drop of about 25,000 feet, and the indicated integrated heating is 

7543 Btu/ft . Now, studying Figures 12 and 13, one can observe how long 

a time and how great an auLtitude drop it takes to obtain the same Q 

for different release altitudes. These vailues are shown in Table VII and 

Figure 14. (This particular numerical example was chosen because, as will 

be discussed in a later section, thermal calculations indicate that for 

a release altitude of 250,000 feet, it takes about 70 seconds to melt the 

reactor grid plates sufficiently to allow the release of the outer ring 

of fuel elements from the core.) 

As the reactor core begins to disintegrate by having the outer fuel 

elements fall away, the ballistic coefficient of the remaining core changes, 

which in turn atffects the trajectory and aerodynamic heating. To study 

this effect, the following idealized picture of the disintegration of the 

reactor core was assumed. When sxifficient melting of the grid plates has 

occurred, the beryllium reflectors and all the fuel elements in the outer 

ring fall away simultaneously. Then, at a later time, the next ring of 

fuel elements fall away, then the next, until just the central fuel element 

remains. For the purposes of this study, the separation of the fuel 

elements, such that each one is independent of the others, constitutes 

reactor disintegration. (See Figure 4 and Tables I and IV. Ballistic 

7I9.P 
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coefficients of 165.5, 134-5, 88.76, and 37.36 are indicated.) 

In order to understand the effect of varying ballistic coefficient, 

trajectories were calculated for four reentering bodies with the W/C^A 

values listed above (and in the lower portion of Table IV) and the same 

release altitude and velocity conditions. In Figure 15, ctirves of 

reference heating versus time are shown for an initial altitude of 250,000 

feet. The smaller bodies (lower W/C^A) indicate a lower reference heating. 

However, this does not take into account the "size correction factor" 

discussed earlier. (See Equations (III-26, 28, and 29). It has been 

pointed out that the ael-odynamic heating varies inversely as the square 

root of the projectile radius. 

^ » = 1«.<l"^^'' \/ R ...(ni-26, 27, a s , 29) 

Accordingly, the reference heating curves shown in Figure 15 are corrected 

by the factor, \/— . The result is the sphere stagnation point heating 
V R 

for a body of radius, R, neglecting the "Hot Wall Correction Factor." 

These curves are shown in Figure 16, where it can be seen that the smaller 

(lower W/C^A) body actually receives the more intense heating for a time, 

at least until after the peak heating point has been passed. This indicates 

that v^en fuel elements fall off the reactor core, the intensity of heating 

on the remaining body actually increases. The significance of this is as 

follows. A thermal model is set up later in this report to determine the 

transient tenq̂ erature distribution in the reentering reactor core. Aero­

dynamic heat inputs are based on the ballistic coefficient of the entire 

core, with the result that the aerodynamic heating functions are 

appropriate until the reactor starts to disintegrate. From then on, the 

heating functions used in the calculations are lower than should actually 

be used for that phase of the trajectory, with the result that the time 

for conqjlete reactor disintegration may be somevrtiat overestimated, and a 

slight amount of conservatism is introduced into the results. At any rate. 

719.P 
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the discrepancy is slight, since at the time the outer edge of the grid 

plate is sufficiently molten to allow the release of the outer ring of 

fuel elements, the remainder of the grid plate is approaching the melting 

temperature. 

It is of interest to compare some aerodynamic heating parameters of 

the curves of Figures 15 and 16. These are tabiilated in Table VIII. 

Note that vhile the peak heating and total integrated heat vary greatly 

among the trajectories, vihen modified by the J-^ term, they are in quite 

close agreement. The agreement also occurs Tiriien %peoW and Q,isj-f are 

corrected by (W/C_A)~^, vriiich apparently indicates that the heating varies 

inversely as the square root of the ballistic coefficient. However, this 

may merely be a peculiarity of the constant length cylindrical geometry. 

Since we axe dealing essentially with a constant length, constant density 
2 2 M 

cylinder, W varies as R , A varies as R , and C^ varies as 1/R, 

(C, = -I + §). 

Thus; 

W 
iK^ 

K̂  
...(ni-A8) 

R„ 
which is the same variation as / , 

which means that: 

Constant , ...(ni-49) 

\rtiich I s indicated by Table VIII . 
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TABLE VI I I 

TRAJECTORY PARAlffiTlES 

(Release A l t i t u d e = 250,000 f t ) 

Full Reactor 
Core 

W Ibm 

V ft̂  

R Inches 

Time to Hit the Ground, 
seconds 

^ IKJT 

(Total to Ground) ft 

Btu 
2 

^ I M T , / o 

( — T T 

{\ef) Btu 

Peak sec ff^ 

^̂ ^̂ êak / f 

^%ef^ 
Peak W 

CpA 
-i 

"̂  ' ^ ^ (To ta l ) 

^%ef \ 
Peak 

W If 

One Ring 
Fuel Gone 

Two Rings 
Fuel Gone 

165.5 

4.415 

370.7 

41,443 

68,100 

3220 

275.9 

455 

21.60 

150 .1 

21.2 

134.5 

2.857 

376.7 

37,041 

75,900 

3198 

244.7 

506 

21.26 

151.1 

23.8 

88.76 

1.713 

394 .1 

29,404 

77,900 

3122 

193.8 

513 

20.59 

152.0 

24.9 

One Fuel 
Element 

37.36 

0.625 

459.4 

17,685 

77,500 

2890 

122.3 

541 

20.20 

144.2 

26.8 
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In the foregoing, trajectories were studied which had different 

ballistic coefficients, but the same starting conditions. In reality, 

what will happen is that as the body reenters, the ballistic coefficient 

will change along the way, and successive trajectories must be considered, 

rather than the concurrent ones depicted in Figtires 15 and 16. 

Accordingly, the following trajectory calculation was carried out. 

Starting at an altitude of 250,000 feet, follow a trajectory based on 

W/C„A = 165.5 for 70 seconds, at vAiich time the W/Cĵ A is changed to 

134.5, and kept at this value for the remainder of the flight. Fig-ure 1? 

shows the reference heating curve for this combined trajectory. As 

expected, a lower reference heating cvirve occurs for the W/C^A = 134.5 

portion of the trajectory. However, when a size correction is made, it 

is seen that when the ballistic coefficient is reduced, the intensity 

of heating actioally increases. The size correction used here is the 

square root of the ratio of projectile radii before and after the change 

in W/CpA. 

Size 

CoRReCTI OK) 

(Fi'iore 17) 

^¥.-- fcS.S 

R ^ - 134.5 

4.415 
= 1.239. 

Z-87 5 ...(111-50) 

A further indication of the fact that the heating intensity increases 

as the radius of the body decreases is shown in Figure 18. Two factors 

are combined to indicate the increased intensity, the "size correction 

factor," 

fs.C.F] 
R 

...(III-28) 

and the F, factor describing the distribution of heating over the end 

surface of the cylinder. 
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fr = [i.o + o.fc (-^)" 
. . . ( I I I - 3 1 ) 

Figure 18 shows how the heating at any point on the end of the cylinder 

(the grid plate) varies with R. The term, 0, 

<\> = (.0 + O.G {^) ...(III-51) 

is to be multiplied by the reference heating and other F factors to 

determined aerodynamic heat input. (See Tables V jmd VI, and 

Equations (III-26) to (III-45).) 

In the thermal calculations carried out later in this report, a 

reference trajectory was assumed, based on W/C-.A = 165.5 and a release 

altitude of 250,000 feet. 

In Table IX, the various trajectories calculated are listed. 
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TABLE IX 

TRAJBCTCRY COMPUTHl RUNS 

Con53Uter 
Run No. 

7604-47 

7248-72 

7323-01 

7323-31 

7323-28 

7323-30 

I n i t i a l 
Altitude 

Alt^ (kft) 

400 

250 

a) 230 

b) 240 

c) 250 

a) 275 

b) 300 

250 

224.919 

Bal l i s t i c 
Coefficient 

W Ibm 

V ft^ 

100 

165.5 

165.5 

165.5 

a) 165.5 

b) 134.5 

c) 88.8 

d) 37.4 

134.5 
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IV. THERMAL EFFECT OF FUEL ELEMENT PIN 

("Single-Cell" Problem) 

As discussed previously, the disintegration of the reactor core, and 

the separation of the fuel elements, are considered to be dependent on 

the melting of the reactor core grid plates, and so the transient tem­

perature distribution in the grid plates are of primary interest. Of 

special concern is the heat sink effect of the fuel element pin and the 

fuel element behind it. 

If the end surface of the fuel element is separated from the inside 

surface of the grid plate, there is relatively poor thermal linkage be­

tween the grid plate and fuel elements, except in the region where the 

fuel element pin is inserted into the grid plate. This can lead to 

lateral temperatxare gradients in the grid plate, with hot spots occurring 

in the regions farthest removed from the pin. 

Of course, in the event that the grid plate and fuel element caps 

are in good thermal contact, this lateral temperature gradient would not 

be expected, and the overall grid plate teii5)erature would be lower. This 

results because the heat sink represented by the fuel elements is more 

uniformly and readily accessible to heat deposited in the grid plate 

under these conditions. 

In order to obtain an insight into the lateral temperature distribution 

effect due to the fuel element pins, a so-called "single-cell" thermal 

model was devised and studied. It consists of a thermal model of a single 

fuel element and the portion of the grid plate directly associated with it. 

Figure 19 indicates the portion of the reactor core which is considered 

in the "single cell" thermal model. Heat is input at the outer surface of 

the grid plate. No heat is considered to be treuisferred laterally into or 

out of the fuel element (as if this typical fuel element is near the 

center of the core), though lateral transfer within the element occurs. 

719-P 
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The heat input load at the sxirface of the grid plate is arbitrarily 
2 2 

chosen to be 1.0 Btu/sec in. (144 Btu/sec ft ), and is constant with 

time. It is not related to the aerodynamic heating functions discussed 

in Chapter III. Figure-20 shows how the assumed heat load for "single-

cell" model compjires with the actual heat load on the end of the 

cylindrical reactor core for various modes of reentry on the reference 

trajectory. The slight decrease of the heating load due to the "hot 

wall" correction factor is not taken into account in Figure 20. 

The purpose of the computer calculation based on this thermal model 

is merely to investigate what magnitude of lateral temperature gradients 

might occur, and whether the effect should be considered when the thermal 

model of the entire core is being developed. 

Figure 21-a indicates the assumed geometry on which the thermal 

model was based, and Figiore 21-b shows the detail of the thermal model 

for the "single-cell" problem for use with the Thermal Analyzer Program 

(TAP-3E) computer code (see Reference 6). Thermal admittances, nodal 

capacitances, heat inputs, and other system parameters are shown in 

Figure 21-b and Appendix A. 

Two different runs were made using this thermal model; (a) the 

grid plate separated from the fuel elements, with only radiation and 

convective heat transfer between the two siorfacess except by conduction 

through the fuel element pin, and (b) the grid plate and fuel elements in 

perfect contact, in which case there is no lateral variation of geometry, 

thermal properties, tenqperature, or heat flow, vdiich makes this essentially 

a one-dimensional problem. The results of the case in which the grid 

plate is separated from the fuel elements except for the fuel element pins 

(computer run 7323-18) are shown, in part, in Figures 22 and 23. 

Figures 22a and 22b show the temperature distribution at 12 and 14 seconds 

after the start. Notice the large lateral temperature gradient in the 

grid plate near the fuel element pin, with a teii5)erature gradient through 

the thickness of the plate far away from the fuel element pin, the 

relatively high heat flux through the pin (indicated by the closeness 
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of the isothermal lines), and the relatively small hinderance to heat flow 

offered by the hydrogen gap. 

