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ABSTRACT

The unitarity bounded high energy behaviour of Born graphs for
: sy
production of two massive vector mesons is shown. to result from the
decomposition of the amplitude-into a locally gauge invariant part
and a suppressed remainder. In'addition, asymptotic helicity con-

servation is- found to emerge.



. —2_

One of the interesting aspects of recent unified weak-electromagnetic
gauge theoriés is the resultant '"good' high energy behaviour of Born
graphs for processes. like veze+w+w-. In the present note we point out

that this effect has its origin in the gauge invariant couplings of the
. e e -

particles involved, and furthermore leads to an-asymptotic helicity

conservation for these processes.

Gell-Mann, Goldberger, Kroll, and Lowl'used the electron-exchange
Born diagram for ve+3épw+(1ongitudinanfw_(longitudinal) as a test case
for illustrating the "bad" high energy behaviour of the usual weak
interaction theory.- They pointed out -that the amplitude f for this
process, normalized according to;%% = lf]z, behaves 1like the CM energy
of one particle, E at large E. However to avoid an'obvious contra-
diction with unita}ity, £ shbuld decrease with E at least as fast.as é.
While it might be argued that the Born graph does not represent the
whole theory. it would nevertheless be a desirable feature if the pertur-
bation approach to weak interactions would be as suitable as the. analogous

approach to electromagnetic interactions. (which doesn't suffer from the

above difficulty). 1In the.SU(2) x U(1) gauge theory, Wei_nberg2 noted

that this problem is solved because- there is another diagram correspond-

ing to v 3efvirtual+Z+wa;, where Z is a neutral intermediate boson

e
having a Yang-Mills coupling to w'W™. - This diagram's contribution just
cancels the leading E dependénce from the original diagram and results
in £ ~ &

To start.things off it is instructive to give the results of an
extension of Weinberg's calculation on ve§e+W+W' to the cases where
the W' and W~ may have any combination of-longitudinél-or transverse

polarizations. - In the list below the final states are ordered according



to the magnitude of the total helicity, lhtotJ-= |h(W")+h(W')| and f
is written as f1 (due to electron exchange) + fz(due to Z diagram).
G is the Fermi constant and 6 is the scattering angle.3

final states fl ‘ : f2

- - - . 1 Y . 1
|hioel = 0, long.-long. = Esiné+0(z) , v Esin6+0(g)
: 2
) FGm, . . . o
Ihtot' =0 , trans.-tr_ans.4 L 51n6(1icose)+0(lg) , 0
4/ 27 E 1l-cos6  E
‘ . Gm . -Gm .
lhtotl =1, 1ong.-trans,'4 ZFE (cqseil)+o(é7) Z;E(C056i1)+0(§7)
2 2’
. -Gm - Gm .
|hioel = 2, trans.-trans. N_ sind +o(l§) , W_sind +0(l§)
421 E E 4Y7m E - E

We see from the above list that in the old weak interaction theory
(jdst fl) those amplitudes. involving longitudinal final parficles would
violate'unitarity at large E.. (Essentially this is because the longi-.
tudinal polarization Qéctor contains a factor E while the transverse
polarization vectors do not.) However, the»f2 terms are-seen to bring
these amplitudes back in line. Furthermore, tﬁere is another canceliar
tion which makes the”lhtotk=2 amplitudes fall away faster with E. A1l
these results can be summarized in the. following formula for the leading
energy dependence of £ :
1-lhige

f~ﬁ (1)

According to Eq. (1) the amplitudes with htot<= 0 final states will

dominate at large energy and will behave as %, Since the initial ve;e

state has htot =. 0 we see that these diagrams are giving asymptotic

helicity conservation. This is an amusing feature and may indicate
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that gauge type theories provide a mechanism for éxplaining the phen-
omenological helicity conservation observed in. some. hadronic interactions. "
In order to get some insight inte what is going on'énd_to see the
role of Yang-Mills couplings in.producing the. good high energy behaviour
for this process we shall now consider the kinematically simpler analbgous

reaction

T (pg) * 1 (py) > 0 (kpseq) + 0 (Ky,el)

“*—___——‘“““-‘_~_-___ e

with Yang Mills couplings but with massive .p-mesons. The three Born.
. ’-_—/-'_—__-—\ . -
diagrams. are shown,in Fig. 1 and the relevant part of the interaction

Lagrangian is
ig by ig
;(int =7 Tr(e99,¢) + 5= Tr[(J,p,-3,p )0 0]

2 .
+ & Tr(¢o 90 -0 ,0) + . . . | (2)

where g is a coupling constant and the 2 x 2 matrices ¢ and pu are

defined in terms of the Pauli matrices T by ¢ = L (9+7), p. = l—(p °T)
~ /2--»-\‘ M /7~]J~
It is then straightforward to calculate the amplitude:
f = (3a)
i 2_. 'l ) :
Myg ='%%'{p°kl-kl°k2,{papB—k16k2a+pale_kZaPB]
2 .
F T, w7 DR Sag Palig KaPel "Sag { (3b)
6&4

where p = p,-p; and E,, % (-1) e}, etc. To evaluate f for various



helicities in the. final state it is sufficientcs) to make the

following explicit choices. of momenta:

P = (0,0"IEII’1E) s .kl _(O:Hfll Sine,llfllCdSe, iE)

(4a)
% *
Py = Pp s Ky =k
and of polarization vectors:
L - ik, | -
g = (0,%— 51ne,%— cosb, — 1 ) 5; = l--—(-i,-cose,sine,O)
P P o V2
A (40)
€ —_(el ), €y = -(sl) » €5 = 1€y , €5 = -igg

