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THE FERMI SURFACE OF TUNGSTEN 

Robert Franz Girvan 

ABSTRACT 

Impulsive-field de Haas-van Alphen effect measurements have 

been carried out to study the Fermi surface of tungsten. An empirical 

model was constructed by fitting an equation for the shape of the Fermi 

surface to the results of this experiment combined with the Gantmakher 

size effect results of other investigators and with theoretical predictions 

for the Fermi surface shape. Good over-all agreement is obtained be-. 

tween the predictions of the empirical model and experiment showing 

that a surface with the general features of the Lomer model can account 

for all of the experimental results. However, the empirical model is 

imprecise in certain respects, and small changes are indicated for a 

more precise description of the Fermi surface . 

... 
···uSAEC Report IS-T -103. This worktwas performed under Contract 
W -7405-eng-82 with the Atomic Energy Commission.· 



I. INTRODUCTION ·. 

A. General Considerations 

The subject of this dissertation concerns one of the 

experiments which are carried out to increase our under-· 

standing of the properties of electrons in metals. Before 

attempting to define this study more precisely, ii is 

necessary to begin with a brief description of.the theoretical 

model which is usually used to discuss electrons in metals, 

that is, the one-electron approximation. 

Since the electrons in a metal are a system of strongly 

interacting particles, an exact theoretical description of 

their properties has not been found. Quite useful results 

have been obtained, ·however, by considering an appr·oximate 

model in which a single electron moves in the peri.odic 

poten~ial V(r) resulting ~rom al~ the other electrons and 

ions in the metal. In this model, the single particle states 

are the solutions of the one-electron Schroedinger equation 

( 1 ) 

A fundamental result ·of the theory is that due to the trans-

lational$ymmetry of the lattice, these single particle states 

can be labelled by a wave vector k or by the correpponding 

crystal momentum -fik. The ~nergy e~genvalues E(~) in Equation 

1 are periodic functions of k so that k can be restricted to 
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lie within a unit cell of wave-vector space which is called 

the primitive Brillouin zone. An infinite number of dis-

crete energy levels exists for each k within the primitive 

zone; each of these levels E.(k) is a periodic functiort in 
1 -

~-space and represents a band of allowed energies. 1 

A great deal of effort has been expended over the last 

two decades in calculating E(~) for many metals by first 

constructing a physically reasonable potential V(r) and then 

solving Equation 1 numerically. Typical E(~)curves which 

result from such calculations are shown in Figure 1; these 

calculated curves are for the transition metal tungsten, 

about which this dissertation will be primarily concerned. 
\ 

Each of the curves gives the dependence of the one-electron 

energy on the wave-vector for a dif~erent band along a line 

from the center of the primitive Brillouin zone to the cor-

ner H. The sum total or curves like these for all direc-· 

tions in .~-space defines the band structure of the metal. 

Band structure calculations do not give really quantita-

tive results since the potential V(r) is not well-known. 

However, when it comes to accounting for most of the physical 

properties of a metal, it is not really necessary to know 

the entire band structure in detail. As we shall explain 

1
The basic concepts which are outlined in this intro­

ductory section are discussed in standard textbooks on solid 
state physics, e.g. Ziman (1964). · 
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Figure 1. Relativistic electron dispersion curves for 
tungsten in the neighborhood of the Fermi 
energy. The ordinate is energy (Rydbergs) 
and the abscissa is distance in wave-vector 
space (reciprocal Bohr radii)(after Loucks· 
1965a)~, 
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below, certain .features are much more important than others, 

and it is fortunate that these significant features can be 

determined experimentally. Nevertheless, the. theoretica·l 

calculations are of vital importance since they provide a 

framework to guide the experimentalist in the interpreta­

tion of his observations. 

The electronic contribution to many experimental 

phenomena can be understood by considering an ideal Fermi 

gas which is assumed to follow some dispersion law of the 

form E(~) rather than by considering the system of electrons 

interacting with one another and with the lattice (cf. 

Pines 1963). Two fermions cannot occupy the same state so 

that at the absolute zero of temperature, all the lower 

energy states are occupied; the occupation number of the 

one-~lectron states drops discontinuously from 1 to 0 when 

all the electrons have been accommodated. The energy at 

which this discontinuity in the occupation number occurs 

is called the Fermi energy EF, ancl T.hP. locus of points in 

~-space for whiqh Ei(~) = EF is the Fermi surface for the 

ith band. The set of _.all such surfaces for the separate 

bands is the Fermi surface of the metal. Thus, if the 

Fermi energy in Figure 1 is given by the line a-d,- we assume 

that all states with energies below this ·line are filled 

and all states· lying above this line are empty. Then points 

b and c are points on two separate Fermi surfaces. (When 
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interactions are taken into account·., the statement that the 

Fermi· surface separates completely filled states from com­

pletely empty states is not rigorously true, but according 

to Migdal (1957) and Luttinger (1960) there is still a dis­

continuity of sorts in the occupation number of the electron 

states at the Fermi surface.) 

The elucidation of both the shape of the Fermi surface 

and the dynamical properties of electrons occupying states 

near this surface is of primary importance in understanding 

the properties of a metal; most physical phenomena involve 

small energy transfers, and only those. electrons close. to 

the Fermi surface are energetically near unoccupied states. 

Thus, for example, it is only electrons at the Fermi surface 

which take part in· electrical or thermal conduction· or con­

tribute to the electronic specific heat of a metal. At 

temperatures other than absolute zero, the Fermi surface is 

no longer perfectly sharp and the occupation number drops 

from 1 to 0 over an energy range of kT. However, even at 

room temperature the thermal energy (kT_)/40 eV) is much less 

than the Fermi energy (EF~several eV), and for many purposes, 

e.g. calculation of the electrical conductivity, the surface 

can be taken to be sharp, 

There are a number of experiments which can· be carried 

out to measure both the shape of the Fermi surface and the 

dynamical properties of electrons on this surface, most of 
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'tvhich are discussed in a general review article by Pippard 

(1961). The three experiments which have yielded the most 

detailed information about the Fermi surface of tungsten are 

the de Haas-van Alphen effect, the Gantmakher size effect, 

and cyclotron resonance. These experiments are all carried 

out on single crystals of very pure metals which have been 

cooled to low temperatures so that ·the electronic mean free 

path between collisions is relatively long; furthermore, they 

are all carried out in a magnetic field. In each of these 

experiments, contributions from small groups of electrons on 

the Fermi surface can be separated out; so that very detailed 

information about the Fermi surface can be obtained. In. the 

following section we will give a brief description of the 

Gantmakher size effect and cyclotron resonance. The 

de Haas-van Alphen effect, which is the experimental method 

used in this study, will 'be described in somewhat more 

detail in Section I~C. 

B. The Gantmakher ·size Effect 

and Cyclotron Resonance 

Current understanding of.the Gantmakher size effect and 

cyclotron resonance is based on a semiclassical treatment of 

the dynamical behavior of electrons in metals under the influ-

ence of an applied magnetic field. Provided that there 

are no interband transitions, it can be rigorously shown 
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that the Newtonian equations of motion for·a free particle 

can be carried o~e~ to an el~ctron moving in a periodic 

potential provided that the kinetic momentum mv is replaced 

by the crystal momentum~· 

I~ the periodic lattice we assume that the single­

electron energies E(~) are give~ by the solution of Equation 

1. The energy levels of the electron in a magnetic field B 

can be found by using the equivalent Hamiltonian 0L = E(K) !Teq -

where the wave vector ~· in E(~) is replaced by the operator 

K given by 

~K = -ingrad- e!fc· (2) 

and A is the vector potential (Luttinger 1951, Blount 1962). 

Thus the motion of a wave packet describing an electron on 

'the Fermi surface can be found from .Hamilton's equ~tions 

using the Hamiltonian E(k). The well-known results for the 

velocity and acceleration are 

(3) 

and 

(4) 

We see from Equation 3 that the velocity of an electron 

occupying a state k on the Fermi surface is normal to the 

surface at the point ~· Therefore, according to.Equation 4, 

the magnetic field causes the vector ~·to move along the 

line of intersection of the surface E(k) = constant with a 
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plane ~·~ = constant. This path which is traced out by the 

t:Lp of the vector k in the magnetic field is often referred 

to as an orbit. 

We can set up curvilinear coordinates in the plane of 

the orbit such that for kt measured along the orbit and · an 

k measured normal to it, we have from Equation 4 n . 

-11k tan 

or 

dt 

eB 
= '"fie 

dE 
C>k 

n 

so that the time required to traverse a closed orbit 

2[ fl. c dktan 
Tc = eB dE/Jk . n 

We define an orbit effective mass m* by 

.:n.2Jdktan 
m* = 27T dE/J.kn 

is 

(5) 

(6) 

so that the cyclotron frequency~c, which is the frequency 

at which a closed orbit is traversed, can be written 

We = 2Tf = eB 
T m*c c (7) 

Furthermore, the integral in Equation 6 is the derivative 

o:f the orbit area k' ~ith respe·ct to the energy so that we 

can write an alternative expression for the· cyclotron mass 
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as 

m* (8) 

According to Equation 4, the projection of the £-space 

trajectory of an electron onto a plane perpendicular to 

the magnetic field will be similar to the orbit in ~-space, 

but will be rotated by ~/2. 

Equations 4 and 7 are the basis for a qualitative under-. 

standing of the cyclotron resonance experiment ·and the 

Gantmakher size effect experiment. The Gantmakher effect 

(Gantmakher 1962) is studied in a thin metallic sampl~ whose 

boundaries are represented by the lines a-b and c-e in 

Figure 2a. Also shown in the Figure are the relative ori-

entations of a hypothetical orbit in ~-space and the pro-

jection of the corresponding electron trajectory in £-space 

onto a plane perpendicular to the magnetic field; the mag-

netic field is parallel to both faces of the sample. An 

oscillatory electric field also lies in the plane of the sam-

ple surf"ace, but at right angle::; to the magnetic field. The 

quantity cr represents the skin depth for the electric field 

. 6 <" 
whose :frequency is typically-10 Hz. If o is much less than 

the orbit diameter in £-Space and if the mean free path is 

sufficiently long, this configuration is appropriate for mea-

surement of the calipered dimension 2p ·of the Fermi surface. 

The width 2p is an extremal calipered dimension with respect 

to planes k = constant through the sheet of the. Fermi y 
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·195.6) . . . · . 

. ./ 



·~----------- -------~~ 

surface which is being considered. 

In sufficiently high magnetic fields the dimens.ions of 

the electron trajectories will be smaller than the sampl~ 

thickness d. As the magnetic field strength is reduced, 

the electron trajectories expand so that the number of 

electrons which pass through the skin layer and complete an 

orbit without colliding with the sample surface.decreases. 

At some critical field.value, the extremal calipered dimen-

sion of the trajectory just coincides with the sample thick-

ness; and at this point, an anomaly is found in the field 

dependence of the resonant frequency of a coil containing 

the sample (Gantmakher 1962, 1963) or in the r-f trans­

mission through the sample (Walsh and Grimes 1964). 

The geometry for the observation of cyclo~ron ·resonance 

is the same as for the Gantmakher effect, except that only 

one surface of the sampl~ is considered and the frequency 

Gdof the electric field is substantially higher (typically 

1 0 1 0 - 1 0 1 1Hz ) . The trajectories in E-space which. correspond 

to closed orbits on the Fermi surface are helices with their 

axes along the magnetic field direction (Figure 2b) so that 

an el.ectron which passes through the skin depth at one point 

on its. trajectory w1ll do so again at intervals Tc until it 

suffers a collision. During each pass through .the .skin 

depth, the electron experiences· an impu~sive force from the 

electric field. If WjW is an integer, successive impulses 
c 
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will be in phase and a resonance (change in the power absorp-

tion coefficient of the sample) will be observed. For 

sufficiently low value.s of the magnetic field these resonances 

are periodic in VB with period ~(1/B)- ___ e_ 
-Wm*c 

.. 
The theoretical treatment of this effect (Azbel and 

Kaner 1956, 1957) ~hows ~hat the .effect is dominated by 

electrons on sections of the Fermi .surface for which the 

quantity m*(k~) is extremal with respect to kB' the component 

of the wave vector along the magnetic field direction. How-

ever, if the magnetic field is tipped slightly out of the 

plane of the surface of the sample, most of the electrons 

will tend to drift out of the skin depth. Those which will 

not are those for which the average of the drift velocity 

v around an orbit is zero. 
z 

Only this group will cuntribute 

to the resonance. Harrison (1960) has shown that the average 

drift velocity is zero fo·r orbits which enclose an extremal 

·(maximum or minimum) area in ~-spac.e. 

C. The de Haas -van Alphen Ef'f'ec t 

From an experimental view point the de Haas-van Alp~en 

effect can be described as the oscillatory behavior which 

is observed in the magnetization of single crystals of pure 

metals when they are cooled t~ liquid .. helium temperatures 

and placed in a strong magnetic field. ·When the. field 

strength is changed, the oscillatory components are found 

to be periodic in VB. 
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The importance of.the de Haas-van Alphen effect as a 

tool for studying the Fermi surface stems from a relation 

found by Onsager (1952). For a uniform magnetic field B. 

in the z-direction, electrons on a closed orbit in ~-space 

execute a periodic motion in the x-y plane._ On~ager applied 

the Bohr-Sommerfeld quantization rule to this motion, 

j E. dr = ( n vf ) 27Tii, ( 9 ) 

where E is given by n~ + e!/c and the integral is around an 

orbit. Here ~is an unspecified constant. He found that 

the orbits in the k -k plane enclose quantized areas which 
X y 

are given by the formula 

/r n = (n +-1 ) 21feB/c1l . ( 10) 

Since k is not affected by the quantization, the quantized z 

levels can be pictured as defining tubes in k-spac~ 

(Figure J). As the field strength is increased, ~he spacing 

~*between these allowed ~tates increases in accordance with 

Equation 10 and as the outer levels are pushed through the 

Fermi surface the electrons become redistributed among other 

states. (It is assumed that sufficient.collisions are pre-

sent so that we can always define an equilibrium distribution 

function.) 

A.ccording to Onsager ( 1952), the magnetization of the 

system oscillates with a frequency determined by the rate 

at ·which these levels pass through the Fermi surface. 

For a disk of thickness 5'k taken through the surface at k z . z 
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d:e Haas~ van AIQhen effect=· measures A(o) ( 9, ~) · 
Figure 3, Illustrating the de Haas-van Alphen effect for a hypothetical Fenni surface 
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this frequency is 

F = 
dn 

d(l/B) = ( 11) 

where we have taken n in Equation 10 to be a continuous 

variable. Pippard (1961) finds that at absolute zero, the 

magnetization ~M of the disk has a sawtooth form as is shown 

in Figure J, He expands O(M in a Fourier series of. the form 

~M = L c(r,k ) z 
r 

. ( rch k(kz)) c--. 
Sln 2TeB okz 

The argument of the sine function is of magnitude so 

that 1vhen 5M is integrated over k to find the total magnet­
z 

ization, only the extremal areas A-. contribute to the integral. · 
0 

At higher temperatures, the Fermi surface is no longer 

perfectly sharp and the de Haas-van Alphen oscillations are 

damped somewhat. The sawtooth wave form is rounded like the 

dashed wave form in Fig~re J, Lifshitz and Kosevich .(1955) 

have calculated the formula for the temperature dependence 

of the amplitude of the oscillations and we will use their 

final result, modified slightly to conform with the findings 

of later authors. We will include a spin splitting factor 

g since Cohen and Blount (1960) have argued that the spin 

splitting of the energy levels should be in general of 

magnitude. gfnH/2 whereas Lifshitz and Kosevich assume a 

g-value of 2. (Heref<B is the double Bohr magneton,) 

Usually an amplitude damping factor which arises due 

to the finite width of the Landau levels is also included. 
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An analysis by Dingle (1952) showed that for a quadratic 

dispersion law and further simplifying assumptions, the r~ 

harmonic in the Lifshitz and Kosevich formula should be 

multiplied by the factor exp(-4lf3rm*ckx/ehH) where x is an 

effective temperature related to the width of the Landau 

·levels. Furthermore, it has been observed experimentally 

(Anderson and Gold. 1963, Shoenberg 1962) that the de Haas-

van Alphen oscillations are actually periodic in VB rather 

than VH as Lifshitz and Kosevich suggested. Thus each time 

that the applied field H appears in early theoretical papers 

it should be replaced by B. 

In our experiment, we in fact observe not the oscilla-

tory magne.tiza tion, but the oscillatory differential 

susceptibility -'1 . 
f\osc 

If we include the additions which were 

noted above, this quantity can finally be written out as 

(12) 

3 ' 

= 4kTVF2(27/e)2!_1 d2/to 
he 27( dkT 

z 

X 

]_ cos (J[~rm*) cos ( 21/rF + 1[ - 27Tr-l) 
3 2 me B - -47f rm*ckx/ehB 

r e 
2 sinh(4rr3rcm*kT/ehB) 

Here me is the mass of a free electron. I~ there is more 

than one extremal section of the Fermi surface, each section 

"'vill contribute an oscillatory signal according· to Equation 

12. Usually the argument of the hyperbolic sine in Equation 

12 is somewhat greater than one so that only the first few 

harmonics in th.e sum need be retained and to· a good 

- ~---· -----~-----··-----·---··-----,:,__,_. __ .:._ __________ .. --:--.. -- -------·--·--------
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approxima tio:n: [2 sinh ( 4Tr3 cm*kT/ ehB ~ - 1 can be replaced by 

3 exp(-4TI rcm*kT/ehB). When these steps are made, Equation 

12 can be written 

( 1 3) 

where~ .(B,T) is slowly varying. 
OJ. 

The sum is over the 

extremal sections and those harmoni.c components which have 

a significant amplitude. By sorting out the frequencies 

F i ( 8, ~) as a function of the orientation ( e , 4>) of the 

magnetic field direction with respect to the crystal axes, 

the orienta ti~n dependence ,4- . ( e ' .J., ) of the extremal areas 
OJ. I 

of the Fermi surface can be determined. From this informa-

tion the shape of the Fermi surface can be inferred. This 

is the importance of the de Haas-van Alphen effect. Further­

more, by measuring the amplitudes-/ .(B,T) as a function of AoJ. . 

temperature, the cyclotron masses can be obtained. 

D. Outline of the Present Investigation 

In this study we have used the de Haas-van Alphen 

.effect to study the Fermi surface of tungsten. This work 

considerably extends an earlier study (Girvan 1964') which 

related only to the large portions· of the Fermi ~urface. 

It is found that the general features of the Fermi surface 

of tungsten are in qualitative agreement with a crude model 

.which was first proposed by Lamer (1964) and with·more 
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elaborate models which were advanced by Loucks (1965b, 1966) 

on the basis of detailed band structure calculations (Loucks 

1965a, 1965b). However, neither of these models give really 

quantitative agreement with our results. Therefore, , .. e have 

constructed an analytical model for the Fermi surface of 

tungsten using both our results and the Gantmakher size-

effect results (Walsh and Grimes 1964). 

In tungsten it was found that some of the.signals were 

quite complex and required special analysis techniques. 

The methods which were developed to perform the analysis 

on these complex signals are discussed·in Chapter II along 

with the details of the apparatus and possible errors. 

In Chapter III we present the results of the frequency mea-

surements together with some examples of the data. Cyclo-

tron mass measurements were also made for most of the oscil-

' latory components. The results of the cyclotron mass mea-' 

surements which were carried out for the Qoo], 0.1D, and 

010] orientations are presented in the second part of Chap-

ter III. In Chapter IV we discuss our data in terms of the 

models which were proposed by Lamer (1964) and Loucks (1965b, 

1966), and then proceed to describe the experimentally-

rlAtermined Fermi surfac~ in terms of analytic~l functions. 

The chapter concludes with su~·gestions :for further study. 

.;· 
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II. EXPERIMENTAL PROCEDURE 

A. The Impulsive Field Method 

In this study measurements of the frequencies of · 

oscillation of the magnetic susceptibility of small single 

crystals of tungsten were carried out using the impulsive-

field method. This· method was developed by Shoenberg (1957) 

and wa~ later described by him in detail (Shoenberg 1962) 

so that a really detailed description will not be attempted 

here. 

The sample is placed in a liquid-helium bath in th.e 

center of a solenoid, and a time-varying magnetic field 

H( t) is produced by discharging a bank of· capacitors through 

the solenoid. As the magnetization M changes with magnetic 

field, a voltage dM/dt = (dM/dH)(dH/dt) is induced in the 

pickup coil. This volta~e, which is due to the oscillations 

in the magneti'c susceptibility, is filtered and displayed 

on one trace of a dual beam oscilloscope. For field mea-

surement, the voltREA deve~oped across a sLandard resistor 

in series with the pulse coil is displayed on the second 

trace of the oscilloscope, and both traces are simultaneously 

photographed on Polaroid film. In order to make small 

changes in magnet current correspond to large deflections 

of the oscilloscope beam, most of the voltage developed 

across the standard resistor is bucked of~ by a· calib~a~ed 
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voltage s~pply and the small difference voltage is amplified 

by thP_ oscilloocopa. 

After the capacitor discharge is completed, the second 

trace is again swept across the oscilloscope screen several 

times at known voltages which are produced by_ a calibration 

unit. The calibration lines which are produced by this 

procedure provide reference lines on the film for accurate 

field measurement. Some examples of the data which are 

obtained in this way are shown in Figure 4. 

B. Experimental Apparatus 

A block diagram of the apparatus .is shown in Figure 5 

and the physical arrangement of the components is shown in 

Figure 6. 1 
The sample and pickup coil were located in a 

slender tail on one end of a glass-walled helium chamber, 

and the whole helium chamber was encased in a liquid-

nitrogen dewar. A pulse solenoid fitted over the tail of 

the helium dewar and both the helium chamber and the sole-

noid were hung from brackets on r1. pumping line. By means 

of two large mechanical pumps, the temperature of the helium 

bath could be varied from 4.2°K to 1°K. A mercury and an 

oil manometer were connected to the. helium chamber for 

temperature measurement. 

The lower beam amplifier of the Tektronix 502 

1The experimental ap~aratus has been described in 
more detail by Anderson (1962).· 
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Some examples of impulsive-field deHaas-van-Alphen 
effect data for tungstP.n 

Overall pictur~ with symmetric field pulse illus_­
trating the effect of the resonant pickup circuit 
on the complicated dHvA frequency spectrum 
H approximately midway be tween [00 1] and Q 11] 
Temperature ....-...1 °K 
Resonant frequency"""'" 155kHz 
Filter passband-- 140-170kHz 
Bottom calibration line at OkG; succeeding lines 
at intervals of 24.7kG 
Pulse duration-16ms 

Expanded picture of eX. oscillations using the 
symmetric field pulse (The notation 0\. is explained· 
in Section III-A.) 
H near [110] 
Temperature"'""' 4 °K 
Resonant frequency- 100kHz 
Filter _passband "-'70-140kHz. 
Bottom calibration line at 81 .. 51kG; succeeding lines 
at intervals of 1.2J5kG 
Time across picture,._ 1ms 

c. Overall picture using the shunt ignitron (see cap­
tio·n for Figure 5) 
H """20 ° from [00 1] in the ( l1 0) plane 
Temperature"'"'"" 1 °K 
Resonant frequency"'-" 50kHz 
Filter passband"' 30-70kHz 
Bottom calibration line at OkG; succeeding lines 
at intervals of 24.7kG 
Time across picture""'50ms 
(The re.sonance peaks ·for· ·:fr~o · ar::e off-scale· and 
are .. not shown~.) · · · 

d. Expanded picture of ~u oscillations using the 
shunt ignitron (The notation~u is explained in 
Section III-A.) 
H"' 8 ° from [00 i] in the ( l1 0). plane 
Temperature....-.. 1 °K 
Resonant :frequency"'""'" 50kl{z 
Filter passband~ 25~7 5kHz 
Bottom calibration line at 19 1 760kG; oucceeding 
calibration linei at int~rvals of 1.2J5kG 

· Time across · picture ,.._ 2ms 

I 
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Figure 6. The experimental apparatus ( The liquid nitrogen dewar has been 

removed from its mounting and set on the floor .) 

a . Pulse solenoid 

b . Glass helium cryostat 

c. Pumping line 

d. Manometer 

e . Capacitor cha~ging unit 

f . Capacitor 

g . Bucking circuit 

h . Oscilloscope 

i . Electronic filter 

j. Voltmeter to monitor signal induced in pickup coil by 

sample orienting coils 

k. Sample orienting coils 

l . Liquid nitrogen dewar 

N 
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oscilloscope was connected differentially across a bucking 

circuit and the .01 ohm series resistor in the magnet circuit. 

This bucking circuit (see Anderson 1962) is a calibrated 

voltage supply w·hich could be set to supply bucking voltages 

from zero to 15 volts in steps of 0.1 volts. The bucking 

circuit was also equipped wi~h a polarity-reversing switch 

so that during a pulse it could be ·set to produce a voltage 

which opposed the voltage across the standard resistor. 

After the pulse the polarity could be reversed to supply 

voltages for the calibration lines,, 

Since the magnetic field direction is fixed in space 

by the physical arrangement of the helium cryostat and pulse 

coil, it is necessary to vary the orientation of the sample 

within the helium chamber in order to set the magnetic field 

along different crystallographic directions. Therefore, ·in 

each of the two sample holders which were used, the J:)ickup· 

coil was mounted in a small wheel with the axis of the· 

pickup coil perpendicular to the axle of the wheel. 

For the sample holder 1 which was used to gather most 

of the data, the axle of the wheel was held in Teflon bush-

ings 'vhich were mounted :ln a nylon fork assembly at the 

bottom of the sample holder. The nylon holder was attached 

to ·a glass tube which in turn was connected to a stainless 

1This sample holder was used by Anderson (1962) and 
has been descr~bed ~n more detail by him. 
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steel tube outside the high field region. The stainless 

steel tube was the physical support for the pickup coil assem-

bly and extended to the top of the sample holder, which con-

tained a winch assembly encased in a vacuum chamber. A loop 

of nylon fishing line was wrapped round the winch and the 

small wheel at the bottom end of the sample holder so that the 

wheel could be turned in.the liquid helium chamber by turning 

the winch at the top of the sample holder. In the latter part 

1 of this study a second sample holder was used in which the 

wheel was turned by a beveled gear arrangement. 

Electrical connections to the pickup coil were· led out 

of the helium chamber through the top of the sample holder 

to a variable capacitance and then via a band pass filter
2 

to the terminals of the upper beam amplifier of a Tektronix 

502 oscilloscope. The pickup coils 3 were wound on small 

nylon forms using about i500 turns of either #50 or #52 

AWG copper wire. The voltage induced in the pickup coils 

by the rapidly-changing field was minimized by winding 

inner layers and outer layers in opposite direciions. Then, 

as described by Anderson (1962), turns were removed from 

the outer layers until the signal induced in the p~ckup 

1This sample holder was put together by Mr. P.T. Panousis. 
2
variable band-pass filter, Krohnhite Corporation, 580 

Massachusetts Avenue, Cambridge 39, Massachusetts. 

JThe pickup coil which was actually .used ·to gather most 
of the data was made by Mr.·R. Phillips. 
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coil in a homogeneous alternating magnetic field was a 

minimum. 

The 200 kG pulse magnets were constructed following the 

method described by Anderson (1962) and were calibrated by 

nuclear magnetic resonance (Girvan 1964). Most of the data 

which are·reported here were taken using Solenoid F. The 

constant which related the field at· the center of this sole­

noid to the current flowing through it was found to be 

123.5 + 0.2 Gauss/amp. 

C. Sample Mounting and Orientation 

The tungsten samples were three single crystals which 

were prepared by Metals Research Ltd., Cambridge, England, 

by spark-cutting from a zone-refined rod. The geometrical 

axes of these three crystals lay along the [ioo] , 0 10] , 

and [111] crystallographi,c directions. As purchased, the 

samples were too thick to use in impulsive fields, and for 

this reason they were etched down to a final diameter of 

about 0.066 em and a final length of about 0.5 em in a mix-

ture of 40% nitric acid and 60% hydrofluoric acid. Residual 

resistivity measurements were not carried out on the actual 

specimens, since such measureme~ts invariably damage the 

crystals; however, ratios. ofp(29J°K)/F(4.2°K) in excess of 

4,000 have been quoted for zone-refined tungsten by other 

authors (Fawcett 1962). 

When one of these samples was inserted in the pickup 



coil so that the crystallographic plane (h,k;l) was normal 

to the axle of the wheel, successive rotations of the wheel 

set the magnetic field along successive crystallographic 

directions in the plane (h,k,l). 

Due to the small size of the samples, great care was 

necessary to orient a sample accurately with respect to the· 

wheel. The detailed procedure for ·orienting a sample with 

respect to the string-driven sample holder differed .slightly 

from that used for the geared sample holder, but both pro­

cedures used standard Laue back-reflection x-ray techniques 

(Cullity 1956). The sample was first glued in a small glass 

capillary (o.d. = 0.095 em, i.d. = 0.065 em) with Duco cement 

and the capil~ary was then inserted through a hQle along 

the axis of a small nylon cylinder. · In order to insure clear 

helium access to the sample, only one end of the sample was 

glued. 

For the string-driven sample holder, a small mirror 

was first glued to a flattened place on the latorQl 8urfQcc 

of the nylon cylinder. The glass capillary containing the 

sample was turned about its axis until the dire.ctions along 

the normal to the mirror and along the.axis of the nylon 

cylinder lay in the crystal plane in which it was desired 

to set the magnetic field. The detaile~ procedure for 

doing this has been described by Girvan (1964) .. After the 

sample and capillary had been correctly placed in the nylon 
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_cylinder, the sample was put into the pickup coil by push­

fitting the nylon cylinder into a cup-shaped cut in the end 

of the pickup coil form. Then a light beam directed normal 

to the axle of the wheel was shone onto the mirror. ·using 

the reflected beam for reference, the nylon cylinder ~as 

turned until the mirror normal lay in a plane defined by the 

light beam and the axis of the pickup coil. This method of 

sample orientation had the advantage that the light beam and 

the nylon cylinder axi.s could quite accurately be set in a 

vertical plane by merely requiring that the reflected light 

spot move along a vertical line on the· wall as the wheel ·was 

turned. Thus orientatio·n errors in which the actual plane of 

rotation was twisted slightly from the desired plane of 

rotation were· minimized. 

