
1
UIUCDCS-R-73-555 coo-1469-0215

NUMERICAL SYSTEMS ON A MINICOMPUTER
1

by

ROY LEONARD BROWN, JR.

February 1973

--

-=

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

1

-I

UIUCDCS-R-73-555

NUMERICAL SYSTEMS ON A MINICOMPUTER*

by

ROY LEONARD BROWN, JR.

NOTICE
i This report was prepared as an account of work

sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any

i legal liability or responsibility for the accuracy, com-
' pleteness or usefulness of any information, apparatus,

product or process disclosed, or represents that its use
6

would not infringe privately owned rights.

February 1973

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA, ILLINOIS 61801 _

* Supported in part by the Atomic Energy Commission under contract
US AEC AT(11-1)1469 and submitted in partial fulfillment of the

requirements of the Graduate College for the degree of Master of

Science in Computer Science.

MASTER,
* · - -·- ··-·...

·- I. .··· ··.Il.-Il

BIFRiBUTION OF THIS DOCUMENT IS:UNLIMITSB '
-

f,1

9

THIS PAGE

WAS INTENTIONALLY '

LEFT BLANK

.,4. „
..

iii

ACKNOWLEDGMENT

The assistance of the following people is greatly appreciated.

My advisor, Professor C. W. Gear, provided both direction and cogent

suggestions. Professors M. H. Pleck and R. L. Ruhl, and the Department

of General Engineering provided the Illinois Graphics Computer System

for my use in developing both the theory and the program presented here;

and my colleagues at IGCS, W. F. W. Tam, D. Mueller, and T. Runge

co-developed the software we all share. Mrs. Barbara Armstrong typed

the manuscript. Finally, the Department of Computer Science and the

U. S. Atomic Energy Commission supported the research.

4,
.

iV

PREFACE

This thesis defines the concept of a numerical system for a

minicomputer and provides a description of the software and computer

system configuration necessary to implement such a system. A procedure

for creating a numerical system from a FORTRAN program is developed

and an example is presented. The reader should have some knowledge of

FORTRAN and minicomputer operating systems. A familiarity with PAL

assembly language for the PDP-11 is necessary to make full use of

the examples.

.

V

TABLE OF CONTENTS

Page

1. THE PROBLEM 1

1.1 Definitions. 1

1.2 Minicomputer Use 1

1.3 Outline. , , . , , , ,o, 3

2. THE COMPUTER SYSTEM 4

2.1 IGCS Hardware and Software . 4

2.2 Alternate Systems. 6

3. THE OVERLAY CONCEPT . 8

3.1 Definitions. 8

3.2 User-written Overlay Facilities. 9

3.3 Manufacturer-supplied Overlay Facility . 11

4. PARTITIONING THE FORTRAN PROGRAM. 14

4.1 Criteria for Partitioning. 14

4.2 COMMON Variables 14

4.3 Program Logic. 15

4.4 Control Transfer 17

5. USER SUPPLIED OVERLAYS. 20

5.1 User Input . 20

5.2 User Subroutines . . 20

5.3 Variable Size Arrays 22

6. CONCLUDING OBSERVATIONS 24

LIST OF REFERENCES. 26

APPENDICES

A. User-written Overlay Facility . 27

B. DIF11 Program Code. 30

1

1. THE PROBLEM

1.1 Definitions

A numerical system as used here is any long program involving

large amounts of arithmetic computation on a set of numerical data that is

small enough that manipulation of the data is not a significant part of

the problem. Manipulation means liuvement of the data from one storage

device to another or change from one format to another, and similar

programming problems not ordinarily associated with numerical analysis.

Some numerical systems would be, for example, programs designed to solve

difference equations, find roots of nonlinear equations, perform numerical

quadrature of an input function, minimize a function of several variables,

or, in the example dealt with here, to solve a system of ordinary

differential equations. All of these programs have in common the require-

ment of a great deal of arithmetic computation and simplicity of input:

a number of polynomial coefficients, a difference equation of specified

order and coefficients, a subroutine to evaluate a function with some

initial conditions.

1.2 Minicomputer Use

Such a numerical system is often difficult to write for a

minicomputer for several reasons. Most minicomputers have very little

computing power for the vast amount of arithmetic operations needed to

run a program of this type; some do not even have·a hardware multiply/

divide device, making complicated arithmetic operations time consuming.

Small word sizes of 12 or 16 bits require that any floating point

calculations use multi-word manipulations that take much time and storage

1

-

2

space. The small size of main memory means that th
e program will probably

not all fit into it at one time. This also limits the amount of numerical

data since storing it anywhere but main memory woul
d be impossibly time

consuming, given the block structure and slow access
 time of most

peripheral storage devices.

In spite of these drawbacks, there are still severa
l reasons

for creating a numerical system for a minicomputer.
 Although running a

numerical system is time consuming, it is not as expensive as the same

amount of time on a System/360 computer. Some minic
omputers are idle

part of the day and a set of numerical systems, poss
ibly in a program

library for the installation, would fill in the gap
s by being run in

free time or at scheduled times daily. Making such progr
ams available

could reduce an organization's expenses if these pr
ograms are normally

taken to a large service computer. The complexity
of multi-word

manipulation, transcendental function evaluation, a
nd programming of

complicated formulae is reduced greatly beca.use many 16-bit word size

minicomputer software packages include both a libra
ry of subroutines that

perform multi-word manipulations, and a FORTRAN IV
compiler that allaws

execution of FORTRAN programs with approximately the same accuracy as a

System/360 computer using single or double precision arithmetic.

Finally, the problem of program size can be solved
by proper use

of peripheral storage devices such as a fixed head
disc, drum, or other

"random" access device. By storing large program segments that are always

executed together on such a device (hereafter calle
d disc although any

"random" access· device maybe substituted), the program can be executed by

bringing these segments into a core buffer, overlaying the program segment

previously there. This core buffer will be called
the overlay buffer.

3

1.3 Outline

This paper will deal primarily with. a procedure for transforming

a large FORTRAN numerical program known to work properly in a large computer

environment into a numerical system that runs efficiently in a minicomputer

environment. As a helpful example, a problem which has been solved using

this procedure will be discussed wherever applicable. The coding of the

example numerical system is found in Appendix B while the original problem

is due to Gear [3] and involves integrating a first order system of

ordinary differential equations through some interval of the independent

variable, given a set of initial conditions and a subroutine to accomplish

the differentiation. The original program, DIFSUB, is designed to handle

stiff systems of equations as well as better conditioned ones.

The topics to be presented are listed below. First, a computer

system which is well adapted to the problem is described; criteria for

choosing similar systems are listed as well as references to several such

systems. Next, the concept of a program overlay is developed. The

application of this concept in partitioning a FORTRAN program will be

presented, and then several problems resulting from such a partition will

be discussed. These last will fully describe the procedure and some

additional comments about it will. conclude the paper.

4

2.. THE COMPUTER SYSTEM

2.1 IGCS Hardware and Software

The Illinois Graphics Computing System used in the development

of DIF11, the numerical system described in Section 1.3, belongs to the

Departmant of General Engineering at the University of Illinois at

Urbana-Champaign. As described in [5] and [6], it is based on a PDP-11/20

minicomputer from Digital Equipment Corporation (DEC). It has a byte

addressable core memory of 16K 16-bit words with a ROM bootstrap loader.

All communication between the CPU and peripheral devices takes place over

a single bus which DEC calls UNIBUS. Access time for main memory is 490 ns.

out and 8 ns. in. Instructions are basically of the two-address type, but

12 different addressing modes, eight general-purpose registers, and a

software stack simulator allow a wide variety of instructions. Instruction

formats require one to three words, depending on the addressing mode of

operands. A KEll-A extended arithmetic unit provides single word hardware

multiply and divide operations.

A 256K word fixed head disc, accessible through the available

software in 64 word blocks, has an average access time·of 17 ms. and a

transfer rate of 16 ws/word. A card reader, teletype, and Gould 4800

electrostatic printer/plotter complete the basic system. The ·Gould 4800

is used by DIF11 as a printer through a software program, LP, since the

Gould will eventually be the output device of a system containing both a

CalComp-type graphical language and a simulation system of which DIF11 will

be part [5].

The software package available with a minicomputer is very important

since it can greatly reduce the work needed in programming a large system.

5

ICCS currently opez·ates with a Disc Operating System, DOS vers i.on 4A,

which includes utilities for transferring data between memory and

peripheral devices, an assembler, a FORTRAN IV compiler, and a relocating

Linkage Editor which presently includes an overlay facility. See [2]

for details'. EAELIB is. a library of FORTRAN functions (e.g. SIN, COS)

and utility routines (e.g. floating point addition) designed to operate

with the KE11-A multiply/divide unit. These routines are linked· with a

FORTRAN program by the Linkage Editor and are used by the program at

execution time.

This system is suitable for a numerical system since 16K of

core is adequate for keeping the operating system core (DOS is not

entirely resident, but overlays part of itself depending on its current

operation), a set of routines from EAELIB for a large program, a main

program, the overlay buffer(s), and storage for data whose size is variable

and dependent on an input parameter. The FORTRAN compiler is very

efficient in compiling code to do the actual computation involved, although

control transfer, allocation of memory space, etc., are best performed

using assembly language interfaces. FORTRAN programs interpret a polish

string of addresses of routines placed in core by the Linkage Editor from

EAELIB; these strings are the result of compilation of the program.

Storage is best handled as FORTRAN arrays whose elements fill consecutive

four byte segments of core and are easily processed by either FORTRAN or

the assembly language interfaces. The original working version of DIF11

was implemented in 12K core with user-written overlay software so the

present system is more than adequate. The speed of access, relatively

small blocksize, and ade quate device driver software make the fixed head

disc easily accessible for transferring unchanging program segments to core.

6

2.2 Alternate Systems

Inspection of the above system leads to a set of criteria which

a minicomputer system should satisfy to create a well suited environment

for a numerical system. These criteria follow.

The main memory should be an adequate size to contain the system's

resident monitor, a large section of code from the numerical system, and all

the variable storage for the system. An adequate word size to minimize multi-

word floating point manipulation is important; at least 16 bits is recommended.

The execution speed should be fast enough to allow an adquate turnaround time

for the size problem being run ; a guoil criterion would be tha.t the minicomputer

turnaround time including loading the numerical system and execution should

be no more than 10 times the turnaround for a full size service computer from

input to retrieval of output.

