Vv

AMES LABORATORY Ci
Iowa State University

Ames, Iowa HG fgﬂécﬁé MK

AEC Contract No. W-7405-eng-82

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, completeness, or usefulness of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on behalf of the Commission’’ includes any em-
ployee or contractor of the Commission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or provides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

THE FERMI SURFACE OF TUNGSTEN

by
Robe\rt Franz Girvan

Ph.D. Thesis, July, 1966

RELEASED FCR ANNCUNCEMENT

IN NUCLEAR SCIENCE ABSIRACTS




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



THE FERMI SURFACE OF TUNGSTEN
by

Robert Franz Girvan
A Dissertatdion Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree .of

DOCTOR OF PHILOSOPHY

© 40 ‘MajorSubject:  Physics

EX
g

L

In Charge of Major Work

M
W7 gy
2{)\/3’//0 YRy

Head gfhyag%r Department

 Approved:

ate College

Towa State University  -» - [

Of Science and Technolégy
Ames, ITowa

July, 1966




IT.

ITT.

Iv.

idi

. TABLE OF CONTENTS

ABSTRACT

INTRODUCTION’

A, General‘Considerations

B. The Gantmakher Size Effect and
Cyclotron Resonance

C. The de Haas-van Alphen Effect

D. Outline of the Present Investigation

EXPERIMENTAL PROCEDURE

A.

A. The Impulsive Field Method

B. Experimental Apparatus

C. Sample Mounting and Orientation

D. The de Haas-van Alphen Signal

E. Data Analyéis

F. Measurement Errors
1. Errors in Crysfal orientation
2. Errors due to complexlwaveforms
3. Possible systematic errors

‘RESULTS

A. Frequency Results

B. Cyclotron -Mass Results

THE FERMI SURFACE

Theoretical Models for the Fermi

. Surface ot Tungsten

1. The Lomer model

12
17
19
19
20
28
32
34
41

43

44

44

48

48
64

79

79

79




VI.

VII.

VIII.

iid

2. Loucks' model

B. . Comparison of,Some‘Previous Experimental
Results with the Theoretical Models

1.. Magnetoresistance and anomalous
skin effect

2. Gantmakher size effect and
magnetoacoustic effect

3. de Haas-van Alphen effect

C. Interpretation of the Small Pieces of the
Fermi Surface from Impulsive-field dHvVA
Results

D. Analytical Model for the Fermi Surface

1. Construction of the model

2. Comparison with the de Haas-van
Alphen effect

3. Comparison of extremal dimensions of
the empirical model with those found
by experiment

4, Orbit masses

5. Volume and‘compensation of the
model Fermi surface

CONCLUDING DISCUSSION AND SUGGESTIONS FOR
FURTHER STUDY '

REFERENCES
ACKNOWLEDGMENTS -
APPENDIX

Appendix A: Furthcer Discusaion of Data
Analysis Procedures

Appendix B: Two Component Beat ‘Patterns

Appendix C: . Magnetic Interaction Effects.

81

85

- 85

86
93

101
114

114
121 -

127

133
137

140
146
151

152

152

172

182




iv
Appendix D: The Electron Jack and Hole
Octahedron Programs
Appendix E: Periodogram Analysis

Appendix F: Orbit Masses for the Empirical
Fermi Surface '

Appendix G: Some Noncentral Areas for the
Electron Jack :

‘Appendix H: ‘Data Analysis, Fortran Program
for IBM 7074 Computer

200 .

201

204

207

214



THE FERMI SURFACE OF TUNGSTEN

Robert Franz Girvan

ABSTRACT

Impulsive-field de Haas-van Alphen éffect measurements have
been carried out to study the Fermi surface of tungsten. An empiricai
model was constructed by fitting an equation for the shape of the Fermi
surface to the results of this ekperimen‘c combined with the Gantmakher
size effect results of o.ther investigators and with theoretical predictions
for the Fermi surface shape. Goodover-all agreement is obtained be-. |
tween the predictions of the empirical model and experiment showing
that a surface with the general features of the Lomer model cé.n account

) for all of the experimental results. However, the empiripal model is

imprecise in certain respects, and small changes are indicated for a

more precise description of the Fermi surface.

“USAEC Report IS-T-103. This workiwas pcrformed under Céntrac‘q
W-7405-eng-82 with the Atomic Energy Commission.’ ' :




'I. INTRODUCTION -
A. General Considerations

The subject of this dissertation concerns one of the
experiments which are carried out to increasé our undér—:
standing of the propefties of electrons in metals.. Before
attempting ﬁo define this study:more precisely, it is
necessary to begin with a brief description’of.thé theoretical
model which is usually used to discuss electrons in metals,
that is, ﬁhe one-electron approximation.

Since the electrons in a metal are a system of strongly
interacting particlés, an exact theoretical description of
their properties has not been found. Quite useful results
have been obtained, however, by considering an approximate
model in which a single electron moves in the periodic
potential V(E),resuiting from all the other electrons and
.ions in the metal., In this model, the single particle states

are the solutions of the one-electron Schroedinger equation

2
(- 2=V 2+ v )Y =Y. (1)

A fundamental result of the theory is that due to the trans-
" lational symmetry of the lattice, these single particie States
can be labelled by a wave vector k or by the corresponding
crystal momentum-ﬁk. The energy eigenvalues E(k) in Equation

1 are periodic functions of k so that k can be restricted to

TR




lie within a unit cell of wave-vector space which is called
the primitive-Brillouin zone, An iﬂfinite number Qf dis-
crete energy levels exists for éach E within the primitive
2one; each of these levels Ei(E) is a periodic function in
5—spa¢e and’represents a band of allowed energies.

A great deal of effort has been expended over the iast
two decades in calculating E(E) for many metals by first
constructing a physiéally reasonable potential V(E) and then
solving Equation 1 numerically. Typical E(k)curves which
result from such calculations are éhown in Figure 1; these
‘calculated curves are for the transition metal tungsten,
about which this dissertation will be primarily‘cénqérned.
Each of the curves gives the dependence of the one-electr&h
energy on the wave-vector for a different'band'along a line
from the center of the primitive Brillouin zone to the cor-
nér H. The sum total of curves like these for all direc-’
tions in k-space defiﬁes.the band structure of £he ?etal.
Band structure calculations do not give'really quantita-
tive results sinée the potential V(r) is not well-known.
However, when it comes to accounting for most of the physical
properties of a metal, it is not really necessary to know

the entire band structure in detail. As we shall explain

'The basic concepts which are outlined in this intro-
ductory section are discussed in standard textbooks on solid
state physics, e.g. Ziman (1964). '
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Relativistic electron dispersion curves for
tungsten in the neighborhood of the Fermi
energy. The ordinate is energy (Rydbergs)
and the abscissa is distance in wave-vector
space (reciprocal Bohr radii)(after Loucks"

1965a).
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below,.certain-features are much more important than others,
and it is fortunate that these significant features can be
determined.experimentally. Nevertheless, the theoretical
.calculations are of vital importance since they provide a
framework to guide the experimentqlist in the interpteta;
tion of his observations. |

The electronic contribution to.many experimental
phenomena can be understood by considering an ideal Fermi
gas which is assumed to follow some dispersion law of the
form E(E) rather thaﬁ by considering the system of electrons
interacting with one another and with the lattice (cf.
Pines 1963). Two fermions canﬁot occupy the same state so
that at the absolute zero of temperatqre; all the lqwer
energyAstates are occupied; the occupatioq number of the
‘one-electron states drops discontinuously from 1 to O when
‘all the electrons haveibe;n accommodated. The energy at
which this discontinuity in the occupation number occurs

is called the Fermi energy E_. and the locus of points in

Fu
k-space for which Ei(g) = EF is the Fermi surface for the
i%h band. The set of all such surfaces for the separate
bands is the Fermi surface of the metal. Thus, if the

Fermi energy in PFigure 1 is given by the line a-d, we assume
that all states with energies below this line are filled
and all stétes’lying above this line are empty. Then points

b and ¢ are points on two separate Fermi surfaces. (When
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interéctions are taken into account, the_sfatemént that the
Fermi surface separétes completely filled states from com-
pletély empty states is not rigorously true? but éccording
to Migdal (1957) and Luttinger (1960) there is still a dis-
'continuity of sorts in the occupation number éf the electron
states at the Fermi surface.) |

The elucidation of both the shape of the Fermi surface
and the dynamical properties of electrons occupying states
near this surface is of primary importance in understanding
the properties of a metal; most physical phenomena inﬁolve
small energy transfers, and only those - -electrons close to .
the Fermi surface are energetically near unoccupied states.
Thus, for example, it is only electrons at the Fermi surface
which take part in-electrical or thermal conduction or con-
tribute to the electronic specific heat of a metal. At
temperatures other than absolute zero, the Fermi surface ié
no longer'perfectly sharp and the occupation number drops
from 1 to O over an energy range of kT. However, even at
room temperature the thermal energy (kT~Y/40 eV) is much less
than the Fermi energy (EﬁVseveral eV), and for many purposes,
e.g. calculation of the electrical conductivity, the surface
can be'taken to be sharp.,

There are a number of experiments which can’ be carried
out to measure both the shape of the Fermi surface and the

dynamical propefties of electrons on this surface, most of




which are discussed in a general review article by'Pippard
(1961). The three experiments which héve yvielded the most
vdetailed'information about'the Fermi surface of tungsten are
the de Haas-van Alphen effect, the Gantmakher size effect,
and cyclotron resonance. These experiments are all carried
out on single crystals of wvery pﬁre metals which have been
vcooled to low temperatures so that the electronic mean free
path between collisions is relatively long; furthermore, they
are all carried out in a magnetic field. In each of these
experiments, contributions from small groups of electrons on
the Fermi surface can be separated out, so thgt very detailed
information about the Fermi surface can be obtained. In. the
following sectfion we will give a brief description of the
Gantmakher size effect and cyclotron resonance. The

de Haas-van Alphen éffect, which is the experimental method
used in this study, will be described in somewhat more

detail in Section I-C.

B. The Gantmakher Size Effect

and Cyclotron Resonance

Current understanding of the Gantmakher size effect and
cyclotron resonance is based on a semiclassical treatment of
the dynamical behavior of elcctrons in metals under the influ-
ence of'An applied magnetic field. Provided that there

are no interband transitions, it can bhe rigorously shown
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that the Newtonian equations of motionvfor~a ffee particle
can be carried over to an eléptron moving in a periodic
potential provided ﬁhat'ﬁhe kinetic momentum mv is replaced
by the crystal momentum ‘Rk. |

In the périodic lattice we assume that the single-
electron energies E(E) are giveh by the solution of Equation
i. The energy levels of the electron in a magnetic field B
can be found by using the equivalent Hamiltonianc%%q = E(K)
where the wave vector k in E(k) is replaced by the operator
X given by

*ﬁﬁ = -ifigrad - eA/c. (2) -

and A is the vector potential (Lﬁttinger 1951, Blount 1962).
Thus the motion of a wave packet describing an electron on
"the Fermi surface can be found from Hamilton's equations

. using the Hamiltonian E(k). The well-known results for the

velocity and acceleration are

v, =75 1‘gradkE(1g), (3)

and

'ﬁg = e(E + vy

x B/c) | (4)

We see from Equation 3 that the Velocity of an electron
occupying a state k on the Fermi surface is normal to the
surface at the point k. Therefore, according to Equation L,
the magnetic field causes the vector k to move aloﬁg the

line of intersection of the surface E(k) = constant with a

ey
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plane k.B =vconstant. This path which is traced out by‘the
vtipAof the vector k in the magnetic field ié offen.réferred
to as an Qrbit.

We can set up curvilinear coordinates in the plane of

the orbit such that for k measured along the orbit and

tan

k ~measured normal to it, we have from Equation L

s eB  OE
“tan = -fic ok

or
2 -1 ’
i c [2E
at = g (ak > A pan
. n i
so that the time required to traverse a closed orbit is

2 dk
T =‘ﬁ C tan (5)

c eB QE/an .

We define an orbit effective mass m¥ by

so that the cyclotron frequency &c, which is the frequency

at which a closed orbit is traversed, can be written

_ 2T _ B
e s E T mxe (7)

Furthermore, the integral in Equation 6 is the derivative
of the orbit area #’with respect to the energy so that we

can write an alternative expression for the cyclotron mass




as

52 I |
m* = g% . (8)

According to Equation 4, the projection of the r-space
trajectory of an electron onto a plane perpendicular to.

the magnetic field will be similar to the orbit in k-space,

but will be rotated by /2.

Equations 4 and 7 are the basis for a qualitative under-.

standing of the cyclotron resonance experiment and the
Gantmakher size effect experiment. The Gahtmakher effect
(Gantmakher 1962) is studied in a thin metallic sample whose
boundaries are represented by the line$ a-b and c-e in

Figure 2a. Also shown in the Figure are the relative ori—
entatiéns of a hypofhetical orbit in K-space and the pro-
jection of the corresponding electron trajectory in r-space
onto a plane perpendicular to‘the magnetic field; fhe mag-
netic field is parallel to both faces of the sample. An
osciliatory electric field also lies:in the plane of the sam-
ple surface, but at right angles Cto the magnetic field. Thec
quantity érrepresents the skin depth for the electric field
whose frequency is'fypically~406 Hz. If éfis much less than
the orbit diameter in r-space and if the mean free path is
sufficiently long, this configuration is appropriate for mea-
surement of the calipered dimension 2p 'of the Ferﬁi surface.'

The width 2p is an extremal caliperéd dimension with respect

to planes ky = constant through the sheet of the Fermi
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(b)

i

 Pigure 2. Illustrating electron trajectories and orbits
o 'for (a) the Gantmakher size effect experiment
(after Gantmakher 1963) and- (b) the cyclotron

- resonance experiment (after Azbel and Kaner

+-1956)
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surface which is being considered.

In sufficiently high magnetic.fields the dimensions of-

the électron trajectories will be smaller than the samﬁlé
_thiﬁkness d. As the magnetic field strengthlis reduced,
the electron trajectories expand so that the‘nﬁmber of
electrons which pass through'the skin'layer and complete an
orBit without colliding with the sample surfacé,décreases.
At $ome critical field_?alue, the extremal calipered dimen-
sién of the trajectory Jjust coincides with the sample thick-
'ness; and at this point, an anomaly is found in the field
dependence of the resonant frequency of a coil containing
the sample (Gantmakher 1962, 1963) or in the r-f trans-
mission through the sample (Wa£Sh and Grimes 1964).

The geometry for the observation of cyclotron reéonance
is the same as for the Gantmakher effect, excépt that only
one surface of the sample is considered and the frequency
Wof the electric»field is substantially higher (typically'
1010—1011Hz). The trajectories in Eéépace which correspond
to closed orbits on the Fermi surface are helices with their’
axes along the magnetic field direction (Figure Zb) so that
an electron which passes through the skin depth at one point
on its. trajectory will do so again at intervals TC until it
suffers a collision. During each pass through.tﬁe_skin
depth, the electrbn expefienccs-an impulsivéAforce from thé

electric field. If ayﬂé is an integer, suqcessive'impulses
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will be in phase and a resonance (change in the power absorp-
tion coefficient of the sample) will be observed. For

sufficiently low values of the magnetic field these resonances

are periodic in YB with period ls(1/B).=quic

The theoretical treatment of this effect (Azbel and:
Kaner 1956, 1957) shows that the .effect is dominated by
electrons on sectiohs of the Fermi surface for which the
quantiﬁy m*(kﬁ) is extremal with respect to kB, the component
of the wave vector along the magnetic field direction; How-
ever, if the magnetic field is tipped slightly out of the
plane of the surface of the sample, most of fhe electrons
will tend to drift out of the skin depth. Those which will
not are those for which the average of the drift velocity
;z around an orbit is zero. Only this group will contribute
to the resonance. Harrison (1960) has shown that the average

drift velocity is zero for orbits which enclose an extremal

‘(maximum or minimum) area in k-space.

C. The de Haas-van Alphen Effect
From an experimental wview point the de Haas-van Alphen
effect can be described as the oscillatory behévior which
is observed in the magnetization of singie crystals of pure
metals when they are cooled to liquid helium temperatures
and placed in a strong magnetic field. - When the field
strength is changed, the oscillatory components'are found

to be periodic in YB,
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The importance.of‘the de Haas-van Alphen effect as a
tool for studyiﬁg the Fermi surface stems from a relation
found by Onsager (1952). For a uniform magnetic field B
in the é—difection, electrons on a ciosed orbit in E—spéce
execufe a periodic motion in the x-y blane.: Onsager applied
the Bohr-Sommerfeld quantization rule to this motion, ‘

jg.f:_lz‘_ = (n +4 )2Tn, ~ o (9)
where P is given by Ak + eé/c.and the integral is around an
orbit. Here 7 is an unspecified conétant. He found that
the orbits in the kx—ky plane enclose quantized areas:which
are given by the formula S

%?n = (n +4 ) 2TeB/cH . | (10) "
Since kZ is not affected by the quantization,‘the quaptized
levels can be pictured as defining tube§ in k-space
(Figure 3). As the field strength is increased, the spacing
A??between these allowed 'states increases in accordance with
Equation 10 and as the outer levels are pushed through the
Fermi‘surface the electrons become redistributed among other’
states. (It is assumed that sufficient collisions are pre-
sent so that we can always define an equilibrium distribution
function. )

According to Onsager-(1952), the magnetiZafion of the
system oscillates with a frequenéy determined by the rate
at Which‘theée levels pass through the Fermi surface.

\ For a disk of thickness'fk.z taken through the surface at kz




TB free energy of electrons

N

= Fermi surface

, \Dre - -magnéﬂzm‘ioh
AnB):(n+d)éZE R
" 2" he magnetic field B —

(n~10* if B~10° G) f
| o AAO An_le(O) A0 A - A©

de Hoas-van Alphen effect: measures A (6,4)

Figure 3. ITllustrating the de Héas—van Alphen effect for a hypothetical Fermi surface

ud’
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this frequency is

_ dn _ ch Ak, -
F = 'd—('17§5' = __%r_e-él—’ (11)

where we have taken n in Equation 10 to be a continuous
variable. Pippard (1961) finds that at absolute zero, the

magnetization.§Mﬁof'the disk has a sawtooth form as is shown

in Figure 3. He expands 5& in a Fourier series of the form
rdh¢¥ k
( Z))S‘kz

2TeB

SM =2 é(r,kz) sin(

A

The argument éf the sine function is of magnitude 103—10 S0
~ that when &M is integrated over kZ to find the total magnet-
ization, only the extremal areas}?b contribute to the integral.ﬁ
At higher temperatures, the Fermi surface is no lonéer
perfectly sharp and the dé Haas-van Alphen oscillations are
damped somewhat. The sawtooth wave‘form is rounded like the
dashed wave form in Figure 3. Lifshitz and Kosevich (1955)
have calculated the formula for the temperature aependence
of the amplitude-qf the oscillations and we will use their
final result, modified slightly to conform with the findings
of later authors. We wili include a spin splitting factor
g since Cohen and Elount (1960) have argued that the spin
splittihg of the energy levels should be in general of
magnitude_gﬁbH/Z whereas Lifshitz and Kosevich assume a‘
g-value of 2. (Hére/&B is the double Bohr magneton.)
Usually an amplitude damping factor which arises due

to the finite width of the Landau levels is also included.
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An analysié by Dingle_(1952) showed that for a quadratic
- dispersion laﬁ and fufthér simplifying assumptions, the rth
harmonic in the Lifshitz and XKosevich formula should be'
mﬁltiplied by the factor exp(—hﬂgrm*ckx/ehH) where x is an'
effective temperature related to the width of the Landau
'levelé. Furthermore, it has been observed experimentally
(Anderson and Gold 1963, Shoenberg 1962) that the de Haas-
van Alphen oscillations are actually perioaic in YB rather
than YH as Lifshitz and Kosevich suggested. Thus each time
- that the applied field H appears in eaply theoretical papers
it should be replaced by B.
| In our experiment, we in fact observe not the oscilla-
torylmagnetization, but the oscillatory differential
susceptibility’x;sc. If we include the additions which were
noted gbove, this quantity can finaily be writfeﬁ.out as
3 1

2 2 -
2 2ﬂb 1 2 Ab
~];sc.= UKTVF™ (S~ ) o7 ak B x

N

(12)

*
e 1 cos(’fg—’“—> os(BEE . T o orevy
(-1) _ : e—ﬁﬂ'rm*ckx/ehB
r= . : 2 51nh(4ﬂ3rcm*kT/ehB)
Here me is the mass of a free electron. If’there is more T

than one extremal section of the Fermi surface, each section
will contribute an oscillatory‘signal according to Equation
12, Uéually the argument of the hyperbolic sine in Equaﬁion
12.is'somewhat greater than one so that only the first few

harmonics in the sum need be retained and to a good
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approximationﬂ} sinh(LLTTBCm*kT/ehBﬂ_1 can be replaced by
exp(—hﬂjrcm*kT/ehB). When these steps are made, Equation

12 can be written
- . . 2 .
Wose = Loy (3:7) cos(3LH) (12)
i . )

where“Xoi(B,T) is slowly varying. The sum is over the
extremal sections and those harmonic components which have
a significant amplitude. By sorting out the frequencies‘
F, ( 9,4>) as a function of the orientation (&, <{>) of the
magnetic field direction with respect to the crystal axes,

the orientation dependencef*oi(e,<#) of the extremalAareaé

of the Fermi surface can be determined. From this informa-
tion the shape of the Fermi surface can be inferred. ' This
is the importance of the de Haas-van Alphen effect. Further-

more, by measuring the amplitudesj{oi(B,T) as a function of

" temperature, the cyclotron masses can be obtained.

