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ABSTRACT 

O v e r the y e a r s , a c t u a t o r s for c o m p a c t s p a c e n u c l e a r r e a c t o r 

r e f l e c t o r c o n t r o l h a v e p r o g r e s s e d f r o m modi f i ed c o m m e r c i a l 

u n i t s wi th r e l a t i v e l y s h o r t l ife and low^ r e l i a b i l i t y a t m o d e r a t e 

t e m p e r a t u r e , to un i t s c u s t o m d e s i g n e d for spec i f i c a p p l i c a t i o n . 

T h e s e l a t t e r un i t s h a v e d e m o n s t r a t e d long life and h igh r e l i a b i l i t y 

a t h igh t e m p e r a t u r e s . The d e s i g n for a spec i f i c a p p l i c a t i o n now 

i n c l u d e s the ab i l i t y to d e s i g n for v a r i o u s t o r q u e and s t e p s i z e s , 

and the ab i l i t y to c o n t r o l t he r e l a t i v e p r o p o r t i o n s ( length and 

d i a m e t e r ) of the a c t u a t o r . The p r e s e n t s t a t u s of d e s i g n c a l c u l a ­

t ion c a p a b i l i t y i n c o r p o r a t e s r e l i a b l e c o m p u t e r p r o g r a m s to f a c i l i ­

t a t e the d e s i g n and s e l e c t i o n of the a c t u a t o r , in the f o r m of: 

1) A s t e p p e r m o t o r p r o g r a m to c a l c u l a t e a c t u a t o r p e r ­

f o r m a n c e b a s e d on p h y s i c a l con f igu ra t ion 

2) An a c t u a t o r b r a k e p r o g r a m to c a l c u l a t e the m a g n e t i c 

p e r f o r m a n c e b a s e d on a p h y s i c a l b r a k e conf igu ra t ion 

3) A b e a r i n g p r o g r a m to c a l c u l a t e l o a d s and c l e a r a n c e s 

for i n i t i a l end b e l l and b e a r i n g i n t e r f e r e n c e s and j o u r ­

na l d i m e n s i o n s . 

Us ing the p r e c e d i n g p r o g r a m s and v a r i o u s o t h e r s u p p o r t i n g c a l ­

c u l a t i o n s , a c o n t r o l d r i v e a c t u a t o r h a s b e e n d e s i g n e d for the 

5 -kwe R e a c t o r T h e r m o e l e c t r i c S y s t e m , to fit in the a v a i l a b l e 

s p a c e w^ithin the r e f l e c t o r and sh ie ld con f igu ra t ion . T h i s a c t u ­

a t o r w i l l d e v e l o p suff ic ient t o r q u e for both the spec i f i ed s t epp ing 

d r i v e c o n t r o l and the s c r a m r e q u i r e m e n t , a t c u r r e n t d e n s i t i e s 

no g r e a t e r t h a n the p r o v e n SNAP 8 D e v e l o p m e n t a l R e a c t o r d e s i g n . 

The r e p o r t con t a in s a b r i e f h i s t o r y of the p r o g r e s s of a c t u ­

a t o r d e s i g n , d e v e l o p r a e n t , and t e s t s to d a t e , a s w e l l a s the d e s i g n 

c a l c u l a t i o n s a p p l i c a b l e to the a c t u a t o r d e s i g n e d for the 5-kw^e R e a c t o r 

T h e r m o e l e c t r i c S y s t e m . 
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I. INTRODUCTION 

A s e r i e s of conapact nuclear r eac to r s and e lec t r ica l pow^er sys tems w^ere 

designed, developed and tes ted for the Space Nuclear Auxiliary Pow^er (SNAP) 

p r o g r a m . The zi rconium hydride (ZrH) r eac to r s for these sys tems were 

fueled by hydrided z i rconium uran ium e lements . Window^s in the external 

bery l l ium neutron ref lector w^ere adjusted by rotating drums or by sliding seg­

ments to regulate neutron leakage from the core and thus the pow^er output of 

the r eac to r . A di rec t radiating the rmoe lec t r i c module Power Conversion 

System (PCS) produced over 500 watts of e lec t r i c pow^er in the f l ight- tested 

SNAP 1 OA sys tem. Mercury-Rankine cycle turbogenera tor PCS's of 3 kwe 

and 30 kAve pow^er range w e r e demonst ra ted for the SNAP 2 and SNAP 8 sys ­

t ems respect ively. The la tes t 5-kwe Reactor Thermoelec t r i c System design 

was based on the use of a compact , tubular t he rmoe lec t r i c PCS. The NaK, 

used to t r ans fe r the heat from the r eac to r to the PCS, and from the PCS to 

the space rad ia tor , w^as c i rculated by dc conduction e lectromagnet ic (EM) 

pumps on the the rmoe lec t r i c sy s t ems , and by mechanical centrifugal pumps 

on the Mercury-Rankine sys tems . 

A. FUNCTION 

The control of SNAP reac tor sys tems is accomplished by varying the num­

ber of neutrons that a r e allowed to escape through an external ref lector . An 

opening in the external ref lector acts like a window, the size of which can be 

changed by changing the effectiveness of reflection. In the SNAP 10, SNAP 2 

and S8DR type of r e a c t o r s , neutron reflector control was effected by use of 

cyl indrical sections having ref lector ma te r i a l in one portion and a void on the 

balance. These sec tors w^ere rotated by a ref lector drive actuator through a 

gear . In the 5-kwe Reactor Thermoe lec t r i c System reflector control was 

accomplished by l inear ly displacing two movable control sec to r s in the ref lec­

tor a s sembly . A ball screw was uti l ized for converting ro ta ry motion to l inear 

motion. Although the movable ref lector configuration, i. e. , l inear ve r sus 

ro ta ry displacement , was different from previous ref lector des igns , the actu­

a tor employed was a d i rec t extension of previous des igns . 
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B. BASIC DESIGN CONCEPT 

1. Design Cr i t e r i a 

The basic requ i rement of a ref lector control actuator is to provide a smal l 

inc rementa l motion of sufficient energy to reposi t ion the naovable ref lec tor . 

This mus t be done both at ground tes t conditions and in expected space environ­

men t s . The total environment includes ambient and elevated t e m p e r a t u r e , 

radiat ion, ambient and space p r e s s u r e (vacuum), launch vibrat ion, shock and 

acce le ra t ion loads . 

The specific design c r i t e r i a var ied f rom actuator to ac tua tor , general ly 

with an upward t rend in performance requ i rements with t ime . A l is t of the 

var ious ac tua tors on which development was performed, and the requi red 

to rques , operating t empera tu re s and position accuracy a r e shown in Table 1. 

TABLE 1 

ACTUATOR PERFORMANCE CRITERIA 

Reactor System 

SNAP lOA 

SNAP 2 DRM- 1 

SNAP 8 DRM 

SNAP 8 DS 

SNAP 8 DR 

SPF 

ZrH 

5-kwe Thermoe lec t r i c 

Actuator 
Torque 
(oz- in . ) 

12 

20 

20 

37 

37 

52 

170 

100 

Actuator Posi t ion 
Accuracy 
(degree) 

r^j 

/^^ 

/^ 

0.412 

0.412 

0.60 

0.70 

0.6 

Max. 
Temp. 
(°F) 

650 

950 

950 

1000 

1000 

1000 

1000 

800 

Other design c r i t e r i a included maxinaum rel iabi l i ty , min imum power r e q u i r e ­

ments and minimum weight. 

2. Design Concept Selection 

Various types of dr ives capable of providing smal l inc rementa l ro ta ry 

motion w e r e originally considered. These concepts included spring and 
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escapement mechan i sms , hydraul ic d r ives , smal l high-speed motors and 

h igh- ra t io gear d r ives , as well as s tepper mo to r s . Straight mechanical 

devices were re jected because of a l imitation on the total available number of 

steps and low inherent rel iabi l i ty due to lubricat ion p rob lems . High-speed 

motors and gear r educe r s did not appear a t t rac t ive since gear and bushing 

lubricat ion problems at high speed v/ere expected to impose severe problems 

at high t e m p e r a t u r e s in a vacuum under i r rad ia t ion . Hydraulic dr ives did not 

appear feasible because of the l imitation of available radia t ion- to lerant hydraulic 

fluids, mechanica l p rob lems , and problems associa ted with obtaining accura te 

and repeatable step d isp lacements . 

On the other hand, s tepper motors were commerc ia l ly available which 

did not requ i re b rushes or commutator b a r s , incorporated a simple bearing 

s t ruc tu re , uti l ized a s imple winding design in the s ta tor only, and provided 

smal l stepwise motion. Commercia l ly available windings and bear ings , how^-

ever , would not mee t the t e m p e r a t u r e , radiat ion and p r e s s u r e r equ i remen t s . 

Also, a method was requi red of preventing the actuator shaft f rom rotating, 

w^hen not stepping,w^ithout continuously applying cur ren t . 

The init ial design concept w^as to uti l ize the stepper motor principle and 

commerc ia l pa r t s where poss ible , but develop h igh - t empera tu re , radiat ion-

res i s t an t w^indings and bear ings , and add a b rake . The unit also had to be 

radiat ion hardened. This concept is i l lus t ra ted in F igure 1. The stepper 

motor contains a wound stator assembly of eight slotted pole pieces (a total 

of 48 teeth) . The ro to r , containing a permanent magnet, is slotted in a s imi ­

l a r manner , but contains 50 teeth. Sequential energizat ion of the bifi lar -wound 

stator coils causes the field to ro ta te , which, by the reluctance pr inciple , 

genera tes a torque in the ro tor until a half-tooth pitch motion has taken p lace , 

at -which t ime the torque is reduced to ze ro . Based on the geometry selected, 

each s tep r e su l t s in a motion of 1.8 degrees . Physical al ignment of the ro tor 

is obtained by sleeve bear ings located in the end be l l s , using selected fits on 

the poles and stator she l l s . The journals contain f l ame-sprayed , a lumina-

oxide coated shafts, ground to s ize , which operate in a carbon graphite sleeve 

sized to r ema in tight in i ts housing at operating t e m p e r a t u r e s . 

The EM brake is an ene rg i zed - to - r e l ea se device. When the brake coil is 

energized, the a r m a t u r e (stat ionary brake disk) is pulled to the brake face by 
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F igure 1. Indirect Drive 1.8-Degree Step Actuator Assembly and Components (SNAP lOA) 



the magnet ic flux, re leas ing the disk engagement and allowing the ro tor and 

brake disk to ro ta te . With deenergizat ion, the plates a r e forced into engage­

ment by the spring force built into the brake assembly , locking the actuator 

from further rotat ion. 

