UIUCDCS-R-T3-555 C00-1469-0215

NUMERICAL SYSTEMS ON A MINICOMPUTER

by

ROY LEONARD BROWN, JR.

February 1973

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN - URBANA, ILLINOIS

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

UIUCDCS-R-T3-555

NUMERICAL SYSTEMS ON A MINICOMPUTER*
by

ROY LEONARD BROWN, JR.

NOTICE

1| This report was prepared as an account of work

sponsored by the United States Government, Neither
.| the United States nor the United States Atomic Energy
.| Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
i | legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
.| would not infringe privately owned rights,

February 1973 o -

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, ILLINOIS 61801 _

% Supported in part by the Atomic Energy Commission under contract
US AEC AT(11-1)1469 and submitted in partial fulfillment of the
requirements of the Graduate College for the degree of Master of
Science in Computer Science.

U o |
DISTRISUTION OF THIS GOCUMENT IS.UNLIMITED

~ THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

iii
ACKNOWLEDGMENT

The assistance of the following people is greatly appreciated.
My advisor, Professqr C. W. Gear, provided both direction and cogent
suggestions. Professors Mf H. Pleck and R. L. Ruhl, and the Department
of General Engineering provided the Illinois Graphics Computer System
for my use in developing both the theory and the program presented here;
and my colleagues at IGCS, W. F. W. Tam, D. Mueller, and T. Runge
co-developed the software we all share. Mrs. Barbara Armstrohg typed
the manuscript. Finally, the Department of Computer Science ana the

U. S. Atomic Energy Commission supported the research,

8

PREFACE

This thesis defines the concept of a numerical system for a
minicomputér and provideé a description of the software and computer
system Qqnfiguration necessary to implement such a systém. A procedure
for creating a numerical system from a FORTRAN‘program is developed
and an cxoemple is presented. The réader should have some knowledge of
FORTRAN and minicomputer operating systems. A familiarity with PAL
assembly language for the PDP-1l is necessary to make full use of

the examples.

TABLE OF CONTENTS

1. THE PROBLEM . o ¢ & o « o s o o o o o o
1.1 Definitions. . « « « « « « « . .

1.2 Minicomputer Use

1.3 0ublin®. « & ¢ & ¢ o e e e e e e e e

2. THE COMPUTER SYSTEM

2.1 IGCS Hardware and Software . . . « . .

2.2 Alternate Systems. .

3. THE OVERLAY CONCEPT . . + « « &« o« « &
3.1 Definitions. « « ¢ ¢ « o+ o ¢« ¢ o« «

3.2 User-written Overlay Facilities.

3.3 Manufacturer-supplied Overlay Facility .

4., PARTITIONING THE FORTRAN PROGRAM.

4,1 Criteria for Partitioning.

L.2 COMMON VariableS . « « « o« « o« « o
4.3 Program Logic. . « « « « « o « « &
4.4 Control Transfer . . .

5. USER SUPPLIED OVERLAYS. .

5.1 User Input . + « « « « ¢ « v o o o .

5.2 User Subroutines « « « « &

5.3 Variable Size Arrays . . .« « « + « « .

6. CONCLUDING OBSERVATIONS
LIST OF REFERENCES. . . « . « « « o« o &
APPENDICES

A. User-written Overlay Facility . .

B. DIF1l Program Code. . . . + « « « « . .

o o o = = w

1
1k
1k
1k
15
17
20
20
20
22
2k
26

27

30

1. THE PROBLEM

1.1 Definitions

A numerical system as used here is any long program involving
large amounts of arithmetic‘compptation on a set of numerical data that is
small‘enough that menipulation of the data is not a significant part.of
the problem. Manipulation means wovement of the daté from one storage
device to another or change from one format to another, and similar
programming problems not ordinarily associated with numerical analysis.
Some numerical systems would be, for example, programs designed to solve
difference equations, find roots of nonlinear equations, perform numerical
quadrature of an input function, minimize a function of several variables,
or, in the example dealt with here, to solve a system of ordinary
difterential equations. All of these programs have in common the require-
ment of a great deal of arithmetic computation and simplicity of input:
a number of polynomial coefficients, a difference equation of specified
order and coefficients, a subroutine to evaluate.a function with some

initial conditions.

1.2 Minicomputer Use

Such a numerical system'is often difficult to write for a
minicomputer for several reasons. Most miﬁicomputers have very little
computing power for the vast amount of arithmetic operations needed to
run a program of this type; some do not even have a hardware multiply/
divide device, making complicated arithmetic operations time consuming.
Small word sizes of 12 or 16 bits require that any floating point

calculations use multi-word manipulations that take much time and storage

space. The small size of main memory means that the program will probably
not all fit into it at one time. This also limits the amount of numerical
data since storing it anywhere but main memory would be impossibly time .
consuming, given the block structure and slow access time of most
peripheral storage devices.

In spite of these drawbacks, there are still several reasons
for creating a numerical system for a minicomputer. Although running a
numerical system is time consuming, it is not as expensive as the same
amount of time on a System/360 computer. Some minicomputers are idle
part of the day and 4 set of numerjnal systems, possibly in a‘program
library for the installation, would fill in the gaps by being run in
free time or at scheduled times daily. Making such programs available
could reduce an organlzatlon s expenses if these programs are normally
taken to a large service computer. The complexity of multi-word
'manipulation, transcendental function evaluation, and programming of
complicated formulae is reduced greotly because many 16-bit word size
minicomputer software packages include both a library of subroutines that
perform multi-word manipulations, and & FORTRAN IV compiler that allows
execution of FORTRAN programs with approximately the séme accuracy as a
System/360 computer using 51ngle or double precision arithmetic.

Finally, the problem of program size can be solved by proper use
of peripﬁeral storage devices such as a fixed head disc, drum, or other
"prandom" access device. By storing large program segments that are always
executed together on such a device (hereafter called disc althoﬁgh any
"yandom" access-device may be substituted), the program can be executed by
bringing these segments. into a core pbuffer, overlaying the program segment

previously there. This core buffer will be called the overlay buffer.

1.3 Qutline

This paper will deal primarily with a procedure for‘transforming
- a large FORTRAN numerical program known to work properly in a large computer
environment into a numerical system that runs efficiently in a minicomputep
environment; As a helpful éxample, a problem which has been solved using
this procedure will be discussed wherever applicable. The coding of the
example numerical system is found in Appendix B while the original problem
is due to Gear [3] and involves integrating a first order system of
ordinaryldifferential equations through some interval of the independent
variable, given a set of initial conditions and a subroutine to accomplish
the differentiation. The original program, DIFSUB, is designed to handle
stiff systems of equations as well as better conditioned ones.

The topics to be presented are listed below. First, a computer
system which is well adapted to the pfoblem is described; criteria.for
chposing similar systems are listed'gs well as references to several such
systems. Next, the concept of a program overlay is developed. The
application of this concgpt.in partitioning a FORTRAN program will be
presented, and then several problems resulting from such a partition will
be discussed. These last will fully describe the procedure and some

additional comments about it will conclude the paper.

2. THE COMPUTER SYSTEM

2.1 IGCS Hardware and Software

The Illinois Graphics Computing System used in the development
of DIF1l, the numerical system described in Séction 1.3, belongs to the
Departmént of General Enginee?ing at the University of Illinois at
Urbana-Champaign. As described in [5] and [6], it is based on a PDP-11/20
minicomputer from Digital Equipment Corporation (DEC). It has a byte
addressable core memory of 16K 16-bit words with a ROM bootstrap loader.
All communication between the CPU and peripheral devices takes pléce over
a single bus which DEC calls UNIBUS. Access time for main memory is h90 ns.
ouﬁ and 8 ns. in. Instructions are basically of the two-address type, but
12 different addressing modes, eight general-purpose registers, and a
software stack simulator allow a wide variety of instructions. Instruction
formats requiré one to three words, depending on the addressing mode of
operands. A KE1l-A extended arithmetic unit provides single word hardware
multiply and divide operations.

A 256K word fixed head disc, accessible through the available
software in 64 word blocks, has an average access time -of 17 ms. and a
transfer rate of 16 us/word. A card feader, teletype, and Gould 4800
electrostatic printer/plotter complete the basic system. The Gould 4800
is used by DIF1ll as a printer through a software program, LP, since the
Gould will eventually be the output device of a system containing both a
CalComp-type graphical language and a simulation system of which DIF1l will
be part [5]. |

The software package available with a minicomputer is very important

since it can greatly reduce the work needed in programming a large system.

. IGCS curréntly operates with a Disc Operating System, DOS version LA,
which includes utilities for transferring data betwéen memory and
peripheral devices, an assenbler, a FORTRAN IV compiler, and a relocatipg
Linkage Editor which presently includes an o?erlay facility. See [2]

for details. EAELIB is a library of FORTRAN functions (e.g. SIN, COS)
and utility routines (e.g. floating point addition) designed to operate
with the KE1l-A multiply/divide'unit. These routines are linked with a
FORTRAN program by the Linkage Editor and are used by the program at
execution time.

This system is suitable for a numerical system since 16K of
core is adequate for keeping the operating system core (DOS is not
entirely resident, but overlays part of itself depending on its current
operation), a set of routines from EAELIB for a large progrem, & main
program, the overlay buffer(s), and storage for data whose size is variable
and dependent on an input parameter. The FORTRAN compiler is Very.
efficient in compiling code to do the actual computation involved, although
control transfer, allocation of memory space, etc., are best performed
using assembly language interfaces. FORTRAN progréms interpret a polish
string of addresses of routines placed in core by thé Linkage Editor from
EAELIB; these sfrings are the result of compilation of the program.
Storage is best handled as FORTRAN arrays wﬁose elements fiil consecutive
four byte segments of core and are easily processed by either FORTRAN or
the assembly language interfaces. The original working version of DIFll
was implemented in 12K core with user-written overlay software so the
present system is more than adequate. The speed of access, relatively
small blocksize, and adequate device driver software make the fixed head

disc easily accessible for transferring unchanging program segments to core.

2.2 Alternate Systems

Inspection of the above system leads to a set of criteria which
a minicomputer system should satisfy to create a weli suited environment
for a numerical system. These criteria follow.

The main memory.should be an adéquaté sizé to contain thé systém's
resident monitor, a.large section of code from the numerical system, aﬁd all
the variable storage for the system. An adequate word size to minimize multi-
word floating point manipulation is important; at least 16 bits is recommended.
The execution speed should be fast enough to allow an adquate turnaround time
for the size problem being run; a guod criterion would be that the minicomputer
. turnaround time including loading the numerical system and execution should
be no more than 10 times the turﬁarbund for a full size service compﬁter from
input to retrieval of output.

The peripheral device that acts as a bulk memory, usually a
fixed head disc or drum, should have fast transfer into core. Any
sequential device would be unsuitable tor this.

An efficient FORTRAN compiler (i.e., programs compiled use close
to thé'absolute minimum of core) is necessary. Since many numerical
systems may need to use double precision arithmetic, tﬁis feature should
" compile and execute efficiently.