D. Outline of the Present Investigation
In this study we have used the de Haas-van Alphen
effect to study the Fermi surface of tungsten. This work
considerably extends an earlier study (Girvan 1964) which
related only to the large portions of the Fermi surface.
It is found that the general features of the Fermi surface
of tungsten are in qualitative agreement.with a crude model

which was first'proposed.by Lomer (1964) and with more
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eiaborate models which were advanced by Loucks (1965b, 1966)
on the basis of detailed band stfuctﬁre calculatiOns'(Loucks
1965a, 1965b). - However, neither of these models give really
quantifative agreemént with our results. Therefore, we have
constructed an énalytical model for the Fermi surface of
ﬁungsten using both our resulfs and the GantmakherAsize—
effect results (Walsh and Grimes 1964). |
: in tungsten it was found that séme of fhe4signals were

quite complex and reguired special analysis teéhniqués.
Thé methods which were developed to perform the analysis

on these coﬁplex signals are discussed in Chapter II along
with the details of the apparatus and possible errors,

In Chapter III we present the resultsiof the frequency mea-
surements together with some examples of the daté.. Cyclo-
tron mass measurements wére also made for most_of the oscil-
latory components. The fesults of thelcyclotron mass mea-’
surements which were carried out for the DOO], Bj'ﬂ , and
ﬁ1d] orientations are presented in the second pdrt of Chap¥
ter III. In Chapter IV we discuss our data in terms of the
models which were proposed by Lomer (1964) and LoucksA(1965b,"
1966), and then procéed to describe theé experimentally-
determined Fermi SurfaCe in terms ot analytical funétions.

The chapter concludecs with suggestions for further study..
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II. EXPERIMENTAL PROCEDURE

A. The Impulsive Field Method

In this study measurements of the frequencies of
oscillation of the magnetic susceptibility of small single
crystals of tungsten were qarried out using the impulsive-
field method. This‘methqd was developed by Shoenberg (1957)
and was later described by him in detail (Shoenberg 1962)
so that a really detailed description will not be attempted
hére.

The sample is placed in a ligquid-helium bath in the
center qf a solenoid, and a time—varyiﬁg magnetic field
H(t) is pr&duced by discharging a bank of capacitors thréugh.
the solenoid. As the magnetization M changes with magnetic
field, a voltage dM/dt = (dM/dH)(dH/dt) is induced in the
.pickup coil. This voltage,'which is due to the oscillations
in'the magnetic susceptibility, is filtered and displayed
on'one trace of a dual beam oséilloscope. For field mea-
surement, the voltage developed across a slandard resistor
in seriés withlthe pulse coil is displayed on the second
trace of the oscilloscope, and both traces are simultaneously
photographed on Polaroid film.' In order to make small
changes in magnet current correspond to large deflectiéns
of thé oscilloscope beam, most of thé voltage developed

aocross the standard resistor is bucked off by a calibrated
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voltage supply and the small difference voltage is amplified
by the oscilloscope. |
Aftér the capacitor discharge is completed, the second
trace is again swept across the oscilloscope screen several
times at knowh voltages which are producedvbY.a calibration
unit. The calibration lines which are produced by this
procedure provide reference lines on the film for accurate
field measurement. Some examples of the data which are

obtained in this way are shown in Figure 4.

B, Experimental Apparatus

A Dblock diagram of the apparatus.is shown in Figure 5
and fhe physical arrangement of the components is’shown in
Figure 6. The sample and pickup coil were located in a
slender tail on one end of a glass-walled helium chamber,
and the whole helium chamber was encased in a liquid-
nitrogen dewar. A pulse solenoid fitted over the tail of
the helium dewar and both the helium chamber and the sole-
noidlwere hung from brackets on a pumping line. By means
of two large mechanical pumps, the temperature of the helium
bath could be varied from 4.2°K to 1°K. A mercury and an
0il manometer were connected to the helium.chamber for

temperature measurement.

The lower beam amplifier of the Tektronix 502

1The experimental apparatus has been described in
more detail by Anderson (1962).




Figure 4.
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Some examples of impulsive-field deHaas-van: Alphen

effect data for tungsten

Overall picture with symmetric field pulse illus-

trating the effect of the resonant pickup circuit
on the complicated dHvA frequency spectrum .
H approximately midway between [OOf]and 011]
Temperature ~1°K

Resonant frequency ~155kHz

Filter passband ~ 140-170kHz

Bottom calibration line at OkG; succeeding lines.
at intervals of 24.7kG '

Pulse duration~ 16ms

Expanded picture of oK oscillations using the
symmetric field pulse (The notation <A is explained
in Section III-A.)

H near [110]

Temperature ~ 4°K

Resonant frequency—~ 100kH=z

Filter passband ~70-140kHz

Bottom calibration line at 81.51kG; succeeding lines
at intervals of 1.235kG

Time across picture ~ 1ms

Overall picture using the shunt 1gn1tron (see cap-
tion for Figure 5)

HA~20° from [007)in the (110) plane
Temperature ~ 1°K
Resonant frequency~ 50kHz
Filter passband~ 30-70kHz
Bottom calibration line at OkG; succeeding lines
at intervals of 24.7kG
Time across plcture«z50ms
(The resonance peaks’ for H>O are off- scale ‘and
are not shown.)

Expanded picture of‘€u oscillations using the
shunt ignitron (The notation €, is explained in
Section ITII-A.) _

H~8° from [001]in the (110) plane
Temperature ~ 1°K

Resonant frequency ~ 50kHz

Filter passband~ 25-75kHz

Bottom calibration line at 19,760kG; succeeding
calibration lines at 1ntcrvals of 1. 235kG

‘Tlme across picture~ 2ms
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Figure 5. Block diagram of experimenfal apparatus (after Anderson 1962). Usually, the crowbar
or shunt ignitron is not used (Figure 4a). When it is used, the field decays exponentially

from its peak value (Figure 4c).
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Figure 6.

The experimental apparatus (The liquid nitrogen dewar has been

removed from its mounting and set on the floor.)

&l Pulse solenoid

b, Glass helium cryostat

c. Pumping line
d. Manometer
e, Capacitor charging unit

f. Capacitor

g+ Buckinglcircuit

h.  Oscilloscopé

i, “Electronic' filtexr

j. Voltmeter to monitor signal induced in pickup coil by
sample orienting coils

k. Sample orienting coils

1. Liquid nitrogen dewar
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oécilloscope was connected differentially across a bucking
circuit and the .01 ohm series resistor in the magnet circuit.
This bucking circuit (see Anderson 1962) is a calibrated
voltagé supply.which could be set to supply bucking voltages
from zero to 15 volts in steps of 0.1 volts. The bucking
?ircuit was also equipped with a polarity~reversing switch
so that during a pulse it could be'sét to produce.a voltage
which.opposed the voltage across the‘standard resistor.
After the pulse the polarity could be reversed to supply
voltages for the calibration lines..

S;nce fhe magnetic field direction is fixed in space
by the physical arrapgement of the helium cryostat and pulse
coil, it is necessary to vary the orientation of the sample
within the helium chamber in order to set the magnétic field
along different crystallographic directions. Therefore, 'in
each of the two sample holders which were used, the pickup
coil was mounted in a small wheel with.the axis of the
pickup cbil perpendicular to the axle‘of the wheel.,

For the sample holder1 which was used to gather most
of the data, the axle of the wheel was held in Teflon bush-
ings which were mounted in a nylon fork assembly at the
bottom of the sample holder. The nylon holder was attached

to ‘a glass tube which in turn was connected to a stainless

1This sample holder was used by Anderson (1962) and
has been described in more detail by him.
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steel tube outside the high field region. The stainless

steel tube was the physical subport for the pickup coil assem-

bly and extended to the top of the sample holder, whiéh con-

‘tained a winch assembly encased in a wvacuum chamber. A loop

of nylon fishing'line was wrapped round the winch and the’

small wheel at the bottom end of the sample holder so that the

wheel qould be turned in the liquid helium chambef by turning

the winch at the fop of the sample holder, In thé latter part

of this study a second sample'holder1 was used in which the

wheel was turned by a beveled gear arrangement. |
Eleétrical connections to the pickup coil were-led out

of the helium chamber  through the top of the sample holder

to a variable capacitance and then via a band pass filter

to the terminals of the upper beam amplifier of a Tektronix

502 oscilloscope. The pickup c_oils3

were wound on small
nylon forms using about 1500 turns of either #50 6r #52

‘ AWG copper wire. The voltage induced in the pickup coils
by the rapidly-changing field was minimized by winding
‘inner layers and outer layers in opposite directions. Then,

as described by Anderson (1962), turns were removed from

the outer layers until the signal induced in the pickup

1’I‘his sample holdef was put together by Mr. P,T, Panousis.

ZVariable band-pass filter, Krohnhite Corporation, 580
Massachusetts Avenue, Cambridge 39, Massachusetts.

3’I‘he pickup coil which was actually used 'to gathér most
of the data was made by Mr. R, Phillips,
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coil in a~homogeneous alternating magnetic field was a
minimum,

The 200 kG pulse magnets were constructed following the
method described by Anderson ({962) and were calibrated by
nuclear magnetic resonance (Girvan 1964). Most of the data
which are:reported here were taken using Solenoid F. The
constant which related the field at the center of’this sole-
noid to the current flowing through it was found to be

123.5 + 0.2 Gauss/amp.

C. Sample Mounting and Orientation

'The tungsten samples were three single crystals which
were prepared‘by Metals Research Ltd., Cambridge, England,
.by spark-cutting from a zone-refined rod. The geometrical
éxes of these three crysfals lay along the DOQ],' ﬁ1d},
and ﬁ1f] crystallographic directions. As purchased, the
samples were too thick to use in impulsive fields, and for
this reason they were etched down to a final diameter of
about 0.066 cm and a final length of about 0.5 cm in a mix-
ture of 40% nitric acid and 60% hydrofluoric acid. Residual
resistivity measufements were not carriéd out on the actual
specimens, since such measurements invariably damage the
crystals; however, ratios of £(293°K)/P(L4.2°K) in excess of
4,000 have been qudtgd for zone—refined'tunésten by other
authors (Fawcett 1962).

When one of these samples was inserted in the pickup
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coil so that the crystallographic plane (h,k;1) was normal .’
to the axle of the wheel, suécessive rotations of the Wheei
set the magnetic field‘along successive crystallqgraphic
directions in the plane (h,k,1).

Due to the small size of the samples, great care was
necessary to orient a sample accurately with respect to the-
wheel. The detailed procedure for orienting a sample with
respect to the string-driven samplé holder differedislightly'
from'fhat used for the geared sample holder, but both pro- |
~cedures used standard Laue back—reflection x-ray techniques
(Cullity 1956). The sample was first glued in'a small glass
capillary (o.d. = 0.095 cm, i.d. = 0.065 cﬁ) with Duco éemént
and the capillary‘was'then inserted through a hole along
the axis of'a small nylon cylinder. - In order to iﬁsure clear
helium access to the sample, only one end of the sample was
glued. \

For the string-driven sample holder, a small mirror
was first}glued to a flattened place bn the latoral surfacc
of the nylon cylinder. The glass capillary containing the
sample was turned about its axis until the directions along
the normal to the mirror apd along the axis of the nylén
cylinder lay in the crystal plane in which it was désired
to set the magnetic field. Tﬁe detailed procedure for
doing this has been described by Girvan (1964). After the

sample and capillary had been correctly placed in the nylon
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cylinder, thé sample was put into the pickup coil'by push-
fitting the nylon cylinder into a cup-shaped cut in the end
of the pickup coil form. Then a light beam directed norhal
to the axle of the wheel was shone onto the mirror. ‘Usiné
the reflgcted beam for reference, the nyion cylinder ﬁas
turned until the mirror normal lay in a plane defined by the
light beam and the axis of the pickup‘coil. This'method of
sample orientation had the advantage that the light beam and
the nylon cylinder axis could quite acéurately be set in a
vertical plane by merely requiring that the reflected‘light
spét move along a vertical line on the wall as the wheel was
turned. Thus orientation errors in which the actual plane of
rotation was twistea slightly from the desired plane of
rotation were minimized.

The procedure which was used to orient a sample in the
geared sample holder differed from that used for the string-
driven sample holder in that the capillary and sample were
first glued in their mounting and pléced in the pickup c¢oil.
The geared sample holder was constructed with a short pickup
coil so that one end'of the sample stuck out of the end of
the pickup coil; the entire pickup assembly was detachable
and could be'mounted on the x-ray camera. Thus to set the
‘final orientation of the sample and its'mounting with respect
to the pickup coil, thec protruding end‘of the sample.was
x-rayed through a hole in the side of the wheel!

The axle of the wheel could be set accurately parallel
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to the X-ray beam by using a set of machined parallels.

The Laue back reflection patterns produced in this manner -
vwere used to set the normal-to the crystal plaﬁe (h,k,l)
parallel to the axle of the wheel. The crystal was held
firmly in the proper orientation by a coating of heaVy
Celvacene vacuum grease on the nylon mounting; the grease
-hardenéd when cooled to liquid helium temperature;

When rotation data were being taken, the angle made by
the magnet}c field in the plaﬁe (h,k,1) was determined by
measuring the angle beftween the pickﬁp coil axis and thé
axis bf a set of coils which were moﬁnted on the nitrogen
dewar (see Figure 6). The tangent of the tilt angle of the
pickup coil was found by setting the ratio of a-c currents
in the_two sets of coils to produce ‘a minimum in the induced
voltage in the pickup coil. The circuitry and detailed pro-
cedure for monitoring thé pickup coil angle in this way
have been discussed by Anderson (1962).

The geared sample hélder was equipped with a mechanical
revolution counter which was attached to the spindle used
to turn the_pickup coil, Since Mr. P.T. Panousis had shown
that differences in pickup coil angle éould be obtained from
the revolution counter to within 0.1°, the angle moniforing
coils were not used with this.sample“holder, and the angles
between successive pickup goil positions wefe obtained

directly from the calibrated revolution counter. Although
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it was possible to obtain differences in angle very
accurately from the revdlution.counter, there was some
backlash in the gears. Therefore, the zero value for the

angle scale was determined from the symmetry of the data.

D. The de Haas~-van Alphen Signal

The de Haas-van Alphen signal in tungsten is -found to
consist of many frequency components Fi' In one sense the
impulsive field method is well-suited to a study in which
many frequency components are observed. Due to the rapid
time variation of the magnetic field (pulse duration ~
15 ms), oscillations in the sample magnetization can be
measured in the 100 kilohertsz range, and thus standard
filtering techniques can be used. In addition, the pickup
signal can be further band-limited bf connecting a small
capacitor in parallel with the pickup coil. In actual
practice, provision is made to switch different capacitors
in parallel with the pickup coil in order to vary the reso-
nant frequency of the pickup circuit.’ As the magne£ic field

changes, the frequency in time is given by

2TFi dayg
Wi = T3 av (14)
H
for each de Haas-van Alphen component Fi' Therefore, reso-

nance occurs for the i%® dHvA component ivhenlUi equals the

resonant frequency'ug of the pickup circuit.
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The advantage éf‘the resonant pickup circuit arrange-
menf is illustrated by Figure 4a; which shows the pickup
'signal throughout the duration éf the field pulse. Each
peak in the pickup signal occurred when the resonance con-
dition was satisfied for a particular Fi' Since-the reso-
nance condition for each Fi occurs at a different magnetic
field value, the pickup signal‘from dHvA componen£s which
lie in successive frequency ranges is conveniently found to
resonate during successive intervals of time along the field
pulse. Thus a partial frequency analysis of the coﬁplicated
dHvA spectrum is performed by the resonant pickup circuit.
Usually, one or more eléctronio band-pass filters were
inserted in series with the pickup cipcuit to provide
increased frequency'discrimination.'

‘Because of the enhanced amplitude near resondnce,
the measurements which afe necessary to determine Fi for
each of the dHvA components were necessarily made over a
Timited field range in which tﬁe pickﬁp signal due tn
Fi was near resomnance. In order to measure accurately
the Fi which occurred in a particular resonance envelope,
the oscilloscope trace was displaced and expanded as
in Figure 4b so that the amplitude maximum and minimum
of each cycle of the dHvA cycle could be resolved on
an oscillloscope. The actual number of cycles of a

component Fi which were recorded on an oscillogram
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depended on the strength of the signal and the band width
of the pickup circuit. For the very strong &4 oscillations,
(see Section III-A) it was possible to obtain many more
cycles than could bé resolved on a single oscillogram.
Usually from 30 to 80 cycles>of the dHvVA signal were re-
corded on one oscillogfam, although as many as 130 cyéles

were used in certain cases for which it was necessary to

separate nearly coincident frequencies.

ﬁ. Data Analeis

The data analysis consisted of aégurately determining
the Fi' Since the resonance technidue.could énly‘give
partial frequency resolution, it was necessary fo find a
"higher resqlutionAmethod to analyze some of the complex ’
signals which we found in tﬁngsten. Several methods were
'developed and tfied, and .only the final procedure ‘will be
desqribed, even though not all of the”results wére obtained
by this method.

Thé magnetic susceptibility in tungsten is so small
tha? for purposes of determining the frequencies Fi, the
magnetic induction field B which occurs in Equation 12 can
be replaced by the applied field H. (The distinction
between B and H will be discussed further in Appendix C.)
The magnetic field values H at which cyéle maxima and minima

occurred were found by linear interpolétion between

TR
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calibration lines using appropriate coordiﬁates measured
from the oscillograms. First the oscillograms were rephoto-
graphed onto 35 mm film, and then this film was projectéd
onto a ’I‘eleducer1 screen. The Teleducer was equipped with
a crosshair which could be moved to any point on the proé
jected image of the oscillogram, and a slidewire arrange;
ment in the Teleducer produced an énalog voltage propor-
tional to the x or y coordinaté of the crosshair. This
voltage was automaticaily transferred to punched cards for
computer analysis.

The preliminary phase'of the computer analysis con-
sisted of checking for errors in the coordinate readings
from the oscillogram, smoothing the coordinate readings for
the field trace and calibration lines, and‘setting.up arrays
corresponding to reciprobal field values and cycle numbers.
The error checking eonéiéted of requiring 1) that sucqessive
coordinates for the magnetic field trace be monotonically
decreasing in value since the pictureé were always read
from the high field end to the low field end and 2) requir-
ing that successive coordinates for the time axis be either.
monotonically increasing (falling field) or decreasing
(rising field) in v;lue. If there were no reading errors,

a4 second order least squares smoothing procedure was applied

' 1Telecomputing Corporation; Burbank, California
(now defunct)
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to the field trace coordinates, and the calibration line
readings were smﬁothed by averaging successive sets of 9

‘ reédings. After these steps had been completed, the linear
interpolation necessary to find successive reciprocal mag-
netic field values was performed. The reciprocal field
~values, cycle numbers, and Signal amplitudes corresponding
to points read from the oscillogram Qere used for frequency
analysis.,

The two methods of frequency analysis used were least
squares fitting‘of the points to straight lines and period-
ogram analysis. The first method depended solely on the
fact that for a signal which is periodic in ¥H, a plot of
feciprocal field positions of cycle ﬁaxima and minima versus
cycle numbers should be a straight line. The slopé of the
straight line gives the period of the dominant -frequency
contributing to the corrésponding region of the oscillogram.
Due fo the limited bandwidth of the pickup circuit and to
the fiéld dependence of the amplitude.of the dHvVA signal, a
particular oscillogrém may contain distinct regions with
different dominant frequencies F. in each. In such a case,
the plot of reciprocal field values of cycle maxima and
minima wversus cycle number will contain severél straight
line segments, one for each of the dominant frequencies.
This situation is illustrated‘by Figure 7.

‘The slopes of these straight line segments were also
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determined by éomputer analysis. The entire data analysis
program is discussed in:Appendix A, so we will give only a
éhort description here. Short straight line segments of
}ength Ni were fit to successive‘sections of the data by the
method of least squares. Several passes were made through
the data, each time using a slightly larger Ni.'

In order to lessen the effects of possible réading
errors at each step and to.avoid calculating a mean slope‘
when the Ni points being fitted lay on either side of a dis-
continqity in slope, thé'fitting procedure was carried out
several times for each set of Ni points. After each of
these fits, the deviation of each of the.Ni points from the
fitted line was checked; then a new least squares calcul-
ation wa$ carried out, omitting those points which-deviated
from the fitted line by more than a certain multiple of the
standard deviation. ‘

Estimates for the de Haas-van Alphen frequencies were
made from the slope and error calculations in two different
ways : "long straight line" estimates for the frequencies
were made by taking weighted averages of the "short straight
line" Slopes. Only points lying on a single linear sgction
‘of the reciprocal field versus cycle number plot were used
for each average. When the slopes of adjacent sections
differed by less than a few percent, the résolutiOn-of this

method was insufficient since the initial and final points

s Ot At
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of each linear region could not be deﬁermined ééCurately.
In a variation of this method, the results ofvthe
'least squares caiculations were collected in a so—called“
idéogram,.which is defined as a'plot of Ij versus Fj? where
Ij and‘Fj are defined as follows;- If the frequency and
error.estimate derived from the i% least squares fit are
Fi and Ei respectively, and if.N fits were performed for
the data set, the ordinate (intensity) Ij at abscissa

(frequency) Fj on the ideogram is given by

z

Here dF is the interval at which ordinates are Qalculatea.
The de Haas-van Alphen frequencies are inferred frqm the
frequéncies at whiqh'peaks occur in'the ideogram. Examples
are éiven in Appendix B.\ However, this method fails when
applied to a two-component beat pattern in which the con-
stituent frequencies are'quite'close.together. The reason
fbr the failure is that when fwo'frequencies.are very close
together ana beating, the frequency‘at whiéh the ideogram
neak occurs depends not only on fhe frequencies of the
beating components, but also on their amplitudes (Appendix
B).