In actual operation, posit ional control is obtained in the actuator by control 

of the e lec t r ica l pulse t ra in . The f i rs t phase of the s tator is energized p r io r 

to the brake being energized, thus holding the s tepper from rotating. After the 

p roper number of pulses to the var ious phases to achieve the des i red rotation of 

the s tepper , the brake is deenergized, and allowed to lock, p r io r to the deener ­

gization of the las t s tepper pulse . Under the above condit ions, the rotor is 

always under posit ive control and never free to drift. 
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II. ACTUATOR EVOLUTION 

Over the y e a r s , s tar t ing from the initial design concept, severa l generations 

of ac tua tors have been designed, developed, and built to control r eac to r movable 

re f l ec to rs . These ac tua to r s , as l is ted previously, have been identified by the 

r eac to r system for which they were designed. 

A. DESIGN DESCRIPTION AND FEATURES 

In genera l , the ac tua tors that have been used in r eac to r control a r e al l of 

the var iable re luctance EM t-ype. These EM devices were of the pulsed-dc de­

sign with a bui l t - in b rake . Although only one bas ic type of actuator was used on 

the r e a c t o r s , many a l te rna te designs were considered and ca r r i ed through t e s t ­

ing. The f i rs t actuator developed was used on the SNAP lOA reac to r . 

1. SNAP lOA Actuators 

At the s tar t of the SNAP lOA p rog ram, commerc ia l ly available ac tua tors of 

the type des i red that would function rel iably for 10,000 hr in a space environment 

were not avai lable. The high neutron and gamma flux, the high s teady-s ta te t e m ­

pe ra tu r e and t empe ra tu r e gradients , and the high vacuum of outer space required 

new technology in ro t a ry actuator design. The SNAP lOA actuator was thus b a s i ­

cally a commerc ia l s tepper motor with var ious modifications as follows: 

1) An attached brake was added to the s tepper motor connected in s e r i e s 

with the windings. 

2) Chrome plating was added to the lamination m a t e r i a l (AISI type M-36 

with black iron oxide). 

3) The bifilar winding was replaced with a h igh- t empera tu re winding and 

insulating sys tem (copper, g lass , mica and commerc ia l ceranaic type 

cement) . 

4) The end bells and bear ings were replaced with a h igh- tempera tu re 

design (titanium and carbon graphite) . 

5) The shaft and bear ing journals were replaced (titanium and aluminum 

oxide). 

This actuator , a s sembly and exploded view, is i l lus t ra ted in F igure 1. The ro tor 

a ssembly includes an Alnico pernaanent magnet . 

The rat ing of the SNAP lOA actuator was a modest 12 oz-in. stepping torque 

at 650°F, but it per formed the required operat ions sat isfactor i ly . 
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2. SNAP 2 D R M - 1 and SNAP 8 DRM A c t u a t o r s 

T h i s g e n e r a t i o n of a c t u a t o r s u t i l i z e d a so l id r o t o r ( F i g u r e 2) , an i m p r o v e d 

d e s i g n of the SNAP 1 OA a c t u a t o r . S e v e r a l o t h e r d e s i g n c h a n g e s w e r e m a d e in 

the r o t o r , s t a t o r , and b r a k e . The r o t o r w a s a o n e - p i e c e un i t wi th the p e r m a ­

nen t m a g n e t e l i m i n a t e d . The r o t o r s lo t s a r e m i l l e d " i n - l i n e " in c o n t r a s t to 

the SNAP 1 OA a c t u a t o r , in wh ich the s l o t s w e r e m i s a l i g n e d by one-ha l f the 

p i t ch of the s lo t . T h e s e c h a n g e s enab led the r o t o r to o p e r a t e m o r e r e l i a b l y a t 

the h i g h e r t e m p e r a t u r e and a l s o e l i m i n a t e d m a n y p a r t s such a s end c a p s , 

h o l d - d o w n u n i t s , lock p i n s , e t c . , t hus m ak ing m a n u f a c t u r i n g e a s i e r and l e s s 

c o s t l y . The end r e s u l t v^as a l i g h t e r , m o r e a c c u r a t e , and m o r e r e l i a b l e r o t o r 

a s s e m b l y . 

7573-1061A 

F i g u r e 2. I n d i r e c t D r i v e 1 . 8 - D e g r e e Step Solid R o t o r A c t u a t o r 
(S2DRM-1 and S8DRM) 
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F igure 3. Indirect Drive 1,8-Degree Step Actuator (S2DRM-1 - S8DRM Backup) 



The s t a t o r w a s changed f r o m a b i f i l a r winding wi th two c o i l s p e r p o l e , a s 

in the SNAP lOA a c t u a t o r , t o a s ing le wind ing wi th one co i l p e r p o l e . The 

c o n d u c t o r w a s changed f r o m c o p p e r to c h r o m e - p l a t e d c o p p e r w i r e . S ince m o r e 

g r o s s c o p p e r w a s u s e d , the h e a t i n g l o s s e s and p o w e r c o n s u m p t i o n w e r e r e d u c e d 

The b r a k e w a s r e d e s i g n e d and i n c o r p o r a t e d a w e t - w o u n d * t e c h n i q u e . It 

a l s o h a d a new type of f l e x u r e m e m b e r and o p t i m i z e d d e s i g n conf igu ra t ion to 

m e e t the a p p l i c a b l e r e q u i r e m e n t s . 

In g e n e r a l , the s o l i d - r o t o r p r o d u c e d m o r e t o r q u e (20 o z - i n . a t 950° F ) , had 

a g r e a t e r s t e p a c c u r a c y , and h i g h e r r e l i a b i l i t y a t l o w e r po-wer c o n s u m p t i o n 

than the SNAP 1 OA a c t u a t o r . 

Backup A c t u a t o r D e s i g n s 

A b a c k u p a c t u a t o r d e s i g n for the S2DRM-1 and S8DRM a c t u a t o r s i s shown 

in F i g u r e 3 . T h i s a c t u a t o r w a s s i m i l a r to S2DRM-1 and S8DRM excep t t ha t 

t he s t a t o r -was " s o l i d " (mach ined ) r a t h e r than be ing m a d e frona a l a m i n a t i o n 

s t a ck and -was d e s i g n e d to a c c e p t wet--wound s t a t o r c o i l s . T h e s e co i l s -were in ­

s e r t e d o v e r the p o l e s p r i o r to the p o l e s be ing i n s e r t e d in to the s t a t o r s h e l l . 

With t h i s m e t h o d of f a b r i c a t i o n the d e s i g n p e r f o r m a n c e w a s i m p r o v e d a s w e l l a s 

r e l i a b i l i t y . T h i s w a s due to the i n c r e a s e d qua l i ty of the p r e f a b r i c a t e d w e t w ind­

ing . T h i s d e s i g n h a d i m p r o v e d p e r f o r m a n c e bu t d e v e l o p m e n t w a s no t c o m p l e t e d 

in t i m e to b e u s e d on the s y s t e m . H o w e v e r , t h e e x p e r i e n c e ga ined w a s u s e d in 

t h e nex t g e n e r a t i o n of a c t u a t o r s . 

A d i r e c t d r i v e 0 . 5 - d e g r e e s t e p p e r m o t o r w a s d e s i g n e d a s a n a l t e r n a t e for 

t h e SNAP 2 and SNAP 8 s y s t e m s , a s shown in F i g u r e 4 . T h i s d e v i c e w a s 

e s s e n t i a l l y a r e l u c t a n c e s t e p p e r wh ich took a 0 . 5 - d e g r e e s t e p p e r p u l s e . The 

d e c r e a s e d s t e p s i z e w a s o b t a i n e d by i n c r e a s i n g the r o t o r d i a m e t e r to n e a r t h e 

m a x i m u n a m a c h i n e d i a m e t e r and u s i n g a double m a g n e t i c gap p e r p o l e . T h i s 

e l i m i n a t e d the n e e d for a g e a r t r a i n . The output t o r q u e of t h i s d e s i g n w a s m u c h 

l o w e r than p r e d i c t e d . Th i s w a s l a t e r d e t e r m i n e d to be due to an a d v e r s e m a g ­

n e t i c g a p - t o - t o o t h - w i d t h s i z e r a t i o . 

*Wet wind ing i s t he t e c h n i q u e of app ly ing a l iqu id c e r a m i c c e m e n t to the w i r e a s 
i t i s wound in to a co i l . The coi l i s s u b s e q u e n t l y o v e n - c u r e d to sol idify the 
i n s u l a t i o n s y s t e m . 
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Sti l l a n o t h e r b a c k u p a c t u a t o r w a s the L i n e a r A c t u a t o r dep ic t ed in F i g u r e 5. 

Th i s d e v i c e u t i l i z e d f r i c t i o n a l con t ac t po in t s to the o u t e r r o t a t a b l e d r u m , in 

conjunc t ion wi th a s o l e n o i d - a c t u a t e d m o v a b l e s e g m e n t to a c h i e v e m o t i o n . 

A d j u s t a b l e s tops r e g u l a t e d the d e g r e e of m o t i o n p e r s t e p s e q u e n c e . Difficulty 

in a d j u s t m e n t , s l i p p a g e , and h igh un i t l oad ing , wh ich w e r e conduc ive to self-

w e l d i n g , w e r e d e f i c i e n c i e s of th i s de s ign wh ich c a u s e d i t to be d r o p p e d . 

3. S8DS, S8DR, S P F . Z r H A c t u a t o r s 

The S8DS s y s t e m -was the f i r s t a c t u a t o r of the nex t g e n e r a t i o n . T h e s e 

a c t u a t o r s i n c o r p o r a t e d a l l of the i m p r o v e m e n t s in d e s i g n f e a t u r e s ga ined f r o m 

p r e v i o u s d e v e l o p m e n t , -with s e v e r a l a d d i t i o n a l i m p r o v e n a e n t s . T h i s g e n e r a t i o n 

of a c t u a t o r s -was r e q u i r e d due to an i n c r e a s e in t o r q u e r e q u i r e m e n t s of the ne-w 

g e n e r a t i o n of r e a c t o r s and of the r e f l e c t o r c o n t r o l s y s t e m . The m a j o r i m p r o v e ­

m e n t s c o n s i s t e d of f a b r i c a t i n g a l l t he s t r u c t u r a l p a r t s , inc lud ing the rotoi^ of the 

s a m e m a t e r i a l ; t h u s , d i f f e r e n t i a l t h e r m a l e x p a n s i o n s -were r e d u c e d and m o r e 

" w o r k i n g " i r o n w a s p r o v i d e d . The w o r k i n g i r o n m a t e r i a l w a s an a l loy of 27% 

coba l t and 73% i r o n , s e l e c t e d for i t s h i g h - t e m p e r a t u r e m a g n e t i c c h a r a c t e r i s t i c s . 