Figure 23 shows the teii5)erature versus time plots for four different 

situations in the "single-cell" thermal model. Curves (a) and (b) repre­

sent the temperature versus time plots for nodes 20 and 29 from computer 

run 7323-18. These nodes fire located at the mid-thickness of the grid 

plate, and represent the extremes of lateral position (near to, and at a 

distance from the fuel element pin; see Figure 21). Curve (c) shows the 

temperature of an equivalent point in the grid plate under the same thermal 

conditions, except that the grid plate and fuel element are in perfect 

thermal contact (computer run 7323-22). In curves (a), (b), and (c), 

radiation from the grid plate surface to space (at T = -460"F) occurs 

with an emissivity, € , of 0.333. Curves (a')> (b'), and (c') are for 

the same conditions as curves (a), (b), and (c), except that there is no 

radiation from the grid plate surface to space (£ = 0 ) , (computer runs 

7323-02 and 7323-08). 

It is pointed out once more that the ten̂ serature distributions in­

dicated in Figures 22 and 23 are not directly applicable to the thermal 

problem of the reentering reactor core. This is because of the completely 

arbitrary heat input rate assumed. (A heat load of Q = 1.0 Btu/in. sec = 

144 Btu/ft sec was assumed here. During reentry, the aerodynamic heat 

input to the grid plate varies with time and position on the grid plate, 

as well as being psirtially dependent on the ten̂ serature of the grid plate 

surface.) Nevertheless, the results of the "single cell" problem (Figures 

20 through 23) are indicative of the thermal responses that one might 

expect with the reentering reactor core. The sharp lateral temperature 

differences that occur in the grid plate are very iaportant. This indicates 

that if the grid plate is kept separated from the fuel elements, hot 

regions can be expected to occur in the area of the grid plate corre­

sponding to the edge of the fuel elements. Thus, the grid plate could 

break up, without the necessity of the entire plate being melted. Further­

more, one notes that if the grid plate Is in good thermal contact with the 
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fuel elements, not only is the grid plate temperature more nearly uniform, 

but more importantly, it runs considerably cooler as the fuel elements 

are acting as a more effective heat sink. 

Curves (a), (b), and (c) include the effect of thermal radiation 

from the grid plate surface to space with an emissivity of 0.333, while 

curves (a')> (b')> and (c') include no such radiative effect. Thus, 

Figure 23 gives some indication of the effect of surface emissivity on 

the thermal response of the grid plate to aerodynamic heating. The effect 

appears to be noticeable, but somewhat limited. 

The thermal model discussed in the foregoing is concerned only with 

one fuel element and the portion of the grid plate associated with It. 

In the following section, a thermal model representative of the entire 

core (designated the "3-D core" thermal model) is developed and studied. 

The new thermal model has the important advantage of taking the entire 

core into consideration, but does not have the local detail of the 

''single cell" model discussed above. Thus, the results of the analysis 

reported in this section is of value in interpreting the results obtained 

from the "3-D core' model. 

V. TEMPERATURE DISTRIBUTION IN REENTERING REACTCR CORE 

("3-D Core" Thermal Model) 

In order to investigate the transient temperature distribution in 

the reentering reactor core, a thermal model is developed to represent 

it. The nodal thermal model and the obtained results are presented here. 

In the previous section, a thermal model was presented which took 

into account only one fuel element and the portion of the grid plate 

associated with it. The fuel element was assumed to be isolated from 

adjacent elements. The model was essentially two dimensional, (radial 

and axial). In this section, a thermal model is presented which shows 

719.P 
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considerably less local detail,* but vAiich represents the entire core, 

and considers three dimensional variation (radial, angular, and axial). 

A general end view of the reactor core is shown in Figure 2a. It is 

observed that symmetry allows the core to be represented by a 30° wedge. 

Accordingly, the thermal model represents a 30° wedge-shaped section of 

the core, as shown in Fig\u*e 24. Axial symmetry with respect to the mid-

plane is also assumed, vrtiich entails the assiuaption that both end grid 

plates are identical. The core model is divided into five slices, as 

shown in Figure 24c. The upper layer represents the grid plate and this 

is shown schematically in Figiu?e 24a. All the nodes and conductances in 

this plane are designated by one or two digit numbers, (the Oxx series). 

The second layer is shown in Figure 24b. It represents the fuel element 

cap juid the corresponding layer of the beryllium reflector. The nodes 

and conductances in this plane are designated by three digit numbers with 

1 the initial digit (the Ixx series). The next three layers represent 

thicknesses of fuel material and beryllium, and are designated the 2xx, 

3xx, and 4xx series. Figure 24b also describes these layers, except the 

node and conductance nxunbers are changed to correspond to the layer 

niomber. Axial conductances are designated the 5xx, 7xx, and 8xx series, 

radiation to the ambient is the 9xx series, and aerodynamic heat input 

is the 6xx series, as shovm in Figure 24c. Numerical values of the model 

structure system parameters are given in Appendix B. 

In order to employ the "3-D core'' thermal model discussed above, an 

assumption must be made with respect to the aerodynamic heating to which 

the core is to be (mathematically) exposed. The thennal calculations 

made are based on the reentry trajectory having a ballistic coefficient of 

• *A comparison of the ''single cell" thermal model (Figure 21) and the 

"3-D Core" thermal model (Figiu'e 24) indicates this. For example, the 

portion of the grid plate represented by a single node (e.g., node 6) in 

Figure 24a, is represented by twenty-one nodes in Figure 21 (surface nodes 

10 through 16 and 30 through 36, and volume nodes 20 through 26). 
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165.5, and an initial altitude of 250,000 feet.* This trajectory was 

discussed earlier, and some data regarding it are given in Figxiresll 

through 17 and Tables VII, VIII, and IX. This information is for a 

reactor core tumbling randomly. Based on this trajectory, a table of 

stagnation temperatures and reference heating factors (Table X) has been 

conqDiled for use in the calculation of aerodynamic heat input by means 

of Equation (III-46), 

QN^Sec j 
1,Ka 

T - S40, 
I-A J 

J 
6;-T„). ...(Ill-46a) 

Tables of stagnation temperature, T , and the reference heating factor, 
s 

qp „/(T -540), as a fimction of time is included in the TAP-3E code input 
Kex s 

data. This means, of course, that the computer code is set up for the 

random tiunbling reentry, so that it could not rigorously be employed for 

end-on or side-on reentry trajectory cases. However, Table IV indicates 

that the drag coefficient, and hence the ballistic coefficient for the 

core varies only slightly with the various flight orientations (except 

for the side-on case). 

Orientation 

Fro- T»Vle 1£ : 

W/Cĵ A 

End-On 

Side-On 

End-Over-End 

Random Ttunbling 

2 .0 

2.515 

1.916 

1.981 

163.9 

130.4 

171 .1 

165.5 

*The starting conditions of the trajectory at 250,000 feet altitude 

are based on a prior base trajectory starting at 400,000 feet with 

a W/CjjA = 100. 
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TABLE X 

REFERENCE HEATING AND STAGNATION TEI4PIiIlATURE 

DATA FCR REFIJEENCE TRAJECTCRY 

Alt = 250,000 f t W/C_,A = 165.5 o u 

Reactor Core, Random Tumbling 

t 
sec 

0 
10 
20 
30 
40 
50 

60 
70 
80 
90 

100 

110 
120 
130 
140 
150 

« 8 
Btu 
Ibm 

12,616 
12,576 
12,529 
12,475 
12,412 
12,339 

12,253 
12,151 
12,031 
11,888 
11,717 

11,512 
11,265 
10,962 
10,591 
10,135 

% e f 
Btu 

f t ^ sec 

84.87 
90.18 
96.16 

102.88 
110.04 
118.02 

126.88 
136.34 
146.94 
158.12 
170.47 

183.51 
197.77 
213.45 
229.41 
244.92 

% e f 

^s - -^540 
Btu 

f t ^ 'F sec 

.00170 

.00181 

.00194 

.00208 

.00224 

.00242 

.00262 

.00283 

.00308 

.00336 

.00368 

.00403 

.00444 

.00493 

.00549 

.00612 

T 
3 

H 
5 ^ - 4 6 0 

P 
•F 

50,004 
49,844 
49,656 
49,440 
49,188 
48,896 

48,549 
48,144 
47,664 
47,092 
46,408 

45,588 
44,600 
43,388 
41,904 
40,080 

Values fo r t > 150 
a r e a v a i l a b l e from 

Runs: 7323-Olc 
7323-28a 
7248-72 

sec 
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Accordingly, the simplifying approximation was made that random tumbling 

stagnation temperature and reference heating also applied for the tra­

jectories with a different flight orientation, but same initial altitude. 

However, in each case, the j factors (see Tables V and VI) were determined 

on the basis of the particular flight orientation involved (end-on, side-on, 

or random tximbling). The 3" factors used to determine the aerodynamic 

heat input to each node in the various flight orientations are tabulated 

in Appendix C. 

In any event, the approximation of using T and qj, . data from the 

random tumbling trajectory is not a crucial one. Most of the calculations 

made and reported are for random tumbling. 

As indicated in Appendix B and the foregoing discussion, the "3-D 

core" thermal model allows the option of specifying >Aiether the grid plate 

is separated from, or in perfect thermal contact with the fuel elements. 

When the grid plate is assumed to be separated from the fuel elements, 

heat transfer between the two surfaces is by radiation and convection, 

except for the heat conducted through the fuel element pins. When the 

grid plate and fuel are in contact, heat transfer is by conduction over the 

entire area of the fuel element cap. 

The thermal model has no provision included in it to take into account 

the latent heat of fusion of the stainless steel, though the TAP-3E code 

allows this to be included if desired. Rather, for simplicity, it is 

assumed that the melting ten̂ ierature of stainless steel is 2600«'F, and 

that a ten̂ jerature rise of approximately an additional 100°F is considered 

to be equivalent to the additional heat required to bring about a suf­

ficient degree of melting to destroy the structural strength of the 

stainless steel alloy. 

In all, six different runs were made using the "3-D core" thermal 

model amd the TAP-3E code, (see Reference 8). These are listed in 

Table XI. The results of these computer runs aire on printout sheets and 

are quite voluminous, and so are not included in this report. They are 
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TABLE XI 

"3-D Core" Thermal Model Computer Runs 

Case 

a) 

b) 

c) 

d) 

e) 

f) 

Con^uter 
Run No. 

7323-26 

7323-27 

7323-19 

7323-23 

7323-25 

7323-24 

Grid Plate 
and 

Fuel Elements 

Non-Contact* 

Contact** 

Non-Contact 

Contact 

Non-Contact 

Contact 

Flight 
Configuration 

Random Tumbling 

Raindom Tiambling 

End-on 

End-on 

Side-on 

Side-on 

Trajectory based on W/C^A = 165.5, Alt = 250,000 feet. 

*Non-Contact: Grid plate and fuel element caps are separated, except 

for the fuel element pin. 

•»HK;ontact: Grid plate and fuel element caps are in perfect thermal 

contact. 

719-P 



ATOMICS INTERNATIONAL 
A Division of North Amoritan Aviation, Int. 

available, if needed, from the author. However, a graphical summary of 

the results are presented here. 

Figtire 25 shows a 30° wedge portion of the grid plate, with nodal 

numbers indicated. Circles drawn in lightly dashed lines indicate the 

position of the fuel elements beneath the plate. A heavy double dashed 

line is indicated which is assumed to constitute a reasonably typical 

radial path temperature traverse or temperature profile line of the grid 

plate. (This line connects nodes 1, 22, 2, 42, 3, 62, 5, and 9 as it 

goes from the center of the grid plate to the periphery.) It traverses 

points on the grid plate corresponding to the center and outer edges of 

the fuel elements, and should thus include the local minimum and maximum 

temperatures existing in the grid plate at any particulair time. Nodes 1, 

2, 3, and 5 represent points near the fuel element pins, amd nodes 22, 42, 

62, and 9 represent points near the edge of the fuel elements. 