Finally, a good software monitor capable of fast and effective
control of device transfers while occupying a minimum amount of main
memory is important, both at execution time and during creation of the
numerical system.

Several computer systems, while dissimilar to the PDP-11/20

in many ways, appear to meet the above criteria. Some may be better

suited to'the purposes of the purchaser than others and still provide an
gcceptable environment for numerical systems. They are:
Hewlett-Packard 2100 A [k]
Interdata Model 70 [7]
Systems T2 [8]
Varian 620/f [9]

Westinghouse 2500 [10]

3. THE OVERLAY CONCEFT

3.1 Definitions

A program overlay is a segment of executable code intended to
be used with a permanently resident program segmént. However, this code
is stored permanently only oﬂ a peripheral storage device (disc) and is
brought into a core buffer only when needed. When another overlay is
needed instead, that overlay is brought from disc and placed into the
same buffer, thus "overlaying" the previous segment. Clearly, N overlays
of approximately equal size effecti&ely expand the overlay buffer to
simulate a memory area N times as large. However, one pays for this in
terms of the cost of disc to core transfer time. This is more advantageous
than having all executable code in core (if possible) and using the disc
to store variables because these must be transferred not only into core,
but also back from core to disc after being processed; whereas overlays
~are constantly "refreshcd" from an unchanging disc image.

Since overlays for numerical systems are usually parts of a
FORTRAN program originally intended to be executed in the same main membry,
the overlay should have access to all variables stored.in resident core,
and to all resident subroutiﬁes, especially such utility routines as are
normally used by minicompufer FORTRAN compilers for complicated arithmetic
operations such as floating point addition (e.g. EAELIB in Section 2.1).
Because of these features, certain control paths between the resident
code and each overlay must be provided. These paths are:

a. Resident to overlay

b. Overlay to overlay

c. Overlay to resident; return of cdntrol

d. Overlay using resident subroutines

A core map of an idealized numerical system is in

Figure 3.1.1.

MAIN MEMORY " ‘DISC

OTTTTT

FLOATING POINT
UTILITY ROUTINES

MATN d
a
RESIDENT FORTRAN FLOATING POINT
ROUTINES —_q . UTILITY ROUTINES

OVERLAY BUFFER OVERLAY 1

VARTABLY DIMENSIONED
ARRAY STORAGE b

(STACK) |

DOS MONITOR

OVERLAY 2

000000

Figure 3.1.1. BSample Program Map with

Control Paths Indicated

3.2 User-written Overlay Fatcilities

Some minicomputer software systems do not have overlay facilities;
in these cases the user must code his own. Such a system was written.for
use with IGCS before versions of FORTRAN and the Linkage Editor were
provided with one. The code for this system in PAL aséembly language is
in Appendix A, and a core image for creation of én overlay file with it is

in Figure 3.2.1.

oTTTT7?

FLOATING POINT
UTILITY ROUTINES

FINAL :
LINK < MAIN-FORTRAN

ROUTINES .

4 CONCTM
OVERIAY - |} OVERLAY BUFFER DISC

MAKOVL

(STACK) |

DOS MONITOR

000000

Figure 3.2.1. Core Map for Créating an
Overlay Using MAKOVL

The system consists of two programs @lled CONCTM and MAKOVL.
CONCTM is a core resident subroutine which contains tables of the file
names of all overlays, their length in words, and their starting addresses
in core. On being called, it looks up the diec start block of the overlay
using the FILE BLOCK and LINK BLOCK [2] and places these in the TRAN BLOCK.
The overlays are contiguous on disc, i.e., if they occupy more than one
disc block, they are placed in consecutive disc blocks. When an overlay
~is called, the call is to CONCTM with the first argument- the integer |
designating the overlay wanted and the following arguments being the proper
arguments for the subroutine from which the overlay was made. CONCIM
transfers the overlay into core at the indicated starting address, using
a TRAN request and the TRAN BLOCK mentioned above. Since the addresses of
the arguments of the overlay sﬁbroutine follow the statemenﬁ.JSR CONCTM,R5
in the main program, and since subroutine arguments are referenced relative

to the return address stored in register R5, a simple transfer to the start

11

address of the overlay starts its execution. A FORTRAN RETURN
statement shifts control back to the resident prpgram‘segment.

The overlays are c;eated by linking together all resident
parts of the program, the overlay, and MAKOVL below these (the Linkage
Editor links in the order of its input string, filling the top of core).
MAKOV# is executed from the keyboard and computes the length in words
and disc blocks of the overlay and transfers the overlay to disc under
the name placed in its FILE BLOCK (this can be sét from the keyboard).
The user saves the length and starting address and inserts them into the
final version of CONCTM when the routines indicated as the final link in
Figure 3.2.1 are linked together as the initial load module.

Here it ié difficult to separate the floating point package
routines between those needed by the resident segment and those needed
only by the overlays. One solution is to determine all utility routines
needed by any program and force them to be permanently resident. On the
PDP-11/20, this can be done by linking each program and inspectiﬁg its
load map which lists all ﬁtility routines called by if. The union of all
utility routines listed on any load map is then placed in-a GLOBL state-

ment. A version of DIF1l using the above system was programmed and tested.

3.3 Manufacturer-supplied Overlay Facility

The overlay facility described here is found in more detail in 1.
It is typical of those available from manufacturers' software groups. The
system uses a single multiply entrant subroutine LINK with entry points
LINK and RETURN. These provide all the control paths described in

Section 3.1. CALL LINK('FILE') in resident FORTRAN code or JSR LINK,R5 with

i2

the proper argument in assembly language~l) initializes FORTRAN traceback
routines, 2) saves register 0-5, 3) causes the named file to be found,
transferred into core, and executed as if it were a main program. The
statement CALL RETURN restores register 0-5 and returns control to the
place ip resident code where LINK was last called.

Since it is easiest to write and test the FORTRAN part of the
numerical system with the overlays as subroutines, a problem arises in
that the overlays must be set up as main program segments. In some cases
. the FORTRAN SUBROUTINE statement can be removed, but if any parameters
must be passed as if the overlay were a subroutine (see Section 5.2,
then an assembly language main program can be written with the appropriate

arguments. Such an example is the routine INTRO in Appendix B.

oTTTTT

RESIDENT FLOATING POINT

INITTAL UTILITY ROUTINES

LINK

MAIN-FORTRAN ROUTINES

INTRO

OVERLAY FLOATING POINT OVERLAY BUFFER
UTILITY ROUTINES ‘

DISC

OVERLAY SUBROUTINE

(STACK) T

DOS MONITOR

000000

Figure 3.3.1. Core Map for Creating an Overlay

Using Manufacturer-supplied Software

The overlays are created using the relocating Linkage Editor,

LINK. The resident program segments are first linked together, bringing

13

all floating point utilities used by the resident code into core. Two

of the outputs of LINK are saved: the object module, and the Symbol

Table which lists all subroutine start addresses including those for the
utility routines. Then eacﬁ.overlay (withAiﬁs main program INTRO if

needed) is created; the first input to LINK is the Symbol Table, and the

top address of the output load module is set to two less than the bottom

of the core resident module Jjust created. The Symbol Table input allows

the overlay to use utility routines already core resident and only

utility routines which it alone needs are added to the overlay. Figure 3.3.1
shows the configurations of these different uses of LINK to create the

resident and overlay modules.

1k

4, PARTITIONING THE FORTRAN PROGRAM

4.1 Criteria for Partitioning

After providing for an overlay facility, one next considers the
overlays themselves. It is best to begin with a FORTRAN program which is
known té run in a large computer environment and insure that the overlay
interconnections will work by breaking the program down into overlay
subroutines and running it again on the same computer.

There are really no hard and fast rules that can be applied,
but since we are dealing with relatively slow minicomputers and one of
the slower operations is disg—to-core transfers, one goal of the
partitioning process is to minimize the number of such transfers.

Since core space is at a premium, most of the original program
should be put into overlays, leaving minor bookkeeping arithmetic and
major control transfer decisions in the resident program segment; by
making the overlays ot nearly uniform length, the uvérlay bufler (which
is as long as the longest overlay) is also made as small as possible.

The implementations of these two goals are clearly at odds since theAreal
minimum number of overlay transfers from disk would maximize the overlay
buffer, and the minimum overlay size would be only two or three FORTRAN
statements, requiring innumerable disc transfers, usﬁally of length less
than one disc block. Proper implementation calls for a balance between

these two extremes.

4.2 COMMON Varidbles

Because the contents of the overlay buffer at the time a new

overlay is transferred in will be overwritten, any FORTRAN variables

(other thén special constants) must be core resident. This is most
easily accomplished with COMMON statements which, when linked into load
modules by most Linkage Editor facilities, leavé all of thé variables

in a resideﬁt core block, When the overlay modulés aré linked, the
addressés of elements in the COMMON block aré available from the Symbol
Table.and are linked with the overlay. To form the COMMON block, each
overlay and the resident program is inspected and all of its fixed length
variables are listed. A variable array is of fixed length if its
dimension does not depend on an input to the program. Next, any variable
appearing on any two lists must obviously be shared by two different
routines and is placed in the COMMON block. Any data that remains the
same in an overlay and is not shared by aﬁy other overlay can be defined
by a DATA statement and need not be in the COMMON block. It may be
convenient to have several COMMON blocks since some varisbles may be

used exclusively by certain overlays and no others. Allocation of space
for arrays with variable dimensions will be discussed in Section 5.3,

but note that the initial address of each such variable must be passed

to the overlay as a subroutine parameter (it cannot be in a COMMON block
since its initial address is not available at Linkagé time), and the
variable dimension must be passed to the overlay as a subroutine parameter

as required by most FORTRAN compilers.

4.3 Program Logic

Some few FORTRAN programs are executed sequentially, i.e., starting
at the first statement and "dropping through" to the end with a few tight

DO-loops. Partitioning these is trivial. The program is divided into equal

length overlay segments; either each overlay calls the next, or, if

this is not possible, a short resident program calls éach overlay in
sequence. However, most programs are not this easy.

A1l or part of the more usual program is executed iteratively
either a fixed number of times or until certain conditions are met.
DIF1l, for example, predicts next values of the differential variables,
corrects these values, and, under certéin conditions, changes other
control variables (order, step size, etc.). This whole cycle--predict,
correct, change--is repeated until a final value is reached for the
independent variable.

The best approach to partitioning such a program is to followA
a principle of least use; if something is seldom used, it is an ideal
candidate for an oveflay. Many programs have a long initialization
section which is only executed the first time the‘program is used.
Clearly, this should be an overlay. The original version of DIF1ll had
such an overlay but the present version does not need one since the
initialization was shortened. A segment that is executed at most once
per iteration is the logical next candidate. In DIF1ll, SUB3 and SUB5 are
executed only once per iteration and SUBl, SUB2, and SﬁB6 are executed
only when a change of control variables is being considered or carried
out. (See Appendix'B). |

DO-loops are best placed completely within an overlay to avoid
each pass through the loop causing one or more disc transfers to the
Overlay buffer. Occasionally, however, a DO-loop will contain enough
material for several overlays (remenmbering that uniform overlay size is .

a goal of the partitioﬁ), and the DO-lobp then contains severaleverlays.