The procedure which was used to orient a sample in the 

~eared sample holder differed from that used for the string­

driven sample holder in that the capillary and sample were 

first glued in their mounting and placed in the pickup coil. 

The geared sample holder was constructed with a short pickup 

coil so that one end of the sample stuck out of the end of 

the pickup coil; the entire pickup assembly was detachable 

and could be mounted on the x-ray camera. Thus to set the 

final orientation of the sample and its mounting with respect 

to the pickup coil, the protruding end of the sample was 

x-rayed through a hole in the side of' .the wheel. 

The axle of the wheel could be set ac·curately parallel 
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to the x-ray beam by using a set of machined parallels. 

The Laue back reflection patterns produced in this manner 

were used to set the normal to the crystal plane (h,k,l) 

parallel to' the axle of the wheel. The crystal was held 

firmly in the proper orientation by a coating of heavy 

Celvacene vacuum grease on the nylon mounting; the grease 

hardened when cooled to liquid helium temperature. 

\fuen rotation data were being taken, the angle made by 

' the magnetic field in the plane (h,k,l) was determined by 

measuring the angle between the pickup coil axis and the 

axis of a set of coils which were mounted on t4e nitrogen 

dewar (see Figure 6). The tangent of the tilt angle of the 

pickup coil was found by setting the ratio of a-c currents 

in the two se~s of coils to produce a minimum in the induced 

voltage in the pickup coil. The circuitry and detailed pro-

cedure for monitoring the pickup coil angle in this way 

have been discussed by Anderson (1962). 

The geared sample holder was equipped with a mechanical 

revolution counter which was attached to the spindle used ' 

to turn the pickup coil. Since Mr. P.T. Panousis had shown 

that differences in pickup coil angle could be obtained from 

the revolution counter to within 0.1°, the angle monitoring 

coils were not used with this sample holder, and the angles 

between successive pickup coil positions were obtained 

directly from the calibrated revolution counter. Although 
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it was possible to obtain differences in angle very 

accurately from the revolution counter, there was some 

backlash in the gears. Therefore, the zero value for the 

angle scale ~as determined from the symmetry of the data. 

D. The de Haas-van Alphen Signal 

The de Haas-van Alphen signal in tungsten is ·found to 

consist of many frequency components F .. In one sense the 
J.. 

impulsive field method is well-suited to a study in which 

many frequency components are observed. Due to the rapid 

time variation of the magnetic field (pulse duration~ 

15 ms), oscillations in the sample magnetization can be 

measured in the 100 kilohertz range, and thus standard 

filtering._ techn-iques can be used. In addition, the. pickup 

signal can be further band-limited by connecting a small 

capacitor in parallel wi t,h the pickup coil. In actual 

practice, provision is made to switch different capacitors 

in parallel with the pickup coil in order to vary the reso-

nant frequency of the pickup circuit. As the magnetic field 

changes, the frequency in time is given by 

(14) 

for each de Haas-van Alphen component F .. 
J.. 

Therefore, reso-

nance occurs for the ith dHvA component when W. equals the 
J.. 

resonant frequency W of the pickup circuit. 
0 
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The advantage of· the resonant pickup circuit arrange-

ment is illustrated by Figure 4a, which shows the pickup 

signal throughout the duration of the field pulse. Each 

peak in the pickup signal occurred when the resonance con-

dition was satisfied for a particular F.. Since· the reso­
J.. 

nance condition for each F. occurs at a different magnetic 
J.. 

field value, the pickup signal from dHvA components which 

lie in successive frequency ranges is conveniently found to 

resonate during successive intervals of time along the field 

pulse. Thus a partial frequency analysis of the complicated 

dHvA spectrum is performed by the resonant pickup circuit. 

Usually, one or more electronic band pass filters were 

inserted in series with the pickup circuit to provide 

increased frequency discrimination. 

Because of the enhanced amplitude near resonance, 

the measurements which are necessary to determine Fi for 

each of the dHvA components were necessarily made over a 

J i mj ten fi A.l n rr.me;A in whi ~h the pi.r.:kup si e;na 1. rl.nA t.n 

F. was near resonance. In order to measure accurately 
J.. 

the F. which occurred in a particular resonance envelope, 
J.. 

the oscilloscope trace was displaced and expanded as 

in Figure 4b so that the amplitude maximum and minimum 

of each cycle of the dHvA cycle could b_e resolved on 

an oscilloscope. The actual number· of cycles of a 

component F. which were.recorded on an oscillogram 
J.. 
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depended on the strength of the signal and the band width 

of the·pickup circuit. For the very strongcl oscilla~ions, 

(see Section III-A) it was possible to obtain many more 

cycles than could be resolved on a single oscillogram. 

Usually from JO to 80 cycles of the dHvA signal were re-

corded on one o.scil·logram, although as. many as 1 JO cycles 

were used in certain cases for which it was n·ecessary to 

separat~ nearly coincident frequencies .. 

E. Data Analysis 

The data analysis consisted of accurately determining 

the F .. 
l 

Since the resonance technique could only give 

partial frequency resolution, it was necessary to find a 

higher resolution method to analyze some of the complex 

signals which we found in tungsten. Several methods were 

·developed and tried, and.only the final procedure will be 

described, even though not all of the results were obtained 

by this method. 

The magnetic susceptibility in tungsten is so small 

that for purposes of determining the frequencies F., the 
. l 

magnetic induction field B which occurs in Equation 12 can 

be replaced by the applied field H. (The distinction 

between Band H will be discussed further in Appendix c.) 

The magnetic field values H at which cycle maxima and minima 

occurred w.ere found by linear interpolation between 
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calibration lines using appropriate coordinates measured 

from the oscillograms. First the oscillograms were rephoto-

graphed onto 35 mm film, and then this film was projected 

1 onto a Teleducer screen. The Teleducer was equipped·with 

a crosshair which could be moved to any point on the pro-

jected image of the oscillogram, and a slidewire arrange-

ment in the Teleducer produced an analog voltage propor-

tional to the x or y coordinate of the crosshair. This 

voltage was automatically transferred to punched cards for 

computer analysis. 

The preliminary phase of the computer analysis con-

sisted of checking fo~ errors in the coordinate readings· 

from the oscillogram, smoothing the coordinate readings for 

the field trace and calibration lines, and setting up arrays 

corresponding to reciprocal field values and cycle numbers. 

The error checking consisted of requiring 1) that successive 

coordinates for the magnetic field trace be monotonicaliy 

decreasing in value since the pictures were always read 

from the high field ·end to the low field end and 2) requir-

ing that successive coordinates for the time axis be either 

monotonically increasing (falling field) or decreasing 

(rising field) in value. If there were no reading errors, 

a ~econd order least squares smoothing procedure was applied 

1Telecomputing Corpo~ation, Burbank, California 
(no·w defunct) 
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to the f~eld trace coor~inates, and the calibrat~on line 

readings were smoothed ~y averaging successive sets of 9 

readings. After these steps had been completed, the l~near 

interpdlation necessary to f~nd successive reciprocal mag-

netic f~eld values was performed. The reciprocal f~eld 

values, cycle numbers, and signal amplitudes correspond~ng 

to po~nts read from the osc~llogram were used for frequen~y 

analysis. 

The two methods of frequency analysis used were least 

squares fitt~ng of the po~nts to straight lines and period-

ogram analysis. The first method depended solely on the 

fact that for a signal which {s per~odic in ljH, a plot o.f' 

reciprocal field pos~t~ons of cycle maxima and minima versus 

cycle numbers should be a stra~ght line. The slope of the 

straight line g~ves the per~od of the dominant frequency 
. 

contr~but~ng to the corresponding reg~on of the osc~llogram. 

Due to the limited b~ndw~dth of the pickup circuit and to 

the f~eld dependP.nr.P. of' t.hA amplitude of the dHvA s~gnal, a 

part~cular osc~llogram may conta~n d~st~nct reg~ons w~th 

d~fferent dom~nant frequenc~es F. ~n each. 
. l 

In such a case, 

the plot of reciprocal field values of cycle max~ma and 

mini1na ve:r·su::; cycle number will contain several straight 

l~ne segments, one for each of the dom~nant frequencies. 

Th~::; ::;~tuat~on is illustrated by Figure 7, 

The slopes of these stra~ght line segments were also 
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determined by computer analysis. The entire data analysis 

program is discussed in Appendix A, so we will give only a 

short description here. Short straight_line segments of 

length N. were fit to successive sections of the data by the 
~ 

method of least squares. Several passes were made through 

the data, each time using a slightly larger N .. ' 
~ 

In order to lessen the effects of possible reading 

errors at each step and to avoid calculating a mean slope 

when the N. points being fitted lay on either side of a dis-
~ . 

continuity in slope, the fitting procedure was carried out 

several times for each set of N. point~. 
~ 

After each of 

these fits, the deviation of each of the N. points from the 
~ 

fitted line was checked; then a new least squares calcul-

ation was carried out, omitting those points which deviated 

from the fitted line by more than a certain multiple of the 

standard deviation. 

Estimates for the de Haas-van Alphen frequencies were 

made from the slope and error calculations in two different 

ways: "long straight line" estimates for the frequencies 

were made by taking weighted averages of the "short s.traight 

line" slopes. Only points lying on a single linear section 

of the reciprocal field versus cycle number plot were used 

for each average. When the slopes of a.djacent sections 

differed by less than a few percent, the resolution of this 

method was insufficient since the initial and final poin~s 

.· 



"39 

of each linear region could not be determined accurately. 

In a variation of this method, the results of the 

leaBt squares calculations were collected in a so-called 

ideogram, which is defined as a plot of I. versus F., where 
. J . J . 

I. and F. are defined as follows: If the frequency and 
J J 

error estimate derived from the iili least squares fit are 

F. and E. respectively, and if N fits were performed for 
1 . 1 

the data set, the ordinate (intensity) I. at abscissa 
. J 

(frequency) F. on the ideogram is given by 
J 

I. 
J 

N 

= (dF/y2) L 
i=1 

(1/E.)exp[-t(F.-F. )
2
/E.

2J 
1 J ·1 1 

( 15) 

Here dF is the interval at which ordinates are calculated. 

The de Haas-van Alphen frequencies are inferred fro_m the 

frequencies at which· peaks occur in the ideogram. Examples 

are given in Appendix B. However, this method fails when 

applied to a two-component beat pattern in which the con-

stituent frequencies are quite close together. The reason 

for the :f"aJ.lure J.s that When two· f'requencies are very c..Lose 

together and beat~ng, the frequency at which the ideogram 

peak occurs depends not only on the frequencies of the 

beating components, but also on their amplitudes (Appendix 

B). 

In order to separate more reliably the de Haas-van · 

Alphen frequencies contained in beating patterns, a method 
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of periodogram analysis due to Whittaker and Robinson (1956) 

was used. This method is a variation of the Schuster (1898) 

method of testing a sequence of numbers {uk} to see if they 

contain a periodicity P. In our case, the sequence [uk} was 

constructed from an artificial dHvA signal. This signal was 

a triangular wave which was co~structed mathematically by 

connecting successive points of amplitude maxima and minima 

of -the actual dHvA signal wi~h straight lines. The elements 

of [uks were amplitude~ of the ·triangular wave taken at 

equally-spaced values of reciprocal magnetic field. 

A test period P (P is the recipro~al of F) was .stepped 

from an initial value P
1 

to a final value p
2 

in·steps of dP. 

At each step an appropriate subse't of [uk1 was selected to 

be tested for the periodicity P on the basis of the fre-

quency results which had been found in the least squares 

calculations. No part of [uks was tested for a.periodicity 

P if it was cle~rly made up from a signal whose period 

differed from P by more than a certain percentage. The 

exact tolerance depended on the number of cycles of the 

strongest dHvA component in the oscillogram. 

A. relative intensity was calculated for each period P. 

The plot of intensity versus period which is found in this 

way is usually called a periodogram. Vie have plotted 

intensity I versus f~equency F (ruther thun P). The fre-

quencies of' the dHvA components are in1~erred from the 
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frequencies· at which peaks occur in the periodogram. 

The periodogram analysis worked quite well when the 

de Haas-van Alphen iignal was not too severely amplitude-

modulated by filtering. One important series of.data sets 

for which·this condition was satisfied was the data which 

were taken to determine the orientation deperidence of the 

low-frequency dHvA components in tungsten for field direc-

tions 

Since 

near [oo 1] using the crowbar igni tron (see . Figure 5) .. 
.. 2 

the rate of change of H/H after the field maximum 

was considerably less for this configuration than for the 

symmetric pulse configuration, (see Equation 14), the· time-

frequency of each dHvA component passed through the resonant 

frequency comparatively slowly so that many more dHvA 

oscillations couid be observed in one resonance envelope 

( cf. Figure 4d). An example of a frequency spectrum 

obtained by this method for one of the data sets which were 

.taken using the shunt ignitron is shown in Figure 8. 

F. Measurement Errors 

The measurement errors .which can arise in this experi-

ment can be divided into three categories. These are: 

(1) errors in determining the orientation of the crystal 

with respect to the ~agnetic field, (2) errors due to 

difficulty in analyzing complex waveforms, .and ( J) possible 

systematic errors in determining the field values at which 
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cycle maxima and minima occur~ed in the de Haas-van Alphen 

signal. 

1. Errors in crystal orientation 

The accuracy with which the orientation of the magnetic 

field is measured depends first of all on how accuratel,y the 

sample is oriented with respect to the sample holder (see 

Section II-C); the tungsten samples were somewhat irregularly­

·shaped and quite small so that slight misorientations of 

.this kind were difficult to avoid. Secondly, for the string-

driven sample holder, the method which was used to determine 

the orientation of the pickup coil with respect to.the mag­

netic field required that the axes of the solenoid, the 

angle-measuring coils, and the pickup·coil could b~ made to 

coincide; these necessary alignments were carefully made. 

The orientation dep~ndence of the dHvA frequencies in 

the (110) plane was mapped out by using the sample which had 

its geometrical axis along ~01] to study the orientation 

dependence for field· directions near [00 1] , the 0 11] sample 

for field directions near [111] , and the [! 1 Ol sample for 

field dire.ctions near [] 10] . There are several dHvA com.:.. 

ponents in tungsten which vary quite rapidly .with angle 

so that the ane;.le r. orrespond;Lng to the symmetry ·direc·tion 

in each of these sets of data could be found by examining 

the symmetry of the resulting plots of frequency versus 

angle. Usually an adjustment of b~tween four and six 

I 
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degrees was necessary to set the zero of the angle scale 

to coincide with the symmetry direction. 

When the data .from the different samples were combined 

in a manner consistent with cubic symmetry to give the orien­

tation dependence of the frequencies throughout the ('110) 

plane, any serious orientation errors at large angles showed 

up as a mismatch between data taken using different samples. 

The worst such angular mismatch was about 10°. 

case showed negligible error. 

2. Errors due to complex waveforms 

The best 

It is felt that some of the data have not as yet been 

reliably analyzed, and the points which will be shown for 

these data represent only the present best estimate. It 

will be indicated which points are uncertain when the data 

are discussed. Most of the data could be analyzed reliably, 

and when these data were subjected to a detailed analysis, 

the results which were obtained from ·successive pulses 

agreed to considerably better than one percent. 

J. Possible systematic errors 

The most important systematic errors which are likely 

to occur in the impulsive field experiment are connected 

with the determination of· the magnetic field values corre­

ponding to each cycle maximum and minimum of· the de Haas-

van Alphen signal. The major unknown factor in .this 



45 

determination is the shape of the solenoid at high fields. 

During a pulse, the magnet windings are subjected to 

enormous forces which may cause the solenoid to become 

slightly distorted. Any slight distortion of the magnet 

shauld cause cracking in the epoxy resin magnet coating, 

but. such cracking has not been observed, and we have no 

other evidence that any significant distortion occurred. 

Ideally, one would like to be able to measure the mag­

netic 'field directly during a pulse, but unfortuantely 

there are no accurate methods available for measuring large, 

rapidly-varying impulsive fields. Therefore', .. it is necessary 

to rely on a measurement of the coil current I and to deter­

mine H from the relation H=KI, assuming that distortion 

effects are small. The coil current is determined from the 

voltage across the standard resistor. The constant K which 

relat~s the current in the solenoid to the field at its 

center was determined from a proton resonance calibration 

(Girvan 1964). Thi.s measurement was made using a ·small 

direct current,.,12A which is, of course, considerably less 

than the peak pulse current ("'1500A). Since the form of 

the actual pulse is a low-frequency, slightly-damped, half 

sine wave whose main frequency component is about JO Hz. 

it is probable that no serious errors due to capacitive 

effect arose and that the d.c. calibration is adequate. 

It is possible that a small error in frequency 
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measurement could have occurred due to the slow overload 

recovery of the oscilloscope amplifiers. Since it is often 

necessary to use large bucking voltages, these amplifiers 

are saturated during much of the pulse. Preliminary 

measurements of the recovery from a square wave overload 

indicated that there was some amplifier overshoot with a 

long settling time during overload recovery. However, when 

Mr. P.T. Panousis later checked this effect, using the 

actual sinusoidal field pulse, he found that errors due to 

the slow overload recovery of the amplifiers for the 

actuaL case are expected to be less .than 0.4 percent. 

Eddy currents induced in the sample by the impulsive 

field can in some cases contribute to a frequency difference 

between rising and falling field data. Fawcett (1962) has 

measured the low temperature transverse magnetoresistance 

of single crystals of tungsten and has found that the 

resistivityf(H) in the magnetic field fits the expression 

(f(H) -f'(O))/f(O). = CHm with an exponent m which is always 

greater than 1.94. Using his results for the orientation 

which yielded this lowest exponent and Gold's (1958) analy-

sis of the effects of eddy currents on the de Haas-van 

Alphen frequencies, we find that frequency differences due 

to eddy currents are expected to be less than O.OJ percent. 

Anderson (1962) has considered further systematic 

errors which can arise in this experiment. The conclusion 
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is that· results obtained by the impulsive field method are 

quite reliable if the data for rising and falling field are 

averaged; there are several systematic errors in the raw 

data which are cancelled by this averaging. All data which 

we will quote will be averages of rising and falling field 

data. 

Some of our results can be compared with the results 

obtained by other investigators (Sparlin and Marcus 1966, 

Brandt and Rayne 1963) using the torque method (oscillations 

are detected in the torque, ~ x g). In most cases the agree-

ment between the two different methods· is better than one 

percent. However, for one low frequency component near 

[ooD, there is a four percent discrepancy .which is not yet 

understood. 
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III. RESULTS 

A. Frequency Results 

The main part of this study consists of frequency data 

which '\vere taken for magnetic field directions lying in a 

(1"10) plane. Some da-ca were .taken for magnetic field direc­

tions lying in a (100) plane, but these data did not yield 

any results which could not have been predicted from the 

data in the (110) plane and are therefore not discussed. 

The points on ·Figure 9 show the overall frequency 

spectrum which was measured for magnetic field directions 

lying in the (l10) plane. We have plotted the results on a 

logarithmic scale in order to present all the data on one 

drawing. The points for magnetic field directions nea~ 

[00 1] were taken with a sample which had its geometrical axis 

along [oo iJ . Similarly, , the paints near [111] and Q 1 oj 

were taken using samples which had their long axes along 

[111] and [11 0] respectively. Usually the bath temperature 

was about l°K when these data were taken, and magnetic field 

strengths ranging from 12 to 160 kG were used. 

In order to facilitate discussion of the data, each of 

the fundamental curves on the data plot has been labeled 

with a Greek letter. Smooth solid curves have been drawn 

through the fundamental terms o(, (3 , S, 1, E . The orienta-

tion dependence of the upper and lower branche~.€4and 

Cu o"f the: low :fre:rp.1.e:ncy E:. osr.:il.lat.ions nP.Ar [ooi], 
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Orientation dependence of all the frequencies 
found in tungsten for magnetic field directions 
in a (110) plane; the frequencies have been 
plotted on a logarithmic scale. \7 : [00 i] axis 
sample, 0 : [11 i] axis sample, C): ~ 1 0] axi~ 
sample. Solid curves:fundamental terms; 
dashed curves:harmonic and combination terms· 
predicted from fundamental curves. Shaded 
region:incompletely resolved data. Points 
lying in the dashed rectangular boxes will 
be plotted on an expanded· scale on a later 
figure. 
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{enclosed in dashed rectangl~s) does not show up very well 

on this plot. These data will be plotted later on an 

expanded scale (Figure 11). 

Many of the fundamental terms in tungsten were quite 

strong so that harmonics of these terms were observed. In 

addition to harmonics, further nonfundamental terms are 

expected due to the basic nonlinearity of the magnetic 

properties of the crystal (Shoenberg 1962, Pippard 1963). 

The simplest of these are sum and difference combinations 

between the fundamental terms. In order to demonstrate 

which points on Figure 7 are due to nonfundamental terms, 

dashed curves have been drawn on the figure to represent· 

either integral multiples of' the fundamental terms or 

combination terms between strong components. Many of the 

observed points lie on these curves, and this is the basis 

' for interpreting these terms as nonfundamental. For the 

sake of clarity, ·the complete set of dashed curves has ~ot 

been shown. It will be noticed that . there are terms CX::.±.a;, 

but that there are no terms o( .±.?:. Due to the way in which 

the spectrum of frequencies appears on the oscilloscope 

screen, the termso<..±.&' would have been swamped by the very 

strong o<.oscillations if they had occurred. We shall 

return to a further discussion of sum and difference terms 

in Appendix C. 

The shaded region~ in the low-frequency range for 
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field directions near [1 11] indicate regions in which sig­

nals were observed, but the resolution of the data processing 

procedure was not sufficient to separate the different beat-

ing components. It was possible, how·ever, to obtain rough 

estimates· of the frequencies from these data, and these 

estimates are plotted. 

The slow-frequency data ne·ar [oo 1J were also complex, 

but by the use of special techniques it was pos~ible to ana-

lyze these data reliably. When our investigation of these 

slow frequencies was begun, they had been studied in two other 

investigations using the torque method· (Brandt· and Rayne 1963, 

Sparlin and Marcus 1964); these experimenters had given ·con-

flicting interpretations to their results. Since the inter-

pretation of the small pieces of tungsten depends critically 

on the detailed orientation dependence of these slow fre­

quencies near [001l (see' Section IV-A), we will elaborate on 

these in some detail. 

A special run was undertaken to study the orientation 

dependence of the slow frequencies near [00 1] . In order to 

obtain sufficient cycles to resolve these frequencies, it 

was necessary to connect the crowbar ignitron across the 

pulse coil circuit (Figure 5). The crowbar ignitron fired 

shortly after peak field so that the field de,cayed expo-

nentially from its peak value (see Figure 4c). Because the 

rate of' change of' H/H'2 is relatively slow during the 
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exponential decay of the field pulse, the time frequency of 

the dHvA components changes comparatively slowly with H, 

and it was possible to observe many cycles of a particular 

component F. and yet use filtering to good advantage to 
J.. 0 

separate neighboring frequencies. However, since the field 

pulse is not symmetric when the shunt ignitron is used, a 

straight average of the data taken for rising and falling 

field was not sufficient to find the correct frequency 

values. Therefore,. for these data, measurements were first 

taken only on the fa~ling side of the field during the 

exponential field decay. Then, when points had been taken 

for a sufficient range of magnetic field directions, the 

crowba..r igni tron was removed, and the magnetic field was 

again set along different directions near ~0~ in a (110) 

plane. Using this configuration, data were taken for both 

rising and falling field, and the results were averaged. 

These averaged results were compared with the falling field 

data which had been taken using the crowar ignitron, and 

thus a correction factor could be determined for orienta-

tions near [oofj ; this correction factor was then used to 

scale all of the crowbar results·. 

Some· examples of the beating patterns '"'hich were 

obtained in the slow frequency oscilla~ions using the shunt 

ignitr~n arc shown in Figure 10. Even with the pronounced 
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Figure 10. Some examples of impulsive-field dHvA data in 
tungsten taken at 1°K using the shunt ignitron 

a. Beats between two components of_£u oscillations 
H about 10° from [001l in the ( 110) plane . 
Resonant frequency "'-"32kHz 
Filter passband ...... 25-40kHz 
Bottom calibration line at 24.7kG; succeeding 
calibration lines at intervals of 1.2J5kG 

b. EL and r.;oscillations both dominant on one 
oscillogram (The 0 oscillations dominate at the 
high field end of the picture and the ·E: L at the 
low field end.) 
H.-.. 1 J 0 from [00 1] in the ( l1 0) plane 
Resonant frequency,..._ 50kHz 
Filters set to pass frequencies above 15kHz 
Bo~tom calibration line at 1J.585kG; succeeding 
lines at intervals of 1.2J5kG 

c. EL oscillations beating with~ oscillations,/ 
oscillations dominant 
H""-10° from [001) in the (l10) plane 
Resonant frequency, filter setting, and cali­
bration line values the same as in b 

d. ""7 oscillations without noticeable beats 
H""' 8 ° from [00 1] in the ( l1 0) plane 
Resonant frequency, filter settings, and 
calibration line values the same as for b 
In later figures (Figures 32 and JJ) we will 
show the strong beats which reappeared in the 
~oscillations when H was moved still closer 
to [oo 1] . 

e, Showing bP.ats bet:ween two terms of the .::::,L 
oscillations. 
H""'" 29 ° from [00 11 in the ( '11 0) plane 
Bottom calibration line at 14.820kG; succeedin~ 
lines at intervals of 1.2J5kG 
Resonant frequency and filter settings the same 
as for b 

f. Further example of beats between two components 
of f:u oscillations _ 
H.-19° from [001l in the (110) plane 
Reson!'lnt frequency-- 60kHz 
Fil tor passband ....... 40-85kHz 
Bottom calibration line at 17.290kG; succeeding 
lines at intervals of 1.2J5kG 
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beating patterns and large number of cycles which were 

obser~ed oh pictures like these, it still proved difficult 

to determine the orientation 'dependence of the upper branch 

of . these. frequE;!ncies near [00 1] .bY straightforward beat 

analysis, and it was necessary to use the more reliable 

method of periodogram analysis (see Section II-E). The fre-

quencies which were obtained by this method for the upper 

branch E: of the slow frequencies near [00 1l are shown on 
u 

an expanded scale in Figure 11a. 

The shunt ignitron data for the lower branch of the E 

oscillations near [00 1] are shown on an expanded scale in 

Figure 11b. These data were processed by the standard 

method.of' finding the inverse slope of a. line which was 

fitted to the r~ciprocal field positions of cycle maxima 

and minima. At about 12° froni [901] both the'/ oscillations 

and the immediately slower ~L oscillations could be brought 

into resonance on a single picture as is shown in Figure 8b. 

The frequenc:-:ies :for the two components in a case like this 

were determined from the reciprocals of the slopes of the 

two separate .straight lines· on the reciprocal fiel·d value 

plot for this picture. The strength of the r?') oscilla t·ions 

increased rapidly as the [00 1] direction was approached 

until at an angle of,...,_10° from [001], they became so strong 

that they dominated. over the whole low field ;range. 

Since the EL oscilJ.a tions appeared as a siigh tly slow.er 
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and weaker frequency than therry oscillations for H~10° 

from [oo n ' it was assumed that the beating pattern which 

was still apparent in the 0 oscillations when the field 

direction was moved closer to [oo 1] was due to the E. L 

oscillations which had now been almost completely swamped. 

However, when H was set about S 0 from [001], the beat pattern 

completely disappeared (see Figure .10d). Then, when the 

magnetic field direction was moved still closer to [00 i] , 

the beats reappeared. In spite of this peculiar disappear-

ance of the beats due to the ELoscillations at about S 0 

from [oo 1l , it was assumed that the beats in the. /f oscilla­

tions ·throughout the range of magnetic field directions near 

[90 1l were due to the E.L oscillations, and a frequency for 

the ~L oscillations was obtained from their beat frequency 

with the '7 oscillations. A subsequent check at [oo 1J using 

the periodogram analysis program confirmed that the beating 

pattern in the~ oscillations near [00 1] was indeed due to 

a lower frequency component. 

At larger angles (H"'29 °) from [00 1] , sufficient cycles 

of the lower branches of the E oscillations could be obtained 

to ·observe a beating pattern between two separate ·components 

(see Figure 10e). As is evident 1~rom F'i~ure ·1 ·1 , it was 

possible to separate these two components only at two angles, 

namely 29 ° and J?. 0 from [oo i] , although the ef':fec ts of' 

beating· between them were evident over a slightly larger 
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range of angles. 

The results on Figure 9 for frequencies lying in the 

range 6-10 x 10
6

G for field directions near [110] are not 

as. reliable as those which we have just discussed for the 

same frequency range near [oo 1] . These data near Q 10] 

were taken.using the symmetric field pulse (rather than the 

exponentially-damped field pulse as was used near [oo 1] ) 

so that signals from all of the terms with frequencies in 

the range 6-10 x 106G appeared on one oscillogram; the 

frequency resolution which could be obtained was therefore 

limited. We have shown the periodogram for one of these 

data sets in Figure 12. There are two small peaks on th.is 

6 ' 6 
plot at frequencies of about 7.7 x 10 G and 8.8 x 10 G. At 

nearby angles, two similar well-resolved peaks were always 

found in the frequency range corresponding to these two 

peaks. However, in the frequency range corresponding to 

these two large peaks on Figure 12; the terms were not 

always well-resolved. Nevertheless, we have used the fre-

quencies at which peaks occurred in this lower frequency 

range as estimates of the true frequencies and have plotted 

these estimates in the shaded region near Q10] on Figure 9; 

We will see in Section IV-B that it is possible that there 

were a number of' f'requency terms in the range 6. 5 - 7. 5 x 

10 6G· if this 
' 

was the case, the uncertain results which were 

obtained from the lowest f'requency range near [i 1 o] would be 
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explained. 

Most of the remaining oscillatory terms on Figure 9 were 

separated quite well by the resonance technique so that it 

was usually not necessary to use periodogram analysis to 

find accurate frequency values for these terms. However, the 

frequency reso.lution for these terms was of co-y.rse limited 

by the number of cycles which were obtained in a resonance 

envelope. In one important case, that of theft oscillations, 

this number was not large enough to tell whether this term 

was really a doublet or not. (We will see in Section IV-C 

that it is possible t~at there may reaily be two terms having 

frequencies very close to that of the p oscillations.) bne 

of the better data sets which were obtained for the p oscil­

lations is .shown in Figure 1Ja. It·is evident that there 

are not enough cycles on this oscillogram to tell whether 

the signal is due to two terms having very nearly the same 

frequency or not. 