In Figures 26a through 26f, temperature profiles as a function of 

time are shown for the six cases of Table XI. The initial temperature 

of the system is assumed to be O^F. The radiation heat transfer from the 

svu?face is to the space environment (-460°F). A number of interesting 

qualitative observations can be maide from these plots. The cases in which 

the grid plate is separated from the fuel elements show a much more rapid 

temperature rise than vriien the grid plate is in contact with the fuel. 

Even the low points in the temperature profile in the "non-contact" cases 

rise more rapidly than in the "contact" cases, (e.g., compare the tem­

perature versus time performance of nodes 1, 2, 3, and 5 in Fig\ires 26a 

auid 26b, Figures 26c and 26d, or Figures 26e auid 26f). 

From the temperature profile plots of Figure 26 and altitude-time 

curve of Figure 13, one can estimate the time and altitude drop required 

to release the first two rings of fuel elements. Referring to Figure 25, 

let it be assumed that vrtien node 62 indicates a temperature of about 2700°F, 

the beryllium reflector and the outer ring of fuel elements are released. 

Assume, further, that vdien node 42 indicates T = 2700''F, that the second 

ring of fuel elements is released. From Figures 26a through 26f, the time 
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at vrtiich each ring of fuel elements is released is estimated, and the 

corresponding altitude is determined from Figtu-e 13. These results are 

shown in Tables Xll-a, Xll-b, XII-c, and Fig\ire 27. 

Table Xll-a lists the time, altitude, and altitude drop required 

for the release of the first and second rings of fuel elements according 

to the criteria set up above, and the ciorves of Figure 26. In Tables Xll-b 

and XII-c, the difference in time and altitude drop (shown in seconds, 

kilofeet, and percentage) between the release of the first and second 

rings of fuel elements is shown, as well as the difference in release 

time and altitude between the grid plate-fuel element contact and non-

contact cases. Figure 2? shows the data of Table XII in graphical form. 

Several things are made evident from Table XII and Figure 27. Once 

the grid plate has melted sufficiently to release the first ring of fuel 

elements, it takes a relatively small amount of additional time to re­

lease the second ring, (according to Tables Xll-b and XII-c, the additionsuL 

time is approximately 20;?, vAiich is roughly equivalent to a 30/S additional 

altitude drop). On the other haind, whether or not the grid plate is in 

thermal contact with the fuel elements makes a considerable difference in 

the time required to release the fuel elements; approximately an additional 

sixty seconds, which means more than double the altitude drop in the random 

tumbling flight orientation, (Cases a and b of Table XII). 

At this point, a particular feature of the reentry trajectory should 

be given particular attention. As the projectile is reentering, it is 

decelerating due to aerodynamic drag; that is, its velocity is decreasing. 

However, the vertical component of its velocity is actually increasing, so 

that it is losing altitude at an increasing rate. This can be noted from 

the altitude versus time curve for the reference trajectory shown in 

Figure 13. Thus it may be seen, for instance, that an additional 20^ time 

in the reentry trajectory c«in mean an additional 30^ in altitude drop. 

The limitations of the data of Tables XII and Figures 26 and 27 

should be borne in mind. The stagnation teii?)erature and reference heating 
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TABLE X l l - a 

TIME AND ALTITUDE OF FUEL KT.mKNT RELEASE 

(For Reference Tra jec to ry) 

Case 

a 

b 

c 

d 

e 

f 

*NC = 

^H-rRT = 

Configurations-

Or ien ta t ion** 

NC 
RT 

C 
RT 

NC 
EO 

C 
EO 

NC 
SO 

C 
SO 

Non-Con tac t 

Random Tumbl ing 

Time ( l ) 
Release of 
Outer Ring 

T^2 = 2700°F 

(sec) 

70 

135 

28 

90 

140 

190 

C = Contac 

EO = End-Or 

A l t i t u d e 

kf t 

224.9 

188.9 

241.3 

a 5 . 5 

185.5 

l/i2.0 

t 
1 

A l t i t u d e 
Drop 

k f t 

25 .1 

61 .1 

8.7 

34 .5 

64.5 

108.0 

SO = Side-( 

Time (2) 
Release Of 

2nd Ring 
T, - = 2700''F 

42 
( sec ) 

84 

165 

34 

105 

156 

225 

Dn 

Al t i t ude 

kf t 

217.5 

165.8 

239.1 

207.6 

173.3 

103.2 

A l t i t u d e 
Drop 

k f t 

32 .5 

84 .2 

10 .9 

42.4 

76.7 

146.8 

3 o z 
> J> o 
m rn 

CO 

o 
71 

I 

1 

I 

4^ TO 
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TABLE Xl l -b 

Difference in Time for Fuel Element Release 

Difference in time for release of the first and second ring of fuel elements. 
Percentage differences are based on the shorter of the two times involved. 

Case 
Configuration* 

Orientation** 

RT 

C_ 
RT 

NC 

C_ 
EO 

Time 1 

sec 

Difference 

( sec/:?^ 

70 

65 sec 
93% 

135 

14 sec \ 
2D% I 

30 sec 
22 % 

28 sec 
215^ 

62 sec 
22D% 

\ 

90 
15 sec 

17/^ 

Time 2 

sec 

84 

81 sec^i 

96^ y 

165 

34 

71 sec 
210^ 

1 
105 

NC 
SO 

so 

140 

50 sec 
36;̂  

16 sec 
11^ 

1 
190 li-3ec\ 

156 

69_soc 

44;r 

I 

225 
*KC = Non-Contact 

IH;-RT = Random Tumbling 
C = Contact 

EO = End-On SO = Side-On 
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Difference in 

TABLE XII-

Altitude Drop for 

c 

Fuel Element Release 

Difference in altitude drop for release of the first and second 
elements. 
Percentage differences are based on the shorter of the tvro dista] 

Case 

a 

b 

1 

c 

d 

e 

f 

Configurations-

Orientation*-* 

NC 
RT 

C 
RT 

NC 
EO 

C 
BO 

NC 
SO 

C 
SO 

*NC = Non-Contact 
**RT = Random Tumbling 

Altitude 
Drop 1 

kft 

nr T —' ... 
25.1 "̂  

I 

rt 7 tr 
U, ( -^ 

t 
/'25.8 kft^ 
I 310% j 

Y 

34.5 — 

64.5 - — 

f 

1 T 

108.0 

C = Contact 
EO = End-On 

Difference 

kft 
% 

(l.k kft\ 
( 30,̂  1 

/23.1 kft \ 

I 38^ " ̂  -

/ 2.2 kft\ 
\ 25% j 

/6.9 kft\ 
^ 20^ / 

/12.2 kft\ 
[ 19% ' ) 

(3B.B kft\ _ 

I 36^ 1 

SO = Side-On 

ring of fuel 

nces involved. 

Altitude 
Drop 2 

kft 

/5I.7 kft") 1 
V 159;̂  / 

1 
-^ 84.2 

^ 10.9 

f 
f31.5 kft\ 
\ 290^ / 

1 
- ^ 42.4 

-^ 76.7 

t 
/̂ 70.1 kft\ 
V 9iro j 

1 
-^ /̂̂ 6.8 
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data on which the calculations were based are for a random tumbling tra­

jectory. Comparing the ballistic coefficients of the different flight 

orientations (see Table IV), end-on reentry differs little from random 

tumbling (W/Cĵ A ^^ ^ ^ = 165.5, W/C^A ̂ ^_^^ = I63.9), but side-.on 

reentry shows a considerable discrepancy (W/C_A ., _ = I3O.4). The 

lower ballistic coefficient of side-on reentry indicates that, in fact, 

aerodynamic heating would be higher in the initial phase, and release 

time (though not necessarily altitude drop) would be less than indicated 

in Table XII. Table Xll-a indicates that with end-on reentry, the grid 

plate is melted away in a relatively short time. However, this is 

misleading because it is based on the ter^jerature distribution in the 

forward grid plate, which would receive a far greater aerodynamic heating 

load than the trailing edge grid plate. 

Of the three flight orientations considered (random tumbling, end-on, 

and side-on), the random tumbling is probably more nearly representative 

of circumstances as they actually would occur. End-on or side-on reentry 

seem to be special orientations and somewhat unlikely. 

The transient temperature distribution in the grid plate for the 

case of random tumbling and grid plate "non-contact" (Case a of Tables XI 

and XII) is shown in considerably more detail in Figures 28a throiogh 28h. 

The temperature distribution in the form of "contour maps" at 12 second 

intervals are shown, ^y observing the successive diagrams, the buildup 

of the temperature pattern can be seen. Notice particularly how the 

temperature rises most rapidly in the regions along the lines between the 

NaK flow holes in the grid plate. These are the regions corresponding to 

the outer edges of the fuel elements (see Figures 25 and 28i). One might 

expect that the grid plate will break up along these lines. The low 

temperatiore areas in the vicinity of the fuel elements pins can be seen. 

It can also be seen that the tenqperature rises more rapidly at the 

periphery of the grid plate than toward the center. This is a result 

of the fact that the aerodynamic heat input to the end of a cylinder is 

greater near the edge. This is accounted for by the factor F^ of Table V 

and Eqxiation III-31, 
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HATF 2-16-66 
PAfiF 3 2 OF 144 



i-tM-rm- M 8 4 7 

Z-Ifc-fefo 

Ik(< 93 »t I 4 + 

FIGURE 2 8 - a 
TEMPERATURE DISTRIBUTION 

IN GRID PLATE 

ALT„ = 250 ,000 ft 

^ = 1^5.5 

RUN 7323- 26 

U ^ IZ SECONDS 

A l t = 24G.4 K f t 

HAHDOM TUKBLING 

GRID PLATE NOT IN CONTACT 

WITH FU£L £Lji24hNTS 



B- l ie '^7 

ifc««94»' 1 4 4 5,5. 