17

DIFFUN, SﬁBY, and SUBL are all contained in one loop in DIF11l, The same
loop contains code for the numerical evaluation of the Jacobian matrix
Which could have been an overlay. It was not because this would have :
reqﬁired one overlay to call another and to return to the original
overlay. This complicated process is best avoided but could be handled
by using two overlay buffers. See Section 5.2.

Occasionally, one especially long overlay may be needed but
only part of it need be in core the ﬁhole time it is being executed. In
such.; case only enough of the overlay should be brought into core at
one time to fill the regular sized overlay buffer, and when some part of
it that willvnot be executed again is completed, the rest is overlayed
there. This will be possible if the overlay facility allows overlays to
call‘overlays as specified in Seection 3.1.

Any segment that is called from a number of different places in

the resident code is probably best left in core, but if it is long or

called Qery seldom, it can be made an overlay as in SUB8 in DIF1l.

4.4 Control Transfer

It must be noted that each overlay may have several GO TO

statements which reference a statement in the resident module, or worse,

in another overlay. The partition should minimize this, but if it happens,

than a control transfer vector can be used to allow this. Either a single
variable, JLINK, or an array, JINK(N), can be used; the various values
should have some significance to the program. The single variable is

probably better since.it is less complicated. Set JLNK = 1 on entering

an overlay, then if a statement is, say

GO TO 750
‘and 750 is.in the resident module, change the statement to
JINK = 2
RETURN
If a statement is
IF(LOGICAL EXPRESSION)GO TO 715
change this to
IF(LOGICAL EXPRESSION)JLNK=3

IF(JLNK.EQ.3)RETURN

This requires that any arithmetic IF statements be made logical IF statements.

Immediately after the overlay calling statement in the resident
code, a computed GO TO statement can be used to effect the transfer:
CALL OVERLAY (SUBS) |
GO TO(5L0,750,715,...),JLNK
540 e
remembering'the possibility of executing the next sequential statement if
JLNK remains 1.
Transfers into the middle of another overlay can be handled by
a computed GO TO at the beginning of the overla& so that thisAis the
first statement other than subroutine calls after the computed GO TO in
the resident code. JLNK mus£ be set to 1 after executing the initiél

computed GO TO statement. For example,

19

éO TO 700

becomes
JLNK=2 3 ' (overlay 1)
RETURN

*¥ R X K X ¥ K X X X ¥ X ¥

540 éo T0(550,600) ,JLNK (MAIN)

600 CALL OVERLAY(SUB2)

* ¥ % ¥ X X K ¥ X ¥ X ¥ ¥

GO TO(650,700) ,JLNK

: (overlay 2)
T00 JLNK=1

Examples of all these techniques are in SUB5 of DIF1l in Appendix B.

20

5. USER SUPPLIED OVERLAYS

5.1 User Input

Many nﬁmericai systems can operate with a minimum of input.
For example, the only input qeeded to solve a differeﬁce equation is the
order, fhe coefficients, and the initial values. These can all be input
on cards or keyboard, and the storage for this data can be in the core
resident main program by specifying a maximum size for each variable
array. Other programs will require more from the user than numerical
data; a numerical quadratiire prograi will rcquirc that some way be
provided to evaluate the function at any given point, usually a subroutine.
Some programs will have large data arrays which differ greatly in size
depending on input parameters. Storing these within the main program
segment may be too restrictive. An LU matrix decomposition would need
such a variable sized space to store the matrix and outputs. And, some
systems'require both an evaluating subroutine and variable sizcd

arrays, as is the case with DIF11.

5.2 User Subroutirnes

The solutions to these problems for DIF1l are presented here;
they seem applicable to similar cases on other systems and are at least
a good starting point. In DIF1ll, the user is responsible for writing a
FORTRAN subroutine called DIFFUN(T,Y,DY), and by following carefully
detailed instructions, creating an overlay from it. First, compile
DIFFUN(T,Y,DY) where T is the independent variable, DY(I) is the first
derivative of Y(I), and all derivatives of order m higher than one have

been replaced by m first-order equations using standard techniques.

21

Y(I) and DY(I) should be dimensioned N, the number of equations. Next, call
LINK, the Linkage‘Editor. Specify DIFFUN.LDA as output; specify as input

ST (the Symbol Table of Section 3.3 which is keptvavailable on disc or
tape), the object module of INTRO (also available), the object module
resulting from compiling DIFFUN, and the EAELIB. Also, specify that the

top core address available to this module is two 1esslthan the bottom of

the resident code (this address is posted in the machine room). After
running LINK, run the program DIF1l with two data cards: one specifies

N, T., H (the length of the integration), EPS (the error criterion),

0°
and ISTORE (the octal top address to be filled by dynamically allocated
variable arrays); the other lists the N initial values of Y(I).

This overlay useé the same overlay buffer as all other overlays.
This is possible because none of the other overlays call it. Any other
overlay could call DIFFUN and then return to the main program; however,

a great deal more work would be required.to let an overlay call DIFFUN,
havé DIFFUN reinstate that overlay, and then transfer to the statement
after the call to DIFFUN. This would be equivalent to a regular subroutine
call to DIFFUN.

Another possibility is to provide a second'buffer Just for the
uéer supplied overlay, allowing all overlays to call it. However, it
must.be remembered that this takes valuable core that might'otherwise be -
used for variable storage. Since there is no way to predict the length

of a user supplied module, this allows the first overlay buffer to be of

fixed length while the second varies. This may be an important consideration

for some users.

22

5.3 Variable Size Arrays

The problem of variables whose dimensions depend on an input
parameter is best solved by allocating storage space for the FORTRAN
arrays in an assembly language MAIN program. In DIF1l, various arrays
are dimensioned (N,7), (N,2), or (N,N). The MAIN program (see
Appendix B) computes W*N (each floating point word uses four bytes on:
the PDP-11/20), 28*N, 8*N, and W*N**2, Using RO (register 0) initially
set to ISTORE as a pointer, MAIN subtracts an appropriate number of
bytes from RO and assigns RO ta an address vector ADDR. Then it places
thé addresses of the appropriate variables in the address 1list of the
calling sequences of INPUT, OUTPUT, and DIFSUB—-the FORTRAN subroutines
called from MAIN--and executes. It should be noted that most FORTRAN .
compilers require a variably dimensioned array, e.g. Y(N,7), to be in
a subroutine with the variable dimension N as an argument, so DIFSUB,
INPUT, and the overlays must be subroutines. Whenever DIFSUB calls one
of its overlays, the overlay starts with a main program INTRO as
required by the overlay facility, and INTRO places the initial addfesses
assigned“to the variably dimensioned arrays and kept in an assembly
language named .CSECT block (same as FORTRAN COMMON)'iﬁto the FORTRAN
calling sequence. Then INTRO.execgtes the subroutine cail, returning to
the overlay main program before calling RETURN (see Section 3.3) in
order to restore all registers. In this way, eight variably dimensioned
arrays are allocated dynamically in a manner similar to ALGOL by using
assembly language interfaces between FORTRAN progrdm segments.

It should be noted that the pseudo-stack mentioned in Section 2.1

is kept immediately below the overlay buffer by the DEC provided software,

23

and extends into lower core addresses. This requires that the dynamically
allocated variables be placed well below the stack and is the reason
ISTORE is-an input parameter. If a user written overlay facility were

available, the stack could be moved at will below the data.

6. CONCLUDING OBSERVATIONS

The following observations seem appropriate to the problem
discussed and are presented in an attempt to provide some perspective.
Firstly, the method of reducing a large FORTRAN program to a mini-
computef 6verlay system is best considered as a procedure. A list of
Step by step instructions can be found in the preceding chapters, but
no guarantée is provided that the procedure will ever stop. Thus,
this is not an algorithm with input: one large FORTRAN program;
output: equivalent minicomputer numerical system. A counter example
is a program with larger storage requirements than could ever fit into
core or be profitably allocated to disc. This procedure can be helpful
but no promises are made.

Secondly, in most caées the more general a progranm is, the
larger it becomes. A simple Runge-Kutta (R-K) program with step

doubling will take much longer to integrate a complicated system on a

360/75 than DIFSUB will; but if a problem is fairly simple, a R-K

program requiring no overlays would be much faster ‘than DIF1ll on the PDP-11/20.

Thus, one can save time by having available a simple method for simple

problems as well as a complicated method to solve complicated problems.
Finally, one should be wary of manufacturer supplied overlay

facilities, especially if overlays are called more than a few times. The

overlay processor supplied by DEC looks up the current disc start block

of each overlay every time it is called, even though some overlays are

called hundreds of times from the same disc location. For this reason,

the final simulafion language package, ILLISM, which DIF1l will be part

of, will ﬁse a locally written overlay facility that looks up disc addresses

once, stores them in a directory, and thus executes twice as fast.

With these comments in mind, one can conclude that many large
numerical analysis programs can be profitably used on a minicomputer

system using the techniques described here.

(1]

(2]

(3]

(4]

(5]

(6]
[7]

[10]

LIST OF REFERENCES

Digital Equipment Corporation, "Getting FORTRAN on the Air,"
(DEC—ll—SFDC—D), Maynard, Massachusetts, 1972.

Digital Equipment Corporation, "DOS Monitor Programs Handbook,"
(DEC—llASERA—D), ngnard, Massachusetts, 1971.

Geér, C. W. NUMERICAL INITIAL VALUE PROBLEMS IN ORDINARY
DIFFERENTIAL EQUATIONS, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1971.

Hewlett-Packard Company, "2100A Computer Reference Manual,"
(102100-90001), Cupertino, California, 1970.

Pleck, M. and Ruhl, R., "Illinois Craphics Computing System,"
Progress Report #1, Department of General Engineering,
University of Illinois at Urbana-Champaign, 1971.

, Progress Report #2.

Interdata, Inc., "Model TO User's Manual," (29-261), Oceanport,
New Jersey, 1971.

Multidata, Inc., "Computer Reference Manual--Systems T72,"
(31101), Westminster, California, 1970.

Varian Data Machines, "Varian 620/f Computer Handbook,"
(98-A 9908 0ul), Irvine, California, 1970.

Westinghouse Computer and Instrument Division, "Computer
Reference Manual," (25 REF-001), Orlando, Florida, 19TL.

APPENDIX A

User-written Overlay Facility

L.TITLE MAKQVL

.CSECT.