ExamplAs of the data for some of the other terms are 

shown in Figures 1Jb, 1Jc, and 1Jd. (An oscillogram for the 

o<.osc:l.llations has already been shown·in Figure 4b.) 



Figure 13. 
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c. 
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Examples of de Haas-van Alphen oscillations 
in tungsten at 1°K 
Resonant frequency ....v100kHz 
Filter passband/V70-140kHz 

fS_oscilla tions for H"""35° from [oo 1] in the 
( 110) plane 
Bottom calibration line at 76.570kG; succeed­
ing calibration lines at intervals of 1.235kG 
(The strong oscillations which are vi~ible at 
the rdgh field end of the oscillogram are the 
eX-oscillations.) 

~oscillations for H--35° from [ooi] in the 
(11 0) plane 
Bottom calib~ation line at 51.87kG; succeed­
ing calibration lines at intervals of 2.47kG 

~oscillations and~ oscillations for H~48° 
from [oo 1] in the ( 110) plane (The ~ 
oscillations dominate at the high field end 
of the oscillogram and the~ oscillations 
dominate at the low field end.) Bottom 
calibration line at 46.93kG; succeeding cali­
bration lines at ·intervals of 2.47kG 

b2 and (o< -,8) os~illa tiuns for H~33 ° from 
[00 1] in the ( 1 1 0) plane 
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B. Cyclotron Mass Results 

AccQrd~ng to Equat~on 12, ~t should be poss~ble to 

obta~n the cyclotron mass correspond~ng to each orb~t from 

a study of the var~at~on of the ampl~tude A of the osc~lla~ 

t~ons w~th temperature T. For all of our data, the condi-

t~on 4rr 3m*kT/ehH ? 1 holds so that to a good approx~mat~on, 

the hyperbol~c s~ne ~n Equat~on 12 can be replaced by an 

exponent~al. The temperature dependence of the ampl~tude 

, of the de Haas-van Alphen s~gnal ~s then conta~ned ~n the 

factor Texp(-4V3m*ckT/ehH) so that the cyclotron mass can 

be found from the slope of a plot of log A/T versus T. This· 

procedure for obta~n~ng the orb~t masses ~s much more ted~ous 

than d~rect cyclotron resonance, so that the complete 

or~enta~~on dependence of the cyclotron masses ~s usually 

stud~ed by cyclotron resonance. The d~rect cyclotron reso-
. 

nance stud~es of the large orb~ts ~n tungsten (Walsh 1964) 

had rece~ved qu~te a complete ~nterpretat~on; our dHvA 

results serve as a check on h~s ~nterpretat~on s~nce we can 

assoc~a~e an area w~th our masses. The dHvA mass values 

for the lower mass orb~ts have also been measured by Sparl~n 

and Marcus 1966) us~ng the torque method. 

Determ~nat~ons of osc~llat~on ampl~tudes from pulsed 

f~eld s~gnals are subject to cons~derable uncerta~nt~es 

(Shoenberg 1962), and prec~se values are poss~ble only ~f 

extreme care ~s taken. F~rstly, sl~ght heat~ng of the 
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sample can occur during a magnetic field pulse, and of course 

this heating is not detected by measuring the vapor pressure 

at the surface of the liquid helium bath. Shoenberg (1962) 

has considered this effect and has concluded that above the 

A-point the sample temperature ~ay be raised as much as 0. 1°K, 

but that below the A -point the heating is negligible. 

Secondly, the amplitude is sensitive to small changes in 

the shape of the field pulse which can occur from one data 

set to the next due to magnet heating during the pulse and 

to variations in the capacitor bank voltage at which the 

discha~ge is initiated~· Care was takeri to reproduce the 

field pulse as closely as possible for successive pulses·, 

but small deviations are likely to have occurred. However, 

these deviations would result in a somewhat random scatter 

of the amplitude measurements about the straight line, and 

thus would affect only the precision with which .the masses' 

could be measured. Rando~ errors can also arise from slight 

changes in the orientation of the specimen between· successive 

pulses. Furthermore, Shoenberg (1962) has pointed out that 

if the position of the sample with respect to the pulse 

coil changes due to thermal expansion as the liquid helium 

]_evel. falls, the amplitude of the signal can be modified, 

since the field inhomogeneity over the length of the sample 

. 
is chane;ed. 

The cyclotron inasses for· most of the terms were not 
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overly large and the signals were quite strong even at 4°K 

so that the temperature d~pendence of the amplitudes could 

usually be measured over the~J°K temperature range from 

In spite of the possible uncertainties in 

these measurements, the plots of log A/T versus T were usually 

quite good straight lines for those terms which did not have 
. 

an ext~emely large amplitude and were well separated from 

neighboring terms by the resonance technique. An example of 

a·plot obtained for such data is shown in Figure 14. 

For some of the terms the amplitude measurements were 

more uncertain because these terms wer~ not well separated 

from neighboring terms by the resonance technique. This· was 

the case for the f3 oscillations f'or H/ / [1 ·11] . Two plots 

(Figures 15 and 16) are shown for the temperature dependence 

of the ~oscillations. These plots are for the same data, 

but have been processed in two different ways in an attempt 

to evaluate the effects of beats in the P oscillations due to 

the very strong o<.. oscillations. The duplicate processine 

was undertaken in an attempt to find a precise value for the 

cyclotron mass f~r the~ oscillations at fi1D so that this 

mass could be correlated with ·one or the other of two masses 

near this value which Walsh (1964) found in his cyclotron 

resonance study of tungsten. However, the dHvA mass results 

for thef oscillations do not seem to be sufficiently prec~se 

to make the correlation reliably. (The slopes of the mass 
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{$ OSCILLATIONS 

H II [Ill] 
6: H >0 
Q:ft<:O 

M'~ 
Me= .91 

~:(R <Q) = 0.936/ 
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_Figure 16. Temperature dependence of the sum of the 
amplitudes at beat maximum and beat minimum 
for the {? oscillations at Q 1 i] 
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plots f~r rising and falling field are different because the 

rising and falling field resonance envelopes occur at differ-

ent magnetic field values.) 

Small adjustments could have been made to the lowest 

temperature points on some of the effective mass plots to 

correct for the exponential approximation, but this was not 

done since the correction was· usually quite small. The 

largest correction would have been a ten percent lowering 

of the amgli tude of the 1 °K p~int for the oG. oscillation& 

at 011]. On. the semi-log plot of Figure 15 this corre-

spo~ds to about twice the width of a ~lotting symbol. 

Due to the difficulty in determining the best slopes 

for these mass plots, the overall accuracy of the results 

is no better·than ten percent. 
' 

In Section IV-C we will 

compare these results with the cyclotron ·resonance results 

and find that the results of the two experiments agree to 

within the experimental error. 

The temperature dependence of the amplitude of some 

of the harmonic components was also measured in order to 

provide further evidence that these terms were indeed ·har-

monies. According to Equation 12, the cyclotron masses for 

the harmonic terms should be integral multiples of the mass 

of the fundamental ter~. 

Mass plots for the 5 and 0: oscillations f_'or H/ /[go i] 

are shown in Figures 17 and 18. Within the experimental 
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error, the mass value for the C)? oscillations is twice that 
'-

of the boscillations which is consistent with the inter-

pretation of these oscillations as harmonics. The ratio of 

the masses of the o; and C) oscillations for H/ / [11 0] was 

also consistent with the interpretation of the 2)2 oscilla-

tions as harmonics; 

The temperature·dependence of the amplitude of the 

and o<
2
oscillations at the [l 1Ql orientation is shown in 

Figures 19 and 20. Each of these plots shows a low temper-

ature saturation effect, but if the cyclotron mass values 

are derived from the high. temperature slopes on these plots, 

the ratio of the mass of the ~2 oscillations to· that of the 

o(oscillations is· almost two; the discrepancy from a:n 

integral ratio. is not really outsid~ the precision with which 

the masses can be measured. The bending over which is evi-

dent at the low temperature end of each of these two plots 

is thought to be due to effects of frequency modulation on 

Lhe signal amplitude. The frequency modul21tion arises 

because B rather than H appears in the argument of the 

oscillatory factor in Equation 12 (Shoenberg 1962). We will 

discuss this effect in more detail in Appendix C. 

At the IJ 11] orientation, ·the mass values which were 

derived from the temperature dependence of the harmonics 

of the o(oscillations (Figures 21 and 22) are somewhat less 

than integral multiples of the .fundamental mass of m* = 0.6m e 
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(Figure 15). However, as we shall discuss in Appendix C, 

the discrepancy may actually be due to systematic errors 

which can arise in.the mass measurements when the signal 

amplitude is large enough so that the frequency modulation 

effect is important. Thus we believe that theot2 and~J 

oscillations are in fact harmonics of the ~oscillations, 

but that the determinations of the effective.masses for the~e 

terms arB in error. 
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IV. THE FERMI SURFACE 

A. Theoretical Models for the Fermi Surface of Tungsten 

1. The Lamer model 

S-ome of the general features of the Fermi surface of 

tungsten were first -sketched by Lamer (1962, 1964) in papers 

in which he modified the band structure·found by Wood (1962) 

for b.c.c. iron so that it applied to the chromium group of 

transition metals (chromium, molybdenum, and.tungsten). The 

model which he proposed has proved to be qualitatively 

correct so we will begin by discussing· it briefly. 

In Figure 23 we show a pictorial representation of the 

Lamer model. In this figure the various pieces of F'P.rmi 

surface are approximated by octahedra and ellipsoids,. and 

the pieces are properly positioned in the Brillouin zone. 

There is an electron surface at the center of the z.one (the 

point labeled r ) which can be roughly described as having 

an octahedrally-shaped body with ball-like protrusions at 

each corner of the octahedron. This surface has been named 

(Sparlin and Marcus 1964) the electron jack because of the 

similarity in shape to a child's jack. There is also an 

octahedrally-shaped hole s·ur.face centered at the cornP.r H 

of the Brillouin zone. We will call this surface the hole 

octahedron. The other surfaces are a set o:f small 

elipsoidally-shaped hole surfaces centered about the points 
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Pictorial representation of the Lomer model 
for the Fermi surface of the chromium group 
of metals (This figure was kindly provided 
by Dr. W.M. Lomer, Solid State Phy~lcs Dlvision, 
H.7, Atornlc Energy Research Establishment, 
Harwell, Didc o t, Berkshire, England .) 
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N (the.centers of the zone faces) and a set of small lens­

shaped electron surfaces centered on the (100) axes. These 

lenses are not shown. on the photograph, but they are 

illustrated in Figure 24 which is a central (100) section 

through the Lerner mod~l. The lenses can be removed when 
0 

spin-orbit coupling is taken into account. 

2. Loucks' model 

The results of later band calculations by Loucks (1~65a, 

1965b), Mattheiss (1964), and Matthei$S and Watson (1964) 

predicted that the shapes of the large pieces of the Fermi 

surface of tungsten did in fact consist of an electron sur-

face which was shaped like a jack and a hole surface which 

had an octahedral shape. We will discuss the results of 

Loucks' two calculations since he has constructed geometri-

cal models for the Fermi surface from them. 

Loucks' first calculation (Loucks 1965b) was based on 

the APW method and did not take into account the effects of 

spin-orbit coupling. Some cross sections of' the model. which 

he found are shown in Figure 25a. These sections through 

the Fermi surface are the sections made by the tetrahedron 

HNP which is shown i~ Figure 25c. This non-relativistic 

model is qualitatively similar to the Lerner model. 

In Loucks' second calculation (Loucks 1965a, also 

based on the APW method) relativistic effects.were included. 
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Figure 24. Central ( 1 00) section through the. Lomer model (after Lomer 1964);. 
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Figure 25. Some cross sections of Loucks' models for the 
Fermi surface of tungsten: a. Nonrelativistic 
model; b. Relativistic model; c. Brillouin 
zone for the body centered cubic structure show­
ing the tetrahedron rHNP which has been unfolded 
in a and b 
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Both the lenses and the hole ellipses were found to disappear, 

and the neck region of the electron jack was smoothed out 

.(Figure 25b). Furthermore, when the spin-orbit contribution 

to the relativistic terms is taken into account, the electron 

jack and hole octahedron surfaces are no longer required to 

touch along <100) axes, and in fact, Loucks found that there 

was a small separation between them. A similar prediction 

was made by Matthe~ss and Watson (1964). 

None of the the.oretical models which we have outlined 

predicts all of the experimentally-determined features of 

the Fermi surface of tungsten correctly. However, we shall 

see that a combination of features from the qifferent models 

seems to be in agreement with experiment. 

B. Comparison of Some Previous Experimental 

Results with the Theoretical Models 

1. Magnetoresistance and anomalous skin effect 

RnmA of the earliest experimental results pertaining to 

the Fermi surface of tungsten were obtained fr6m measurements 

of the transverse magnetoresistance of very pure single 

crystals of tungsten at low .temperatures (Fawcett 1962). 

These measurements in<.ii<.;ated that the: Ferrni surface of 

tungsten cannot support any open orbits and that tungsten 

is a comperisated metal, that isi the volume enclosed by hole 

surfaces is equal to the volume enclosed by electron surfaces. 
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Each .of these conclusions is in agreement with the predic­

tions of a surface like the Loucks relativistic surface in 

which all portions·. of the Fermi surface are closed; the com­

pensation requirement is automatically satisfied since Loucks 

found the Fermi level by requiring the electron and hole 

volumes to be equal. 

The agreement of any of these models with the experi­

mental results for the total ~urface area of the Fermi sur-

face is not as satisfying. Measurements of the surface 

resistance of a polycrystalline specimen of tungsten under 

conditions in which the skin depth for· a microwave electric 

field was much less than the electron mean free path 

(Fawcett and Griffiths 1962) yielded a total surface area 

which was less than the total surface area estimated by 

Loucks by about a factor of four. However, due to the 

·relativelyrlow accuracy (-v-30 percent) of the anomalous 

skin effect experiment and to the considerable departure 

of the FArmi surface of tungsten from a spherical shape, 

the anomalous skin effect may not give a reliable value 

for the surface area (Pippard 1960). · 

2. Gantmakher size effect and magnetoacoustic effect 

.The results of Gantmakher size effect measurements (see 

Section I-B) which were carried out in ·a [110} plane by 

Walsh and G~imes (1964) are shown in Figure 26. The 

calipered dimensions yield shapes for [1-10) projection.s of 
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the electron jack and hole octahedron which are qualitatively 

quite similar in shape to those of the Loucks relativistic 

model (Figure 25b). Furthermore, they show that the electron 

jack and hole octahedron do not touch along (100) axes, 

which is in further agreement with the relativistic .model. 

These authors state that in addition to the signals which 

were used to derive the cross sections shown in Figure 26, 

they also observed a number of other signals corresponding 

to smaller dimensions, but did not interpret them. There:-

fore, the absence of cross sections for small p~eces of 

Fermi surface on Figure 26 should not be construed as meaning 

that none exist. 

Extremal calipered dimensions of the Fermi surface can 

also be measured by observing oscillatory attenuation in 

sound .waves traveling in a single crystal (magneto.acoustic · 

effect). These measurements are carried out at low temper-

atures and in a magnetic field under conditions in which the 

electron mean free path is much longer .. than the sound wave-

length. The oscillatory .. attenuation is approximately 

periodic in VH, and for sound waves of wavelength A which 

are propagating in a direction ~' an extremal orbit dimen-

sion.LJ k t in the direction ~ x H is determined from a 
ex 

period~(VH) in the-attenuation by the relation 

~k = __ e_ [ ~/ Ll(l/H)l ext "'fie )j 
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Rayne (1964) has carried out such measurements in 

tungsten and his.results for extremal radii are shown in 

Figure 27. These :r:esults, although they show wave vectors 

which correspond with some of the dimensions on the theo­

retical models, do not seem to be in as clear cut overall 

agreement with the general features of the theoretical models 

as the size effect results are. 

As a first step in setting up an analytical model for 

the Fermi surface, we have made considerable use of the 

calipered dimensions from the size effect. It is perhaps 

worthwhile to emphasize at this point why we prefer the size 

effect data to the magnetoacoustic effect data. The bas·ic 

reason is that the resonances in the size effect can be trans­

lated into dimensions fairly unambiguously, whereas dimen­

sions can be obtained from the magnet~acoustic effect only 

after a detailed frequency analysis. This analysis is 

difficult to perform in practice because of the limited 

number of oscillations which are usually observed. 

In Figures 28a.and 28b we show representative magneto­

acoustic data which were published by Rayne (1964). Since 

only a few oscillations are obse~ved, only limited resolution 

can be expected. Furthermore, the structure of these signals 

is ,expected to be quite complicated. Mackintosh (1960) has 

shown that even for the comparatively simple case of two 

spherical surfaces' the waveform of the oscillations is given 

by a .Hess e.L f'unc tion of· doub.le argument and tba t even the 
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Examples of data related to extremal dimensions 
of the Fermi surface of tungsten 

Recorder plot 
390 MHz sound 
a (111) plane 
Temperature: 
HI I [2 TT] 
(after Rayne 

of a voltage proportional to the 
wave amplitude transmitted.through 
tungsten sample versus 300IH 
4.2°K . · 

1963) 

b. Same as (a) except a (100) plane sample was 
used and HI I [0 10] 

c. Recorder plot of the field derivative of the 
4 MHz signal amplitude transmitted through a 
thin (110) plane tungsten sample versus the· 
magnetic field 
Temperature: 4.2°K 
HI I 0 12] 
(after 1valsh, Grimes, Adams, and Rupp 1965) 
(According to Gantmakher (1962b) the peaks at 
Hh + He, 2Hh, 2Hh + He, 3Hh arise from creation 
of current slieets within the bulk of the sample 
and consequent excitation of other orbits, the 
sum of the extremal dimensions just spanning 
the sample thickness~) 
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asymptotic form of this Bessel function is not simply the 

sum of two periodic terms. Thus it is felt that the inter-

pretation of magnetoacoustic data is not as straightforward 

as that for the size effect data. 

Representative size effect data which were published 

by \ofalsh, Grimes, Adams, and Rupp (1965) are shown in 

Figure 28c. These investigators obtain values for extremal 

calipered dimensions from the positions of the peaks using 

the formula 

11 k = ~H 
Ll ext -fie peak 

where t is the sample thickness. As Koch and Wagner (1966) 1 

have po~nted out, the accuracy of this experiment is limited 

mainly by the uncertainty as to which feature of the observed 

peak in the signal corresponds to the orbit dimension just 

spanning the sample thickness. Since the peaks are very 

sharp, it would be expected that errors in the dimensions 

would not exceed.-. 5 percent. We shall later show that the 

model Fermi surface introduced in Section IV-C is not incon-

sistent with Rayne's maenetoacoustic data when one bears in 

mind the limited resolution in the magnetoacoustic experiment. 

J. de Haas-van Alphen effect 

Early mea.suremen t::; o:r Lhe LlHvA effect in tungsten 

(Sparlin and Marcus 1963, 1964; Girvan 1964) were consistent 

1 
I' am indebted ·to Dr. J.L. Stanf'ord, Physics Department, 

Iowa State University, for bringing this study to my 
attention. 
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with the predictions of the theoretical models (Section 

IV-A) as far as the lar~ pieces of the Fermi surface of 

tungsten were concerned. The impulsive-field results (Girvan 

1964) showed that the orientation dep~ndence of the frequency 

of .the eX.. oscillations was much like that expected for the 

central cross section of a regular· octahedron (Figure 29). 

Furthermore, 11alsh ( 1964), using circularly-polarized micro-

waves, was able to demonstrate that a [111] orbi.t \vi th a 

cyclotron mass of m* = 0.8Jm was an orbit on an electron 
e 

surface rather than a hole surface. He assigned this orbit 

to the central section of the electron· jack. It was consis-

tent to assign the [3 oscillations (Figure 29) to the 

same central section of the electron jack (Girvan 1964) 

sine~ the frequency of these oscillations varies somewhat 

more rapidly than would be expected for the central cross 

sectional area of an oct~hedron and the mass value at 8 11] 

is not inconsistent'with that found by Walsh (1964). 

·The orientation dependence of the band"'} oscillations 

(Figure 9) is also consistent with the theoretical models 

(Section IV-A) if the <'oscillations are interpreted as 

arising from the balls on the ~lectron jack and the ~ 

oscillations are interpreted as arising from the .. necks. 

This interpretation was first suggested by Sparlin and Marcus 

(1964), and we will see in more detail in Section IV-C why 

this assignment comes about. 
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The interpretation of the data for the remaining small 

pieces of the Fermi surface in terms of the theoretical 

models 1vas not so straightforward. Some of the earliest 

lo>v-.frequency dHvA data related to very small portions of 

the Fermi surface were obtained by Brandt and Rayne (196J) 

using the torque method. Their results for the orientation 

dependence of these slow frequencies in the (110) plane are 

shown in Figure JO. The term which.varies with angle like a 

parabola near [001] in this figure is the te~m which we have 

called the~ oscillations on Figures 9 and 11; as we·stated 

previously, this term is thoughtto give the orientation 

dependence of the crosa sectional area of the extremal n~ck 

orbit on the electron jack. The orientation dependence 

given by the curves through the other frequency terms. on 

Figure JO is inconsistent with the theoretical models dis-

-
cussed in Section IV-A,; this general orientation dependence 

is appropriate to two different sets of small surfaces on 

the <100) axes rather than one set as one might perhaps 

expect if the lenses indicated in Figures 24 and 25a were 

actually present. Brandt and Rayne (196J) have argued that 

the splitting of frequencies might be due to removal of the 

spin degeneracy of the energy levels by spin-orbit coupling. 

Huweve:r· 1 this argument VJ.Ol.a tes the theoretical conclusion 

that in the absence of a magnetic field there must always 

be at least a double degeneracy at all ~oints in the 
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Brillouin zone for any crystal in which the potent·ial has a 

center of inversion (cf. Elliot 1954, Callaway 1964, p. 53); 

It was noticed by Sparlin and Marc~s (1964) that the 

data of Brandt and Rayne (1963) (excluding the parabola­

like.curve) differ only slightly from that which would be 

expected from a set of small ellipsoidally-shaped surfaces 

centered in the zone faces. The existence of such ellipsoids 

was in fact suggested by Lomer (see Figure 24); according 

to hi~ model they would be hole ellipsoids. 

In Figure 31a we have indicated one such ellipsoid and 

its relation to the diamond-shaped face of the Brillouin 

zone. The orientation dependence of the frequencies arising 

from such a set of ellipsoids.in a (110) plane is shown in 

Figure 31b; we have made a specific choice for the lengths 

of the three axes. It is seen that the only differences 

between the orientation dependence found by Brandt and Rayne 

(Figure 30) and that shown in Figure 31b is that in the 

latter figure, the upper two branches cross at [001] and 

[110] whereas the curves drawn by Brandt and Rayne in Figure 

30 do not cross at these orientations. 

The:ce is thus a disagreement between Sparlin and Marcus 

(1964, 1966) and Brandt and Rayne (1963) in the interpre-

ta tiuJI ul' luw-field. de Haas -van Alphen data. In the following 

section 1ve shall present evidence which makes it clear that 

the ellipsoid~l.hypothesis is the corr~ct one. 
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Figure 31. Illustrating the expected· orientation depen­
dence of dHvA frequencies due to small 
ellipsoids centered in the Brillouin zone 
faces 

a. Cross section through an ellipsoid centered on 
a point N in the face of the Brillouin zone; 
the semiaxes of the ·ellipsoids are a = 6.415 x 
10- 2 (277'/a) alongPN, b = 2.966 x 10- 2 (27f/a) 
along NP, c = 7.265 x 10- 2 (2rr/a) along NH. 
These are the dimensions used in. our final 
model of the Fermi surface·. (The· de Haas-
van Alphen effect can not distinguis·h .between 
the cross section which is drawn with a solid 
line and the alternate (dashed) cross section 
'ivhich results when ·the ellipsoid is rota ted 

.90° about the line NP.) 

b. Expected orientation_dependence o'f dHvA 
frequencies in the (110) plane due to the 
ellipsoids 

c. Expected orientation dependence in the plane 
which is shown dashed in the stereogram 
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C. Interpretation of the Small Pieces of the 

Fermi Su:r·face from Impulsive-field dHvA Results 

In view of the .fact that Brandt and Rayne's (1963) 

results for the orientation dependence of the low frequency 

oscillations could not be fitted readily into a theoretical 

model for the Fermi surface of tungsten, it was felt·"to be 

important to check the orientation dependence of these slow 

frequencies near [00 1] using the impulsive field method. 

There are two features of the impulsive field method which 

would lead one to believe that such a check would be worth-

while. The first of these is that in the impulsive-field 

method, the amplitude of the pickup signal due to an oscilla-

tory term F. does not vanish when the slope dF. j;;;>e of the 
1 • 1 . . 

frequency versus rotation angle curve is zero, whereas·in 

the torque method it does. Secondly, we were able to use 

considerable filtering during the .actual experiment to 

partially separate ·neighboring frequencies. This filtering 

greatly simplified the task of extracting the component 

frequencies from the data. 

In Figures 32 and 33 we show some examples of the 

original torque recordings which were obtained by Brandt and 

1 
Rayne for these slow frequencies when the magnetic field 

was near thP. [Jwi] orientation, -.;.rc have c:onL.L·a::;Letl the torque 

1Rayne, J .A., Carnegie Institute of' Technology, 
Pittsburgh, Pennsylvania. We are indebted to Dr. Rayne 
for giving us the opportunity to examine the original data. 
Private commun.ic:aLlon (1965). 



Figure J2. 

102 

Examples of dHvA data for the slow ·frequencies 
in tungsten with the magnetic field direction 
set very close to the [001] orientation 

Photograph on the left:· Reproduction of orig­
inal impulsive-field dHvA data for theE u 
oscil"lations, €u oscillations dominant 
Bottom calibration line at 20.995kG; succeeding 
calibration lines at intervals of 1.2J5kG 

Photograph on the right: Reproduction of original 
impulsive-field dHvA data for the ~ and EL 
oscillations, ~oscillations dominant 
Bottom calibration line at 1J.585kG; succeeding 
calibration lines at intervals of 1.2J5kG 

Recorder tracing: Reproduction of original 
torque data for terms in the frequency range of 
theE: L' '7, and Eu .oscillations 

Field range: 1J.9-16.1kG 
(after Brandt and Rayne see footnote on 
page 103) 
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Examples of dHvA data for the slow frequencies 
in tungsten with the magnetic field orientation 
about 2 ° from [00 1] in the ( 110) plane 

Photograph on the left: Reproduction of original 
impulsive-field dHvA data for the Eu oscillations, 
Eu oscillations dominant 
Bottom calibration line at 20.995kG; succeeding 
calibration lines at intervals of 1.2J5kG 

Photograph on the right: Reproduction of original 
impulsive-field dHvA data for the -'j and 6L 
oscillations, 0 oscillations dominant 
Bottom calibration line at 1J.585kG; succeeding 
calibration lines at intervals of 1.2J5kG · 

Recorder tracing: Reproduction of original 
torque data for terms in the frequency range of 
the E: L' '/, an~~ u oscillations 

Field range: 1J.9-16.1kG 
(after Brandt and Rayne -- see footnote on page 
103) 
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data with impulsive-field data which were ·taken near the 

~oD orientation using the shunt ignitron (inset photo-

graphs). Each torque recording is the sum of signals from 

r · 1 
the two terms c:..L' the ~term, and the two terms E:u . In· 

the impulsive field data, extensive filtering has been used 

to simplify the otherwis·e complicated signal which would 

result from the combination of all .these frequency terms. 

To study the € oscillations the filters were set so that 
u 

these oscillations were dominant over most of the field range 

o"f an oscillogram (photographs on the left side of Figures 

32 ·and JJ). With a different. filter SE!tting the~ oscilla-

tions (beating with the.€L oscillations) dominated over·-t;;he 

field range of one oscillogram (photographs on the right 

side of Figures J2.and JJ). Thus, the analysis of ·the im-

pulsive-field data would seem to be simpler than that of the 

torque data because the signals from all. these frequency 

·terms are combined in the torque data but are split up :i.,nto 

two oscillograms in the impulsive-field data. 

The impulsiv~-field results have already been shown in 

Figure 11, and we show them again in Figure J~ .. These data 

show an apparent crossing of the E terms at [oo 1] which is 
u 

consistent with a model having small ellips~ids centered at 

1our results indicate that the two ~u terms cross at 
[ooi] and we believe that the two E::L terms coalesce at [001] 
so that at this particular angle ·only three frequency terms 
should be present .. (See Figure J4). 
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the points N. In fact, the solid curves on Figure 34 give 

the orientation dependence which would be expected from an 

appropriate set of ellipsoids centered on the points N in 

the Brillouin zone faces. The dimensions of the relevant 

ellipsoids were found by fitting to the observed frequencies 

at selected angles (shown in Figure 35), and the semiaxes 

were I'ound to be 6.415 x 10- 2 (2Tf/a). and 7.265 x 10-
2

(2Jf/a) 

along <110) directions and 9.966 x 10-
2

(21f/a) along ~oo) 

directions. (These are the same ellipsoids which were used 

to calculate the orientation dependence in Figure 31.) 

There is clearly a discrepancy between our results for 

the E: oscillations nea~ [oo i] and the corresponding results 
u 

obtained by Brandt and Rayne (Figure 30); according to'our 

results, the two branches of these oscillations cross at 

[001] (Figure 34) whereas' the torque results of Brandt and 

Rayne show a separation of about 5 percent between the.se 

two branches (Figure 30). Such a separation should show up 

in our data as beats in the€ oscill~tions, each beat con­
. u 

taining about 20 cycles. No such beats are evident in the 

left hand insets in Figures 32 and .!3, even though beat 

patterns with more than 20 cycles per beat appeared in these 

oscillations at other orientations. (See Figure 10a for 

an example with ·about 34 cycles per beat for H 10u from 

001 . ) Because_the impulsive field data (when the shunt 

ignitron was used) are simpler to analyze than the torque 

data, we believe that the impulsive-field results are likely 



to be more reliable. 