The r o t o r and s t a t o r t e e t h w e r e m a c h i n e d wi th the s a m e tooth p i t ch , -with a l l 

t e e t h of a p h a s e p rov id ing m a x i m u m t o r q u e at t h e s a m e va lue of r o t o r a n g u l a r 

d i s p l a c e m e n t . T h i s a l i g n m e n t i s i l l u s t r a t e d in F i g u r e s 6 and 7. A chip g u a r d w a s 

p l a c e d u n d e r the e n c a p s u l a t e d co i l and bobbin a s a sh i e ld to p r e v e n t d i r t o r i n ­

s u l a t i o n d u s t f r o m co l l ec t i ng b e t w e e n the r o t o r and s t a t o r t e e t h o r r e a c h i n g the 

b e a r i n g s . 

The b r a k e s u r f a c e s u t i l i z e d t h e s a m e i r o n m a t e r i a l wi th t e e t h m a c h i n e d to 

m a t c h du r ing e n g a g e m e n t . The m a t i n g s u r f a c e s w e r e coa t ed wi th co l lo ida l 

g r a p h i t e and MoS-, to inh ib i t s e l f - w e l d i n g . An exp loded vie-w d r a w i n g i s sho-wn 

in F i g u r e 8. 

The S8DR a c t u a t o r a f t e r a c c e p t a n c e t e s t i n g i s shown in F i g u r e 9. Th i s 

ac-tuator h a d t h e foUo-wing a d d i t i o n a l i m p r o v e m e n t s no t con t a ined in the S8DS 

a c t u a t o r : 

1) The l e a d cab le w a s c o n n e c t e d d i r e c t l y to the c o i l s , i n c r e a s i n g 

r e l i a b i l i t y by e l i m i n a t i o n of the c o n n e c t o r s , wh ich h a d a f a i l u r e 

h i s t o r y . 
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Figure 5. Linear Actuator (SNAP 2 - SNAP 8 Backup) 
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2) The conductor wi re was changed from chrome plated copper to 

s ta inless clad copper. 

3) The stepper coils were connected in para l le l ra ther than s e r i e s . 

These improvements -were a lso included in the SPF and ZrH ac tua to r s . Al­

though there -was one basic actuator , it had a different rating for each applica­

tion (Table 2), based upon wi re gage used, duty cycle, and previous tes t data 

obtained. 

TABLE 2 

ACTUATOR OPERATING CHARACTERISTICS 

P a r a m e t e r 

Dynamic torque (oz-in. ) 

Load e r r o r (deg) 

Posi t ional torque (oz-in. ) 

Holding torque (oz-in. ) 

Reactor 

S8DR/S8DS 

37 

0.412 

20 

88 

SPF 

52 

0.60 

42 

80 

ZrH 

170 

0 .7 

150 

240 

With the i nc r ea se in torque requi red from the actuator over the DRM s e r i e s , 

a l a r g e r envelope was allowed, -which accommodated an improvement in bearing 

design and allowed the th rus t surfaces to be mounted adjacent to each other. 

This faci l i tates ro tor axial positioning and is especial ly valuable in accommo­

dating the rma l t r ans ien t s and differential t e m p e r a t u r e s . These ac tua tors -were 

4 -1 /8 in. in d iameter , 8-3/8 in. long, and weighed 15-3/4 lb. 

The la tes t actuator to be designed, for the 5-kwe the rmoe lec t r i c sys tem, 

is d iscussed in detail in Section III. 
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B. PERFORMANCE OF ACTUATORS 

After the ac tua tors were designed, engineering models were made to tes t 

the various components, such as coi ls , bear ings , and construction fea tures . 

The resu l t s of these tes t s -were factored into the design of developmental actu­

a to rs -which were prototypes of the reac tor systena ac tua to r s . Testing of these 

units establ ished the acceptance tes t r equ i rement s . In genera l , the develop­

mental ac tua tors -were used as the qualification tes t ac tua to r s . 

1. Reactor System Actuators 

Actuators were used in reac tor operation both in ground testing and in 

flight se rv ice . The following is a summary of the successful operation of actu­

a to rs in a reac to r sys tem: 

SNAP lOA Ground Test 2 Actuators 10,000 hr 

SNAP lOA Flight 2 Actuators 46 days 

S8DR 6 Actuators 6,400 hr 

2. Development and Qualification Actuators 

Actuator developmental and qualification test ing is summar ized in the 

following subsect ions. In general , the t e s t s were successful and infornaa-

tion obtained in the testing allowed not only for the es tabl ishment of the accep­

tance tes t requ i rements of the sys tem ac tua tors , but also established the r e ­

qui rements and changes necessa ry for more re l iable units to operate with 

grea te r torques at higher t e m p e r a t u r e s . 

a. SNAP lOA 

A total of 2 7 ac tua tors were made and tested for a total unit t es t t ime of 

90,600 h r . The maximum unit tes t was 11,400 h r . Five ac tua tors were life 

tested for 9,000 hr and 60 thermal cycles each, while two ac tua tors were radia-
9 18 

tion tes ted at 1.8 to 5.5 x 1 0 R and 1 to 5 x 1 0 nvt > 0.1 Mev . Other units 
were shock and vibration tested as well as being tes ted for engineering evaluation. 
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b . SNAP 2 DRM-1 and SNAP 8 DRM 

The mod i f i ca t i on to t h e s e a c t u a t o r s for the h i g h e r t o r q u e and t e m p e r a t u r e 

w a s r e l a t i v e l y m i n o r ; bu t to eva lua t e the mod i f i ca t i on , 7 un i t s w e r e m a d e and 

t e s t e d for a t o t a l of 20,000 h r a t 1 0 0 0 ° F . Due to mount ing c h a n g e s , shock and 

v i b r a t i o n t e s t i n g w a s p e r f o r m e d on th i s d e s i g n . R a d i a t i o n t e s t i n g w a s not r e r u n , 

a s a l l the m a t e r i a l s of c o n s t r u c t i o n had been p r o v e n in the SNAP lOA r a d i a t i o n 

t e s t s . 

c. SNAP S8DS and S8DR A c t u a t o r s 

The l a t e s t a c t u a t o r s t e s t e d w e r e of the SBDS and the S8DR d e s i g n . 

T h e s e a c t u a t o r s p e r f o r m e d to the r e q u i r e m e n t s of the spec i f i c a t i on . The fol low­

ing i s a s u m m a r i z e d t abu l a t i on of the t e s t i n g : 

A c t u a t o r S8DS S8DR 

A c t u a t o r s , d e v e l o p m e n t a l 

T o t a l t e s t tinae (hr) 

T e s t t e m p e r a t u r e ( °F) 

Shock and v i b r a t i o n 

R a d i a t i o n 

One of the S8DR un i t s w a s t e s t e d for ove r 20,000 h r wi thou t ma l func t ion . 

3. C o m p o n e n t T e s t s 

C o m p o n e n t t e s t s w e r e p e r f o r m e d on v a r i o u s i t e m s to d e t e r m i n e the m o s t 

su i t ab l e m a t e r i a l s and p r o c e s s e s . Al though a l l i t e m s of the a c t u a t o r w e r e 

t e s t e d , s o m e of the m o s t s ign i f i can t r e s u l t s a r e p r e s e n t e d in the following s u b ­

s e c t i o n s . 

a. Coi l T e s t i n g 

Coi l t e s t i n g w a s p e r f o r m e d on both m a t e r i a l and c o n s t r u c t i o n . The m o s t 

r e l i a b l e c o n s t r u c t i o n (and the r e f e r e n c e des ign) w a s found to be a w e t - w o u n d 

coi l of s t a i n l e s s s t e e l c lad c o p p e r , wi th b u i l t - i n l ead w i r e of t h i s s a m e m a t e r i a l , 

wound on an a l u m i n a bobbin . O the r m a t e r i a l s t e s t e d w e r e : 

1) D i s p e r s i o n h a r d e n e d coppe r 

2) N i c k e l c lad s i l v e r 

15 

83,000 

1025 

Y e s 

Y e s 

3 

53,581 

1125 

N o 

N o 
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3) Coppe r 

4) C h r o m e p l a t ed c o p p e r . 

One v e r y i m p o r t a n t f a c t o r in the s e l e c t e d coi l d e s i g n w a s tha t t h e r e had n e v e r 

b e e n a c a t a s t r o p h i c f a i l u r e of a r e f e r e n c e d e s i g n co i l , i . e . , s t a i n l e s s s t e e l c l ad 

c o p p e r . 

b . B e a r i n g T e s t s 

T e s t s w e r e p e r f o r m e d on su i t ab l e b e a r i n g s . Th i s t e s t i n g and r e s u l t s f o r m 

the b a s i s of a s e p a r a t e s u m m a r y r e p o r t . -•' 

c. S t r u c t u r a l F a b r i c a t i o n 

A n u m b e r of t e s t s w e r e p e r f o r m e d on the m e t h o d of f a b r i c a t i o n inc lud ing 

w e l d i n g , b r a z i n g , and bo l t ing . The m o s t s a t i s f a c t o r y s t r u c t u r e w a s found to be 

one m a c h i n e d f rom one p i e c e of b a r s tock and bo l ted t o g e t h e r , wi th s p e c i a l 

a t t e n t i o n given to t h e r m a l e x p a n s i o n s . 

4 . M a t e r i a l s T e s t i n g 

M a t e r i a l s e v a l u a t e d by t e s t i ng for su i t ab l e m a g n e t i c q u a l i t i e s w e r e : 

1) 27% coba l t i r o n 

2) P u r e i r o n 

3) Si l icon i r o n s . 

The m o s t su i t ab l e m a t e r i a l , a s r e g a r d s m a g n e t i c p r o p e r t i e s a t h igh t e m p e r a ­

t u r e s , w a s the 27% coba l t i r o n . It w a s a l s o suf f ic ient ly duc t i l e for f a b r i c a t i o n 

by the s e l e c t e d m e t h o d s . C a r e w a s r e q u i r e d , h o w e v e r , due to a s o m e w h a t b r i t t l e 

n a t u r e a t a m b i e n t t e m p e r a t u r e . 

5. S u b a s s e m b l i e s T e s t i n g 

The s u b a s s e m b l i e s of the s t a t o r of the s t e p p e r m o t o r and the b r a k e a s s e m ­

b l i e s w e r e a l s o t e s t e d . T h i s w a s g e n e r a l l y done b e f o r e , o r in conjunct ion wi th , 

t he bu i ld ing of t h e d e v e l o p m e n t a l a c t u a t o r s . T e s t d u r a t i o n w a s n o r m a l l y only a 

few^ h u n d r e d h o u r s , a l though s o m e t e s t s w e r e conduc ted for up to 15,000 h r . 

* P . H. H o r t o n and W. J . K u r z e k a , " Z i r c o n i u m H y d r i d e R e a c t o r Con t ro l S y s t e m 
B e a r i n g D e v e l o p m e n t S u m m a r y R e p o r t , " A I - A E C - 1 3 0 7 9 (June 1973) 
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I I I . 5-kwe REACTOR THERMOELECTRIC SYSTEM ACTUATOR 

A. DESIGN R E Q U I R E M E N T S 

The l a s t a c t u a t o r d e s i g n e d w a s for the 5-kwe R e a c t o r T h e r m o e l e c t r i c 

S y s t e m . It w a s d e s i g n e d to m e e t the i n c r e a s e d output r e q u i r e m e n t s and to 

c o n f o r m to the a l l owab le s p a c e . Th i s d e s i g n i s a l og i ca l e x t e n s i o n of the S8DR 

a c t u a t o r . The f i r s t s t a g e of g e a r i n g i s inc luded wi th in t h e a c t u a t o r enve lope . 