.GLOBL OIFFUN,CONCTM
sp = 86

MAKOYL: MOV #CONCTM, OVRLEN
SUB #DIFFUN,OVRLEN
MGV BLNKBLK,=(3P)
EMT &
{GET NUMBER OF 64 WORD SEGMENTS AND NUMBER OF WORDS.
OVRLEN, NUMGEG
nsn NUMSEG
ASR NUMBE®
ASR NUMSEG
ASR NUNSEG
ASR NUMSE®
ASR NUMBE®
ASR NUMSEQ
neo 1,NIIMSEG -
; HLLOC LNKBLK, FILBLK, NUKSER
MOV NUMSEG, -¢SP)
MOV #FILBLK,-(SP)
MOV #LNKBLK,~¢(S8P) -

EMT 1S
INC (SPO >+
BNE ERR

.OPENC LNKBLK,FILPLK
MGY #13,FILBLK=2
MOY #FILBLK,-¢(SP)
MOV ®LNKBLK,-(¢(SP)
EMT 16
MOY #BUF, -(SP)
MOY #LNKBLK,-¢(8P)
EMT 2
WRIT LNKBLK
MOV WLNKBLK,-(SP)
EMT 1
.CLOSE LNKBLK
MOV BLNKBLK, =-(8PY
EMT 17
; .RLSE LNKBLK -
MOV #LNKBLK, ~(SP)
EMT 7
; JEXIT
ERR: EMT &@
DVRLEN .WORD . ©
NUMSEG WORD ©
; LNNK BLOCK
.WORD ©
LNKBLK: .WORD ©,0,1
"RRCS@ sDF/
; FILE BLOCK
.WORD ©,0
FllLeLk: .RADS@ ~DIF~
"RADS® ~FUN/
.RADSO /LDA~
.BYTE ©0,0,0,0
BUF: "WORD OVRLEN,7,0VRLEN,DIFFUN
LEND

28

POINTR:

NUMWRD:

LNKBLK:

FILBLK:

TRNBLK:

CONCTM:

SUBROUTI
LTITLE
Sp = %
RO = %
.GLOBL
MOV @
ASL
ASL
MOV
MoV
MOV
MOV
MOV
MOV
MOV
MOV
EMT
MOV
CLR
MOV
EMT
MOV
TST 4
TST 4
MOV
MQav
EMT
MOV
EMT
MoV
EMT
JMP
. WORD
RADS®@
RADSO
RRADSO
RRDSO
RADSO
RADSA
RADSH
RADSA
RADSA
RADSE
RADS@
RADSEQ
.RADSEA
.RRAD3O
. RAGSA
.RRDSO
ADDR:
. HORD
. WORD
.WORD
.RADSA
. WORD

R
PO

4
(5P)>+, TRNBLK

7
BTRNBLK+2

29

NE CONCTM
CONCTM

6

@

CONCTN
2(85),POINTR
POINTR
POINTR
,0--<.$P>
POINTR, R® ;
INTRCR®), FILBLK+2
POINTR-2C(RO>, FILBLK 3
ADDRCRO), TRNBLK+4
ADDR-2(RB)>, TRNBLK+2
WLNKBLK, - (SP)

{MOVE SR INDICATOR TO POINTR
JPUT 4#POINTR ON THE STACK.

PUT SECOND WORD OF MODULE SR4S
{FILE BLOCK

PUT FIRST WORD IN FILE BLOCK

1PUT STRRT LOCATION IN TRAN BLOCK
(SP>+,R8

é $LINIT
#FILBLK,~(SP)
-¢(SP)

WLNKBLK, -(8R)

.LODK
;PUT START BLOCK IN TRAN BLOCK'
SPr+ :
SP)Y+
#TRNBLK, -(8P)
WLNKBLK, - (8P)
10 $ JWRITE
WLNKBLK,-(SP)
i JWAIT

+RLSE
G0 TO SUBROUTINE STRRT ADDRESS
TER RAND LIST OF FILE NRMES

1
#LNKBLK, -¢(SP)

;
3

a N
sDIF/
/FUN~/
/RPAS/
/CRL~/
/RF 1/
/ND~/
sSCA~s
/LE -
/EVRZ/
L/
/CHR~7
. /NGE~”

81,2 %4
/s7T7

/Z0R/
/ECT/

.WORD 9,37269,76,37122,1
366234,310,35064,1174,37
) s LINK BLOCK

9,06,1

OF s

POl

476,367

2N

£ 3
-] '

;FILE BLUCK

31

THIS PROGRAM 1S THE MAIN RROGRRAM OF DIFtt,

IT INITIRLIZES CONSTANTS, READS IN VARIRBLES,
AND ASSIGNS STORRGE LOCATIONS TO VARIABLY
DIMENSIONED STORRGE FOR DIFSUB.,

TITLE MAIN
R8 = %8
R1 ='81
R2 = %2
R3 = 83
R4 = 84
R3S = 85
Sp = 86
E:s"f .
-GLOBL LOW!,LOW2,0UTPUT, INPUT,LINK,RETURN,N,DIFSUD
.CSECT .
BEGIN: CLR N JCALL INPUT SUBROUTINE WITH N=8 TO RERD IN
JSR RS5, INPUT N, TLH,EPS,AND LOW2=BOTTOM RDDRESS OF
BR RETt tCIFFUN OVERLAY PROVIDED BY USER.
<HORD @,N,N2,LOW2,XLINM .
RET1: CMP LOWT,LOHW2 JLOWEST OVERLAY START -ADDRESS GOES TO LOW!
BM! ON ;TO BECOME TOP OF STORAGE ARER.
MOV LOW2,LO0NW! -
-ON: MOV N,Rt j COMPUTE ADDRESS OF DYNAMICALLY ALLOCATED
ASL R1 s STORRBE FOR DIMENSIONED VARIABLES.
ASL R
MOY LOMW1Y,R@ jRt COUNTRINS 4«N,RBCONTRINS. TOP OF STORAGE.
sSUB #2,R0
SUB Rt ,R@ ;ADY = & OF DVY(N)
MOV RO,RDY
SUB R1,RQ
MOV R8&,AERROR ; RERROR = # OF ERROR(N)
SUB Rt,RO
MOV RO, AYMAX JAYMARX = & OF YMAX(N)
SUB R1,R0O
MOV RO,RIP 1AIP =~ & OF IPCKN)
MOY R1,R3
ASL R3
ASL R3
ASL R3
SUB R1!,R3 3 R3 CONTRINS 7%4%N
SUB R3,R0@
MOV Re,AY 1RAY = W OF Y(N,7?)
SUB R3,R0
MOV RO,RSAVE yASAVE = # OF SRVECN,T7)
RSL R1I 3R1 CONTRINS 8=N . '
SUB Ri, K@ - . .
MOY RB8,RCSAVE $RC2AVE . = 4 OF CSAVE(N, 2>
SUB N2,R0O IN2 @ (N%42)%4
MOV RO&,RPN sRPH = # OF PWIN,N)
BR . +4
-.WORD @ .
MOV AY,LISTO
JSR RS, INPUT } RERD -¥Y(w, 1) FROM CRRDS
ER RETZ2 .
LISTO: .WORD O,N,0,0,8
RET2: MOV RAYMAX,Rf{ ;SET YMAX (%) = 1.0
MOV N, RO
LOGP3: MOV #40208, (R1)>+
CLR (R1)>+
SUB #1,R0
CMP #6,R0 ‘JRO 18 THE LOOP COUNTER
BNE LOOP3 ' o
MOV AY,0UTLIS ; PREPRRE PARAMETER LISTS FOR CRLLING
MOV #20,R3
MOV #RDDR, RO ;DIFSUB AND OUTPUT

MOV WLIST,R1
LOOP4: MOV (R@)>+,(R1)+
TST (R3)>-
CMP #0,R3
BNE LOOP4 '
CLRK JSTHRT {JSTART = @
BR ST20
MOV #1,JSTART ;ISTART =
JSR RS,DIFSUB
BR OUT
.WORD' N
LIST: .WORD ©,0,9,0,0,0,0,8
: JSR RS,0UTPUT
BR RET3
OUTLIS: .WORD @,N,XLIM
RETI: CMP #1,KFLAG
BEG ST19
EMT 60

)

N: .WORD 9,0

N2: .WORD 8,0
LONWY: " .WORD 033%512,0
LOMW2: .WORD 0,0
XLIM: . .WORD 8,0
.CSECT COM

JSTART = .+40
KFLAG = .+50
T = .+74 R
H = .+124.
HHMAX = .+148
HMIN = .+144
.CSECT RDDR

AGDR:ADY: .WORD 9
RERROR: .WORD @
ARYMAX: .WORD ©
RIP: . WORD ©
AY: .HORD @
ASAVE: .WORD ©
ACSAVE: .HORD @
APK: .WORD @

.END BEQGIN

Resident I/0 Routines

SUEROUTINE INP
COMMON ~COM7/ H

1 IDOUB.INEVRL,IRET,IRET‘,H

2ENR2,ENR3,BND,
DIMENSION VYN,

UT(V,N,NQ,LDH?,
<7y, JLNK JSYRRL
’

BR,DEL.DELl.D
T3

1800 FORMRT(!S;SGZB.B,Oé%

2000 FORMAT(4G28@, @)
IF(N.GT.8> GO

Y0

"]
READ(S, 1800) N.T,N,EDS,LON?
H

XLIM = T +
HMAX = H

H = HMAX~-/1000,
HMIN = HW-,1000.
N2 = N&N%4
RETURN

{a READ(S,296@8) (YT, 10, 1=1 4N

RETURN
END

SUBROUTINE CUT
COMMON ~COM~/ A
1 100UB, IWEVAL
2ENQ2,ENG3, BND,
DIMENSION VY(N,
WRITE(3,10881)
1881 FORMRT(SEYG6.7)
IFCT. AT RLIMD
RETURN
END

PUT(Y, Ny RLIMD

<7>, JLNK, JSTRRT K, KFLAG,NG, NG
JIRET, IRET1,H,HOLD, HNEN, HMRX,
8§.DEL.DEL1.D

7

T,evCI 1), 121, N

KFLAG=9

LD, NEWQ,EPS, T, TOLD,
MIN,E,EUP,EDNN,ENGY.

0o

oLD,NEWQ,EPS, T, TOLD,
HMIN,E,EUP,EDHWN,ENGT,

Resident FORTRAN Main Program 33

r

SUBROUTINE DIFSUB(N,DV,ERROR,YMhX,I1P,Y SAVE,CSAVE ,PH>

COMMON /COMs/ R(T)>,JLNK, JSTRR% KFLRG NQ NQOLD NEHO EPS,T,TOLD,

1 I100UB, IWEVRL, IRE1.IRET|,H HOL6 HNEMW, HMRX HMIN E, EUP EDHN ENGY,
RENQR2, ENQ3 BND, BR DEL,DEL1,D
C*#&#**‘t*#**#****0#*#tt*#*‘**t#t*‘##t*&t*tt*#tt##*t#*twt#‘*#*t*w****#**
C* *
Cw THIS SUDBROUTINE INTEGRATES R SET-OF N ORDINRRY DIFFERENTIAL FIRST -
C» DRDER EQUATIONS OVER ONE STEP OF LENBTH H AT ERCH CALL. H MAY BE »
INCREASED OR DECREASED WITHIN THE RANGE MMIN TO HMARX TO

HCHIEVE RS LARGE A STEP AS POSSIBLE WHILE NOT COMMITTING A SINGLE
STEP ERROR WHICH IS LRARGER THAN EPS8 IN THE L-2 NORM, WHERE ERCH
COMPONENT OF THE ERROR IS DIVIPDED BY THE COMPONENTS OF VYMAX,

]
*

LR R IE EEEEIE I IR I T iy

THE PROGRAM REQUIRES THE SUBROUTINES NRMED
‘ DIFFUNCT,V,DY)

DECOMP(N,M,PW, IP)

SULVECN, M, PW, CEBAVECT, 1), 1P)
THE FIRST, DIFFUN, EVALUATES THE DERIVRTIVES OF THE DEPENDENT
VARIABLES STOREC IN Y¢1,I> FOR I = 1 TO N, AND STORES THE
DERIVATIVES IN THE RRRRY DY. DECOMP IS R
STANDARD LU DECOMPOSITION WITH PIVOTING THAT DECOMPOSES THE MATRIX
PW, LEAVING THE PIVOTS IN THE INTEGER ARRAY IP. M IS THE DECLRARED
SIZE OF PW. IP(HN> IS SET TO @ 1f PW 1§ SINGULRR. SQLVE PERFORMS
BACK SUBSTITUTION ON THE CONTENTS OF CSAVECI,t>, LEAVING THE
RESULTS THERE.