FIGURE 2 8 - b 
TEMPERATURE DISTRIBUTION 

IN GRID PLATE 

ALT = 250,000 ft 

RUN 73?3- 26 

T7 ~ 24 SECONDS 

Al t = Z4Z.fc K ft 

RANDOM TUMBLING 

GRID PLATE NOT IN CONTACT 

WITH FII£L ELEKLNTS 



jui-aa-rtat- I I S 4 7 
Z-\i>-hb 

r^95 • ' 144 

FIGURE 2 8 - C 
TEMPERATURE DISTRIBUTION 

IN GRID PLATE 

ALT„ = 250 ,000 ft 

RUN 73?3- 26 

L ~ 3 b SECONDS 

Alt = Z^QA K ft 

KAHDOM TOHBLINa 

Gam PLATE JOT m COOTACT 

WITH FUEL EL31U1TS 



RAl^aB-IDK- 1 1 8 4 7 

Ttf$i,<>t 144 

FIGURE 2 8 - d 
TEMPERATURE DISTRIBUTION 

IN GRID PLATE 

ALT„ = 250 ,000 ft 

CA 

RUN 7323- 26 

L7 ~ 4 5 SECONDS 

Alt = 234 .0 K ft 

BAHDOH TUHBLINO 

GRID PLATE NOT IK CONTACT 

WITH FUEL ELEMENTS 



MAA-aa-TOH- \ 184 7 

Bag. 5 7 o t 1 4 4 

FIGURE 2 8 - e 
T E M P E R A T U R E DISTRIBUTION 

IN GRID PLATE 

ALT„ = 250,000 ft 

RUN 7323- 26 

Tr ~ loU SECONDS 

Alt = 229.2 K ft 

RANDOM TUMBLING 

GHID PLATE KOI IN CONTACT 

WITH FUEL ELEMENTS 

C? O 0 S 
\» 5 a' ^ ' 



HAl-Sa-TDB- ( I S 4 7 

p.g. 9 3 of 1^4 

FIGURE 2 8 - f 
EMPERATURE DISTRIBUTION 

IN GRID PLATE 

ALT. = 
w ^ 

CA 

250 ,000 ft 

165.5 

RUN 7323- 26 

L ~ ' 4 SECONDS 

Alt = Zl^O K ft 

RANDOM TUHBLIKO 

GRID PLATE NOT IH CONTACT 

WITH FUEL ELEMENTS 



Ul-SS.TSB- \ \ 84 7 

Z-|fo-6fc 
'»««S>9 <" 14+ ,«3 

FIGURE 2 8 - g 
TEMPERATURE DISTRIBUTION 

IN GRID PLATE 

A L L 

w 
CA 

250,000 ft 

\G5.5 

RUN 7523- ZG 

[7 ~ 04- SECONDS 

A l t = 210.4- K ft 

RANDOM TUMBLING 

GRID PLATE NOT IN CONTACT 

WITH FUBL £L£HKNTS 

>̂ ^̂  

file:///G5.5


Mli-SH-TDB- 1 1 8 4 7 

2- l fo- (oto 
r«««IOOof 144-

FIGURE Z 8 - h 
"EMPERATURE DISTRIBUTION 

IN GRID PLATE 

ALT, = 25 0,000 ft 

RUN 73ZJ- 26 

TT ~ 3b SECONDS 

Alt = 213.4- K ft 

RANDOM TUHBLINQ 

ORID PLATE NOT IN CONTACT 

WITH FUEL ELaiLNTS 



HAA-SB-TDB- I I 8 4 7 

Z-lb-Gb 
fcg. lOlof ( 4 4 

FIGURE Z8-L 
TEMPERATURE DISTRIBUTION 

IN GRID PLATE 

LOCATION OF FUEL ELflffiNTS 

BEHIND (2tID PLATE 



NO NAA-SR-TDR-nR/.7 

ATOMICS INTERNATIONAL PAPF jol'^t'f I44-
A OJvisfon of North AiiMrican Aviation, Inc. PAGE. — I O »• 

„ _ Local heat, cylinder end. "̂  =0 ^ o '- g('0 ^ L ^ + n A r̂ ^ 
b Stag. Ft. heat, cylinder end, ̂ =0 o ^'^ ^ ^'° ^R^ 

bsp 

...(III-3I) 

from which it can be seen that the heat input rate at the periphery of the 

grid plate, (x = R), is kO% higher that at the center, (x = O). In Figures 

26a through 26F, it can be noted that the temperature rise near the per­

iphery is rovighly 1.6 times that at the center, discounting the local 

"heat sink" effects of the fuel element pins. 

VI. DISCUSSION AND RECOMMENDATIONS 

A. Assumptions 

The assumptions made concerning the behavior of the reactor core 

system, and the thermal model representing it, have been indicated in 

the body of this report. However, so that one can realistically evaluate 

the results of the calculations, these assiimptions and their significance 

are discussed here. 

The primary assumption concerns the mode of reactor disintegration 

and fuel element separation. It is envisioned that because of fuel element 

svfelling or warping, the grid plates may not be able to freely fall off 

the fuel element pins as soon as the reactor core is released from the 

containment vessel. In this event, it would be necessary for the grid 

plates to melt to a sufficient extent to free the fuel element pins. 

This is the mode of reactor disintegration that has been assumed and 

investigated. 

The reactor core geometry on which the calculations of this report 

are based is shown in Figures 1, 2, 3, and 4, and Table I. Trajectory 

calculations and aerodynamic reference heating data are obtained from the 
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RESTORE reentry trajectory code, (see References 6 and 7). For sinqDlicity, 

constant thermal properties (invariant with ten^serature) were assumed, as 

indicated in Table II. The initial tenperature of the reactor core (at 

the moment of release from the reactor vessel) is taken as 0°F, even 

though it is probable that the reactor core may be at a slightly higher 

ten̂ jerattire because of heat absorbed during the reactor vessel meltdown 

phase. It is further assumed that heat is rejected from the reactor 

vessel by thermal radiation to the effective temperature of outer space, 

-460"F. 

The geometric symmetry of the reactor core was noted zind taken into 

account in devising the thermal model. The hypothesis of length-wise 

symmetry requires the assimiption that the upper and lower grid plates 

have identical thermal characteristics. This allowed use of a thermal 

model which considered only one end of the core. Furthermore, the radial 

and angular symmetry allowed the circular end of the cylindrical core to 

be represented by a 30° wedge, (see Figure 2a). 

The distribution of aerodynamic heating input on the reactor core 

surface was based on the heating factor tabulated in Tables V aind VI 

(see References U and 5). The reference trajectory (on which the aero­

dynamic heating calculations were based) is for a randomly tumbling 

reentering reactor core (W/C„A = 165.5), with an initial release altitude 

of 250,000 feet. Several other trajectories were also considered to 

determine the effect of varying initial trajectory conditions. The 

RESTORE computer code was employed to make the trajectory calculations. 

The initial conditions for this reference trajectory were determined for 

a projectile descending from a polar orbit flight path, with an initial 

altitude of 400,000 feet and W/Cĵ A = 100. The assumption was made that 

the aerodynamic heating factors,^, (see Tables V and Vl) were constant 

with time, and were at the mean value for the particular flight orienta­

tion in question. (This is not to say that the heat input at each point 

is constant, but merely the distribution of the heat load. See Equation 

III-46 and Tables V and VI for the significance of the ^ factor.) 

K.n NAA-.qR-TnR-nRi.7 

HATF 2 - 1 6 - 6 6 
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There is evidence to indicate that these heating factors may be variables, 

(with air density, for example), but for the range in air densities in 

question, they hold reasonably constant. 

In the "3-D core" thermal model, the temperature gradient through 

the thickness of the grid plate (axial direction) is not determined since 

each node of the grid plate layer is the thickness of the plate. The 

"single-cell" thermal model shows considerably more detail in the vicinity 

of the grid plate and gives an indication of this axial teiqjerature 

gradient. 

In the thermal models considered, no heat transfer barrier is 

assumed to exist between the surface of the fuel element pin and the 

inner surface of the pin hole in the grid plate. A thermal barrier here 

would result in the grid plate heating up somevdiat more rapidly, since 

the heat trsinsfer into the fuel element would be impeded. 

B. Discussion 

The reactor disintegration model considered in this report is pre­

dicted on the occurrence of a series of idealized (thoiigh not necessarily 

desired) events. These are: (l) following the release of the reactor-

core from the containment vessel, the grid plates bind and are not free 

to fall off, (2) aerodjmamic heating raises the temperature of the grid 

plates until the outer edge reaches the melting temperatiure, (3) the grid 

plate melting is assumed to occur symmetrically so that as the melting 

front of the grid plate movess toward the interior, all the fuel elements 

in the outer ring are released smd fall away simiiltaneously, and, (4) 

later, the next ring of fuel elements are released simultaneously, etc. 

This simplified model was assumed in order to have a basis for 

quantitative determinations of tenperatures, release times, and other 

parameters of interest. However, one must remember that this represents 

only a preliminary, first phase approach to the analytical description of 

the fuel element separation vrfiich must be refined. It is necessary to 

keep in mind the many possible modes of behavior of the reentering core. 

Kin NAA-SR-TDR-lie47 
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It is possible, of course, that when the reactor core is released, 

the fit of the grid plates on the fuel element pins may be loose enough 

so that the timibling of the core woxild be sufficient to throw them off, 

and the fuel elements would all be released immediately. It would be 

most desirable if this were to happen, but one cannot be certain about 

it occurring. Swelling or warping of the fuel elements or grid plates 

may bind the core together. However, it is a further possibility that 

when partial melting of the grid plate has occurred, the fuel elements 

that were causing the binding may be released, and the remaining portions 

of the grid plates may fall off immediately. Further, the ten^erature 

differences occurring during the reentry heating may cause differential 

thermal stresses and strains vrtiich could either alleviate or make more 

severe the forces holding together the con̂ ônents of the core. The 

effect of this phenomenon is also unpredictable. 

The grid plates are compoeed of stainless steel. As an alloy, it 

has some melting characteristics vrtiich are different from those of the 

pure constituents. In the first place, it does not have a definite 

melting temperature as a pure element or compound might (e.g., pure iron 

or ice). It melts over a certain temperature range, as indicated on a 

phase diagram for the particular alloy. In this report, the melting 

temperatvure of the stainless steel of the grid plate has been assumed to 

be 2600"F, which approximates the melting range of SS 3I6. 

When the "melting temperature" of an alloy is reached, melting starts 

in the grain boundaries, since the lower melting constituents tend to 

collect there. The result is that an alloy will lose all strength much 

more quickly than a pure substance irfien melting starts, because it tends 

to break up along the grain boundaries. This would indicate that, in 

order to destroy a portion of the grid plate, it may not be necessary to 

supply the entire "latent heat" to melt it away, but merely a relatively 

small amount of heat to initiate the melting at the grain boundaries. 

On the other hand, the above description of melting and the phase 

diagram of an alloy system is based on considering the specimen as being 

at an equilibrium temperature. In reality, during reentry, core tem-
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peratures are not at equilibrium. The grid plate may have a ten̂ jerature 

gradient through its thicknesss such that the outer siorface is actually 

melting while the interior may still be somevdiat below the "melting 

temperature." In this event, the outer surface would have no structural 

strength but may still be absorbing heat, vAiile the somewhat cooler 

interior retains sufficient mechanical strength to hold the fuel elements 

together while being partially shielded from direct aerodynamic heating 

by the outer molten layer. The result would be that a somewhat greater 

quantity of heat (hence, time) might be required for the destruction of 

the grid plates and release of the fuel elements. 

When the stainless steel is in a heated and vfeakened condition, 

portions of the grid plate may Just break off or be torn off by aero­

dynamic shear stresses, or bearing stresses of the fuel element pin on 

the grid plate hole. 

The aerodynamic heating calciilations presented in this report are, 

for the most part, based on a reentry trajectory for a reactor tumbling 

randomly which is probably the most reasonable flight orientation to 

expect. However, it is at least possible that a less desirable 

orientation might occur, (with regard to delivering heat to the reactor 

core grid plates). Such an orientation is the side-on and spinning, but 

this seems to be an unlikely reentry mode for the reactor core. 

The effect on aerodynamic drag and heating of the grid plate NaK 

flow holes ajid the longitudinal spaces between the fuel elements has not 

been considered in this report. The partial "porosity'' of the reactor 

core probably acts to slightly decrease the drag coefficient, Cj., with a 

resulting increase in the ballistic coefficient, W/C^A, and an increase 

in the reference heating, q̂  _. Since the outer dimensions of the core 

are unchainged, the "size correction factor," J ~^ , would not cancel 

out the increase in reference heating in the manner shown in Figure 15 

and 16 for the changing radius sitviation. In any event, the additional 

aerodynamic heating that covild be claimed because of this is slight. 
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A discontinuity on the surface of a reentering body generally 

results in an increase in the intensity of the local aerodynamic 

heating. The NaK flow holes in the grid plates are such discon­

tinuities, and this could indicate that local heating in the vicinity 

of the edges of these holes may be greater than assumed (by the heating 

factors of Tables V and VI). Thus, the local "hot spot" effect already 

noted in the vicinity of the flow holes might actually be somewhat 

intensified. 