In order to separate more reliably the de Haas-van

Alphen frequencies contained in beating patterns, a method

1= (arA/Z) 2 (/B exp[-3(r v )%/ ] L (15)
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of periodogram analysis due to Whittaker and Robinson‘(1956)
was used. This method is a variation of the Schuster'(1898)
methéd of testing a sequence of numbers {uk} to see if they
contain a periodicify P, In our case, the sequence {uk was
constructed from an artificial dHvA signal. This signal was
a triangular wéve which was constructed mathematically by
connecting successive points of amplitude maxima and minima
‘of'the actual dﬁvA signal with straight lines. The elements
Qf Zukg were amplitudeé of the triangular wave taken at
‘eQually-spaced values-of reéiprocal magnetic field.

A test period P (P is the reciproéal of F) was4stepped'

from an initial wvalue P1 to a final wvalue P, in -steps of dP.

2
At each step an appropriate subset of Zﬁk} was selected to
be tested for the periodicity P on the basis of thé fre-l
~quency results which had been found in the least squares
calculations. No part of {uﬁg was tested for aiperiodicity
P if it was clearly made up from a signal'whose period
differed from P by more than a cértain peréentage. The
exact tolerance depended on the . number of cycles of the
strongest dHvA component in the oséillogram.'

A relative intensity was calculated for each ﬁeriod P.
The plot of intensity wversus period which is found in this
way is usually called a periodogram. We have plotted
intensity I versus frequency F (rathcr than P). The fro-

quencies of the dHvA components are inferred from the
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frequencies at which peaks occur in the periodogram.

The periodogram analysis worked gquite well when the
de Haas-van Alphén signal was not too severely amplitude-
modulated by filtering. One important series of .data sets
for which this condition was satisfied was the data which
were taken to determine the orientation dependence of thé .
iow—frequency dHvVA cdmponents in-tﬁngsten for field direc~- -
tions near [boi] using the crowbar ignitron (see:Figure 5)..
Since the rate of change of ﬁ/HZ after the field maximum
was considerably less for this configuration than for the
symmetric pulse configuration, (see Equation 14), the time-
frequency of each dHvA component passed through the resohant
frgquency comparatively slowly so that many more dHvA
oscillations could be observed in oneé resonance en?elope:
(cf. Figure hd). Ap exaﬁple of a frequency spectrum

obtained by this method for one of the data sets which'wére

taken using the shunt ignitron is shown in Figure 8.

F. Measurement Errors
The measurement errofs.which can arise 1in this expéri—
ment can be divided into threé categories. These are:
(1) errors in determinihg the orientation of the crystal
with respect to the magnetic field, (2) errors due to
difficulty in analyzing complex waveforms, .and (3) possible

systematic errors in determining the field wvalues at which
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Figure 8. Periodogram for data shown in attached photograph. This
particular periodogram was selected because it illustrates
the reliability of the pericdogram analysis even [or signals
which have been severely attenuated by filtering and contain
small noise bursts. The two large peaks and the small peak
at a frequency of about 70 x 105G give the correct dHvVA fre-
quencies. (By readjusting the filters, it was possible to make
the term with frequency ~70 x 10°G dominant and thus verify
that the small peak at this frequency on the periodogram was
not spurious.)
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cycle maxima and minima occurred in the de Haas-van Alphen

signal.

1. Errors in crystal orientation

. The accuracy with which the orientation of the magnetic
~field is measured depends first of all on how accurate%y the
sample is oriented with respect to the sample holder (see
Section II-C); the tungsten samples were somewhat irregularlyé
shaped and quite small so that”slight misorientations of
. this kind were difficult to avoid. Secondly, for the string-
driven sample hqlder, the method which was used to determine
the orientation of the pickup'coil with respect to the mag-
netic field required that the axes of the solenoid, the 
angle-measuring coils, and the pickup'cdil could be made to
coincide; these necessary alignmenté were carefully made.
The orientation dependence of the dHvA frequencies in
the (;10) plane was mapped out by using the sample which had
its geometridal axis along [OO1] to study the orientation |
dependence for field. directions near [OO{I, the ﬁ11} sample
for field directions near [111], and the [110] sample for
field directions near [jid]. There are several dHVA com-
ponents in tungsten which wvary quite rapidly with anglé
so that the angle corresponding to the symmetry direction f
in each of these sets of data could be‘found by examining
the symmetry of the resulting plots of frequency versus

angle. Usually an adjustment of between four and six
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degrees was necessary to set the zero of the angle'scale
to coincide with the symmetry direction.

When the data from the different samples were combined
in a manner cohsistent with cubic symmetry to give the orien-
tation dependence of the frequencies throughout the (?10)
plane, any serious orientation errors at large angles showed
up as a mismatch between data taken using different samples.
The worst such angular mismatch was about 10°. The best

case showed negligible error.

2. Errors due to complex waveforms

It is felt that some of the data have not as yet begn
reliably analyzed, and thé points Which will be shown for
these data represent only the present best estimate. It
will be indicated which points are uncertain when the data
afe discussed. Most of the data could be analyzed reliably,
and when ‘these data were subjected to a detailed analysis,
the results which were obtained from successive pulses

agreed to considerably better than one percent.

‘3. Possible systematic errors

The most important systematic errors which are likely'
to.occur in the impulsive field experiment are connected
with the determination ofAthe magnetic field values corre-
ponding to each cycle maximum and minimum of the de Haas;

van Alphén signal. The major unknown factor in this
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determination is fhevshape of the solenoid at high fields.
During a pulse, the magnet windings are subjected to
enormous fdrceé which may cause the solenoid to become
slightly distorted.' Any slight distortion of the magnet
shoﬁld cause cracking in the epoxy resin ﬁagnet'coating,'
but such cracking has not been abserved, and we have no
other evidence that any significant distortion occurred.
Ideally, one would like to be able to méasure the mag-
netic field directly during a pulse, but unfortuantely |
there are no accurate methods évailable for measuring large,
rapidly—varying impulsive fields. Thereforé,zit is necessary
to rely on a measurémenf of the coil current I and to deter-
mine H frém the relation H=KI, assuming that distortion
effects are small. The coil current is determined'frqm the
voltage across the standard resistor; The constant.K which
relates the current in tﬂe solenoid to the field at its
center was determinéd from a proton resonance calibration
(Girvan 1964). This measurement was ﬁade using a '‘small
direct current~12A which is, of course, considerably less
than the peak pulse current (~1500A). Since the form of
the actual pulse is a low—freqﬁency, slightly-damped, half
sine &ave whose main frequency component is about 30 Hz.
it is probable that no serious errors due to capacitive
effect arose and that the d.c. calibration is adequate.

It is possible that a small error in frequency
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measurement could have occurred due to the slow overload
recovery of the oscilloscope amplifiersﬂ Since it is of?en
necessary to use large bucking voltages, these amplifiers
are saturated during much of the pulse. Preliminary'
measurements of the recovery from a square wave overload
indicated that there was some amplifier overshoot @ith a
long settling time during overload.recovery. However, when
Mr. P.T. Panousis later checked this effect, using the
actual sinusoidal field pulse, he found that errors due to
the slow overload recovery of the amplifiers for the

actual case are expected to be less .than 0.4 percent.

Eddy currents induced in the sample by the impulsivé
field can in some cases contribute to a frequency difference
between rising and falling field data. Fawcett (1962) has
measured the low temperature trénsverse magnetoresistance
éf single crystals of tuggsten and has found that the
resisti&itny(H) in the magnetic field fits the expression
QQ(H) —fD(O))49(O).= cH™ with an exponent m which is always
greater than 1.94. Using his results for the orientation
which yielded this léwest exponent and Gold's (1958) analy-
sis of the effects of eddy currents on the de Haas-van
Alphen frequencies, we find that frequency differences due
to eddy currents are expected to be less than 0.03 percent,.

'Anderson (1962) has considered further systematic

errors which can arise in this experiment. The conclusion
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. is that results obtained by the impulsive fiéld method are
quite reliable if.the data‘for rising and falling field are
averaged; there are several systematic errors in the raw
‘data which are cancelled by this averaging. All data which
we will quote wili be averages of rising and falling field
data.

Some of our results can be compared with the.results
obtained by other investigators (Sparlin and Marcus 1966,
Brandt and Rayne 1963) using the torque method (oséillations
are detected in the torque; M x H). ;In most cases the égree-
ment between the two different methods-is better than one
percent. However, for one low frequency component near
[bo{], there is a four pércent discrepancy,which is not yet

understood.
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IIT. RESULTS

A, "Frequency Results

.The main part of this study consists of frequency data
which were taken for magnetic field directions lying in a
(;10) plane,. Some data were taken for magnetic field direc-
tions lying in a (100) plane, but these data did not yield
any results which could not have been predicted from the
data in the (;10) plane and are therefore not discussed.

The points on Figure 9 show the overall frequency
spectrum which was.measured for magnetic field directions
lying in the (110) plane. We have plotted the results on a
- logarithmic scale in order to present all the data on one
drawing. - The points for magnetic field directions near.

[bof]were taken with a sample which.had its geometrical axis
along [bOU..' Similarly, the points near @11] and ﬁ1d]
‘were taken using samples which had their long axes along
D11] and D10j respectively. Usually the bath temperature
was about 1°K when these data were taken, and magnetic field
strengths ranging from 12 to 160 kG were used.

In order to facilitate discussion of the data, each of
the fundamental curves on the data plot has been labeled
.with a Greek letter. Smooth solid curves héve been drawn
through the fundamental terms &, 3, 5}47, €. The orienta-
tion dependence of the upper ahd lower branche%.flaénd

Cu of the low frequency &£ onscillations near BN)ﬂ,




Figure 9.
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Orientation dependence of all the frequencies
found in tungsten for magnetic field directions
in a (710) plane; the frequencies have been
plotted on a logarithmic scale. {7 :[001] axis
sample, [ : [111] axis sample, O: [110] axis
sample. Solid curves:fundamental terms;

. dashed curves:harmonic and combination terms-

predicted from fundamental curves. Shaded
region:incompletely resolved data. Points
lying in the dashed rectangular boxes will
be plotted on an expanded  scale on a later
figure. ‘ '
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(enclosed in dashed rectangles) does not show up very well
on this plot. These data will be plotted later on an
expanded scale (Figure 11). '

Many of the fundamental terms in tungsten were quite
strong so that harmonics of thgse terms were observed. In
éddition to harmonics, further nonfundamental terms are
expected due to the basic nonlinearity of the magnetic
properties of the crystal (Shoenberg 1962, Pippard 1963).
The simplest of these are sum and difference combinations
between the fundamental terms. In order to demonstra£e
which points on Figure 7 are due to nonfundamental terms, -
dashed curves have been drawn on the figure to'represent'
either integral mul£iples of" the fundamental terms or
combination terms between strong components. Many'of the
observed points lie on these curves, and this is the baéis
for interpreting these terms as nonfundamental. Fo? the
sake of dlarity,‘the complete set of dashed curves has not
been shown. It will be noticed that‘there are termsc{iéz,
but that there are no termsq@tgx Due %o the way in which
the spectrum of frequencies appears on the oscilloscope‘
screen, the termsocié;would.have been swamped by the very .
strong K oscillations if they had occurred. We shall
return to a further discussion of sum gnd difference»terms
in Appendi# C.

The shaded regions in the low-fregquency range foxr:




52

field directions near 511] indicate regioné ip which sig-
nals were observed, but the resolution of the data prpcessing'
proéedure was not sufficient to separate the different beat-
ing components. It.was possible, however, to obtain rough
estimates'of the frequencies from these data, and these
estiﬁates are plotted.

The'slow-frequency data near [OOf] were also.complex,
but by the use of special techniques it was.possible to ana-
lyze these data reliably. When our investigation.of these
siow frequenciesiwas begun, théy had been studied in two other
investigations using the torque method‘(Branqt-and Rayne 1963,
Sparlin and Marcus i964); these experimenters‘had given con-
flicting interpretations to their results. Since the inter-
pretation of the smali pieces of tungsten depends éritically'
on the detailed orientation dependence of these slow fre;
quencies near [OOf] (see‘Section IvV-4a), wé will elaborate on
these in some detail.’

:A special run was undertaken to.study the orientation
dependence of -the siow frequencies near EX)ﬂ . In order to
obtain sufficient cycles to resolve these frequencies, it
was necessary to connect the crowbar ignitron across the
pulse coil circuit (Figure 5). The crowbar ignitron fired
shortly after peak field. so that the field decayed expo-
nentially from its peék value (see Figure hc)f Because the

rate of change of I-I/H‘2 is relatively slow during the
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exponential decay of the field pulse, the time frequency'of
thé dHvVA componeﬁté changes comparatively slowly with H,.
and it was possible to observe mény cycles of a particular
component Fi gnd yvet use filtering to good advantage to
separate neighboring frequencies. However, since the fiela
pulse is not symmetric when the shunt ignitron is used, a
straight average of the data taken for rising and‘falling
field was not sufficient to find the correct frequency
Valﬁes. Therefore,. fof these data, measurements were first
taken only on the falling side of the field during the‘
exponential field decay. Then, when points had been taken
for a sufficient range of magnetic field directions, the
érowbar ignitron was removed, and the magnetic field was
again set along different directions near [bof] in'g (;10)
plané. Using this configuration, data were taken for both
rising and falling field; and the results were averaged.
These averaged results were compared with'the falling field
data which had been taken using the crowar ignitron, and
thus a correction factor could be determined for orienta-
tions near [001f] ; this correction factor was then used to
scale all of the crowbar results.

Sbme'examples of the beating patterns which were
obtained in the slow frequency 6$cillations us;ng the shunt

ignitron arc shown in Figure 10. Even with the pronounced
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Some examples of impulsive~field dHvA data in
tungsten taken at 1°K using the shunt ignitron

Beats between two components of &, oscillations
H about 10° from [0017] in the (710) plane
Resonant frequency ~32kHz

Filter passband ~ 25-40kHz

- Bottom calibration line at 24.7kG; succeeding

calibration lines at intervals of 1.235kG

€], and ~yoscillations both dominant on one

oscillogram (The - oscillations dominate at the

high field end of the picture and the €1 at the

low field end.) .

H~13° from [001] in the (110) plane

Resonant frequency ~ 50kHz |
Filters set to pass frequencies above 15kHz |
Bottom calibration line at 13.585kG; succeeding

lines at intervals of 1.235kG ‘

€1, oscillations beating with'7 oscillations,/7
oscillations dominant o

H~ 10° from [00T] in the (710) plane .
Resonant frequency, filter setting, and cali-
bration line values the same as in b

Y oscillations without noticeable beats

H~8° from [001] in the (110) plane

Resonant frequency, filter settings, and
calibration line wvalues the same as for b .
In later figures (Figures 32 and 33) we will
show the strong beats which reappeared in the
~ oscillations when H was moved still closer
to [007] . ‘

Showing heats between two terms of the &y
oscillations _

H~29° from [00T)] in the (110) plane

Bottom calibration line at 14.820kG; succeeding
lines at intervals of 1.235kG

Resonant frequency and filter scttings the same
as for b '

Puriher example of beats between two components
nf €, oscillations .

H~ 19° from [007) in the (110) plane

Resonant frequency~ 60kHz

Filter passband ~ 40-85kHz ‘
Bottom calibration line at 17.290kG; succeeding : o
lines at intervals of 1.235kG : |
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beating patterns and larée number of cycles which were
obsered on pictufes like these, it still proved difficﬁl£
to detérmine the orientation dependence of the upper branch
of.these,frequenciesvnear [boi] by straightforward beat‘
analysis, and it.was necessary to use the more reliable .
method of periodogram analysis (see Section II-E). The fre-
. quencies which were obtained by this method for the upper
branch Eﬁ of the slow frequencies near CbOf] are shown on

- an expanded scale in Figure.11a.

The shunt ignitron data for the iower branch of the &€
oscillations near {boi} are shown on ah expanded scale in
Figure 11b. These data were processed by the standard
‘method of finding the inverse slope of a line which was
fitted to the reciprocal field positions of cycle ﬁaxima'
and minima...At about 12° from [bof] both the ﬂ7os¢illations
énd the immediately slowér'éllosciliations could be brought
into resonance on a single picture as is shbwnAin Figure éb.
The frequencies for the two componenfs in a case like this
were determined from the reciprocals of the siopes of the
two éeparaté.straight lines'qn the reciprocal field wvalue
plot for this picture. The strength of the ) oscillations
increased rapidly asAthe [QOf] direction was approached
~until at an angle of ~10° from [poi] they became so strong
that they.dominated ovérythe whole low field‘range.

Since the<£L oscillations appeared as a slightly slower
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. and weaker frequency than the/ﬁ osqillations for H~10°
fromA{pOf] , 1t was assumed that the beating pattern which
was still apparent in the/7 oSciliations when the field
direction was moved closer to [001] was due'tobtheEL
oscillations which had now been almost completely swamped.
However, when H was set about 8° frqm [ooi], the beat pattern
completely disappeared (see Figure‘10d).7 Then, when the
magnetic field direction was moved still closer to[QO{],
the beats reappeared. In spite §f this peculiar disappear-
ance of the beats due to the € oscillations at about 8°
from [bOf], it was assumed that the beats in theJﬁ oscilla-
tions throughout the range of magnetic field directions near
@Of] were due to the €L oscillations, and a frequency for
the éL oscillations was obtained from their beat ffequency
with the/b oscillations. A subsequent check at [bo{] using
the periodogram analysis‘program confirmed that the'beating
pattern in the/7 oscillations near [bOU was indeed due to
a lower frequency component.

At larger angles (H~29°) from {boﬂ , sufficient cycles
of the lower branchés of the & oscillations could be obtained
to -observe a beating pattern between two separate ‘components
(see Figure 10e). As is evident from Figure 11, it was
"possible ‘lo separate these two componenfs only at two angles,
namely 29° and 32° from |001], although the effects of

beating between them were evident over a slightly larger
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range of angles.

The results on Figure 9 for frequencies lying in the
'range 6-10 x 106G for field directions near D10] are not‘
as. reliable as those which we have just discussed for tﬂe
same frequency faﬁge near [OOf]. These daté near 616] ;
were taken using the symmetric field pulse (rather than the
exponentially-damped field pulse as was used near [poﬂ')
so that signals from all of the terms with frequencies in
the range 6-10 x 106G appeared on one oscillogram; the
frequency resolution which could be obtained was therefore
limited. We have shown the periodogram fof one of these
data sets in Figure 12; There are two small peaks on this
plot at frequencies qf about 7.7 x 1O6G and 8.8 x 1O6G. At
nearby angles, two similar well-resolved peaks weré always
found in the frequency range corresponding to these two
peaks. However, in the frequency range corresponding to
these two large peaks on Figure 12, the terms were 223
always well-resolved. Nevertheless,.we have used the fre-
guencies at which peaks occurred in this lower frequency
range as estimates of the true frequencies and have plotted
these estimates in the shaded region near D]d] on Figure 9.
ﬁe will see in Section IV-B that it is possible‘that there
were a number of frequency terms in the range 6.5 - 7.5 x

p .

10°G; if this was the case, the uncertain results which were

obtained from the lowest frequency range near 5167 would be




6754
60.04

52.54

INTENSITY (x10")

4504

60

37.54 —

3004—

22.54}—

15.04 —

754

004

Figure 12.

50.00 62.00

7400 8600 98.00
FREQUENCY (x10° GAUSS) ‘

Periodogram for data shown in inset



61

explained.

Most of the remaining oscillatory-terms on Figure 9 Qere
separated quite well by the resonance.techniqﬁe so that it
~was usually not necessar& to use periodogram analysis to
find accurate freéuency values‘for these terms, However; the
frequency resolution for these terms was of course limited
by the number of cycles which ﬁere'obtained in a resonance
cnvelope. In oné important case, that of the/? oscillations,
this number was not large enough to tell whether this term
was really a doublet or not. (We will see in Section IV-C
that it is.possible that there may really be two terms having
fregquencies very close to that of the/B oscillations.) One
of the bettér~data sets which were obfained for the F?oscil—
lations is shown in Figure 13a. It is evident thaf there
are not enough cycles on this oscillogram to teil whether
the signal is Aue to two\terms having very nearly the samé
frequency or not.

Examples of the data fdr'some of the other terms ére
éhown in Figures 13b,'130, and 13d. " (An oscillogram for the

X oscillations has already been shown ' in Figure L4b.)




Figure 13.
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Examples of de Haas-van Alphen oscillations
in tungsten at 1°K
Resonant frequency ~ 100kHz

Filter passband~ 70-140kHz

@_oscillations for H~35° from [b01] in the
(110) plane

Bottom calibration line at 76.570kG; succeed-
ing calibration lines at intervals of 1.235kG
(The strong oscillations which are visible at
the high field end of the oscillogram are the
ocoscillations.)

