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ABSTRACT

The unitarity bounded high energy behaviour of Born graphs for
, -I

production of two massive vector mesons is shown to result from the

dedomposition of the amplitude·into a locally gauge invariant part

and a suppressed remainder. In addition, asymptotic helicity con-

servation is. found to emerge.
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One of the interesting aspects of recent unified weak-electromagnetic

gauge theorids is the resultant "good" high energy behaviour of Born
-+

graphs for processes like veve+W W-.  In the present note we point out

that this effect has its origin in the gaugeinvariant coupling.s of the-

particles involved, and furthermore leads to an .asymptotic helicity

conservation for these processes.

1
Gell-Mann, Goldberger, Kroll, and Low  used the electron-exchange

Born diagram for ve+DeW  (longitudina])+W- (longitudinal)  as  a  test  case

for illustrating the "bad" high energy behaviour of the usual weak

interaction theory.  They pointed out .that the amplitude f for this

daprocess, normalized according to.3Ti = lf'2, behaves like the CM energy

of one particle, E at large E. However to avoid an obvious contra-

diction with unitarity, f should decrease with E at least as fast .as  .
While it might be argued that the Born graph does not represent the

whole theory it would nevertheless be a desirable feature if the pertur-

bation approach to weak interactions would be as suitable as the analogous
.fl

approach to electromagnetic interactions (which doesn't suffer from the

above difficulty).  In the.SU(2) x U(1) gauge theory, Weinberg2 noted

that this problem is solved because there is another diagram correspond-
+ing  to  v F +virtual+Z+W-·W-, where  Z  is a neutral intermediate ·bosone e.

having a Yang-Mills coupling to W W-. ·This diagram's contribution just

cancels the. leading E dependence from the original diagram and results     ,

in f - -.1E
To start. things off it is instructive to give the results of an

-+extension of Weinberg's calculation on v v +W W- to the.cases wheree e
the W  and W- may have any combination of·longitudinal or transverse

polarizations. In the list below the final statas are ordered according

1
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to the magnitude of the total helicity, |htot| = Ih(W )+h(W-)1 and f

is written as fl (due to electron exchange) + f2(due to Z diagram).

G is the Fermi constant and 0 is the scattering angle. 3

final states                     fl             .  42

htotl =0, long.-long. -G EsinG+0(1) ' +G Esine+0(1)
2,/I'IT 2 427r                   ···

*Gm 2

Ihtotl =0, trans.-trans.4 W       s i he     1+ c o s e

(                 ) +0 ( 3)    ,    04/Z,T E  1-cose

4
. Gm -Gmt, 

Ihtot' =1, long.-trans.
4ww      (c q s e i 1 )  +  O (  -2)           13 1 (c o s e  i 1 )  +  O ( -2)

-Gm Gm 2
2

Ihtot' =2, trans.-trans.        .W
sine

" Cb)
·

W  sine

4 127r E 4 t/ITT      E + 0 (b)

We see from the above list that in the old weak interaction theory

(just fl) those amplitudes involving longitudinal final particles would

violate unitarity at large E.  (Essentially this is because the longi-

tudinal polarization vector contains a factor E while the transverse

polarization vectors do not.)  However, the f2 terms are seen to bring

these amplitudes back in line. Furthermore, there is another cancella-

tion which makes the 'h 1=2 amplitudes fall away faster with E.  Alltot

these results can be summarized in the. following formula for the leading

energy dependence of f

-'                                f-E                                    (1)
·-1-Ihtot'