T h i s con f igu ra t i on is shown in F i g u r e 10. 

1. P e r f o r m a n c e 

The p e r f o r m a n c e r e q u i r e m e n t s of the a c t u a t o r , a s m e a s u r e d a t the input to 

the f i r s t s t a g e of g e a r i n g , a r e a s fo l lows : 

Output s t ep s i z e 7.2 d e g r e e s (4 p u l s e s of 1.8 d e g r e e ) 

S c r a m t o r q u e (6 r p m ) 70 o z - i n . , m i n i m u m 

Stepping t o r q u e 100 o z - i n . , m i n i m u m 

B r a k e t o r q u e (holding) 180 o z - i n . , m i n i m u m 

L i f e t i m e 

H o u r s 44,000 m i n i m u m 

T h e r m a l c y c l e s 50 (50° F to 800° F ) 

O p e r a t i o n a l c y c l e s 50,000 s t e p s in e a c h d i r e c t i o n 
( s t ep r a t e ) 

The e n v i r o n m e n t a l r e q u i r e m e n t s , in add i t ion to n o r m a l h a n d l i n g , sh ipp ing , 

and s t o r a g e , i nc lude l aunch a c c e l e r a t i o n and v i b r a t i o n , a s w e l l a s h i g h - t e m p e r ­

a t u r e ('^ 800° F ) h i g h - v a c u u m o p e r a t i o n . The d e s i g n r e q u i r e m e n t s r e s u l t e d 

f r o m the r e f l e c t o r and a c t u a t o r d r i v e c o n c e p t u a l s t u d i e s . V a r i o u s a r r a n g e m e n t s 

of the r e f l e c t o r d r i v e and a c t u a t o r c o m p o n e n t s w^ere s tud ied s i m u l t a n e o u s l y to 

d e t e r m i n e the m o s t su i t ab l e o v e r a l l con f igu ra t ion . As each a r r a n g e m e n t of the 

r e f l e c t o r d r i v e gave a d i f fe ren t t o r q u e and s t ep r e q u i r e m e n t , so did each a c t u ­

a t o r a r r a n g e m e n t p r o d u c e a d i f fe ren t t o r q u e and s t e p capab i l i t y . B a s i c a l l y , t h i s 

s tudy r e s u l t e d in an e n e r g y c o n t r o l s y s t e m . The s tudy r a p i d l y po in ted up the 

n e e d for the a c t u a t o r to deve lop an i n c r e a s e d e n e r g y capab i l i t y p e r s t e p . 
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B. DESIGN O P T I M I Z A T I O N STUDIES 

F r o m p r e v i o u s e x p e r i e n c e , i t w a s e x p e c t e d tha t an i n c r e a s e d e n e r g y c a p a ­

b i l i ty p e r s t e p would r e q u i r e an i n c r e a s e in o v e r a l l m a c h i n e v o l u m e due to an 

i n c r e a s e d flux r e q u i r e m e n t , or to a c c o m m o d a t e an i n c r e a s e d m o t i o n of the 

t o r q u e - p r o d u c i n g e l e m e n t s . The c o n c e p t u a l r e f l e c t o r s t u d i e s e s t a b l i s h e d a 

m a x i m u m d i a m e t e r and the d e s i r a b i l i t y of a s h o r t a c t u a t o r l eng th . Th i s e s t a b ­

l i s h e d the a c t u a t o r d i a m e t e r for the s t u d i e s . With the i n c r e a s e in ou t s i de d i a m ­

e t e r , the r o t o r d i a m e t e r could be i n c r e a s e d , wh ich would a l low for an i n c r e a s e 

in the n u m b e r of t e e t h o r an i n c r e a s e in tooth s i z e , s i n c e t h e r e i s a f ini te 

r a t i o b e t w e e n tooth s i z e , n u m b e r of t e e t h , and d i a m e t e r . 

A l s o f a c t o r e d into the s e l e c t i o n of the d e s i g n , in add i t ion to the r e q u i r e m e n t s 

of t o r q u e and s i z e l i m i t a t i o n s , w a s the r e q u i r e m e n t to u s e d e s i g n p a r a m e t e r s a s 

e s t a b l i s h e d by the p e r f o r m a n c e of the S8DR a c t u a t o r . Th i s i n c l u d e d not only 

l i m i t a t i o n s on the m a t e r i a l w o r k i n g l e v e l s , such a s c u r r e n t d e n s i t y , but a l s o 

t e s t - p r o v e n m e t h o d s of c a l c u l a t i o n . Any e x t e n s i o n s of the p a r a m e t e r s or l e v e l s 

had to be p r o v e n by t e s t i n g . 

E x p e r i m e n t a l da ta ob ta ined in the p a s t w^as r e e v a l u a t e d by u s e of a c o m p u t e r 

code p r e p a r e d to c a l c u l a t e the p e r f o r m a n c e of an a c t u a t o r f r o m i t s p h y s i c a l s i z e . 

The m a i n p r o b l e m e n c o u n t e r e d w^as the eva lua t i on of the equ iva l en t flux l e a k a g e 

pa th b e t w e e n t e e t h a t the poin t of m a x i m u m t o r q u e . V a r i o u s a n a l y t i c a l m o d e l s 

•were c h e c k e d wi th the a s s i s t a n c e of the c o m p u t e r un t i l a r e a s o n a b l e c o r r e l a t i o n 

wi th the 0 .063 - in . - w i d e s l o t s (as u s e d in the S8DR des ign) w a s ob ta ined , a s w e l l 

a s wi th the s m a l l e r 0 .040 - in . - w i d e s l o t s . With the a id of t h i s p r o g r a m , an 

e x t r a p o l a t i o n to l a r g e r t e e t h w a s p e r f o r m e d . T h i s e x t r a p o l a t i o n , a s w e l l a s an 

e v a l u a t i o n of m a c h i n e s wi th s m a l l e r t e e t h , i n d i c a t e d the d e s i r a b i l i t y of l a r g e r 

t e e t h in the a c t u a t o r for the 5-kw^e s y s t e m . 

To ver i fy the c o m p u t e r code ab i l i t y to c a l c u l a t e the l a r g e r tooth a c t u a t o r 

p e r f o r m a n c e , a t e s t a s s e m b l y of S8DR d e v e l o p m e n t a l p a r t s , wi th r e p l a c e m e n t 

p o l e s hav ing l a r g e r t e e t h , w^as m a d e and t e s t e d . The add i t i ona l i n f o r m a t i o n 

ob ta ined , v e r i f i e d t h e c o m p u t e r p r o g r a m . 
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1. Analytical Calculations 

A stepper motor . F igure 10, is a permeance machine; that i s , i ts output 

energy is derived from a change of permeance with physical motion of the shaft. 

A permeance machine* will produce torque in accordance with the follow^ing 

formula: 

T = K NI^ | P 

w^here 

T = stat ic torque (oz-in. ) 

K = a constant to accommodate units 

NI = magnetomotive force (ampere turns) 

dP 
-7-^ = differential pe rmeance with angular motion 

The problem a r i s e s in the evaluation of the differential pe rmeance . This is 

compounded by the stepper having two types of pe rmeance change with the shaft 

motion: (1) that of the magnetic gap, and (2) that of the ma te r i a l s of cons t ruc­

tion, due to changing flux leve ls . 

Because it was intended to calculate the performance of a stepper motor 

from its physical s ize , the permeance formula -was converted to a more con­

venient form as follow^s: 

T = K L N R (B^^ G^ - B^^G^) 

where 

T = static torque (oz-in. ) 

K = constant to accommodate units 

L = axial length of teeth (in. ) 

N = number of working teeth 

R = radius of rotor gap (in. ) 

B, = flux density maximum in gap (KL/in. ) 

G^ = magnetic gap rotor to s tator (in. ) 

G^ = equivalent leakage gap (in. ) 
2 

Bp = equivalent leakage gap flux (KL/in. ) 

*H. C. Ro te r s , Electromagnet ic Devices, (John Wiley & Sons, I n c . , 1941) 
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The above f o r m u l a n e g l e c t s the change in p e r m e a n c e wi th in the m a g n e t i c m a t e ­

r i a l . T h i s o m i s s i o n w a s b a s e d upon the c o n s i d e r a t i o n tha t the ne t change in 

flux d e n s i t y wi th in the m a g n e t i c m a t e r i a l for an i n f i n i t e s i m a l m o t o r m o v e m e n t 

w^ould r e s u l t in a n e g l e c t a b l e p e r m e a n c e change of the a c t u a t o r ; and , t h e r e f o r e , 

t he only p e r m e a n c e change to be c o n s i d e r e d i s t ha t of the gap . Subsequen t t e s t ­

ing v e r i f i e d th i s a s s u m p t i o n . 

Al l the f a c t o r s of the p r e c e d i n g f o r m u l a can be r e a d i l y c a l c u l a t e d e x c e p t the 
2 

t e r m B^ G^. T h i s t e r m , w^hen c a l c u l a t e d b a s e d upon a know^n m a c h i n e and i t s 

output t o r q u e , i s a l m o s t a s l a r g e a s B G^ . T h i s r e q u i r e s both of t h e s e t e r m s 
2 2 

(B G and B G_) to be c a l c u l a t e d w^ith a h igh d e g r e e of a c c u r a c y for s a t i s ­

f a c t o r y r e s u l t s . A p r o c e s s of i t e r a t i o n b e t w e e n c a l c u l a t i o n and t e s t i n g h a s in ­

c r e a s e d t h e a c c u r a c y of c a l c u l a t i o n un t i l e x c e l l e n t a g r e e m e n t can be ob ta ined 

b e t w e e n c a l c u l a t i o n and t e s t i n g wi th in the t e s t e d tooth s i z e s . 

Add i t iona l t e s t i n g h a s b e e n p e r f o r m e d wi th l a r g e r too th s i z e s and the da ta o b ­

t a i n e d h a s b e e n f a c t o r e d into the c a l c u l a t i o n m e t h o d . The m a i n p u r p o s e of t h i s a d d i -

t i o n a l t e s t i n g w a s to e v a l u a t e t h e ef fec t ive r a d i u s of the t o o t h c o r n e r due to l o c a l s a t u ­

r a t i o n a t the c o r n e r . The b a s i c m e t h o d of c a l c u l a t i o n i s to d e t e r m i n e the ef fect ive gap 

(G_), wi th the above c o r n e r r a d i u s e d by a m e t h o d of s u p e r p o s i t i o n i n g , and then 

c a l c u l a t e the a s s o c i a t e d flux d e n s i t y (B_) f r o m the app l i ed a m p e r e t u r n s a t t h i s 

l o c a t i o n . T h i s a d d i t i o n a l t e s t i n g w^ith the l a r g e r too th s i z e not only i m p r o v e d 

the c a l c u l a t i o n m e t h o d , bu t j u s t i f i ed the r e s u l t s f r o m the p r e l i m i n a r y c a l c u l a ­

t ions for the p u r p o s e of a c t u a t o r s e l e c t i o n for the 5 -kwe s y s t e m r e f l e c t o r d r i v e . 