ébscillations for H~35° from [bOf] in the
(110) plane

Bottom callbratlon line at 51.87kG; succeed-
ing callbratlon lines at intervals of 2.47kG

Soscillations and 77 oscillations for H~L8°
from [001] in the (110) plane (The S
oscillations dominate at the high field end
of the oscillogram and the ~ oscillations
dominate at the low field end.) Bottom
calibration line at 46.93kG; succeeding cali-
bration lines at intervals of 2..47kG

S5 and (xX-B)oscillations for H~33° from
[001] in the (110) plane
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B. Cyclotron Mass Results
According to Equation 12, it ‘should be possible'to
obtain the cyclotron mass corresponding to each ofbit from
a study of the wvariation of thevamplitude A of the oscilla-
tions with temperature T. For all of our data, the condi-

tion 4F3

m*kT/ehH 7 1 holds so that to a good approximation,
the hyperbolic sine in Equation 12 can be repléced by an
exponential. The temperature dependénce of the amplitude
of the de Haas-van Alphén signal is then contained in the
factor Texp(—hﬂgm*ckT/ehH) so that the cyclotron mass can
be found from'the slope of a plot of log A/T versus T. This:
procedure for obtaining the orbit masses is much more tedious
fhan direct cyclotron resonance, so that the complete
orienta@ian dependence of the cyclotron masses is ﬁsually
studied by cyclotron resonance. The direct cyclotron reso-
nance studies of the larée orbits in tungsten (Walsh 1964)
had received quite a'complete interpretation; our dHVA
results serve as a check on his interpretation since we can
associate an area with our masses., The dHvA mass wvalues
‘for the lower mass orbits have also been measured by Sparlin
and Marcus 1966) using the torque method.

Determinatiops of oscillation amplitudes from pulsed
field signals are subject to considerable uncertainties

(Shoenberg 1962), and precise values are possible only if

extreme care is taken. Firstly, slight heating of the




65

sample can occur during a magnetic field pulse, and of course
this heating is not detected by measuring the wvapor ﬁressure
at the surface of the liquid helium bath. Shoenberg (1962)

has considered this effect and has concluded that above the

A-point the sample temperature may be raised as much as 0.1°K, . .

but that below the A—point the heating is negligible.
Secondly, the amplitude is sensitive to small chaﬁges in

the shape of the field pulse which can occﬁr from one data
set to the next due to magnet heating during the pulse and
to variations in the capacitor bank voltage at which the
discharge is initiated. Care was taken to reproduce the
field pulse as closely as possible for successive pulses)
but small deviations are likely to have occurred. However,
these deviations would result in a somewhat randdm.scatter
of the amplitude measurements about the straight lipe, and.
thus would affect only tﬂe precision with which the masses
could be measured. Random errors can.also arise from slight
changes in the orientation of the spécimen betweén-successive
pulses. Furthermore, Shoenberg (1962) has pointed out that
if the p&sition of the sample with respect to the pulse

coil changes due to thermal expansion as the liguid helium
level . falls, the ampli£ude of the signal can be modified,
since the field_;nhomogenoity over the length of the sample
is chaﬁged. |

The cyclotron masses for most of the terms were not

Rie 0
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overly large and the signals were quite strong‘even at 4°K

so that the temperature dependence of the amplitudes could
usually be measured over the ~3°K tempefature range from
4.2°K to 1°K. In spite of the possible uncertainties in

these measurements, the plbts of log A/T versus T were usually
quite good straight lines for those terms which did not have
an extremely large ampiifude and were well separafed‘from
neighboring terms‘by the resonance technique. An example of

a plot obtained for such data is shown in Figure 14.

ForAsome Qf the terms the amplitude measurements were
more uncertain because these terms were not well separéted
from neighboring terms by the resonance technique. This was
~the case for the B oscillations for H// [111) . Two plots
(Figures 15 and 16) are shown for the temperature dependence
of the ﬁZoscillations. Thesé plots are for the same data,
but have been processed in two different ways in an attempt
to evaluate the effects of beats in the ﬂ oscillations due to
the very strong;>(oscillations. The.duplicate pProcessing
was undertaken in an attempt to find a precise value for the
cyclotron mass for the/G oscillations at ﬁ11] so that this
mass could be correlated with one or the other of two masses
near this value which Walsh (1964) found in his cyclotron
resonance study of tungsten. However, the dHvA mass results
for the/8 oscillations do not seem.to be suffiéiently precise

to make the correlation reliabiy. (The slopes'of the mass
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plots for rising and falling field are different because the
rising and falling field resonance envelopes occur at differ-
ent magnetic field wvalues.)

Small adjustments could ha?e been made to the lowest
temperature points on some of the effective mass plots to
correct for the exponential approximation, but this was not
done since the correction was usually quite small. The
largest correction would have been a ten percent lowering
.of the amplitude of the 1°K peint for the ol oscillations
at ﬁ1ij. On the semi-log plotlof‘Figufe 15 this corre-
sponds to about twice the width'of a p1otting'symbol.

Due to the difficulty in determining the best slopes
for ﬁhese mass plots, the overall accuracy of the results
is no'pettef'than ten percent. In Section IV-C we will
compare these results with the cyclotren'resonance results
and find that the results of the two experiments agree to
within the experimental error.

The temperature dependence of the amplitude of some
of the harmonic components was also measured'in orde? to
provide further evidence that these terﬁs were indeed har-
monics. According to Equation 12, the cyclotron masses for
the harmonic terms should be integral multiples of the mass
of' the fundamental term.

Mass plots for the O and 5;'oscillations for H//[QO{]

are shown in Figures 17 and 18. Within the experimentai
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error, the mass value for the 2;

~» Oscillations is twice that

of the O oscillations which is consistent with the inter-
pretation of these oscillations as harmonics. The ratio of
the masses of the é;

also consistent with the interpretation of the 5; oscilla-

and & oscillations for H// [110] was

tions as harmonics.

The temperature - dependence of.the amplitude of the
andcxzoscillations at the D1QI orientation is shown in
Figures 19 and 20. Each of these plots shows a low temper-
~ature saturation effect, but if the cyclotron mass values
are derived from the high.temperatﬁre‘slopes on these plots;
the ratio of the mass of thec:(2 oscillations to' that of the
o(oscillations is almost two; the discrepancy from an
integral ratio. is not really outside the precision‘with which
the masses can be measured. The bending over which is evi-
dent at the low temperat;re end of each of these two plots
is_fhought to be due to effects of frequency modulation on
the signal amplitude.. The freqﬁency modulation arises
because B rather than H appears in the argpment of the
oscillatoxry factor in Egquation 12 (Shoenberg 1962). We will
discuss this effect in more detail in Appendix c.

At the D11] orientation, the mass values which were
derived from the temperature dependence of the,harmonics

of the ol oscillations (Figures 21 and 22) are somewhat less

than integral multiples of the fundamental mass of m¥* = O.6me

SR E- P P
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(Figure 15). However, as we shall discuss in Appéndix c,
the discrepancy-ﬁay actgally be due fo systematic erroré
which can arise in .the mass measurements when the signal
amplitude is‘large enough so that the frequency modulation
effect is important. Thus we believe that thecXé and.<><3 -
oscillations are in fact harmonics of the G(oscillations,

but that the determinations of the effective. masses for these

terms are in error.
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IV. THE FERMI SURFACE
A. Theoretical Models for the Fermi Surface of Tungsten

1. The Lomer model

Some ofAthe general features of the Fermi surface of
tungsten were first .sketched by Lomer (1962, 1964) in papers
in which he modified the band structure found by'Wood (1962)
for b.c.c. iron so that it applied to tﬁe chromium group of‘
transition metals (chromium, molybdenum, and.tungsten). 'The
model which he proposed has proved to be quaiitatively
correct so we will begin by discussing it briefly. ‘

In Figure 23 we show a pictorial representation of the
Lomer model. In this figure the various pieces of Fermi
surface are approximated by octahedra and ellipsoids,Aand
the pieées are properly positioned in ﬁhe Brillouin zone.
There is an electron surface at the center of the zone (the
point labeled F') which can be roughly described as having
an octahédrally—shaped body with ball-like protrusions at
each corner of the Qctahedron. This surface has been named
(Sparlin and Marcus 1964) the electron jack because of the
similarity in shape to a child's jack. There is also an
octahedrally-shaped hole surlace centered at the corner H
of the Brillouin zone. We will call this surface the hole

octahedron. The other surfaces are a set of small

elipsoidally-shaped hole surfaces centered about the points
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-

FERMI SURFACE IN CHROMIUM

Figure 23.

Pictorial representation of the Lomer model

for the T'ermi surface of the chromium group

of metals (This figure was kindly provided

by Dr. W.M., Lomer, Solid State Physics Division,
H.7, Atomic Energy Research Establishment,
Harwell, Didcot, Berkshire, England.)
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N (the. centers of the zone faces) and a set of small lens-

shaped electron surfaces centered on the <HK» axes. These

lenses are not shown on the photograph, but they are

illustrated in Figure 24 which is a central (100) section

through the Lomef model. The lenses can be rgmoved when

spin-orbit coupling is taken into account.

" 2. Loucks' model

The results of later band calculations by Loucks (1965a,
1965b), Mattheiss (1964), and Mattheiss and Watson (1964)
predicted thaf the shapes of the.large pieces of the Fermi
surface of tungsten did in facf consist of an electron sur-
face which was shaped like a jack‘and a hole surfgce which
had an‘octahedral shape. We will discuss the results of
Loucks' two calculations since he hés constructedAgeometri—
cal models for the Fermi surface from them.

Loucks' first calculation (Loucks 1965b) was based on

the APW method and did not take into account the effects of

spin-orbit coupling. Some cross sections of the model which

he found are shown in Figure 25a. These sections through
the Fermi surface are the sections made by the tetrahedron
HNP which is shown in Figure 25c. This non-relativistic
model is qualitatively similar to the Lomer model.

In Loucks' second calculation (Loucks 1965a, also

based on the APW method) relativistic effects were iﬁcluded.
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Figure 24. Central (100)section through the Lomer model (after Lomer 1964);

_ the cross section of the fundamental zone is the square with,
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Some cross sections of Loucks' models for the

'Fermi surface of tungsten: a. Nonrelativistic

model; b. Relativistic model; c. Brillouin
zone for the body centered cubic structure show-
ing the tetrahedron ["HNP which has been unfolded
in a and b
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Both the lenses and thé hole ellipées were found to disappear,
and the neck region of the electron jack was smoothed out
”(Figure.ZSb). Furthermore, when the spin-orbit contribution
to the relativistic terms is taken into account, the electron
jack and hole octahedron surfaces are no longer required to
touch along <ﬁod} axes, and in fact, Loucks found that there
was a small separation between them. A similar prediction
was made by Mattheiss and Watson (1964).

Noné'of the theoretical models which we have outlined
prediéts all'of.the experimentally~-determined featurés of
the Fermi surface of tungsten correctly. However, we shall
see that a qombination of features from the different models

seems to be in agreement with experiment.

B. Comparison of Some Previous Experimental

Results with the Theoretical Models

1. Magnetoresistance and anomalous skin effect

Some of the earliest experimental results pertaining to
the Fermi surface of tungsten were obtained from measurements
of-the transverse magnetoresistance of very pure single
crystals of tungsten at low .temperatures (Fawcett 1962).

These measurements indicated that the Fermi surface of
tungsten cannot support any open orbits and that tungsten
is a compensated metal, that is, the volume enclosed By hole

surfaces is equal to the volume enclosed by electron surfaces.
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Each of these conclusions is in agreement with the predic-
tions of a surface like the Loucks relativistic surface‘ih
which all portions of the Fermi surface are closed; the com-
pensation requirement is.automatically satisfied since Loucks
found the Fermi lével by requiring the electron and hole
volumes to be equal.

The.agreement of any of fhese'models with thé experi-
mental results for the total surface area of the Fermi sur-
face is not as satisfying. Measurements of the surface
~resistance of a polycrystalline specimen of tungsten under
conditions in which the skin depth for a microwave electric
field was much less than the electron mean free path
(Fawcett and Griffiths 1962) yielded é total surface area
which was less than the total surface area estimatéd by
Loucks by about a factor of four. However, due.to the
‘relativelyrlow accuracy («/30 percent) of the anomalous
skin effect experiment and to the considerable departure
of the Fermi surface of tungsten from a spherical shape,
the anomalous skin effect may not giVe a reliabie value

for the surface area (Pippard 1960).

2. Gantmakher size effect and magnetoacoustic effect

.The results of Gantmakher size effect measurements (see
Section I-B) which were carried out in a 2}163 plane by
Walsh and Grimes (1964) are shown in Figure 26. The

calipered dimensions yield shapes for {116} projections of
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Figure - 26. Results of Gantmakhér size effect measurements ih tungsten;
"experimental k-vectors, ---- extensions implied by the model for the
Fermi surface (after Walsh and Grimes 1964 -
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the.eléctron Jack and hole octahedron which are qualifatively
quite-similér.in shape to those of the Loucks relativisti§
model (Figure 25b). PFurthermore, they show that the electron
‘jack and hole octahedron do not touch along <ﬁ00> axes, |
which is in further agreement with-the relativistic .model.
Thesé‘authors state that in addition to the signals which
were used to derive the cross sections showﬁ in Figure 26,
they also observed a number of other signals corresponding
‘to smaller diménsions, but did not interbret them. There-~
fore, the absence of cross sections for small pieces of

Fermi surface on Figure 26 should not be construed as meaning
that none exist.

Extremal calipered dimensions of the Fermi surface can
also be measured by observing oscillatory atfenugtion in
sound waves traveling in a single crystal (magnetoécoustic'
effect). These measurements are carried out at low temper-
atures and in a magnetic field under conditions in which fhe
electron mean free path is much longer than the sound wave-
length. The oscillatory attenuation is approximately
periodic in VH, and for sound waves of wavelength A which
are propagating in a direction g, an'extrgmél orbit dimen-
in the direction g x H is determined from a

sion /| K ot

perioduA(VH) in the attenuation by the rélation

Ak, = o[ A/Aym)] '
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Rayne (196&) has carried out such measurements in
tungsten and his results for extremal radii are shown inﬁ
Figure 27. These results, although they show wave vectors
which correspond with some of the dimensions on fhe theo-
retical modeis, do not seem to be in as clear cut overall
agreement with the general feafﬁres of the theoretical models
és the size effect results are.

As a first step in setting up an analytical model for
thevFermi surface,{we have‘made considerable use of'theA
calipered dimensions from the size effect. It is perhaps
worthwhile to emphasize at this point why we prefer the size
effect data to the magnetoacoustic effect data. The basic
reason is that the resonances in the size effect can be trans-
'lated into dimensions fairly unambiguously, whereas dimen-
sions can be obtained.from the magnetoacoustic effeét only
after a detailed frequenéy analysis. This analysis is
difficult to perform in practice because 6f the limited
number of oscillations which are usually observed.

In Figures 28a and 28b we show representative magneto-
acoustic data which wére published by Rayne (1964). Since
only a few oscillations are observed, only limited resolution
can be expected. Furthermore, the structure of these signals
is expected to be quite complicated. Mackintosh (1960) has
shown that even for the comparatively simple'casé of two
spherical surfaces, the wavéform_of the ogcillations is given

by a Bessel function 6f double argument and that éven the
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Angular dependence of extremal wave vectors for
tungsten obtained from the magnetoacoustic
effect: (a) (100) plane, (b) (110) plane,

(¢) (111) plane, (after Rayne 1964)
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Examples of data related to extremal dimensions

of the Fermi surface of tungsten

Recorder plot of a voltage proportional to the
390 MHz sound wave amplitude transmitted.throﬁgh
a (111) plane tungsten sample versus 300/H
Temperature: 4.2°K '

u// [277)

(after Rayne 1963)

Same as (a) except a (100) plane sample was
used and H// [010])

Recorder plot of the field derivative oif the

4 MHz signal amplitude transmitted through a
thin (110) plane tungsten sample versus the’
magnetic field ‘

Temperature: 4.2°K

H// [112] | |

(after Walsh, Grimes, Adams, and Rupp 1965)
(According to Gantmakher (1962b) the peaks at
Hn + Hg, 2Hp, 2Hh + He, 3Hnp arise from creation
of current sheets within the bulk of the sample
and consequent excitation of other orbits, the
sum of the extremal dimensions Jjust spanning
the sample thickness. )
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asymptotic form of.this Bessel function is not simply the
sum of two periodic terms. Thus it is felt that the inter-
pretation of.magnetoacoustic data is nof as straiéhtforward
as tﬁat for the siée effect data.

Representative size effect data which were published
By Walsh, Grimes, Adams, and Rupp (1965) are shown in
Figure 28c. These investigators obtain values for extremal
calipered dimensions from the positions of the peaks using
the formula

et

A]{ext = “tic H

peak

where t is the sample thickness. As Kéch and Wagner (1966)-I
have pointed out, the accuracy of this experiment is limited
mainly by the uncertainty as to which feature of the observed
peak in the signai cprresponds.to the orbit dimension Jjust
spanning the sample thickness. Since the peaks are very
sharp, it would be expected that errors in the dimensions
would not exceed;~5 percent. We shall latef show that the
model Fermi surface introduced in Section IV-C is not incon-
sistent with Rayne's magnetoacoustic data when one bears.in

mind the limited resolution in the magnetoacoustic experiment.

3. de Haas-van Alphen effect

Farly measurements ol Lhe dHvA effect in tungsten

(Sparlin and Marcus 1963, 1964; Girvan 1964) were consistent

1I’am indebted to Dr. J.L. Stanford, Physics Department,
Iowa State University, for bringing this study to wmy
attention. '

g
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with the predictibns of the theoretical modeis.(Section

IV-A) as far as the large pieces of the Fermi surface of
tungsten were concerned; The impulsive-field results (Girvan
196&) showed that the orientation dependence of the frequency
of.fhe o(osciliations was much like that expected for the
central cross section of a reguiar'ootahedron (Figure 29).
Furthermore, Walsh (1964), using ciroularly—polarized micro-

waves, was able to demonstrate that a [ﬁ1f7 orbit with a

cyclotron mass of m¥ = O.83me was an orbit on an electron
surface rather than a hole surface. He assigned this orbit
to the central section of the electron jack. . It was consis-

tent to assign the B oscillations (Figure 29) to the

same central section of the eléctron jack (Girvan 1964)
since the frequency of these oscillations wvaries somewhat
more rapidly than would be expected for the central cross
sectional area of an octahedron and the mass value at ET’U
is not inconsistent with that found by Walsh (1964).

The orientation dependence of the 5,and/7 oscillations
(Figure 9) is also éonsistent with the theoretical models
(Section IV-A) if the S oscillations are interpreted as
arising from the balls on thé electron jack and the /7
oscillations are interpreted as arising from the necks.
This interpretation was fi?st suggested by Sparlin and Marcus

(1964), and we will see in more detail in Section IV-C why

this assignment comes about.

M~~~ A
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The interpretation of the data for the remaining small
pieces of the Fermi surface in terms of the theoretical‘
models was not so straightforward. Some of the earlieét
low-frequency dHvA data related to very small portions of
the Fermi surface were obtained by Brandt and Rayne (1963)
using the torque method. Their results for the orientation
dependence of these slow frequenciés in'the,(;10)”plane are
shown in Fjigure 30. The term which varies with angle like a
parabola near [OOT] in this figure is the term which we have
called the,7 oscillations on Figures 9 and 11; as we-statéd
previously, this term is thought to give the orientation
dependenée of the cross sectional area of the exfremal neck
orbit on the electron jack. The orientation dependence
given by the curves through the other frequency tefms}on
Figure 30 is inconsisﬁent with the theoretical models dis-
cussed in Section IV-A; this general orientation dependence
is.appropriate to two different sets of small surfaces on
the <ﬁ00> axes rather than one set aé one might perhaps
expect if the lenseé indicated in Figures 24 and 25a were
actually present. Brandt and Rayne (1963) have argued that
the splitting of frequencies might be due to removal of the
spin degeneracy of the energy levels by spin-orbit coupling.
However, thils argument violates the theoretical conclusion .

that in the absence of a magnetic field there must always

be at least a double degeneracy at all points in the
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Torgue method results for the orientation dependence of the low
frequency dHvA components in tungsten in the (110) plane (after
Brandt and Rayne 1963). :
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Briilouin zone for any crystal in which the potential has a
center bf inversion (cf. Elliot 1954, Callaway 196&, p. 53).
| _It was notiéed by Sparlin and Marcus (1964) that the
data of Brandt and Rayne (1963) (excluding the parabola-
like_burve) differ only slightly from that which would'be
expected from a set of small ellipsoidally—shaped.surfaces
centered in tﬂe zone faces. Thé ekistence of such ellipsoids
was in fact suggested by Lomer'(see Figure 24); according

to his model they would be hole ellipsoids.

In Figure 31a we have‘indicated one such ellipsoid and
its relation to the diamond-shaped face of the Brillouin
zone. The orientation dependence of the frequencies ariéing
from such a set of'ellipsoids.in a (110) plane is shown in
Figure 31b; we have made a specific choice for the.lengfhs
of the three axes. It is seen that the 6nly differences
between the orientation:éependence found by Brandt and Rayne
(Figure 30) and that shown in Figure 31b is that in the
latter figure, the upper two branches cross at [001] and
D1d] whereas the curves drawn by Brandt and Rayne in Figure
30 do notAcross at these orientations.

There is thus a disagreement between Sparlin and Marcus
(1964, 1966) and Brandt and Rayne (1963) in the interpre-
tation ul luow-fileld de Haas-van Alphen data. In the following

section we shall present evidence which makes it c¢lear that

the ellipsoidal hypothesis is the corréct one.




Figure 31.
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Illustrating the expected orientation depen-
dence of dHvA frequencies due to small
ellipsoids centered in the ‘Brillouin zone
faces :

Cross section through an ellipsoid centered on
a point N in the face of the Brillouin zone;
the _semiaxes of the ellipsoids are a = 6.415 x
10_2(2W7a) along [N, b = 9.966 x 10-2(2T/a)
along NP, ¢ = 7.265 x 10°2(2W/a) along NH.
These are the dimensions used in our final
model of the Fermi surface. (The de Haas-

van Alphen effect can not distinguish between
the cross section which is drawn with a solid

.line and the alternate (dashed) cross section

which results when the ellipsoid is rotated

.90° about thc line NP.)