For the sake of simplicity, it is assiomed that all the fuel elements 

in a particTilar ring are released simultaneously, such that symmetry is 

maintained. In reality, the individual fuel elements may come off at 

different times. 

As the reactor grid plates are melting, most of the molten steel 

will be swept away by the flow stream. However, it is possible that 

some of it may flow down between the fuel elements. There, since the 

fuel elements are at a temperatiû e well below the melting point of the 

steel, the molten steel may solidify, and "weld" the fuel elements 

together. Whether this would happen, and to what extent it could happen, 

is not predictable analytically, but an ejqDerimental study may provide 

the insight needed to evaluate this event. 

C. Conclusions and Recommendations 

It is possible that the reactor core grid plgtes might freely 

fall away and release the individual fuel elements v;hen the core 

is ejected from the containment vesjel. However, due to warping 

or fuel element swelling, the grid plates could bind on the fuel 

element pins and separation nny not readily occur. î eactor core 

disintegration and fuel element separation can be brourht about by 

melting away the grid plates at the ends of the core by aerodynaaic 

heating. The analytical investi,_,ction presented in this report 

indicates that if the grid plate is in good contact v/ith the end 

surfaces of the fuel elements, the temperatures of the plate riocs 

much more slowly than if the surfaces were apart, as the fuel 
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elements act as a "heat sink". This "heat sink" effect of the fuel 

elements c m be considerable, as indicated by tlae analysis, (sec 

Figures 26). 

If the grid plate and fuel clenents are not in good thermal 

contact, the fuel element pins ccuse a local "hert-sink" effect; 

that is, the reg'on of the grid plf'te ourrounding the [i±n runs at 

a lov;er tein̂ .urature than the rest of the pic to. The rejult could be 

that the grid plate will break apart along lines roughly correspond­

ing to the outer boundaries of the fuel elements (see Figures 

26 and 28). 

These results suggest that steps be taken to acsure that 

the grid plate and fuel elements always remain separated. This can be 

done by notching the fuel element pin and the grid plate hole in such 

a way as to maintain a small gap. One may even go so far as to place 

a thin layer of insulation between the grid plate and fuel elements. 

Of the aerodynamic heat deposited in the grid plate, the more that 

can be retained in the plate, the more rapidly its temperature will rise, 

and the sooner melting will commence. In the same regard, applying a 

low emissivity coating to the outer surface of the grid plate will re­

duce the quantity of heat lost by radiation to space. Of course, the 

retention of a low emissivity coating on grid plates exposed to NaK flow 

for a period of one year may be difficult, and as indicated by Fig\ire 23, 

the thermal advantage may be slight. 

The upper grid plate has a thickness of l/8 inch. If this entire 

thickness is not necessary for structToral strength, then it might be 

reduced to facilitate its meltdown by aerodynamic heating. If fabricating 

a plate of varying thickness would not be excessively difficvilt, the 

plate might be made thinner in regions vrtiere its strength would not be 

significantly reduced, but where meltdown might be enhanced. That is, 

the plate might be made thinner near the NaK flow holes, where the 

melting leading to grid plate break up is expected to occur. The outer 

edge of the grid plate might be mcide thinner so that the melting front 

from the periphery may move inward more rapidly. This might be permis­

sible if stress analysis indicates that the outer edges of the plate are 

subjected to less bending moment resulting tram, the fuel element load. 
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Insulating the fuel element pin from the circumference of the grid 

plate hole would impede the flow of heat from the grid plate into the 

fuel element, though such an arrangement may be difficult to make. 

Of course, the obvious basic principles to bear in mind are:, 

(l) the less heat required to melt the grid plate, the more rapidly 

disintegration can occur, and (2) the higher the fraction of the heat 

deposited in the grid plate which is retained in the plate, the earlier 

the melting can occur. 

The many uncertainties involved in the analysis presented in this 

report indicate that experimental investigation may be needed. A mockup 

of the reactor core might be placed in an "arc-Jet" gas flow stream 

(arc-heated wind tunnel) and rotated end over end. Analytical calculations 

by means of the thermal models discussed in this report could be performed 

for the particular conditions of the experiment. Comparison of 

analytical and experimental results would give an indication of the 

validity of the thermal model and the aerodynamic heat distribution 

factors, would show whether the "yielding" together of the fuel elements 

by the molten grid plate material might occur and, of course, would give 

fxirther insight into the natiu-e of the phenomena acting during the 

reactor disintegration phase of reentry. 
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APPENDIX A 

"Single-Cell" Thermal Model 

The "single-cell" thermal model is presented and discussed in 

Chapter IV, and the nodal network is shown in Figure 21. The values 

of the various system parameters are tabulated in the following pages 

by means of a listing of the network input cards for the TAP-3E code of 

computer rion 7323-lC. The details involved in the calculation of these 

input parameters are not included, but are available from the author. 
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ATOMICS INTERNATIONAL 
A DMtion of North Amorican Aviation, Inc. 

APPENDIX B 

"3-D Core" Thermal Model 

The "3-D Core" thermal model is presented and discussed in 

Chapter V, and the nodal network is shown in Figvires 2/(.a, b, and c. 

The values of the system parameters are tabulated in the following 

pages by means of a listing of the network input cards for the TAP-3E 

code of computer run 7323-26, which is for the case of random tumbling 

reentry flight configuration with the grid plate separated from the 

fuel elements. There are many details involved in the calculation of 

these input parameters which are not shown here. Information relating 

to this is available from the author. Of particular interest might 

be the geometrical aspects of determining the thermal conductances. 

Mn MAA-SR-TDR-118/,7 
nATF 2-16-66 
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-0 
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-0 
-0 
-0 
-0 
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NETWORK DESCRIPTION 
0.179000E-04 
0.357000E-04 
0.357000E-04 
0.357000E-04 
0.357000E-04 
0.357000E-04 
0.357000E-04 
0.179000E-04 
0.179000E-04 
0.3S7000E-04 
0.357000E-04 
0.245000E-04 
0.140000E-04 
0.357000E-04 
0.245000E-04 
0.245000E-04 
0.245000E-04 
0.357000E-04 
0.357000E-04 
0.357000E-04 
0.242000E-04 
0.331000E-04 
0.245000E-04 
0.357000E-04 
0.245000E-04 
0.298000E-04 
0.179000E-04 
O.llOOOOE-04 
0.187000E-04 
0.161000E-04 
0.283000E-04 
0.283000E-04 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

-460 F 
-0 

1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
8 
8 
8 
9 
10 
11 
21 
22 

-0 

21 
23 
26 
41 
43 
52 
61 
28 
29 
45 
56 
7 
9 

63 
7 
8 
11 
31 
54 
65 
9 
10 
11 
64 
11 
12 
32 
10 
11 
12 
22 
23 

-0 

-0 
-0 
HJ_ 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

NET 

CO 
CO 
CD 
CO 
CD 
CD 
CD 
CO 
CO 
CO 
CD 
CD 
CD 
CD 
CD 
CD 
CO 
CD 
CD 
CD 
CO 
CO 
CD 
CO 
CO 
CO 
CD 
CD 
CD 
CD 
CD 
CD 

NETWORK CONNECTIONS 

00001000 
00002000 
0000^3^00 
00004020 
00005040 
00006010 
00007000 
01000000 

01000010 
01000020 
01000030 
01000040 
01000050 
01000060 
01000070 
01000080 
01000090 
01000100 
01000110 
01000120 
01000130 
01000140 
01000150 
01000160 
01000170 
01000180 
01000190 
01000200 
01000210 
01000220 
01000230 
01000240 
01000250 
01000260 
01000270 
01000280 
01000290 
01000300 
01000310 
01000320 
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Y 
Y 
Y 
Y 
Y 

33 
34 
3") 
36 
37 

. Y 38 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
V 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
V 
Y 
Y 
Y 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 _ 
51 
52 
53 
54 
55 
56 
57 
58 

_ Y 5 9 _ 
Y 
Y 
Y 

60 
61 
62 

YlOl 
Y102 
Y103_ 
Y104 
Y105 
Y106_ 
YIOT 
Y108 
Y109 
YllO 
Ylll 
Y112 
Y113 
Y114 

-0 
-0 
-Q 
-0 
-0 

. -Q 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
- Q _ 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

„_-o 
-0 
-0 
-0 
-0 
-0 

_-0 
-0 
-0 

__-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
'0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
_-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

0.283000E-04 
0.656000E-04 
Q..u2a3DttQ£-Q4 
0.283000E-04 
0.283000E-04 
IL.̂ S6flQQt-J14̂ _ 
a.283000E-04 
0.283000E-04 

JO^614000E-QA_ 
0.283000E-04 
0.283000E-04 
0.283000E-04 
0.283000E-04 
O.28300OE-04 

__gL.^83000E-04 
0.656000E-04 
0.283000E-04 
0*i83Q00E-04 
0.283000E-04 
0.283000E-04 

.JLiL^830J?OE-04„ 
0.656000E-04 
0.283000E-04 
0.283000E-04 
0.283000E-04 
0.283000E-04 
Q.Z8300QE-04 
0.283000E-04 
0.283000E-04 
0.283000E-04 
0.283000E-04 
0.283000E-04 
0.5J67DDQ£-04 

0.567000E-04 
0.283000E-04 
0,i83000E-04 
0.567000E-04 
0.567300E-04 
0.283000E-04 
0.567000E-04 
0.567000E-04 
0.567000E-04 
0.283000E-04 
0.567000E-04 

-0. 
-0. 
-J>* 
-0. 
-0. 
rH. 
-0. 
-0. 

-0. 
-0. 
-Q. 
-0. 
-0. 
-Ji.„ 
-0. 
-0. 
-0. 
-0. 
-0. 
-Oi 
-0. 
-0. 
_-QL._ 

-0. 
-0. 
-0* 
-0. 
-0. 
-0. 
-0. 
-0. 
-D. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

23 
24 
25 
26 
27 
?7 
29 
30 
30 
31 
41 
41 
42 
43 
44 
44 
45 
51 
51 
52 
53 
53 
54 
55 
61 
61 
62 
63 
64 
65 
101 
102 
102 
102 
102 
103 
103 
103 
103 
104 
104 
104 
105 
105 

24 
25 
26 
27 
28 
46 „ 
30 
31 
55_ 
32 
42 
46 
43 
44 
45 „ 
51 
46 

. 52_-
56 
53 
54 _. 
66 
55 
56 
62 
66 
63 . 
64 
65 
66 
114 
121 
122 
123 
124 
131 . 
132 
133 
134 
146 
145 
144 
151 
152 

-0 
-0 
-0 
-0 
-0 
_-Q 
-0 
-0 
__-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
_-Q 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 

_-fl 
-0 
-0 
_rD 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

_ -0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

CD 
CO 
CD 
CD 
CD 
ZD 
CD 
CD 
CD 
CD 
CD 
CO 
CD 
CD 
CO 
CD 
CD 
CD 
CD 
CD 
CO 
CD 
CO 
CD 
CO 
CD 
CO 
CO 
CO 
CD 
CD 
CD 
CD 
CO 
CD 
CO 
CO 
CD 
CO 
CO 
CD 
CD 
CO 
CD 