.#/

According to Eq. (1) the amplitudes with h = 0 final states willtot

dominate at large energy and will behave as 1.  Since the initial v 3ee
state has h = 0 we see that these diagrams are giving asymptotictot

helicity conservation. This is an amusing feature and may indicate

AL-
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that gauge type theories provide a mechanism for  explaining the phen-

omenological helicity conservation observed in. some.hadronic interactions. 5

In order to get some insight into what is going on.and.to see the

role of Yang-Mills couplings in.producing the.good.high energy behaviour

for this process we shall now consider the kinematically simpler analogous

reaction

Tr (Pl) + Tr-(P2) + P (kl,El) + P-(k2'E..)
.---»L----- ---

*-I

with Yang Mills couplings but with massive .p-mesons. The three Born,
--I

diagrams are shown, in Fig. 1 and  the relevant part of the interaction

Lagrangian is

el

   int   =    LK  T r (p,·10011(1))    +   · &  Tr [ (31. Pv-Ovpu) pupul

2

+  -1 Tr(¢putpu-00Pupu) + . . . (2)

where g i s a coupling constant and the 2 x 2 matrices 0 and Pu are

defined in terms of the·Pauli'matrices T  by 0 „ 1  .(2.T), p  = 1-(p .T).
-              A             11     /2 -P  -

It is then straightforward to calculate the amplitude:

f= l  ll- -
1 6 7[E r      1 E l i      el aMa B E 2 8 (3a)

MaB = 1 -. <P.kl-k<· 1 2 IPaPB-k].Bl<2(1+pak].B-k2ap81

1

+ 2k ·k2-„i z [-p'kl 6aB+poth.B k2ap81-60 .B   (3b)
1  2 -4.4.                ..            , /

6 a4 1where ,p = P2-Pl and fla = (-1) Eia etc. To evaluate f for various

A
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helicities in the final state it is sufficient. to make the(3)

following explicit choices. of momenta:

pl =· (0,0, pl ,iE)  ,  kl = (O,lk].1 sine,lkllcose, iE)
(4 a)

*                     *

P2 = -Pl   '  k2 = -kl

and of polarization vectors:

ElL        =      C 0  ,  -    s i n e  ,  p    c o s e.      i  1 B l  1  1       ,     2i     =     1(- i  ,  -cose, s i n e  ,  0), m     dP                           P

(4b)

E   = (El )  , E '= -(2 )  , 22 = isl ' 22 - -iel

In (4b) the superscripts +, L, and - stand.for hilicity =1,0, and

-1 objects respectively.  When Eqs. (4) are substituted into Eqs. (3)

we find that miraculous cancellations occur again to give exactly

the same energy dependences as a function of total final state·
+

helicity as for the vO+W W  case (Eq. (1)).  Thus since the initial

state has zero total helicity asymptotic helicity conservation

again emerges, .in.addition.to„the good high energy behaviour.  Note
+that in· the   7T-+p p- case the cancellations are taking place among

the contributions from three rather than two diagrams. It is thus

clear that the explanation for the good high energy behaviour is

not most readily to be found in. the topological structure of the

diagrams.involved.
(j

The clue to understanding the matter on more general

grounds comes from decomposing MaBof Eq. (3b) in the following way:

M   = Mo + M' (Sa)a B    a B    a B
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M-0.=  ig2
aB   2k ·k - (x+1) (kl'k26aB-k2aklB)  + i r(Pa-xk2a) (PB+xkl'B) 1   2

2                                                   (5bj2   mM' = ig  P      1018     2  k ·k  2k ·k -6 z. .(-SaBP'kl+pakl B-1<2apB) (5c)
1  2   1  2 "'p . ·

where

x = p·kl/kl'k2 = -P'k2/kl'k2'

2
M'. has the property that it goes to zero as m +0.  Thus in. a completelyalj                                         - P

local gauge invariant
theory (m =0) we would only have the Mo  term.

a B

This term is manifestly gauge invariant, satisfying:

k  Mo  = Mo k = 0                          (6)la aB aB  28

First consider the leading energy dependentes for the contributions to

f from M' Because the factor mp2/kl k2.--mp2/2E2.;-all these terms areaB.

suppressed at large E by 1/E2 from what they would otherwise be;

explicitly:

final states non-gauge invariant part of f

Ihtotl= 0
long.-long. 0(1/E)

'htot'= 0 0(1/E 3)trans.-trans.