Expected orientation_dependence of dHvA
frequencies in the (110) plane due to the
ellipsoids ’

Expected orientation dependence in the plane
which is shown dashed in the stereogram
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C; In%efpretétiOn of the Small Pieces of the

Fermi Surface from Impulsive-field dHvA Results

Iﬁ view of the fact that Brandt and Rayne's (f963)l
result$ for the orientation dependenée of the low frequency
osciliations could not be fitted readily info a theoretical
model for the Fermi surface of tungsten, it was felt to be
important to check the orientation dependence of these slow
frequencies.near [pOf] using the impulsive field method.
There are two features of the impulsive field method which
would lead one to beiieve that such a check would be worth-
while. The first of these is that in the impulsiﬁe—fiéld
method, the amplitude of the pickup signal due to an oscilla-
tory term Fi does not vanish when the slopeaafi/aéaof‘the
frequency versus rotation angle curve is zero, whereas in
the torque method it does. Secondly, we were able to use
considerable filtering during the actual experiment to
partially separate neighboring frequenéies. This filtering
greatly simplified the task of extracting the component
frequencies from the data.
| In Figures 32 and 33 we show some examples of the
original torque recordings which were obtained by Brandt and
Rayne1 for these slow frequencies when the magnetic field

was near the [N01] orientationj wec have comliasled the torque

1Rayne, J.A., Carnegie Institute of Technology,
Pittsburgh, Pennsylvania. We are indebted to Dr. Rayne
for giving us the opportunity to examine the original data.
Private communicalion (1965). .
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Examples of dHvA data for the siOW'frequencies
in tungsten with the magnetic field direction
set very close to the [001] orientation

Photograph on the left: Reproduction of orig-
inal impulsive-field dHvA data for theC
oscillations, €, oscillations dominant

Bottom calibration line at 20.995kG; succeeding
calibration lines at intervals of 1.235kG

Photograph on the right: Reproduction of original
impulsive-field dHvA data for the %) and €y,
oscillations, % oscillations dominant

Bottom calibration line at 13.585kG; succeeding
calibration lines at intervals of 1.235kG

Recorder tracing: Reproduction of original
torque data for terms in the frequency range of

the €4, 77 and €, oscillations

Field range: 13.9-16.1kG
(after Brandt and Rayne -- see footnote .on

page 103) )
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Examples of dHvA data for the slow frequencies
in tungsten with the magnetic field orientation
about 2° from [001] in the (110) plane

Photograph on the left: Reproduction of original
impulsive-field dHvA data for thefEu oscillations,
€y Oscillations dominant

Bottom calibration line at 20.995kG; succeeding
calibration lines at intervals of 1.235kG

Photograph on the right: Reproduction of original
impulsive-field dHvA data for the - and €1,
oscillations, - oscillations dominant :
Bottom calibration line at 13.585kG; succeeding
calibration lines at intervals of 1.235kG

Recorder tracing: Reproduction of original
torque data for terms in the frequency range of
the €1, ~, and €y oscillations

Field range: 13.9-16.1kG
(after Brandt and Rayne -- see footnote on page

103)
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data.with impulsive-field data which Were‘taken near the
@Of]-orientation using the shuﬁt ignitron (inset photo-
graphé). Each torque recording is the.sum of signals from~
the two terms €L’ the ~7 term, and the two terms €u1. In-'.
thé impulsive field data, extensive filtering has been used
to simplify the otherwise complicated signal which would
result from the comEination of all these frequency terms.

To study the €u oscillatigns the filters were set so that
these oscillations were dominant over most of the fieid range
of an oscillogram (photographs on the left side of Figures
32 and 33). With a different filter setting the - oscilla-~

tions (beating with the €_  oscillations) dominated over -the

L
field range of one~6scillogram (photographs on the right
side of Figures 32 and 33). Thus, the analysis of the im-
pulsive-~-field data.ﬁould seem to be simpler than that of the
torque data'because the signalsAfrom all these frequehcy
‘terms are combined in the torque data but are split up into
_ two oscillograms in the impulsive-field data.

The impulsive-field results have already been shown in
Figure 11, and we éhow them again in Figure 34. These data

show an apparent crossing of the eu'terms atv[bof] which is

consistent with a model having small ellipsoids centered at

Our results indicate that the two €, terms cross at
[001] and we believe that the two éllferms coalesce at [OOf]
so that at this particular angle only three frequency terms
should be present.- (see Figure 34).
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the points N. In fact, thersolid curves on Figure 34 give
the 6rientation dependence which would be expected from an
appropriate set of ellipsoids centered on the points N in
the Brillouin zone faces. Tbe dimensions of the relevant
ellipsoids were found by fitting to the observed frequencies
at selected angles (shown in Figure 35), and the semiaxes
were found to be 6.415 x 16—2(2ﬂ/a)‘and 7.265 x 10_2(2ﬂ/a)
along <{110) directidns and 9.966 x 10-2(2ﬂ7a) along"@OO>
directions. (These are the same ellipsoids which were used
to calculate the orientation dependence in Figure 31.)

There is clearly a discrepancy between our results for
the €. oscillations near [bOi] and the corresponding results
obtained by Brandt and Rayne (Figure 30); according to our
results, tﬂe two branches of these Qséillations cross at
BX)ﬂ (Figure 34) whereas the torque results of Brandt and
Rayne show a separation of about 5 percent between these
two branches (Figure 30). Such a separation should show up
in our data as beats in the@Eu oscillations, each beat con-
taining about 20 cycles. ‘No such beats are evident in the
left hand insets in.Figures 32 and 33, even though beat

patterns with more than 20 cycles per beat appeéfed in these’

oscillations at othef orientations. (See Figure 10a for
an example with about 34 cycles per beat for H 10Y t'rom
001 .) Because. the impulsive field data (when the shunt
ignitron was used) are simpler to analyze than the torque

déta, we believe that the impulsive-field results are likely
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to be more reliablé.-

In their recent paper Sparlin and Marcus (1966) also
report the splitting in the €u oscillations at‘BX)ﬂ.'
Nevertheless, they interpret these slow frequency oscillations,'
in terms of ellipsoids at N on the.basis of a nonzero
aF/aéﬂH which they observed for the lower branch of thé '
slow frequenqy oscillati@ns as the magnetic field'angle
in the (710) plane was rotated past the [110] diréctiqn.
From this fact they inferred that the lo&er branches of the €
oscillations crossed at D1Q] rather than.touched as the
cur?es of Brandt and Rayne (Figure 30)'suggesf. Sparlin
and Marcus have labeled +the second term which they found in
the €u os¢cillations at [001] an "extra term" (see last sen-
tence of footnote number 6 in Sparlin and Mafcus.1966) and
have not attempted to expiain'ifs origin. The facf that
both torgque studies report two'frequencies'for the €ﬁ osci;-
ations at [bOf]wbuld seem to cast doubt on our .results for:
the orientation depeﬁdence of these térms. However, as we
have seen, the torque data of Brandt and Rayne were more
complicated than our impulsive-~field data, and it seems
likely that the torque data obtained by Sparlin and Marcus
were also complex. Therefore, we will use our impulsive-
field'results.

After the improved data analysis procedures had been

developed to analyzé the shunt ignitron data for the upper
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bfanch of the'slow frequency oscillations}near {bO{l, these
procedures were tried on some of the older data for the slow
frequencies near D1d]. These older data had been taken
'withouf the benefit of the shunt ignitron, and the signals
were more complex (cf. Figure 12) and more difficult to ana-
lyze than those which were obtained using the shunf ignitron.
Nevertheless, using the improved proeedures, it was possible
to analyze some of the old data reliably. A plot of the
points which have been obtained for the slow frequency
oscillations including the data for field directions near
D1d]ie shown in Figure 35. (The scaling factor for frequen-
cies between 6 and 7 x 1O6G near lpOi] had not been found
when this plot was made up so that the ppints which are
plotted for these frequencies are too low by about thfee
percent.) The old low—frequency impulsive-field data for
field directions near D1i) are so complex thet a rea;ly
adequate frequency analysis has not been obtained for these
data, and therefore no points are plofted for the low fre-
quency oscillations near lj1ﬂ .

As was explained in Section III-A, the data for the
lowest frequencies near D1Q} were also not always weil-
resolved, and only rough estimates of these frequencies eould
be obtained. The‘quesfion then arises as to why there should
have been any difficulty in resolving the single term which

is predicted for the lowest frequcncy oscillations at 13167




Figure 35.

Expanded plo= of impulsive—field'results for the orientation dependence
of the slow frequency oscillations in the (110) plane The solid
curves give <he orientation dependence expected from ellipsoids at N
(see Figure 31). The dashed curve gives the orientation dependence
expected from a hyperboloid of revolution with its axis along [OO{].
Open circles: frequencies obtained by direct analysis. Filled
circles: frequencies obtained by counting the number of cycles in a
bzat envelope. 4 : points which were used to find the semiaxes of the
ellipsoids. Only the points for the upper two branches near [001] and
the upper two branches near 11@] represent the frequencies correctly;
the lower points are subject to small systematic errors which have
bzen corrected in Figure 34 (see pages 112 and 60)

111
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By the ellipsoid model. The estimates for these lowest
fréqﬁency oscillations in fact indicate two terms in the
frequency range 6.5j7.5'x 1O6G at ﬁ1d] rather than one.

"It is possible that the existence of these two frequeﬁ—
cies is not a discrepancy with the ellipsoid at N model at
all, but is actually due to a slight misorientation of fhe
éamplef The.fact that the data for.theaﬁ oscillations which‘
‘were taken with the D1d] axis sample do not quite match up °
with the data for the,ﬁ oscillations which were taken with
the D1f] axis sample (Figure 9) indicates that the magnetic
field direction was not really set accuraﬁel&'in the (110)
plane when one or the other of these sets of data were taken.
Ffom the geometry of the orbit from which the  oscillations
are thought to arise it is evident thét sample ﬁisorientation
near the [(110)direction ih the (710) plane would iead to a
lower frequency for the/7 oscillations. Thus it is‘reason—
able to assume that the ﬁ1d] axis sampie was slightly mis-~
oriented when these data were taken. |

If this misorientation in fact occurred, it would have
affected the orientation dependence of frequencies due to
ellipsoidally-shaped surfaces at N quite seriéugly. In
Figure 31c we plotted the orientation dependence which would
be expected trom ellipsoids at N in a plane which is tilted
5% out of the (710) plane. The frequenéy spectrum predicted -
by the ellipsoid model in this plane is4complex, and analysis

ol such a frequency spectrum could certainly yield a doublet
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for the lowest frequency branch at D1d}.

D. Analytical Model for the Fermi Surface

1. Construction of the model

We have already discussed the ellipsoids af N, énd we
now turn-  to the electron jack and hole octahedron. The
functions1 to specify the shape of each of these surfaces will
be written out in detail after a—brief’geometricalinterpre—
tation of the jack function. (The function for the hole
octahedron is quite similar.) We make use of the fact that

the surface on which the equation

}kx,n + 1ky}n'+ e, | =

is satisfied is an octahedron for n = 1 and approaches a cube
as n—»ed . A function
Y o= p Ip l P
g1(kx,ky,kz) = thl 2 + ky 2 + 'kZJ 2,

with the adjustable parameter P, in the range’1‘é p2 <f2,
is used in making up an octahedral body for the Jjack. A

similar function

gz(kx’ky’kz) - lkX—A!ps * ’ky}p1 * Ikz}p1 (py>rg72)

+ "exponential asymmetry term"

is used to make up one of the balls on the electron jack.

1The basic form for the functions which weré used was
suggested by Dr. B.C. Carlson, Department of Physics, Iowa
State University. ’ - ' '
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(The exponential term lifts the reflection symmetry which
g, would otherwise exhibit in the plane kx = A) The functions
'g1 and g5 plus other 85 related to gz'by'mﬂﬁc symmetry are

combined with a "cube" function
_ | b P b
gB(kx,ky,kz) = lkxl 6 + lky} 6 + ‘kzj‘é (p6:>-2)
‘to give the jack function
8 K.

. i
F(k sk _,k ,p) = Z -
X y z l=1 gl(kx,ky"kz)

1 .

Here the Ki are additional adjustable parameters and p stands
for the whole set of parameters which can be varied to change

the shape of the surface F(kx,k ,kz,p) = 0. The "cube' term

y

g3 is used to make the faces of the octahedral body of the

jack concave.. (Due to the cube term, there are actually two

surfaces F(kx,k ,kz,p) = 0; one of these is a small cube

y
about the origin inside the jack. This cube surface is never
encountered during computation if the initial search fbr_a
point on the jack sgrface is not begun near the origin.) - The
neck of the electron jack arises naturally frém the way in-
which the "ball terms" and the Ybody terms" are cqmbined.

The explicit form for the function which was used to

give the shape of the electron Jack is

Ps_

F(kx’ky’kz,p) =

’kx_pB(?8+ka(p1+Ikzlp1+p1zexp(-P91kx—p11[p10)
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S i ,
l)kx+p3‘p8+lky’p1+'kzlp1+pjzexp(—p9lkx+p11’p10)

P
5
[P ey o P8 [, [P 195, oxp (-5 [, 2y, [P 10)

Ps
+
lkxlpi+[ky+p3!p8+lkzIp1+p12ékp(—p9}ky+p11lP1O)
. _ Y5
T P1e ey [P0 e 2oy [Poem ponp (-ng [1e, 72 [P 10)
. Fs

lkx|p1+lky’p1+lkz+p3,p8+p12exp(-p9[kz+p11}P1O)

P, | , ) ' P.,
]kxtp2+ |k Pa+ [k [P2 [kx[p6+ !ky,p6+ lkzzp6

Final.values for the 12 parameters in the function for
the model electron jack surface were found by fitting the
central (110) section of this surface.to an empirical curve
for this section. The empirical curve for this section was’
construcfed first of all by using all of the size effect
results‘of Walsh and Grimes (Figure 26). Gaps in the size
effect data for the neck and the side of the ball on the
electron Jjack were filled in by using fesults from Loucks'
RAPW band calculatiohs (see Figure 25b) and an empirical fit

to the neck region derived from the orientation dependence
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of the oscillations near ['_001] (Figur"e 35). To fill in
tha‘empirical éurve for the side of the ball, the size of
tha balls on the RAPW electron jack was scaled so that the
area of the extremal (100) ball orbit agreed with the exper-
imental dHvA area for this orbit. Then part.of'ﬁhe central
(110) .section of this shape was used to maké up tﬁe curve .
for the side of the ball. The shape of the (110) section

of the neck region of the electron jack was approximated by

part of a central (110) section of a hyperboloid of revolution.”

In Figure 35 the orientation dependence of the minimum cross-
sectional area of this hyperboloid fits the orientation
dependence of thezﬁ oscillations quite weli over a range.of
about 20° on either side of [0071] in the (710) plane. (The
size of the hyperboloid was first sqaied.to give the correct
values for the ~ oscillations (Figure 34) rather than only
the faliing field wvalues (Figure 35)). .

A further criterion was used to fix the shape of the
~extremal (100) ball orbit. Loucks' calculation predicts that
the shape of a cross section through one of the balls is not
circular, but somewhat square. We attempted to arrive at
the same shape for the cross section of one of the balls on
the empirical model. The ratio of the width w of the ball
cross section to the diagonal d was used to fit the degree

of squareness (Figure 36). Loucks | found that this ratio

1Dr. T. Loucks, Department of Physics, Iowa State
University, Private coummunication, 1965.
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k, (UNITS OF 27/a)
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-0 -05 .
ky(UNITS OF 27/a)

Figure 36. Shape of extremal (100) ball orbit
, (kx = 45(27/a)) The ratio of the width w to
the diagonal dimension d is .918. Orbit area

= .0552(2m/a)?
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waé 0.895. ABy setting the parameter P, in the Jjack function
equal to three we were able to arrive at this same value for
the ratio of the width of the cross section to the diagonal
dimension in an early empirical model. However, when.other
parameters were changed tb vary the shapes of otﬁer parts of
the electron jack, the ghape of the ball Cross section was-
changed slightly. In the model which is reported'here the
ratio w/d is 0.918. |

The final values for the parameters in the electron jack

function were p, = 3, p, = 1.1066, Py = .45395, p), = .27807,
_k - '

Pg = 9.3869 x 10 , Pg = L.5581, Pry = 8.3675 x 10 6, pPg =

2.6979, = 5.8337 x 10°, p., = 1.9634, p . = 0.39042, .

P9 .
Pip = 3.9347 x 107 7. With these values of the parameters,

the function F(kx,ky,kz,p) defined a'éurface with the shape
of the electron jack with radius'vectors to points on the
surface measured in units of (2T/a).

The function which was used to generate the hole octa-

hedron shape was

Ps

G(x_,k_,k _,p)= _
x’ 'y’ [kx—p3tp8+(ky{p1+[kz[p1+p12exp(-p9/kx—p11[p10)

b
5
’kx+p3]p8+)ky[p1+{kzlp1+p12exp(-p9(kx+pi1lp1o)

p
b
’kx/p1+Jky-p3}p8+[kzlp1+p126xp(—p91ky'P11Jp10)‘
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. : Py
lkxl?1+lky+p3lp8+lkz]P1+p12exp(_p9,ky+p11[p1o)

P
+ 5
lkxlp1+(kylp1+lkz—p3}p8+p12exp(—p9lkz—p11(p10)

Py
P o P
8+p12exp( p9lkz+p11( 10)

[l P Py [P+ e

Ps

eyl Par by [ ol [Povp oxp] -p 0/ Feae B P o ) ]

- p7
[, [ P64 e [P6+ e, | P6

The final values for all of the parameters in_the func-
tion for the hole octahedron were fouhd by fitting the central
(110) section ofAthe surface defined by this functioﬁ fo the
size effect data for the hole octahedron in Figure 26. The.
final parametér values for the octahedron were as follows:

2.5138, p, = 1.1084, p_, = 0.34581, p, = 37179,

Py 2 3
g = 4.6498 x 1072, Pg = 2.7257, p, = 1.165 x 10‘?, pg =
2.1323, py = 7.423 x 1074, p. = 1.7334, p . = .45109,
= - 5 _ -2
P, = 1.4319, Pi3 = 3.043 x 107, Py, = 6.3017 x 10™%,
Pig = 0.41590. The- frequency values calculated from this

shépe were scaled by a factor of 1.0276 for comparison with
the experimental dHvA frequencies, so that radius wvectors

to points on this surface must be multiplied by V1.0276 to
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convert them to units of (2T/a).
A (110) central section throuéh the model surfaces which
were obtained for the electron jack and hole octaﬁedron is

éhqwn in Figuré 37.

2. Compafison with the de Haas-van Alphen effect

After (110) sections of the model surfaces for the
electron jack and hole octahedron ﬁad been fitted, the overall
agreement of the shape of these surfaces with the de Haas-
van Alphen effect data was tested for a number of magnetic
field directions. Using the curve tracing program outlined
in Appendix D,thé extremal areas of créss section made by

planes k., = constant with the surfaces were calculated. The

H
frequencies which were célculated from these areas are com-
pared in Figure 38'with the fundamehtal frequencies found

by expefiment.

The solid curves in Figure 38 are drawn through points
calculated from the empirical model. The curve through the
points for the ol oscillations gives the orientation depen-
dence for frequencies arising from the central cross section
of the hole octahedron. The solid curves which nearly fit

the points for the<£u and €. oscillations give the expected

L
orientation dependence for the ellipsoidal surfaces centered
at the points N. The other curves give the orientation

dependence for frequencies arising from extremal sections

of the electron jack. Thus, the 5’oscillations, whose



[o01]

221

Figure 37. Central (110) section through the empirical surfaces for the
electron jack and hole octahedron (These two surfaces would contact
along the line "-H in the absence of spin-orbit coupling.)
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frequency varies very slowly with angle give the orientation
dependence of the area of an extremal ball‘orbit.

For field orientations near D11], there are two extre-
mal orbits on the body of the electron jack which predict
frequencies which vary with angle much like the frequency
of the 6’oscillations. There is a central orbit (which has
a hexagonal shape at [111] ) and a noncentral orbit with a
slightly smaller area (which is shaped like a trﬁncated
triangle at D1i]). The orientation dependence predicted
by the triangle orbit fits the orientation dependence of the
Boscillations quite well. However, it is difficult to
decide which of these orbits the‘ﬁ oscillations should
actually be assigned to. Walsh (1964) (see Figure 40)
has reported that both of theserrbits are observed in
gyclotron resonance expefiments, and he assigns the lower
mass resonance to the central brbit on the electron jack.
Acéording to this interpretation, wevwould perhaps expect
that the ﬂ oscillations should be aséigned to the central
orbit on the body of the jack rather than to the slightly ' ‘
smaller noncentral one.

As the field direction is tipped away from the [}1ﬂ
orientation, the frequency predicted by either of the orbits
for the ﬂ oscillations increéeases until gt an angle of about
20° from [601] the two branches coalcsce and form a singlc
cent?al orbit. As the field orientation is moved still

closer to [b01j this central orbit ceases to exist and a
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new central orbit is fofmed which includes not only the body
‘section of the eleétron jack but also four balls. According
to the model, the first orbit which includes four balls as
the field direction is rotated from B1f] toward [poi] is

a self;intersecting orbit so that near the angle at whiéh
the four ball orbit first occurs; the cyclotron mass should
.increase tremendously (cf. Lifshitz and Kaganbv 1959). Walsh
(196&) in fact found such an increase in the cyclotron mass |
_of the central jack orbit near the angle of changeover. At
about 20° from [boi] the F?oscillatiohs disappear and, con-
trary to expectation, are not replaced within a few degrees
by oscillations corresponding to the four ball orbit, pre-
‘sumably because of the strong damping associated with the
large cyclotron mass.