01000330 
01000340 
.01000350 
01000360 
01000370 
111000380^ 
01000390 
01000400 
.01000410 
01000420 
01000430 
01000440 
01000450 
01000460 
J01000470 
01000480 
01000490 
01000500 
01000510 
01000520 
01000530 
01000540 
01000550 
01000560 
01000570 
01000580 
01000590 
01000600 
01000610 
010DD620 
01001010 
01001020 
01001030 
01001040 
01001050 
01001060 
01001070 
01001080 
01001090 
01001100 
01001110 
01001120 
01001130 
01001140 
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Y115 
Y116 
Y117 
Y140 
Y141 
Y142 
Y143 
V144 
Y145 
Y146 
Y147 
Y148 
Y149 
Y161 
Y162 
Y163 
Y164 
Y165 
Y166 
Y167 
Y168 
Y169 
Y170 
Y171 
Y172 
Y173 
Y174 
Y175 
YlBl 
Y182 
Y183 
Y184 
Y185 
Y186 
Y187 
Yies 
Y189 
Y190 
Y191 
Y2dl 
Y202 
Y203 
Y204 
Y205 

-0 
-0 

V122 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

0.567000E-04 
0.283000E-04 
0.567000E-04 
0.248000E-03 
0.274000E-03 
0.106000E-03 
0.414000E-03 
0.270000E-03 
0.492000E-04 
0.282000E-03 
0.258000E-03 
0.154000E-04 
0.154000E-04 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.125000E-05 
0.724000E-04 
0.724000E-04 
0.144800E-03 
0.144800E-03 
0.724000E-04 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

105 
105 
106 
107 
107 
107 
108 
109 
108 
109 
108 
110 
111 
114 
124 
123 
132 
134 
133 
144 
152 
153 
164 
163 
154 
110 
111 
112 
114 
124 
123 
132 
134 
133 
144 
152 
153 
164 
163 
201 
202 
202 
202 
202 

153 
154 
161 
171 
110 
108 
172 
173 
109 
112 
H I 
111 
112 
121 
131 
146 
145 
151 
166 
161 
165 
171 
172 
173 
99 
99 
99 
99 
121 
131 
146 
145 
151 
166 
161 
165 
171 
172 
173 
214 
221 
222 
223 
224 

-0 
-0 
0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
I 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-3 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

CD 
CD 
CD V117-Y122 
CD 
CD 
CO 
CD 
CO 
CD 
CD 
CD 
CO 
CD 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
CV 
cv 
CV 
cv 
cv 
cv 
cv 
cv 
cv 
cv 
cv 
CD 
CO 
CO 
CO 
CD 

01001150 
01001160 
01001170 
01001400 
01001410 
01001420 
01001430 
01001440 
01001450 
01001460 
01001470 
01001480 
01031490 
01001610 
01001620 
01031630 
01001640 
01001650 
01001660 
01001670 
01001680 
01001690 
01001700 
01001710 
01001720 
01001730 
01001740 
01001750 
01001810 
01001820 
01001830 
01001840 
01001850 
01031860 
01031870 
01031880 
01001890 
01031900 
01001910 
01002010 
01002020 
01002030 
01002040 
01002050 
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Y206 
Y207 
yZQ3 
Y209 
Y210 
Y211 
Y212 
Y213 
Y214 
Y215 
Y216 
Y217 
Y240 
Y241 
Y242 
Y243 
Y244 
Y245_-
Y246 
Y247 
Y248.. 
Y249 
Y261 
Y262. 
Y263 
Y264 
Y265_ 
Y266 
Y267 
Y268 
Y269 
Y270 
Y271 
Y272 
Y273 
Y274 
Y275 
Y281 
Y282 
Y283 
Y284 
Y285 
Y286 
Y267 

-0 
-0 

_ -0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

Y222 
-0 
-0 
-0 
-0 
-0 

__-0 
-0 
-0 

__.-0 
-0 
-0 

_ -0 
-0 
-0 

_ - 0 L _ 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-Q 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

0.724000E-04 
0.144800E-03 
Q.lii48iJ0E-Q3 
0.724000E-04 
0.144800E-33 
0.144800E-03 
0.144800E-03 
0.724000E-04 
0.L44aQQE-03 
0.144800E-03 
0.724000E-04 
0^144800£-03 
0.992300E-03 
0.109600E-02 
O.4240OOE-03 
0.165600E-02 
0.108000E-32 
0.197Q00E-03 
0.112800E-02 
0.103200E-32 
D̂ i6Qi)i)î iILi 
0.616300E-04 

-0. 
-0. , 
-0. 
-0. 
-0-
-0. 
-0. 
-0. 
-0. 
-0. 
- 0 * „ 
-0. 
-0. 
-0. 
-0. 
0.500000E-05 
0,500000e-05 
0.500300E-05 
0.500000E-05 
0.500000E-05 
0.500300E-05 
0.500000E-05 

-0. 
-0. 
-D.. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
- Q A _-
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0-
-0. 
-0. 
-Q^ 
-0. 
-0. 
-0. 
-0. 
-0. 
-Jl*^ 
-0. 
-0. 
-0. 
-0. 
-0. 
-Q^ 
-0. 
-0. 
-0. 
-0. 
-0. 

203 
203 
203. 
203 
204 
204 
204 
205 
205 
205 
205 
206 
207 
207 
207 
208 
209 

231 
232 
233 
234 
246 
245-
244 
251 
252 _ 
253 
254 
261 
271 
210 
258 
272 
273 

208^ ^09 
209 212 
208 211 
210 211 
211 
214 
224 
223 
232 

__234L_ 
233 
244 
252 
253 
264 

__ - -263 
254 
210 
211 
212 
214 

_ _ 224 
223 
232 

- _ 234 
233 
244 

212 
221 
231 
246 
245 

_251 
266 
261 
ZL5 _ 
271 
272 
273 „ 
99 
99 
99 
99 

221 
231 _ 
246 
245 
251 
266 
261 

-0 
-0 
_rll 
-0 
-0 
-0 
-0 
-0 
.-0 
-0 
-0 
0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0. 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-Q 
-0 
-0 
-0 
-0 
-0 

-0 
-0 

_ -Q 
-0 
-0 
-0 
-0 
-0 
-D 
-0 
-0 

1 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-Ji 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

CO 
CO 
CD 
CO 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CO 
CO -
CD 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
K 
R 
R 
R 
R 
CV 
CV 
CV 
cv 
cv 
cv 
cv 

01002060 
01002070 
01002080 
01002090 
01002100 

, 01002110 
01002120 
01002130 

. 01002140 
01002150 
01002160 

Y217-Y222 D1002170 
01002400 
01002410 
01002420 
01002430 
01002440 
01002450 
01002460 
01002470 
01002^60 
01002490 
01002610 
01002620 
01002630 
01002640 
01002650 
01002660 
01002670 
J11Q0268J1 
01002690 
01002700 
01002710 
01002720 
01002730 
JJ1D02740 
01002750 
01002810 
01002820 
01002830 
01002840 
01002850 
01032860 
01002870 
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-0 

-0 
-0 
-9 
-0 
-a_ 
-0 
-0 
-0 
-0 
-9 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

_ -0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

— -

-0. 
-0. 
-0. 
-0. 
-0. 
-Q. 
-0. 
-0. 
-0. 
INITIAL VALUES 
0.181000E-03 
iL.109QimETJ2 
0.218000E-02 
0.109000E-02 
0.1080QQF-Q? 
0.620000E-93 
0.218000E-02 
0.55i)0OQE-O3 
0.138000E-03 
0.276000E-93 
0.1380QOF-0^ 
0.276000E-03 
0.138000E-03 
Q.2760DOE-B3 
0.138000E-03 
0.276000E-03 
a.2760DJB£-Ql 
0.276900E-03 
0.323000E-03 
0.194000E-02 
0.388900E-02 
0.432000E-03 

„ 0,855Q00E-93 
0.107000E-32 
0.206000E-03 
0.225000E-03 
0.121000E-02 
0.726000E-02 
0.145200E-91 
0.173000E-02 
0.346000E-02 
0.428000E-32 
0.825000E-33 
0.900300E-03 

-0. 
-0. 
-Q^ . 
-0. 
-0. 
-fl.̂  
-0. 
-0. 
-0. 

-0. 
-D. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0^__ 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. , 
-0. 
-0. 
-ii* 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. _ 
-0. 
-0. 
-0, 
-0. 
-0. 
-0, 
-0. 
-0. 
-0, 
-0. 
-0. 

65 
66 

106 
103 

66 106 
1 
21 
41 
51 
61 
-0 

-0 
-0 
-0 
-0 

_ - ^ fJL 
-0 
-0 

-_ -a 
-0 
-0 
-0 
-0 
-0 
- Q _ 
-0 
-0 

- -fl 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

_ -0 
-0 
-0 
-0 
-0 
-0 

- -

99 
99 
99 
99 
99 
-0 

-0 

^a 
-0 
-0 
-a 
-0 
-0 
-J) 
-0 
-0 
-Ji-
-0 
-0 
-Q 
-0 
-0 
- 0 
- 0 
-0 
-0 
-0 
-0 
- D 
- 0 
-0 
-0 
-0 
-0 
- 0 
- 0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 

Tfi_ 

-0 
-0 
-0 
-0 
ra. 
-0 
-0 

-0 
-0 
=JL_-
-0 
-0 
rQ__ 
-0 
-0 
-Q 
-0 
-0 
-0 
-0 
-0 
-0_ 
-0 
-0 
-0 
-0 
-0 
-Q 
-0 
-0 
-0 
-0 
-0 
- -

-0 
-3 
-9 
9 
9 
0 
9 
9 

-0 

-9 
-Jl 
- 9 
-0 
-0 
-9 
-9 
- 0 
- 0 
-0 
-a 
-9 -9 
-0 
-9 
-9 
-0 
-9 
-9 
-9 
-3 
-3 
-0 
-9 
-9 
-3 
-3 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
— 

R/CD 
R/CD 
A/CJL _ 
R Y901-Y912 
R Y921-Y932 
R Y941-Y946 
R Y951-Y956 
R Y961-Y966 

INT *- CONST VALUES 

. 

— ~ --' — 

— „ 

- - - - -

-

91008860 
01098879 
01008880 
01099919 
91009210 
01Q09410_ 
01009510 
01039610 
02030000 

02030010 
Q20QQQ2Q 
02030060 
02000080 
02DD0099 
02000100 
02000110 
02000120 
92999210 
92090220 

02000260 
02000280 
02Q3030Q 
02000320 
02000410 
52000510 
02000610 
02001010 
02031020 
02031060 
02001070 

_ 02031080 
02031090 
02031103 
02O31II0 
02032010 
92032029 
02032060 
02002070 
02032080 
02032090 
02032100 
02002110 

-

;f-

H 1 
hJ D c 

M 1 

>->l 1 t 

i-'a\ 1 

-P- M 
-p-
•-0 



0301 
0302 
0306 
0307 
C308 
0399 
C310 
0311 
C401 
0492 
0406 
0407 
0408 
0409 
0410 
0411 
T 1 
T 99 
TlOl 
0109 
D 1 
0 2 
D 3 
0 4 

~D y 
D 6 
D 7 
0 8 
0 9 
0 19 
D 11 
D 12 
D 21 
D n 
0 23 
D 24 
D 25 
0 26 
0 27 
0 28 
D 29 
0 39 
0 31 
D 32 

-0 
0305 

-0 
-0 
-0 
-0 
-0 

0312 
-0 

0405 
-0 
-0 
-0 
-0 
-0 

0412 
T 66 
-0 

T473 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-d 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-9 
- 1 
-9 
-9 
-9 
-9 
-9 
-0 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-0 
-9 
-9 
-9 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

0.121000E-02 
0.726000E-32 
0.145200E-01 
0.173000E-02 
0.346300E-02 
0.428000E-32 
0.825000E-03 
0.900000E-03 
0.121000E-32 
0.726000E-32 
0.145200E-01 
0.173000E-02 
0.346300E-32 
0.428000E-02 
0.825000E-03 
0.900000E-93 
0. 