The peripheral device that acts as a bulk memory, usually a

fixed head disc or drum, should have fast transfer into core. Any

sequential device would be unsuitable for this .

An efficient FORTRAN compiler (i.e., programs compiled use close

to the absolute minimum of core) is necessary. Since many numerical

systems may need to use double precision arithmetic, this feature should

compile and execute efficiently.

Finally, a good software monitor capable of fast and effective

control of device transfers while occupying a minimum amount of main

memory is important, both at execution time and during creation of the

numerical system.

Several computer systems, while dissimilar to the PDP-11/20

in many ways, appear to meet the above criteria. Some may be better

7

suited to the purposes of the purchaser than others and still provide an

acceptable environment for numerical systems.. They are:

Hewlett-Packard 2100. A [4]

Interdata Model 70 [7]

Systems 72 [8]

Varian 620/f [9]

Westinghouse 2500. [10].

8

3. THE OVERLAY CONCEPT

3.1 Definitions

A program overlay is a segment of executable code intended to

be used with a permanently resident program segment. However, this code

is stored permanently only on a peripheral storage device (disc) and is

brought into a core buffer only when needed. When another overlay is

needed instead, that overlay is brought from disc and placed into the

same buffer, thus "overlaying" the previous segment. Clearly, N overlays

of approximately equal size effectively expand the overlay buffer to

simulate a memory area N times as large. However, one pays for this in

terms of the cost of disc to core transfer·time. This is more advantageous

than having all executable code in core (if possible) and using the disc

to store variables because these must be transferred not only into core,

but also back from core to disc after being processed, whereas overlays

are constantly "refreshcd" from a.n unchanging disc image.

Since overlays for numerical systems are usually parts of a

FORTRAN program originally intended to be executed in the same main memory,

the overlay should have access to all variables stored·in resident core,

and to all resident subroutines, especially such utility routines as are

normally used by minicomputer FORTRAN compilers for complicated arithmetic

operations such as floating point addition (e.g. EAELIB in Section 2.1).

Because of these features, certain control paths between the resident

code and each overlay must be provided. These paths are:

a. Resident to overlay

b. Overlay to overlay

c. Overlay to resident; return of control

d. Overlay using resident subroutines

9

A core map of an idealized numerical system is in

Figure 3.1.1.

MAIN MEMORY DISC

077777 .<
FLOATING POINT
UTII,ITY ROUTINES

MAIN

RESIDENT FORTRAN FLOATING POINT
ROUTINES .UTILITY ROUTINES

OVERLAY BUFFER
OVERIAY 1

VARIABLY DIMENSIONED h
ARRAY STORAGE b

(STACK) T
W

DOS MONITOR OVERLAY 2
000000

Figure 3.1.1. Sample Program Map with

Control Paths Indicated

3.2 User-written Overlay Facilities

Some minicomputer software systems do not have overlay facilities;

in these cases the user must code his own. Such a system was written for

use with IGCS before versions of FORTRAN and the Linkage Editor were

provided with one. The code for this system in PAL assembly language is

in Appendix A, and a core image for creation of an overlay file with it is

in Figure 3.2.1.

10

077777
t

FLOATING POINT
UTILITY ROUTINES

FINAL
LINK MAIN-FORTRAN

ROUTINES

CONCTM

OVERLAY OVERLAY
BUFFER

.A DISC)MAKOVL

(STACK) T

DOS MONITOR
000000

Figure 3.2.1. Core Map for Creating an

Overlay Using MAKOVL

The system consi sts of two programs elled CONCTM and MAKOVL.

CONCTM is a core resident subroutine which contains tables of the file

names of all overlays, their length in words, and their starting addresses

in core. On being called, it looks up the disc start block of the overlay

using the FILE BLOCK and LINK BLOCK [2] and places these in the TRAN BLOCK.

The overlays are contiguous on disc, i.e., if they occupy more than one

disc block, they are placed in consecutive disc blocks. When an overlay

is called, the call is to CONCTM with the first argument·the integer

designating the overlay wanted and the following arguments being the proper

arguments for the subroutine from which the overlay was made. CONCTM

transfers the overlay into core at the indicated starting address, using

a TRAN request and the TRAN BLOCK mentioned above. Since the addresses of

the arguments of the overlay subroutine follow the statement JSR CONCTM,R5

in the main program, and since subroutine arguments are referenced relative

to the return address stored in register R5, a simple transfer to the start

11

address of the overlay starts its execution. A FORTRAN RETURN

statement shifts control back to the resident program segment.

The overlays are created by linking together all resident

parts of the program, the overlay, and MAKOVL below these (the Linkage

Editor links in the order of its input string, filling the top of core).

MAKOVL is executed from the keyboard and computes the length in words

and disc blocks of the overlay and transfers the overlay to disc under

the name placed in its FILE BLOCK (this can be set from the keyboard).

The user saves the length and starting address and inserts them into the

· final version of CONCTM when the routines indicated as the final link in

Figure 3.2.1 are linked together as the initial load module.

Here it is diffi cult to separate the floating point package

routines between those needed by the resident segment and those needed

only by the overlays . One solution is to determine all utility routines

needed by any program and force them to be permanently resident. On the

PDP-11/20, this can be done by linking each program and inspecting its

load map which lists all utility routines called by it. The union of all

utility routines listed on any load map is then placed in,a GLOBL state-

ment. A version of DIF11 using the above system was programmed and tested.

3.3 Manufacturer-supplied Overlay Facility

The overlay facility described here is found in more detail in [1].

It is typical of those available from manufacturers' software groups. The

system uses a single multiply entrant subroutine LINK with entry points

LINK and RETURN. These provide all the control paths described in

Section 3.1. CALL LINK('FILE') in resident FORTRAN code or JSR LINK,R5 with

12

the proper argument in assembly language ·1) initializes FORTRAN traceback

routines, 2) saves register 0-5, 3) causes the name
d file to be found,

transferred into core, and executed as if it were a
 main program. The

statement CALL RETURN restores register 0-5 and ret
urns control to the

place in resident code where LINK was last called.

Since it is easiest to write and test the FORTRAN pa
rt of the

numerical system with the overlays as subroutines,
a problem arises in

that the overlays must be set up as main program seg
ments . In some cases

the FORTRAN SUBROUTINE statement can be removed, bu
t if any parameters

must be passed as if the overlay were a subroutine (
see Section 5.2),

then an assembly language main program can be writt
en with the appropriate

arguments. Such an example is the routine INTRO in
Appendix B.

077777

RESIDENT FLOATING POINT

UTILITY ROUTINES
INITIAL
LINK MAIN-FORTRAN ROUTINES

.\

INTRO

OVERLAY FLOATING POINT ' OVERLAY BUFFER -

UTILITY ROUTINES 7 1 DISC

OVERLAY SUBROUTINE
 <

'

(STACK) T

DOS MONITOR
000000

Figure 3.3.1. Core Map for Creating an Overlay

Using Manufacturer-supplied Software

The overlays are created using the relocating Linkag
e Editor,

LINK. The resident program segments are first link
ed together, bringing

13

all floating point utilities used by the resident code into core. Two

of the outputs of LINK are saved: the object module, and the Symbol

Table which lists all subroutine start addresses including those for the

utility routines. Then each. overlay (with. its main program INTRO i f

needed) is created; the first input to LINK is the Syabol Table, and the

top address of the output load module is set to two less than the bottom

of the core resident module just created. The Symbol Tab le input allows

the overlay to use utility routines already core resident and only

uti.lity routines whi ch it alone needs are added to the overlay. Figure 3.3.1

shows the configurations of these different uses of LINK to create the

resident and overlay modules.

14

4. PARTITIONING THE FORTRAN PROGRAM

4.1 Criteria for Partitioning

After providing for an overlay facility, one next considers the

overlays themselves. It is best to begin with a FORTRAN program which is

.known t6 run in a large computer environment and insure that the overlay

interconnections will work by breaking the program down into overlay

subroutines and running it again on the same computer.

There are really no hard and. fast rules that can be applied,

but since we are dealing with relatively slaw minicomputers and one of

the slower operations is disc-to-core transfers, one goal of the

partitioning process .is to minimize the number of such transfers.

' Since core space is at a premium, most of the original program

should be put into overlays, leaving minor bookkeeping arithmetic and

major control transfer decisions in the resident program segment; by

making the overlays of nearly uniform length, the overlay buffer (which

is as long as the longest overlay) is also made as small as possible.

The implementations of these two goals are clearly at odds since the real

minimum number of overlay transfers from disk would maximize the overlay

buffer, and the minimum overlay size would be only two or three FORTRAN

statements, requiring innumerable disc trans fers, usually of length les s

than one disc block. Proper implementation calls for a balance between

these two extremes.

4.2 .COMMON'Variables

Because the contents of the overlay buffer at the time a new

overlay is transferred in will be overwritten, any FORTRAN variables

15

(other than special constants) must be core resident. This is most

easily accomplished with COMMON statements which, when linked into load

modules by most Linkage Editor facilities, leave all of the variables

in a resident core block. When the overlay modules are linked, the

addresses of elements in the COMMON block are available' from the Symbol

Table and are linked with the overlay. To form the COMMON block, each

overlay and the resident program is inspected and all of its fixed length

variables are listed. A variable array is of fixed length if its

dimension does not depend on an input to the program. Next, any variable

appearing on any two lists must obviously be shared by two different

routines and is placed in the COMMON block. Any data that remains the

same in an overlay and is not shared by any other overlay can be defined

by a DATA statement and need not be in the COMMON block. It may be

convenient to have several COMMON blocks since some variables may be

used exclusively by certain overlays and no others. Allocation of space

for arrays with variable dimensions will be discussed in Section 5.3,

but note that the initial address of each such variable must be passed

to the overlay as a subroutine parameter (it cannot be in a COMMON block

since its initial address is not available at Linkage time), and the

variable dimension must be passed to the overlay as a subroutine parameter

as required by most FORTRAN compilers.

4.3 Program Logic.

Some few FORTRAN programs are executed sequentially, i.e., starting

at the first statement and "dropping through" to the end with a few tight

DO-loops . Partitioning these is trivial. The program is divided into equal

16

length overlay segments ; either each overlay calls the next, or, if

this is not possible, a short resident program calls each overlay in

i sequence. However, most programs are not this easy.