In their recent paper Sparlin and Marcus (1966) also 

~eport the splitting in the Eu oscillations at. [oo i] . · 

.Nevertheless, they interpret these slow frequency oscillations. 

in terms of ellipsoids at N on the basis of a nonzero 

oF/a~~ which they observed for the lower branch of the 

slow frequency oscillations as the magnetic field angle 

in the (110) plane was rotated past the Q10] direction. 

From this fact they inferred that the lower branches of the E 

oscillations crossed at V1~ rather than touched as the 

curves of Brandt and Rayne (Figure JO) ·suggest. Sparlin 

and Marcus have labeled the second term which they found in 

theE oscillations at [001] an "extra term" (see last sen­
u 

tence of footnote number 6 in Sparlin and Marcus. 1966) and 

have not attempted to explain.its origin. The fact that 

both torque studies report two frequencies for the E oscil­
u 

a tions at [00 1] would seem to cast doubt on our .results for· 

the orientation dependence of these terms. However, as we 

have seen, the torque data of Brandt and Rayne were more 

complicated than our impulsive-field data, and it seems 

likely that the torque data obtained by Sparlin and Marcus 

were alsu complex. Therefore, we will use our impulsive-

field results. 

After the improved data analysis procedures had been 

developed to analyze the shunt ignitron data for the upper 



110 

branch of the slow frequency oscillations near ~oD , these 

procedures were tried on some of the older data for the slow 

frequencies near D 1 oJ . These older data had been taken 

without the benefit of the shunt ignitron, and the signals 

were more complex (cf. Figure 12) and more difficult to ana-

lyze than those which were obtained using the shunt igni.tron. 

Nevertheless, using the improved procedures, it was possible 

to analyze some of the old data reliably. A plot of the 

points which have been obtained for the slow frequency 

oscillations including the data for field directions near 

Q10]is shown in Figure J5. (The scaling factor for frequen­

cies between 6 and 7 x 106G near [oo 1] had not been found 

when this plot was made up so that the points which are 

plotted for these frequencies are too low by about ·three 

percent.) The old low-frequency impulsive-field data for 

field directions near Q 1 i] are so complex that a really 

adequate frequency analysis has not been obtained for these 

data, and therefore no points are plotted for the· low fre-

quency oscillations near Q. 1 iJ . 
As was explained in Section III-A, the data for the 

lowest frequencies near D1~ were also not always well-

resolved, and only rough estimates of these frequencies could 

be ·obtained. The question then arises as to why there should 

have been any di:t'±'icul ty in reso.lving the single term which 

is predicted for the .lowest frequency oscillations at Q 10] 



· Figure 35. Expanded plo~ of impulsive-field res~lts for the orientation dependence 
of the slow frequency oscillations in the (110) plane The solid 
curves give ~he orientation dependence expected from ellipsoids at N 
(.see Figure 31). The dashed curve gives the orientation dependence 
expected from a hyperbol9id of revolution with its. axis along [001]. 
Open circles: frequencies obtained by direct analysis. Filled 
circles: frequencies obtained by counting the number of cycles in a 
beat envelope. t : points which were used to find the semiaxes of the 
ellipsoids. Only the points for the upper two branches near [00 i] and 
t~'le upper two branches near [110] represent the frequencies correctly; 
t~e lower points are subject to small systematic errors which have 
peen corrected in Figure 34 (see pages 112 and 60) · 
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by the ellipsoid model. The estimates for these lowest 

frequency oscillations in farit indicate two terms in the 

frequency range 6.5-7.5 x 106G at 01~ rather than one. 

It is possible that the existence of these two f~equen­

cies is not a discrepancy with the ellipsoid at N model at 

all, but is actually due to a slight misorientation of the 

sample. The fact that the data for. the '7 oscillations which· 

were taken with the [110] axis sample do not quite match up 

with·the data for the '7 oscillations which were taken with 

the [111] axis sample (Figure 9) indicates that the magnetic 

field direction was not really set accurately in the (110) 

plane when one or the other of these sets of data were t~ken. 

From the geometry of the orbit from which the oscillations 

are thou~ht to arise it is evident that sample misorientation 

near the Q1~direction ih the (J10) plane would lead to a 

.1 ower frequency for the"'? oscillations. Thus it is reason-

able to assume that the Q1~ axis sample was slightly mis­

oriented when these data were taken. 

If this misorientation in fact occurred, it would have 

affected the orientation dependence of frequencies due to 

ellipsoidally-shaped surfaces at N quite seriously. In 

Figure J1c we plotted the orientation dependence which would 

be expected i'rom ellipsoids at N in a plane which is til ted 

5° out of the (110) plane. The frequency spectrum predicted 

by the ellipsoid model in this plane is complex, and analysis 

u.r ::;uch a f':r·equency spectrum could cel"tain.1y yie.Ld a doub.Let 
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for the lO\ves t frequency branch at 0 1 OJ, 

D. Analytical Model for the Fermi Surface 

1. Construction of the model 

We have already discussed the ellipsoids at N, and we 

now turn·to the electron jack and hole octahedron. The 

functions 1 to specify the shape of each of these surfaces will 

be written out in detail after a brief geometrical interpre-

tation of the jack function. (The function for the hole 

octahedron is quite similar. ) io/e make use of the fact that 

the surface on which the equation 

is satisfied is an octahedron for n = 1 and approaches a cube 

as n---» o0 • A function 

with the adjustable parameter p 2 in the range 1 ~ p 2 ~ 2, 

is used in making up an octahedral body for the jack. A 

similar function 

+ "exponential asymmetry tP.:rm" 

is used to make up one of the balls on the electron jack. 

1The basic form for the functions which were used was 
suggested by Dr. B .. C. Carlson, Department of Physics, Iowa 
State University. 
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(The exponential term lifts the reflection symmetry which 

g 2 would otherwise exhibit in the plane kx = A.) The functions 

g
1 

and g 2 plus other gi related to g 2 by cubic symmetry are 

combined with a "cube" function 

to give the jack run~tion 

8 K. 
F(k ,k ,k ,p) 

X y Z 
= 2: l - 1 

l
. __ , g. (k ,k ,k ) 

.l X y Z 

Here the K. are additional adjustable parameters and p stands 
l 

for the whole set of parameters which can be varied to change 

the shape of the surface F(k ,k ,k ,p) = 0. 
· X y Z 

The II cube rr term 

, gJ is used to make the faces of the octahedral body of the 

jack concave .. (Due to the cube term, there are actually two 
, 

surfaces F(k ,k ,k ,p) = 0; one of these is a small cube 
X y Z 

about the origin inside the jack. This cube surface is never 

encountered during computation if the initial search for a 

point on the jack surface is not begun near the origin,) ·The 

neck of the electron jack arises naturally from the way in-

which the "ball terms" and the trbody terms" are combined. 

The explicit form for the function which was used to 

give the shape of the electron jack is 

F(k ,k ,k ,p) = 
X y Z 



+ 
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)kx+p3fP8+ ~Yjp1+Jkzlp1+pJ2exp(-p9/kx+P11/P10) 

+ 

+ 

+ 

+ 

p 
5 

- 1 

Final values for the 12 parameters in the function for 

the model electron jack surface were ·found by fitting the 

central (110) section of this surface. to an empirical curve 

for this section. The empirical curve for this section was 

constructed first of all by using all of the size effect 

results of Wa.lsh and Grimes (Figure 26). Gaps in the size 

effect data £or the neck and the side of the ball on the 

electron jack were filled in by using results from Loucks' 

RAPW band calculations (see Figure 25b) and an empirical· fit 

to the neck region derived from the orientation dependence 
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of the rYJ oscillations. near [001] (Figure 35). .To fill in 

th~ empirical curve for the side of the ball,· the size of 

the balls on the RAPW electron jack was scaled so that the 

area of the extremal (100) ball· orbit agreed with the exper-

imental dHvA area for this orbit. Then part of the central 

(110) .section of this shape was used to make up the curve 

for the side of the ball. The shape of the ( 110) ·section 

of the neck region of the electron jack was approximated by 

part of a central (110) section of a hyperboloid of revolution.-· 

In Figure 35 the orientation dependence of the minimum cross-

sectional area of this hyperboloid fits the orientation 

dependence of the ~ oscillations quite well over a range. of 

about 20° on either side of [001] in the ('110) plane. (The 

size of the hyperboloid was first scaled to give the correct 

values for the 1 oscillations (Figure 34) rather than only 

the falling field values (Figure 35)). 

A further criterion was used to fix the shape of the 

extremal (100) ball orbit. Loucks' calculation predicts that 

the shape of a cross section through one of the balls is not 

circular, but somewhat square. We attempted to arrive at 

the same shape for the cross section of one of the balls on 

the empirical model. The ratio of' the width w of' the ball 

cross section to the diagonal d was used to fit the degree 

of squareness (Figure 36). 1 Loucks found that this ratio 

1 Dr. T. Loucks, Department of Physics, Iowa State 
University, Private commu.nicat..i.oli., 1965. 
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was 0.895· By setting the parameter p
1 

in the jack function 

equal ~o thr~e we were able to arrive at this same value for 

the ratio of the width of the cross section to the diagonal 

dimension in an early empirical model. However, when other 

parameters were changed to vary the shapes of other parts of 

the electron jack, the shape of the ball cross section was-

changed slightly. In the model which is reported here the 

ratio w/d is 0.918. 

The final values for the p"arameters in the electron jack 

function were p 1 = 3, p 2 = 1.1066, p
3 

= .45395, p 4 = .27807, 

p
5 

= 9.3869 X 10-
4

, p6 ~ 4.5581, p
7 

= 8.3675 X 10-
6

, ~8 = 

2.6979, p9 = 5.8337 X 10
2

, p10 = 1.9634, p11 = 0.39042, 

-4 p 12 = 3.9347 x 10 . With these values of the parameters, 

the function F(k ,k ,k ,p) defined a surface with the shape 
X y Z . 

of the electron jack with radius vectors to points on the 

surface measured in units of (2rr/a). 

The function which was used to generate the hole octa-. 

hedron shape was 

p 

p 
+ 
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+ 

1 ·• 

The final values for all of the parameters in the func-

tion for the hole octaheqron were found by fitting the central 

(110) section of the surface defined by this function to the 

size effect data for the hole octahedron in Figure 26. The 

final parameter values for the octahedron were as follows: 

p 1 = 2.5138, p 2 = 1.1084, p
3 

= 0.34581, p 4 = .37179, 

-5 3 p
5 

= 4.6498 x 10 , p 6 = 2.7257, P
7 

= 1.165 x 10- , p 8 = 

2.1323, p9 = 7.423 X 10-4 , p10 = 1.7334, p11 = .45109, 

p
12 

= 1.4319, p
13 

= 3.043 X 105, p 14 = 6.3017. X 10- 2 , 

= 0.41590. The· frequency -values calculated from this 

shape were scaled by a factor of 1.0276 for comparison with 

the .experimental dHvA frequencies, so that radius vecto.rs 

to poi.nts on this surface must be multiplied by v'1.0276 to 
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convert them to units of (2TI/a). 

A (110) central section through the model surfaces which 

were obtained for the electron jack and hole octahedron is 

shown in Figure J7. 

2. Comparison with the de Haas-van Alphen effect 

~fter (110) sections of the model surfaces for the 

electron jack and hole octahedron had been fitted, the overall 

agreement of the shape of these surfaces with the de Haas-

van Alphen effect data was tested for a number of magnetic 

field. directions. Using the curve tracing program outlined 

in Appendix D, the extremal areas of cross section made by 

planes kH = constan~ with the surfaces were calculated. The 

frequencies which were calculated from these areas are com­

pared in Figure J8 with tpe fundamental frequencies found 

by experiment. 

The solid curves in Figure 38 are drawn through points 

calculated from the empirical model. The curve through the 

points for the eX.. oscillations gives the orientation depen­

dence for frequencies arising from the central cross section 

of the hole octahedron. The solid curves which nearly fit 

the points for the t:u and EL oscillations give' the expected 

orientation dependence for the ellipsoidal surfaces centered 

at the points N. The other curves give· the orientation 

dependence for frequencies arising from extremal sections 

o:f the electron· jack. Thus, the ;; oscillations, whose 
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frequency varies very slowly with angle give the orientation 

dependence of the area of an extremal ball orbit. 

For field orientations near [111] , there are two extre­

mal orbits on the body of the electron jack which predict 

frequepcies which vary with angle much like the frequency 

of the $oscillations. There is a central orbit (which has 

a hexagonal shape at [1 11] ) and a none en tral orbit with a 

slightly smaller area (which is shaped like a truncated 

triangle at [111] ) . The orientation dependence predicted 

by the triangle orbit fits the orientation dependence of the 

Soscillations quite well. However, it is difficult to 

decide which of these orbits the p oscillations should 

actually be assigned to. Walsh (1964) (see Figure 40) 

has reported that both of these orbits are observed in 

cyclotron resonance experiments, and he assigns the lower 

mass resonance to the central orbit on the electron jack. 

According to this interpretation, we would perhaps expect 

that the p oscillations should be assigned to the central 

orbit on the body of the ·jack rather than to the slightly 

smaller noncentral one. 

As the field direction is tipped away from the [11D 
orientation, the frequency predicted by either of the orbits 

for the P oscillations increases until at an angle of about 

20 ° from [oo 1] the two brunches coalesce und form u single 

central orbit. As the field orientation is moved still 

closer to [oo 1] this ·central orbit ceases to exist and a 
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new ce~tral orbit is formed which includes not only the body 

section of the electron jack but also four balls. According 

to the model, the first orbit which includes four balls a$ 

the field direction is rota ted from D 11l toward [00 1] is 

a self-intersecting orbit so that near the angle at which 

the four ball orbit first occurs, the cyclotron mass should 

ihcrease tremendously (cf. Lifshitz and Kaganov 1959). Walsh 

(1964) in fact found such an increase in the cyclotron mass 

of the central jack orbit near the angle of changeover. At 

about 20° from [001] the (3 oscillations disappear and, con­

trary to expectation, are not replaced·within a few degrees 

by oscillations corresponding to the four ball orbit, pre-

sumably because of the strong damping associated with the 

large cyclotron mass. 

Walsh (1964) found that the lowest value of the cyclo-

tron mass of the four ball orbit, m*/m = 2.88, occurred for c 

H/ I [oo 1] . Due to the large cyclotron· mass for this orbit, 

the de Haas-vRn Alphen oscillations for this extremal section 

are expected to be heavily damped and therefore difficult to 

observe. We have, however, found a term with a frequency of 
. 8 

1. 94 x 1 o G for !:I/ I [oo 1] The single point for this term 

which is shown on Figure J8 lies on the predicted curve for 

the four ball orbit. This single point might also be a sum 

frequency ·of· the o( and S'"2 oscilla tiun.:; ( o:;ee Fi~ure 9). If 

we argue that the signal amplitude is determined to a larg~ 

extent by the exponential damping factor (see E·quation_12) 



126 

then the amplitude of the sum frequency o(+ a;~ would be 
,:. 

expected to be considerably larger than that of the four ball 

orbit, since the "effective mass" parameter for the OL+ 5 
2 

oscillations would be approximately m~ + m*$2 ~ 2me (see 

Appendix C), which is considerably less than Walsh's value 

of m* = 2.88m for the four ball orbit. e 

De Haas-van Alphen oscillations corresponding to many 

of the other large jack.orbits which are predicted by the 

model were not observed. Because the cyclotron masses for 

many of the jack orbits are considerably larger than the 

masses for the o<.. oscillations and the fi
2 

oscillations (Walsh 

1964), de Haas-van Alphen signals arising from the large· 

orbits would probably have been swamped by signals from the 

terms o( or ~. 

The (110) central section of the electron jack near one 

of the necks is virtually indistinguishable from the genera-

tor of the hyperboloid of revolution which can account for 

the or.ienta.tion dependence of the"? o-scillations (see Figure 

J5). However, the computed minimum area of the (001) neck 

section i~ abou~ .15% too large. The reason for this misfit 

is that the computed (001) section through the neck actually 

turns out to be closer to a square than a circle. This is 

the most serious percentage discrepancy between the model 

and experiment. 

A numerical comparison of the experimental de Haas-
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van Alphen frequencies and the frequencies preducted by the 

model is ~arried out in Table 1. The frequencies F .are 

related to extremal cross sectional areas of the Fermi surface 

Ao (measured in units of (27T/a) 2 ) by the equation F = 

We have taken this opportunity to com-

pare our results with the torque results of Sparlin and 

Marcus (1966) and of Brandt and Rayne (196J). In comparing 

the experimental results, it should be taken into account 

that in most cases the impulsive~field method provides con-

siderably more frequency discrimination than the torque 

method; interpretation of these data should therefore be more 

straightforward. 

J, Comparison of extremal dimensions of the empirical model 

with those found by experiment 

The extremal (loo') and Q 10) dimensions of the central 

sections of the models for the electron jack and the hole 

octahedron are compared with those found by experiment in 

Table 2. -The agreement with the size effect results of 

Walsh and Grimes (1964) should be quite good since these 

results were used in finding the model. However, discre-

pancie~ h~ve ~risen for several reasons. The numerical 

vr~lues for the size effect !£-vectors were obtained by mea-

suring distances on a drawing which was· like Figure 26, but 

4/J that size (about 100 points were measured for each sur-

face). These extremal k-vectors were assumed to give the 
~ 
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Table 1: Comparison o~ Fundamental dHvA Frequencies Found by Experiment with Frequencies 
Predicted by the Empirical Model f'or tho [ool], (111], and [1 10) orientations 

Orien­
tation 

Oscil-. 
lntion 

E:u 

0(. 

Surface Orbit 

4-ball 

central 

ball 

central 

neck 

central 

J-ball 

central 

central 
truncated 
triangle 

ball 

central 

centra.L 

2-ball 

central 

non­
central 
non- ' 
central 

ball 

neck 

central 

central 

central. 

Calculated 

19S,J 

152.5 

22.79 

8.805 

7.2) 

6.055 

108.2 

102.8 

70.J 
67.4 

2).69 

2),69 

7-777 

.,. ~66 

122.8 

111.5 

47.6 

2). 11 

21.42 

9.408 

8.)05 

7.055 

Experimental" Experimental Experimentalc 

8.80 

6. 27 

6. 11 

10).4 

2J.9 

mt::tl$uJ.·emei1t$ 

unreliable 

measurements 
unreliable 

111.5 

2J.5 

17.JJ 

9.J4 

8.2J 

measurements 
unreliable 

150.0 

22.7 

8.78f 
8.51 

6.06-6. 10 

5-99-6.0) 

10J.5 

24.7 

2).4 

111.5 

2J.8 

19.4 

9.40 

8.06 

6.95 

8.98 
8.55 

6.08-6.24 

5.94-6.0) 

25.8 

7.62 

24.2 

9.28 

8.07 

6 .. 90 

:The impulsive field results of this study 
Torque results of Sparlin and Marcus (1966) 

~Torque results of Brandt and Rayne (196J) 
We use the notation of Sparlin and Marcus (1966) Cor the surfaces; er:electron surCace 
atP (jack); hH:hole surCace at H (hole octahedron); hN:hole surCace at N (small ellipsoids). 

~This term could also be the sum frequency of the~ and 0 2 oscillations. 
Two terms were found for the Eu oscillations at [001) in the torque method investigations. 

git is possible that the ~ oscillations are an unresolved sum oC contributions from ~ 
hcxtremal orbits on electron jack . 
. The f'requency of the t5 oscillations could not be pinned down ac"cura tely at [j 1 1) • 
jThe neck orbit and the ball ox:-bit coincide at this orientation on the model. 

ThJ.a :fr'iq\IV!IY~' niU}' 1.,.~ t•::o,., lnw hanAua• nf' aample mianrir:ntntion. 



Tabl.e 2: Comparison of' Extremal. (100) and .() 10) Dimensions of' the Empirical.. Model. with Those 
Found by Experim~nt (f'or central. sections of' the electron jack and hol.e octahedron onl.y) 

Length of' radius vector(units of' ~)a 
a 

Di:rec­
tion Surf' ace Dimension 

Empirical. 
Model. Experimental.b Experim~ntal.c Experimental.d 

(too) Electron jack .555 .559 .594 

Hol.e oc tahedror_ .• J97 .J9J .J9J 

Electron jack • 250 xxxx .257 

Hol.e octahedron .)04 xxxx 

Hole octahedron • )10 .)02 

aBoth the s.ize ef'f'ect and magnetoacoustic resul. ts -.-·ere original.l.y quoted in units of' A o- 1 • We 
bhave changed them to units of' 27f/a taking the distance r-H = 2TI/a to be 1.987Ao-1. 

Size ef'f'ect results of' Wal.sh and Grimes (1964) 
~Magnetoacoustic ef'f'ect results at J90~lliz (Rayne 1964). 

Magnetoacoustic ef'f'ect results at 9JO~Ulz (Jones and Rayne 1965) 
eObtained f'rom. analysis of' beat pattern .,. 
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shapes of central sections of the two surfaces. However, 

the faces of both the octahedral parts of the model electron 

jack and of the model hole octahed~on turned out to be some-

what concave. Because of this concavity, there are some 

directions for whi.ch. size effect calipered dimensions of· 

these surfaces would not give the dimensions of the central 

sections, and to thia extent, the fitting proceduie is in-

consistent. The ·shape of the central (001) section of the 

hole octahedron and the calipered dimension in the [11 o] 

direction are shown in one of the sketches in Table 2. The - . 

central dimension of this section is ~-2% less than the 

calipered dimension. For field angles between-v2J 0 and 

-40° :from [ooi], central sections of the model electron jack 

are also concave, even .though these sections do not· include 

contributions from the ba'lls; therefore the calipered dimen-

sian of_ each of these s~ctions is also somewhat larger than 

the central dimension. The largest difference (-v6%) between 

the calipered dimension and the centr~l dimension ~f the 

body of the model" electron jack occurs for H~2J 0 from [oou 

(~-vector .-v2J 0 from D 10l). 

A further comparison can be made on the basis of' the 

angles ~t which the central orbit on the electron jack ceases 

to exist. The size effect data indicate that in the .( 110) 

plane this orbit exists between the angles -of....,_ 18° and ....... 7 5° 

from [oo 1] , and it is very satisfactory that the model elec-

tron jac~ predicts that this orbit should ex1st between~2J 0 



131 

and 77 ° from [oo 1] . 

A comparison between the magnetoacoustic .. effect results 

(Rayne 1964, Jones and Rayne 1965)_and the predictions of the 

empirical model for some of the larger extremal dimensions in 

the (110) plane is carried out in Figure 39, and the compar-

ison for symmetry directions is summarized in Table 2. The 

angular dependence for the complete set of extremal k-vectors 

predicted by the model electron jack is rather complicated. 

Furthermore, in this .study orbits on the electron· jack were 

traced only at those slices kH = constant which were necessary 

to find extremal areas, and not all of. the orbits which are 

necessary to find extremal ~-vectors were traced, since this 

would have involved extensive additional computation. However, 

the predicted angular dependence of extremal k-vectors which 
' -

' is shown does not appear to be in violent disagreement with 

the m~gneto~coustic results, and may not be outside the 

experimental error (bearing in mind the difficulti®s in 

interpreting the magnetoacoustic results (page 91)). 
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Figure 39.· Comparison in the (110) plane of the magneto­
acoustic results and some of the extremal k­
vectors predicted by the empirical model. a, 
0: magnetoacoustic results at 390MHz (Rayne 
1964); X : magnetoacoustic results at 930MHz 
(Jones and Rayne 1965); ----some extremal 
dimensions on the electron jack; central 
dimension of hole octahedron .. ·-- .... 

·,~, ..... 
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4. Orbit masses 

We have delayed comparison of the dHvA orbit mass 

results with those of cyclotron resonance until after the 

Fermi surface models were discussed so that specific orbits 

could be defined. Walsh (1964) was able to assign many of 

his cyclotron resonance mass series to specific orbits with-

out recourse to a comparison with the de Haas-van Alphen· 

effect masses. His results in a {] 10} plane for s orne of· 

the larger masses are shown in Figure 40 along with his 

assignment of these data to specific orbits on the electron 

jack and hole ·octahedron. It is evident that the orientation 

dependence shown in Figure 40 is consistent with that expected 

from surfaces having the general shapes of the electron jack and 

hole octahedron. For instance, the orientation dependence for 

the central orbit on the ~lectron jack shows discontinu~ties 

when this orbit changes from the orbit which does not include 

any balls to the orbit which includes two balls. or the orbit 

which includes four balls. 
1 

(Walsh has found other resonances, 

which yield in general lower masses than those shown in Figur.e 

40 ·but thus far he has not arrived at a final interpretation. 

for these masses.) 

In Table 3 we have tabulated both the dHvA and cyclotron 

resonance mass results for the [oo 1], Q 11] and [110] 

1 W.M. Walsh, 
Hill, New Jersey. 

Jr. , Bell Telephone Labor·a tories, Murray 
Private Communication, 1964. 
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Table J: Orbit Mass Results 

Orien­
tation 

[ooi] 

Surface 

electron jack 

electron jack 

electron jack 

hole octahedron 

holes at N 

holes at N 

electron jack 

electron jack 

electron jack 

electron jack 

hole octahedron 

holes at N 
holes at N 

electron jack 

electron jack 

electron jack 

hole octahedron 

ellipsoids at N 

ellipsoids at N 

ellipsoids at N 

Orbit 

4-ball 

ball 

neck 

central 

central 

central 

triangle 

central 

ball 

neck 

central 

central 

central 

2-ball 

ball 

neck 

central 

ce~tral 

central 

central 

8 0rbit mass results of present study 
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dHvA 
oecillation 

E 
E: 

dHvAa 

0.58 

0.25e 

0,9J 

O,J7 

0.9 

o.6Q 

0,60 

.67 

m* m 
Cyclotron 
Resonance 

2.86 

.ssd 

1.01 
,JJd 

,2Jd 

.96d,f 

.8J 

.sad 

dHvAc 

.505 

.29 

1. 06 

,J54 -
,28 

.52 

.287 

.287 

.75 

,J07 

1. 11 

,J65 

·.67 .6J - .6s 
. J6 - ·' J7d 

,J2d 

.27d .262 - .276 

bOrbit mass values picked off a plot of ~he cyclotron resonance results (Walsh 1964) 

COrbit mass results of Sparlin and Marcus(1966) 

dThe overall mass spectrum found by cyclotron reeonance is rather complex. The mass assignments 
with superscript d may or may not correspond to Walsh's assignment. When the corresponding 
orbit is noncentral, it is necessary to assume that the cyclotron resonance r~sults pertain 
to an orbit which has extremal area in order to make a direct comparison with the dHvA res~lts. 

eThe"' and ~L oscillations ·were not resolved when these data were taken, The"/ oscillations 
had previou~ly been found to dominate at this orientation so the orbit mass which was derived 
from the. temperature dependence of the combined signal was assumed to be the mass for the 
"'? osc ill a tiona, 

fThe triangle orbit does not have extremal mass according to the empi!•ical ouu.Icl, llouovo.,, 
the model is not expected to predict mass values reliably, and this mass term has been 

·assumed to correspond to the triangle orbit, 
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directions. Only the _orbits having an extremal. area are 

relevant to the dHvA effect so that in order to compare a 

dHvA mass value for a noncentral· orbit with a similar cyclo­

tron resonance mass value for a.noncentral orbit, it is 

necessary to assume that the cyclotron resonance result also 

pertains to an orbit with extremal area. For instance, 

Walsh (Figure 40) has reported that. there are two ·orbits 

with nearly the same mass as was found in the dHvA effect 

for th~ ~ oscillations. One of these orbits is noncentral 

and need not have extremal area. However, according to our 

empirical model (Figure 38) there are two orbits which pre­

dict dHvA frequencies near that of the p oscillations; WE! 

have therefore included in Table J both of the aforemen­

tioned cyclotron resonance mass values in case the noncentral 

orbit. with extremal area might coincide with the n~ncentral 

orbit reported by Walsh. The overall agreement between mass 

results found by the two methods is extremely good. Unfor-

tuna tely the dHvA mass for the f oscillations at [] 1 ~ falls 

approximately midway between the two cyclotron resonance mass 

values; thus this mass measurement does not clarify the inter-

pretation of these oscillation~. 

The mass values in Table J for the~ oscillations.can 

be combined with the corresponding frequP.ncies for these 

oscillati.ons (Tabl~ 1) to check the hypothesis that these 

oscillations arise from a set of ellipsoidally-shaped 

sur:t'ac es. For such a set of surfaces, the ratio 
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m*(6),c/>)/F(e,+) (where&,+ give the orientat.ion of the mag-

netic field) should be a constant. Sparlin and Marcus 

(1966) have carried out such a check, and for their measure-

ments this ratio only .varies by about 10 percent. 

A direct comparison between the experimental orbit 

masses and·the predictions of the empirical model is not 

carried out here; the masses depend·on the slope of theE(~) 

curves at the Fermi surface (cf. Equation 6), an~ although 

the surfaces F(~,p) = 0 and G(~,p) = 0 approximate the shape 

of the Fermi surface quite well, the slopes at which F(~) 

and d(k) inters~ct the surfaces are not necessarily similar 

to the slopes with which the curves E.(k) intersect the Fermi 
l -

surface. (Th·e experimental orbit masses are further compli-

cated by electron-phonon interactions (cf. Ashcroft.and 

\iilkins 1965).) We did, however, carry out calculations 

(Appendix F) to check whether the functions F and G would 

at least predict the anisotropy. of the mass curves for the 

electron jack and hole octahedron respectively, and it was 

found that they did not. 

5. Volume and compensation of the model Fermi surface 

In spite of the fact that the computed neck area for 

the electron jack was too large, the model electron jack 

and hole octahedron were used to compute an estimate of the 

volume of the Fermi ~urface of tungsten, since the small 

discrepancy in the neck cross section should not have a very 
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large effect on the total volume. These calculations were 

carried out by fir~t finding the cross sectional .area J4-,· 
I 

at about 250 slices kH = constant. 

computed according to the formula V 

Then the volumes were 

= ~ftLJkH . 
' J.. J.. i 

From the 

semiaxes given on page 110, the volume of one of the hole 

The final results are 

as follows: 

Surface 

Hole octahedron . 11438 

Six hole ellipsoids at N . 01167 

Total hole volume . 1260 5 

Electron jack . 1274 

Here a= J.162 x 10-8 em is the estimated lattice constant 

for tungsten at 1°K (Nix and MacNair 1942; Cullity 1956, 

p. 484). 