C+« THE TEMRORRRY STORAGE SPRACE I8 PROVIDED BY *MAIN=* IN THE

C+ INTEGER RRRAY 1P, THE SINALE PRECISION RRRAYS PW, DY,

C+ PRECISION RRRAYS SAVE RND CSAVE. THE WRRRAY PW IS USED ONLY TO HOLD
C* THE MATRIX OF THE SRAME NRME, AND SRAVE IS USED TO SAVE THE VALUES

Ce OF v IN CRSE R STEP HAS TO BE REPERTED, BUT CSRVE IS USED TD KOLD
C+ SEVERRL RRRAYS,

C* THE PARAMETERS TO THE SUBROUTINE DIFSUB HRVE
C+ THE FOLLOWING MERNINGS..

CIOCO OO O T I O OO

»

»

>

-

*

*

»

-

#

"

+

*

Ed

»*

»”

-

-

»

-

»

"

-

*

L]

-

-

Cw »
Cw N THE NUMBER OF FIRST ORDER DIFFERENTIAL ERUATIONS. N -
Cw MAY BE DECRERSED ON LATER CALLS IF THE NUMBER OF -
Cw ACTIVE EQUATIONG REDUCES, BUT IT MUST NOT BEE -
Cw) INCREASED WITHOUY CALLING WITH JSTART = @, *
DY T THE INDEPENDENTY VARIABLE. *
C* v R 7 BY N RRRAY CONTRINING THE DEPENDENT VARIABLES AND »
[THEIR SCALED DERIVATIVES, Y(J+1,1> CONTARINS -
Cx* THE J-TH DERIVATIVE OF VY(I)> SCRLED BY -
D Hes i7FRCTORIARLCJ)Y WHERE H I8 THE CURRENT -
Cw STEP SIZE. ONLY V(1,1> NEED EBE PROVIDED BY L
o THE CALLING PROGRAM ON THE FIRST ENTRY. *
O H THE STEP SIZ2E TO BE RATTEMPTED ON THE NEXT STEP. "
T H MAY BE ROJUSTED UP OR DOWN BY THE PROGRAM L]
C# IN ORDER Y0 RACHEIVE RN ECONOMICRL INTEGRATIDN. -
Lk HOWEVER, IF THE H PROVIDED BY «MRIN* DOES »
[NOT CRUSE R LARGER ERROR THRN REQUESTED, IT -
D WILL BE USED. TO SAVE COMPUTER TIME, *HRIN* *
(] USES A FAIRLY SMALL STEP FOR THE FIRST *
T CRLL. IT WILL BE AUTOMATICALLY INCREASED LATER. -
Cw* HHMIN THE MINIMUM STEP SI2E THWRT WILL BE USED, -
o HMRAX THE MRXIMUM SIZE TO WHICH THE STEP WILL BE INCRERSED -
Coe EPS THE ERROR TEST CONSTRANT, SINGLE STEP ERROR ESTIMATES L
oo ODIVIDED BY VYMAX(I)> MUST BE LESS THAN THIS L
Cw IN THE EUCLIDERAN NORM,. THE STEP AND-OR ORDER 1s *
Cw ADJUSTED TO ACHEIVE THIS, -
Lo YMEX AN ARRAY OF N LOCHTIONS WHICH CONTAINS THE MRXIMUM -
Cx* OF ERCH V SEEN SO FHR. IT SHOULD NORMRLLY BE SET TO L
T I IN EACH COMPONENT BEFORE THE FIRST ENTRY. <SEE THE -
G DESCRIPTION OF EPS.) *
Ce ERROR HN HRRAY OF N ELEMENYS WHICH CONTRINS THE ESTIMRATED -
C» ONE STEP ERROR IN ERCH COMPONENT, *
Cw KFLAG A COMPLETION COUE WITH THE FOULLOWING MERNINGS.. -
Cw +1 THE STEP WAS SUCCESFUL. *
Cw -1 UNRECOVERRBLE ERROR -
Cw 2] INTEGRARTION COMPLETED . -
Ce JSTART AN INPUT INDICATOR WITH THE FOLLUWING MEANINAGS,. -
Cw 8 PERFORM THE FIRST STEP, THE FIRST STEP -
Cw . MUST BE DONE WITH THIS VALUE OF JSTART -
Cx*) SO THAT THE SUBROUTINE CAN INITIRLIZE -
Cw ITSELF. -
C* +1 TAKE R NEW STEP CONTINUING FROM THE LAST. »
Cw JSTART 16 SET TO NQ, THE CURRENY ORDER OF THE METHOD -
C# RT EXIT. NQ I8 ALSO THE ORDER OF THE MAXIMUM L]
Cw DERIYATIVE RVAILABLE. -
Cx PW A BLOCK OF AT LEAST N%w2 FLOATING POINT LOCRTIONS. -
-

ot b o o o oo o o o o e o ok o e e e o b o e o o o oo oo o o o o o o o o o o
DIMENSION Y(N, 7>, YMAX(NY,SRVEC(N,?>,ERRQR(N),PHC1),DYC(NI#
f CSAVEC(N, 2),ID(N)
IRET = |
KFLAG =
IF (JSTRRT.LE.@> GO TOQ 140

c““"#******#‘*‘*‘*"*#““.**“.‘.‘0‘...“‘*‘*****‘ﬁ*****#***“.“.‘.
C+ BEGIN BY SAVING INFORMRTION FOR .POSSIBLE RESTARTS HND CHANGING -
Ce H BY THE FACTOR R IF THE CALLER HAS CHANGED H. ALL VARIABLES -
Ce DEPENDENT ON H MUST ALSO BE CHANGED. ' -
C+« £ 1S A COMPRARISON FOR ERRORS OF THE CURRENT ORDER NQ@. EUP IS »
Ce TO TEST FOR INCRERSING THE ORDER, EDKWN FOR DECREASING THE ORDER. -
Cx HMNEW IS THE STEP SI12E THAT WAS USED ON THE LAST CALL. *

”

C“#t““‘#“‘#‘**#‘*#t#“#.#‘*“.*‘ﬁt““‘**#***‘*#**‘t“****#**#*##*#

100 DO 118 I = 1,N
DO 118 J = 1,K)
110 SAVECL,Jd) = ¥(I,d)
"HOLD = HNEW
. IF (H.EQ.HOLD)> @GO TO 1380
120 IRETY = 1
GO T0 750
130 N@OLD = NQ
TOLD = 7T
IF (JSTART.GT.0> 60 YO 2S5@
G0 TO 170
149 IF (JSTRRT.EQ.-1> GO TO 148
Ct‘*#tt*ttttt#‘*#tt"#*ﬁ**#**t***ttt“&t‘t.tttt‘*‘m#.*##*t##**‘#**#*****
C« ON THE FIRST CALL, THE ORDER IS SET TO 1 AND THE INITIAL -
C+ DERIVATIVES ARE CALCULATED. ..
C#t¢tt.*t‘ttt#0#0#‘0‘.#t##t##t‘t#t‘*t“t*'.t#.t‘#‘*“#tMﬁ*tt‘#t**‘#*ﬁ*t*
BR = 1.0
NG = 1
Cc CALL DIFFUNCT
CALL LINKC'DI
DO 158 I = 1§,
150 Y{l,2) = Yy
HNEKW = H
K = 2
GO TO 108
Ctt*#'.tt#‘t.0‘.‘.0‘#t‘t*##..*".tt#..““*‘tt.t‘bw#Qt#***#***t**t**ﬁ***

Ce REPERAT LAGT STEP BY RESTORING SAVED INFORMATION. -
C*&‘t‘t#*tt*‘#tt‘t*0*“‘0‘#‘*#*“*““*‘#**###‘*#*#*‘t###*#.*##***#*#*t#
160 If (NQ.EQ.NQOLD)> JSTART = 1

T = TOLD
NQ = NQOLD
K = NQ@ + 1
GO TO 1208

¢ 178 CHRLL SUB1(N,Y,SAVE,CSRVE, YMAX,ERROR,PK, 1P

178 CALL LINKC'SUB1') -
C 238 CHLL SU82(N,V,SQVE,CSQVE,VMRX,ERROR,PN,ID)
230 CALL LINKC('SUB2')
G0 TO (240,7885, JLNK .
240 GO TO ¢ 2308 , 640 >, IRET
C 258 CALL SUB3(N,Y,SRVE,CSAVE,YMAX,ERROR,PW,IP>

258 CALL LINKC('SUB3'>
C‘ttt.tt#.‘#“t#ttt#t#*#‘t#*t****t*t#"#‘*t**‘*#t***t*#*#t###*****##‘***

C* UP TO 2 CORRECTOR ITERATIONS ARE TRKEN. CONVERGENCE 1€ TESTED BY =*
Cw REQUIRING THE L2 NORM OF CHRNGES TO BE LESS THHN BND WHICH IS *
C# DEPENDENT ON THE ERROR TEST CONSTANT. . *
Cw THE SUM OF THE CORRECTIONS IS ACCUMULATED IN THE ARRAY *
w
w
-
™

O -

Cw ERRORCI>. IT IS EQUAL TO THE K-TH DERIVATIVE OF ¥ MULTIPLIED
Cw . BY Hew#K (FRCTORIALC(K-1)*ACK)I>>, AND IS THEREFORE PROPORTIONAL
C* TO THE ACTUAL ERRORS TO THE LOWESY POWER OF H PRESENT. (H»*K)
C#‘0“**‘b*‘*#‘“‘#"*#*#‘*‘**‘.#‘*‘*‘**‘ﬁ#****‘#**‘#**#*##***‘****#***
DO 278 I = 1,N
270 ERROR(I) = ©.@
DO 430 L=, 2
c CALL DIFFUNCT,Y,DY)
CALL LINKC'DIFFUN')
0O 280 I=1,N
288 CSAVECI, 1) = DYCD)
JLNK = 1
IFCIWEVAL.LT. 1) JLNK = 2
IF<CJLNK.E@.2> GO TO 35@
C****#***#*##*‘#**-#**#**#"t*“*“##“**#*#***‘**‘*#***‘*‘***‘*****#***