T h e r e i s a d i r e c t r e l a t i o n s h i p b e t w e e n s t e p s i z e and the n u m b e r of t e e t h on 

the r o t o r ; t h i s r e l a t i o n s h i p d e t e r m i n e s the r o t o r d i a m e t e r . With an ou t e r a c t u ­

a t o r d i a m e t e r l i m i t a t i o n , t he r o t o r d i a m e t e r a f fec t s the r o o m a v a i l a b l e for m a g ­

n e t i c she l l m a t e r i a l , s t a t o r p o l e s and m a g n e t co i l . F o r each tooth s i z e and s t e p 

s i z e t h e r e i s a d i f fe ren t p e r f o r m a n c e c u r v e . 

C a l c u l a t i o n s w e r e i n i t i a l l y m a d e to a r r i v e a t a s t e p p e r m o t o r d e s i g n wi th a 

f ixed l e n g t h , s h e l l d i a m e t e r , and m a g n e t i c gap . T h e s e c a l c u l a t i o n s w e r e in ­

t e n d e d to e s t a b l i s h the o v e r a l l p e r f o r m a n c e r a n g e and to d e t e r m i n e the o p t i m u m 

p e r f o r m a n c e for each a v a i l a b l e s t e p s i z e , r e c o g n i z i n g t h a t t he t e e t h / p o l e m u s t 

be a n i n t e g e r , and t h a t the r o t o r t e e t h m u s t be two g r e a t e r t han the t o t a l s t a t o r 

t e e t h . 
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As p r e v i o u s l y m e n t i o n e d , the c a l c u l a t i o n s w e r e p e r f o r m e d u s i n g a c o m ­

p u t e r code wh ich w a s a v a i l a b l e p r i o r to the t e s t i n g of the l a r g e r t e e t h . F o r 

the p u r p o s e of a c t u a t o r s e l e c t i o n , t h i s code had the fol lowing inpu t s and 

o u t p u t s : 
Inputs Outputs 

T r i a l r o t o r d i a m e t e r F i n a l r o t o r d i a m e t e r 
M a g n e t i c gap T e e t h / p o l e 
C o r e l eng th Coil c u r r e n t 
Shel l ID Coil vo l t age 
Shel l OD C u r r e n t dens i t y 
Tooth s i z e S ta t i c t o r q u e 
Slot depth Stepping t o r q u e 
P o l e wid th T u r n s / c o i l 
P o l e t h i c k n e s s I n d u c t a n c e 
W i r e d i a m e t e r F l u x d e n s i t i e s in a l l p a r t s 
Conduc to r r e s i s t i v i t y A m p e r e t u r n s in a l l p a r t s 

A t y p i c a l c o m p u t e d t o r q u e output , for 5 t e e t h / p o l e , 2 . 1 4 3 - d e g r e e s t e p , i s shown 

in F i g u r e 1 1. Al l of t h e s e c a s e s a r e a c t u a t o r s t ha t h a v e the s a m e ou t s ide d i a m ­

e t e r and p r o d u c e the s a m e s t e p s i z e . As show^n in t h i s f i g u r e . C a s e 2 h a s the 

b e s t p e r f o r m a n c e a t any va lue of c u r r e n t d e n s i t y . A r e p l o t of the v a r i a t i o n of 
2 

t o r q u e wi th tooth s i z e a t 8000 a m p / i n . in the coi l i s shown a s F i g u r e 12. 

T h e r e f o r e , the only a c t u a t o r to be c o n s i d e r e d for d e t a i l d e s i g n wi th t h i s s t e p 

s i z e con ta in ing 5 t e e t h / p o l e , would be one wi th a s lo t wid th of abou t 0.105 in . 

S i m i l a r c a l c u l a t i o n s and c u r v e s w e r e m a d e for each a v a i l a b l e s t e p s i z e ( in t ege r 

s l o t s / p o l e ) . T h i s r e s u l t e d in a f in i te n u m b e r of a c t u a t o r s (six) to be e v a l u a t e d 

a g a i n s t the r e q u i r e m e n t s . 

As the c a p a b i l i t i e s of the a c t u a t o r v a r y for each s t e p s i z e , so do the r e f l e c ­

t o r d r i v e r e q u i r e m e n t s v a r y . The p r e l i m i n a r y t o r q u e r e q u i r e m e n t s for the 

a c t u a t o r a r e g iven in T a b l e 3 . 

T h e s e r e q u i r e m e n t s of a c t u a t o r t o r q u e w e r e ob t a ined by a d r i v e s tudy 

in wh ich e a c h s t ep s i z e ( t e e t h / p o l e ) w a s c o n s i d e r e d , a long wi th the g e a r i n g 

to p r o d u c e a r e f e r e n c e r e f l e c t o r m o t i o n for a l l of the p h y s i c a l e n v i r o n m e n t a l 

cond i t i ons and wi th the f e a s i b l e r a n g e of b e a r i n g f r i c t i on . The e x p e c t e d 

f r i c t i o n coef f ic ien t w a s 0.35 o v e r the o p e r a t i n g r a n g e but t e s t da t a i nd i ca t ed 

t h a t t he f r i c t i o n coeff ic ient h a s u p p e r and l o w e r l i m i t s of 0.60 and 0.10. F o r 

the t h r e e coef f i c ien t s of f r i c t i o n , and for e a c h s t e p s i z e , t he t o r q u e r e -

q u i r e i n e n t s of the a c t u a t o r w e r e c a l c u l a t e d ; the r e s u l t a n t m a x i m u m t o r q u e 
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Figure 12. Actuator Torque Versus Tooth Width 

TABLE 3 

ACTUATOR STEP SIZE VERSUS TORQUE REQUIREMENTS 

Tee th /Po le 

Step (deg) 

F o u r - s t e p sequence (deg) 

Reference movement (in. ) 

Sc ram rpm 

Required step torque . 
maximum (oz-in. ) 

Required s c r a m torque . 
maximum (oz-in. ) 

8 

1.37 

5.48 

0.0054 

4.57 

103 

70 

6 

1.8 

7.2 

0.0054 

6.00 

75 

51 

5 

2.14 

8.65 

0.0054 

7.12 

62 

42 

4 

2.65 

10.60 

0.0054 

8.84 

49 

34 

3 

3.46 

13.84 

0.0054 

11.50 

37 

27 
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equirements a r e l is ted in Table 3. A typical tabulation of these calculations 

er formed on the 6-tooth/pole (1.8-degree step) actuator is given in Table 4. 

TABLE 4 

ACTUATOR TORQUE REQUIREMENTS 

Condition 

Ground tes t ( reactor down) 

Accelera t ion (g) 

Stepping torque (oz-in. ) 

Sc ram torque (oz-in. ) 

Brake holding torque (oz-in. ) 

Flight 

Accelera t ion (g) 

Stepping torque (oz-in. ) 

Scram torque (oz-in. ) 

Brake holding torque (oz-in. ) 

Flight 

Accelera t ion (g) 

Stepping torque (oz-in. ) 

Scram torque (oz-in, ) 

Brake holding torque (oz-in. ) 

Launch ( reactor down) 

Accelera t ion (g) 

Brake holding torque (oz-in. ) 

Launch ( reactor up) 

Accelera t ion (g) 

Brake holding torque (oz-in. )' 

F r ic t ion Coeffi 

0.1 

+ 1.0 

16.4 

9.4 

3.6 

+0,1 

3.9 

0.1 

1.1 

-0.1 

9.9 

0.0 

3.2 

+16.25 

138.9 

-16.25 

170.8 

0.35 

+1.0 

42.2 

27.2 

0 

+0.1 

9,9 

1.8 

0.0 

-0.1 

24.9 

3.7 

0.0 

+16.25 

0 

-16.25 

0 

cient 

0.6 

+ 1.0 

74.4 

50.6 

0 

+0.1 

17.3 

6.5 

0.0 

-0.1 

43.9 

15.2 

0.0 

+16.25 

0 

-16.25 

0 

'•-Control Sector held by mechanica l full-out stop. 
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The resul tant r equ i rements a r e plotted as F igure 13. Also shown in F igure 13 

is a s c r a m rating curve . This is the s c r a m torque curve as modified (by 

dividing) by the actuator speed derating factor for the various s c r a m speeds as 

de termined from exper imenta l data generated on the S8DR design ac tua to r s . 

As the actuator speed is inc reased , the t ime available for phase energization 

must be decreased . Due to the coil inductance and actuator dynamic cha rac te r ­

i s t i c s , a l e s s favorable condition for the generat ion of torque to s t a r t the actu­

ator at higher speed r e s u l t s . Commerc ia l units normal ly s t a r t at reduced 

speed and gradually i nc rease speed for full-speed driving. At s c r a m speeds 

l e s s than 8 rpm, it is more des i rable to apply the derating factor to the actuator 

than to complicate the control ler for var iable speed. 

There is a difference in the drive sys tems torque (Figure 13) and the p r e ­

viously d iscussed peak actuator torque. The peak actuator torque d iscussed 

was based upon the torque generated at the maximum permeance change loca­

tion, i, e, , w^hen the ro tor is displaced 1 /4 tooth pitch. With the rotor so d is ­

placed, as by a steady load, the energization of the second phase resu l t s in a 

displacement of that phase of 1 /2 tooth pitch, w^hich is a ze ro- to rque location. 

Therefore , when a steady load is advanced, the rotor must move from the 

maximum torque location to a location where it may be picked up by the next 

phase energized. This torque , which is the system, stepping torque or dynamic 

torque, is approximately 63% of the s tat ic or maximum phase torque , depending 

on stepping ra te and phase over lap. The resu l t of this calculation is shown in 

F igure 14, which compares the actuator output capabil i t ies range to the dr ive 

torque range for all feasible ac tua tors through the actuator s c r a m speed range, 

considering al l factors of the dr ive . 

On the bas i s of the preceding evaluation, an actuator having 6 tee th /pole , 

w^hich resu l t s in a 6 rpm s c r a m speed, was the p re l iminary selection. Then 

the other paramieters a r e a lso fixed. 

2. Exper imenta l 

A minor amount of exper imental effort w^as performed on the 5-kwe sys tem 

actuator design. The exper imental effort consisted of (1) an EM torque tes t , 

(2) a sheathed cable te rmina t ion mockup, and (3) t e s t s of the sheathed cable. 