We know from the results of magnetoresistance measure-

ments (Fawcett 1962) that tungsten is a compensated metal 

(equal electron and hole volumes). When the uncertainties 

in our fitting procedure are taken int.o account, our results 

for electron and hole volumes support this conclusion. 

\{e have not computed the surface area of our model for 

the Fermi surface of tungsten and therefore cannot ·make a 

direct comparison with experimental estimate of the surface 

area of tung-::sten which has been obtained by anomalous skin 

effect measurements on polycrystalline samples by Fawcett 
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and Griffiths (1962). They found, to an accuracy of JO 

percent, that th~ir measured surface ·area could be accourited 

for by 0.078 hole per atom and 0.·078 electron per atom, each 

occupying states in a hypothetical spherical Fermi surface. 

These results are to be compared with our estimate from our· 

model Fermi surface of .127 electron per atom and .126 hple 

per atom. 

The surface areas for spheres corresponding to the model 

electron and hole volumes would be about 40 percent larger 

than the anomalous skin effect areas, and the surface areas 

for the actual anisotropic model surfaces would be larger 

than the surface areas of the spheres. However, in view.of 

the discussion on page 88 and in view of the fact that the 

anomalous skin effect samples were t.houg~t to be not perfectly 

. 
polycrystalline, but to have a preferred orientation (for 

0oo) directions along the normal to the sample surface) 

(Fawcett and Griffiths 1962) discrepancies.betwee~ the 

experimental and model surface areas should be expected. 

However, since the discrepancy appears to be· large, a re-

examination of the accuracy of the anomalous skin effect 

surface areas would perhaps be worthwhile. 
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V. CONCLUDING DISCUSSION AND SUGGESTIONS FOR FURTHER 

STUDY. 

The results of this study have not only confirmed the 

results of a torque method dHvA study in tungsten carried out 

by Sparlin and Marcus (1966) at low fields, but have also 

yielded other important groups of oscillations. Thus using 

high impulsive fields it was possible to detect and study 

the (J oscillations and oscillations which probably arise from 

the central (001) section of the electron jack (the 4-ball 

orbit), whereas neither of ~hese oscillations was observed' 

in the torque studies. Moreover, because of its increased 

selectivity, we have been able to use the high-field met~od 

to resolve the disagreement between Sparlin and Marcus (1966) 

and Brandt and Rayne (1963) concerning the orientation depen­

dence of the low frequency oscillations near [oo 1] (see 

Section IV-C). 

The simple empirical model has been shown to be in 

excellent agreement with.a rich variety"of experimental evi-

dence. However, we ·recognize that it is imprecise in that 

it predicts a~ area for the neck on the electron jack which 

is 15 percent too large (see Table 1). A further change 

which may be required is a slight reduction in the size of 

the body of the electron jack. The orientation dependence 

of the area of an extremal noncentral orbit·on the electron 

jack predicts the orientation dependen~e of the frequency of 

·'1 
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the jJ oscillations quite well (Figure J8). However, it is 

difficult to believe that this is the correct assignment for 

these oscillations, in view of the fact that the central 

orbit is thought to have the lower cyclotron mass (Figure 

40); since the curvature factors {d 210 /dkz 2 j-t for these two 

orbits do not appear to differ greatly (Appendix G), the 

central orbit would therefore be expected to contribute the 

larger dHvA signal. Furthermore, visual inspection of 

Loucks' solid J-dimensional model for the electron jack 

'combined with crude sketches on drawings of sections through 

our empirical model seems to indicate that simultaneous 

reduction in the area of the central C 11] jack orbit and 

increase in the anisotropy of,the orientation dependence of 

the area of the central section could be achieved by a mere 

reduction (roughly 5 perc~nt) in the z110) dimensions of 

the electron jack; no size effect results were reported for 

this dimension so this change in the jack shape ~o make the 

central orbit predict more closely the orientation dependence 

of the frequency of the ~ os~illations) could be made without 

destroying the agreement with the size effect results in 

.other orientations. 

It is unfortunate that there is not more direct exper: 

imcntal evidence available to determine the detailed shape 
r 

of the electron jack. Due to the strength of the. ~ 

oscillations, and the OS oscillations, it is not altogether 
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clear that further impulsive-field studies of the fi 
oscillations would yield. any information regarding the 

existence of two extremal jack orbits with frequencies near 

that of the ~oscillations, although further studies using 

the shunt ignitron should be carried out; perhaps these 

studies could also be carried out using the field-modulation 

technique (R.W. Stark~ see Windmiller and Priestl~ (1965)) 

since troublesome signal from the very strong CL oscillations 

could possibly be nulled out using this method. 

Another approach which should be pursued is to determine 

whether the term with frequenc~ 1.94 x 108 Gat [ooi] is due 

to the 4-ball orbit or arises from the combination of the 

o( and ~2 oscillations. This determination could perhaps best 

be carried out by a very careful simultaneous study. of the 

orientation dependence of• the term in question and the 

and~ oscillations. If this term turns out to arise from 

the 4-ball orbit, its frequency can be compared with the 

corresponding frequency predicted by the model (after the 

neck shape has been corrected) to determine whether a 

reduction in the (110) dimensions of the electron jack should 

be undertaken. Measurement of the frequency of the 2-ball 

orbit would of course also yield equally valuable informa-

tion, but here again, the proximity of the strong o{ 

oscillations and the presence of combination frequencies 

are expected to complicate the measurements. 
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Precise Gantmakher size effect measurements of the 

{110) d~mensions of the jack using a (100) plane sample 

rather than a (110) plane sample would also be of value. 

Such measurements might also be of value as a second exper-

imental determination of the shape of the (100) ball cross 

section. (The magnetoacoustic results in Figure 27a might 

be interpreted as suggesting that the (100) ball cross 

section is more circular than the section which we showed in 

Figure 36. However, as we have pointed out earlier (page 91) 

it is difficult to derive such detailed information from 

the magnetoacoustic measurements.) Size effect measurements 

of the central (100) section of. the hole octahedron could 

also be used to determine whether the sides of this section 

are concave or not and thus resolve the uncertainty·as to 

whether the present ~10] 'size effect dimension for the hole 

. octahedron (Figure 26) is the central dimension or not: 

We should state explicitly that no evidence was found 

for the existence of the small lens-shaped surfaces which 

are predicted by the Lamer model and the Loucks nonrelativ-

istic model (see Section IV-A), although such surfaces could 

have escaped detection in our experiment if they were very 

small. Sparlin and Marcus (1966) and Brandt and Rayne (1963) 

also do not report any evidence for the existence of these 

small surfaces (we have reinterpreted the data of Brandt and 
. . 

Rayne (1963) (see Section IV-C). 
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In connection with any further dHvA measurements in 

tungsten, an attempt should be made to make more reliable 

determinations of the absolute amplitude of the oscillations 

for use in gaining a further understanding of the origin and 

characteristics of the combination frequencies. It would be 

of great value to work out experimental conditions under ~ich 

the strength of these combination signals might possibly be 

minimized while retaining fundamental oscillations of 

sufficient strength for study. In connection wit~ any 

absolute amplitude measurements, the field dependence of 

the amplitude should also be studied so that the level broad­

ening factor in Equation 12 can be determined; using curva­

ture factors computed from the empirical model, a comparison 

could then be carried out between the amplitude predicted by 

Equation 12 and that observed experimentally to see if the 

seemingly large amplitudes which were found are really pre-

dieted theoretically. Serious complications are expected to 

arise in the interpretation of such measurements due to 

frequency modulation effects which seem to be evident in much 

of our data (see A~pendix c). 

A further measurement,, which should be undertaken is 

a check of the temperature dependence of the amplitudes of 

the ex, o<.
2

; and o(.J. oscillations at Q 1 U to see ii' the dis­

crepancy in the ratios· of the orhit masses of these terms 

which was reported in Section III-B ·is reproduced; if the 
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d~screpancy ~s aga~n found, further mass measurements ~hould 

be carr~ed out at d~fferent f~eld strengths ~n conjunct~on 

w~th determ~nations of absolute ampl~tudes to discover if 

there ~s any dependence of the measured mass rat~os on 

amplitude. 

/ 
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VIII. APPENDIX 

Appendix A: Further Discussion of Data Analysis Procedures 

As we discussed in Section III-A most of the data in 

this study could be analyzed by the standard. methods of 

either measuring magnetic field values at only two points 

or measuring the field value for e~~ry cycle and obtaining· 

the frequency from the slope of a plot of the reciprocal 

field positions of cycle maxima and minima versus integers. 

However, these procedures were not sufficiently precise to 

determine the orientation dependence of the E oscillations 
u 

near [ooD and further methods of analysis were therefore 

investigated. Several methods-were tried and eventually 

the Whittaker and Robinson (1956 p. 343) method of period-

ogram analysis (see Appendix E) was adopted. Several authors 

(Whittaker and Robinson 1956, Brunt 1931, Kendall 1946, 

Wold 1938, Bartlett 1955) have discussed this or closely 

related methods of frequency analysis, and this method seems 

to be perfectly valid for finding the"frequencies of pure 

sine waves making up ·a waveform. The data for the~ 
u 

oscillations which were taken using the shunt ignitron (see 

Figure 10a) appear to almost satisf·y the criterion of being 

a combination of sine terms having only weak field dependence 

of amplitude; in fact, the discussion in Appendix B which 

relates to pure sine waves may be more appropriate for these 

data than the discussion here. However, the justification 
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of the application of periodogram analysis to some of the 

other dHvA data is not so straightforward, and some of these 

data cannot be analyzed by other methods. Nevertheless, we 

believe we have made some progress even in analyzing compli-

cated data. Part of the ·reason that improved results were 

obtained is probably due to systematic attempts to eliminate 

reading errors. A second reason for improved results is 

probably due to automatic computer determination of the 

straight line slopes so that a fairly comprehensive examin-

ation of the data can be rapidly undertaken without, for 

instance, replotting sections of reciprocal field versus 

cycle number plots on an expanded scale for accurate slope 

determination by hand. A third and important improvement is 

the use of periodogram analysis, since as we shall see below, 

_this method may yield results even in some cases when consid-
I 

erable filtering has been used to produce sharp resonance 

envelopes but neighboring frequencies were not resolved by 

the filtering. 

The problem at hand is the frequency analysis (in VH(t)) 

of a signal y(t) which results when oscillations which occur 

in the magnetization of our small crystals . in the magnetic 

field H(t) are detected using a pickup coil. The oscillatory 

e.m.f. is proportional to dM/dt = (dM/dH)(dH/dt), and from 

Equation 12 we exp~ct that dM/dH is of the form 
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dM _ "'" ( ) . ( 21TF; _,./ ) 
dH - L B . H , F . s 1.n H . + . I . 

i l. l. l. 

where the B. vary only slowly with H. 
l. 

As was explained in Section II-D, the pickup circuit is 

made resonant by connecting a small capacitor across the 

pickup coil. In this case, the signal y(t) which is observed 

across the capacitor in the R-L-C pickup circuit would be 

given to within a constant factor by the solution of the 

equation 

2 2 
L d y/dt .+ R dy/dt + y/C = dM/dt , ( 16) 

an equation which appears to be very difficult to solve 

explicitly, since the 11 f'requency" V. of each of the osciila tory 
l. 

. 2 
terms F. in dM/dt varies with time (V. = F.H/H ). 

l. l. l. 
(For 

discussions of the form of y(t) when the frequency of the 

driving function varies linearly with time see Barber and 

Ursell (1948) and Hok (1948). Shoenberg (1962) has discussed 

some of the features of y(t) which are relevant to the 

de Haas-van Alphen effect.) The net effect of the circuitry 

is to produce a signal y(t) which is quite diff~rent from 

the original sum of sinusoidal terms in which each term had 

a rather slowly-varying amplitude and in which the argument 

varied with field exactly as 2ITF./H. 
l. 

We can reproduce qualitatively some of the features of 

the signal y( t) by supposing that (by analogy to the case of' 

a constant f~equency driving function) it can be approximated 
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in the form 

"'"" 2 7rF . cf y( t) = L._ A. ( (H( t), F.) sin( -H 
1 

+ . ( t)) 
i J.. J.. J.. 

By analogy to the forced harmonic oscillator, each A .. defines 
J.. 

a resonant envelope when the time frequency V. of the carre­
l 

sponding dHvA term passes through the resonant frequency of 

the pickup circuit; as we mentioned-in Section II-D, the 

partial frequency analysis which is performed in this way by 

the resonant pickup circuit is quite helpful in separating 

different frequency terms in the dHvA spectrum when these 

terms are well-resolved by the resonant circuit alone and 

each term is dominant over a sufficient range of cycles for 

accurate frequency measurements to be obtained. However, 

some of the same features of the resonant technique·which 

are usually so helpful are somewhat of a :hindrance to setting 

up analysis procedures to find the de .Haas-van Alphen fre-

quencies in a signal when it is not possible to obtain 

sufficient resolution to find-all the.dHvA terms using the 

resonant technique alone. For instance, due to the amplitude 

modulation and phase shift produced by the resonant circuit, 

it is often impossible to determine the subordinate frequen-

cies in a complex waveform by examining those irregularities 

in amplitude which would have been regular beats, had the 

regularity not been destroyed by the amplitude variation and 

phase shift due to the resonant circuit. A further 

.-
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complication arises due to the tendency towards ringing at 

the resonant frequency of the pickup circuit after the 

resonance maximum has been passed (Barber and Ursell 1948). 

Thus the effective frequency of the signal during some small 

interval of time after the resonanc~ maximum has been passed·· 

may be the resonant frequency of the pickup circuit rather 

than the frequency appropriate to the de Haas-van Alphen 

signal. Finally, the periodogram of a signal in a sharp 

resonance envelope which has been achieved by considerable 

filtering is expected to show not only a term at the frequency 

of the fundamental dHvA term making up .the resonance, but 

also side peaks at those frequencies which are necessary .to 

construct .the envelope shape. 

In spite of the above complications, we ·chose to attempt 

a more detailed frequency'analysis of the de Haas-van Alphen 

signal as it was rather than attempting a detailed evaluation 

of the effects of the circuitry on the form of dM/dt so that 

these effects could be compensated for. Only crude attempts 

.were made to take into account the existence of the resonant 

pickup circuit. It was hoped that the effects of the 

resonant circuit (plus filte~s) were not so serious that they 

would prevent the detection of important periodicities in 

the data and that in spite of the effects of the circuitry, 

the rQgions of an oscillogram which would contrj_hute most 

to the analysis would be those reg-ions in which the basic 
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de Haas-van Alphen periodicity was least affected by phase 

shift ~nd ringing. We have not worked out any explicit 

mathematical criteria for the validity of the periodogram 

analysis when applied to a signal which has been passed 

through filters to give a sharp resonance envelope. Instead, 

the success of the procedures was judged by analyses which 

were obtained both for actual de Haas-van Alphen data and 

for test signals which were constructed mathematically to 

approximate actual dHvA signals. Even though the procedures 

to be described are rather crude, more precise and better 

resolved results have been obtained than could have been 

·hoped for using only the resolution of the resonant circu~t. 

The data analysis was carried out using an IBM 7074 

computer. The input data to the computer program were 

coordinates which had bee~ read from the oscillograms as 

described in Section II-D; After the error checking steps 

described in that section had been carried out, the coordin-

ates for the field trace were smoothed by using the method 

of least squares (cf. Whittaker and Robinson 1956 p. 291) 

to fit a parabolas to successive sets of nine. consecutive 

coordinates (x. ,y. ). 
J_ J_ 

Here x. andy. are the x and y coordin-
J. J_ 

ate respectively of the iili point measured from the field 

trace. The y coordinate of each fitted parabola evaluated 

at the x-coordinate of the central one of the ~ points was 

used as the field trace coordinate to find the reciprocal 
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field value corresponding to this central point. 

After all of the reciprocal field values had been 

calculated, a further check against reading errors was 

carried out by checking to see that the reciprocal field 

values formed a monotonically increasing sequence. (The 

oscillograms were always read from the high field end to the 

low field end.) If any reading errors were found ·by this 

check ·of if any reading errors had been found by the checks 

described on page 36, the data analysis procedure for this 

oscillogram was discontinued and all of the data cards 'v'ere 

listed. An error message was typed for each card which con-

tained a reading ·error so that the reading error could be 

found and corrected before further analysis was undertaken. 

Judging by the evenness of artificial waveforms which were 

plotted out as a function of reciprocal field, the smoothing 

procedure for the field trace coordinates (combined with the 

smoothing of the calibration lines described on page J6) 

worked quite well in averaging out some· of the sea tter inher-

ent in reading the coordinates from the projected image of 

the oscillogram. 

To test the overall effectiveness of the data analysis 

procedure, we used a modified version of the data analysis 

program which differed from the actual data analysis program 

only in that the data input steps in the original program 

were replaced by a subroutine 1 which generated the points of 

1This subroutine was written by E,C. Clark, Ames Labor­
atory of the A.E.C., Iowa State University of Science and 
Technology. 
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amplitude maximum and minimum of a test signal. The test 

signal was .of. the form 

N 2TfF. 
cf i) .. Y(H) = ~ A.sin(T + ( 17) 1= 1 J.. 

w·here 

Bi [1 + t.~l Q 
2 I w~ 2 

) ( 1 - w2 /wo 2) 2] 
1 

A. = 
-;r 

J.. 

and 

-1[ wi( _ ~)] = tan Qw
0 

1 .. 4 
wi 

The quantity H was given by H = H 0 sinAt and4)i was given by 

w. 
J.. 

27JFi 0 2 2_7 = --JL H -H 2 0 

H 

It was hoped that the :frequency analysis. o:f such a signal 

would give some indication of the validity of the analyses 

which were obtained for actual data. We will use a signal 

like that in Equation ~7 as an example in discussing the 

data analysis program. 

As a further aid to detecting errors (errors such as 

skipping a cycle are not detected by the previous steps), 

the waveform of the signal which was being analyzed was 

always displayed graphically using an IBM 1627 plotter. Such 

a plot for one of the test signals is shown in J:i'igure 41a, 

and the plot of reciprocal field values .at points of maximum 

and minimum amplitude of this signal are plotted versus 

cycle number in Figu.re 41b. Using the reciprocal field value 
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... 

Figure 41. Test signal for data analysis procedures 

a. 1vaveform constructed by. connecting the· points 
of amplitude maximum and minimum of a signal 
defined by Equation 17 with straight lines. 
\ve h~ve chosen the fou~ frequencies F1 = 

6
8.78 

X 10 G, F2 = 7b66 X 10 G, F3 = 6.75 X 10 G, 
F4 = 6.43 x 10 G with corresponding amplitudes 
B1 = .4, B2 = .4, B3 = 1.0, B4 = .8. The 
circuit quality factor Q is 30 and the resonant 
frequency is 1o5Hz. The magnetic field "\vas 
varied as (1.1 x 105G)sin20.0t from 35kG to 50kG! 

b. Plot of reciprocal field values for amplitude· 
maxima and minima versus integers. We have 
attempted to draw straight line segments through 
the poi,nts. 

c. Frequency versus cycle curve found from weighted 
averages of linear least squares fitting calcula-· 
tions. 

d. Smoothed frequency versus cycle curve found by 
taking weighted averages of the frequencies on 
the curve in Figure 41c. Only the middle fre­
quency p:red:iu L::; u118 o.r th8 input frequencies 
correctly. (See page 39 for weaknesses of this 
method of predicting frequencies.) 
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and cycle number coordinates like those on Figure 4.1b, 

linear ieast squares fitting calculations were carried but 

as is described on page 39. 

The results of the least squares calculations were used 

in several ways. While 1east squares calculations were being 

carried out using the first fitting length N., the fastest 
]_ 

frequency and the slowest frequency found were collected. 

If no frequency range had been read as input, the above max-

imum and minimum frequency were used to set. the frequency 

range over which the ideogram and periodogram were calculated. 

In some cases it was desirable to use the results of 

the least squares calculations. directly. The result of the 

least squares calculation for each set of points for which 

the computed error estimate was minim~l with respect to 

immediately adjacent sets• of points was printed out for 

direct examination if the fitting length was greater than 

JO half cycles. 

The results of the least squares. calculations were also 

displayed as an ideogram as was explained on page 40. An 

ideogram for the signal of Figure 41a is shown in Figure 42b. 

It is evident from this figure that the ideogram results 

cannot be relied on completely since the frequency at 7.63 
6 x 10 G is missing in the ideogram spectrum. The·nature of 

the frequency spectra for actual de Haas-van Alphen data 

are quite variable however, .and cases arise when an inter-

nnmparison of all the methods of analysis is necessary in 
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F=8.83 X 106 

~ 

F=6.76 X 106 
fc:8.86 X 10

6 

~ ./ 
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FREQUENCY (GAUSS X 106 ) 

(a) 

(b) 

Figure 42. Computed estimates of the frequency spectrum 
of waveform of F~gure 41a 

a. Periodogram 

b. Ideogram 

I 
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order to find the dHvA frequencies in the data. For instance, 

in cases 1v-here some of the dHvA terms on an oscillogram are 

well-resolved by the resonance technique, we are quite 

certain that the ideogram predicts the frequencies correctly. 

One oscillogram may contain both terms which are resolved 

by the resonance technique and term~ which are not; period­

ogram analysis is necessary to find.the frequencies in the' 

latter case, and the ideogram provides a convenient check on 

the periodogram in the former case. 

A frequency versus cycle curve was constructed by 

assigning each frequency which was calculated by linear least 

squares fitting to the central one of the points which we.re 

used to cal~ulate that frequency. Then as successive fre-

que~cy calculations were made with different line lengths, 

a weighted average of the'frequencies corresponding to each 

point on the reciprocal field versus cycle number plot was 

accumulated along with a total weight. The frequency versus 

cycle curve was used to obtain e~timates of the initial and 

final points for the region of dominance of each frequency by 

converting it to a smoothed frequency versus cycle curve 

(Figure 41d). 

For each oscillogram the first point on the frequency 

ver~us cycle curve was chosen as the initial point p 1 for 

the first horizontal line segment. Then the last point pL 

on the frequency versus cycle curve with a larger frequency 
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value than the initial point was found. The final point 

pf. 
1 

for the first horizontal line segment was the last 
~na 

point on the frequency versus cycle curve whose ordinate 

differed by less than one percent from that of point pL. 

A weighted average Fave of points p 1 to pfinal on the fre­

quency versus cycle curve was then computed, and the 

ordinat~s of these p~ints were set equal to F ave Each 

point p
1 

to pfinal was given a weight equal to the computed 

weight for F . 
ave Then the point pf. 

1 
+ 1 was defined as 

~na 

the initial point for line segment number two and the pro-

cess was repeated until the last point .had been used. Then 

the first point on the resulting new frequency versus cycle 

curve was defined as the first point for the first line seg-

ment and the preceding process was r~peated, except· that 

now pf. 
1 

was taken to b~ the last point on the frequency 
~na 

versus cycle curve for which the frequency was within 100/N 

percent of pL. Here N is the number of points in· the longest 

horizontal l.ine segment in the frequency versus cycle curve. 

This process was repeated until each of the line segments 

in the smoothed frequency versus cycle curve were separated 

by more than 400/N percent in frequency~ When the data were 

well resolved by the resonance technique so that each dHvA 

term in the oscillogram dominated for a substantial number 

of' cycles, Lhe frequencies of the longer horizontal l:i nP. 

segments in the resulting smoothed frequency versus cycle 
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curve were the frequency estimates which would be obtained 

by drawing straight lines through the reciprocal field versus 

cycle number points. One possible advantage of computing 

estimates for the slopes of long straight lines in this way 

is that by taking· weighted averages, some account is taken 

of how well small groups of points used to calculate each 

frequency estimate actually fit a straight line. Therefore, 

regions in which there were reading errors or in which 

ringing was important should contribute less to the final 

frequency value than regions where the data were good. 

For each oscillogram the plot of reciprocal field values 

versus cycle number (like Figure 41b) was always displayed 

automatically and the frequencies and end points for the 

horizontal lines of the smoothed frequency versus cycle curve 

(Figure 41d) were printed' out. Furthermore the frequencies 

corresponding to the ten highest peaks 'in the ideogram were 

always printed out so that those peaks in the ideogram which 

predicted the frequencies reliably could be determined by 

inspection. 

The final smoothed frequency versus cycle curve was 

also used to define specific portions of the data to be 

scanned through a certain range of frequencies in a succeed­

ing periodogram analysis. As was exp~a1ried on page 41, Lhe 

pcriodogram analysis was performed on elements of an array 

[uk3 and the elements of this array were the amplitudes of a 
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triangular wave taken at equally-spaced values of the recip-

rocal·magnetic field. If the element u , say, of the array 
m 

was to correspond to a reciprocal magnetic field value H s 

and if H- 1 L.. H- 1 .<::: H- 1 where H- 1 and H- 1
1 

are reciprocal 
n - s n+1 n n+ 

magnetic field values corresponding tosuccessive amplitude 

maxima and minima, 

u = 
m 

then u was calculated from the f6rmula 
m 

A. 1 - A. 1 
-'-'J..'-+ ___ ;;.o.J.. ( H-

-1 -1 s 
Hi+1 Hi 

-1) H. 
J.. 

+ A. 
J.. 

Here A. and A. 
1 

are the amplitudes read from the oscillogram 
J.. J..+ 

·at points i and i+1. About 10,000 elements u were calculated 
m 

in this way, so that on the average, about 10,000/N elements 

were stored for each cycle of a picture. which contained ~­

cycles. Successive elements of the sequence {uJ dif~ered by 

about (H- 1 (last cycle) - ~- 1 (first cycle))/10,000 ~ dH- 1 

which is the spacing in period at which ordinates are cal­

culated on the ~eriodogram. A smallest value of dH- 1 was 

1 
fixed by the storage capacity of the IBM 7074 compute~ and 

-I dH was always set equal to this ~mallest value. .in most 

cases the frequencies at which ordinates on the periodogram 

were computed were sufficiently closely spaced that the un-

certainty due to the spacing between the computed ordinates 

in the frequency at which a peak in the periodogram occurred 

\1e are indebted. to G. F. Covert, Experimental Physics 
Group XII for providing two autocoder subroutines by means 
of which the program could be :cun :Ln. the addstorage mode so 
that sufficient resolution could be obtained even though the 
FLAG monitor system was used. 
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was not important. 

For the data which were taken using the shunt ignitron 

to determine the orientation dependence of the slow frequency 

oscillations near [ooD , howeve~, the spacing between frequen­

cies at which ordinates were calculated on the .periodogram 

was sometimes as large as 0.7 percent even though about 

15,000 elements uk were used when these data were being 

processed. (An earlier version of the data processing program 

in which more storage space was available for [uk} was used 

for these data.) This uncertainty is enough to show up as 

scatter on a plot such as Figure 11a. None of the standard 

methods for interpolating between two ordinates on. either 

side of a periodogram peak to find a more accurate frequency 

for the peak (cf. Brunt 1931 p. 211, Whittaker and ·Robinson 

1956 p. 354) were tried. 'Inste~d, more precise frequency 

values were estimated by sketching a curve through the period­

ogram for a sine wave (Appendix E), and by taking the fre-

quency at which the peak occurred in this sketched curve as 

the frequency predicted by the periodogram. The position of 

this peak can certainly be estimated to at least 0.3 percent 

if the two calculated ordinates on either side of the peak 

are· spaced by 0.7 percent. 

The process by which certain·parts of the data were 

selected to be analyzed for a certain periodicity p 0 can be 

explained quite simply if it is remembered that because of 
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Equation 14 higher frequency terms are expected to dominate 

at higher fields. Thus, since oscillograms were always read 

from the high field end to the low field end, higher frequency 

terms are always expected to appear toward the beginning of 

the sequence of data points. We can picture the selection 

of the appropriate elements for the processing as sliding a 

fixed length line along straight lines connecting the mid­

points of horizontal lines on a plot which is like Figure 41d 

except that the abscissa is reciprocal field rathe~ than 

cycle number. For a scan carried out at frequency F 0 the 

abscissa of the central point on the sliding line is the 

point for which the ordinate of the line conne~ting the 

centers of adjacent horizontal line segments in the frequency 

versus reciprocal field relationship_ is F 0 • The length of 

the line was equal to the number of elements of the u array 

which corresponded to the longest horizontal line on the 

smoothed frequency versus cycle -curve ~ith the addition of a 

·sufficient number of elements so that all of the elements of 

the u array corresponding to the longest horizontal line on 

the smoothed frequency versus cycle curve were included for 

all scans carried out· at frequencies which did not differ 

from the frequency of the longest line on the smoothed fre­

quency versus cycle curve by more than 4/N x 100 percent.) 

Here N is the number of half cycles contained in the longest 

line on the smoothed frequency versus cycle curve. 
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Such a method of selecting only parts of .the u array 

for periodogram analysis at each frequency is necessary for 

oscillograms which contain a wide range of frequencies since 

the periodogram analysis yields peaks ·for a term F
1 

not only 

at the fundamental frequency F
1 

but also at each subharmonic 

F
1
/2,F

1
/J .... ; if one of these subharmonic peaks were to fall 

in the midst of peaks from lower frequency terms, it would 

needlessly complicate the interpretation of the periodogram. 

It was- thought that the addition of this feature would improve 

the periodogram analysis even when subharmonics were not 

important since at each position of the sliding line the data 

corresponding to field positions betwP.en the starting field 

and ending fields of the sliding line correspond mor~ closely 

to a pure sine wave than do all of the data taken together. 