All or part of the more usual program is executed iterative
ly

either a fixed number of times or until certain conditions are met.

DIF11, for example, predicts next values of the differential variables,

corrects these values, and, under certain conditions, changes other

control variables (order, step size, etc.). This whole cycle--pr
edict,

correct, change--is repeated until a final value is reached for the

independent variable.

The best approach to partitioning such a program is to follow

a principle of least use; if something is seldom used, it is an ideal

candidate for an overlay. Many programs have a long initialization

section which is only executed the first time the program is used.

Clearly, this should be an overlay. The original version of DIF11 had

such an overlay but the present version does not need one since the

initialization was shortened. A segment that is executed at most once

per iteration is the logical next candidate. In DIF11, SUB3 and
SUB5 are

executed only once per iteration and SUBl, SUB2, and S
UB6 are executed

only when a change of control variables is being considered or carried

out. (See Appendix B).

DO-loops are best placed completely within an overlay to avoid'

each pass through the loop causing one or more disc transfers to the

Overlay buffer. Occasionally, however, a DO-loop will contain enough

material for several overlays (.remembering that uniform overlay si ze is

a goal of the partitiori), and the DO-loop then contains several overlays .

17

DIFFUN, SUB7, and SUB4 are all contained in one loop in DIF11. The same

loop contains code for the numerical evaluation of the Jacobian matrix

which could have been an overlay. It was not because this would have

required one overlay to call another and to return to the original

overlay. This complicated ·process is best avoided but could be handled

by using two overlay buffers. See Section 5.2.

Occasionally, one especially long overlay may be needed but

only part of it need be in core the whole time it is being executed. In

such a case only enough of the overlay should be brought into core at

one time to fill the regular sized overlay buffer, and when some part of

it that will not be executed again is completed, the rest is overlayed

there. This will be possible if the overlay facility allows overlays to '

call overlays as specified in Section 3.1.

Any segment that is called from a number of different places in

the resident code is probably best left in core, but if it is long or

called very seldom, it can be made an overlay as in SUB8 in DIF11.

4.4 Control Transfer

It must be noted that each overlay may have several GO TO

statements which reference a statement in the resident module, or worse,

in another overlay. The partition should minimize this, but if it happens,

than a control transfer vector can be used to allow this. Either a single

variable, JLINK, or an array, JLNK(N), can be used; the various values

should have some significance to the program. The single variable is

probably better since it is less complicated. Set JLNK = 1 on entering

18

an overlay, then if a statement is, say

GO TO 750

and 750 is.in the resident module, change the statement to

JLNK = 2

RETURN

If a statement is

IF(LOGICAL EXPRESSION)GO TO 715

change 'this to

IF(LOGICAL EXPRESSION)JLNK=3

IF(JLNK.EQ.3)RETURN

This requires that any arithmetic IF statements be made logical IF statements.

Immediately after the overlay calling statement in the resident

code, a computed GO TO statement can be used to effect the transfer:

CALL OVERLAY (SUB5)

GO TO(540,750,715,...),JLNK

540 ...

remembering the possibility of executing the next sequential statement if

JLNK remains 1.

Transfers into the middle of another overlay can be handled by

a computed GO TO at the beginning of the overlay so that this is the

first statement other than subroutine calls after the computed GO TO in

the resident code. JLNK must be set to 1 after executing the initial

computed GO TO statement. For example,

19

GO TO 700

becomes

JLNK=2 (overlay 1)

RETURN

*** **********

540 p TO(550,600),JLNK (MAIN)

600 CALL OVERLAY(SUB2)

*** **********

GO TO(650,700),JLNK

(overlay 2)
700 JLNK=1

Examples of all these techniques are in SUB5 of DIF11 in Appendix B.

20

5. USER SUPPLIED OVERLAYS

5.1 User Input

Many numerical systems can operate with a minimum of input.

For example, the only input needed to solve a difference equation is the

order, the coefficients, and the initial values. These can all be input

on cards or keyboard, and the storage for this data can be in the core

resident main program by specifying a maximum size for each variable

array. Other programs will require more from the user than numerical

data; a numerical quadrature program will require that some way be

provided to evaluate the function at any given point, usually a subroutine
.

Some programs will have large data arrays which differ greatly in size

depending on input parameters. Storing these within the main program

segment may be too restrictive. An LU matrix decomposition would need

such a variable sized space to store the matrix and outputs. And, some

systems require both an evaluating subroutine and variable sized

arrays, as is the case with DIF11.

5.2 User Subroutines

The solutions to these problems for DIF11 are presented here;

they seem applicable to similar cases on other systems and are at least

a good starting point. In DIF11, the user is responsible for writing a

FORTRAN subroutine called DIFFUN(T,Y,DY), and by following carefully

detailed instructions, creating an overlay from it. First, compile

DIFFUN(T,Y,DY) where T is the independent variable, DY(I) is the first

derivative of Y(I), and all derivatives of order m higher than one have

been replaced by m first-order equations using standard techniques.

21

Y(I) and DY(I) should be dimensioned N, the number of equations. Next, call

LINK, the Linkage Editor. Specify DIFFUN.LDA as output; specify as input

ST (the Symbol Table of Section 3.3 which is kept available on disc or

tape), the object module of INTRO (also available), the object module

resulting from compiling DIFFUN, and the EAELIB. Also, specify that the

top core address available to this module is two less than the bottom of

the resident code (this address is posted in the machine room). After

running LINK, run the program DIF11 with two data cards: one specifies

N, T , H (the length of the integration), EPS (the error criterion),

and ISTORE (the octal top address to be filled by dynamically allocated

variable arrays); the other lists the N initial values of Y(I).

This overlay uses the same overlay buffer as all other overlays.

This is possible because none of the other overlays call it. Any other

overlay could call DIFFUN and then return to the main program; however,

a great deal more work would be required to let an overlay call DIFFUN,

have DIFFUN reinstate that overlay, and then transfer to the statement

after the call to DIFFUN. This would be equivalent to a regular subroutine

call to DIFFUN.

Another possibility is to provide a second buffer just for the

user supplied overlay, allowing all overlays to call it. However, it

must be remembered that this takes valuable core that might otherwise be

used for variable storage. Since there is no way to predict the length

of a user supplied module, this allows the first overlay buffer to be of

fixed length while the second varies. This may be an important consideration

for some users.

22

5.3 Variable Size Arrays

The problem of variables whose dimensions depend on an input

parameter is best solved by allocating storage space for the FORTRAN

arrays in an assembly language MAIN program. In DIF11, various arrays

are dimension6d (N,7), (N,2), or (N,N). The MAIN program (see

Appendix B) computes 4*N (each floating point word uses four bytes on

the PDP-11/20), 28*N, 8*N, and 4*N**2. Using RO (register 0) initially

set to ISTORE as a pointer, MAIN subtracts an appropriate number of

bytes from RO and assigns RO to an address vector ADDR. Then it places

the addresses of the appropriate variables in the address list of the

calling sequences of INPUT, OUTPUT, and DIFSUB--the FORTRAN subroutines

called from MAIN--and executes. It should be noted that most FORTRAN .

compilers require a variably dimensioned array, e.g. Y(N,7), to be in

a subroutine with the variable dimension N as an argument, so DIFSUB,

INPUT, and the overlays must be subroutines. Whenever DIFSUB calls one

of its overlays, the overlay starts with a main program INTRO as

required by the overlay facility, and INTRO places the initial addresses

assigned to the variably dimensioned arrays and kept in an assembly

language named .CSECT block (same as FORTRAN COMMON) into the FORTRAN

calling sequence. Then INTRO executes the subroutine call, returning to

the overlay main program before calling RETURN (see Section 3.3) in

order to restore all registers . In this way, eight variably dimensioned

arrays are allocated dynamically in a manner simimilar to ALGOL by using

assembly language interfaces between FORTRAN program segments.

It should be noted that the pseudo-stack mentioned in Section 2.1

is kept immediately below the overlay buffer by the DEC provided software,

23

and extends into lower core addresses. This requires that the dynamically

allocated variables be placed well below the stack and is the reason

ISTORE is·an input parameter. If a user written overlay facility were

available, the stack could be moved at will below the data.

24

6. CONCLUDING OBSERVATIONS

The following observations seem appropriate to the problem

discussed and are presented in an attempt to provide some pe
rspective.

Firstly, the method of reducing a large FORTRAN program to a mini-

computer overlay system is best considered as a procedu
re. A list of

step by step instructions can be found in the preceding chapters, but

no guarantee is provided that the procedure will ever stop.
 Thus,

this is not an algorithm with input: one large FORTRAN program;

output: equivalent minicomputer numerical system. A counter example

is a program with larger storage requirements than could ever fit into

core or be profitably allocated to disc. This procedure can be
 helpful

but no promises are made.

Secondly, in most cases the more general a program is, the

larger it becomes. A simple Runge-Kutta (R-K) program with step

doubling will take much longer to integrate a compJicated system on a

360/75 than DIFSUB will; but if a problem is fairly simple, a R-K

program requiring no overlays would be much faster than DIF11 on the PDP-11/20.

Thus, one can save time by having available a simple method for
simple

problems as well as a complicated method to solve complicated problems .

Finally, one should be wary of manufacturer supplied overlay

facilities, especially if overlays are called more than a few
times. The

overlay processor supplied by DEC looks up the current disc
 start block

of each overlay every time it is called, even though some overlays are

called hundreds of times from the same disc location. For this reason,

the final simulation language package, ILLISM, which DIF11 will b
e part

of, will use a'locally written overlay facility that looks up dis
c addresses

once, stores them in a directory, and thus executes twice as fast.

25

With these comments in mind, one can conclude that many large

numerical analysis programs can be profitably used on a minicomputer

system using the techniques described here.

26

LIST OF REFERENCES

[1] Digital Equipment Corporation, "Getting FORTRAN on the Air,"
(DEC-11-SFDC-D), Maynard, Massachusetts, 1972.

[2.] Digital Equipment Corporation, "DOS Monitor Programs Handbook,"
(DEC-11-SERA-D), Maynard, Massachusetts, 1971.

[3] Gear, C. W. NUMERICAL INITIAL VALUE PROBLEMS IN ORD
INARY

DIFFERENTLAL EQUATIONS, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1971.

[4] Hewlett-Packard Company, "2100A Computer Reference Manual,"
(102100-90001), Cupertino, California, 1970.