The EM torque t e s t was performed to obtain exper imenta l data of the 
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p e r f o r m a n c e of t e e t h l a r g e r than 0.063 in . w^ide. The s h e a t h e d cab l e t e r m i n a ­

t ion m o c k u p w a s an e x p e r i m e n t a l s e tup to d e t e r m i n e the f ea s ib i l i t y of the t e r m i n ­

a t i o n s c h e m e and ident i fy f a b r i c a t i o n d i f f i cu l t i e s . E x p e r i m e n t a l t e s t s of the 

s h e a t h e d cab l e w^ere p e r f o r m e d to d e t e r m i n e the cab le c h a r a c t e r i s t i c s . T h e s e 

t e s t s w^ere conduc ted p r i m a r i l y to a id i n the r e f l e c t o r con f igu ra t ion d e s i g n , bu t 

s i n c e the end of the cab l e would h a v e b e e n a n c h o r e d on the a c t u a t o r , the r e s u l t s 

wou ld h a v e s o m e a p p l i c a b i l i t y to the a c t u a t o r d e s i g n . 

3. D e s i g n Se l ec t i on 

As p r e v i o u s l y d e s c r i b e d , the p r e l i m i n a r y d e s i g n s e l e c t e d w^as a 6 - t o o t h / 

p o l e , 1 . 8 - d e g r e e s t e p a c t u a t o r . Us ing t h e e x p e r i m e n t a l d a t a , t he l a r g e r too th 

s i z e t e s t r e s u l t s w^ere f a c t o r e d in to the c o m p u t e r p r o g r a m v/i thout a p p r e c i a b l e 

change in c a l c u l a t e d r e s u l t s . The c o m p u t e r p r o g r a m i n d i c a t e d t h a t a 0 .090- in . 

too th w^as a s s a t i s a f a c t o r y a s the 0 .085- in . too th p r e v i o u s l y s e l e c t e d . How^ever, 

s i n c e the s m a l l e r r o t o r of t h e 0 .085- in . too th w a s m o r e d e s i r a b l e , due to the 

g r e a t e r a v a i l a b l e co i l s p a c e , t he s e l e c t e d d e s i g n u t i l i z e d the 0 .085- in . w ide 

t e e t h . T h i s a c t u a t o r w^ill m e e t t h e output p e r f o r m a n c e of: 

Output s t e p s i z e 100 o z - i n . , m i n i m u m 

S c r a m t o r q u e (6 r p m ) 70 o z - i n . , m i n i m u m 

B r a k e ho ld ing t o r q u e 180 o z - i n . , m i n i m u m 

The b r a k e ho ld ing t o r q u e i s ob ta ined f r o m the e n g a g e m e n t of t e e th in the tooth 

b r a k e d i sk wi th s l o t s in the too th b r a k e r i n g . T h i s too thed b r a k e d i sk and r ing 

c o n c e p t i s the d e s i g n u s e d in the S8DR a c t u a t o r . The b r a k e w a s s i z e d f r o m the 

l ayou t and c a l c u l a t e d d i r e c t l y , u t i l i z i ng a l l t he a v a i l a b l e s p a c e . The r e q u i r e d 

a x i a l f o r c e to k e e p the b r a k e d isk and r i n g engaged and to deve lop the r e s t r a i n i n g 

t o r q u e w a s c a l c u l a t e d and bu i l t in to the be l l ows a s s e m b l y which r e s t r a i n s the 

r o t a t i o n a l f o r c e . The b r a k e w a s not o p t i m i z e d bu t d e s i g n e d to be c o m p a t i b l e 

wi th the s t e p p e r m o t o r . 

C. P R O T O T Y P E DESIGN 

A l ayou t w a s p r e p a r e d i n c o r p o r a t i n g the above d e s i g n po in t s ( see F i g u r e 10). 

The o v e r a l l s i z e of the a c t u a t o r i s 5 - 1 / 8 in . in d i a m e t e r and 5 - 1 / 8 in . long , 

( inc luding the f i r s t s t a g e of g e a r i n g . ) T h i s a c t u a t o r i s d e s i g n e d for face m o u n t ­

ing , hav ing t a p p e d h o l e s in the f ron t end b e l l for bo l t s from, the r e f l e c t o r d r i v e 
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housing. As can be observed, the brake is built into the actuator in a manner 

s imi lar to the S8DR design, except that the spring action of the brake is included 

in the bellows assembly design. 

1. Descript ion 

The ac tuator , as designed for the 5-kwe Thermoe lec t r i c System, consis ts 

of th ree bas ic p a r t s : the brake assembly , the stepper assembly , and the f i rs t 

stage of gearing. These bas ic par t s all share a common housing alignment and 

common bear ing alignment. The general ma te r i a l of construction is 2 7% cobalt 

i ron, chosen for its high t empera tu re magnetic capability. The design is fully 

integrated, avoiding any duplication of function. 

The output shaft has both a groove and through-hole for interfacing w^ith the 

ref lector drive rotatable screw^ shaft. This shaft is in tegral with the f i r s t - s t age 

reduction gear w^hich is made of Hastelloy for strength and i ts coefficient of 

expansion match with the cobalt i ron. The pinion of the reduction gear is 

machined into the ro tor , which has 50 teeth in its outer d iameter (2.706 in. ) 

matching the teeth of the pole faces . The rotor and poles a r e machined from 

cobalt i ron selected for i ts magnetic p roper t i es at high t empera tu r e . 

The s tator has a 4-phase , 8-pole dc winding which, with the rotor design, 

causes the ro tor to rotate 1.8 degrees for each sequential pole energizat ion. 

The s tator windings uti l ize a s ta inless clad copper conductor with " E " glass as 

t u rn - to - tu rn insulation on the coi ls , which a r e wound on alumina bobbins pr ior 

to being mounted on the poles . E lec t r ica l connections a r e made w^ith AWG No. 

22 stranded conductor insulated with v/oven "S" g lass . 

A rotating brake disk is threaded on the end of the rotor shaft and is accur ­

ately positioned by means of a conical fit. Matching slots and teeth a r e machined 

in the outer d iameter of the rotating brake and the stat ionary brake ring so that 

the two r ings , when engaged, will lock together preventing rotation. Both brake 

par t s a r e made from cobalt i ron: the brake disk to match the coefficient of 

expansion of the ro tor , and the brake ring because it is the a r m a t u r e of the 

magnetic b rake . 

Brake react ion forces a r e ca r r i ed through the bellows assembly , w^hich also 

ac ts as the brake ring compress ion spring. This assembly is located and pinned 
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so t h a t t he s l o t s and t e e t h in the b r a k e d i sk and b r a k e r ing a r e a l i gned w h e n 

p h a s e s A or C a r e e n e r g i z e d . E n e r g i z a t i o n of the b r a k e coi l pu l l s the s t a t i o n a r y 

b r a k e r i n g ( a r m a t u r e ) to the b r a k e pole f a c e s , a g a i n s t the s p r i n g of the b e l l o w s , 

r e l e a s i n g the shaft to r o t a t e to a new^ pos i t i on , b a s e d upon the e n e r g i z a t i o n of 

s e q u e n t i a l p o l e s in the s t e p p e r . The m a t e r i a l of c o n s t r u c t i o n of the bellow^s i s 

I n c o n e l , c h o s e n for i t s h i g h - t e m p e r a t u r e m e c h a n i c a l p r o p e r t i e s . 

The b e a r i n g s of the a c t u a t o r a r e c a r b o n g r a p h i t e in w^hich a l u m i n a j o u r n a l s 

r o t a t e . Two s i z e s of b e a r i n g s a r e e m p l o y e d in the d e s i g n . The output b e a r i n g s 

a r e i d e n t i c a l and a r e s i z e d for the load , wh i l e the r o t o r b e a r i n g s a r e o v e r s i z e d 

to a l low the p in ion cut in to the r o t o r to p a s s t h r o u g h the b e a r i n g . T h i s p r e ­

s e r v e s the o n e - p i e c e r o t o r c o n s t r u c t i o n . The u s e of i d e n t i c a l s i z e d b e a r i n g s on 

a shaft f a c i l i t a t e s the f a b r i c a t i o n of the a s s e m b l i e s . T h r u s t v / a s h e r s a r e l o c a t e d 

on e a c h s i d e of the i n b o a r d b e a r i n g to a c c u r a t e l y l o c a t e the shaft for bo th g e a r 

and b r a k e o p e r a t i o n . 

Al l o t h e r m a t e r i a l s of c o n s t r u c t i o n , i, e, , b r a k e p o l e s , end b e l l s , ou t e r 

h o u s i n g , e t c . , a r e m a d e f r o m coba l t i r o n , e i t h e r b e c a u s e of i t s f l u x - c a r r y i n g 

r e q u i r e m e n t o r a r e q u i r e m e n t to m a t c h the coeff ic ient of e x p a n s i o n of a f lux-

c a r r y i n g p a r t , 

2, E x p e c t e d P e r f o r m a n c e 

The p e r f o r m a n c e of a n a c t u a t o r i s not only dependen t upon the p h y s i c a l 

d e s i g n , and m a t e r i a l s u s e d , but a l s o upon the supp l ied p o w e r (vol tage and c u r ­

r en t ) and the p h a s e o v e r l a p a s s u c c e s s i v e p h a s e s a r e e n e r g i z e d . The n e e d of 

p h a s e o v e r l a p can be v i s u a l i z e d by c o n s i d e r i n g t h a t if a p h a s e should c o m e on 

l a t e , the r o t o r would be f r e e to r o t a t e u n d e r load t o r q u e s du r ing the t i m e none 

of the p h a s e s w e r e e n e r g i z e d . T e s t s w e r e p e r f o r m e d on the S8DS a c t u a t o r to 

e v a l u a t e the effect of o v e r l a p on the a c t u a t o r p e r f o r m a n c e . I t w^as d e t e r m i n e d 

t h a t t he full a d v a n t a g e of o v e r l a p w a s ob ta ined wi th 5 m s e c o v e r l a p and add i t i ona l 

o v e r l a p w^as of no a d v a n t a g e . T h e r e f o r e , the e x p e c t e d p e r f o r m a n c e m u s t be 

b a s e d upon the e x p e c t e d supp l i ed power condi t ion . The p e r f o r m a n c e e x p e c t e d 

f r o m the c a l c u l a t e d 5-kv7e s y s t e m a c t u a t o r i s l i s t e d a t the p h a s e o v e r l a p and 

c u r r e n t d e n s i t y u s e d on the S8DS a c t u a t o r (5 m s e c o v e r l a p , 200 nnsec m i n i m u m 
2 2 

p u l s e w i d t h , 8,666 a m p / i n , s t a t o r c o n d u c t o r c u r r e n t d e n s i t y , and 2743 a m p / i n . 
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b r a k e co i l c u r r e n t d e n s i t y ) . F r o m the c a l c u l a t i o n s p r e s e n t e d in Sec t ion C - 3 , 

the e x p e c t e d a c t u a t o r p e r f o r m a n c e i s a s l i s t e d in T a b l e 5. 