However, except for cases in which complications due to 

subharmonics were important, it was found that the data 

~nalyses were not s~gnificantly improved by the addition of 

thi.s feature; tnose analyses which had previously peen con­

sidered reliable again yielded peaks at the same frequen­

cies, and the only change seemed to be that the relative 

strengths of peaks in the periodogram corresponding to low 

amplitude signals were increased. (This is because of the 

normalization discussed in Appendix E.) Those data for 

~1lch the periodogram could previously not be interpreterl 

still yielded_ periodograms which could not be inte·rpreted. 
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While it is disappointing in one respect that the data 

selection procedures did not seem to be effective in improv-

ing the reliability of the analyses (except where subharmonic 

complications were eliminated), it is also encouraging that 

for analyses which were previously considered reliable the 

frequencies of the periodogram peaks were not shif'ted when 

only parts of the 4ata were used to.compute the pe~iodogram 

ordinate at each frequency. Thus it would seem that the 

periodogram ordinate at frequency F
1 

is not appreciably 

affected by the presence of data arising from a term with 
' 

frequency F 2 which is well separated (~.20 percent in the 

case of Figure 41a) in frequency from F 1 . Such a conclu~ion 

could also be reached by examination of Figure 12. The 

periodogram in this figure was computed using all of the 

data and in spite of the fact that the amplitudes of lower 

frequency terms were quite large, periodogram ordinates 

between the two small higher frequency peaks are quite small. 
j 

Further examinations of the characteristics of the 

.Periodograms for signals which are amplitude modulated and 

contain a phase shift and in which the dominant frequency 

changes from one section of the data .to the next were carried 

out by applying the periodogram analysis to signals defined 

by Equation 17. One of these tests was carried out by keep-

ing all of the parameters in Equation 17 constant except Q. 

As Q was increased, small s~urious peaks appeared in addition 
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to the main peaks and the periodogram became successively 

more difficult to interpret. The signal in Figure 41a 

represents the largest.value of Q for which it was felt that 

the periodogram could be reliably interpreted since as Q·was 

further increased, the spurious peaks became almost as large 

as the main peaks. 

Appe~dix B: Two Component Beat Patterns 

In this appendix we will consider the frequencies which 

would be obtained from an ideogram or straight line method 

if each cycle maximum and minimum of the signal 

. ( 18) 

were measured. The. argument is a trivial extension of the 

argument used by Gold (1958) t~ the case of strong beating. 

It was never necessary to make quantitative use of these 

results, but a knowledge of their form was found to be use-

ful in assessing the reliability of data analysis which were· 

obtained. 

Cycle maxima and minima occur when dY 
d(l/H) = O . If 

x = 1/H, we can write 

( 19) 

The frequencies which are measured by ·measuring·cycle maxima 

and minima will depend on the rate at which zeros occur in 

the quantity (19). There are three cases to be considered. 
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If A F = F 1 - F 
2 

, we can write 

1 ~ __ ( 1.J zrr dx C sin 2(F 1x +;) 

where 

and 

Lf= 
_

1 
. A 2F 2 sin21f4Fx 

tan (-A
1

F
1 

+ A2F2cos2V~x) 
C is always greater than zero, so zeros in ~d occur when 

X 

(20) 

(21) 

(22) 

2TrF 1x +LP = n7r, n = 0,1,2,3, ... ,·and the repetition rate for 

cycle maxima is 

1 dn _1_ 3.1" 
2 dx = F 1 + 21T dx 

The repetition rate written out in detail is 

1 dn 
2 dx 

(23) 

Beat waists occur in~ (and in y) when cos~~Fx = -1, and 

beat maxima occur when cos2~AFx = 1 so from Equation 23 we 

find that the effective frequency at beat minimum is 

F . mln 

and the e±'±'ec ti vc t"requency at beat maximum i::; 

F max 

(24) 

(25) 
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the frequency which will be found by counting a large· number 

of cycles will be F 1 , since the maximum counting error due 

to changes in o/ is t cycle. 

We can rewrite Equation 20 as 

- -
1
- 9:Y = Csin( 27JF2x + .w') 211 dx T 

(26) 

where now - 7T/2.t.... o/'< 71/2, and by the preceding argument, 

the frequency F 2 will be found by counting a sufficient 

number of cycles. For this case, the relations analogous to 

Equations 24 and 25 are 

F . mJ..n 

F max 

where fJ. F' = F 2 - F 1 · 

Case J: A1F 1 = A2F 2 

C becomes 2cos7TAFx and o/becomes -7Tli.Fx, so we can 

write 

1 d [ F1 + F2 ] 
- 2/r * = 2cos1fLlFxsin 21T( 

2 
)x 

(2.?) 

(28) 

(29) 

The frequency which is measured in this case by counting a 

sufficient number.of cycles is the average frequency. 
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will be measured; and if A 1F 1 ~ A2F
2

, the subordinate fre-

quency F 2 will be measured. In either case, if F . :> 
mJ..n 

F max' the second term is lower in frequency than the measured 

term; but if F . < F , · the second term is higher in mJ..n max 

frequency than the measured term. 

In Figure 43 we have illustrated the sort of results 

which are obtained when different data analysis procedures 

are applied to a signal which is made up of two terms of 

nearly equal amplitude and frequency. In Figure 43a, the 

function 

y = 20 cos(2rr21x) + 19 cos(2~23x) 

has been approximated by connectine successive points of · 

amplitude maxima and minima with straight lines. The effect-

ive frequency which is found by. taking one half the.recip-

rocal of the difference between the x-values corresponding 

to successive points. of maximum and minimum amplitude is 

plotted as a function of cycle number in Figure 43b. In 

tld.s case dLjl/dx i$ very nearly. constant over most of the 

regions corresponding to the beat maxima in Figure 43a; in 

this case, the ideogram which is shown in Figure 43c contains 

a peak at the frequency 22.03 which is the effective fre-

quency over the beat maxima. ·The periodogram, however, (also 

shown in Figure 43c) yields two peaks at the correct frequen-

cies, alld a straight line fit to all of the cycle::;; yields 

the frequency 22.98 as is expected since.this case 
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· F~gure 4J. Illustrating the analys~s of a signal w~th 
almost zero beat wa~sts 

a. Waveform constructed by connec·t~ng the. po~nts 
of amplitude maxima and· minima of the signal 

y_= 20cos(2~21x) + 19cos(2~2Jx) 
with stra~ght lines. 

b. Effective frequency Feff versus half c'ycles. 
(Feff = 0.5/~x where ~x = distance between · 
adjacent cycle max~ma and m~n~ma.) 

c. Periodogram and ~deogram for the signal in 
F~gure 4Ja. The per~odograni peaks occur at 
frequencies of 23.016 and 20.972. The ideo-· 
gram peak occurs at a frequency of 22.032. 

: .. , 
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iDEOGRAM· 

19.0 2J.o 23.0 
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corr~sponds to case 2. 

It is evident even from the simple case illustrated 

in Figure 43 that the frequencies at which.peaks occur in 

the ideogram are not likely to give a reliable indication 

of the frequencies.in a signal which is composed of two or 

more terms which are beating. An example of a case in 

which the ideogram is even more misleading is shown in 

Figure 44. In this case a peak occurs in the ideogram not 

only at the frequency .corresponding to the effective fre­

quency at beat maximum, but also at a frequency for which 

df/dx is nearly zero. The signal in Figure 44 corresponds 

to case 1 so that d/(/dx = 0 when the effective frequency. 

is.equal to 10. 

Consideration of simple cases like those shown in 

Figure 43 and Figure 44 is useful because it predicts some 

of the characteristics which are found in the analyses of 

actual de Haas-van Alphen data. In the actual data, si~nals 

which consist of several uniform beat envelopes are almost 

never outained because of the resonant pickup circuit and 

the filters. Therefore the periodicity of the bea.t envelopes 

usually cannot be found by inspection, as it could be .in the 

signals we have discussed here. Instead it is necessary in 

many cases to rely on the computer analysis and to judge the 

reliability af the analysis by comparing the results obtained 

by differentmethods of analysis. However, the above 
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Illustrating the analysis of a waveform 
containing beats (and a "reading error") 

a. Waveform constructed by connecting the amplitude 
maxima and minima of the signal 

y = .01cos(2rr10x) + .005cos(2~9x) 
with straight lines 

b. Effective frequency Feff versus half cycles 
(Feff = 0.5/~x where ~x is the spacing between 
adjacent cycle maxima and minima.) 

c. Periodogram and ideogram for signal of Figure 
44a. The periodogram peaks occur at 9.997 and 
8.945. The ideogram peaks occur at F 1 = 9.719 
and F2 = 10.007. The frequencies F1 and F2 
are also ... indicated on Figure 44b •. 

··.·.·· 
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discussion shows that we expect spurious peaks in the· ideo­

gram 'vhenever two or more terms are beating although the 

periodogram yielded reliable analyses in these cases; there­

fore, when two closely-spaced peaks occur in the periodogram 

and one or more correspondi'ng peaks occur in the ideogram, 

it is likely that only the frequencies predicted by the 

periodogram are correct if there is. a discrepancy between 

the predictions of.the two methods. 

There is one further feature of Figure 44 which is of 

interest. .One complete cycle of the test ·signal (Figure 44a) 

has been skipped between half cycle numbers 44 and 45. The 

computer program which was used to analyze the signal in . 

Figure 44a was the same as the actual data processing program 

except that all· -of the input statements in the data· processing 

program were removed and replaced by a subroutine which 

generated th~ test signal. Therefore the omission of a 

cycle between half cycle numbers 44 and.45 corresponds to 

skipping an amplitude minimum in reading an oscillogram. 

Even though this error is present in the test signal, the 

periodogram analysis (Figure 44c) still predicts quite 

accurately the frequencies which make up the test signal. 

Other similar tests have been carried out which indicate 

that the periodogram analysis results are relatively insens­

itive to minor reading errors. (Many of the major reading 

errors which can occur are taken care of by the error 
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checking steps· in the input statements ·of the actual data 

processing program.) 

Appendix C: Magnetic Interaction Effects 

An effect which may be important in some of our data is 

a frequency modulation which occurs because the effective 

field acting on the electrons in a metal is the magnetic. 

induction field R = !:! + 41f!i and not t4e applied field H 

(Anderso~ and Gold 1963, Shoenberg 1962). The fact that 

replacing H by B in the argument of the .·sine function in 

Equation 12 qould in some cases lead to serious frequency 

modulation effects was first realized by Shoenberg (1962). 

(The replacement of H by B in the expression for the magnet-

ization was later justified by Pippard.(1963) by a thermody-

namical argument.) 

Shoenberg considered a single dHvA term 

M = M0 sin(2lfF/(H + 4T(M)·) (JO) 

Providing. that a = -4ITdM/dH is sufficiently small,_ Shoenberg 

has shown that the susceptibility dM/dH can be wri-LLeu 

dM/dH 

2 
(9a /8)cos(3·2~F/H) + •••• J (31) 

(The condition/h7TM/H-(<~1 has been used.) 

The various terms in Equation 31 represent ,~arrnu.ai.t.:::; . 

\vhich should not be confused w:i th those of Equation 12. For 

a~ t, the amplitudes of the harmonics in Equation 31 are. 
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considerably greater than those predicted in most cases by 

Equation 12. In addition, as a increases with decreasing 

temperature, the amplitude of the fundamental term does not 

increase linearly with a due to the a
2/8 term. If the 

amplitude a is large enough, 2 
the a /8 term leads to a non-

linear effective mass plot like those which were found for 

the d.and~2 oscillations for H//fj10] (Figures 19 ~nd 20). 

We can make a crude estimate of the amplitude a for the 

oL oscillations at 1 °K when the· effective mass data at [1 ~oJ 

were taken by using the formula 

a = 

Here r ~ .OJJ em is the sample radius and V is the amplitude 

of the observed signal in volts. Th.e quantity N"" 1000 is 

an effective number of'pickup coil turns linked by the sample 

flux. At~ 2 is the filter attenuation for 2 filters set to 

pass 70-140kHz, and Q is an effective pickup circtiit quality 

faGtor hy which the signal amplitude is enhanced at resonance. 

Studies of the response of our circuit to a time-varying 

signal by R. Phillips 1 lead to an estimate of Q --v- 15 . .For 

V""""' 1 volt and H ;-v 107 gauss/sec, we find a-....- .2 for the 

~oscillations at G 1 o] . so that the signal amplitude could 

have been affected by the frequency modulation effect and 

the tailirtg-off of tl1e effective mass plot in Figure 19 could 

1R. Phillips, Ames Laboratory of the A.E.C., Iowa State 
Uni.versity •. P.civate Communication, 1965. 
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be explained qualitatively in this way. 

The tailing-off of the effective mass plots in Figures 

19 and·20 could also be due to amplifier or filter saturation 

1vhich might have occurred for the stronger low temperature 

signals. In fact, examination of the data suggests that 

saturation in the electronics could be important. In Figure 

45 we have shown photographs of the ~·oscillations-and of 

their harmonics at tw·o different temperatures. The fact 

that the resonant envelope for each of these signals is 

distorted at the lowest temperatures would seem to indicate 

a saturation in the ~lectronics. However, for a fixed~ 

frequency input signal, the amplifiers and filters.which 

were used in this experiment are linear over the range of 

input voltages which were used. The linearity of these com-

ponents for a time-varying frequency has not been checked, 

but it seems unlikely that serious saturati~n effects could 

have occurred since our signals were well within the quoted 

range of acceptable input voltages. 

The distortion effects which are evident in the shape 

of the resonance envelopes in Figure 45 could also be due 

to an amplitude fluctuation effect which was clearly evident 

in ·!:;he eX.. oscillations near [oo 1] when they were s tud1ed 

using the shunt ignitron technique. A very long period 

fluctuation with a period extending over roughly 100 to 150 

cycles is shown in Figure 46a. An intermediate length 
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Figure 45. Illustrating the deterioration of the resonance 
envelopes for the ex. oscillations ·and their har­
monics as the temperature is lowered (All signals 
have been passed through two electronic filters 
set to pass frequencies in the range 70-140kHz, 
and the resonant frequency was. 105kHz.) 

a. oL oscillations for H// G 1 0] 
Temperature: 4.2°K 
Baseline at 81.51kG 
Calibration lines at intervals of 1.2J5kG 

b. r:X oscillations for H)/ Q.10] 
Temperature: 1.02°K 
Baseline at 81.51kG· 
Calibration lines at intervals of 1~235kG 

c. ~2 oscillations 
H 11 IT 1 o] 
Temperature: 2.5J°K 
Baseline at 86.45kG 
Calibration lines at intervals of 1.2J5kG 

d. o<2 oscillations 
H 11 [i 1 oJ 
Temperature: 1.02°K 
BasBline at 86.45kG 
Calibration lines at intervals of 1.2J5kG 

e. d2 oscillations 
H/1 fJ 11] 
Temperature: 4.02°K 
Baseline at 87.69kG 
Calibration lines at intervals of 1.2J5kG 

f. t:X:2 and o<3 oscillations 
H II [11 1] . . 
Temperature: 1.1J°K 
Baseline at 87.69kG 
Calibration lines at intervals of. 1'. 235kG 

(The signals at the low field end of this 
oscillogram are due to the ex.+ (3 oscillations. 
The~1 oscillations appear at the high field 
end of 'the oscillogram.) 



1 ..
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Figure 46. Beating patterns in thev( oscillations (Each of 
these signals was observed while the pulse coil 
current was decaying through a shunt ignitron; 
and for each of these pictures, a cathode fol~ 
lower was used. The resonant frequency in all 
cases is about 200kHz and all signals have been 
passed through five electronic filters set to 
attenuate frequencies below 150kHz.) 

a. Envelope of o<.. oscillations 
H near [001] 
Temperature: about 1°K 
Baseline at 67 . 93kG 
Calibration lines at intervals of 6.175kG 

b. Envelope of d- a scilla tions 
H about 2° from [001] 
Baseline at 56.81kG 
Calibration lines at intervals of 2.47kG 

c . o<oscillati ons 
H '""" 15° from (001] in the (110) plane 
Temperature about 1°K 
Baseline at 55 . 575kG 
Calibration lines at intervals of 1. 2J5kG 

d . Envelope of c:X... oscillations 
H "" 1 5° from [00 1] in the ( 11 0) plane 
Temperature : about 1°K 
Baseline at 4J . 225kG 
Calibration lines at intervals of 1 . 2J5kG 

e . Envelope of <?( oscillati ons 
Temperature: about 1°K 
Baseline at J8.29kG 
Calibration lines at intervals of 6.175kG 
H ab out 4° fr om [Qo 1] 
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fluctuation, with a period of 25 to JO cycles of the 

oscillations is ·shown in Figure 46b, and a much shorter 

period fluctuation is shown in Figure 46c. The amplitude 

fluctuations were not always regular, however, as is sho'~ 

in Figure 46d. The various experimental factors which could 

give rise to amplitude fluctuations (Shoenberg 1962) have not 

been considered in detail since it was known that 

D.M. Sparlin
1 

had also observed long beats in the 

o(oscillations when he studied·them by an entirely different 

method, i.e. the torque method. 

A "beat frequency" for the intermediate -t-ength fluctua-

tions was measured by plotting the reciprocal field positions 

at which beat maxima occurred versus integers (using data 

like that shown in Figure 46e). The points on these plots 

appeared to fall on straight lines, and it was found that 

the beat frequency is, to within the experimental accuracy, 

independent of magnetic field orientation for field directions 

near [oo 1] . The characteristics of these amplitude fluctua-

tions which have been examined to date are not inconsisten~ 

with an explanation based on an interaction with the slower 

6:." and a oscillation::> by means of which the amplitude of the 

o( oscillations is modulated at the i':r·equencies of these 

slower oscillations. Shoenberg has pointed out that such a 

1 D.M. Sparlin, now at Western Reserve University, 
Cleveland, Ohio. Private communication 1964. 
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modulation can arise when more than one frequency of oscilla-

tion is present and a low frequency term has a very large 

amplitude. 

It is possible that modulation e·ffec ts like those shown 

in Figure 46 could also explain the distorted resonance 

envelopes which were shown in Figure 45. Certainly th.ese 

modulation effects would become more serious as the tempera-

ture is lowered if they are due to Shoenberg's frequency 

modulation effect. 

Wh_en the side bands that arise from the frequency 

modulation effect are well separated in frequency from the 

fundamental terms, they are expected to appear as separate 

terms rather than .as a beating effect in the fundamental 

term. The c ombi:r;ta tion terms. oL + {3; ·o( - (1 , ex + 6
2

, and 

0(- $
2 

in Figure 9 are thought to arise in this way. There 

is an argument which would seem to indicate that, to first 

order in amplitude, the str~ngths of the sum and difference 

frequencies are proportional to th~ product of the amplitudes 

of the corresponding fundamental termi. The amplitudes of 

the first order side band components of the signal 

21TF 
A 1 sin(--------~--~--1 F--) 

H I lt1T A sin-------2 
2 H 

21TF 
. ( 1 ,.._, A s 1n ---

- 1 H 

( /4'17 A
2

{ -' ~ II) are proportional to A 1~ ( c:f,. Terman 194 3 p. 

578 and International Telephone and Telegraph Corporation 
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1956 p .. 1085). 

B.(H,F.)Texp(-cm.*(T + x.)/H) where Cis a constant, so that 
l . l l l 

we might expect the temperature dependence of either a sum 

or differ~nce frequency to be given to ~irst order in ampli­

tude by T2exp(-CT(m~ ~ m~)/H. 
The results of some measurements of the temperature 

dependence of the amplitude A of the difference term ~-p 

are s·ho;Jn in Figures 47 and 48. In Figure 47 w.e have plotted 

logA/T versus T as ivould be done for a fundamental term. In 

Figure 48 we have plotted log A/T
2 

versus T, and the· points 

on this plot may fit a straight line so.mewhat more closely 

than those in Figure 47. ·The mass for the (3 oscillations. is 

about 0. 9m. and that for the CX:. oscillations is about 0. 6m 
e e 

so that the first order approximation predicts that:a "cyclo-. 

tron mass tr value of m* ......., 1. 5m should be found fro:tp the slope 
- e 

of the.plot in Figure 48 if the ideas of the previous paragraph 

are at all applicable. 

There is one further observation·which should be discussed 

here. As was pointed out in Section II-B, the orbit masses 

which were derived from the temperature dependence of the 

amplitude of' the harmonics of theo<.oscillations at the [1·11] 

orientation (Figures 21 and 22) were consid~rably less than 

integral multiples of the fundamental mass of m* = 0.6m 
e 

(Figure 16). In view of the considerable errors which were 

possible in the meas~rement of both the masses of the funda-

mental and 6f the harmonic terms, the discrepancy in the mass 
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o: R>O 
f1: R<O 
m~_ 
-- 1.3 
me 

m* 
- (R<O) = 1.3s 
me . 

m"' - (H.>O} = I. 29 me . 

2.0 3.0 

Figure .47. Temperature dependence of the amplitude of the 
o<.- (3 oscillations for HI/ (i 11] • 
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Temperature dependence of the amplitude A of 
the d..- p oscillations· for H // D 11] plotted as 
if the amplitude of these oscillations were 
proportional .to the product of ·the amplitudes 
of the oL. and (3 oscillations 
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ratio may not be as serious as is indicated. It does 

however, seem to be somewhat outside the experimental error. 

One possible explanation for the observed mas~ ratios 

is that a distortion occurred in the electronics. For these 

data, the amplitude of the fundamental component was so large 

that at 1°K the output voltage of 15 volts peak-to-peak from 

an intermediate amplifier
1 

exceeded. the rated maximum peak 

output voltage by 5 volts. Therefore the response of this 

amplifier during the time immediately after the resonance 

envelope for the Q(oscillations, when the harmonics of the 

cxoscillations resonated, may have been modified. 

However, there are several indications. that the eff~cts 

of this large output sign~l may not have been really serious. 

The first of these .is that for a constant-frequency· signal, 

the amplifier in question does not begin to saturate until 

an output level of 90 volts is reached. The second is that 

even though the signal due to the o(oscillations below 2°K 

was so large that the rated maximum peak output voltage 

rating for the amplifier was exceeded, no serious saturation 

effects are evident in th~ temperature dependence of the 

amplitude of these oscillations (Figure 16). Thirdly, from 

examination of the temperature dependence of the amplitude 

of the second harmonic for rising and falling field, it is 

evident either that recovery from any saturation effects 

1Hewlett. Packard Model 450A,''Hewlett Packard Company, 
27~ Page Mill Road, Palu Alto, California 
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.occurred with quite a long time constant or that saturation 

effects were not serious. The temperature dependence of the 

amplitude of the second harmonic of the o<.- oscillations for· 

H // E 11] has been shown in Figure 21 and it is evident that 

the slopes of the rising and falling field data are·not 

markedly different. Furthermore; the slope for the temper-

ature dependence of the second harmonic seems to be already 

well-defined at higher temperatures where the electronic 

components were far from overload. It does not seem that the 

magnitudes of the discrepancies-in the harmonic mass ratios 

which were observed for H // {2 11] can be explained. by failure 

of the electronics. 

Using a slight generalization of Equation 30, a further 

examination of the effects of frequency modulation was 

carried out in an attempt to see whether the anomalous mass 

results for the harmonics of the o( oscillations at the Q 11] 

orientation could be explained in this way. 

thP. formula 

where 

3 
M = L_M. 

. 1 J J= 

We considered 

(32) 

The quantities in the argument of the sine function appear 

in Equation 12. TheM. represent harmonic terms like those 
J 

in Equation 12, and the A. are defined as 
J 
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. (33) 

like the .. amplitude factor (with g == 2) in the expression for 

magnetization from which Equation 12 was derived. 

By using the condition /47TM/H/ .:::.. L 1 and by making repeated 

use of the Bessel function expansions 

and 

oD· 

cos(usinx) == J 0 (u) + 2 L J 2n(u)cos2nx 
n==1 

.,a 

sin(usinx) == 2 ~ 
n=1 

J 2n_ 1(u)sin(2n-1)x 

(International Telephone and Tel~graph Corporation 1956 

p. 1065), we arrived at the following expansion for the 

't 8TT2MF/H2 ·. _quant1 y y = 

J 2 
8 .A.1.A.1 

l . ( 27TF 
Js1n }{ ~77 - 2 rr-1) 

]cos ( 
2~F - ~TT - 27T4) 

+ ••• l ( 2T/F 1 · 4 -') Jcos 2}{ - 4 rr- TT/l 

(34) 



(Terms to second order in A
1 

were retained in the expansion 

of each of the harmonics in Equation 32.) 

It is not altogether clear that the expansion in 

Equation 34.has been carried to high enough order to predict 

the amplitudes of the higher harmonics in Equation 32 reliably. 

Nevertheless~ the temperature dependence predicted by this . 

formula for values of m* and S appropriate to the o{oscilla-

tions at Q 11] was found by direct complitation for values of 

N (Equation 33) ranging from 2 to 6. For m*/m = 0.6 and ·e 

S = 1.1 these values of N correspond at T = l°K to amplitudes 

of about .2 to .6 respectively for the ·quantity y. (since 

the amplitude {dM/dH/ is equal to }2VFM0 /H2/, the amplitude 

of the fundamental harmonic of y is a factor of 4lflarger 

than that of the fundamental harmonic of dM/dH. 

The amplitudes of the harmonic components of y were 

calculated for values of T between 1 and 4°K, and these 

amplitudes were then plotted on semi log paper just as the 

actual· dHvA orbit mass da tn \V'ere, The slopes of .straight 

lines on these plots were then calculated. Even for N = 5, 

the slope of the plot for the calculated temperature 

dependence of the amplitude for the second harmonic was 

reduced by only 8 percent below the value predicted without 

frequency modulation. For N = 5 the calculated amplitude 

for the fundamental component at 1°K lies about JO percent 

below the amplitude predicted by a stra1ght line through 
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the higher temperature po~nts. Taken together, these two 

results are inconsistent with the experimental data which 

were shown in Figures 15 and 21. Thus the formula given by 

Equation 34 is not sufficient to account quantitatively for 

the low mass valu.e measured for the0(2 oscillations at the 

[111] orientation. This fact is not too surprising, and may 

merely indicate that our approach is oversimplified. However, 

any further investigations to see how much the frequency 

modulation effect can affect mass measurements for harmonic 

components has been left for further study. 

The values of m* and S for the orbit mass data for the 

~oscillations a. t (Figure 19) are 0.67m and 1.2m 
e e 

respectively, arid we compared the low temperature amplitude-

damping effects predicted by the previous calculations with 

the damping observed experimentally for these oscillations. 

We previously estimated an absolute amplitude of 0.2 for· 

the eX. oscillations at Q 1 o] and from a drawing like Figure 

19,.we estimate that the amplitude of the 1°K pnint is about 

20 percent lower than .i::; J:J.L'euicted by a straJ.ght line through 

the higher temperature points. The corresponding plot (N=2) 

for points calculated from Equation 34 only shows an 8 

percent reduction in .the amplitude at 1°K. 

In summary, although it seems that the qualitative 

features of the anomalies in the mass measurements for the 

o\.. osciLLations and their harmonics at B 11] and 0 10] can 

' . -~ . -. .>~-<:?. c;c .» ''' _ , .. , 0 .~ f J, 
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be explained by the frequency modulatipn effect, further 

work would be required for a quantitative explanatio~. 

Appendix D: The Electron Jack and Hole Octahedron Programs 

The program which was used to calculate orbit areas on 

the electron jack and hole octahedron surfaces consisted of 

a main. curve-tracing program and a function subroutine. The 

main program traced out the curve of intersection between 

the plane of the orbit and a surface defined by a relation 

F(x,y,z) = 0. The function subroutine evaluated F(x,y,z) 

and its derivatives with respect to Cartesian coordinates 

y' and z' in the plane of the orbit. 

The plane of the orbit was an x' =constant plane.of 

an x'y'z' coordinate system which was rotated from the 

original xyz coordinate system by the Euler angles f, e 'r 
(Goldstein 1953). The function F(x,y,z) was evaluated 

at a point (y~,z~) (read as input) and then at successive 

points (y! ,z') where y! = y' + i,Ay'. 
l 0 l 0 

If the function changed 

sign between successive steps before forty steps had been 

taken, the curve tracing was initiated. The curve of 

intersaction of the plane of the orbit with the surface 

~xJ,z) = 0 was traced by steps along the tangent line. 

After each atep, coordinates y' jz' wAre f'onnd for which 

F(x,y,z) L 2 X 10-5 was satisfied. This was done by 

Newton's method using the component of the normal derivative 

to the Aurf.aca which lay in the plane of the orbit. 
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The relations 

Yj_+1 = Yi_ -
y! ,z' 

]_ 
= z! 

]_ 

= z! 
]_ [ 

dF !r:aF 2 
- F(x,y,z)&z'/1(~,) + u~L)2 J . 

OZ I 
y = y! ,z = z! 

]_ . ]_ 

were used to. replace a point y! ,z! by a point y' z' . 
l· ]_ i+ 1 ' i+ 1 

which was closer to the surface. Steps along the tangent 

direction from a point y~,z~ to a pointy' z' were made 
J J j+1' j+1 

according to the formulas 

= y'.· -
J y'.,z' 

J = z '· 
J 

and 

z '· 
J y'. ,z'. = 

J 
z '. 

J 

The step length s ~.002 was read as input. 

For the functions which we used to define the surfaces, 

[F(x,y,z,p) J inside surface > LF(x,y,z,p) ]outside surface 

so that the steps along the tangent vector def'ine a counter-

clockwise path around the orbit. Therefore the orbit areas 

were calculated from the formula 

Area = .l.[L [:z! (y! -2 . l+1 ]_ . ]_ 
Y ' ) + y' (z' _ i +1 i+1 i+1 

The sum is over all ·points on the orbit. 

Appendix E: Periodogram Analysis 

The lfuittaker and Robinson (1956) procedure to test a 
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sequence of numbers [uk1 for a periodicity whose period 

extends over p consecutive elements of the sequence can be 

illustrated by arranging the elements of the sequence in a 

Bu~s-~allot table. To .test a sequence· of m terms for a 

periodicity p, this table would be constructed as follows: 

SUMS 

u, 

u p+1 

u . 
2p+1 

u mp-p+1 

u, 

u2 

u p+2 

u 2p+2 

u mp-p+2 

UJ ....... 
u 

p+J ....... 
u 

2p+J .. ·• .... 

u mp-p+J 

u p 

u2p 

UJp 

u mp 

·u 
p 

If there is a component with periodicity p in the data, 

this component will pass through all phases of one complete 

period in the course of one horizontal row, and will be in 

the same phase at each of the terms in one vertical column. 

Therefore the part of the signal which is of period p will 

appear with m-fold amplitude in the column sums U .• 
1. 

periodicity p exists in the data, the standard deviation of 

the means of the column sums will be much larger than when 

a periodicity of this period does not exist. 