[5] Pleck, M. and Ruhl, R., "Illinois Graphics Computing System,"

Progress Report #1, Department of General Engineering,
University of Illinois at Urbana-Champaign, 1971.

[6] , Progress Report #2.

[7] Interdata, Inc., "Model 70 User's Manual," (29-261), Oceanport,

New Jersey, 1971.

[8] Multidata, Inc., "Computer Re ference Manual--Systems 72,"
(31101), Westminster, California, 1970.

[9] Varian Data Machines, "Varian 620/f Computer Handbook,"
(98-A 9908 001), Irvine, California, 1970.

[10] Westinghouse Computer and Instrument Division, "Computer
Reference Manual," (25 REF-001), Orlando, Florida, 1971.

27

APPENDIX A

User-written Overlay Facility

28

.TITLE MAKOVL

.CSECT.

.GLOBL DIFFUN,CONCTM
SP = 26
MAKOVL: MOV OCONCTM,OVRLEN

SUB #DIFFUN,OVRLEN
MOV #LNKBLK,-ASP)
EMT 6

;GET NUMBER OF 64 WORD SEGMENTS AND NUMBER OF WORDS.
MOV OVRLEN,NUMSEG
ASR NUMSEG
ASA NUMSEe
ASR NUMSEG
ASR NUMSEG
ASR NUMSEG
ASR NUMSEG
ASR NUMSEB
nDD 0 1, NHMSEG

;
ALLOC LNKBLK,FILBLK,NUMSEO
MOV NUMSEG,-<SP)

MOV OFILBLK,-<SP)
MOV *LNKBLK,-(SH)
EMT 15
INC (SP)+
BNE EAR

;
.OPENC LNKBLK,FILBLK
MOV 013,FILBLK-2
MOV OFILBLK,-(SP)
MOV 0LNKBLK,-(SP>
EMT 16
MOV *BUF,-<SP>
MOV #LNKBLK,-(SP)

EMT 2
;

WAIT LNKBLK
MOV IILNKBLK,-<SP>
EMT 1

i .CLOSE LNKBLK
MOV BLNKBLK,-(SP>
EMT 17

· .RLSE LNKBLK
MOV *LNKBLK,-(SP)
EMT 7

; .EXIT
ERR: El·IT 60
OVRLEN: . WORD . 0
NUMSEG: .WORD 0
i

LNNK BLOCK
.WORD 0

LNKBLK: .WORD 0,0,1
.RAD50 /Dr/

; FILE BLOCK
.WORD 0,0

FlLBLK: .RAD50 /DIF,
.RAD50 /FUN/

.RAD50 /LDA/
.BYTE 0,0,0,0

BUF: .WORD OVRLEN,7,OVRLEN,DIFFUN
.END

-- - -

29

;
SUBROUTINE CONCTM

.TITLE CONCTM
SP - 56
*0 - 50
.GLOBL CONCTM

CONCTM: MOV Q2<SS),POINTA ;MOVE GA INDICATOR TO POINTR
ASL POINTR
ASL POINTR ;PUT 4*POINTR ON THE STACK.
MOV Re.-(SP>
MOV POINTR,Re ; PUT SECOND WORD OF MODULE 5945
MOV POINTR(Re),FILBLE+2 ;rILE BLOCK
MOV POINTR-2(R0),FILBLK ; PUT FIRST WORD IN FILE BLOCK
MOV ADDR<Re),TRNBLK+4
MOV ADDR-2(Re),TRNBLK+2 ;PUT START LOCATION IN TRAN BLOCK
MOV (SP>+,R0
MOV 0LNKBLK,-(SP)
EMT 6 ;.INIT
MOV #FILBLK,-(SP)
CLR -(SP)
MOV 0LNKBLK,-(SP)
EMT 14 ; .LOOK
MOV (SP)+,TRNBLK ;PUT START BLOCK IN TRAN BLOCK
TST (Sp)+
TST (SP)+
MOV #TRNBLK,-<SP)
MOV *LNKBLK,-<SP)
EMT 10 ;.WRITE
MOV 0LNKBLK,-(SP>
EMT 1 ; .WAIT
MOV *LNKBLK,-<SP)
EMT 7 ; .ALSE
JMP ITRNBLK+2 ; GO TO SUBROUTINE START ADDRESS

POINTR: .WORD 0 ;POINTER AND LIST. OF FILE NAMES
.RAD50 /DIF/
.RAD50 /FUN/
.RAD50 /PAS/
.RAD50 /CAL/
.RAD50 /AFI/
.RAD50 /ND/
.RAD50 /SCA/
.RAC)50 /LE,
.RAD50 /EVA/
.RAD50 ;L,
.RAD50 /CHA/
.RAD50 /NGE,

.RAD50 /INI/

.RAD50 'T /

.RAD50 /COR/

.RAD50 /ECT/
NUMWAD:ADDR: .WORD 0,37260,76,37122,155,37112,161,36476.367

.WORD 36634,310,35064,1174,37072,161,36414,420

.WORD 0 ;LINK BLOCK
LNKBLK: .WORD 0,0,1

. RAD50 'OF,

.WORD 0,4 ;FILE BLOCK
FILBLK: .WORD 0,0

.RAD50 /LDA/

.BYTE 0,0,0,0
TRNBLK: . WORD 0,0,0,4,0

. END

31

; THIS PROGRAM IS THE MAIN PROGRAM Or DIF11,
; IT INITIALIZES CONSTANTS, READS IN VARIABLES,
; AND ASSIGNS STORAGE LOCATIONS TO VARIABLY
i DIMENSIONED STORAGE FOR DIFSUB.

.TITLE MAIN
Re - 50
Rl - /1
R2 = 52
R 3 - *3
R 4 = S 4
R5 = 55
SP r- 16
PC = 17
.GLOBE LOWI,LOW2,OUTPUT,INPUT,LINK,RETURN,N,DIFSUB.CSECT
BEGIN: CLR N ;CALL INPUT SUBROUTINE WITH N-0 TO READ IN

ISA RS, INPUT ;N,T,H,EPS,AND LOW2-BOTTOM ADDRESS OF
BR RET 1 ;DIFFUN OVERLAY PROVIDED BY USER.

.WORD 0,N,N2,LOW2,XLIM
RET1: CMP LOWl,LOW2 SLOWEST OVERLAY START ADDRESS GOES TO LOWl

BMI ON ;TO BECOME TOP OF STORAGE AREA.
MOV LOW2,LOWl

ON: MOY N,Rl ;COMPUTE ADDRESS OF DYNAMICALLY ALLOCATED
ASL Rl ;STORAGE FOR DIMENSIONED VARIABLES.
ASL Rl
MOV LOWl,Re ;Rl CONTAINS 4*N,ReCONTAINS TOP OF STORAGE.
SUB 02,R0
SUB Rl,R0 ;ADY = 0 OF DY<N)
MOV Re,ADY
SUB Rl,R0
MOV Re,AERROA ;AERROR - 0 OF ERAOR<N)

SUB Rl,Re
MOV RO,AYMAX ;AYMAX " 0 OF YMAX(N)
SUB Rl,R0
MOV #0,AIP ;AIP - 0 OF IP(N)
MOV Rl,R3
ASL R3
ASL R3
ASL R3
SUB Rl,R3 ; R3 CONTAINS 7*4*N
SUB R3,Re
MOV Ae,AV ;AY - 0 OF Y<N,7)
SUB R3,Re
MOV Re,ASAVE ;ASAVE - 0 OF SAVE(N,7)
ASL Rl ;Rl CONTAINS 8*N
SUB Rl,Re
MOV R0,ACSAVE ;ACSAVE.= 0 OF CSAVE(N,2)SUB N2,R0 ;N 2 - (N**2)*4
MOV Re,APW ;APW - 0 OF PW<N,N)
BR .+4

.WORD 0
MOV AY,LISTO
JSR RS,INPUT ; READ Y(*,I) FROM CARDSER RETZ

LISTO: .WORD 0,N,0,0,0
RET2: MOV AYMAX,RI ;SET YMAX<*3 - 1.0

MOV N,R0
LOOP3: MOV 040200,(Rl)+

CLR (Rl)+
SUB 01,R0
CMP *e,Re ;Re IS THE LOOP COUNTER
BNE LOOP3
MOV AY,OUTLIS ;PREPARE PARAMETER LISTS FOR CALLINGMOV 020,R3
MOV *ADDR;Re ;DIFSUB AND OUTPUT
MOV NLIST,RI

LOOP4: MOV (R 0)+ ,(Rl>+
TST (R 3)-
CMP 00,R3
BNE LOOP4
CLA JSTART ;JSTART - e
BR ST20

ST 19: MOV 01,JSTART ;JSTART - 1
ST20: JSR RS,DIFSUB

BR OUT
.WORD N

LIST: .WORD 0,0,0,0,0,0,0,0
OUT: JSR RS,OUTPUT

BR RET3
OUTLIS: .WORD 0,N,XLIM
RET3: CMP #1,KFLAG

BEQ ST19
EMT 60

32

N: .WORD 0,0
N2: .WORD 0,0
LOWI: .WORD 033512,0

XLIM: .WORD 0,0
LOW2: .WORD 0,0

.CSECT COM
JSTART S .+40
KFLAG = .+50
T = .+74
H = .+124
HMAX '- .+140
HMI'hi = .+144
.CSECT ADDR
ADDR:ADY: .WORD 0
AERAOR: .WORD 0
AYMAX: .WORD 0
RIP: .WORD 0
AY: .WORD 0
ASAVE: .WORD 0
ACSAVE: .WORD 0
APW: .WORD 0
.END BEGIN

Resident I/0 Routines

SUBROUTINE INPUT<Y,N,N
2,LOW2,XLIM>

COMMON /COM/ A (7), JLNK, JSTART,K,KFLAB,NO,
NOOLD,NEWQ,EPS,T,TOLD,

1 IDOUB,IWEVAL,IRET,IR
ETI ,H,HOLD,HNEW,HMAX,H

MIN,E,EUP,EDWN,ENQI

2ENQ2,ENQ3,BNO,BR,DEL,D
ELl,D

DIMENSION Y<N,7)
1000 FORMAT<15,3820.0,

06)
2000 FORMAT<4620,0)

IF<N.GT.0) 60 TO 10
READ(5,1000) N,T,H,EPS,LOW

Z
XLIM -T+H
HMAX = H
H - HMAX/1000,
HMIN - W/1000.