TABLE 5 

EXPECTED ACTUATOR PERFORMANCE 

I t e m 

S ta t i c t o r q u e (oz - in , ) 

Stepping t o r q u e (oz - in . ) 

S c r a m t o r q u e ( o z - i n . ) 

Holding t o r q u e ( o z - i n . ) 

E x p e c t e d 

2 2 3 

140 

105 

2 2 5 

R e q u i r e d 

100 

70 

180 

The c a l c u l a t e d p e r f o r m a n c e c u r v e i s shown in F i g u r e 15. 

Shock, v i b r a t i o n , and a c c e l e r a t i o n r e q u i r e m e n t s a r e not e x p e c t e d to be a 

p r o b l e m . The S8DR a c t u a t o r (Dev, 010) w a s s u c c e s s f u l l y t e s t e d to t h r e e t i m e s 

the a c c e p t a n c e l e v e l , b a s e d on t h e S a t u r n V l aunch load . T h i s i s e x p e c t e d to be 

m o r e s e v e r e t han t h e r e q u i r e m e n t s of the 5-kwe s y s t e m a c t u a t o r . S ince the 

5-kwe a c t u a t o r i s b a s i c a l l y (due to l a r g e r b e a r i n g s , shaf t , and r a d i u s , a s w e l l 

a s a v e r y s h o r t shaft l eng th) a m o r e shock- and v i b r a t i o n - r e s i s t a n t d e s i g n con­

f i g u r a t i o n than the S8DS a c t u a t o r , no diff iculty i s e x p e c t e d f r o m t h e s e e n v i r o n ­

m e n t a l r e q u i r e m e n t s ( shock , v i b r a t i o n , and hand l ing ) . Al though the r e q u i r e d 

l i fe of the 5-kwe s y s t e m a c t u a t o r i s r e l a t i v e l y long (44,000 h r ) no diff iculty i s 

e x p e c t e d in a c h i e v i n g t h i s life r e q u i r e m e n t a s t h e o p e r a t i o n a l t e m p e r a t u r e and 

r o t a t i o n a l r e q u i r e m e n t s a r e low w h e n c o m p a r e d to the S8DR t e s t i n g . E x t e n s i v e 

t h e r m a l t e s t da ta h a s b e e n ob ta ined on S8DR a c t u a t o r s a t t h e r m a l t r a n s i e n t r a t e s 

wh ich e x c e e d t h o s e e x p e c t e d to e x i s t in the 5-kwe s y s t e m . 

3 . D e s i g n A n a l y s i s 

The d e s i g n a n a l y s i s i s p r e s e n t e d in two p a r t s , e l e c t r o m a g n e t i c , and 

m e c h a n i c a l . 

a . E l e c t r o m a g n e t i c 

(1) S t e p p e r M o t o r 

The b a s i c s t e p p e r e l e c t r o m a g n e t i c c a l c u l a t i o n s w e r e p e r f o r m e d on a c o m ­

p u t e r p r o g r a m . The input to t h e p r o g r a m is t h e p h y s i c a l s i z e a s s o c i a t e d wi th 

A I - A E C - 1 3 0 8 0 

43 



t he s t e p p e r m o t o r . The m a g n e t i c m a t e r i a l c o n s t a n t s a r e bu i l t in to the p r o g r a m 

for coba l t i r o n a t e l e v a t e d t e m p e r a t u r e . The p r o g r a m inpu t s a r e : 

D R 

G 

C L 

DS 

SD 

O D 

P W 

P L 

W D 

BWD 

T W 

R C 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

t r i a l r o t o r d i a m e t e r (in. ) 

m a g n e t i c gap (in. ) 

l eng th of t e e th (in. ) 

d i a m e t e r of s t a t o r ID (in. ) 

s lo t depth (in. ) 

ou t s i de d i a m e t e r (in. ) 

pole wid th (in. ) 

pole l eng th (in. ) 

w i r e d i a m e t e r (in. ) 

b a r e w i r e d i a m e t e r (in. ) 

tooth width (in. ) 

r e s i s t i v i t y of conduc to r ( o h m - i n . ) 

The output i s l i s t e d in two s e c t i o n s . Sec t ion 1 i s the l i s t i n g of the m a c h i n e 

c o n s t a n t s a s fo l lows : 

F i n a l r o t o r d i a m e t e r 

T e e t h p e r po le 

T u r n s p e r coi l 

Coi l r e s i s t a n c e o h m s 

T e e t h on r o t o r 

Step s i z e d e g r e e s 

A c t u a t o r i n e r t i a 

The second s e c t i o n i s the p e r f o r m a n c e for i n c r e m e n t a l gap f luxes f r o m 20,000 
2 

l i n e s / i n . un t i l the p r o g r a m is t e r m i n a t e d by one of the b u i l t - i n s t o p s . F o r 

each flux d e n s i t y , the l i s t e d output i s a s fo l lows : 

Gap flux 

Coil c u r r e n t 

Coi l vo l t age 

Coi l c u r r e n t dens i t y 

S ta t ic t o r q u e 

D y n a m i c t o r q u e 

Coil i n d u c t a n c e 

N l / p o l e 
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G a p 

P o l e 

Shel l 

T e e t h 

Ro to r 

1 f T ri-n f ;̂  r 

T( 

-i-t^r 

otal 

540 

4 4 0 

31 

49 

7 

13 

5 4 0 

- 1 

In add i t i on , e a c h s e t of r e a d o u t da ta h a s a se t of d i a g n o s t i c r e a d o u t da ta for 

d e t a i l e d eva lua t i on of i nd iv idua l e l e m e n t s , such a s flux d e n s i t i e s , a m p e r e 

t u r n s , a r e a s , e t c . F i g u r e 15 ,as p r e v i o u s l y m e n t i o n e d , i s the plot of the c a l ­

cu l a t ed p e r f o r m a n c e for the s e l e c t e d 5-kwe s y s t e m a c t u a t o r . At the expec ted 

o p e r a t i n g poin t , a l l v a l u e s of e l e c t r o m a g n e t i c p a r a m e t e r s a r e s i m i l a r to the 

S8DR v a l u e s . The f inal c u r r e n t dens i t y i s i d e n t i c a l to the S8DR d e n s i t y . The 

fol lowing l i s t i ng i s a s u m m a r y of the e l e c t r i c a l and e l e c t r o m a g n e t i c de s ign : 

M a g n e t i c 

A m p e r e T u r n s (NI) F l u x D e n s i t i e s 
(1000 l i n e s / i n . ^) 

Gap 88 

P o l e 85 

R o t o r 47 

Shel l 43 

- 1 23 

Coil and Connec t i ons T o r q u e s (oz- in . ) 

T u r n s / c o i l 98 E x p e c t e d s t a t i c 223 

W i r e s i z e 24 AWG E x p e c t e d s tepp ing 223 x 0.63 = 140 

Input P h a s e C u r r e n t 5.5 a m p S c r a m speed 0.75 
„ ,. d e r a t i n g 
Connec t ion 2 p a r a l l e l '=' 

c o i l s / p h a s e E x p e c t e d s c r a m 140 x 0.75 = 105 
2 

C u r r e n t dens i ty 8,666 a m p / i n . 

(2) EM B r a k e 

The EM b r a k e i s of the f la t face d e s i g n a s w a s the b r a k e in the S8DS a c t u ­

a t o r . Aga in , a c o m p u t e r p r o g r a m h a s been s e t u p , but for the c o m p u t a t i o n a l 

a s s i s t a n c e r a t h e r than for p rov id ing a de t a i l ed d e s i g n . The c o m p u t e r p r o g r a m 

a c c e p t s the p h y s i c a l s i z e of the b r a k e conf igu ra t ion and c o m p u t e s the r e q u i r e d 

coi l input and f o r c e g e n e r a t e d for i n c r e m e n t a l v a l u e s of flux d e n s i t y a t the 

i n n e r p o l e . The m a g n e t i c m a t e r i a l c o n s t a n t s a r e e n t e r e d into the p r o g r a m 

and a r e for coba l t i r o n a t e l e v a t e d t e m p e r a t u r e . The m e t h o d of c o m p u t a t i o n 
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i s t o i n p u t i n t o t h e p r o g r a m t h e p h y s i c a l s i z e , a n d c a l c u l a t e t h e f o r c e a n d c o i l 

r e q u i r e m e n t s f o r v a r i o u s f l u x d e n s i t i e s . F o r e a c h m a g n e t i c g a p s o c a l c u l a t e d , 

t h e f o r c e a t t h e S 8 D R b r a k e c o i l d e n s i t y w a s d e t e r m i n e d a n d p l o t t e d a s s h o w n 

i n F i g u r e 1 6 . T h i s i n f o r m a t i o n w a s u s e d t o p l o t F i g u r e 1 7 . T h e b a s i c s e l e c t e d 

g a p i s 0 . 0 7 0 o r l e s s t o p r o v i d e a d e q u a t e m a r g i n o v e r t h e r e q u i r e m e n t of p u l l ­

i n g t h e b r a k e a g a i n s t a 2 - 1 / 2 - l b s p r i n g . T h e i n p u t d a t a a r e a s f o l l o w s : 

SQiD = s h e l l O D ( in . ) A T 
SID = s h e l l I D ( in . ) C B C 
C(3)D = c o r e O D ( in . ) P ^ D 
C I D = c o r e I D ( in . ) P I D 
T B P = t h i c k n e s s b a c k p l a t e ( in . ) F M A 
T I P = t h i c k n e s s i n n e r p o l e ( in . ) 
T 0 P = t h i c k n e s s o u t e r p o l e ( i n . ) G 
A0D = a r m a t u r e O D ( in . ) B W D 
A I D = a r m a t u r e I D ( in . ) W D 

R C 

a r m a t u r e t h i c k n e s s ( in . ) 
c o i l b o b b i n c a v i t y ( in . ) 
p o l e O D , i n n e r ( i n . ) 
p o l e I D , o u t e r ( in . ) 
f l u x m a x i m u m a l low^ab le 

( l i n e s / i n . ) 
g a p m a g n e t i c ( i n . ) 
b a r e w i r e d i a m e t e r ( in . ) 
w i r e d i a m e t e r ( in . ) 
r e s i s t i v i t y of c o n d u c t o r 

( o h m - i n . ) 

1 6 » 

I-

< 

0.020 0.040 0.060 

MAGNETIC GAP (in.) 