(] IF THERE HAS BEEN A CHANGE OF ORDER OR THERE HAS BEEN TROUBLE -
C» WITH CONVERGENCE, PW IS RE-EVALURTED PRIOR TO STARTING THE *
C# CORRECTOR ITERATION IN THE CASE OF STIFF METHODS. IWEVAL IS »
Cw THEN SET TO -1 RS AN INDICATOR THAT IT HAS BEEN DONE. *

C‘#***‘****‘**##*####ﬁ##“#‘*#**‘*&*‘***#****‘**#“‘******‘#****‘*#*‘**#
310 DO 348 J = 1,N
F o= ¥(J, 1) -
R = EPS+AMAX1CEPS, ABS(F))
Y(J,1) = Y(J,1> + R
D = ACI>*H R
c CRLL DIFFUNCT,Y,DV¥)>
CALL LINKC'DIFFUN'D
DO 230 I = 1,N
330 PUCI+CJ-1)%N)> = (DYCI)-CSAVECI,1))>%D
340 Y¢Jd, 1) = F

35

o A AL Y L Y T Y Y Y Yy I
Ce ADD THE IDENTITY MATRIX TO THE JRCOBIAN AND DECOMPGSE INTO LU = PN »
CUHMANBAE UM R E RN SN GE RO RGO C R RSSO ORGSR B S0 50 0o ke R o o0 o ok oo o o
290 DO 308 I = {,N
380 PHCI®(N+1)=-N)> = 1,0 ¢ PHCI®(N+1)>-N)>
IMEVYAL = -1t ’
C 356 CALL SUB7?7(N,Y,SAYE,CSAVE, YMNAX,ERROR, PN, IP)
350 CALL LINK('SUB7')
: GO TO (440,410)>, JLNK
C 410 CALL SUB‘(N Yy SRVE CSAVE, YMAX, ERROR, PN, IP)
410 CALL LINKC('SuB4"
GO TO <430,440), JLNK
4308 CONTINUE
.C 440 CALL SUBS(N,Y,SAVE,CSAVE,YMAX,LRROR,PH, IP)
448 CRLL LlNK('SUBS')

GO TO (7506,715,550,702,540), JLNK
C**t*#****##tt*#*t#t*"ttt#.tt‘.‘.".tt#t.tt‘.“‘###’!tm“-t-gq¢¢¢*mm*;‘
Cn REDUCK THE FTAILURE FPLARG COUNT TO CHECK FOR MULTIPLE FAILURES. -
C* RESTORE T TO ITS ORIGINAL VRALUE RND TRY RGRIN UNLESS THERE HAVE »
C+ THREE FRILURES. IN THRY CARSGE THE DERIVATIVES RRE RSSUMED TO HRVE »
C« RCCUMULATED ERRORS 80 R REBTRRYT FROM THE CURRENT VALUES OF ¥ IS »
C+ TRIED. THIS I8 CONTINUED UNTIL SUCCESS OR H = HMIN. -
C&#&&****l*##*t*t*‘ttOt#.‘i"ttt#t““ltﬁtttt.tttt*#tt‘t##t#***t###****t

546 KFLAG = KFLAG - 2

IF(ABSC(H> . LE.HMINY 60 YO 740

T = TOLD

IF (KFLAB.LE.-%> 60 YO 20

350 JLNK = 2
C 640 CALL SUB6(N,Y,SAVE,CSAVE, VNRK.IRROR Pi, IP)
6408 CALL LINK(® SUB")
GO TOQ (700, 759 170,250, JLNK
700 DO 710 1 = {,
710 YMAXCD) = anax|<vnax<l> ARSCYC(I, 1))
JSTART = NG
713 RETURN
720 IF(NQ,GT.1> G0 TO 728
IFC ARBS(H).LE.2.E0*HMIN> GO TO 780
B0 TO 550
7235 R w H/HOLD
DO 730 1 = '.N
Y<(I1,1> = gaAvVE(l,
738 v<l,2> = SAVEC 3)‘!

NQ =

KFLAG =

30 TO 7@

740 KFLRG = -1

HNEKW = H

JSTARY = N

RETURN
C 75@ CALL SUBB(N,VY,SAVE,CS8AVE, VIGX.CIROR Pi,1P)

750 CRLL LINK(‘SUBG')

GO TO ¢130,2%50,640,440), JLNK
786 KFLAG = —4

RETURN

END

Sample user-provided Overlay; Y" s -Y

.TITLE INTRO
.GLOBL N,RETURN,DIFFUN

.CSECT RDDR
RDDR: .=.
.CSECT COM
T=.+74

.CSECT
C : MOV RDDR+10,LT1ST+2

BEGIN: L0V RODR,LIST+4
JSR 8S,0DIFFUN
BR RETT 0.0
T: . WORD
Ret: JSR $5,RETURN
LEND BEGIN
GUBROUTINE DIFFUNCT,¥,DV)
DIMENSION v(2,7>, D¥(2)
DYCI)> = ¥(2,1)
DYC2) = -v¢i, 1)
RETURN

36
Regular Overleys; INTRO with the ang;gx;itte subroutine

nAm: £Y0 [}

+TITLE INTRO
.GLOBL N,RETURN,SUB!
.CSECT ADDR

ADDR! .s=.

.CSECT

BEGIN: MOV ADDR+10,LIST+2
MOV RDDR+12,LIST+4
MOV ADDR+14¢,LIST+4
MOV ADDR+4,LIST+10
MOV RDDR+2,LIST#12
MOV RDDR+16,LIST+14
MOV RDDR+6,LIST+16
JSR $5,SUB!
BR RET

LIST: .WORD N,9,8,0,0,0,0,0

RET: JSR $S,RETURN

LEND BEGIN

SUBROUTINE BUB!(N,¥,8AVE, CBAVE, VMAX, ERROR,PH, IP)

COMMON ~/COM/7 RCT)Y, JLNK J879n7|“,KFLRO,NQ,NQOLD.NENO,EPS,T.YOLD.

1O boUe, INEVAL , IRET, TRET T, H, NOLD, HNEW, HMAX , HNIN, £, EUP, EDWN, ENGT,

2ENQ2, ENG3, BND, BR, DEL,DELY,D

SIMENSION YN, 7> SAVECN, 7>, CSAVECN, 2>, YMAXIND,

1 ERRORCND PRCN, N>, IP(N?
c*‘*‘#**lﬁl‘lﬁ‘l***‘*“"*‘*“‘.‘*"*.‘*..‘*"i.“‘““*‘.lﬁ“#***"“‘***‘*‘*
e SET THE COEFFICIENTS THAT DETERMINE THE ORDER AND THE METHOD .
c+» TVYPE. CHECK FOR EXCESSIVE ORDER. THE LAST TWO STATEMENTS 0F »
Ce TWIS SECTION SET INEVAL .@T.8 IF PW 18 TO BE RE-EVALUATED -
e BECAUSE OF THE ORDER CHANGE, AND THEN REPEAT THE INTEGRATION N
Ce STEP IF 1T MAS NOT YET BEEN DONE C(IRET = 1) OR SKIP TO A FINAL .
K+ SCALING BEFORE EXIT IF IT HAS BEEN COMPLETED (IRET = 2). M
C‘..“t‘““‘*‘“.*"..“‘l*‘*‘**"***‘ﬁ*‘*.*‘**““‘*‘***“*‘****““““

A2 = -1,0

IF (NG .GT. 6> NGw=é :

GO TO (221,222,223,224,22%,226)N
Cttttt*t*#ttt&ttttt#t‘t“t#tti‘*&***i't‘.0.*##‘#*tt*tttt#t‘tﬁ‘*tt‘ﬂ‘!tt*

Ce THE FOLLOMWNING COEFFICIENTS SHOULD BE DEFINED TO THE MRXIMUM

Ce ACCURACY PERMITTED Y THE MACHINE. THEY RRE, IN THE ORDER USED..
Ce

Ce

Cw -1

C+ -2/3,-1/3 -
Ce -12-25,-7718,-1,5,-1,50
C« -120/274,-225/276,—85/274,-‘51274,-1/274
Cw -199/441,-58/63,-15/36.-251252.—3/252,-1/1764
C¢o-00**‘-wmnvtttato-otttv-ototﬁotowooooonqt.ttott#vtmtm»omwmtct*mmvmvv
221 R(1)> = -1,080000000 '
50 T0 230
222 RAC1) = ~0,6666666666666667
QA¢3> = -8,3333333333333333
GO 70 238
223 AC1) = - 0,5454545454%454593
R(3> = ACY)
AC4) = -8.8909096909095090%1

E 3R 2% 3K 3F 3 2K K 3 O J

224 R(1) = ~-0.480000000
= -@,700000000 .
= -9.200000000
= -9,8206000089
230
-6.437956204379%562
-9.8211678832114788
-6.3102189781621893
-@.0547445285474452¢6
-0.003649635083649633584
0 230
-8.4001632653061225
-0.920863492063492806

=]

225

NP W

2246 -
- -9.4166666664664667
= -9,08992063492063492
- ~g R119847619847619
R

TP DDLODDD
N T i R I

PO S - W

AW~

-0.0005666893424036282
23@ RETU

37

SUBROUTINE 8UB2(N,Y¥,B8RVE,CSAVE, YHAX, EAROR, PH, IP)
COMMON ~COM/s AC?7), JLNK, JSTRRT K, KFLRG, NQ,NOOLD, NEWG, EPS, T, TOLD

1 100UB, INEVAL, TRET, TRETY, W, HOLD, HNEW, HMAR, HNIN, E, EUP, EDWN, ENG! ,
2ENQ2, ENQ3, BND, BR, DEL, DELY) D

DIMENSION Y(N,75,8AVECN, 7>, C8AVECN,2), YMRXCN),

' ERRORC(NY , PW(N, NS, IPCN)

DIMENSION PERTST(7,3) :
c“‘.““l““*“*"‘*"‘..‘.‘.“‘."..“““.“.*“*‘*‘*“."*““‘*““
C+ THE COEFFICIENTS IN PERTST ARE USED IN SELECTING THE STEP AND : M
C+ ORDER, THEREFORE ONLY ABOUT ONE PERCENT AGCURACY IS NEEDED. x
C““““‘*#“‘."‘V‘*‘“.“‘*.‘*ﬁ.‘.‘....“‘.‘.““.““*‘.‘#‘*'ﬁ“"."“

DATA PERTST/2,,4,5,7,333,10.62,13.7,17, 18, 1.,

1 3.,6.,9.167,12,8,15.98,1. .1, '

2 0 TH.,10,.8,.1667,.04167,.008333.