Ihtot'= 1 long.-trans. 0(1/E 2)

'htot'
= 2 trans.-trans. 0(1/E 3)

All these contributions have good high energy behaviour! The above

pattern of suppression follows generally when it is realized that an

V
overall factor like m82/E2 must be present for the non-gauge invariant

part of the amplitude.  This is because mp2 only appears explicitly in

(6)a propagator denominator which we may write as

2
m1 1   1

s -m- Z=   + s  s-m ZP                       P

A
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thereby separating its contribution to.M'..and to M'
a< aB.

Next consider the gauge invariant object M'B.  By covariance,

the most general solution of (6) may be written as:

0

MaB = A(kl'k260 B-k2akl8) + B(Pa-xk2a)(PB+XklB) (7)

when A and B are functions of the invariants kle k2 and x.   In the
2

-ig  X+1
present case A=   2  kl.k  = (1-x218 and both A and B fall off as
1/82 at large energies,  This fall-off is to be expected for dimen-

sional reasons since A and B should not explicitly contain any parti-

cle masses if they come from Born terms of a (zero-mass) Yang-Mills

theory. For the sake of generality we may now pretend that we don't

know A and B and prepare  using (4) and (7), the following list for

the leading gauge invariant contribution to the various amplitudes:

final states gauge invariant part of f -

'htot' 0, long.-long.
167[E(A-Bcos28)  = 0 (13)
m PZ

E
2

'htot' 0, trans.-trans. -iBsin 0E

"                   =    0  4)

'htot' 1, long.-trans.
- 4.7Rm,Iilecos e = 0 (12)

'htot' 2, trans.-trans.
16AE [2E2 (A-Bsin20) + (2Bm2sin ·Am2)]=0(1)

We see that all the gauge invariant contributions to f also fall off

fast enough to satisfy unitarity. In this case those amplitudes in-

volving longitudinal particles in the final states are suppressed.
t« This is heuristically reasonable since Mo. is essentially the ampli-

a /5

tude for production of zero-mass vector particles which of course can

only be transverse.  Thus, both the gauge invariant and non-gauge
+

invariant parts of the Born amplitude for   1-+p p- have been seen, in

1
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a fairly general way, to possess good high„energy behavior. The

crucial point was the separation (Eg. (Sa)) of the amplitude into a

locally gauge invariant part and a suppressed remainder.

How can we understand· the· asymptotic helicity conservation in       »

general terms? From, the last two lists we see. that the h =0 finaltot

state amplitudes will fall off as 1/E while the |htotJ=l amplitudes

will go as 1/82.   This· fits in· nicely with Eq.. (1). However the

htot'=2 amplitudes will fall off as 1/E, which would violate Eq. (1)

and asymptotic helicity conservation; unless we impose the condition

A - Bsin20 (CM system)                  (8)

Eq. (8) is of course satisfied for M'B represented by Eq. (Sb), since
22

(1-x )+sin e at large E. Eq. (8) represents a detailed property of

the Yang-Mills coupling scheme.

Incidentally, the general Eq. (7) also gives the Born amplitude
+ -

for the locally U(1) gauge invariant pro.cess..A w +2y, when we make

the identification A = -2ie2/kl k2 = (1-x2)B.  In this case the

final photons can. only be.transverse. Since Eq. (8) is satisfied

there will be asymptotic helicity.conservation,:the |htot|=2 final
2

state amplitudes being suppressed by 1/E  compared to the h =0 ones,tot

Finally, it might be interesting to. investigate in detail under

what conditions asymptotic. helicity conservation· and good high energy

behaviour also emerge for.other processes involving gauge bosons and

to attempt to apply these ideas to strong interactions.  We would

like to thank A. P. Balachandran and H. Rupertsberger for helpful

discussons.
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FIGURE CAPTION

+
Fig. 1:  Born diagrams for 1 1-+p p- in a Yang-Mills Theory.
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