Walsh (1964) found that the lowest value of the cyclo-
tron mass of the four ball orbit, m*/mc = 2.88,‘occurred for
H//[bOﬂ . Due to the large cyclotron mass for this orbit,
the de Haas-van Alphen oscillations for this e%tremal section
are expected to be heavily damped and therefore difficult to
obsefve. We have, however, found a term with a frequency of
1.94 x 105G for H// [001] . The single point for this term
which is shown on Figure 38 lies on the predicted curve for
the four ball orbit. This single point might also be a sum
frequency of the o and é; oscillations (see Figure 9). if ‘
we argue fhat.the signal amplitude is determined to a largé

extent by the exponential damping factor'(see Equation.TZ)
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then the amplitude of the sum frequency o+ 5; would be
expected to be considerably larger than that of the four bali
orbit, since the "effective mass" parameter for the c£+'§;
cscillations would be approximately m¥%  + m*;é'g 2me (see
Appendix C), which is considerably less than Walsh's wvalue
of m¥ = 2.88m_ for the four ball orbit.

De Haas-van Alphen oscillations corresponding to many
of the other large jack.orbits which are predicted by the
modellwere not observed. Becaase the cyclotron masaes for
many of the jack orbits are considerably larger than the
masses for the ol oscillations and the 5; oscillations (Walsh
1964), de Haas-van Alphen signals arising from the large:

orbits would probably have been swamped by signals from the

terms o or 52

The (110) central section of the electron jack near one

‘'

of the necks is virtually indistinguishable from the genera-
tor of the hyperboloid of revolution which can account for
the orientation dependence of the » oscillations (see Figure
35). However, the computed minimum area of the (001) neck
section is about_15% too large. The reason for this misfit
is that the computed (001) section through the neck actually
turns out to be closer to a square than a circle. This is
the most serious percentage discrepancy between the model
and experiment.

A numerical comparison of the experimental de Haas-
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van Alphen frequencies and the frequencies preducted by the
model is carried out in Table 1. fhe frequencies F .are
relafed to extremal cross sectional areas of the Fermi sﬁrface'
_ﬁg (measured in units of (277a)2) by the equation F =

4.135 x 108Af. We have taken this opportunity to com-

Pare our results with the torque results of Sparlin and
Marcus (1966) and of Brandt and Rayne  (1963). In.comparing
the:experimentél results, it should be taken into account
that in most cases the impulsive-field method provides con-
siderably more frequency discrimination than the torque
method; interpretation of these data should fhergfore be more

straightforward.

3. Comparison of extremal dimensions of the empirical model

with those found by experiment

The extremal <§od} and <ﬁ1q> dimensions of the'centfal
sections of the models for the electron jack and the hole
octahedron are compared with those found by experiment in
Table 2. .The agreement with the size effect resﬁlts of
Walsh and Grimes (1964) should be quite good since these
results were used iﬁ finding the model. However, discre-
panciés have arisen for several reasons. The numefical
values for the size effect k-vectors were obtained by mea-
suring distances on a drawing which’was'like Figure 26, but
4L/3 that size (about 100 points were measured for each sur-

*

face). These extremal k-vectors were assumed to give the
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Table 1: Comparison of Fundamental dHvA Frequencies Found by Experiment with Frequencices
Predicted by the Empirical Model for the [001], [111], and [110] orientations

Oricen- Oscil-,

Frequency ( x106 Gauss)

a
b
c
d

The impulsive field results of this study
Torque results of Sparlin and Marcus (1966)
Torque results of Brandt and Rayne (1963)
We use the notation of Sparlin and Marcus (1966) for the surfaces; er:electron surface

eath (jack); hy:hole surface at H (hole octahedron); hy:hole surface at N (small ellipsoids).

This term could also be the sum frequency of the & and 52 oscillations,
©01) in the torque method investigations.

It is possible that the P oscillations are an unresolved sum of contributions from two
extremal orbits on electron jack.

Two terms were found for the €, oscillations at

i’I‘he frequency of the & oscillations could not be pinned down accurately at
The neck orbit and the ball orbit coincide at this orientation on the model.
JThtn freguuney muy b tos Taw haneuse nf gample migarientatinn.

tation lation Surface Orbit Calculated Experimental® Experimental® Experimental®
fooi] . e,,d 4-ball 195.3 1948 --- _—
' - hy central  152.5 151 150.0 _—-
S ep ball 22.79 22.7 22.7 -
f
. 8.78 8.98
€u hN central 8.805 8.80 8.5 8.55
~ ep neck 7.23 6.27 6.06-6.10 6.08-6.24
€y hy central 6.055 “6.11 5.99-6.03 5.94-6.03
ER)| en 3-ball 108.2 -— --- ---
o hH central 102.8 103.4 103.5 -——-
en central 70.3
B truncated 67.4 67.3g ——— ——
ep triangle ‘
by ep ball 23.69 ~ 25,0" 24.7 25.8
,,7 ep necki 23.69 23.9 23.4 -—
megsureinents -
€ hN central 7.777 unreliable - 7.94 7.62
o measurements
< hN central 7.266 unreliable 7.23 7.01
E”O] ep 2-ball 122.8 ——— —— _——
Y hH ‘central 111.5 111.5 111.5 -—-
non-
ep central 47.6 T T T
er, ggg;ral' 45.6 - ——— -
e ball 23.11 23.5 23.8 24,2
r .
- op neck 21.42 17.39 19.4 -
& hN central 9.408 9.34 9.40 9.28
< hN central 8.305 - 8.23 8.06 8.07
e hy central 7.055 measurements 6.95 6.90




Table 2: Comparison of Extremal <IOO> and (110) Dimensions of the Empirical Model with Those
Found by Experim=nt (for central sections of the electron jack and hole octahedron only)

Length of radius vector(units of 2—:1')a

Direc- Empirical b . c 4
tion Surface Dimension Model Experimental Experimental Experimental
<100> . Electron jack M .555 .559 .59y, .523

Hole octahedror \ ©.397 - .39 .39 .35,°

. - 3 3 2
b Electron jack ' % .250 xxXXX .25,

’ Hole octahedron a . 304 XXXX . 297
Hole octahedron ] © . 310 . 302

2Both the size effect and magnetoacoustic results were originally quoted in units of A°—1. Ve

have changed them to units of 2f/a taking the distance ['-H = 27/a to be 1.987A°-1,
Size effect results of Walsh and Grimes (1964)

Magnetoacoustic effect mesults at 390MH, ERay-ne 1964)°

Magnetoacoustic effect results at 930MH, (Jones and Rayne 1965)

Obtained from analysis of beat pattern .

621
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shapes of central sections pf the two surfaces; However,
the facesvof both the octahedral parts of the model electron
jack and of the‘médel hole octahedron turned out to be some-
what concave. Becaﬁse of this concavity, there are some
directions for which. size effect calipered'dimensions of -
these surfaces would'not givéAthe dimensioﬁs,of the centrgl
sections, and to this extent, the fitting procedﬁfe is in-
consistent. The 'shape of the central <QO1) section of the
hole octahedron and the calipered dimension in the D1Cﬂ
direction are shown in one of the sketches in Table 2. The
central dimension of this section is ~- 2% less than the
calipered dimension. For field angles between~ 23° and
~L0° from EQO{], central sections of the model electron jack
are also concave, even though these sections do not include
contributions from the balls; therefore the calipered dimen-
sion of each of.theSe sections is also somewhat larger than
the central dimension. The largestdifference(V6%)’between
the calipered dimension and the central dimenéion of the
body of the model. electron jack occurs for H+~23° from [bbi]
(k-vector ~23° from ﬁ1d]). |

A further comparison can be made on the basis of the
angles at which the central orbit on the electrbn jack ceaseé
to exist. The size effect data indicate that in the (110)
plane this orﬁit exists between the angieS»of'v18° and ~75¢°
from {boi}, and it is very satisfactory.that the model elec-

tron jack predicts that this orbit should exist between~23°
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and 77° from [OO1] .

‘A comparison between the magnetoacOusfio.éffect results
(Rayne 1964, Jones and Rayne 1965) and the predictions of the
empirical model for some of the larger extremal diménsions in
the (110) plane is carried out in Figure 39, and the compar-
ison for symmetry directions is summarized in Table 2. The
angular dependence for the complete set of extremal k-vectors
bredicted by the model electron jack is rather complicated.
Furtﬁermore, in this study orbits on the electron’jack were
traced only at those slices kH = constant which were necessary
" to find extrema; areas, and not all of-the orbits which are
necessary to find extremal E—véctors were.traced, since this
would have involved extensive additional computation. However,
the predicted angular dependence of e;tremal k-vectors which
is shown does not appear'to be in violent disagreement with
the magnetoacoustic'results, and may not be outside the.
experimental error (bearing in mind the difficulties in

interpreting the magnetoacoustic results-(page 91)).




Figure 39.-
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Comparison in the (110) plane of the magneto-
acoustic results and some of the extremal k-
vectors predicted by the empirical model. @&,
[: magnetoacoustic results at 390MH=z (Rayne
1964); X : magnetoacoustic results at 930MHz
(Jones and Rayne 1965); some extremal
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L. Orbit masses

We have delayed comparison of the dHvA orbit mass
results with those of cyclotron resonance until after the
Fermi surface models were discussed so_that specific orbit;
could be defined. Walsh (1964) was able to assign many of
his cyclotron resonance mass series to specif%c orbits with-
out recourse to a comparison with the de Haas-van Alphen -
effect masses. His results in a {110} plane for some of"
the largef masses are shown iﬁ Figure 40 along with his
assignment of these~data to specific orbits on the electron
jack and hole octahedron. It is evident that the orientation

dependence shown in Figure 40 is consistent with that expected

Y

from surfaces having the general shapes of the electron jack and -

hole octahedron. For instance, the prientatibn dependence for
the centrél orbit on the electron jack shows discontinuities
when this orbit changes from the orbit which does not include
any balls to the orbit which includes two balls or the orbit
which includes four balls. (Walsh1has found other resonénces,
which yield in general lower masses than those shown in Figure
40 but thus far he has not arrived at a final interpretation
for these masses.)

In Table 3 we have tabulated both the dHvA énd cyclotron

resonance mass results for the [b01], ﬁ11], and D1Cﬂ

1W.M. Walsh, Jr., Bell Telephone Laboratories, Murray
Hill, New Jersey. Private Communication, 1964.
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Figure L40. . Cyclotron resonance results for the orientation

dependence in the (710) plane of the masses for
some of the large jack orbits and the central hole

~octahedron orbit. (The original plot from which

this figure was made was kindly provided by
Dr. W.M. Walsh Jr., Bell Telephone Laboratories,
Murray Hill, New Jersey. Private Communication

1964
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Table 3: Orbit Mass Results

. m*/me
Orien- dHvA a Cyclotron® c
tation Surface Orbit oscillation dHvVA Resonance dHvA
[oo1] electron jack 4-ball 2.86 :
electron jack ball ' s 0.58 : -55d +505
electron jack neck ” 0.25% © .29 - .307
hole octahedron central o, 0.93 1.01 1.06 =" 1.1
holes at N central €, 0.37 .33: .354 - .365
holes at N central & L .23 T .28
qu electron jack ' triangle . . . . .96d’f
electron jack central B 0.9 .83
electron jack ball é;
electron Jack neck - . .
hole octahedron central =3 0.60 .58d .52
holes at N central € . 287
holes at N . central [ . 287
fi10] electron jack ' 2-ball . . 1.8
electron jack ball & 0.60 .55d
electron jack " neck ’ ) , ” v 75
hole octahedron central o .67 .67 .63 - .65
ellipsoids at N central [ .36 - ,37d
ellipsoids at N central "€ 329
ellipsoids at N  central < cL27d 262 - 276

Orbit mass results of present study

’
Orbit mass values picked off a plot of the cyclotron resgnance results (Walsh 1964)
Orbit mass results of Sparlin and Marcus(1966)

The overall mass apectrum found by cyclotron resonance is rather complex. The mass assignments
with superscript d may or may not correspond to Walsh's assignment. When the corresponding
orbit is noncentral, it is necessary to assume that the cyclotron resonance results pertain
to an orbit which has extremal area in order to make a direct comparison with the dHvA results.

a
b
c
d

eThe ~ and €, oscillations '‘were not resolved when these data were taken. The - oscillations
had previously been found to dominate at this orientation so the orbit mass which was derived
from the temperature dependence of the combined signal was assumed to be the mass for the

~) oscillations,

rThe triangle orbit does not have extremal mass according to thé empiricul wudel, Ilowover,
the model is not expected to predict mass values reliably, and this mass term has been
‘assumed to correspond to the triangle orbit, :
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difections. Only the orbits having an extremal. area are
relévant to.thé deA gffect so that in order to compare a
deA mass value for a noncentral orbit with a similar cyclo-
tron resonance mass value for a .noncentral orbit, it is
necessary to assume that the cyclotron resonénce_result also
pertains fo an orbit with extremal area. For insténce,
Walsh (Figure 40) has reported that. there are two orbits
with nearly the same mass as was found in the dHvA effect
for thg ﬂ,oscillations. One of these orbits is noncentral
and need nbt have extremal area. However, according to our
empirical model (Figure 38) there are two orbits which pre-
dict dHvA frequenciés near that of the ﬂ oscillations; we
have therefore included in Table 3 both of the aforemen-
tioned cyclotron resonance mass valueslin case the noncentral
orbit. with extremal area might coincide with the noncentral
orbit reported by Walsh. The overall agreement betﬁeen mass
results found by the two methods is e#tremely good. Unfor-
tunately fhe dHvA mass f&r the/B oscillations at E1i} falls
approkimately midway between the two cyclotron resonance mass
values; thus this mass measurement does not clarify the inter-
pretation of these oscillations.

The mass values in Table 3 for the & oscillations.can
be combined wifh the corresponding frequencies for these
oscillations (Tabie 1) to check the hypothesis that thesé
oscillations arise from a set of ellipsoidally-shaped

surtaces. For such a set of surfaccs, the ratio
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.m*@9,¢)/F(6u¢) (whereé,% give the orientation of the mag;
netic fieid) should be a comstant. Sparlin and Marcus
(1966 ) have carried out such a check, and for their measure-
ments this ratio'only.varies by about 10 percent.

A direct cbmparison between the experimental orbit
masses and ‘the predictions of the empirical model is not
carried out here; the masses depend on the slope of the E(g)
curves at the Fermi surface (cf. Equation 6); and although
the surfaces F(k,p) = O and G(k,p) = O'approximate.the shape
of the Fermi surface quite well, the slopes at which F(E)
and G(E) intersect the surfaces are not necessarily similar
to the slopes with which the curves Ei(E) intersect the Fermi
surface. (The experimental orbit masses are further compli-
cated by electron-phonon interactions (cf. Ashcroft and
Wilkins 1965).) We did,lhowever, carry out calculations
(Appendix F) to check whether the functions F and G would
at least predict the anisotropy of the mass curves for the
electron jack and hole octahedron respectively, and it was

found that they did not.

5. Volume and compensation of the model Fermi surface

In spite of the fact that the computed neck area for
the electron jack was too large, the model electron Jjack
and hole octahedron were used to compute an estimate of the
volume of the Fermi surface of tungsten,'since the small

discrecpancy in the neck cross section should not have a very
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large effect on the total wvolume. These calculations were
carried out by first finding the cross sectional .area A7'

at about 250 slices kH = constant. Then the volumes were

computed according to the formula V =§iﬁ&AkH . From the
: 1

i
semiaxes giveh on page 110, the volume of one of the hole

ellipsoids is 1.9453 x 10"3(2w/a)3. The final results are

as follows:

Surface Volume (%;33
Hole.octahedron : s . 11438
Six hole ellipsoids at N .01167
Total hole volume . T:ZGOB
Electron jack L1274
ﬁere a = 3.162 x 10—8 cm is the estimated lattice constant

for tungsten at 1°K (Nix and MacNa;f 1942; Cullity 5956,
.p. 484).

We know from the results of magnetoresistance measure-
ments (Fawcett 1962) that tungsten is a compensated metal
(equal electron and hole volumes). Whén‘the uncertainties
in bur fitting procedure‘are taken into account, our results
for‘electron and hole volumes support this conclusion.

We have not computed the surface area of our model for
the Fermi surface of tungsten and therefore cannot make a
direct comparison with experimental estimate of the surface
area of tungsten which has becn obtained by anomalous skin

effcct measurements on polycrystalline samples by Fawcett
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and.Griffiths (1962). They found, to an accurécy of 30
percent, that theéir measured surface'aréa could be aécounfed
for by 0.078 hole per atom and 0.078 electron per atom; each
occupying stafes in a hypothefical spherical Fermi surfaée.
These :esults'are to be compared with our estimate from our
model Fermi surface of .127 electron per atom and .126 hole
ﬁer atom.

The surface areas for spheres corresponding to the model
electron and hole volumes would be about 40 percent larger |
than the anomalous skin effect areas, and the surface areas
for the actual anisotropic model surfaces would be larger
than the surface areas of the spheres. However, in view .of
the discussion on page 88 and in view of the fact that the
'anomaious skin effect samples were thought to be not perfecﬁly
: ﬁolycrystalline, but to have a preferred orientationA(for
<50q> directions along the normal to the sample surface)
(Fawcett and Griffiths 1962) discrepancies”betweeh the .
experimental and model surface areas should bgfexpected,
However, since the discrepancy appears to be large, a re-
examination of the accﬁracy of the anSmalous skin effect

surface areas would perhaps be worthwhile.
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V. CONCLUDING DISCUSSION AND SUGGESTIONS FOR FURTHER‘
STUDY.

The results of this study have not only confirmed the
resu;ts of a torque method dHvA study in tungsten carried out
by Sparlin and Marcus (1966) at low fields, but have also
vielded other important groups of oscillations. Thus using
high impulsive fields it was possible to detect and study
the ﬂ oscillations gnd oscillations which probably arige,from
the central (001) section of the electron jack (the 4-ball
orbit), whereas neither of these oscillationslwas obsgrved'
in the torque studies. Moreover, because of its increased
selectivity, we have been able to use the high-field method
to resolve the disagreement between Sparlin and Marcus (1966)
and Brandt and Rayne‘({963)_concernipg the orientation depen-
dence of the low frequency oscillations near (bOT] (sée
Section IV-C). |

The simple empirical model has been shown to be in
excellent agreement with a rich variefyoof experimental evi-
dence. However, we recognigze thaf it is imprecise in that
it predicts an area for the neck on the electron jack which
is 15 percent too large (see Table 1). A further change
: which may be required is a slight reduction in the size of
the body of the electron jack. The orientation dependence
of the area of an‘extremal noncentral orbit on the electron

Jack predicts the orientation dependence of the frequency of
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theAQ oscillations quite well (Figure 38). However, it is
difficult to beliéve that this is the correct assignmenf for
these oscillations, in view of the fact that the central
orbit is thought to have the lower cyclotron mass (Figufe
40); since the curvature factors /92#}/&k22/-% for these two
orbits do not appear to differ greatly (Appendix G), the
central orbit would therefore be expeéted to contribute the
larger dHvA signal. Furthermore, wvisual inspection of
Loucks!' solid 3-dimensional model for the electron Jjack
combined with crude sketches on drawings of sections through
our empirical model seems to indicate that simultaneous
reduction in the area of the central ﬁii} jack orbit and
increase in the anisotropy of, 6 the orientation dependence of
the area of the central section could be achieved by a mefe
reduction (roughly 5 percent) in the <§10> diménsions of
the electron jack; no size effect results were repofted for
this.dimension so this change in the jack shape @o make the
centrai orbit predict more closely the orientation dependence
of the frequency of the ﬁ osqillations) could be made without
destroying the agreement with the size effect results in
other orientations.

It is unfortunate that there is not more direct exper-
imental evidence av%;lable to determine the detailed éhape
of the electron jack. Due to the strenéth of the. OQ.

oscillations, and the 5; oscillations, it is not altogether
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clear that further impulsive—field studies of the ‘ﬁ
'oscillatiens would yield any information regarding the
existence of two extremal jack'orbits with frequencies near
that of the ﬁ oscillations, although further studies using
the shunt ignitron should be carried out; perhaps these
studies could also be carried out using the field-modulation
technique (R.W. Stark; see Windmiller and Priestly,(1965))
since troublesome signal from the wvery strengcx_oscillations
could possibly be nulled out usingAthis method.

Another approach whiph should be pursued is to determine
whether the term with ffequenc& 1.94 x.108 G at [@Oﬂ is due
to the A4-ball orbit or arises from the combination of the
o and é; oscillations. This determination could perhaps best
be carried out by'a very careful simultaneous study. of the
orientation dependence of' the term iﬁ question and the
and é; oscillatiens. If this term turns out to arise from
the 4-ball orbit, its frequency can be compared with the
corresponding frequency predicted by the model (after the
neck shape has been corrected) to determine whether a
reduction in the <ﬁ1d> dimensions of the electron jack should
be undertaken. Measurement of the frequency of the 2-ball
orbit would of course also yield equally valuable informa—
fion, but here egain; the proximity of the strong X
oscillations and.the presence of combination frequencies

are expected to complicate the measurements.
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Precise Gantmakher size effect measurements qf the
<H1Q> dimensions of the jack using a (100) plane sample
rather than a (110) ﬁlane sample would also be of wvalue.
Such measurements might also be of value as a second exper-
imental determination of the shape of the (100) ball cross
section. (The magnetoacoustic results in Figure 27a might
be interpreted as suggesting that the (100) ball cross
section is more circular than the section which we showed in
Figure 36. However, as we have pointed out earlier (page 91)
it is difficult to derive such detailed information from
the magnetoacoustic measurements.) Size effect measurements
of the central (100) section of the hole octahedron could
also 5e used to determine whether the sides of this section
are concave or not and thus resolve the uncertainty as to
whether the present ﬁ1d]'size effect dimension fdr the hole

~octahedron (Figure 26) is the central dimension or not.