In (4b) the superscripts +, L, and - stand.for helicity =1,0, and
-1 objects respectively. When Eqs. (4) are substituted into Egs. (3)
we find that miraculous cancellations occur again to give exactly
the same energy dependences as a function of total final state.
helicity as for the v5+W;W- case (Eq. (1)). Thus since the initial
state has zero total helicity asymptotic helicity conservation
again emerges, .in.addition.to.the good high energy behaviour. Note
that in-the 7' m +p p case the cancellations are taking place among
the contributions from three rather than two diagrams. It is thus
clear that the explanation for the good high energy behaviour is
not most readily to be found in. the topological structure of the
diagramé‘involved. |

The clue to understanding the matter on more general

grounds comes from decomposing MaBOf Eq. (3b) in the following way:

Mo, =M, + M (5a)

oB 0B oB
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, o,
o - i ) . % 1 - - i
MOLB = —-R—-gk——z K, { (x+1)-(kl kZGOLB kZOLkIB) t T (pa xkza) (pB+Xk15)
. 2 | ~ (5b)
, ig? M 1 '
Yap T T KX, Zkl‘kz'ﬁET:f'Gaep'k1+pakle'k2aps) (5¢)
where

x = p-kl/kl-k2 = -p-kz/kl-kz.

M&B has the property that it goes to zero as mé»o. Thus in.a completely

local gauge invariant theory (mp=0) we would only have the MSB term.
This term is manifestly gauge invariant, satisfying:
0 _ 0 _ '
KioaMap = Myg kg = 0 (6)

First consider the leading energy dependences for the contributions to
f from‘M&B. Because the. factor mgz/kl-sz;oméz/ZE%gall these terms are

suppressed at large E by I/E2 from what they would otherwise be ;

explicitly:
final states ‘ non-gauge invariant part Qf f
lhtot]= 0 long.-long. " 0(1/E)
|htot|= 0 trans.-trans. O(I/ES)
Ihtotl= 1 long.-trans. o O(l/EZ)
|ht0t|= 2 trans.-trans. 0(1/E>)

All these contributions have good high energy behaviour! The above

pattern of suppression follows generally when it is realized that an

Y

overall factor like de/E2 must be present for the non-gauge invariant
part of the amplitude. This is because mp2 only appears explicitly in
a propégator denominator(6) which we may write as

| 2

1 o

Pae-a + -

) -m- S S-m
L STy 0

R



thereby separating its contribution to.MZB.and to M&B.

Next consider the gauge invariant object MgB. By covariance,

the most general solution of (6) may be written as:
o _ . _ R
Myg = Alkyky8 -k, ki) + B(p, xkyy) (Pg+xkyp) (7)

when A and B are functions of the invariants klvk2 and x. In the

present case A = _i§2 E;%kz = (1-x2)B and both A and B fall off as
l/E2 at large energies. This fall-off is to be expected for dimen-
sional reasons since A and B should not explicitly contain any parti-
cle masses if they come from Born terms of a (zero-mass) Yang-Mills
theory. For the sake of generality we may now pretend that we don't

know A and B and prepare wusing (4) and (7), the following 1list for

the leading gauge invariant contribution to the various amplitudes:

final states gauge invariant part of f. .
Ihtotl = 0, long.-long. ‘TQ%E(A-BCOSZG) = 0(%3)
Ihtotl = 0, trans.-trans. ;12%%2322 = 0(%)
lhtbt, = 1, long.-trans. -{?Bmpiézﬁcose = O(ij)
Ihtotl = 2, trans.-trans. T%FF[ZEZ(A-Bsin29)+(ZBmﬁsinaiAmg)]=0(%)

We see that all the gauge invariant contributions to f also fall off
fast enough to satisfy unitarity. In this case those amplitudes in-
volving longitudinal particles in the final states are suppressed.
This is heuristically reasonable since MZB is essentially the ampli-
tude for production of zero-mass vector particles which of course can
only be transverse. Thus, both the gauge invariant and non-gauge

invariant parts of the Born amplitude for ﬂ+ﬂ-+p+p_ have been seen, in




'state amplitudes will fall off as 1/E while the |h

a fairly general way, to possess good high.energy behavior. The
crucial point was the separation (Eg.(5a)) of the amplitude into a
locally gauge invariant part and a suppressed remainder.

How can we understand -the - -asymptotic helicity conservation in
general terms? From: the last two lists we see. that the hi =0 final
tot]=1 amplitudes
will go as l/Ez° This fits in-nicely with Eq.. (1). However the
Ihtot|=2 amplitudes will fall off as 1/E, which would violate Eq. (1)

and asymptotic helicity conservation, unless we impose the condition
A -~ Bsinze (CM system) (8)

Eq. (8) is of course satisfied for MZB_represented by Eq. (5b), since
(l-x2)+sin26 at large E. Eq. (8) represents a detailed property of
the Yang-Mills coupling scheme.

Incidentally, the general Eq. (7) also gives the Born amplitude
for the locally U(1l) gauge invariant pTOCeSS~ﬂ+ﬂ—+2Y, when we make
the identification A = -Ziez/kl'-k2 = (1-x2)B. In this case the

final photons can.only be.transverse. Since Eq. (8) is satisfied

there will be asymptotic helicity.conservation,: the |h |=2 final

tot
state amplitudes being suppressed by l/E2 compared to the htot=0 ones,

Finally, it might be interesting to. investigate in detail under
what conditions asymptotic-helicity conservation and good high energy
behaviour also emerge for.other processes involving gauge bosons and
to attempt to apply these ideas to strong interactions. We would

like to thank A. P. Balachandran and H. Rupertsberger. for helpful

discussons.
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FIGURE CAPTION

Born diagrams for ﬂ+ﬂ_+p+p_«in a Yang-Mills Theory.