-0.460000E 03 
0. 
0.300000E 94 
0.116990E-93 
0.695000E-03 
0.750000E-03 
0.725000E-03 
0.932000E-03 
0.171000E-02 
0.190000E-02 
0.906990E-93 
0.129800E-02 
0.824000E-03 
0.213000E-02 
0.656990E-93 
0.860000E-04 
0.172900E-03 
0.178000E-93 
0.879990E-04 
0.870000E-04 
0.175000E-03 
0.177090E-03 
0.d89900E-94 
0.960000E-04 
0.196000E-03 
0.204600E-93 
0.104000E-03 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0.^ ' 
-0. 
-0. 
-0. 
-0. 
-0. 

-H. ^ ' " " 
-0. 
-0. 
-0. 
-0. 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-9 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-9 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-9 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-9 

_-3 
-9 
-9 
-9 
-9 
-9 
-9 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-9 

" -0" 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-3 

-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 

--0 
-9 

. . ^ 

T INT » 0 DEC F 
T AMB « -460F = 0 R 
T INT . 0 
T MELT»D100»3000F 
RANDOM TUMBLING HEAT 

02003010 
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02003060 
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02033110 
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02500060 
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02530110 
02530120 
02500210 
02500220 
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02500250 
02530263 
02530270 
02503280 
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02500300 
02500310 
02500320 
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Y373 
Y461 
Y472 
Y473 
Y901 
Y902 
Y906 
Y908 
Y909 
Y910 
Y911 
Y912 
Y921 
Y922 
Y924 
Y926 
Y928 
Y930 
Y932 
Y941 
Y951 
Y961 
D 99 
TlOO 
D200 
Y601 
Y621 
Y641 
y651 
Y661 
Y671 
D301 
D400 
Y821 
Y822 
Y826 
Y827 
Y828 
Y829 
Y830 
Y831 
Y832 
Y833 
Y835 

Y375 
Y471 
-0 

Y475 
-0 

Y9Q5 
Y907 
-0 
-0 
-0 
-0 
-0 
-0 

Y923 
Y925 
Y927 
Y929 
Y931 
-0 

Y946 
Y956 
Y966 
-0 
-0 
-0 

Y612 
Y632 
Y646 
Y656 
Y666 
Y686 
D386 
-0 
-0 

Y825 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

Y834 
-0 

49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
99 
-1 
-2 
52 
52 
52 
52 
52 
52 
40 
58 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

0.497600E-63 
0.303200E-03 
0.185200E-03 
0.497600E-03 
0.883000E-04 
0»530D00E-03 
0.106000E-02 
0.530000E-03 
0.506000E-03 
b.289000E-03 
0.106000E-02 
0.303000E-03 
0.670000E-04 
0.134000E-33 
0.670000E-04 
0.134000E-03 
0.670000E-04 
0.134000E-03 
0.670000E-04 
0.134000E-03 
0.134000E-93 
0.134900E-b3 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0.190000E 01 
0.860000E 02 
0.764000E-04 
0.459000E-03 
0.918000E-03 
0.148000E-03 
0.184000E-03 
0.980000E-04 
0.250999E-93 
0.246000E-03 
0.184000E-03 
0.306000E-03 
0.148000E-03 

-0 
-0 
-0 
-0 
-0 
-0^ 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-6 

T 1 
-0 
-0 

0200 
D200 
0200 
0230 
D200 
D200 
Y601 
D381 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

^ 

-

-0 
-9 
-9 
-9 
-9 

-9 
-9 
-9 
-9 
-9 
-9 
-9 
-0 
-0 
-0 
-0 
-0 
-0 
-9 
-9 
-6 

DlOO 

D 
D 
D 
D 
D 
D 

-9 
-9 

21 
41 
51 
61 
71 
-9 

D386 
-0 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-0 

-0 
-0 
-0 
-0 
-0 

_̂  -0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
0 
0 
0 
0 
0 
0 
1 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-9 

^ -9 
-3 
-9 
-0 
-9 
-0 
-9 
-9 
-9 
-9 
-9 
-9 
-0 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 

-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-3 
-9 
-0 
-9 

R 
R 
R 
R 
R 
R _ --
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
STOP AT T00l»T MELT 
TABLE 1»T100=T STAG 
TBL2=D200»0/TS-540 
Y601«D200 X DOOl 
Q REF/TS-540 X 
X.824FA » Y 

600 SERIES Y 
INDIVID HEAT INPUT 
TOTAL HEAT INPUT 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

03003730 
03094619 
03004720 
03094739 
03009010 
03Q09JJ2XL_ 
03009060 
03009080 
03009090 
03009100 
03009110 
03009120 
03009210 
03009229 
03009240 
03009260 
03099289 
03009300 
03009320 
03009419 
93009513 
03009610 
03100999 
03101000 
03102000 
03106010 
03106210 
03106410 
03106519 
03106619 
03106710 
03293010 
03204001 
03908212 
03908222 
03908262 
03908272 
03908282 
03908292 
03908302 
03908312 
03908322 
03998332 
93998352 

>• 

\^M rv) b-
H 1 W — 

O 0> H 
t^ 1 t-
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Y836 Y837 
Y838 -0 
Y839 -0 
Y840 -0 
Y841 -0 
Y842 -0 
Y843 -0 
Y844 Y845 
Y846 -0 -
Y847 Y849 
Y850 -0 

_. JtflSl YJa52_ _ 
Y853 -0 
Y854 Y859 
YA60 -5_ 
Y861 -0 
Y862 -0 
Y863 Jr864 . 
Y865 -0 
Y866 Y867 
Y86a -0 
Y869 Y872 
Y873 -0 
Y874 Y875 
Y876 -0 
Y877 Y87e 

_ Y8I9 Y190 
Y8ei Y882 
Y883 -0 
Y884 Y885 
Y886 -0 
Y887 Y888 

_- • *1) -fl -

TABLE 
1 -0 

-9 -0 
-0 -0 
-0 -0 
-0 -0 
-9 -0 
-0 -0 
-0 -0 

49 
49 
49 
49 
49 

-_49_ 
49 
49 
49 
49 
49 

_ 49 
49 
49 

__49 
49 
49 
49 
49 
49 
49 _ 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
-a 

-0 
-0 
-0 
-9 
-9 
-0 
-0 
-0 

-0. 
-0. 
-0. 
-0. 
-0. 
-Q^ 
-0. 
-0. 
rO. - _ 
-0. 
-0. 
^ . _ _ „ 

-0. 
-0. 
-0. 
-0. 
-0. 
-0^ 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-J l l 
-0. 
-0. 
-0, 
-0. 
-0. 
-Q^ 

-

0.306000E-03 
0.640999E-94 
0.666000E-04 
9.360900E-94 
0.S26000E-04 
0.714QOOF-04 
0.396999E-93 
0.584000E-04 
0.714000E-04 
0.580000E-04 
0.116000E-03 
JJ.SflOflttOE-Q* 
0.116000E-03 
0.580000E-04 
Q-1160QQP-9^ 
0.580000E-04 
0.116000E-93 
Q.5aQimO£-94 
0.116000E-03 
0.580000E-04 
0.116^0aQ£-113 
0.5a0999E-94 
0.116000E-03 
0.580000E-04 
0.116000E-03 
0.580900E-04 

_. 0,116500E-Q3 
0.580000E-04 
0.116000E-93 
0.580999E-94 
0.116000E-03 
0.580000E-94 

-5^ 
M0NOVARIATE TABLE DATA 

X 
0. 
0.100999E 
9.200000E 
0.300000E 
0.409000E 
0.500000E 
0.600000E 
0.700000E 

02 
02 
02 
92 
02 
02 
02 

I 
0.509949E 95 
0.498440E 05 
0.496560E 05 
0.494400E 05 
0.491880E 05 
0.488960E 05 
0.485490E 05 
0.481440E 05 

-0 
-0 
-Jl 
-0 
-0 
-Jl 
-0 
-0 
_-a_ 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 _ 
-0 
-0 
-Q 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 . 
-0 
-0 
-Jl 
-0 
-0 
-D__ 
-0 
-9 
-a 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

- - J l . _ 
-0 
-0 
-0 
-0 
-0 
-0 
-9 
-9 
-9 
-0 
-0 
-0 

-0 
-0 
-0 
-9 
-9 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-Q 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0^ 
-0 
-0 
-0 
-0 
-0 

-a 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-9 
-fl 
-9 
-9 
- J l 
-9 
-9 

-9 
-9 
-0 
-9 
-9 
-Jl 
-9 
-9 
-9 
-9 
-9 

-a 
-9 
-9 
-0 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-0 
-Q 

-0 
-0 
-0 
-9 
-9 
-9 
-9 
-9 

R 
R 
R 
R 
R 
R. ^ 
R 
R 
R 
R 
R 
R _ 
R 
R 
d. „ -
R 
R 
R 
R 
R 
R . 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

TABLES _ _ ^ 

TABLE ONE 
T STAG OEG F 

03908362 
03908382 

_ __039a8392__ 
03938402 
03908412 

_ . D3908422 
03908432 
03938442 
03908462 
03938472 
03938502 
03908512 
03938532 
03938542 

- J13aQA6fl2-. 
03908612 
03908622 
53908632 
03938652 
03908662 

__ 03908682 
03908692 
03908732 
03908742 
03908762 
03908772 
03998792 
03908812 
03908832 
03938842 
03908862 
03908872 
54000009 

04130000 
04100100 
04100200 
04100300 
04100400 
04100500 
04100600 
04100700 

— -

- --
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H 

H 
o o> H, 1 

H 0> 
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4^ 
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-0 
-0 

_ -_9 
-9 
-9 
-0 
-0 
-0 
-0 
-9 
-9 
-9 
-9 
2 

-9 
-9 
-0̂  
-9 
-9 

-0 
-9 
-0 
-9 
-9 

, ^ _ 
-0 
-9 
-9 
-9 
-9 
:̂0_ 
-0 

• 79 

2 
7 

-0 
-0 
-̂ 0 
-0 
-0 
-0 
-0 
-0 
-0 
-6 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 

•0 
•0 
•0 
-0 
•0 
•0 
-0 
-0 
'A. 
•0 
•0 
•0 
•0 
•0 
•0 
•b 
•0 
•0 
•0 
•0 
•0 
•0 
•0 
•0 
•0 
•0 
•0 

•0 
•0 

0.800000E 02 
0.900000E 02 
O.IOOOOOE 03 
O.lioboOE 03 
0.120990E 03 
0.130000E 03 
0.140990E 03 
0.150000E 03 
0.160000E 0_3 
0.170000E 03 
0.180900E 93 
0.190999E 93 
0.200000E 03 
0. 
J).10̂ 000E 92 
0.2000bOE 02 
0.300000E 02 
0.400990E 02 
O.SObOOOE 02 
0.600000E 02 
0.700000E 02 

0.476640E 
0.470920E 
0.464J180E 
b.455880E 
0.446090E 
0.4338_80E 
0.419949E 
0.499899E 
0.378360E 
0.350480E 
0.315840E 
0.273000E 
b.221520E 
0.170990E 
0.181990E-

05 
05 
05 
95 
95 
95 
95 
95 
95 
95 
95 
95 
05 
02 
92 

0.I94999E-
0.238000E-
0.224099E-
0.2420bOE-
0.262000E-
0.283000E-

02 
02 
02 
02 
02 
02 

•0 
-0 
• t 
-9 
-9 
•9 
-9 
•9 
•9. 
•b 
-0 
•0 
•0 
•0 
•9 
•0 
-0 
-0 
-0 
-0 
-0 

•0 
•0 

•0 
•0 
-9 
-9 
-9 
:9 
•9 
-9 
•0 
-0 
•0 
•A 
-9 
-9 
-9 
•0 
-0 
-0 

0.800000E 02 
0.900900E 92 
O.IOOOOOE 03 
O.IIOOOOE 03 
0.120000E 93 
0.130990E 93 

-9 9.149000E 03 
•0 0.150000E 03 
•0 0.160990E 03 
•0 0.170000E 03 
•0 0.180000E 03 
•0 0.190990E 03 

0.398000E-
0.336000E-
0.368000E-
0.4b3b0bE-
0.444999E-

0.549000E-
0.612000E-
0.685999E-
o.aoaoooE-
0.876000E-
0.995000E-

• 80 

T I T 12 
T 21 T 32 

0.111800E 
0 . 