We should state explicitly that no evidence was found
for the existence of the small lens-shaped surfaces which
are predicted by the Lomer model and the Loucks nonrelativ;
istic model (see Section IV-A), although such surfaces could
have escaped detection in our expcriment if they were very
small. Sparlin and Marcus (1966) and Brandt and Rayne (1963)
also do not report any evidence for the existence of these
small surfaces (wé have reinterpreted tﬂe data of Brandt and

Rayne (1963) (seeASection Iv-C).
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In connection with any,fuffher dHvA measurements in
tungétén, an attempt should be made to make more reliable
determinations of the absolute amplitude of the oscillations
for use in gaining a further understanding of the ofigin and .
characteristics of the combination frequencies. It would be .
of great value to work out experimental conditions under which
the strength of these combination signals might poésibly be
minimized while retaining fundamental oscillations of
sufficient strength for study. In connection with any
absolute amplitude measurements, the field dependence of
"the amplitude should also be studied so that the leével broad-
ening factor in Equation 12 can be determined; using curva-
ture factors computed from the empirical model, a comparison
could then be carried out between the amplitude predicted by
Equation 12 and that‘obsefved experimentally to see if the
seemingly large amplitudes which were found are really pre-
dicted theoretically. Serious complications are expected to
arise in the interpretation of such measurements due to
frequency modulation effegts which seem to be evident in much
of our data (see Appendix C).

A further measuremen@, which should be undertaken is
a check of the temperature dependence of the amplitudes of
thecx,0<2, andcxgioscillations at 611] to see it the dis-

crepancy in the ratios of the orhit masses of these terms

which was reported in Section III-B 1is reproduced; if the
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discrepancy is again found, further mass measurements Should'
be carried out at different field Strengths in conjunction
with‘determinations of absolute amplitudes to discover if
there is any dependence of the measured mass ratios on

amplitude.
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VIII. APPENDIX

Appendii Aﬁ Further Discussion of Data Analysis Procedﬁres
As we ‘discussed in Section III-A most of the data in
‘fhis study could be analyzed by the standard methods of
either measuring magnetic field values at only two points
or measuring the field wvalue for every cycle and-obtaining
the frequency from the slope of a plot of the reciprocal
field positions of cycle maxima. and minima versus integers.
However, these procedures were not sufficiently'precise to
determine the orientation dependence of the éu oscillations
near [bo{] and further methods of analysis were therefore
investigated. Several methods were tried and eventually .
the Whittaker and Robinson (1956 p. 343) method of period—
ogram analysis (see Appendix E) was adopted. Several authors
(Whittaker and Robinson 1956, Brunt 1931, Kendail 1946,
Wold 1938, Bartlett 1955) have diécussed this or closely
related methods of frequency analysis, and this method seems
to be ﬁerfectly valid for finding the frequencies of pure
sine waves making up a waveform. The data for the{iu
oscillations which were taken using the shunt ignitron (see
Figure 10a) appear to almost satisfy the criterion of being
a combination of sine terms having only weak field dependence
of amplitude; in fact, the discussion in Appendix B which
relates to pure sine waves may be moré éppropriate for these

data than the discussion here. However, the Jjustification

1
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6f the application of periodogram analysis fq some of thg
other dHvVA data is not so straightforward, and some of these
data cannot be analyzed'by other methods. Nevertheless; we
believe we have made some progress even in analyzing compli-
cated ‘data. Part of the reason that improved results were
obtained is probably due to systematic attempts to eliminate
feading errors. A second reason for improved results is
'probably due to automatic computer determination of the

" straight line slopes so £hat a fairly comprehensive examin-
ation of the dafa can be rapidly undertaken without, for
instance, replotting sections of reciprocai field versus
cycle number plots on an expanded scale for accurate slope
détermination by hand. A third and important improvement is
the use of periodogram.analysis, sinpe as we shéll see below,
this method may yield results even in some cases when consid-
erable filtering has been used to produce shérp resonance
envelopes but neighboring frequeﬁcies were not resolved by
the filtering. ‘

Tﬁe problem at hand is the frequency analysis (in YH(t))
of a signal y(t) which results when oscillations which occur
in the magnetization of our small crystals  in fhe magnetic
field H(t) are detected using a pickup coil. The oscillatory
e.m.f. is proportional to dM/dt = (dM/dH)(dH/dt), and from

Equation 12 we expect that dM/dH is of the form
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aM _ 2)Fy
dH’—Eg Bi(H,Fi)31n( T W;) )

where the Bi vary only slowly with H.

As was explained in Section II-D, the piékup circuit is
made resonant by connecting a small capacitor across the |
pickup coil. 1In this case, the signal y(t) which is observed
across the capacitor in the R-L-C pickup circuit would be
given to within a constant factér by the solution of the
equation

L dzy/dt2_+ R dy/dt + y/C = dM/dt , (16)

an equation which appears to be very difficult to solve

explicitly, since the “frequency" \é of each of the oscillatory

terms F, in dM/dt varies with time (¥£ = Fiﬁ/HZ). (For
.discussions of the form of y(t) when the ffequency 6f the
' driving function varies linearly with time see Barber and
Ursell (1948) and Hok (1948). Shoenberg (1962) has discussed
some of the features of y(t) which are relevant to the
de Haas-van Alphen effect.) The net éfféct of the circuitry
is to produce a signal y(t) which is quite different from
the original sum of sinusoidal terms in which each term had
a réther slowly-varying amplitude and in which the argument
varied with field exactly as 2ﬂFi/H.

We can reproduce qualitatively some of the features of
the signal v(t) by supposing that (by analogy to.the case of

a constant frequency driving function) it can be approximated
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in the form

7(8) = 3, (((8),7)sin(3E 4 B (5))

By analogy to the forced harmonic oscillator, each Ai.defiﬁes
a resonant envelope when the time frequency »g of the corre-
sponding dHvA term passes through the resonant fréquency of

- the pickup circuit; as we mentioned.in Section II-D, the
partial frequency analysis which‘is performed in this way by
the resonant pickup circﬁit is quite helpful in separating
different frequency terms ln the dHvA spectrum when these
tefms are well-resolved by the resonant circuit alone and:
each term is dominant over a sufficient range of cycles for
accurate frequency measurements to be obtained. However,
some of the same features of the resonant technique'which

" are usﬁally so helpful are somewhat of a :hindrance to Setting
up analysis procedures to find the de_Héas-van Alphen fre-
quencies in a signal when it is not possible to obtain
sufficient resolution to find-all the'deA terms using the
resonant technique alone. For instance, due to the amplitude
modulation and phase shift produced by the resonant circuit,
it is often impossible to determine the subordinate frequen-
cies in a complex waveform by examining those irregularities
in amplitude which would have been regular beats, had the
_regulgrity not been destroyed by the amﬁlitude variation and

phase shift due to the resonant circuit. A further
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complication ariseé due to fhe tendency towards ringing ét
the resonant frequency of the pickup circuit after the
resonance maximum has been passed (Barber and Ursell'1948).
Thus the effective frequency of the signal during some sﬁall'
-interval of time after the resonance maximum has been passed7
" may be the resonant frequency of the pickup circuit rather
than the frequency appropriate to the de Haas-van Alphen
signal. Finally, the periodogram of a sighal in a sharp
resonance envelope which has been achievéd'by considerable
filtering is expected to show not only a term at the frequency
of the fundamental dHQA term making up .the resonance, but
alsé side peaks at those frequencies which are necessary .to
conétruct.the envelope shape.

In spite of the above'complicat;ons, we ‘chose to attempt
a more detailed frequency'aﬁalysis of thg de Héaé-van Alphen
signal as it was rather than attempting a detailed evaluation
of the effects of the circuitry on the form of dM/dt so that
these effects could be compensated for. Only c;ude attempts
.were made to take intoAaccount the existence of the resonant
pickup circuit. It was hoped that the effects of the
resonant circuit (plus filters) were not so serious that they
would prevent the detection of important periodicities in
the dafa and that in spite of the effects of the circuitry,
the rdgions of an oscillogram which wouid contribute most

to the analysis would be those regions in which the basic
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de Haas-van Alphen periodicity was least affected by phase
shift and ringing. We have not worked out any explicit
mathematical criteria for the validity of the periodogram

analysis when applied to a signal which has been passed

through filters to give a sharp resonance envelope. Instead, .

the success of the procédures was Jjudged by analyses which
were obtained both for actual de Haas—vén Alphen data and
fsr test signals which were constructed mathematically to
approximate actual dHvA signals. Even though the procedures
to be described are rather crude, more precise and better
resolved results have been obtained'thgn could have been
“hoped for using only the resolution of the resonant éircuit.
The data analysis was carried out using an IBM 7074
computer. The input data to the computer program were
coordinates which had been read from the oscillograms as
, déscribed in Section IT-D: After the error checkinglsteps
described in that section had been carfied out,Athe coordin-
ates for the field trace were smoothed b& using the method
of least squares (cf. Whittaker and Robinson 1956 p. 291)
to fit a parabolas to successive‘sets of nine consecutive
coordinates (xi,yi). Here X and vy are the x and y coordin-
ate reépectively of the ith point measured from the field
trace. The y coordinate of each fitted parabola evaluated
at the x-coordinate of the central one 6f the 9’p§ints was

used as thé field trace coordinate to find the reciprocal

e
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field value corresponding to this central point.

v

After all of the reciprocal field values had been
calculated, a further check against reading errors was
carried out by checking to see that the reciprocal field
values formed a monotonically increasing sequence. (The.
oscillograms were always read from the high field end to the
low field end.) If any reading errors were found ‘by this
check of if any reading errors had been found by the checks
described on page 36, the data analysis procedure for'this
oscillogram was discontinued and all of‘the data cards Weré
listed. An error message was typed for each card which con-
tained a reading error so that the reading error could be‘
found and corrected'befofe further analysis was undertaken.
Judging by the evenness of artificial waveforms which were
plotted out as a function of reciprocal field, the'smoothing
procedure for the field érace coordinates (combined with the
smoothing of the calibration lines described on page 36)
worked quite well in averaging out some- of the scatter inher-
ent in reading the coordinates from the‘projeéted image - of
the oscillogram.

To test the overall effectiveness of the data analysis
procedure, we.used a modified version of the data analysis
program which differed from the actual data analysis program
only in that the data input steps in the original program |

were replaced by a subroutine1 which generated the points of

IThis subroutine was written by E,C. Clark, Ames Labor-
atory of the A.E.C., Iowa State University of Science and
Tcchnology. '
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amplitude maximum and minimum of a test signal. The test

signal was of. the form

) ‘ N . RMIF4 .
. o y(H) = Z1AiSln( TR C/zéi) (17)

where

. . - 2 _.J_-.
A, = B, [1 + w2 /w, ) (1 —wz/woz)] ®

i
. 2 : ,
-1 wi Wo

The quantity H was given by H = Hosinﬁxland.ké was given by

27F ; :
Wy = —* L/

It was hoped that the frequency analysis.of such a signal

and

would give some indication of the validity of the aﬁalyses
which were obtained for actual data. We will use a signai
like that in Equation 17 as an example in discussing the
data analysis program.

As é further aid to detecting errors (errors.such as
skipping a cycle are not detected by the previous steps),
the waveform of the signal which was being analyzed was
always displayed graphically using an IBM 1627 plotter.. Such
a plot for one of the test signals is shown in Figure 41a,
andzthe plot of reciprocal field values_at points of maximum

and minimum amplitude of this signal are plotted wversus

cycle number in Figure 41b. Using the reciprocal field wvaluc
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Test sighal for data analysis procedures .

Waveform constructed by connecting the points
of amplitude maximum’and minimum of a signal
defined by Equation 17 with straight lines.

We hgve chosen the four frequencies Fj =68.78

x 109G, Fp = 7,66 x 100G, F3 = 6.75 x 10°G,

Fy = 6.43 x 10°G with correspondlng amplltudes

B1 = .4, Bp = .4, B3 = 1.0, By = .8. The
circuit quality factor Q is 30 and the resonant
frequency is 10-“Hz. _  The magnetic field was

varied as (1.1 x 105G)sin200t from 35kG to 50kG.

Plot of reciprocal field values for amplitude
maxima and minima versus integers. We have
attempted to draw straight line segments through
the points. .

Frequency versus cycle curve found from weighted
averages of linear least squares fitting calcula-
tions.

Smoothed frequency versus cycle curve found by
taking weighted averages of the frequencies on
the curve in Figure 41c. Only the middle fre-
guency predicis vue of the input frequencies
correctly. (See page 39 for weaknesses of thls
method of predicting frequen01es )
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and cycle number coordinates like those on Figure hjb,
liﬁear leést sqﬁares\fitting céléulations were carried out
as is described on page 39.

The results of the least squares calculations were used
in several ways. While least squares calculations were being‘
.carriéd out using the first fitting length Ni’ the fastest.
frequency and the slowest frequency found were collected.

If no frequency range had been read as input, the above max-
imum and minimum frequency were used to set the frequency
range over which the ideogram ana periodogram were calculated.

In some cases it was desirable to use the results of
the least squares calculations directly. The result of the
least squares calculation for each set of points for which
the computed errér estimate was minimal with respect to
immediately adjacent sets: of points @as printed out for
direct examination if the fitting length was gréater than
30 half cycles.

| The resuits of the least squares. calculations were aléo
displayed as an ideogram as was explained on page 40. An
ideogram for the signal of Figure 41a is shown in_figure 4ob.
It is evident from this figure that the ideogram results |
cannot be relied on completely since‘the frequency at 7.63
X 1O6G is missing in the ideogram spectrum. The nature of’
the frequency spectra for actual de Haas-van Alphen dafa

are quite variable however, . and cases arise when an inter-

comparison of all the methods of analysis is necessary in
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ordér to find the dHvA frequencies in the data. For instance,
in cases where somé of the dHvA terms on an oscillogram are
well-resolved by the_resonance technique, we are gquite
certain that the ideogram predicts the frequencies correctly.
One oscillogram may contain both terms which are fesolved

by the resonance technique and terms which are not; period-
ogram analysis is necessary to find.the frequencies in the’
latter case, and the ideogfam provides abconvenient check on
the periodogram in the former case,

A frequency versus cycle curve was constructed by
assigning each frequency which was calculated by linear least
squares fitting to the central‘one of the points which were
used to calculate that”frequency. Then as successive frée
quency calculatiops were made with different line lengths,

a weighted average of the'frequencies corresponding to each
point on the reciprocal field versus cycle number plot was
accumulated along with a total weight. The frequency wversus
cycle curve was used to obtain estimates-of the initial and

t final points for the region of dominance of each frequency by
converting it to a smoothed frequency versus cycle curve
(Figure 41d).

For each oscillogram the first point on the frequency
versus cycle curve was chosen as the initial point P, for
the first horizontal line segment. Then the last point pL

on the frequency versus cycle curve with a largecr frequency
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value than the initial point was found. The final point

P, for the first horizontal line segment was the last
final

point on the frequency versus cycle curve whose ordinate

differed by less than one percent from that of point pL.

of points P to Pringy ©B the fre-

A weighted average Fa 1

ve
quency versus cycle curve was then computed, and the
ordinates of these points were set equal to Fave' " Each

point p1 was given a weight equal to the computed

to Pfinal
weight for Fave' Then the point Prinal T 1 was defined as
fhe initial point for line segment number two and the pro-
cess was repeated until the last point had been used. Then
the first point on the resulting new frequency versus cycle
curve was defined as the first point for the first line seg-
ment-and the preceding process was repeated, except that

now pf;nal was taken to be the last point on the frequency
versus cycle curve fér which the frequency was within 100/N
percent of p; - Here N is the number of boints in’ the lopgest
horizontal line segment in the frequency.versus cycle curve.
This process was repeated until each of the line segments

in the smoothed frequency wversus cycle curve were sepérated
by more than 400/N percent in frequency. When the data were
wéll resolved by the resonance technique so that each dHvVA
term in the oscillogram dominated for a substantial number -

of ¢ycles, Lhe freguencies of thec longer horizontal line

segments in the resulting smoothed frequency versus cycle
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curve were the frequency estimates which would be obtained
by drawing straight lines through the reciprocal field versus
cycle number points. One possible advantage of computing
estimates for the slopes of long straight lines in this way
is that b& taking weighted averages, some account is taken

of how well small groups of points used to calculate each
frequency estimate actually fit a straight lirne. Therefore, '
regions in which there were reading errors or in which
ringing was important should contribute less to the final
frequency value than regions where the data were good.

For each.oscillogram the plot of reciprocal field wvalues
versus cycle number (like Figure 41b) was always displayed
automatically and the frequencies and end points for the
horizontal lines of the smoothed frequency versus cycle curve
(Figure 41d) were printed’ out. Furthermore the freguencies
corresponding to the ten highest peaks in the ideogram were
always printed out so that those peaks in the ideogram which
. predicted the frequencies reliably could be deﬂermined by
inspection. |

‘The final smoothed frequency versus cycle curve was
also used to define specific portions of the data to be
scanned through a certain range of frequencies in a succeed-
ing periodogram analysis. As was explained on page 41, Lle
periodogram analysis was performed on elements of an array

ZPQ% and the elements of this array were the amplitudes of a
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triangular wave taken at equally-spaced values of the recip-
rocal magnetic field. If the element u , say, of the array

was to correspond to a reciprocal magnetic field value HS

! where H;1 and H;1 are reciprocal

and if H ' < v ' < 5"
n - S n +1

+1

magnetic field values corresponding to successive amplitude

maxima and minima, then u was calculated from the formula

Aigr — AL 9 -1
u = P — —T(HS - Hi ) + Al .
i+1 - 71
Here Ai and Ai+1 are the amplitudes read from the oscillogram
‘at points i and i+1. About 10,000 elements u_were calculated

in this way, so‘that on the average, aﬁout 10,000/N elements
were stored for eaqh cycle of a picture which contained ﬁ,
cycles. Successive elemehts of the sequence{ﬁﬁ%differed B&
about (H ' (last cyélg) - H '(first cycle))/10,000 = dH™
which is the spading in period at which ordinates are cal--
culated on the periodogram. A smallest value of dHn-l was
fixed by the storége capacity of the IBM-?O?h computer,1 and_
dH—] was always set equal to this smallest value. 1n niost
"cases the frequencies at which ordinates on the periodogram
were computed were sufficiently closely spaced that the un-

certainty due to the spacing between the computed ordinates

in the frequency at which a peak in thé periodogram occurred

1We are indebted.to G.F. Covert, Experimental Physics
Group XII for providing two autocoder subroutines by means
of which the program could be run in the addstorage mode so
that sufficient resolution could be obtained even though the
FLAG monitor system was used.
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was‘notvimportant.

For the data which were taken using theAshunt igﬁitrbn
to detgrmine the orientation dependence of the slo& frequenby
oscillationg near [QOI], howevef, the spacing between frequen-
cies at which ordinates were calculated on the periodogram
was sometimes as larée as 0.7 percent even though about

15,000 elements u

x vere used when these data were being

processed. (An‘earlier version of the data processing program
in which more storage space was available for Eukg was used
for these data.) This uncertainty is enough to show up as
scatfer on a plot such as Figure 11la. _Néne of fhe standard
methods for interpolating between two ordinates on. either
side of a periodogram peak to find a more accurate frequency
for the peak (cf. Brunt 1931 p. 211, Whittaker and Robinson
1956 p. 354) were tried. 'Instead, more precise frequency
values were estimated by sketching a curve through the period-
ogram for a sine wave (Appendix E), and by taking the fre-
quency at which the peak occurred in this sketched curve as
Athe frequency predicted by the periodogram. The position of
" this peak can certainly be estimated to at leést 0.3 percenf
if the two calculated ordinates on either side of the peak
are spaced by 0.7 percent.