P N 2 = N*N*4RETURN
10 READ<5,2008> <Y<I,1)

,1-1,N>
RETURN
ENO

SUBROUTINE OUTPUT<Y,N,KLIM)
COMMON /COM/ A<7),JLNK,JSTART,K,KFLAG,NQ,NOOLD,NE

WQ,EPS,T,TOLD,

1 IDOUB, IWEVAL,IRET,IRETI,H,HOLD,HNEW,
HMAX,HMIN,E,EUP,EDWN,ENQ1,

2ENQ2,ENQ),BND,BR,DEL,DELI,D
DIMENSION Y(N,7)
WRITE(3,1001> T,<Y(I,1),I=l,N)

1801 FORMAT<SE16.72
IF<T.GT.XLIM) KFLAG•0
RETURN
END

 esident FORTRAN Main Program
33

r

SUBROUTINE DIFGUB<N,DY,ERROR,YMAX,IP,Y,GAVE,06AVE,PW>
COMMON /COM/ A(7>,JLNK,JSTAAT,K,KFLAG,NQ,NQOLD,NEWO,EPS,T,TOLD,
1 IDOUB,IWEVAL,IRET,IRETl,H,HOLD,HNEW,HMAX,HMIN,E,EUP,EDWN,ENQ1,
2ENQ2,ENQ3,BND,BR,DEL,DELl,D

C**********************•**
C* *
0* THIS SUBROUTINE INTEGRATES A SET OF N ORDINARY DIFFERENTIAL FIRST *
C* ORDER EQUATIONS OVER ONE STEP OF LENGTH H AT EACH CALL. H MAY BE *
C* INCREASED OR DECREASED WITHIN THE RANGE HMIN TO HMAX TO
0* ACHIEVE AS LARGE A STEP AS POSSIBLE WHILE NOT COMMITTING A SINGLE *
C* STEP ERROR WHICH IS LARGER THAN EPS IN THE L-2 NORM, WHERE EACH *
C* COMPONENT OF THE ERROR.IS DIVIDED BY THE COMPONENTS OF YMAX. *
0 4 *
13* THE PROGRAM REQUIRES THE SUBROUTINES NAMED *
C* ' DIFFUNCT,V,DY) *
C* DECOMP(N,M PW,IP) *
C. SOLVE<N,M,bw,CSAVE<1,1),14) *
C* THE FIRST, DIFFUN, EVALUATES THE DERIVATIVES OF THE DEPENDENT *
C* VARIABLES STORED IN Y<l,I> FOR 1-1 T O N, AND STORES THE +
C* DERIVATIVES IN THE ARRAY DY. DECOMP IS A *
C* STANDARD LU DECOMPOSITION WITH PIVOTINQ THAT DECOMPOSES THE MATRIX *
C* PW, LEAVING THE PIVOTS IN THE INTEGER ARRAY IP. M IS THE DECLARED *
C * S I Z E O F P W. IP<N> IS SET TO 0 IF PW IS SINGULAR. SOLVE PERFORMS +
C* BACK SUBSTITUTION ON THE CONTENTS OF CSAVE(I,1), LEAVING THE *
C. RESULTS THERE. *
C* *
C.* THE TEMPORARY STORAGE SPACE IS PROVIDED BY *MAIN* IN THE *
C* INTEGER ARRAY IP, THE SINGLE PRECISION ARRAYS PW, DY, *
C* PRECISION ARRAYS SAVE AND CSAVE. THE ARRAY PW IS USED ONLY TO HOLD *
C* THE MATRIX OF THE SAME NAME, AND SAVE IS USED TO SAVE THE VALUES *
C* OF V IN CASE A STEP HAS TO BE REPEATED, BUT CSAVE IS USED TO HOLD *
C* SEVERAL ARRAYS. *
C•
C* THE PARAMETERS TO THE SUBROUTINE DIFSUB HAVE *
C* THE FOLLOWING MEANINGS.. *
C * *
C* N THE NUMBER OF FIRST ORDER DIFFERENTIAL EQUATIONS. N *
C* MAY BE DECREASED ON LATER CALLS IF THE NUMBER OF *
C* ACTIVE EQUATIONS REDUCES, BUT IT MUST NOT BE *
C* INCREASED WITHOUT CALLING WITH JSTART - 0. *
C* T THE INDEPENDENT VARIABLE. *
C* Y A 7 BY N ARRAY CONTAINING THE DEPENDENT VARIABLES AND *
C* THEIR SCALED DERIVATIVES. Y<J+1,I) CONTAINS *
C* THE J-TH DERIVATIVE OF Y(I) SCALED BY *
C* H**J/FACTORIAL(J) WHERE H IS THE CURRENT *
C* STEP SIZE. ONLY Y(l,I) NEED BE PROVIDED BY -
C* THE CALLING PROGRAM ON THE FIRST ENTRY. +
C* H THE STEP SIZE TO BE ATTEMPTED ON THE NEXT STEP. *
C* H MAY BE ADJUSTED UP OR DOWN BY THE PROGRAM *
C* IN ORDER TO ACHEIVE AN ECONOMICAL INTEGRATION. *
C* HOWEVER, IF THE H PROVIDED BY *MAIN* DOES *
C* NOT CAUSE A LARGER ERROR THAN REQUESTED, IT *
r. * WILL BE USED. TO SAVE COMPUTER TIME, *MAIN* *
C g USES A FAIRLY SMALL STEP FOR THE FIRST *
C* CALL. IT WILL BE AUTOMATICALLY INCREASED LATER. *
C* HMIN THE MINIMUM STEP SIZE THAT WILL BE USED. *
C* HMAX THE MAXIMUM SIZE TO WHICH THE STEP WILL BE INCREASED *
C* EPS THE ERROR TEST CONSTANT. SINGLE STEP ERROR ESTIMATES *
C. DIVIDED BV YMAX(I) MUST BE LESS THAN THIS *
C* IN THE EUCLIDEAN NORM. THE STEP AND/OR ORDER IS *
C* ADJUSTED TO ACHEIVE THIS. '-
0* YMAX AN ARRAY OF N LOCATIONS WHICH CONTAINS THE MAXIMUM *
C* OF EACH V SEEN SO FAR. IT SHOULD NORMALLY BE SET TO *
13* 1 IN EACH COMPONENT BEFORE THE FIRST ENTRY. (SEE THE *
C* DESCRIPTION OF EPS.) *
6* ERROR AN ARRAY OF N ELEMENTS WHICH CONTAINS THE ESTIMATED *
C* ONE STEP ERROR IN EACH COMPONENT. *
C* KFLAG A COMPLETION CODE WITH THE FOLLOWING MEANINGS.. *
C* +1 THE STEP WAS SUCCESFUL. *
C* -1 UNRECOVERABLE ERROR *
C* 0 INTEGRATION COMPLETED *
C* JSTART AN INPUT INDICATOR WITH THE FOLLOWING MEANINGS.. *
C. 0 PERFORM THE FIRST STEP. THE FIRST STEP *
C* MUST BE DONE WITH THIS VALUE OF JSTART *
C* SO THAT THE SUBROUTINE CAN INITIALIZE *
C* ITSELF. *
C* +1 TAKE A NEW STEP CONTINUING FROM THE LAST. -
C* JSTART IS SET TO NQ, THE CURRENT ORDER OF THE METHOD *
C* AT EXIT. NQ IS ALSO THE ORDER OF THE MAXIMUM *
C* DERIVATIVE AVAILABLE. *
C* PW A BLOCK OF AT LEAST N**2 FLOATING POINT LOCATIONS. *
C***

DIMENSION Y(N,7>,YMAX(N),SAVE(N,7),ERROR<N),PW(1),DY<N)0
1 CSAVE(N,2),IP(N)
IRET - 1
KFLAG . 1
IF <JSTART.LE.0> GO TO 140

34

C••*••*********************•**•**•******•*************
**************•••*

C• BEGIN BY SAVING INFORMATION FOR·POSSIBLE RESTARTS AND CHANGING *

C* H BY THE FACTOR R IF THE CALLER HAS CHANGED H. ALL VARIABLES •

C* DEPENDENT ON H MUST ALSO BE CHANGED.
 *

C* E IS A COMPARISON FOR ERRORS OF THE CURRENT ORDER NQ. EUP IS *
C* TO TEST FOR INCREASING THE ORDER, EDWN FOR DECREASING THE ORDER. *
C* HNEW IS THE STEP SIZE THAT WAS USED ON THE LAST CALL.

 *

C*********************'****•*•**********•*****************

100 DO 110 I = 1,N
DO 110 J - 1,K

110 SAVE(I,J) - Y<I,J)
HOLD - HNEW
IF CH.EQ.HOLD) GO TO 130

120 IRETI = 1
GO TO 750

130 NQOLD = NQ
TOLD = T
IF (JSTART.GT.0> GO TO 250
GO TO 170

140 IF <JSTART.EQ.-1> GO TO 160
C*******************•*************•******************

C* ON THE FIRST CALL, THE ORDER IS SET TO 1 AND THE INITIAL
 *

C* DERIVATIVES ARE CALCULATED.
 *

C****•****•******************•*•*••**•***•••*•••******
•*****•***********

BR . 1.0
NQ , 1

C CALL DIFFUN(T,Y,DY)
 CALL LINK('DIFFUN')

DO 150 I - 1,N
150 Y<I,2) - DY<I)*H

HNEW - H
K-2

 GO TO 100
C****.......................•*.*.***••.*.*******************************

C• REPEAT LAST STEP BV RESTORING SAVED INFORMATION.
0*********************1**********•*****1************•*********************

160 IF <NQ.EQ.NQOLD) JSTART - 1
T - TOLD
NQ - NOOLD
K - NQ + 1
GO TO 120

C 170 CALL SUBl<N,Y,SAVE,CSAVE,YMAX,ERROR,PW,IP>
170 CALL LINK('SUBl')

C 230 CALL SUB2(N,Y,SAVE,CSAVE,YMAX,ERROR,PW,IP)
230 CALL LINK('SUB2')

80 TO <240,780>,JLNK
240 GO TO (250 , 640),IRET

C 250 CALL SUB3(N,Y,SAVE,CSAVE,YMAX,ERROR,PW, IP)
250 CALL LINK<'SUB3')