 TULNK =

230 K = NG+

I00UB = K

ENGZ = .S/FLOATCNG + 1)

ENQ3 = .S/FLORTCNG + 2)

ENGT = 9.5/ FLOAT(NG)

EUP = (PERTST(NG,2)eEPS)es2

E = (PERTST(NG,1)>%EPS)wn2

EDWN = (PERTST(NQ,3)%EPS)wn2

IFCEDWN.EQ.8) JLNK = 2

DND = (EPSSENQ3>«w2

248 IWEVAL = 2

RETURN
END

SUBROUTINE SUB3(N,VY,8AVE,CSAVE, YMAK, ERROR, PH, IP)
COMMON /COM/ AC7), JUNK, JSTART,K,KFLAG,NG, NGOLD, NEWQ, EPS, T, TOLD
1~ 1DOUB, INEVAL, IRET, TRET1,H, HOLD, HNEW, HMAX, HNIN, E, EOP, EDWN, ENG
2ENG2,ENQ3,BND,BR, DEL,DEL1,D
DIMENSION Y(N,7),5AVECN,7>,C8RVECN, 25, YHAX(ND,
1 ERROR(NY , PHCN, N>, IPCN) ,
c..*#*‘llillvli“‘lll‘l*il‘t#‘*&tt“-‘"*‘*!ﬁlﬁ‘*lﬁ“*“*t““‘*‘*“l‘**#*t**‘tI&li....

Ce THIS SECTION COMPUTES THE PREDICTED VALUES BY EFFECTIVELY ..
Ce MULTIPLVING THE SAVED INFORNATION BY THE PASCAL TRIANGLE .
Ce MATRIX. .

ct.tt‘l"“.*“'*I&‘#*“l*l.ilﬁﬂ"“““‘O*t.‘#*‘#tt‘#lﬁ*“*lﬁ*t***“*‘ll*l‘l#‘l#t“‘
256 T =T + H
DO 268 J = 2,K
DO 268 JI = J,K
J2 = K ~ J1 + J = |
‘ DO 268 I = 1,N :
2¢0 ST, J2) e YCI,J2) ¢ VI, J241)
RETURN S :
END

ROUTINE SUB4CN,Y,GAVE,CBAVE, YMAX, ERROR, PH, IP)
R BroN SComMs BT JLNK, JBTRRT, K. KFLAG, NG, NQOLD, NENG,EPS, T, TOLD,
1 100UB, INEVAL, IRET, IRETY, H, HOL®, HNEW, HMAX , HNIN,E, EUP, EDMN, ENGIT,
2ENG2, ENG3, BND, BR,DEL,DELT,D
oxn:ﬁsxou'v<u:7>:snvé<:.v§5c§?vt<n.z>,vnax<~>. |
! ERﬁOR(N) . pu<N;*:;":**“““.“*‘.“‘*‘*‘“.'***‘***‘**...

0 o o o ok
450 CORRECT AND COMPARE DEL, THE L2 NORM OF CHANSE~-YMAX,
Ce ESTIMATE THE YRLUE OF THE L2 NORM OF THE NEXT CORRECTION BY :
Ce BR*2+DEL AND COMPARE WITM BND. IF EITHER IS LESS, THE CORRECTOR .

CONVERGED. ,
g:.li‘fglgtlgﬁggzs‘#“‘.“““..‘.“.“.“‘*.‘*‘&f“"ﬁ‘#“.‘*.‘#“.#‘...

410 DEL = 0.0E9

WITH BND. .
L

I = 1,N .
Dov?§?1) . VI, 15 ¢ ACID>eCSAVECT, 1) .
¥¢1,2) = ¥v(1,2) -~ CSAVEC(], 1>
ERRORC(1)Y = ERRORC(I)> + CSRAVE(I, 1)
DEL = DEL + (CSAVECI,1)>/YMAXCI))we2
420 CONTINUE
426 IFC(L.BE.2> BR = AMAX1(,9#B8K, DEL/DEL1)
DELY1 = DEL '
JLNK = 1
IF?QMXNi(DEL,BR*DCL#?.O) .LE. BND) JLNK = 2
RETURN

END

SUBROUTINE GUBS(N,V.OﬁVE.CSﬂVE.VN?NaElﬂOR.PH.Ib)

L

COMMON /COM~ R(?).JLNK.JSTQIT.Kbkunzu N
[[

1 1DOUB, TWEVAL, IRET, IRET1, K, HOL
2ENQ2, ENG3, BND, BR, DEL,DEL1,D
O IMENSION V(N 7>, SAVECN, 72, CB8AVECN,2), YHAX(N),

1 ERRORCND | PH(N,NY, IP(N) :
c*“‘***‘*‘“"**“"...**"*"*‘*‘*.“““““.“‘““.““.“*““‘*“
Ce THE CORRECTOR ITERATION FAILED TO CONVERGE IN 2 TRIES. VARIOUS .
Ga POSSIBILITIES ARE CHECKED FOR, IF W 13 ALREADY WMIN AND "
Ce THIS 16 EITHER ADANS METHOD OR THE STIFF METHOD IN WHICH THE M
G METRIX P HRS ALREADY BEEN RE-EVALUATED, R NO CONVERGENCE EXIT *

-
*
*

a,NG,NQOLD, NEWQ, EPS, T, TOLD,
A, HNIN,E,EUP,EDWN,ENOT,

« 1S TAKEN, OTHERWISE TWE MATRIX PW I8 RE-EVALUATED AND~OR THE
Cx STEP IS REDUCED TO TRY AND GETY CONVERGENCE.
.*‘*#"*#*.t##tt‘***“ﬁlﬁ"."“‘*#‘*‘..“'*t“#‘.“‘...#**“.t#*#*‘lﬁ****
GO TO (4‘8,690,‘70,679).JLNK
440 T e TOLD
IFCABSCHY . LE.HMIN .AND., C(IWEVAL=1).LT.~1D GO TO 460
IFCIWEVAL.NE. B> H = He@,25E@
INEVAL = 2
IKETY = 2
JLNK = |
GO TO 336
460 KFLRAG = -3
NG = N@OLD
47@ DO 480 I = 1
DO 488 J =
480 V(l,J) =
H = HOLD
JSTRART = N@
JLNK = 2
GO TO 3836 :
C‘l‘“O‘“.“".‘...‘....0...‘..........‘..‘......‘.....‘..‘..‘..........
C+« THE CORRECTOR CONYERGED AND CONTROL 16 PAGSED TO STATEMENT 320 L4
Ce IF THE ERROR TEST 18 0O.K,, AND TO 848 OTHERMWISE. -
C+ IF THE STEP 1S5 O.K. IT 18 ACCERYED., 1F 1DOUB MRS SEEN REDUCED -
C+ Y0 ONE, R TESY IS MADE YO SEE !Ff TWE STEP CAN BE INCRERSED .
C* AT THE CURRENT ORDER OR BY GOING TD ONE WIGHMER OR ONE LOMKER. -
Ce SUCH B CHANGE IS ONLY MADE IF THE STEP CRAN BE INCRERSED BY AT L]
Ce LEAST t.1. IF NO CHANGE IS PQSSIBLE 100UB IS SET TO 8 TO »
G+ PREVENT FUTHER TESTING FOR @ STERS, hd
C« IF A CHANGE IS POSSIBLE, IT 1S MADE QMND 100UB 15 SEY 70 -
L
-
L
"
-
*
*
-

%

N
1,K
saveE I, >

Ce NG + 1 TO PREVENT FURTHER TESING FOR THAY NUMBER OF STEPS.
o+ IF THE ERROR WAS TOO LARGE, TWE OPTIMUM STEP SIZE FOR THIS OR
Ce LOMER ORDER 1S5 COMPUTED, AND THE STEP RETRIED, IF 17T SHoULD
fe FAIL TWICE MORE IT 18 AN INDICATION THAT THE DERIVATIVES THAT
e MAVE RCCUMULRTED IN THE ¥V ARRAY HAVE ERRORS OF THE WRONG ORDER
Cw S0 THE FIRST DERIVATIVES RRE RECOMPUYED AND THE ORDER IS SET
cw TO 1. ,
I::-t*##‘*0‘*t.‘t&“l‘“‘.‘t*".‘..b‘.‘#“*‘.i‘U..t.I‘l‘.“#ttl‘l“tt"#".“‘.‘
456 D = 0.0 :
pO $8@ I = 1,N
500 D = D + (ERROR(CID/VMAXCI)dww2
INEVAL = @
IFCD,GT.E> JLNK = %
IFCJLNK.EQ,SY> GO TO 536
IF (K.LT.3> GO TO 3528
C*“t“"I‘*#t“‘t#.“‘.“t‘#‘..““.‘.‘i“".‘.‘..‘“"“.#“.‘#lﬁ“.#.“#.
Ce COMPLETE THE CORRECTION GF THE HIGWER ORDER DERIVATIVES AFTER A -
C+ SUCCESFUL STEPR, -
I:."O"‘**#0"0‘0"‘0.#'0-0“‘..“.#."........“‘.-“““t“#‘*.‘.““#‘.#‘
DO 510 J = 3,K
6O 518 I = 1,N
518 - YCl,d) = YeI,J) + ACJISERRORCID
528 KFLAG & +1 .
HNEW = H :
1FCIDOUB.LE, 1) JLNK=3
IFCJLNK.EQ.3) GO TO %36
I0OUB = IDOUR -
IFCIDOUB.GT. 1> GO TO 938
DO 530 I = 1,N
539 CSRVECI,2> = ERRORCI)
35 JLNK = 4 -
536 RETURN
END

39

SUBRGUTINE SUB6(N,V¥,B8AVE,COAYE, YMAX, ERROR, Pi, IP)>
COMMON 7COM~ R(TY, JLNK, J8TART, K, KFLAA, NG, NQOLD,NEWNG,EPS, T, TOLD,
1" 1DOUB, IMEVAL, TRET, IRET S, H,HOLD, NNEW, HHAX , HMIN, €, EUP, EDWN, ENOT,
2ENQ2, ENG3, BND, BR, DEL,DELY,D)
DIMENSION YN, 75, 8AVECN, 75, C6RAVE(N, 2>, YMAXIN),

1 ERRORIND JPHIN, NS, IPCND

C**‘&*##*#*#‘0‘*.**"ﬁ*".*.‘*.‘*““““““‘*‘ﬁ““#“‘**ﬁ#t‘*#*#*#“#
Ce PR1, PR2, AND PR3 MWILL CONTAIN THE AMOUNTS BY WHICH THE STEP SIZE =
Ce CHOULD BE DIVIDED AT ORDER ONE LOWER, RT TH!S ORDER, RND AT ORDER -
Ce ONE HIGHER RESPECTIVELY, -
. C"‘lﬁ**'@**IOIltlll#‘lll‘““"".l‘l*t‘&i“l“*‘l"ll*..lﬁll‘ll“‘l“**#**#t*#***‘*#*******
- GO TO (680,550,649, JLNK
558 PR2 = (D/E)seENQ2¢1.2