The periodogram analyois consisted of setting up a 

Buy$-BalJot tabla for each tesL period p and then finding 

the standard deviations U' of the means of the column sums. . p 

Since different elements of the u sequence were used for each 

period test (see Append~x A), it wa5 n~~essary to normalize 
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each o- by dividing by the standard deviation of the elements p . 

of the u sequence which were used at each step. \fuen v is p 

plotted versus frequency F = VP to make a periodogram, peaks 

in·uc occur at frequency values corresponding to periodic 
. p 

components 1-vhich exist in the data. 

lfuittaker and Robinson (1956) show that if the elements 

of the sequence [uk~ ·are amplitudes. of Asin(2trx/T) taken at 

equally-spaced values of x, the intensity distribution I(p) 

on the periodogram is given by 

I(p) = 1 
2 

. 2 
Sln 

mlTp 
T 

!E. Ill . 2 
sln T 

The characteristics .of this function are well-known from the 

theory of ideal diffraction gratings (cf. Jenkins and lfuite 

1957 p. 330). 

In an attempt to improve our analysis procedures, 

several variations of the above method were tried. Kendall 

(1946) states that for periodogram analysis of his economic 

time series, the lfuittaker periodogram was inferior to a 

periodogram defined by 

where 

A(p) = 
2 p-l . 2Tr" z::- u c 0 s .=..1.L.!. 

mp j=O j+1 p 
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and 

B(p) = 
2 p- 1 2Tf" 2:" U . s in--J 

mp j=O J+1 p 

(The U. are the column sums in the Buys-Ballot table.) 
J 

; =:; ~ 

However, for our dat~, this method seemed to work no better 

than the Whittaker method. 

Rudra (1955) has pointed out that the variance of the 

elements within each column of the Buys-Ballot table should 

be a minimum when the test period is near a true periodicity 

in the data and has suggested that periodocities might be 

better detected by dividing the variance of the column sums 

of the Buys-Ballot table by the variances of the elements 

within each column.. For our data the minima in the within 

column variances turned out to be too ·shallow to be useful. 

Periodogram analysis was used rather than the well-known 

power spectrum methods described by Blackman and Tukey (1959) 

because in an early power spectrum program we were not able 

to obtain reproducible results when the interval over which 

lagged·products were calculated was changed. We did not 

investigate further the reason for this difficulty. 

Appendix F: Orbit Masses for the Empirical Fermi Surface 

As was discussed on page 139, there is no reason to 

believe that the functions F and G which were used to def'ine 

the shape of the Fermi surface would also predict the masses 

correctly. The:.r-·e is 7 however, an argument . which suggests 

I ., 
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that it might be possible to calculate orbit masses to. 1v-ithin 

a constant scaling factor if the shape of the Fermi surface 

were fitted exactly. The shape of the Fermi surface is given 

by the solutions of the equation 

W = E(k ,k ,k ) - EF .= 0 
X y Z 

where E(k ,k ,k ) is the band structure. 
X y Z 

any knowledge of E, let 

F = H(k ,k ,k ) - C = 0 
X y Z 

In the absence of 

(c = constant) represent a geometrical model for the. Fer~i 

surface w·hich has been fitted to experimental data. 

surfaces \if and F coincide, we must have 

at all points on the surface at which .;;>Hjdk f 0. 
z 

If the 

If we can 

assume that there is a differentiable function K(k ,k ,k ) x·y z 

such that 

and 

c:)E = 
dk y 

K(k k k )a.!i_ 
x' y' z &k . y 

dL·_ 
'k - K(k ,k ,k )~~ 

d Z X Y Z ~- Z 

at all points on the surface, then 

dE ( )dH "'k = K k ,k ,k 'k 
~ ~ X y Z o ~ 

at all points on the surface. (Here k..L is the k. discussed 
n 



206 

8 ) If d 2E d d 2H t . th 
on page . "")k ;;;Jk an dk &k are con 1nuous on e sur-

Q y z; y z 
face, then the tangential derivatives of K(k ,k ,k ) on the 

X y Z 

surface are zero so that K(k ,k k ) 
X y Z 

takes on a constant 

value everywhere on the surface. If the conditions for 

this argument are actually satisfied, it should be possible 

to calculate masses for different orbits to within a scaling 

factor K = constant from integrals like those in Equation 6. 

We did not investigate further the validity of the 

above argument, but instead put the usefulness of such an 

argument to an experimental test. The q_uantities 

f dkt 
m' = /~H/ak..L{ 

were easy to compute so they were calculated as the orbits 

were traced to find the extremal areas. There are some 

feature~ of the resulting m' versus kH plots for the electron 

jack function which would be expected to be qualitatively 

similar to the true m* versus kH plots if such plots could 

be obtained. These similarities arise because at many 

orientations a minimum number of m* minima is fixed by the 

nmmber of times a plane kH =constant is tangent to a'neck 

as kH is varied from zero to its maximum value. A mass 

minimum should occur between two kH values for which tangency 

occurs (unless one of these points of tangency occurs for 

kH = kF where kF is the extension of the Fermi surface along 

the field direction) (cf. Koch, Stradling, and Kip 1964) •. 
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Furthermore, both the experimental mass m* and the mass m'· 

for the c~ntral orbit on· the electron jack are expected to 

rise steeply as an angle is approached for which the central 

section through the electoon jack is tangent to a neck. 

The orientation dependence of the extremal values of 

m' which were p~cked off the plots of m' versus kH are shown 

in Figure 49b, and we have reproduced Figure 40 in Figure 

49a. It is evident that except for qualitative similarities 

of the orientation dependence which are expected to follow 

from the shape of the jack, the orientation dependence of 

m' (Figure 49b) is.not at all like tha~ of m* (Figure 49a). 

It would seem that the argument that orbit masses can be 

calculated to within a scaling factor is invalid. One 

difficulty in the. argument arises when saddle points occur. 

Again, we have assumed that the two functions describe pre-

cisely the same surface. Because of experimental uncertain-

ties we should really assume that the function F would 

represent the surface in some. least squares sense. 

Appendix G: Some Noncentral Areas for the Electron·Jack 

Knowledge of the dependence of the cross-sectional 

area of the. FP.rmi surface on distance in ~-space along the 

maenP.tin field direction is of interest for several reasons. 

The most important reason for this study is, of course, that 

the frequencies of de Haas-van·Alphen oscillations are 

\ 
t 
I' 

\ 
I 
\ 

~ 
I 



?igure 49. Empirical and calculated orbit masses 

a. Cyclotron resonance mass results of 1valsh ( 1964) (See caption to 
Figure 40.) 

b. Orientation dependence of some of the (scaled) "orbit masses" for the 
empirical model; heavy solid lines: orbits '\vi th both extremal area 
and extremal mass; light solid lines : orbits with extremal mass only; 
dotted lines :. orbits having an extremal area for which 111' is a 
relatively slowly-varying function of k 2 • These orbits were included 
mainly to make this plot have some1vha t the same form as Figure 50a, 
even though there are great differences between the two plots 
numerically. Quantities m' calculated using the electron jack function 
have been scaled so that m' for the central orbit on the electron jack 
at [111] is equal to the corresponding orbit mass as found by cyclotron 
resonance. C:~uantities m' calculated using the hole octahedron function 
were scaled EO that m' for the central orbit on the hole octahedron 
at 0 11] agrees '\vi th 1valsh' s value for this orbit. 

N 
0 
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order to further illustrate the origin of some of the de Haas-

van Alphen terms predicted by the empirical model (Figure 38), 

- 1ve have· included in Figure 50 some examples of computed plots 

Using the frequency values which label 

the points with extremal area, areas on these plots can be 

correlated with predicted frequencies on Figure J8. 

The plots in Figure 50 also give some idea of the rela­

tive magnitudes of the curvature factors [d 2~/dkH2}-t 
(Equat~on 12) for the various orbits. As was discussed in 

Chapter V, there is some uncertainty as to which of two 

possible orbits on the electron jack corresponds t6 the ~ 

oscillations. The predicted curvature factors for these two 

orbits do not appear to be vastly different (Figure· 50a) so 

that a choice for the appropriate orbit for the# oscillations 

cannot be made on the basis of the size of the curvature 

factor. 

Munarin and Marcus (1966) have observed an oscillatory 

magnetoresistive size effect in gallium which is periodic in 

H rather than YH4 These so-called Sondheimer oscillations 

(Sondheimer · 1950) have been interpreted (Munarin and Marcus 

1966, Bloomfield 1966) in terms of orbits on approximately 

parabolic sheets of· li'ermi surface for whichdMdkH is ~on-
. 1 

::;tant ... Lo.ucks has observed that there are also orbits on 

1Dr. T. Loucks, Physics Department, Io>va State Univer­
sity of Science at;~-d Technology. Private Communi.ca_:t.ion 1966. 



Figure 50. 

a. 

b. 
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Some plots of· orbit area ~(kTT) versus kH for 
the model electron jack. Lig';ht sol:i.d lines 
have been drawn through the calculated points. 
Extremal areas are labeled with the correspon­
ding dHvA frequencies F. Dashed lines give 
the estimated behavior of the curves where no 
calculations were carried out. Heavy solid 
lines are drawn '\vhere d.¢'ijdkH is constant .. 

r.; . .., 
kH II I..! 11j . Rough values of the curvature fac.tors 
are indica ted ±'or ·the two orbits which predict 
frequencies near that of the F oscillations. 

kH // G-1 oJ 

c. kH in Ci":o) plane 12° from G1o] 
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his electron jack model :for tungsten (Loucks 1966) :for which 

dk/dkH = constant and has suggested that such oscillations 

could possibly be observed in tungsten. 

There are orbits on our empirical model for which 

.dk/C>kH. = constant also, and some o:f these are shown on 

Figure 50. Of course, for some· of these orbits, the linear 

ciependenc e o:f k on kH may vanish i:f. the .(11 o> dimensions o:f 

the jack are reduced slightly (see Chapter 5). (However, 

the orbits on Loucks' model which correspond to orbits·in 

the linear A- versus kH region o:f our model labeled 11 a 11 also 

have dh/dkH =constant.) 
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Appendix H: Data Analysis, Fortran Program 

for IBM 7074 Computer 
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~CRTRAN,COMPILE• MAIN. 

C FT 
C. PERIODOGRA~ ANALYSIS FOR DE HAAS-VAN ALPHEN EFFECT DATA 
C THIS PRUGRA~ WILL CNLY WORK IF EVERY HALF CYCLE OR MORE IS REAC, ANY 
C NUMBER OF READINGS MAY BE TAKEN RETWEEN THE MAX AND ~I~ CF THE CYCLES e~T 
C THE MAX AND ~IN MUST BE REAU. ALSO ,THE FIRST TWO READINGS ON A PICTUR( 
C MUST BE A MAX ANO A MIN AND THE LAST TWO READINGS ~UST RE A MAX ANO Ml~ 
C NTAD IS THE NUMRER OF CYCLES WHICH ARE TO BE ADDED IN 
C SUCCESSION TO MAKE UP ONE TERM FOR THE PERIODOGRA~ ANALYSIS 
C NL =NO. OF POINTS PER LINE 
c 
C 5 IDENTICAL NUMBERS CHANGES THE CALIBRATION LI~E I~ CO~PUTING 
c 
C 10 IDENTICAL NUMRERS ENOS A DATA SET 
c 

OI~ENSION INOEI10l,WERR(30l 
OI~ENSION XLAB1(4),YLA81(4l,XLAB214l,YLAB214l,PIX(4l,TITLE(4) 
DIMENSION Ull002l,SM(500l,NLI10l,FACC(250l, 

lHBOXI25Ql,FLEVI36l,NLEVl(30),NLEV2130),WACC(250),SLMHl(275l 
0 I MENS ION CONA ( 250 l, CONC ( 250 l, POSA 1 ( 2 50 l, FLDl ( 2 50 l , POS B 1 ( 2 50 l , 

1XPOS1(250l,CYCLEI250l,RH(25Dl,SAMP(25Dl,RERR(250),HILI250l 
C I to~, f. NS I UN F L D ( 3 l , POS A ( ~ l , POS B ( 3 l , FA CA ( 3 l , F AC ( 3 l , F ACB ( 3 l , AMP ( 3 l , 

1FACP(3l,FACXI3l,XPDSI3l 
EQUIVALENCE IU(ll,RERRI1ll,IUI25ll,POSA111ll, 

11UI5D1l,FLD1(1) ),(U(751l,HILI1ll ,(HILI1l,HB0X(l)l 
EQUIVALENCE ISMill,CONAil)l,(CONAill,POS81(1ll, 

1! S ~I 2 51 l, CONC: 11 l l, ( CONC ( 1 l, XPO S 1! ll l 
CONP=.5 
NUPLI=l002 
READ 1179,XLABl,YLABl,XLAB2,YLAB2 

1179 FORMAT(l6A5) 
11R AEAO 119.ALPHA,HILIN,COILK,HZERU,PIX,TITLE 
119 FORMAT IF3.l,F6.1,FB.2,F7.D,RA5) . 

I',SIG1=0 
MSIG2=1l 
MTFST = 0 
M8 7 = 0 
RHTES=O. H!STCG 
co 1190 I1-4,9 

1190 NL(l1l=Il+8 
IF (ALPHA) 1?0,117,120 FT 52 

117 STOP BR FT 46 
120 READ 1DOO,NL11l,NL12l,NL(3l,NTAD,FL1oFL2,FLJ,NINC,FMINR,FMAXR,~BOX 

1000 FORMAT(t.I5.10X,3F5.0,!5,2El0.4,13l . 
(.ALL U!'LUKIU,lll 
IF(NTA0l115,115,116 

115 NTA0=1 
116 FTAO=NTfiD 

!F(M80Xl116l,ll61,1162 
1161 ~ROX=1 

1162 MBOX=MBOX 
PRINT 121, PIX,TITLE,aLPHA,COILK,HlERO,HILIN 

121 FORMAT(41HlDE HAAS-VAN ALPHEN CO~PUTATIDNS--PICTURE3X,8A5// 
l'lH ALPHA =F5.l,AX,3HK =Fl0.2,7X,7HHZERO =Fl0.5,8X,AHHILINE =F6~ll 

FN = NINC 
HWP = FN/?. 
HILIN = HILIN - ALPHA 
NHWP = HWP 

Fortran Program 1 Data anal.ysis · 

! 
I 

\ 

I 
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J 1 = 0 
I"STO = 0 

122 READ 1?3,1POSAI12l,FACAII2loFLOI12l,FACII2l,POSBII2l; 
1FACtlll2l 1 AMPI12l,FACPII2loXPOSII2loFACXI12lol2 =1o3l 

123 FORMATI151F3.0,F2.0ll 
IFIMSTOl1231,1233,1231 

1731 AP=POSA!ll•FACII11l 
llP=POSR I 1 l •FACB Ill 
IFIAP-RPl1232,1241, 1732 

1232 HILIN = HILIN -ALPHA 
1233 no 1239 13 =1,3 

IIP=POSAI 13l•FACAI 131 
fli'=PDSE\113l•FACBI 13) 
IFIAP-BPl1238,1234,1238 

1234 IFI3 -!311235,1235,1236 
1235 MSTO = I 

GO TC 122 
1236 1"1 = 13 +I 

AP=POSA!Mil•FACAIMil 
8P=POSBIM1l•FACfll Mil 
IFIAP-BP.l 1237 1 1241,1237 

1237 HILIN = Hll!N - ALPHA 
GU TC 1239 

1238 J1= J1+ 1 
r<STO = U 
POSA1(J1l = POSA1!3l•FACAI!3l 
FLDliJ1l = FLOII3l•FACII31 
POSB11J1l = POSBII3l•FACilll3l 
SAI<P(Jll = AMP( I3l•FACPI 131 
XPCS11Jll= XPOSI 131•FACXI 131 
HILIJ1l = HILIN 
1'87 = 1'.87 + 1 
~0 TO I 1239,1308 l ,M87 

1~0A M87 = 1 
RERRIJ1l = 0. 
K20 = J1-1 
IFIFL011J1l- FLD11K20ll1310,1309,1309 

1304 I'TEST = MTEST + 1 
RF.RRIJil = 1. 

1310 TFIXPOS11Jil ·- XPOSliK20ll13llo1314,1312 
1311 MSIG1 = -1 

GU TG 1313 
1312 I'SIG1 = +1 
1313 !FIMSIG1 + MSIG2l 1315, 1314, 1315 
1314 MTESJ = MTEST + 1 

11Ef\11 I J1 l = L 
1315 I'SIG2 = MSIG1 
1 2 39 CON T I NU E 
1240 GO TC 122 
17.41 NT = J1 

J2 = 0 
CO 1245 14 = l,NHWP 
NS TAR= I 4 
NENO = 14 + NINC - 1 
FLP = O. 
SUM1 = O. 
SUM2 = 0 • 
CO 1244 15 NSfAM,NENO 
IF( HILII5l- Hllll4ll1243,1242,l243 

1242 FLP = FLP+l, 

Fortran Program 1 (continued} 
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1243 SU1'1 SUMt + IIHILI15l-HILI14ll/ALPHA +t.l•POSA1115l. 
1244 SU1'.2 SUM2 + I IHILII5)-HILII4) )/ALPHA +t.l•POSBll 15) 

1 + I IHILI14l-HILI 15l l/ALPHAl•POSA1115l 
SUI"I SUMl/FLP 
SU1"2 SUM2/FN 
J2 : J2 +1 

1245 RHIJ2l = 1./ICOILK•IHILIJ2l+ALPHA•I IFLD11J2l-SUM2l/ISU1"1- SUM2lll. 
1+HlEROl 

NSTAR = NHWP+1 
NEND = NT - NHWP 
FNINC = NINC 
DO 12<;1 16 = NSTAR,NEND 
SUf'll = O. 
SU1'2 = 0. 
F L.P I= 0. 
s Yl 0. 
SX1 O. 
SX7. = O. 
SX3 = 0. 
SX4 = 0. 
SXY1= O. 
SXY2= O. 
NFlOT 16 -NHWP 
NTOP = 16 +NHWP 
HP?. = n. 
FLP3 = o. 
DO 17.50 17 = NBOT,NTOP 
IF I HILI 16)- HILl 17 l l t 24 6, t 24 7, t 24 8 

1246 Ct = 1. 
C2 = 0. 
C3 = o. 
FLPI = FLP1 + 1. 
GO TC 1249 

1247 Cl = o. 
C2 = I. 
c 3 : o. 
FLP2 = FLP2 + t. 
GU TC 124'1 

1248 Ct = O. 
C2 = O. 
c 3 : 1. 
FLP3 = FLP3 +1. 

1249 SUMt = SUM1 + C1 •POSFllll7l+ C2• POSAt I 17l 
SUM2 = SUM2 + C3 •POSA1117l+ C2• POSB1117l 
XA = XPOS11!7) -XPOS1116l 
SYl = SYI +FUHII7l 
S)(l = SXl +Xh 
X2 = XA•XA 
SX2 = SX2 + X2 
SX3= SX3 +X2•XA 
SX4 = SX4 + X2•X2 
SXY1 SX.YI + FLC1117l•XA 

1250 SXY? SXY2 + FLC1 I 17l•X2 
SUMI SUM1/IFLP1+ FLP2l 
SUM2 SUM2/IFLP3+ FLP2l 
SX22 SX2•SX2 
SX32 SX1•SX3 
SX1:? Sx'1•SX1 
SX23 SX22•SX2 
Cl ; SY1•S¥?•S¥~ + ~Xl•~X1tSXY? t SX7.•SX3•SXYl 

J;t'ortram Program ·1 (continued-) 
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c 
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1 -SY1•SX12 - SXYI•SX1•SX4 - SXY2•SX22 
C2 = FNINC•SX2•SX4 +2.•SX1•SX3•SX2 -FNINC•SX32 ~SX12•SX4 -SX23 
FRAC = OliC2 
J2 = J2 + 1 

1251 ~HIJ2l = 1./!COILK•IHILIJ2l+ALPHA•IIFRAC- SUM2l/ISUM1- SU~2lll 
l+HZF.ROl 

NST4R = NT-NHWP+l 
NENO = NT 
00 1257 18 = NSTAR~NENO 
SUM1 0.0 
sur2 o.o· 
FLPl = 0.0 
FLP2 = 0.0 
FLP3 = 0.0 
DO 1256 19 = NSTAR,NEND 
IFIHIL118l- HILII'lll1252,1253,1254 

1252 C1 = 1. 
C2 = o. 
C3 = o. 
FLP1 =FLP1+ 1. 
GO TO 12';5 

1253 C1 = 0. 
C2 = 1. 
c 3 = o. 
FLP2 = FLI'2 +1. 
r.o TO 1255 

1254 Cl = o. 
C2 = 0. 
c 3 = 1. 
FLP3 FLP3 + 1. 

125'> SlJt-'1 SUI"l + C1•POSI:!ltl9l+ L£•~USAll19l 
1256 SUM2 = SUM2 + C3•POSA11 19l+ C2•POSB11 I'll 

SUM1 = SUM1/(FLP1 + FLP2l 
SU1"7 = SUM2/(FLP3 + FLP2J 
J2 = J2 +1 

1257 RHIJ2l = 1./(COILK•(HILIJ2l+ALPHA~IIFLD11J2l-SUM2l/ISU~1- SU1"7lll 
l +HZE RO l 

PART TWO- MULTIPLE LINE FIT 

129'1 

NT=TCTAL NO. OF POINTS. 
PRINT 1?99,HIL!N 
FORMATI16H BOTTOM LINE 
K1=1 
K4=•H-1 
CYCL~IL) = l· 
DO 1306 J=7,K4 

F6 .ll 

1300 !F(SAI•IP(Jl-SAMP(J-1ll1301,1303,1102 
1301 IFISAMP(Jl-SAMP(J+1ll1303,1306,1306 
1102 IFISAMP(Jl-SAMP(J+1lll306,1306,1103 
1303 K2=J . 

DO 1304 K=K1,K7. 
1304 CYCLf(Kl = CYCLEIK1l +(RH!Kl-RHIK1ll/(RHIK2l-RH(K1ll 
1105 K1~K7. 

1306 CONTINUE 
JFIK1-K4l7040,7050,7050 

7040 00 7041 L1=Kl,K4 
7041 CYCLEIL1l=CYCLEIK1l+(Rllll1l-RHIK1li/IRHIK~l-RH(Klll 
7050 CYCLEINTl=CYCLEIK4l+1. 

DO 902 I< a 1oNT 
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IFI~HIKl-RHTESl1258,1?.58,1259 HISTCG 
125R RERR(Kl=l. 

~TEST=MTEST+1 H!STCG 
1259 HHTF.S=HHIKl H!STCG 
902 CONTINUE 

IFI~TEST l 1322,1322, 1320 
1320 PRINT R33,MTEST 
833 FOHMATI12H THERE WERE !4,15H HEADING ERRORS/6X,1CHFIELD LINE 

18X,~HTUP LINF.7X,11HBOTTOM LINE5X,11H X POSITION4X,16HRECIPRGCAL FI 
2ELDl 

DU 1321 K=1 ,NT 
PRINT 90R2,FLD11Kl,POSA11K),POSR1(Kl,XPOS11Kl,RH(K) 
IF ( R ERR ( K l l 13 ?1, 1321, 14 00 

1400 PI\ INT '>005 
9085 FORMAT(6H ERROR) 
9082 FORMAT!1H 5E16.4) 
1~21 CONTINUE 

GC TO 118 
132?. KS=2600000000 

XMIN=CYCLEl1l 
YMIN=RH! 1 l 
CALL GRAPH INT, CYCLE ,RH,KS, 7, 15., 10. ,0., XMIN,O. ,YMIII,XLA81 oi'LAB1, 

1PIX,TITLEl 
CALL LLSID!CONP,FL1,FL2oFL3,MBOX,NT,NL,RH,CYCLE,FMIN,F~AX,1,FACC, 

1WACC,HBOX,NBO,OFBOX,JMOMI,JMOMAl 
RHMA=RHINTl 
RH~I=RH(1) 

NRHC=1 
MLINS=O 
FTT~=.OI 

FTM=FTTM 
JST=JMCMI 
JEN=JMOMA 

140S ~LINS=~LINS+I 
CALL WhVE(FACC,W~CC,FLEV,NLEV1,NLEV2,JST,J(N,JC,FT~,NT,WERRl 
IFIMLINS-111411,1410,1411 

1410 CALL YMIMA(FACC,NT,FACCL,FACCB,INOE,NSSS,1C,~1,ll 

PRINT 1406,FLEV! l),FLEV!JCl 
1406 FORMAT!S8HK FIRST PciiNT ON FREQUENCY VS. CYCLE CUR~E HAS FREQUENCY 

1= E12.5/57H LhST POINT ON FREQUENCY VS. CYCLE CURVE HAS FREQUENCY 
£= E12.5l 
CON=.5•IRH~A+RHMil 
CALL SCLE!FACC,RHMA,RHMI~FACCB,FACCL,CON,NT,.5l 
CALL GRAPHINT,CYCLE,FACC,KS,4,0.0l 

1411 LONG=O 
IF I MLINS-4 l 14 i2, 1425,1425 

147.5 ~FTM=lOO.oFTM 

PRINT 1426,PFTM 
1426 FORM~T(36HK FRF.OUENCY PROFILE ESTIMATES WITH F8.4,2CH PERCENT 

!RESOLUTION /6X,9hFREOUENCY9X,5HFIRST5X,4HLAST7X,5HERROR/24X, 
25HCYCLf5X,5HCYCLEl 

1412 DU 1440 J5=1,JC 
L[N=NLEV21J5l-NLEVl(J5l 
IF!LEN-LONGl1435,1435,1430 

1430 LONG=L[N 
JLON=J5 
JFIRC=NLEV1!J5l 
JLASC=NLEV?.IJ5) 

1435 IF!MLINS-411437,1436,1436 
14 36 IF ( L E N-1 0 l 14 3 7, 14 37, 14 2 7 
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1427 PRINT 1428,FLEVIJ5),NLEV11J5l,NLEV2(J5),~ERR(J5l 
142A FORMAT( 1H E16.7,SX, 15,SX 1 15,SX,E16. 7) 
1437 NST=NLEV11J5l 

NEN=NLEV2(J5l 
00 1438 J6=NST,NEN 
fACCIJ6l=FLEV(J5l 

1438 WACCIJ6l=WERR!J5l 
1440 CONTINUE 

JS T= I 
J[N=NT 

1441 XT=ML INS 
XO!FF=LONG 
XT=XT/XO!Ff' 

·FTM=XT 
!FI.ML INS-4 l 1405,1442,1442 

1442 rPRO=RH(JLASCl-RHIJF!RCl 
IFIJLUN-1)1444,1444 1 1443 

1443 J5=JLON-l 
JBEG=NLEV l I J5 l 
JENO=NLEV21J5) 
RHCEI=O.S•IRHIJBEf.l+RHIJENC)) 
RHCE2=0.5•1RHIJFIRCl+RHIJLASCll 
AB=XT•FLEVIJL0Nl•IRHCE2-RHCEll/IFLEVIJ5l-FLEVIJLONll 
AB=ABSF(Afl) 
FPRO=FPRQ+A[l 

1444 IF(JLON-JCll445,l446,1446 
1445 J5=JLON+1 

JtltG=NLEVI IJ5l 
JENO=NLEV21J5l 
RHCEl=0.5•1RHIJBEGl+RHIJENOll 
RHCE2=0.5•1RHIJF!RCl+RHIJLASCll 
AB=XT•FLEVIJLONl•IRHCE2-RHCEll/IFLEV(J5l-FLEV(JLONll 
AB=ASSFIABl 
FI'RO=FPRU+AB 

1446 GO TO ll447,9902l 1 NRHC 
1447 PRINT 1429 
1429 FORMATI20HK IDEOGRAM ESTIMATES/9X,9HFREQUENCY12X,9HINTENSITYl 

FBOX=FMIN 
NSSS=l 
CALL YMIMAIHBOX,NBO,HBOXM,HBOXT,!NOE,NSSS,IO,Ml,2l 
DO 1480 J5=1,Ml 
IF=INOE(J5) 
F I= IF 
Fi=FBOX+Fl•OFBOX 

1480 PRINT l408,F!,H80X( IF) 
110 1409 J5=l,t>H!O 
FSOX=FBOX+OFBOX 
UIJ5)=FF.IOX 

1408 FORMATIIH 2E20.8) 
·1409 CUNT!NliE 

CALL Y~IMAISAMP 1 NT,SAMPL 1 SAMPB,INQE,NSSS,tC,Ml,1) 
CUN=RHMI 
CALL SCLEISAMP,RHMh,RHMI,SAMPB,SAMPL,CON,NT,.5l 
CALL GRAPHINT,CYCLE,SAMP,KS,4,0.0) 
XMIN=U( l l 
CALL GRAPH(NBO,U,HBOX,KS,4 1 8.,10.,0.,X~IN,C.,HBOXM,XLAB2,YLAtl2, 

tl'l x, r 1 r L £ l 
IFIFMAXR)Rl,81,801 

BOt !FIFMINRl8l,Rl,802 
802 FMIN '- FMINR 
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FMAX = FMAXR 
GO TO 1103 

61 FMIN = FMI!'; 
FMAX = FMAX 

803 NC = N r - 1 

221 

C PART 3 PERIDOOGRAM ANALYSIS 
c 

8032 00 811 K=1,NC 
CONA(Kl = !SAMP(K+ll- SAMP(Kll/(RH(K+ll -RH(Kll 
CONS= -CCNA(K)oRH(Kl 

All CONC(Kl =CONS+ SAMP!Kl 
PMIN = 1./FMAX 
PMAX = 1./FMIN 
NSTOR=NUPLI+q750 
l/LIM = NSTGR 
QUA=(PMAXoULIM l/(RH(NTl-RH(Ill 
IF(QUA-274.)8113,8113,8112 

8112 ULIM=!274.•(RH!NTI-RH(llll/PMAX 
NSTOR=ULIM 
Ul!M=NSTOR 

811~ ORH = (RH!NTl-RH(ll l/UliM 
FT~C=2.•DRH•FMAX 

IF!FTMC-FTMl9902,9901,99Cl 
9901 MLINS=MLINS-1 

FTI-!=FTMC 
NRHC=2 
GO TO 1405 

9902 FPRO=FPRO/DRH 
HFPR0=.5•FPR.O 
NHPRO=HFPRO 
HFPR.O=NHPRfl 
NPR0=2•NHPRO 
RHS =RH( 1 l - ORH 
NP = NSTOR 
K = 1 
PRINT A116,LONG, NTAD,CYCLE!NTl 

0116 FORMAT(7.3HK PER!UDOGRAM ESTIMATES/ 
l 2HJ !5,33H CYCLES AT A TIME wERE CONSIDEREC I 
2 I5,57H CYCLES WERE AOOED TO MAKE A SINGLE TERM FCR THE ANALYSIS/ 
322H THERE W[RE A TOTAL OF F5.0, 7H CYCLES/ 
49X,9HFREQUENCY12X,9HINTENSITYl 

DO 839 I " l,NUPL! 
RHS = RHS + CRH 

813 CO 815 J ~ K,NT 
!F(RH5-RH(J+1 11814,814,81~ 

814 K30 = J 
GO TO R41 

815 CONTINUE 
841 K = K30 
839 U(!l= CONC!Kl+CONA(K)•RHS 

. LU = NP - NUPLI 
DO 816 I = LLU 
RHS = RHS + ORH 
DO 8157. J = K,NT 
IF!RHS -RH(J+Ill8151,8151,8l52 

8151 K30 =J 
GO TO 8153 

8152 CONTINUE 
Kl~J K"-KJU 
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MK = I 
840 A= CONC!Kl + CONA(Kl•RHS 

CALL UPCORIA,MKl 
816 CONTINUE 

RHL = 0.0 
N l = 0 
N2 = 0 
RHS = 0.0 
FLP1=l./FLEVI 1 l 
IFIFLP1-PM!Nl8171,8171,817 

q111 PMIN=.95•FLP1 
817 r.o 822 I = 1,9ooo 

RHL = RHL + ORH 
!F(RHL- PM1Nl818,820,82C 

818 Nl =N1+l 
N2 = N2 + 1 
RHS = RHS + ORH 
GU TO 8?2 

820 IFIRHL - PMAXlR21,821,882 
821 N2=N2+1 
87.2 CONTINUE 
882 I'STE = 1 
AA3 RHS = RHS - ORH 

RHTES=RHS 
I'F=O 
I NTC=O 
J5=1 

823 DO 812 Nl,N2 ,MSTE 
SFNU,'-'=0. 
SUMU~O. 

SUI'U2=0. 
MF=MF+l 
N3 = I 
RHS = RHS + CRH 
RRHL=1./RHS 
!FIRRHL-FLFVIJ5ll95Q,950,952 

950 IFIJ5-JCl951,958,958 
951 J5=J5+1 

J8EG=NLEV1(J5-1l 
JENO=NLFV21J5-1l 
RHCEl=(0.5•1RHIJBEGl+RHIJENOll-RHilll/DRH 
JBEG=NLEV1 IJ5l 
JEND=NLEV21J5l 
RHC E 2= ( 0. 5 • I R H ( J fl EG l +R HI J END l l -R H ( 1 l l /ORH 
FACT_1= ( RHCE2-RHCE 1 l I ( FLEVI J5 l-FLEV ( J5-1 l l 

9~2 I~(J~-ll9~R,9~8tqJ) 

953 RHCEN=IRRHL-FLEVIJ5-1ll•FACT1+RHCE1 
954 NCEN=RHCEN 
955 IFINCEN-NHPR0)958,958 1 956 
956 IFINCEN+NHPRO-NST0Rl957,958,958 
957 INTE=NC(N-NHPRO 
958 00 827 J=lrN3 

FNUM=O. 
SUMM = 0.0 
NBEG = J + I NTE 
MO = NArc;- I 
NUP = NBEG + NPRO- NUPLI 
IFINUPl8241,8241,8242 

ez~l NVPl = NVP + NUPLI 
N40 ~ 2 
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GO TO 825 
ij242 NUPl = NUPLI 

IFINUP - LUIB?44,A244,8243 
8243 NUP = LU 
8244 N40 = l 

IFINBEG- NUPLI)825,825,8492 
A25 00 A49l K = N8EG,NUPl,I 
849 SUMM = SU~~ + UIK. 