(**
**************************1*****

C* UP TO 2 CORRECTOR ITERATIONS ARE TAKEN. CONVERGENCE IS TESTED BY *
C* REQUIRING THE L2 NORM OF CHANGES TO BE LESS THAN BND WHICH IS *
C* DEPENDENT ON THE ERROR TEST CONSTANT. *

C* THE SUM Of THE CORRECTIONS IS ACCUMULATED IN THE ARRAY +
C * ERROR(I). IT IS EQUAL TO THE K-TH DERIVATIVE OF Y MULTIPLIED *
C* BY' H**K/(FACTORIAL<K-1>*ACK)), AND IS THEREFORE PROPORTIONAL *
C* TO THE ACTUAL ERRORS TO THE LOWEST POWER OF H PRESENT. (H'*K) *

(**********•81**

DO 270 I . 1,N
270 ERROR<I) - 0.0

DO 430 L=1,2
C CALL DIFFUNCT,Y,DY>

CALL LINK('DIFFUN')
DO 280 I=l,N

280 CSAVE<I,1) S DY(I>
JLNK - 1
IF(IWEVAL.LT.1) JLNK = 2
IF<JLNK.EQ.2> GO TO 350

C***

0* IF THERE HAS BEEN A CHANGE OF ORDER OR THERE HAS BEEN TROUBLE *
C* WITH CONVERGENCE, PW IS RE-EVALUATED PRIOR TO STARTING THE *
2* CORRECTOR ITERATION IN THE CASE OF STIFF METHODS. IWEVAL IS *
C * THEN SET TO -1 AS AN INDICATOR THAT IT HAS BEEN DONE. *
C*******************************•***************************************

310 DO 340 J = 1,N
F =Y(J,1)

R = EPS*AMAXICEPS, ABS(F))
V<J,1) = V(J,1) + R

D = A(1)*H/R
C CALL DIFFUNCT,V,DY)

CALL LINK<'DIFFUN'>
DO 330 I - 1,N

330 PW(I+(J-1)*N) = (DY(I)-CSAVE(I,1))*D
340 Y<J,1> - F

35

C*****4: ******•*•1********•***
C• ADD THE IDENTITY MATRIX TO THE JACOBIAN AND DECOMPOSE INTO LU - PW •
C*'******************I'********I'*0 1 11 ; 11 1111.Ilitj.11111]Illill
290 DO 300 1 - 1,N
300 PW(I•(N+1)-N) • 1.0 + PW(I•(N+1)-N)

IWEVAL , -1
C 350 CALL SUB7(N,Y,SAVE,CSAVE,VIAX,ERROR,PW, IP)

350 CALL LINK('SU87')
GO TO (440,410),JLNK

C 410 CALL SUB4(N,Y,SAVE,CSAVE,YMAX,ERROR,PW,IP)410 CALL LINK('SU94'>
GO TO <430,448),JLNK

430 CONTINUE
C 440 CALL SUBS(N,Y,SAVE,CSAVE,YIAX,ERROR,PW,IP)

440 CALL LINK<'SUBS')
GO TO (750,715,550,700,540>,JLNK

C***************************.****.*.*****4******0*****4*........40***4**
r* REDUCE rHE FAILURE FLAG COUNT TO CHECK fOR MULTIPLE FAILURES. *
C* RESTORE T TO ITS ORIGINAL VALUE AND TRY AGAIN UNLESS THERE HAVE *
C* THREE FAILURES. IN THAT CASE THE DERIVATIVES ARE ASSUMED TO HAVE *
C* ACCUMULATED ERRORS 80 A RESTART FROM THE CURRENT VALUES OF Y IS *
C* TRIED. THIS IS CONTINUED UNTIL SUCCESS OR H - HMIN. *
C********'**************************'***********************************
540 KFLAG - KFLAG - 2

IF<ABS<H>.LE.HMIN) 60 TO 740
T = TOLD
IF <KFLAG.LE.-5) GO TO 720

550 JLNK - 2
C 640 CALL SUB6(N,Y,SAVE,CSAVE,YMAX,ERROR,PW, IP)
640 CALL LINK<'SUB6')

60 TO (700,750,170,250),JLNK
700 DO 710 I • 1,N
710 YMAX(I) - AMAXI<YMAX(1),ABS(V(I,1)))

JSTART - NQ
715 RETURN

720 IF<NQ.GT.I> 80 TO 725
IF< ABS<H>.LE.2.Ee•HMIN> GO TO 780
GO TO 550

725 R - H/HOLD
DO 730 1 - 1,N
Y(I,1) - SAVE(I,l>

730 Y(I,2) = SAVE(I,2)•R
NQ - 1
KFLAG • 1
GO TO 170

740 KFLAG - -1
HNEW - H
JSTART - NO
RETURN

C 750 CALL SUBS(N,Y,SAVE,CaRvE,VION,ERROR,PM,IP)
750 CALL LINK('SUBe')

GO TO <130,250,640,440),JLNK
790 KFLAG - -4

RETURN
END

2!:!ale user-provided Overlay i Y" • ,=L

.TITLE INTAO

.GLOBL N,RETURN,DIFFUN

.CSECT ADDR
ADDR: .-.
.CSECT COM
T=.+74
.CSECT
BEGIN: MOV ADDR+10,LIST+2

MOV ADDR,LIST+4
JSR SS,DIFFUN
BR RET

LIST: .WORD T,0,0
RET: JSR SS,RETURN
.END BEGIN

SUBROUTINE DIFFUN<T,Y,DY>
DIMENSION Y<2,7), D¥(2)
DY(1) = Y(2,1)
DY(2) • -Y(1,1)
RETURN
END

36

Regular Overlays: INTRO with the approgriate subroutine
name introduces elch ovorlly

.TITLE INTRO

.GLOBL N,RETURN,SUBI

.CSECT ADDR
ADDR: ...
.CSECT
BEGIN: MOV ADDR+10,LIST+2

MOV ADDR+12,LIST+4
MOV ADDR+14,LIST*6
MOV ADDR+4,LIST+10
MOV ADDR+2,LIST+12
MOV ADDR+16,LIST+14
MOV ADDR+6,LIST+16
JSR :5,SUBI
BR RET

LIST: .WORD N,0,0,0,0,9,0,0
RET: JSR 55,RETURN
.END BEGIN

SUBROUTINE GU81(N,Y,eAVE,CSAVE,YMAX,ERAOA,PW,IP>
COMMON /COM/ A<7>,JLNK,JSTART,K,KFLAQ,NQ,NQOLD,NEWQ,EPS,T,TOLD,

1 IDOUB,IWEVAL,IRET,IRETI,H,HOLD,HNEW,HMAX,HMIN,E,EUP,EDWN
,ENQ1,

2ENQ2.ENQ3,BND.BR,DEL,DELl,D
DIMENSION Y<N,7),SAVE<N,7),CSAVE<N,2),YMAX(N),
1 ERROR<N),PW<N,N),IM<N)

C*•*****************•******•**•*•********'**•*•*
****•**•******•*********

C* SET THE COEFFICIENTS THAT DETERMINE THE ORDER AND THE
 METHOD *

C* TYPE. CHECK FOR EXCESSIVE ORDER. THE LAST TWO STATEMENTS OF *

C• THIS SECTION SET IWEVAL .GT.0 IF PW IS TO BE RE-EVALUATED *

C* BECAUSE OF THE ORDER CHANGE, AND THEN REPEAT THE INT
EGRATION *

C• STEP IF IT HAS NOT YET BEEN DONE (IRET • 1> OR SKIP
 TO A FINAL *

C* SCALING BEFORE EXIT IF IT HAS BEEN COMPLETED <IRET -
2). *

C••*•*•***••***•*****••••*****•*••****•***•*******
******••*********•****

A(2) • -1.0
IF (NQ .GT. 6) NQ•6
GO TO (221,222,223,224,225,226),NQ

C.**************************************
.*.***********************'*.***

C* THE FOLLOWING COEFFICIENTS SHOULD BE DEFINED TO THE MAXIMUM *

C• ACCURACY PERMITTED BY THE MACHINE. THEY ARE, IN THE ORDER USED.. **
C• *
C• *
C* -1
C• -2/3,-1/3
0* -12/25,-7/10,-1/5,-1/50

 *

C* -120/274,-225/274,-85/274,-15/274,-1/274
 *

C* -180/441,-58/63,-15/36,-25/252,-3/252,-1/1764
 4

C*•**•******•*****•••**••*••*•**•*•*••*••**••*••••**

221 A<1> 0 -1.000000000
GO TO 230

222 A<1> - -0.6666666666666667
A<3) - -0.3333333333333333
GO TO 230

223 A(1) - - 0.5454545454545455
A(33 - A<I)
A<4) m -0.09090909090909091
GO TO 230

224 A(1) , -0.480000000
A<3) - -0.700000000
A<4> = -0.200000000
A<5> = -0.020000000
GO TO 230

225 A(1) - -0.437956204379562
A<3) - -0.8211678832116788
A<4> - -0.3102189781821098
ALS> = -0.05474452554744526
A<6> = -0.0036496350364963594
GO TO 230

226 A<1, - -0.4081632653061225
A<3> - -0.9206349206349206
A<4) - -0.4166666666666667
A(5> = -0.0992063492063492
A<6) - -0.·0119047619047619
A<7> - -0.000566893424036282

230 RETURN
END

37

SUBROUTINE SU82<N,V,BAYE,CSAVE,4'MAX,ERROR,PW, IP>COMMON 'COM/ A(7>,JLNK,JSTART,K, KFLAG,NQ,NQOLD,NEWQ,EPS,T,TOLD
1 IDOUB,IWEVAL,IRET,IRETt,W,HOLD,HNEW,HMAX,HMIN,E,EUP,EDWN,ENQI,2ENQ2,EN03,BND,BR,DEL,DELl,D
DIMENSION Y(N,7),SAVE<N 7),CSAVE(N,2),YMAX(N),1. EAROR<N>,PW<N,N ,IP(N)
DIMENSION PERTST(7,3)

C*•*•***•1**••1**********••*••*••**•*••********•***********•*************•C* THE COEFFICIENTS IN PEATST ARE USED IN SELECTING THE STEP AND' *C* ORDER, THEREFORE ONLY ABOUT ONE PERCENT ACCURACV IS NEEDED. *C**•***•*****•••*•**•••**•••*••*•****•1••••••1**•*••••*••*************••**DATA PERTST/2.,4.5,7.333,10.42,13.7,17.15,1.,
1 3.,6.,9.167,12.5,15.98,1.,1.
2 1.,1.,.5,.1667,.04167,.0083J3/
JLNK = 1