PR3 = 1 ,E+20

IFC(NQ.GE.S).OR. (KFLAG,LE,=1>>80 TO 878

0 = 8.0
DO 568 1 = {1,N :
Sée D = D + (CERROR(I) ~ CEAVE(T,2))/YMAXCI))w*2

PR3 = (D/EUP)I*+ENQI*1,4
578 PR1 = 1,E+20
IF (NQ.,LE.1> GO TO S

D = 0.0
DO 588 I = 1,N
S80 D = D + (YCI,KI/VMRX(ID)wn2

PR1 = (D/EDWNI>WWENQ1%1.3
598 CONTINUE

IF ¢PR2,LE.PR3> G0 TO 480
IF (PR3.LT.PRt) GO TOD 640
660 R o 1,0/AMAXIC(PRI,1,E~4)
NEWG = N@ =~ 1
é18 1pouB = 8

IF C((KFLRAG.EQ.1)>.ANP, (R, LT.C1.13>) GO TO 694
IF (NEWQ.LE.NQ> G0 TO é38@
C#***‘*‘#***#*“*lﬁl‘l"**‘#‘**‘#“'““‘**#.““**‘*‘l**“*#****‘**‘*#‘#*t***
Cw COMPUTE ONE RDDITIONAL SCALED DERIVATIVE IF ORDER IS INCREASED. »
C*_ﬂ"‘-lﬁ"!*‘*#IOI‘IOI0"*IO'IU‘l‘*"“.i&".*"l‘i"‘*‘#t‘*#.*t‘*‘***#*‘*****##**********
DO 620 I = 1,N
620 YC(I,NEWG+1)> = ERRORCID®RACKIFLORT(K)
638 K = NEWQ + 1
IF (KFLAG.EQ.1> GO TO 670
H = H*R
IRET1 = 2
JLNK = 2
GO TO 695 ,
648 IF (NEWQ.EQ.N®R> JLNK=4
IFCILNK.EQ, 4> GO TO 698
NR = NEKG
JLNK = 3
GO TO 695
656 IfF (PR2.GT.PR1> GO TO é@@
NEWQ = NO
R = 1.8-AMAXY(PRZ,1.E-4)
GO TO 610
660 R = 1.8/AMANI (PR3, 1. E~4)
NEWQ = NQ + 1
G0 TO é1@
678 IRET = 2
R = AMINI (R, HMAX/RABS(H))
H = H*R
HNEW = H
IF (NR.EQ.NEWG) GO TO 660
NQ@ = NEW
JLNK = 3
60 TO 698
680 R1 = 1.@
DO 698 J = 2,K
R1 = RI1#R
PO 698 I = 1,
698 V(I,J) = v
1D0UB = K
694 JLNK = 1
695 RETURN
END

N
1,JY%R1

AOCOoOOOODO000D0O000

COoOOoOOoona0

o)

SUBROUTINE SUB7(N,Y,6RVE,B VMAX, ERROR, A, IP>

COMMON ~COM/ X(T),JLNK,J8T RT.K&.KfLO .NO,NQOLD,NENG.EPS.XT,TOLD,
1 IDDUB.!NEVRL.lRET,IRET\.H.NOLD.HNEH.HNQX.HMIN,E.EUP,EDNN,ENQ1.
25N02,EN03,BND,BR.DEL.DELl.D

MATRIX TRIANGULARIZATION BY ARUSEIAN ELIMINRTION.

INPUT. ..
N = ORDER OF MATRIX

NDIM = DECLARED DIMENSION OF ARRRY A. ’
R = MATRIX TO BE TRIANGULARIZED. (FOR STIFF METHODS, A IS SINGLE
. PRECISION; ALL OTHER VARIABLE RRE DOUBLE PRECISIUON.?
OUTPUT. ..
ACI,dd, 1.LE.J = UPPER TRIANGULAR FRCTOR, U.
ACT,J>, 1.6T7.J « MULTIPLIERS = LOWER YTRIANGULAR FRCTOR, I-L.
IP(K>, K.LT.N = INDEX OF K-TH PIVOT ROW,
IP(N> = (-1)+«w(NUMBER OF INTERCHRANGES> OR ©.
USE 'SOLVE' TO OBTRIN SOLUTION OF LINERR SVYSTEM.
DETERMC(R) = IP(N)*ﬂ(i.!)‘Q(Q.Z)‘...*R(N.N).
IF IP(N) = @, A 1S SINGULRR, SOLVE WILL DIVIDE BY ZEROD.

DIMENSION R(N,N),B(!).!P(N),V(1)
GO TO ¢1@1,3508>, JLNK)

1@1 JLNK = 2

NDIM = N
1PNy = |
po 6 Kei

N
TF(K.EG.N) 00 10 &
KPt o K+

= K
1=KP1,N

1
A (R(I.K)).GT.RBS(R(H,K))) M=]
T

IPCNY = -IPCND

oM A MUOOTMO
AXZ 8 AAZA~
EX

T D Am=O~OX

LEQ.,@.) IP(N) = @

[- N3,)
[}
o
z
MEC= =

Ce

CONTIN
IFCIP(NY . EG.Q)> JLNK = 1
IFCJLNK.EQ.1) GO YO 1@

356 DU 368 I=1,N
368 B(I)> = Y(I+N> - BCI)*H

JLNK = 2
SOLUTION OF LINERR SYSTEM, AeX = B,

INPUT. ..
N = ORDER OF MATHI
NOIM = DECLARED DI
A = TRIANGULARIZED
B » RIGHT HAND SID
1P = PIVOT VECTOR 0
QUTPUT. ..
B = SOLUTION VECTOR,
IFCNLEG. 1) B0 TO &
NM1 = N-1
DG 7 K=1,NMI
KBt = K + |
M = IPCK?
BCM)
= BCK>
= T
B 7 I=KPI,N
7 B(I> = BCI) + ACI,KdwT
po 8 KB=1,NMI

N OF ARRAY A. '
%X OBTAINED FROM 'DECOMP’

X
MENSI
MATR
E VEC
BYA!

Z A= O

]
Y
ECTOR.

QAINEG FROM 'DECOMP'.
X

-

M
K

Leells L O

<
(
]

KM1 = N - KB

K o= KMY + 1

B(KY = BC(KI/A(K,K)
T = =-BCKD

O 9 I=t1,KMI

BCIy = B(ID + ACT,Ko»T
B(1)Y = BC1XsRCYH, 1) .
RETURN

END

[O R o

41

SUBRGUTINE SUBOUN, ¥, 8AVE, CEAVE, YMAK, ERROR, PK, 1P
COMMON ~COM~ a<7>,JLNK,JsrnnT,K,KFLne.NQ.NQOLD,NEua.Eps.T,TOLo,

1 IDOUB,IHEVGL,IRET,!RETI.H.HOLD,HNEN,HNRK,HMIN,E,EUP.EDNN,ENQ!,
ZENQZ.ENQS.BND,BR.DEL.DEL1,D i

DIMENSINN V(N.?),SQVE(N.7),CSQVE(N.2),VM9X(N),
1

ERROR(N).PN(N,N),ID(N)

C***tw**tt**w*****&&mmt**##t**m*****#**#**tt*********w*t****‘***********
C+ THIS SECTION SCALES ALL VARIRBLES CONNECTED WITH H AND RETURNS hd
C* TO THE ENTERING SECTION, -

I:Z*'O'*'ﬁ***"'*-ﬁ"l&**##*****#*‘*#&*‘**#'ﬁ"ﬁ*.**l‘l*‘*#*&#*#**#**-ﬁ-‘-#**#********"'**

758

768
778

781

725

H = RMQX!(HMIN,QMINI(H.HMRX))
R1 = 1,9
0O 7@ U = 2,K
R = H/HOLD
R1 = Ri«R

X w

JLNK = IRET)
GQ YD 785
KFLRAG = -4
JLNE = 4
RETURN

END

Form AEC—427 : U.S. ATOMIC ENERGY COMMISSION
Aeg‘sg;m . UNIVERSITY-TYPE CONTRACTOR'S RECOMMENDATION FOR
DISPOSITION OF SCIENTIFIC AND TECHNICAL DOCUMENT

{ See Instructions on Reverse Side)

1. AEC REPORT NO. 2. TITLE NUMERICAL SYSTEMS ON A MINICOMPUTER

C00-1469-0215
Roy Leonard Brown, Jr.

3. TYPE OF DOCUMENT (Check one):

& a. scientific and teéhnical report
[J b. Conference paper not to be published in a journel:
Title of conference

Date of conference

Exact location of conference

Sponsoring organization

[J c. Other (Specify)

4. RECOMMENDED ANNOUNCEMENT AND DISTRIBUTION (Check one):

@ a. AEC’s normal announcement and distribution procedures may be followed.
[:] b. Make available only within AEC and to AEC contractors and other U.S. Government agencies and their contractors.
E] c. Make no announcement or distrubution. .

5. REASON FOR RECOMMENDED RESTRICTIONS:

6. SUBMITTED BY: NAME AND POSITION (Please print or type)

.C. W. Gear
Professor and Principal Investigator

Organization B

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

FOR AEC USE ONLY
7. AEC CONTRACT ADMINISTRATOR'S COMMENTS, IF ANY, ON ABOVE ANNOUNCEMENT AND DISTRIBUTION
RECOMMENDATION: : :

8. PATENT CLEARANCE:

D a. AEC patent clearance has been granted by responsible AEC patent group.
D b. Report has been sent to responsible AEC patent group for clearance.
D c. Patent clearance not required.

BIBLIbGRAPHIC DATA 1. Report No. 2. ’ 3. Recipient’s Accession No.

SHEET v UIUCDCS-R-T3-555
4. Title and Subtitle S. Report Date
NUMERICAL SYSTEMS ON A MINICOMPUTER . February 1973
7. Author(s)R . 8. Performing Organization Rept.
oy Leonard Brown, Jr. No. (:00-1L69-0215
9. Perfurming Organization Name and Address : 10. Project/Task/Work Unit No.

US AEC AT{11-1)1469

Department of Computer Sc1ence
University of Illinois
Urbana, Illinois 61801

11. Contract/Grant No.

12. Sponsoring Organization Name and Address 13. 'Ezpe og Report & Period
. LCovere
US AEC Chicago Operations Uffice Thesis Research
9800 South Cass Avenue ' » es esearc

Argonne, Illinois 60439 lt

15. Supplementary Notes

16. Abstracts
This thesis defines the conéept of a numerical system for a
minicomputer and provides a description of the software and compufer
system configuration necessary to implement such a system. A procedure
for creating a numerical system from é FORTRAN brogram is developed
and an example is presented. The reader should have some knowledge of

FORTRAN and minicomputer operating systems, PAL assembly language for PDP-11.

17. Key Words and Document Analysis. 17a. Descriptors

minicomputer system

numerical system

overlay buffer

overlay partition of FORTRAN program
overlay facility

117b. Identifiers/Open-Ended Terms

17¢. COSATI! Field/Group

18. Availability Statement 19.. Security Class (This 21. No. of Pages
Report)
cs . . . : UNCLASSIFIED
unlimited distribution 20, Security Class (This 22. Price
. Page
‘ UNCLASSIFIED

FORM NTIS-35 (10-70) USCOMM-DC 40329-P 7