VALUES 
SPECIFIED 
MINIMUM A 
FLAG^*1.0 
99 RUNS 3 

PRINT OUT SPECIFICATIONS 
•0 - 0 . - 0 . 
•0 - 0 . - 0 . 

0.200000E 03 
-0. 
SPECIAL CONSTANT 
0.245000E-00 
0.500900E-01 
O.IOOOOOE 01 

02 
02 
02 
02 
92 
92_ 
92 
92 
92 
92 
92 
52_ 
91 

•0 
•0 
-0 
•0 
-0 
•0 
-0 
-0 
-0 
•0 
-0 
•0 
-0 
-0 

-0 
•0 
-0 
-0 
-0 
•0 
-b 
-0 
•0 
-0 
-0 
-0 
-b 
-0 

DELTA-TIME 
LLOWED DELTA-1 

FOR COMPLETE 
NLY 

- 0 
- 0 

- 0 
- 0 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

riME 
CORE 

-0 
-0 

-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 
-9 

DUMP 

-9 
-9 

TABLE TWO 

04100800 
04100900 
04131000 
04101100 
04101203 
04131300 
04131400 
04131509 
04101600 
04101700 
04101800 
04191900 
04102000 
04200000 

Q REF / TS - 540 94230100 

DELTA TIME 

-- — 

ATEND OF RUN 

^ ,-. 

04200200 
04200300 
04299499 
94290500 
04200600 
04200700 
04299800 
04290900 
04201000 
04231100 
04231200 
04231300 
04201400 
04201500 
04231609 
04201700 
04231800 
04231900 
04202000 
07000000 

"07000011 t 
07000020 ^ K) i 

V)^ w 
07000070 oc^g 
08000000 ^S^^ 

4̂  H 

08000010 "̂  w 
08000210 :5 



T 41 
T 51 
L 61 
T 99 
T401 
0400 
• 90 

-0 
-0 

• 99 

T 
T 
T 

46 
56 
66 

TlOO 
-0 
-0 
-0 

-0 
-0 
-0 

-0 
-0 

__-Jl 
-9 
-9 
-0 
-9 

-0 
-9 
-9 

-0. 
-0. 
- J l ^ 
-0. 
-0. 
-0. 
-0. 
RUN CONTROL 
-J). 
0.180000E 03 

-0. 

-0. 
-0. 
-5^ - _ _ 
-0. 
-0. 
-0. 
-0. 

5.iaa555E 
-0. 
-0. 

01 

-0 
-0 

„ -Jl 
-0 
-0 

^ -5 
-0 

-0 
-0 
-0 

-0 
-0 

-9 
-0 
-n 
-0 

-5 
-0 
-0 

-0 
-0 

-0 
-0 
-0 
-0 

_-5 
-0 
-0 

-0 
-9 
-0 
-9 
-9 
-9 
-9 

-5 
-9 
-9 

TOTAL HEAT INPUT 
TIME TO PRINT 

PRINT EVERY SECOND 
STOP AT TIME « 180 

08009410 
08000510 
08000610 
08000990 
08094911 
08X54050 
09090009 

09000011 
09090020 
99999999 

H I 
V,M KJ trj 
4 ^ I t d 

H I 
o aw^ 
i-b I f 

o ^ • d 
H ON I 
4 ^ M 
^ M 

CO 
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APPENDIX C 

Aerodynamic Heating Factors 

The geometric aerodynamic heating factors for the random timbling, 

side-on, and end-on flight configurations are tabulated in the follovdJig 

pages. The values have been cjilculated on the basis of Tables V and 

VI and were used vri.th the "3-D core" thermal model of Chapter V for 

con̂ iuter runs 7323-19, 23, 24, 25, 26, and 27. 

719.P 



ABLE C - a 

\ FACTORS 

NAA-Sfl-TDR-ll847 
2-16-66 

136 of Ikk 

NODI XC^r.) 
X. R N ODE X F. 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 

II 
12 

21 
22 
23 
£ 4 
2 5 

26 
2 7 

2 8 
29 
3 0 
31 

3 2 

0 
I.Zfc 
F.5I 
^.15 

3.77 
3.35 
3.8(1' 
3 . 65 
4.27 
4.31 
4,07 
4.20 

0.4fc 

o.M 
0,9Z 
i.oi 

1.19 
1 34 
I,fc2. 

1.73 
2 M 
z 79 

3.07 
3.19 

0 
0.286 
.569 

.454 

. 8 5 4 
.759 
. 8 7 5 

.627 
.9&fe 
.976 
.9ZI 
.95-1 

.104 
. M 5 

,208 
.22 9 

,Z70 
,304 
,367 

.392 

.598 
.632 
.695 

.72a 

1.0 

1.0056 
|.093fo 
( .0585-
1.356 
1.241 
1,386 
l,32o 
1,535 
1.554 

1.457 
I.50& 

1.00 
|.oo\ 
1,0?^ 
l ,oo4t 

1,0079 
I.OIIB 

1.022 
1.027 
|, no 
1.132 
l,l6o 
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43 
44 
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52 
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55 
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62 
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?.iz 
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2 .90 
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3.Z2 
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, 3 7 8 
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.170 
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1.241 
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\,\00 

\ . \ ^S 
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MODE 

1 
2 
3 

4 
5 
4 
7 
5 

9 
10 

11 
12 

21 
Z2 

25 
24 
25 
26 

2 7 

26 
2 9 

3 0 

31 

32 

41 
42 

43 

44 
45 

4t 

Z ^ A H O 

f4^ 

.116 

. ^ 9 5 

.750 

.725 

.932 

.710 
. 900 
. 90b 

1.2^8 
. 824 

2. l3o 

. ^5 t 

. o e t 

.>72 

.17S 

, 0 8 7 
.087 

. 175 

.177 

. 0 8 6 

.09lo 

. l i ' 6 

.2o4 

.104 

.>77 

.178 
.182 

. 1 8 3 

.182 

.177 

NODE-

SI 
52 

5 3 

54 

55 

5t> 

41 

C? 
43 
4̂ 
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66 
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2 1 0 

3 1 0 

4 1 0 

1 II 

Z\ 1 

311 

4il 
1 12 
212 

312 
4 1 2 

l ^ ^ > ^ 
iv 

A&S 

. l90 

. \9k 

. 198 

.\9^ 

.187 

.155 
.20b 

.2 )6 

. 2 1 6 . 
.705 

.197 

.049 

.19* 

. )98 

.198 

.133 

.53A 

.53<J 

.53f 
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.534 

.534 
. 5 3 4 

.133 

.534 

.534 

.534 
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. 9 5 
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<?.05 

.10 

. 1 0 
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.10 
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. 10 

. 1 0 
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. 10 
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51 
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54 

55 

5U 

61 

U 

63 
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1 M 
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-01 
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,01 

.01 

,01 

. 0 1 

.066 

.2 74 
.274 
.274 
.177 

. 7 ) 
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-177 

n\ 
.7) 

. 7 ) 
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.1) 

.71 
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A 

AH 

^ . e f 

Alt o 

C 

D 

F 

^A'^'^r. 

F —> F^ 
a k 

3̂  

3c 

NOMENCLATURE 

Area 

Nodal Area 

Reference Area (End of Cylinder) 

Initial Altitude of Trajectory 

Thermal Capacitance of Node, C = ""Cp 

Drag Coefficient on Body, 

% - s:)A 
, Eq. (III-3) 

Mean Drag Coefficient of a Tumbling Body, 

Drag Coefficient on a Point 

Drag Coefficient on the Stagnation Point 

Specific Heat (Table II) 

Diameter 

Force 

Axial, Normal (to eixis), and Drag Force 

(Figxire 5-c) 

Aerodynamic Heating Correlation Factors 

(Table V) 

Aerodynamic Heating Correlation Factors 

(Table VI, Eq. III-46) 

Radiation Factors, J = J ( £ , Geometry) 

Gravitational Constant, = 32.2 

ft*-

f t^ 

2 

ft^ 

ft or kft 

Btu/'F 

Btu/lb "F 

f t or in . 

l b , 

l b . 

f t lb 
m 

2 
sec lb 
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h 

H 

5' vj' 540 

(HWCF) 

k 

L 

K 

m 

%ef 

•Iss 

'isf 

ISL 

Q^T 

ON 

r 

R 

Heat Transfer Coefficient 

Enthalpy 

Stagnation Enthalpy, Air Enthalpy at 
V;all Teii?)erature, Air Eiithalpy at T = 540"R 

Hot Wall Correction Factor (Eq. Ill-27a) 

H5 - Hv>/ 

UIWCFj - „ „ 
"s - "540 

Thermal Conductivity, (Table II) 

Length 

Latent Heat of Fusion 

Mass 

Reference Heating, (Eq. Ill-29) 

Spherical Stagnation Point Heating 
(Eq. III-26) 

Stagnation Point Heating, End of Cylinder 

Stagnation Line Heating, on Side of Cylinder 

Integrated Reference Heating 
t 

Q,.T= Jv.f^^ (i3q- 111-47) 

Heat Input into Node 

Radial Distance 

Radius 

Btu 

ft^ sec "F 

Btu 
lb 
m 

Btu 

Btu 
sec ft "F 1 

ft 1 
Btu 
lb m 

lb 
m 1 

Btu 

sec ft^ 

Btu 

sec ft^ 

Btu 
^+2 sec ft 

Btu 

sec ft^ 

Btu 

ft^ 

Btu 
sec 

ft or in. 

ft or in. 

719.P 



Mr> NAA-SR-TDR-lie47 

ATOMICS INTERNATIONAL 
A Division of North Amorican Aviation, I IK . 

DATE. 
t»A6E. 145 

2-36-66 
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1 K 
1 ° 1 (SCF) 

1 * 
T, 

T, 

Ts 

T^ 

1 ̂ 
^o 

W 

u/c 

X 

oC 

^-y. 

e 

? 

^o. 

i» 

* 

D̂  

^A,^ 

e.. 

Reference Radius, R = 12 inches = 1 ft ' o 

Size Correction Factor, (Eq. Ill-28) 

/ Ko 
(SCF) = / K 

Time Measured from Initiation of Reentry 
Trajectory 

Melting Temperature, (Table II) 

Nodal Temperature 

Stagnation Temperature 

Wall Ten5)eratiire 

Flow Stream (or Projectile) Velocity 

Reference Velocity, V^ = 10,000 ft/aec 

Projectile Mass 

Ballistic Coefficient 

Radial Distance 

Angle of Attack 

Angles 

Radiative Sinissivity 

Atmospheric Density, Material Density 
(Table II) 

Atmospheric Density at Sea Level 
lb 

a = 0.07647 - ^ 
ft^ 

Surface Heating Parameter, Figure 18 

sec 1 
«F 

•F 

•F 

•F 

ft/sac j 

1 
lb 
m 1 

ft^ 

ft or in. 

deg. 

deg. 1 

1 \ 

ft^ 
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SUBSCRIPTS 

E/E 

£0 

N 

o 

RT 

SO 

End-Over-End 

End-On 

Node or Normal 

Initial or Reference 

Random Tumbling 

Side-On 
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