230 K = NQ+1
IDOUB - K
ENOZ = .5/fLOAT(NO * 1)
ENQ3 - .5/FLOAT<NQ * 2>
ENQI - 0.5/FLOAT(NO)
EUP - <PERTST<NQ,2)•EPS>••2
E - (PERTST(NG, 1)*EPS)*•2
EDWN - (PERTST(NQ,3)*EPS)*•2
IF(EDWN.EQ.0) JLNK • 2
DND - <EPS•ENQ))*•2

240 IWEVAL - 2
RETURN
END

„1

SUBROUTINE SUB3<N,Y,GAVE,CSAVE,YMAX,EAROA,PW,IP>COMMON /COM/ A<7),JLNK,JSTART,K,KFLAG,NQ,NQOLD,NEWQ,EPS,T,TOLD,
1 IDOUS,IWEVAL,IRET,IRETI,H,HOLD,HNEW,HMAX,HMIN,E,EUP,EDWN,ENQI,
2ENQ2,ENQ3,BND,BR,DEL,DELl,D
DIMENSION Y(N,7),SAVE<N,7),CSAVE<N,2),YMAX<N),
1 EAROR<N>,PW<N,N>,IP<N)

C.'*****#81'****1*****181*******'**I.
C• THIS SECTION COMPUTES THE PREDICTED VALUES BY EFFECTIVELY *
C• MULTIPLYING THE SAVED INFORMATION BY THE PASCAL TRIANGLE *
C• MATRIX. *
C.'***
250 T-T+H

DO 260 J = 2,K
DO 260 Jl - J,K
J 2-K-J l+J-1
DO 260 1 - 1,N

260 Y (I, J 2) - Y (I, J 2 > + Y < I, J 2 + 1)
RETURN
END

SUBROUTINE SUB4<N,Y,SAVE,CGAVE,¥MAX,ERROR,PW,IP>
COMMON /COM/ A(7),JLNK,JSTART,K,KFLAG,NQ,NQOLD,NEWQ,EPS,T,TOLD,

1 IDOUB,IWEVAL,IRET,IRETI,H,HOLD,WNEW,HMAX,HMIN,E,EUP,EDWN,ENQI,
2ENQ2,ENQ),BND,BR,DEL,DELl,D
DIMENSION Y(N,7),SAVE<N,7),CSAVE<N,2>,YMAX(N),

1 ERROR<N>,PW<N,N),IP<N)
C.*************•*****•********•1**•**••*•**•*•***************************
C• CORRECT AND COMPARE DEL, THE L2 NORM OF CHANGE/YMAX, WITH BND. •
C* ESTIMATE THE VALUE OF THE L2 NORM OF THE NEXT CORRECTION BY •
C• BR*2*DEL AND COMPARE WITH BND. IF EITHER IS LESS, THE CORRECTOR •
C• IS SAID TO HAVE CONVERGED. •
C.**********•******•*•*••*•***•*•*••*•*•**••••***•********************0.

410 DEL - 0.0E0
DO 420 I - 1,N

Y<I,1> - 6<I,1> + A<1>•CSAVE<I,1>
V<I,2) = Y(I,2) - CSAVE(I,1)
ERROR(I) - ERROR(I) + CSAVE(I,1)

DEL -.DEL + (CSAVE<I,1>/YMAX<I>)*•2
420 CONTINUE
426 IF<L.BE.2> BR - AMA*l<.9•BR, DEL/DELl>

DELl - DEL
JLNK - 1
IF<AMIN1(DEL,BR•DEL*2.0) .LE. BND) JLNK • 2
RETURN
END

--

38

SUBROUTINE SUBS(N,V,GAVE,CSAVE,YMAW ERROR,PW,IP>
COMMON /COM/ A(7),JLNK,JBTART,K,KFL M,NQ NQOLD,NEWQ,EPS,T,TOLD,

1 1DOUB,IWEVOLAIRET,IRETI,H,WOLD,WNEW,HM X,HMIN,E,EUP,EDWN,ENQI,2ENQ2,ENQ3,BND, DEL,DELl.D
DIMENSION V(N,7),SAVE<N,7),CBAVE(N,2>,YMAX(N),

1 ERAOR<N>,PW<N,N>,IP<N)
C****************1**•**•***••***•••*••••••••**•••*••1•**••***••*••****•***

C* THE COARECTOR ITERATION FAILED TO CONVERGE IN 2 TRIES, VARIOUS *
C* POSSIBILITIES ARE CHECKED FOR, IF H IS ALREADY HMIN AND *
C*.THIS IS EITHER ADAMS METHOD OR THE STIFF METHOD IN WHICH THE *
C* MATRIX PW HAS ALREADY BEEN RE-EVALUATED, A NO CONVERGENCE EXIT *
C. IS TAKEN. OTHERWISE THE MATRIX PW IS RE-EVALUATED AND/OR THE *
0* STEP IS REDUCED TO TRY AND GET CONVERGENCE.

 *
C************4***************••********•.*****'01****•********************

30 TO (440,490,470,470),JLNK
440 T - TOLD

IF<ABSCH).LE.HMIN .AND. (IWEVAL-1).LT.-1> GO-TO 460
IF<IWEVAL.NE.0> H - H•0,2520
IWEVAL = 2
IAET1 - 2
JLNK - 1
GO TO 536

460 KFLOG = -3
NQ - NQOLD

470 DO 400 I - 1,N
DO 488 J - 1,K

480 V(I,J) - SAVE<I,J)
H - HOLD
JSTART - Ne
JLNK - 2
GO TO 536

0****•*•••*..0
C* THE CORRECTOR CONVERGED AND CONTROL IS PASSED TO STATEMENT 520 •
C* IF THE ERROR TEST 19 O.K., AND TO 540 OTHERWISE. •
C* IF THE STEP IS O.K. IT 18 ACCEPTED. IF IDOUB HAS 9EEN REDUCED *
C* TO ONE, A TEST IS MADE TO SEE 1/ TWE STEP CAN BE INCREASED •
C* AT THE CURRENT ORDER OR BY GOING TO ONE WIGNER OR ONE LOWER. •
0* SUCH A CHANVE IS ONLY MADE IF THE STEP CAN BE INCREASED BY AT •
C• LEAST 1.1. IF NO CHANGE 18 POSSIBLE IDOUB IS SET TO 8 TO *
0* PREVENT FUTHER TESTING FOR 9 STEPS, *

C* IF A CHANGE IS POSSIBLE, IT IS MADE AND tDOUB IS SET TO •
C* NQ * 1 TO PREVENT FURTHER TESING FOR THAY NUMBER OF STEPS. •
C* IF THE ERROR WAS TOO LARGE, THE OPTIMUM STEP SIZE FOR THIS OR *
C.* LOWER OADER IS COMPUTED, AND THE @TEP RETRIED. IF IT SHOULD *
C* FAIL TWICE MORE IT IS AN INDICATION THAT THE DERIVATIVES THAT *
C* HAVE ACCUMULATED IN THE V ARRAV WAVE ERRORS OF TWE WRONG ORDER *
C* SO THE FIRST DERIVATIVES ARE RECOMPUTED AND THE ORDER IS SET *
C.* TO 1.
0**************•*.....*•*........•***•***'.*•*•**••.******I.****•••*••*.
490 D = 0.0

DO 500 I - 1,N
500 D =D+ <ERROR(I)/VIAX<I)>•*2

IWEVAL - 0
IF<D.GT.E) JLNK - 5
IF(JLNK.EQ.5) GO TO 536
IF (K.LT.3) GO TO 520

C.**********I.*lilI••*********•**••*•*•**••*••D•**••*•*•****•***I•**•*.**

C* COMPLETE THE CORRECTION OF THE HIGHER ORDER DERIVATIVES AFTER A
C* SUCCESFUL STEP.
C•****•********•••*••••••••••••*••••••••••••••••*••*••*•******••*••***•*

DO 510 J - 3,K
DO 510 I - 1,N

510 Y<I,J) , 6(I,J) + A<J)•ERROR(1)
520 KFLAG = + 1

HNEW - H
IF(IDOUB.LE,1) JLNK•3
IF(JLNK.EQ.3) GO TO 536
IDOUB - IDOUB - 1
IF(IDOUB.GT.1) GO TO 535
DO 530 I = 1,N

53 0 CSAVE<I,2) - ERROR<I>
535 JLNK . 4
536 RETURN

END

39

SUBROUTINE GUed<N,Y,SAVE,CeAVE,VMAX,ERROR,PW,IP>
COMMON /COM/ A<7),JLNK,JSTART,K,KFLAO,NQ,NQOLD,NEWQ,EPS,T,TOLD,
1 IDOUB,IWEVAL,IRET,IRCTI,W,HOLD,HNEW,HMAX,HMIN,E,EUP,EDWN,ENQ1,
2ENQ2,EN03,BND,BR,DEL,DELI,D
DIMENSION Y(N,7),SAVE(N,7>,CSAVE(N,2),YMAX<N),

1 ERROR<N>,PW<N,N>,IP<N)
C*********1***************'**

C* PRI, PA2, AND PR3 WILL CONTAIN THE AMOUNTS BY WHICH THE STEP SIZE *
C* CHOULD BE DIVIDED AT ORDER ONE LOWER, AT THIS ORDER, AND AT ORDER *
C* ONE HIGHER RESPECTIVELY. *
C****************•****•****•*****••****'**•******•*******************

GO TO (680,550,640),JLNK
550 PR2 - <D/E>*•ENQ2*1.2

PR3 . 1.E+20
IF<<NQ.GE.6>.OR.<KFLAG.LE.-1))80 TO 570
D=00
DO 560 I - 1,N

560 D =D+ <<ERROR(I) - CSAVE<I,2)>/YMAX(I))**2
PR) - CD/EUP)**ENQ3•1.4

570 PRI - 1.E+20
IF <NQ.LE.1) GO TO 590
D . 0.0
DO 580 I - 1,N

580 D =D+ CY<I,K)/VMAX(I))**2
PR1 - (D/EDWN)••ENQ1*1.3

590 CONTINUE
IF (PR2,LE.PR3> 80 TO 650
IF <PR3.LT.PRI) GO TO 660

600 R - 1.0/AMAX 1(PR1,1.E-4>
NEWQ - NO - 1

610 IDOUB - 8
IF (<KFLAG.EQ.1).AND,<R.LT.<1.1>)> GO TO 694
IF (NEWQ.LE.NQ) GO TO 630

C.*****•***************•************•**••***•****•**********************

Cw COMPUTE ONE ADDITIONAL SCALED DERIVATIVE IF ORDER IS INCREASED. *
C*******************•***••'•••**•**********•********•*******************