0.080 0.100 

6531-5536 

F i g u r e 16. M a g n e t i c P u l l v s M a g n e t i c Gap a t S8DS O p e r a t i n g C u r r e n t 
D e n s i t y of 2743 a m p / i n . 2 (Magnet Cav i ty 0,600 in. , 

5 .125- in . OD, 330 T u r n s , No. 24 AWG) 
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F i g u r e 17. F o r c e v s M o v e m e n t for V a r i o u s Gaps at S8DS 
O p e r a t i n g C u r r e n t D e n s i t y of 2743 a m p / m . ^ 

(Magnet Cav i ty 0.600 m. , 5 .125- in . OD, 
330 T u r n s , No. 24 AWG) 

The output of the c o m p u t e r p r o g r a m is b a s i c a l l y d i a g n o s t i c data and i s in two 

t y p e s of s e t s : (1) a r e a s , and (2) m a g n e t i c d e n s i t i e s , a m p e r e t u r n s , e t c . F o r 

each c a l c u l a t e d flux d e n s i t y , t h e r e i s a p r i n t o u t for tha t d e n s i t y , to ta l f o r c e , 

co i l c u r r e n t , and co i l c u r r e n t d e n s i t y f r o m wh ich p e r f o r m a n c e m a y be c a l c u ­

l a t e d . 
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F l u x D e n s i t i e s 
(1000 l i n e s / i n . 2 ) 

The fol lowing i s a l i s t of the e l e c t r o m a g n e t i c d e s i g n r e s u l t s : 

Magne t i c 

A m p e r e T u r n s (NI) 

I n n e r gap 136.0 

I n n e r po le 1.8 

C o r e 12.7 

Back p l a t e 6.3 

Shel l 7.1 

Ou te r pole 1.3 

O u t e r gap 118.0 

A r m a t u r e 3.6 

T o t a l 286.8 

S a t u r a t i o n f a c t o r = 1.13 

Inner gap 
Inner pole 

Core 

Back plate 

Shell 

Outer pole 

Outer gap 

Arma tu re 

6.2 

35.8 

26.5 

46.8 

9,6 

30,8 

5.4 

24.2 

Coil and Connec t ions 

T u r n s / c o i l 

W i r e s i z e 

B r a k e Input 
c u r r e n t 

Connec t ion 

Conduc to r c u r r e n t 
d e n s i t y 

330 

No. 24 AWG 
oxal loy 

0.869 a m p 

s ing le co i l 

2743 a m p / i n . 

F o r c e s and T o r q u e s 

M a g n e t i c pul l 5.0 lb 

R e s u l t a n t 
m a g n e t i c pull 

Spr ing load 

Holding t o r q u e 

Spr ing r a t e 

M a g n e t i c gap 

(See F i g u r e 16) 

2.5 lb 

225 o z - i n . a t jLi 
= 0.1 

75 l b / i n . 

0.070 in . 

b . M e c h a n i c a l C a l c u l a t i o n s 

The a c t u a t o r can be e x p e c t e d to be sub j ec t ed to both t o r s i o n a l and d i r e c t 

l oad ings ( a c c e l e r a t i o n , v i b r a t i o n , and shock) . Al though in the e x p e c t e d r e a c t o r 

l aunch o r i e n t a t i o n , the r e f l e c t o r s e g m e n t would be r e s t r a i n e d by p ins r e m o v i n g 

any a c t u a t o r t o r s i o n a l load ing , the n i e c h a n i c a l a p p r o a c h w a s to c o n s i d e r the 

a c t u a t o r a s r e s t r a i n i n g i t s t o r s i o n a l load a t the t i m e i t w a s s u b j e c t e d to m a x i ­

m u m d i r e c t l oad ing . M a x i m u m t o r s i o n a l loading would be tha t l oad which 

could c a u s e the b r a k e to s l i p . The p r e s e n t b r a k e i s d e s i g n e d to s l i p b e t w e e n 

180 and 220 o z - i n . of t o r q u e , b a s e d upon c a l c u l a t i o n s and S8DR t e s t i n g of the 

equ iva l en t b r a k e . Th i s a p p r o a c h of c o m b i n e d s t r e s s e s ( d i r e c t l oad ing , t o r s i o n a l 
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l oad ing , and b u i l t - i n s t r e s s e s ) w a s app l i ed to each e l e m e n t , o r m e c h a n i c a l 

un i t of the d e s i g n , and the r e s u l t s w e r e c o m p a r e d wi th the r e s u l t s of the i den ­

t i c a l c a l c u l a t i o n s p e r f o r m e d on the S8DR a c t u a t o r . T h e s e e l e m e n t s wi l l be 

c o v e r e d ind iv idua l ly a s they w e r e c a l c u l a t e d . 

(1 ) B e a r i n g s 

The b e a r i n g s a r e s l e e v e s of c a r b o n g r a p h i t e m a t e r i a l i n s t a l l e d , wi th an 

i n t e r f e r e n c e fit , in the end b e l l s . T h e r e a r e two s e t s of b e a r i n g s : (1) r o t o r 

shaft b e a r i n g s , and (2) output g e a r b e a r i n g s . The de t a i l ed c a l c u l a t i o n i n d i c a t e s 

t ha t a loading of the b e a r i n g due to r e a c t i o n f o r c e s on the shaft t e n d s to s l igh t ly 

r e d u c e the s t r e s s l e v e l s f r o m the a m b i e n t condi t ion . The m a x i m u m hous ing 

s t r e s s (in the r o t o r b e a r i n g ) i s 11,539 p s i , an i n c r e a s e f r o m the S8DS va lue of 

8655 p s i , u n d e r - w o r s t - c a s e c o n d i t i o n s . The i n c r e a s e d s t r e s s i s due to the 

l a r g e r d i a m e t e r s . The l a r g e r d i a m e t e r s a l l owed the s l e e v e s t r e s s to d e c r e a s e 

to 15,592 f r o m 17,039 p s i . The d i a m e t r a l c l e a r a n c e s b e t w e e n the b e a r i n g and 

j o u r n a l w e r e c h o s e n to be h e l d to the S8DR v a l u e s a t a m b i e n t t e m p e r a t u r e and 

a l lowed to d e c r e a s e s l igh t ly at e l e v a t e d t e m p e r a t u r e , l e s s than 0.00004 in . 

a t the w o r s t c a s e , an i n s ign i f i can t amoun t . 

(2) B e a r i n g J o u r n a l s 

The j o u r n a l s t ha t r un in the c a r b o n g r a p h i t e b e a r i n g s a r e a l u m i n a coa t ed . 

The t e c h n i c a l a p p r o a c h i s m a i n l y e m p i r i c a l and i s b a s e d upon the p r o v e n and 

t e s t e d m e t h o d s of the S8DR. The i n i t i a l coa t ing t h i c k n e s s i s l e s s than 

0.006 in . , wi th a f in i shed t h i c k n e s s of 0.002 to 0.003 in . 

(3) R o t o r C a l c u l a t i o n s 

The r o t o r s t r e s s e s w e r e c a l c u l a t e d u n d e r the c o m b i n e d load condi t ion . 

The s t r e s s e s ob ta ined in the c a l c u l a t i o n s a r e a l l v e r y low and a d e q u a t e s t r e n g t h 

i s i n d i c a t e d . The fol lowing i s a s u m m a t i o n of the s t r e s s e s : 

L o c a t i o n 

N e a r p in ion 

N e a r o u t b o a r d b e a r i n g s 

O u t b o a r d b e a r i n g 

I n b o a r d b e a r i n g t h r e a d r e l i e f 

Bending 

5 8 8 

3235 

925 

382 ( to r s ion ) 

S t r e s s 
(psi) 

Shea r 

4 1 4 

1250 

389 

2277 

P r i n c i p a l 

8 0 3 

3662 

1067 

2476 
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(4) Gear Ca l cu l a t i on 

The c a l c u l a t e d g e a r r a t i o w a s 2 .778 . The s t r e s s e s w e r e c a l c u l a t e d by 

two m e t h o d s ; the h i g h e s t r e s u l t a n t s t r e s s of the g e a r t e e t h w a s 14,029 p s i on 

the p in ion and 3502 p s i on the g e a r . Ca l cu l a t i ons for the a t t a c h m e n t loading 

poin t (shaft ho le ) i n d i c a t e a s t r e s s of 530 p s i . 

(5) B r a k e C a l c u l a t i o n s 

C a l c u l a t i o n s for the b r a k e d isk and t ee th i n d i c a t e a tooth s t r e s s of 840 p s i , 

wh i l e the load ing on the d isk i s p e s s i m i s t i c a l l y c a l c u l a t e d a t 3,000 p s i . 

(6) C r i t i c a l F r e q u e n c y 

The c r i t i c a l f r e q u e n c y of the a s s e m b l y i s only 8 - 1 / 3 Hz , wh ich i s w e l l be low 

the f r e q u e n c y e x p e c t e d to be app l i ed to the a c t u a t o r . 

(7) S t r u c t u r a l 

The only s t r u c t u r a l a s s e m b l y a n a l y z e d w a s the end be l l con ta in ing the 

t h r u s t b e a r i n g . In c o m p a r i s o n , a l l o the r s t r u c t u r e s h a v e a m u c h l o w e r l oad ing . 

T h i s e n d - b e l l s t r e s s , w h e n s t r e s s c o n c e n t r a t i o n i s i nc luded , i s only 1782 p s i . 

(8) B r a k e T o r s i o n a l R e s t r a i n t 

Th i s t o r s i o n a l r e s t r a i n t m e m b e r , wh ich i s bu i l t l i ke a b e l l o w s , h a s a m a x ­

i m u m t o r s i o n a l load ing of 33,125 p s i and a c o m p r e s s e d - s t a t e load of 40,000 p s i 

du r ing s t epp ing . 

(9) S u m m a r y 

The r e s u l t s of the m e c h a n i c a l c a l c u l a t i o n s a r e judged to be s a t i s f a c t o r y for 

t h e s t r e s s e s and m a t e r i a l s c o n s i d e r e d (Table 6). W o r s t - c a s e cond i t ions a r e 

l i s t e d wi th the c a l c u l a t e d d e s i g n f a c t o r s a t 800° F ; t h e s e r e s u l t s a r e b a s e d on 

the fol lowing m a t e r i a l c a p a b i l i t i e s : 

Yie ld 
M a t e r i a l (psi a t 800° F) 

Coba l t i r o n 30,000 

Incone l 718 155,000 

C a r b o n - g r a p h i t e 25,000 
( c o m p r e s s i v e ) 
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TABLE 6 

SUMMARY OF MECHANICAL CALCULATIONS 

Unit 

R o t o r shaft 

R o t o r p in ion 

End b e l l 

B r a k e t ee th 

B r a k e d isk 

T o r s i o n a l r e s t r a i n t 

B e a r i n g 

S t r e s s 
(psi) 

3,662 

14,029 

1,782 

840 

3,000 

40,000 

17,000 

800° F Des ign F a c t o r 

7.19 

1.14 

15.84 

34.16 

9.00 

3.13 

. 4 7 

Design Fac to r 
Yield S t ress 
Load S t ress - 1.0 
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