SUMU2=SUMU2+U(K)•UIK) 
FNUM=FNUM+l. 

8491 CONTINUE 
~0 = K 
MK=MC 
GO TO 18492,A261),N40 

8492 MQ = MQ+l 
~S = MC - NUPLI 
00 B26 K = MS,NUP,I 
MK = -K 
INO=K 
A=GETUIINC) 

223 

SUBSCRIPTED VARIABLE NOT DIMENSIONEC 
FNUM=FNUM+l. 
SUMM = SUMM + A 
S UI'·U 2= SUMU 2 +A •A 

8?6 C:ONTJNIIF.: 
I"K=-MK 

8261 SMIJ)=SUMM 
FNUMl=FNUM 
SUI'U=SUMU+SMIJ) 
SFNUM=SFNUM+FNUM 
IFINTAIJ-1)8272,13272,8262 

1:1262 FNUM=l. 
A1=0. 
M.F I=NBEG-2• I 
I(LA=MK+2•! 
DO 8271 KIT=2,NTAD 
FNUM=FNUM+l. 
I"RIF=MFI+KIToi 
!FIMRIF-NUPLI)8263,8263,8264 

8263 Tl=UIMR!F) 
GO TO R265 

A264 MR!F=-MR!F 
CALL UPCORITl,MRIF) 

8265 MRIL=MLA-KIT•I 
GO TO 18266,8269),N40 

A266 IFIMRILI8268,82b8,8267 
1\267 MRIL=-MIUL 

CALL UPCORIT2,MRIL) 
GO TO il270 

0268 MRIL=MRIL+NUPLI 
8269 T2=UIMRIL) 
A270 Al=IFNUM-2.)•Al/FNUM +1Tl+T2)/FNUM 

SMIJ)=SMIJ)-Al 
A.?7l CONTINUE 
87.72 SMIJ)=SM(J)/IFNUMl+l.-FTAD) 

827 CONTINUE 
VAnU•5UMU2/5rNUM ISUMU/SrNUMI••2 
AVF. = 0.0 

82R DO 829 J=l,N3 
82~ AVE • AVE•SMIJ)· 
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GN=J 
AVF. = AVE/GN 
SU,..N = 0.0 

830 00 A31 J = l,N3 
SM(J) = SM(J) - AVE 

224 

831 SUI'.N = SUMN + SM(J)•SM(J) 
SUI'N : SUI'N/GN 
SUMHI(Mfl=SUMN/VARU 

8 32 CONTINUE 
00 834 l=l,MF 
RHTES=RHTES+ORH 
RRHL=l./RHTES 

H34 I.Jill=RRHI. 
XMIN=U(Mf) 
CALL YMIMA!SUMHl,MF,YMIN,YMAX,INOE,NSSS,lO,Ml,Zl 
DO 855 JS=l,Ml 
IF=INOE!J5) 

ASS PRINT l408,U( IFl,SUMHl( IF) 
CALL SCLE!SUMHl,HBOXT,HAOXM,YMAX,YMIN,HBOXT,MF,l.) 
CALL GRAPH(Mf,U,SUMHl,KS,3,0.0) 
A = A 
AZ = A2 
,_.K = MK 
CONP=CONP 
·Fll=Fll 
FL2=FL? 
FL3=FL3 
KS=KS 
XMIN=Xf'·IN 
YMIN=YMIN 
JST=JST 
JMCMI=JMDMI 
JEN=JEN 
JMf1,..A=JMDMA 
JC=JC 
CON= CON 
NSSS=NSSS 
OFBOX=OFBOX 
NAO=II:BO 
GO TO llR 
END 
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GN=J 
AVF. = AVE/GN 
SUfoiN = 0.0 

830 00 R3l J = l,N3 
SM(Jl = SM(Jl - AVE 

225. 

831 SUMN = SUMN + SM(Jl•SM(Jl 
SUI'N = SUfoiN/GN 
SUMHl(MFl=SUMN/VARU 

832 CONTINUE 
00 834 l=l,MF 
RHTES=RHTES+DRH 
RRHL=l./RHTES 

634 U(ll=RRHL 
XMIN=U(MFl 
CALL YMIMAISUMHl,MF,YMIN,YMAX,INOE,NSSS,lO,Ml,2l 
DO 855 J5=l,Ml 
IF=INOE(J5l 

R55 PRINT l408,U(IFl,SUMHl(IFl 
CALL SCLc(SUMHl,HBOXT,HROXM,YMAX,YMIN,HBOXT,MF,l.l 
CALL GRAPHIMF,U,SUMHl,KS,3,Q.Ol 
A = A 
A2 = A2 
MK ·= MK 
CONP=CONP 
Fll=Fll 
FL2=FL7 
FL3=FL3 
KS=KS 
XMIN=XMIN 
YMIN=YMIN 
JST=JST 
JMCMI=JMDMI 
JEN=JEN 
JM[)I'A=JMOMA 
JC=JC 
CON= CON 
NSSS=NSSS 
DFBUX:OFBOX 
NFIO=NBO 
GO TO llR 
END 
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FGRTRAN,SCAN, LLS!C. 

SUBROUTINE LLSIOICONP,FL1,FL2 1 FL3,MBOX,NT,NL 1 RH,CYCLE,FMINl,FMAXl, 
1JQ,FACC,WACC,HBOX,NBO,OFBOX,JMDMioJMDMAl 

DIMENSION HBOX(250l,NACTI250l,ERR1(2501, 
1 F!UO 1 I? 'HI, NL I 10 I, RH I 2 50 I, CYCLE I 250 I, FACC I 250 I, WACC I 25 C I 

EQUIVALENCE IFREQ1(2),NACTI11) 
JMOMA=O 
JMDMI=500 
ERR11'=10.••12 
I'.COU=O 
1-\37"1-'BOX 
00 131'l M=1,NT 
FACC!Ml=Q. 

lH<J WA(CIMI=O. 
GO TO 11320,1322l,MBOX 

1120 DO 1121 M=l,400 
1321 ~BGXIMI=O. 
1322 r.O 500 KK=l,10 

J1=JC 
NLK=Nl(KK) 
IFINLK)5001,~001ol11 

111 JE=NLK 
DO 11 2 J = l, J E 

l12 NACTIJI=1 
FN=NLK 
SUMX? = 0.0 
SUMX=O.O 
SUMXY=O.O 
SUMY=O.O 
JF=J1 
JL=JE 

28 DO 3 J=JF,Jl 
BJE=CYCLE(J) 
RZ=RH(Jl 
SUMX2=SUMX2+BJE••2 
SlJMX=SUMX+BJE 
SUMY=SUMY+B2 
SlJMXY=SUMXY+BJE•B2 

3 CONTINUE 
31 DEN=FN•SUMX2-SUMX•SUMX 

FM= IFN•SUMXY-SUMX•SUMYI/OEN 
B= ISUMX2•SUMY-SUMX•SUMXYI/DEN 
D!FM=O. 
SlJM=O. 
DO 4 J·=J1,JE 
ERR11Jl=RHIJI-IFM•CYCLEIJI+Bl 
cRRl(J)=ABSFIERR1(J)) 
1-\GD=NACT!Jl 
GO TO 140Q0,4) 1 MGO 

4000 SUM=SUM+ERR11Jl•ERR11J) 
!FIERR11Jl-DIFM)4,4,400l 

4001 OIFM=ERRliJI 
4 CONTINUE 

SD=SUM/FN 
\O=SORTF!Sr.l 
MCOU=MCOU+ 1 
F1L=Fll•SD 
F2L=FL2•SLI 
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F3L=FL3•SD 
GO TC (4002,4002,4002,49lltMCOU 

4002 IF!DIFM-Flll4003,410,410 
4001 IF!DIFM-F2Ll4004,44 1 44 
4004 !F!OIFM-F3Ll491,47,47 

44 FlL=F2L 
GO TC 410 

47 Fll=F3L 
410 00 43 J=Jl,JE 

Bl=CYCLf(Jl 
B2=RI-'(Jl 
NAC=NACT!Jl 
IF!ERR1(Jl-F1Ll412,411,4ll 

411 GO TQ (42,43l,NAC 
42 NACT(JI=2 

5U~X2=SUMX2-B1••2 
SUMX=SUMX-tl1 
SUI'Y=$liMY-R2 
SU~XY=5UMXY-Bl•B2 
FN=FN-1. 
GO T 0 4 3 

412 GO TO (43,413J,NAC 
413 NACT!JI=1 . 

SUMX2=SUMX2+B1••2 
SUMX=SUMX+Bl 
SUMY=SUMY+B2 
SUMXY=SUMXY+Bl•B2 
FN=FN+l. 

43 CONT INUF. 

227 

491 
GO TC 31 
RAO=!!SUM/!FN-2.0ll•FNl/ABSF!DENl 
~KKl(Jll=SQRTF!MAOl/CONP 
FREQl!Jll=CONP/FM . 

4910 
4Q11 
4912 
4913 
492 

4Q3 

'•'14 
495 
49b 
497 
498 

4490 

ERRl!Jll=ERR1!Jll•!FREQl!Jll••2l 
Bl=CYCL(!Jll 
CYM=0.5•!Bl+RJEl 
JMC=CYM 
FACC!JMOl=FACC!JMOl+FREOl!Jll/ERRl!Jll~•2 
WACC!JM~l=WACC!JMOl+l./ERRl!Jll••2 
!F!JMO-JMOI'!ll4910,49l0,4'lll 
JMOM!=JMO 
!F!JMO-JMOMA)4Ql3,4912,49l2 
JMOMA=JMO 
IF!KK-ll492,4Q2,49R 
GO TO t493,494l,M37 
M37=2 . 
FMIN = FREQl(Jll 
FMAX = FREQl(Jll 
JF!FREQl(Jll - FM1Nl495,49b,49b 
FI~IN = FREQl(Jll 
IF!FRE0l(J1)-FMAX)498,498,497 
FMAX = FREQl(J1l 
Jl=Jl+l 
JE=JE+I 
MCOU=O 
IF!JE-NTl4490,44Q0,5 
NACTtJEl=1 
JF=JE 
JL•JE 
El2=RH(J1-ll 
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SU~X2=SUMX2-BI••2 

SUMX=SUMX-Bl 
SUMY=SUMY-62 
SUMXY=SUMXY-B1•B2 
FNT=NLK 
lFIFNT-.1-FNl2B,28,4495 

4495 J6=JE-l 
JB=J1-l 
no 4497 J5=JB,Jb 
NAC=NACTIJ5l 
GO TO (4497,4496),NAC 

4496 F"l=FN+l. 
Hl=CYCL[(J51 
B2=~H(J51 

SUMX2=SUMX2+B1••2 
SUMX=SUMX+Bl 
SUMY=SUMY+B2 
SU~XY=SUMXY+Bl•D2 

NACTIJ'>I=l 
4497 COI'<TINUE 

GO TO ?.fl 
5 J(NO=NT-NLK+I 

!F(KK-115991,5~91,5~9 

599 lf(NLK-301800,800,600 
5991 Jf(NLK-301601,601~600 

bOO PRJIIJT 6,NLK 

228 

b FO~M~T(47H LINEAR LEAST SQUARES ANALYSIS WITH FIT LENGTH 14/ 
IIIH 1ST CYCLE10X,5HERROR16X, 9HFREQUENCYl 

601 DO 71 J=1,JENO 
JF(ERR1(JI-ERR1Ml60,60,61 

60 ERR1M=ERR11JI 
61 IFIJ-ll63,A3,6S 
63 Ir!ERR1(Jl - ERR1(J+lll7,7,71 
65 lf(J-JFN0167,66,66 
66 JF(ERRliJI- ERR1(J- 1117,7,71. 
67 IFIERRUJI- ERR1 (J -11168,68,71 
6fl !FIERR1(J)- ERR1 (J+11l7,7,71 

7 !F(NLK-30171,71,700 
700 CYC=CYCLEIJI 

PRINT 8,CYC,ERR11JI,FRE01(Jl 
B FOnMAT(F8.1,2X,E20.8,2X,E20.8l 

71 CONTINUE 
800 GO TO (1400,1404l,MBOX 

1400 ~BCX=2 
FM!N1=.9•FMIN 
FMAX1=1.1•FMAX 
FM!N=FM!N1 
FMAX=Ft-'AXl 
OFBOX=FRRlM 
BOXT=(FMAX-FM!Nl/OFBOX 
!FIBOXT-?.4~.11402,1402,1401 

1401 CFBOX=IFMAX-FM!Nl/249. 
1407. 1';60=0 

F60X=FM1Nl 
DO 1403 J4=1,400 
NBG=NBC+1 
Ff\llX=FRnXtr.FRnX 
IF IFBOX-FMAXl1403,1403,1404 

1403 CONTINUE 
1404 DP 14!0 J2=1,JEND 
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1405 
1406 

1407 
1410 
500 
5001 

1413 

229 

ERR11J21=1.414213•ERR1(J21 
FDIFF= I FMIN1-FREQ 11 J2 l 1/ERRll J2 l 
DFHC~DFROX/ERR11J2l 
DO 1407 J3=1,NBO 
FDIFF=FOIFF+8FBC 
IF! FC IFF-3. l 1405,1405,1410 
IFIFDIFF+3. l 1407,1406,1406 
EX:-FDJrF•FDIFF 
HBUXIJ3l=HR0XIJ3l+DFRC•EXPFIEXl 
CONTINUE 
CONTINUE 
CONTINUE 
DO 1413 J5=J~DMI,JMDMA 
£\= 1 ./.WACC I J5 l 
FACCIJ5l=A•FACCIJ5l 
WACCIJ5l=SQRTF(Bl 
CONTINUE 
RETURN 
END 

Fortran Program 1 (continued) 
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FCRTRAN,SCAN, W~VE. 

SUBROUTINE WAVE!FACC,WACC,FLEV 0 NLEV1,NLEV2 0 J~OM!,J~D~A,JC,FTM,NT, 
1WERRl 

D!MfNSION WACC!250l,FACC!250l,FLEV!30loNLEV1(30loNLEV2!30), 
1\o/ERR ( 30 l 

JMOMS•JMCMI 
1415 JMCMI=JMOMS 

J15=1 
JC=O 
JMOMO= J~\DM I 

1470 FTfST=FACC(JMOMQl 
00 1460 JS=JMDM!,JMOMA 
t1F=FACC!J5l 
IF!BF-FTESTl1460,t450,1450 

1450 FTEST=f\F 
1460 CONTINUE 

DF=FTM•FTEST 
JC=JC+l 
IF!JC-3011417,1417,1416 

1416 FTI'=2.•FTM 
'GOT01415 

1417 CO 1422 J5=JMOM!oJM0MA 
1419 CH=ABSF!FTEST-FACC!J5l l 

IF(CH-DFl1421,1421,1422 
1421 JIE=J5 
1422 CONTINUE 

SUM=O. 
SUMW=O. 
DO 1423 J5=JMDMJ,JIE 
BW=WACC(J5l 
SUM=SUM+FACC!J5l/BW••2 

1421 SUMW=SUMW+1./BW••2 
SUM=SUM/SUMW 
FLEV!JCl=SUM 
NLEV1(JCl=JtS 

. NLEV2(JCl=JIE 
BW=1./SUMW 
wERR!JCl=SQRTF(BWl 
JMDMI=JIE+l 
J1S=JMOM! 
JMOMQ=JMOMI 
!F(JMOMI-J~OMAl1420o1420o1425 

1425 NLEV2!JCl=NT 
DO 1414 J5~1,JMOMS 

1414 FI\CC!J5l~FLEV! 11 
DO 1424 JS=JMDMA,NT 

1424 FACC!J5l=FLEV!JCl 
RETURN 
END 

Fortran Program (continued) 
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FORTRAN, SCAN, YMIMA. 

SUBROUTINE Y~IMA(A,N?,AMIN,AMAX,INO,NSSS,NMIAo~I,MGOI 
r.!~F.NS!IlN AI7751,XM( IOI.INOI 101 

·c CALL YMIMA WITH MGO •I IF ONLY THE MAXI~UM AND MINIMUM ELE~ENTS 
C OF THE ARRAY A ARE DESIRED. MGO •2 IF RELATIVE EXTRE~A ARE ~ANTED 
C CALL YMIMA wiTH NSSS•-1 TO GET T~E NMIA LOWEST RELATIVE 
L MINIMA IN AN ARRAY XIII WITH NZELEMENTS 
C CALL YMIMA WITH NSSS •+I TO GET THE NMIA HIGHEST RELATIVE 
C ~AXI~A IN AN ARRAY XI II WI IH N2 ELEMENTS 

AMAX'=-10.••30 
AMJN:L0.••30 
CO 1 I=I,NZ 
IF IAI II-AIONI2,21o21 

2 4MIN•AI II 
21 IFIAIII-AMAXI1o22,22 
22 AMAX•AI II 

3 CONTINUE 
r.o TC 170,IOI,MGO 

10 N$=0 
NMIAT=Nt<IA-1 
NSS=-0 
00 I JI•I,NMIA 
XM(J\1•0. 
INOIJil=O 
OU 6 J=\,N2 
IFIA(J+II-A!Jl19,6 0 8 

q NS•-1 
GO TG 4 
NS•l 

4 IFI~S+NSSI59,41,59 
4\ IFI~55-NSS5l59,42,59 
42 PM•AIJI 

CO 43 JI•\,~MIAT 
NU~=JI 
IFINSS~I42\,421,422 

42\ !FIPM-XMIJ1ll44,44 0 41 
422 IF I PM-Y>'I J 11143,44 0 44 

43 CONTINUE 
GU TC 59 

44 NUP•NMIA-NIJM 
CO 46 Jl•l.NUP 
IT•NI<IA-JI+I 

IP.•NMI4-JI 
XMI IT I=XMI 181 
IN~ I ITI=INCI IBI 

46 CONTINUE 
A.M(i'IUI'tj ~PM 

INOINU~l=J 

59 NSS•NS 
6 CO~TINUE 

Ml•O 
CO 67 JI•I,NMIA 
IFI INOIJIII61o63o61 

61 f-1' 1 =Ml + l 
62 COII:TINUE 
63 CU 69 I•I 0 1H 

!MIN=9999999 
r.O 66 JS=I,Ml 

1F!INDIJ5l-I~INI~4,64,66 
64 I MIN= !NO! J5l 

J( = .1~ 
bh CONTINUE 

INC I JC I= I NO I I l 
69 1~101 II= !MIN 
70 i<(TURN 

END 

Fortran Program 1 (continued) 
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/ 

FCRTRAN,SCAN, SCLE. 

SUBROUTINE SCLE(AvBBt6L,ABPAL,CON,N,SCFl 
OI,..,ENSION A!325) 
FACf;SCF~!BR-Bll/(AB-All 

00 1 I=1,N 
1 A( I );fACT~(A( I)-AL)+CON 

RETURN 
END 

AUTO,LIST,OECK,GETU 

Fo.rtran Program . 1 (continued) 
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L !NE . LABEL 
PI{CGRAI' GETU 

01 
0?. 
')) 

04 

0'> 
on 
07 
OB 
()'I 

10 
1 l 
12 
1 1 
14 
1'> 
16 
17 
18 
1'1 
20. 
21 
22 
23 
?4 
2'> 
7.6 
Z7 
2A 
2'1 

X 
X 

X 
X 
X 
X 

EXECUTE 

ORIGIN 

30 END 
X 

OP OPERAND 
PAGE 00 

CNT RL 7 
DC 

CilGETU 

233 

+0+0+1000+0+91DOOOCOD2 

CNTRL 1000 

FLAG FUNCTION GETU FOR OBTAINING NUMBERS STORED IN 
UPP[R CORE. USE- VALUE=GETUIINDEXl WHERE INDEX 
.GT. ZERO AND .LT. OR .eo. 9800 

STORAGE NEEDED - 10 LOCATIONS 

TIMING !INCLUDES BLX INTO GETU ANO ZSTl AFTER I1l 
lOB MICROSEC. 

WARNING - IF 1/0 IS OPERATING WHEN GETU IS ENTERED 
GETU WILL WAIT FOR 1/0 TO CEASE AND TIMING I~ THIS 
IS UNPREDICTABLE. 

lAL O+X94 
STD1 •16,9)+1 
XLIN 9R,Q 
BCB 1, * 
BCfl 2,• 
oc 

+0400100000 
ZA1 9999+X'l8 
DC 

+0400200000 
B 2+X94 
CNTRL lOCO 

CD NO 

0001 

0002 

0003 

0004 

0005 

LOC c 

0325 A61 
0326 AOO 
0327 +OC 
0328 +OC 
032'1 +OC 
0330 +DC 
0331 +91 

1000 +13 
1001 -12 
1002 -48 
1003 •51 
1004 +51 

1005 +04 
1006 +13 

1007 +04 
1008 +01 

+01 

INDEX WORDS USED INDICATED BY ZEROS 
lll1lllll1lllll1111111111ll11111111111111111111lllllllllllllll111lllllllllllllllllllll1 

SWITCHES USED INDICATED-BY ZEROS 
l1lllllllllll11111llllllllllll 

Fortran Program 1 (continued) 
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AUTO,LIST,OECK,UPCOR 

Ll NE LAl'FL OP OPERAND CO NO LCC c 
PllOGRAI" UPCCR PAGE OD 

C'l EXECUTE CNTRL 7 DOD I 
02 DC 
"~ @UP COR Ql 

X ODD2 D325 Afl~ 

X D32b ACC 
r.4 +0+D+lODO+D+91DODDCD02 D327 +DC 

0328 +DC 
X D32'l +DC 
X D33D +DC 
X· D331 +91 

OS ORIGIN CNTRL . 1DOD 
D6 lA1 1+X94 DDD3 100D +1: 

07 ST01 •(6,9)+1 1DD1 -li. 
08 ZA1 D 1D02 +13 
(\'l BZl ZERO 1DD3 +1C 
I D ~M 1 GET 10D4 -1C 
I 1 PUT ZSTl 981D,5l DDD4 1DD5 -11 
12 lAl D+X9'o 1006 +1:! 

1' STD1 o(6,9l+l 10D7 -12 
14 ZAl D 1008 +1~ 

I~- RCB ,, . ID09 +51 
lb RCB 2,• ODD5 lDIO +51 
I 7 oc 
18 +040DlDDDDD IDll +D4 
19 ZSTl 9999+ X98. 1Dl2 -11 
20 oc 
21 +D4002DDDOO 1013 +D~ 

27. B 3+X94 . 1014 +01 
?3 GET zs Tl 98(0,5) ODD6 1Dl5 -11 
74 MSP 98 1016 -03 
25 ZAl O+X94 "10 17 + 1 3 

26 ST01 •16,9)+6 1018 -12 
27 6C£l 1'. 1D19 +51 
21l" f\CB 2,• 0007 10£() +51 
29 nc 
3D. +0~00100000 1021 +04 
H ZA1 9999+X98 1022 +13 
32 DC 
33 +0~00200000 1023 +04 
34 7 ~ T I () lUL4 -II 

35 B 3+X94 0008 1025 +01 

'" ZERO · XL 98,+0100000000 1026 ·~5 

37 ZAI +0 1027 +13 
3~ BCB 1.• 1028 +51 
39 RCB 2.• 1029 +51 
40 oc 
41 +0400100000 0009 1030 +04 
42 ZS T 1 O+X 1 10 31 -11 

Fortran Program 1 (continued) 



LINE LABEL OP OPERAND 
PROG~~~ UPCCR PAGE 00 

43 RS 'lB,RDW 
44 DC 
4S +0400200000 
46 
4 7. RIJW 
4 6. .END 

X 
X 
X 

B 1+X'l4 
NUP 979'l(0,1l 
CNTRL 1000 

235 

CO NO L·oc c 

1032 +65 

10 33 +04 
1034 +01 

0010 10 35 -01 

1036 +01 
1037 +00 

0011 +OJ. 

INDEX WORDS ~SED INDICATED BY ZEROS 
Olllll1llllllllllllllllll1lllllllllll1llllllllll~llll1111111ll111111l111111111111llllll 

SWITC~F.S USED INDICATED BY ZEROS 
IIIII lllllll11ll111ll111111ll1 

O~JECT 

OBJECT 

STAR 

r- C R T R A N J 0 B 
~AINPROG 1500 RELOCATED BY 

REQUESTS SUR~OUTINE UPCOR 
REQUESTS SU~ROUTINF. GRAPH 
REQUESTS SUBROUTINE LLSID 
REQUESTS SUBROUTINE WAVE 
KEUUcSTS SUBROUTINE YMIMA 
REQUESTS SUBROUTINE SCLE 
REQUESTS SUBROUTINE GETU 

LLSIO 7118 ~ELOCATED BY 
REQUESTS SUO~OUTINE SQRTF 

WAVE B4n4 RELOCATED BY 
REQUESTS SUBROUTINE SQRTF 

Y~!MA 8682 MELOCATED BY 
SCLE 89~2 ~ELOCATED BY 
GETU 9004 ~ELOCA~ED BY 
UPCOR 9013 KELOCATED BY 
GRAPH 'l051 RELOCATED BY 

~EQUESTS SURROUTINE SMUT 
S~UT 'l?Ol RELOCATED BY 
LIBRARY ~DUT!NES 

0500 

6118 

7464 

7682 
7952 
8004 
8013 
BC51 

8201 

SQ~TF 93'l'l RELOCATED AY 'l074 
REQ~ESTS SUnROUTINE ERRTYPf 

ERMTYP 'l444 RELOCATED BY 8444 
"!SSING SUBROUTINES 
!XCNE 
COI'MON 'l4'19 
LAST LOCATION USED 9465 

LOCATIONS 
B~ANCH AT 3672 
BRANCH AT 3673 
BRANCH AT 3674 
B~ANCH AT 3675 
BRANCH AT 3676 
BRANCH AT 3677 
BRANCH AT 367B 
LOCATIONS 
ORANCH AT 7B63· 
LOCATIONS 
BRANCH AT 8644 
LOCATIONS 
LOCATIONS 
LOCATIONS 
LllCA T IONS 
LOCATIONS 
ARANCH AT 'll70 
LOCATIONS 

LOCATIONS 
BRANCH Al Y44J 
LOCATIONS 
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