DO 620 I = 1,N
620 Y<I,NEWQ+1> - ERROR<I>*ACK)/FLOAT<K)

630 K - NEWQ + 1
IF (KFLAG.EQ.1) GO TO 670
H - H*R
IRET1 - 3
JLNK = 2
GO TO 695

640 IF (NEWQ.EQ.NO) JLNK.4
IF(JLNK.EQ.4> GO TO 695
NQ = NEWQ
JLNK = 3
GO TO 695

65B IF <PR2.GT.PRI> 80 TO 600
NEWQ - NQ
R - 1.0/AMAXI<PR2,1.E-4)
GO TO 610

660 R - 1.0/AMAXI<PA3,1.E-4>
NEWQ - NQ + 1
GO TO 610

670 IRET - 2
R = AMIN1(R,HMAX/ABS<H))
H - H*R
HNEW - H
IF <NQ.EQ.NEWQ) 80 TO 680
NQ = NEWQ
JLNK - 3
GO TO 695

680 Rl = 1.0
DO 690 J - 2,K

Rl = Rl*R
DO 690 I - 1,N

690 Y<I,J) - V<I,J>*RI
IDOUB = K

694 JLNK - 1
695 RETURN

END

40

SUBROUTINE SUB7(N,V,GAVE,B,YMAX,EAROR,A,I
P>

COMMON /COM/ X(7),JLNK,JGTART,MR,KFLA8,NQ,NQOLD,NEWQ,E
PS,XT,TOLD,

1 IDOUB,IWEVAL,IRET,IRETI,H,WOLD,WNEW,HMAX
,HMIN,E,EUP,EDWN,ENQ1,

2ENQ2,ENQ3,BND,BR,DEL,DELl,D
C
C MATRIX TRIANGULARIZATION BY 8AUSSIAN

 ELIMINATION.

C
C INPUT...
C 'N - ORDER OF MATRIX
C NDIM - DECLARED DIMENSION Or ARRAY

 A.

C A - MATRIX TO BE TRIANGULARIZED. (
FOR STIFF METHODS, A IS SINGLE

C PRECISION; ALL OTHER VARIABLE ARE DOUBLE PRECISION.
>

C OUTPUT...
C A<I,J>, I.LE.J - UPPER TRIANGULAR FACTOR, U.

C ACI,J>, I.GT.J - MULTIPLIERS - LOWER TRIANGULAR FACTOR, I-L.

C IP(K>, K.LT.N - INDEX Or K-TH PIVOT ROW,
C IP<N> - (-1)*•<NUMBER OF INTERCHA

NGES> OR 0.

C USE 'SOLVE' TO OBTAIN SOLUTION OF LI
NEAR SYSTEM.

 =

C DETERM(A> - IP(N>*A<1,1)*A<2,2)*...*A
<N,N).

1 C IF IP<N) - 0, A IS SINGULAR, SOLVE W
ILL DIVIDE BY ZERO.

C

DIMENSION A(N,N),8(1),IP<N>,f<1>
GO TO <101,350),JLNK

101 JLNK -2
NDIM = N
IP<N) - 1
DO 6 K.l,NIf<K.EW.N) 80 TO 5
KPI - K+1
M-K
DO 1 I-KPl,N
IF<ABS<A<I,K)>.QT.ABS<A<M,K>>) M-I

1 CONTINUE
IP(K> = M
IF(M.NE.K) IP<N) - -IP<N)

T - A<M,K)
A (M,K) - ACK,K)
ACK,K> - T
IF<T.EQ.0) GO TO 5
DO 2 I-KPi,N

2 A<I,K> - -ACI,K) / T
00 4 J-KPl,N
T - ACM,J>
ACM,J) = A(K,J)
A C K,J) . - T
IF(T.EQ.0,1 GO TO 4
DO 3 I=KPI,N

3 ACI,J) - A<I,J) + ACI,K>•T
4 CONTINUE
5 IF(A<K,K).EQ.0.) IP(N> = 0
6 CONTINUE

IF(IP(N).EQ.0) JLNK . 1
IF<JLNK.EQ. 1) GO TO 10

350 DO 360 I=l,N
360 8(I) = Y<I+N) - 8(I)*H

JLNK - 2
C

C SOLUTION OF LINEAR SYSTEM, A•X • B.
C
C INPUT...
C N - ORDER OF MATRIX.
C NDIM - DECLARED DIMENSION OF ARRAY

 A.

C A - TRIANGULARIZED MATRIX OBTAINED
 FROM 'DECOMP'.

C 8 - RIGHT HAND SIDE VECTOR.
C IP - PIVOT VECTOR OBTAINED FROM 'DE

COMP'.
C OUTPUT...
C 8 - SOLUTION VECTOR, X.

IF<N.EQ.1) GO TO 9
NMI = N-1
DO 7 K-l,NMI

KP 1 =K+1
M - IP<K>

T - B<M)
P<M> - B<K>
B<K> - T
DO 7 I=KPI,N

7 8<IN = 8(I) + ACI,K)*T
DO 8 KB=1,NMI
KM 1 = N - KB
K - KM1 + 1
8(K) = B<K)/ACK,K)
T = -8(K)
DO 9 I-1,KMI

8 8(I> - B<I> + A<I,K>*T
9 8(13 - 8(1)/A<1,1)
10 RETURN

END

,-I

41

SUBROUTINE SUBe<N,¥,SAVE,CGAVE,YMAW,ERROA,PW,IP>COMMON /COM/ A(7>,JLNK,JSTART,K,KFLAG,NQ,NQOLD,NEWQ,EPS,T,TOLD,1 IDOUB, IWEVAL,IRET, IRETI,H,HOLD,HNEW,HMAX,HMIN,E,EUP,EDWN,ENQI,2ENQ2,ENQ3,BND,BR,DEL,DELl,0DIMENSInN V<N,7>,SAVE(N,7>,CSAVE(N,2),YMAX(N),1 ERROR<N),PW<N,N),IP<N>C* 4 * * * * * * *1 1, * * * * * * * * * * * * * * * * : , * * * * * * * * * * * * * * *C* THIS SECTION SCALES ALL VARIABLES CONNECTED WITH H AND RETURNS *C* TO THE ENTERING SECTION. *C **** **************** *** ** * ******** ** ***********************************750 H = AMAXICHMIN,AMINI<H,HMAX))Rl = 1.0
DO 760 J - 2,KR e H/HOLD
Rl -. Rl *R

00 760 1 - 1,N760 Y<I,J) - SAVE,I,J>*AlDO 770 I = 1,N770 9(I,1) - SAVE(I,1)IDOUB - K
Ji.NK = IRETI
GO TO 785

780 KFLAG - -4
JL.NK = 4

785 RETURN
END

-\

Form AEC-427 U. S. ATOMIC ENERGY COMMISSION
16/68) UNIVERSITY-TYPE CONTRACTOR'S RECOMMENDATION FOR

AECM 3201 DISPOSITION OF SCIENTIFiC AND TECHNICAL DOCUMENT
(See Instructions on Reverse Side)

1. AEC REPORT NO. 2. TITLE NUMERICAL SYSTEMS ON A MINICOMPUTER

Coo-1469-0215
Roy Leonard Brown, Jr.

3. TYPE OF DOCUMENT (Check one):

29 a. Scientific and technical report

0 b. Conf6rence paper not to be published in a journal:

Title of conference
Date of conference

.- U-

Exact location of conference

Sponsoring organization
El c. Other (Specify)

4. RECOMMENDED ANNOUNCEMENT AND DISTRIBUTION (Check one):

gl a. AEC's normal announcement and distribution procedures may be followed.

Il b. Make available only within AEC and to AEC contractors and other U.S. Government agencies and their contractors.

El c. Make no announcement or distrubution.

5. REASON FOR RECOMMENDED RESTRICTIONS:

6. SUBMITTED BY: NAME AND POSITION (Please print or typel

C. W. Gear
Professor and Principal Investigator

Organization
Department of Computer Science
University of Illinois
Urbana, Illinois 61801

signature

YO,4 9
Date

ce-r.
February 1973

FOR AEC USE ONLY

7. AEC CONTRACT ADMINISTRATOR'S COMMENTS, IF ANY, ON ABOVE ANNOUNCEMENT AND DISTRIBUTION

RECOMMENDATION: '

-

8. PATENT CLEARANCE:

0 <.AEC patent clearance has been granted by responsible AEC patent group.

0 b. Report has been sent to responsible AEC patent group for clearance.
0 c. Patent clearance not required.

BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient's Accession No.
SHEET UIUCDCS-R-73-555
4. Title and Subtitle 5. Report Date

NUMERICAL SYSTEMS ON A MINICOMPUTER February 1973
6. ·

7. Author(s) 8· Performing Organization Rept.
Roy Leonard Brown, Jr. No. Coo-1469-0215

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
US AEC AT(11-1)1469

Department of Computer Science 11. Contract/Grant No.

University of Illinois
Urbana, Illinois 61801

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered

US AEC Chicago Operations Office Thesis Research
9800 South Cass Avenue

14.Argonne, Illinois 60439

15. Supplementary Notes

16. Abstracts

This thesis defines the concept of a numerical system for a

minicomputer and provides a description of the software and computer

system configuration necessary to implement such a system. A procedure

for creating a numerical system from a FORTRAN program is developed

and an example is presented. The reader should have some knowledge of

FORTRAN and minicomputer operating systems, PAL assembly language for PDP-11.

17. Key Words and Document Analysis. 170. Descriptors

minicomputer system
numerical system
overlay buffer
overlay partition of FORTRAN program
overlay facility

176. Iden[ifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement 19.. Security Class (This 21. No. of Pages
Report) 48

UNCLASSIFIED
unlimited distribution -20. Security Class (This 22. Price

Page
UNCLASSIFIED

FORM NTIS-35 (10-70) USCOMM-DC 40329-P 71