The process by which‘certain‘parts of the data were
selected to be analyzed for a certain périodicity P, can be

explained quite simply if it is remembered that because of:
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Equation 14 higher frequency téfms are expected to dominate
at higher fields. Thus, since oscillograms were always read
from the high field end to the low field end, higher freguency
terms are always expected to appear toward the beginning of
the sequence of data points. We can picture the selection

of the appropriate elements for the processing as sliding a
fixed length line along straight lines connecting the mid-
ﬁoint§ of horizontal lines on a plot which is like Figure 41d
excepf that the abscissa is reciprocal field rather than
cycle number. For a scan carried out at frequency F, the
abscissa of the central point on the sliding line is the
point for which the ordinate of the line connecting the
centers of adjacent horizontal line segments in the frequency
versus reciprocal field relatiomship is F,. The length oﬁ
the line was equal to the number of elements of the u array
~which corresponded to the longest horizontal line on.the
smoothed frequency versus cycle-curve(with the addition of a
‘sufficient number of elements so that’ali of the elements of
the u array corresponding to the longest horizontal line on
the smoothed frequency versus cycle curve were included for
all scéns carried out at frequencies which did mnot differ
from the frequency of the longest line on the smoothed fre-
quency versus cycle curve by more than 4/N x 100 percent. )
Here N is the number of half cycles contained in the longest

line on the smoothed frequency versus cycle curve.
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Such a method of selecting only parts of .the u array
for perioddgram analysis at each freqqency is necessary for
oscillograms which contain a wide range éf frequencies since
the periodogram analeis yields peaks -for a term F1 not only
at ﬁhe fundamenfal frequency F1 but also at each‘subharmonic
F1/2,F1/3....; if one of these subharmonic peaks were to fall
in the midst of peéks from lower frequency terms, it would
needlessly complicate the interpretation of fhe periodogram.
It was- thought that the addition of this feature wduld improve
the periodogram analysis even when subharmonics were not
important since at each position of the slidipg,line the data
corresponding to field positions hetween the starting field
and endinglfields of the sliding line correspond more closely
to a pure sine wave than do all of the data taken together.
However, except fof cases'in which complications due to
subharmonics were importént, it was found that the data
analyses were not significantly improved'by the addition of
this feature; those analyses which héd breviously been con-
sidered reliable again yielded peaks at the same frequen-
cies, and the only change seemed to be that the‘relative
strengths'of peaks in the periodogram corresponding to low
amplitude signals were increased. (This is because of the
normalization discussed in Appendix E.) Those data for
whiclh the periodogram could previously not be interpreted

still yielded periodograms which could not be interpreted.
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While it is disappointing in one respect that the data
selection procedures did not seem to be effective in improv-
ing the reliability of the analyses (except where subharmonic
éomplications were eliminated), it is also encouraging that
.for analyses which were previously considered reliab;e the
' freqﬁencies of the periodogram peaks were not shifted when
only parts of the data were used to.compute the periodogram
ordinate at each frequency. Thus it wouldlseem that the
pgriodogram 6rdinate at frequency F1 ié not appreciably'
affected by the presence of dqta arising from a'term with
frequency F2 which is well separated 6%20 percenﬁ in the
casé of Figure 41a) in frequency  from F1. Such a conclusion
couid also be reached by examination of Figure 12. The
periodogram in this figure was computed using all of the
data and in spite of the fact thaf the amplitudeéiof lower
frequency terms were quite large, periodogram ordinates
between the two small higher frequency peaks are quite small.

Further examinations of the charactéristics of ghe
'periodogréms for signals which are amplitude modulated and
contain a phase shift and in which the dominant frequency
changes from one section of the data to the next were carried
out by applying the periodogram analysis to signals defined
by Equation 17. One_of these tests was carried out by keep-
ing all of the pParameters in Equation 17 constant except Q.

As Q was increésed, small spurious peaks appeared in addition
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to the main peaks and the periodpgram became successively
more difficult to interpret. The signal in Figure 41a
represents the largest. value of Q for thch it was felt that
the périodogram could be reliably interpretedvéince as Q was
further increased, the spurious peaks became almost as large

as the main peaks.

Appendix B: Two Component Beat Patterns
In this appendix we will consider the frequencies which
would be obtained from an ideogram or straight line method

if each cycle maximum and minimum of the signal

21TF 2TF

1 2 :

Yy = Ajcos—g— + A, cos—r (A1'> A, > o) (18)
were measured. The argument is a trivial extension of the

argument used by Gold (1958) to the case of strong beating.
It was never necessary to make quantitative use of these
results, but a knowledge of their form was found to be use-

ful in assessing the reliability of data analysis which were’

obtained.
Cycle maxim nd minima occur when dy =0 If
yc axima a ETVET =0.
x = 1/H, we can write
1 dy _ - ;
- o7 ax = A¢F;sin2TF . x + A F,sin2J/F,x (19)

The frequencies which are measured by measuring cycle maxima
and minima will depend on the rate at which zeros occur in

the quantity (19). There are three cases to be considered.
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IfAF = F1 - F2, we can write
—-LQX=Csin(27]'Fx+‘f/) (20)
2T dx 1
where
o 2_ 2 2. 2\%
C = (A1 F,” + 24 A,F F,cos 2MAFx + A,°F, ) _(2‘1)

2 2

and

A F_sin2J4AFx

- 2°2
W= tan” (- ) (22)
A1F1 + A2F20052mFx
. in ¥
C is always greater than zero, so zeros in ax oceur when
2WF1x +%Y =nJr, n=0,1,2,3,..., -and the repetition rate for
cycle maxima is
ldn _ o , 1 4¥
2 dx 1 2 dx
The repetition rate written out in detail is
AF(-A_A_F_F_cos2TAFx-A 2r %)
1 dn , 1727172 2 "2 (23)
2dx - F1t T2 2 - 2 2
[a) e
A1 F1 + 2A1A2F1F20054 ATx + A2 F2
: cur in & - }
Beat waists occur in ax (and in y) when cosZ2ffAFx = -1, and
: beat maxima occur when cos2TAFx = 1 so from Equation 23 we
find that the effective frequency at beat minimum is
AFA_F '
Poin = F1 * 7 ?Z—F (24)
o 171 272
and the ef't'ectivec frequency at beat maximum is
JFAF :
2°2
= I - (2
Fnax = F1 - A%, + AT o (25)

11 2 2
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Since A F, >’A2F2, we must have —ﬁ72<(ﬁzﬂ72 and in this case

the frequency which will be found by counting a large number
of cycles will be F1, since the maximum counting error due
1

to changes in Y is % cycle.

-

Case 2: A1F1 < A2F2

We can rewrite Equation 20 as

B N5 A Y
5T dx C 051n(2ﬂF2x + ) | (26)
where now - /24 Y'< T/2, and by the preceding argument,
the frequency F2 will be found by counting a sufficient

number of cycles. For this case, the relations analogous to

Equations 24 and 25 are

% - :
F . =TF,_ + , (27)
min 2 AZFZ - A1F1 ‘ .
: AF'AF,
F = F (28)
max 2 A2F2 + A1F1
. o _
where AF' = F2 F1.
Case 3: AA1F1 = A2F2 |
C becomes 2cosfTiFx and ¥ becomes -TJAFx, so we can
write
F. + F |
A dy _ - 12y |
- oA C ZcosﬂAFx51n[;ﬂ( ; )x] (29)

The freqguency which is measured in this case by counting a
sufficient number. of cycles is the average frequency.

the dominant frequency F1

In summary, if A1F1>>A2F2,
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will be measured; and if A F, < A, F,, the subordinate fre-

quency F2 will be measured. In either case, if Fmin.:>
Fmax’ the second term is lower in frequency than the measured
term; but if F . < F , the second term is higher in

- min max

frequency than the.mgasured term.

In Figure 43 we have illustrated the sort of results
which are obtained when different data analysis prbcedures
are applied to a signal which is made up of two terms of
nearly equal amplitude and frequency. In Figure 43a, the
function

v = 20 cos(2WM21x) + 19 cos(2723x)
has been approximated by connecting successive points of -
amplitude'maxima and minima with straight lines. The effect-
ive-frequency which is found by. taking one half the recip-
rocal of the difference bétween the x-values corresponding
to successive points. of maximum and minimum amplitude is
plotted as a function of cycle number in Figure 43b. In
this case d¥/dx is very nearly.constant.over most of the
regions corresponding to the beat maxima in Figure h3a;‘in
this case, the ideogram which is shown in Figure 43¢ contains ?
a peak at the frequency 22.03 which is the effeétive fre-
quency over the beat maxima. ‘The periodogram, however, (alsb
shown in Figure 43c) yields two peaks at the correct frequen-
ciles, and a straight line fit to all ofvthe'cycles yields.

the frequency 22{98 as 1s expected since . this case
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Illustrating the analysis of a signal with
almost zero beat waists '

Waveform constructed by connecting the points

of amplitude maxima and minima of the signal
y = 20cos(2f21x) + 19cos(2]23x)
with straight lines.

Effective frequency Fgrf versus half c&cles.»

(Feff = 0.5/Ax where 4x = distance between
adjacent cycle maxima and minima. )

Periodogram and ideogram for the signal in
Figure 43a. The periodogram peaks occur at

frequencies of 23.016 and 20.972. The ideo--
. gram peak occurs at a frequency of 22.032.
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cofrésponds to case 2.

It is evident even frdm.the simple case illustrated
in Figure 43 that the frequencies at which.peaks occur in
the ideogram are not likely to give a reliable indication
of the frequencies in a signal which is composed of two or
more terms which are beating; An example of a case in
which the ideogram is even more misleading is shown in
Figure hh; In this case a peak dccurs in the ideogram not
only at the frequency corresponding to the effective fre-
quency'at beat maximum, but also at a frequency for which
d¥/dx is nearly zero. The signal in Figure 44 corresponds
to case 1 so that d¥/dx = O when the effective frequency .
is.equal to 10?

Consideration of simple cases like those shown in
Figure 43 and Figure 44 is useful because it prediéts some
of the characteristics which are found in the analyses of
actual de Haas-van Alphen data. In the actual data, signals
which consist of several uniform beat envelopes are almost
ne;er obtained because of the resonant pickup circuit and
the filters. Therefore the periodicity of the beat envelopes
usually cannot be found by inspection, as it could be in the
signals we have discussed here. Instead it is necessary in
many cases to rely on the computer‘analysis and to jﬁdge the
reliability af the analysis by cbmparing the results obtained

by different methods of analysis. However, the above

b
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Tllustrating the analysis of a waveform
containing beats (and a "reading error")

Waveform constructed by.connecting the amplitude

maxima and minima of the signal
y = .01cos(27W10x) + .005cos(279x)

" with straight lines

Effective frequency Fgrge versus half cycles
(Ferf = 0.5/0Ax where 4x is the spacing between
adjacent cycle maxima and minima. )

Periodogram and ideogram for signal of Figure
Lha. The periodogram peaks occur at 9.997 and
8.945. The ideogram peaks occur at Fq = 9.719
and Fp = 10.007. The frequencies Fq and Fp
are also indicated on Figure U4l4b.
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discussion shows that we expect spurious peaks in the~ideo;
gfam,whenever two or more terms are beating although the
periodogram yielded reliable analyses in these caées; there-
fore; when two closely-spaced peaks occur in the periodogram
and one or more corresponding peaks occur in the ideogram,:
it is likely that only_the-fréquencies predicted By tﬂe
.periodogram are correct if there is. a discrepahcy between
thé predictions of -the two methods.

There is one further feature of Figure 44 which is of
interest. .One'compiete cycle of the test signal (Figure Llia)
has been skipped betweén hélf cycle numbers 44 and 45. The
' computef prograﬁ which was used to analyze the signalvin.
Figure 4ha was the same as the actdal data processing program
except that all -of the input statements in the dafajprocessing
program were removed and replaced by a subroutine which
generated the test signal. Therefore the omission of a
cycle between half cycle numbers 44 and 45 corresponds to
skipping an gmplitude minimum in reading an oscillogram.

Even though this error is preseht in the test signal, the
periodogram analysis (Figure Lic) still predicts quite
.aCcurately the frequencies which méke up the test signal.
Other similar tests have been carried out which indicate
that the periodogrém analysis results are relatively inséns—
itive to minor reading errors. (Many of the major read;ng

errors which can occur are taken care of by the error
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checking steps in the input statements -of the actual data

processing program. )

Appendix C: Magnetic Interaction Effecté

An effect which may be important in some of our data is
a frequency modulation which occurs because the effective.
field acting on the electrons in a metal is the magnetic. -
induction field B = H + MWM and not.the applied field H
(Anderson and Gold 1963, Shoenberg 196?). The fact that
replacing H by B in the argument of the .sine function in
Equation 12 could £n some cases lead to serious frequency
modulation effects was first realized b& Shoenberg (1962).
(The replacement of H by B in the‘expression for the magnét—
ization was later justified by Pippard .(1963) by a thermody-
namical argument. )

"Shoenberg considered a single dHvA term

M = M,sin(2F/(H + L4TM)) ' - (30)
Providing. that a = -hﬁdM/dH is sufficiently small, Shoenberg

has shown that the susceptibility dM/dH can be writllen
dM/dH = —f%{(1 - a2/8)cos(2WF/H) - acos(2'2TF/H) +

(9a2/8)cos(3-2TF/H) + +... | (31)
(The condition!NUM/H{<‘;1 has been used.) |
The various terms in Equation 31 represent{?armonics"
whiclh should not be confused with those of Equation 12. For

a N'%, the amplitudes of the harmonics in Equation 31 are.
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. considerably greater than those predicted in most cases by
Equatibn 12. In addition, as a increases with decreasing
temperature, the amplitude of.the fundamental term does not
increase linearly with a due to the a2/8 term. If the
amplitude a 1is large enough, the a2/8 term leads to a non-
linear effective mass plot like those which were found for
the K and <><2 oscillations for H//ﬁ10_] (Figures 19 and 20).
We canlmake'a crude estimate of the amplitude a for the
ol oscillations at 1°K when the effective mass data at l]ﬁd]

were taken by using the formula

V x At x 108
a = .

NTr2 &1 Q

Here r ~ .033 cm is the sample radius and V is.the amplifude
of the observed signal in volts. The quantity N~-1000 is

an efféctive number of pickup coil turns linked by the sample
flux., At~ 2 is the'filter attenuatioﬁ for 2 filters set to
pass 70—140kHé, and Q is an effective piékup circuit quality<
factor by which the signal amplitude is enhanced at resonance.
Studies of the respoﬁse of our circuit to a time—varying
signal by R. Phillips1 lead to an estimate of Q %/15...For

V ~ 1 volt and H ~ 107 gauss/sec, we find a ~ .2 for the

< oscillations at E1d]lso that the signal amplitude could
have been affected by the frequency modulation effect and

the tailing-off of the effective mass plot in Figure 19 could

1R. Phillips, Ames Laboratory of the A,E.C., Iowa Stafte
University.. Private Communication, 1965.
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be explained qualitatively in this way.

The tailing-off of the effec£i§e mass piots‘in Figures
19 and 20 could also be due to amplifier or filter‘saturation
which might have occurred for the stronger low temperature
siénéls. In fact,-examination of the data suggests that
saturation in the eléctronics could be important. In Figure
L5 we have shown photographs of the X oscillations and of
their harmonics at two different temperatures. The fact
that the resonant envelope for each of these signals is
distorted at the lowest temperatures would séem to indicate
a satﬁration in the electronics. However, for a fixed-
fréquency input signal, the amplifiers and filters.which |
were used in this experiment are linearvover the raﬁge of
input voltages which were used. The linearity of these com-
ponents for a time-varying frequency has not been checked,
but if seems unlikely that serious saturation effects could
have occurred since our signals were well within the quoted
range of acceptable input voltages.

The distortion effects which are evident in the shape
of the resonance envelopes in Figure 45 could also be due
éo an amplitude fluctuation effect which was clearly evident
in the o< oscillations near [pOf] when they were studied
using the shunt ignitron %echnique. A very long period
fluctuation with a period extending ovef roughly 100 to 150

cycles is shown in Figﬁfe L6a. An intermediate length

e ————— T T
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Figure Ly, Illustrating the deterioration of the resonance
envelopes for the o< oscillations and their har-
monics as the temperature is lowered (All signals
have been passed through two electronic filters
set to pass frequencies in the range 70-140OkHz,
and the resonant frequency was 105kHz. )

a. otoscillations for HA/D1d]
Temperature: 4.2°K
Baseline at 81.51kG
Calibration lines at intervals of 1.235kG

b. o oscillations for H// [110]
Temperature: 1.02°K
Baseline at 81.51kG:
Calibration lines at intervals of 1.235kG

C. c(z oscillations
H7/[110)
Temperature: 2.53°K
- Baseline at 86.45kG : :
Calibration lines at intervals of 1.235kG

d. o(p oscillations
H/ [110]
Temperature: 1.02°K
Baseline at 86.45kG 4 '
Calibration lines at intervals of 1.235kG

e. oo oscillations
H/ [111])
Temperature: 4.02°K
Baseline at 87.69kG
Calibration lines at intervals of 1.235kG

f. & and 0(3 oscillations
H/[O11] , A
Temperature: 1.13°K
Baseline at 87.69kG
Calibration lines at intervals of 1.235kG

(The signals at the low field end of this
oscillogram are due to the o+ 3 oscillations.
ThedX3 oscillations appear at the high field
end of ‘the oscillogram. )
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Figure 46. Beating patterns in the X oscillations (Each oif;
these signals was observed while the pulse coil
current was decaying through a shunt ignitron;
and for each of these pictures, a cathode fol-
lower was used. The resonant frequency in all
cases is about 200kHz and all signals have been
passed through five electronic filters set to
attenuate frequencies below 150kHz. )

a. Envelope of K oscillations
H near [:OO ﬂ
Temperature: about 1°K
Baseline at 67.93kG
Calibration lines at intervals of 6.175kG

b. Envelope of £ ascillations
H about .2° f£ixrom [DOﬂ
Baseline at 56.81kG
Calibration lines. at intervals of 2.47kG

(s X oscillations
H~15° from [001] in the (110) plane
Temperature about 1°K
Baseline at 55.575kG
Calibration lines at intervals of 1.235kG

d. Envelope of <  oscillations
H~15° from [001) in the (110) plane
Temperature: about 1°K
Baseline at 43.225kG
Calibration -lines at intervals jof" 1.235KkG

e. Envelope of o oscillations
Temperature: about 1°K
Baseline at 38.29kG
Calibration lines at intervals of 6.175kG
H about 4° from [001]
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fluctuation, with a period of 25 to 30 cycles of the
oscillations is shown in Figure 46b, and a much shorter
period fluctuation is shown in Figure 46c. The amplitude
fluctuations were not always regular,'however, as 1s shown
in Figure 46d. The vaéious experimental factors which could
give rise to amplitude fluctuations (Shoenberg 1962) have not
been considered in detail since it was known that
D.M. Sparlin1 had also observed long beats in the
X oscillations when he studied them by an entirely different
method, i.e. the tqrque method. | |

A "beat frequency" for the intermediate length fluctua-
tions was measured by plotting the reciprocal field positions
at which beat maxima occurred versus integers (using data
like‘that shown in Figure 46e). The.p6ints on theseé plots
appearea to fall on straight lines, and it was found that
the beat frequency ié, to within the experimental accuracy,
independent of magnetic field orientation for field directioné
near [901]. The characteristics of these amplitude fluctua-
tions which have been examined to date are noﬁ inconsistent
with an explanation based on an interaction with the élower
& and é;oscillations‘by-means of which the amplitude of the
ok uscillations i1s modulated at the f'requencies of these

slower oscillations, Shoenberg has pointed out that such a

1D.M. Sparlin, now at Western Reserve University,
Cleveland, Ohio. Private communication 1964,

gy
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.

~modulation can arise when more than one frequency of oscilla-

tion is pfesent and‘a loﬁ frequency term has a very large
amplitude.

It is possible that modulation effects like those shown
in Figure 46 could also explain the distorted resonance
envelopes which were shown in Figure 45; Certainly these
modulation effects would become more serious as the tempera-
ture is lowered if they are due to Shoenberg's frequency.
modulation effect.

When the side bands that arise from the frequency
modulation effect ére well sepafated in frequency from the
fundamental terms, they are expected to appear as separaﬁe
terms rather than .as a beatingveffect in the fundamental

, and

~term. The combination terms ol+ g b(-f?, o + 5;

o 5; in Figure 9 are thought to arise in this way. There
is an argument which would seem to indicate that, to first

order in amplitude, the strengths of the sum and difference

frequencies are proportional fo the product of the amplifudes

of the corresponding fundamental terms. The amplitudes of
the first order side band components of the signal

2T F 2T g 2TF 2TF
. 1 . 1 1 P . 2
A131n(.‘ ZﬁFZ) :’A151n( 5 2 n A251n( - ))
A ! i ) ——
H | mA281n o

(’4WA0[4.< II) are proportional to A1A2(cf. Terman 1943 p.

578 and International Telephone and Telegraph Corporation
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1956 p. 1085). A, and A,

Bi(H,Fi)Texp(—dmi*(T + xi)/H) where C is a constant, so that

are of the form Ai =

we might expect the temperature dependence of either a sum
or difference frequency to be given to fiirst order in ampli-
tude by Tzexp(—CT(m?.+ mZ)/H.

The fesults of some measurements of the tempefature
dependence of the amplitude A of the difference term °<-/8
are shown in Figures 47 and 48. In Figure 47.we have plotted
logA/T versus T as would be done for a fundamental term. In
Figure 48 We have plotted log A/T2 versus T, and the points
on this plot may fit a straight line somewhat more closely
than those in Figure 47. ' The mass for the ﬁgoscillations is‘
about O.9me and that for the ¢ oscillations is about O.6me
so that the first order approximatiop predicts that a "cyclo-

tron mass" value of m¥

:’1.5me should be found fro@ the slope
of the. plot in Figure 48 if the ideas of the previous paragraph
are at all applicable.

There is one further observation which should be discussed
here. As was pointed out in Section II-B, the orbit masses
which were derived from the temperature dependence of the
amplitude of the harmonics of the £ oscillations at the D11]
orientation (Figures 21 and 22) were considerably less .than
integral multiples of the fundamental mass of m¥* = O.6me
(Figure 16). 1In view of the considerable errors which were

possible in the measurement of both the masses of the funda -

mental and of the harmonic terms, the discrepancy in the mass
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| |
.0 2.0 30

T°K

Temperature dependence of the amplifude of the
oK - 3 oscillations for H/ [111].
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Temperature dependence of the amplitude A of
the o« - P oscillations for H//D11] plotted as
if the amplitude of these oscillations were

proportional .to the product of -the amplltudes
of the<g and p oscillations

tammlbiniCd Sl LRI
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ratiolmay not be as serious as is indicated. It-does
however, seem to beAsomewhat outside the experimental error.

'bne possible explanation for the observed mass ratios
is that a distortion occurred in the electronics. For these
’data; the amplitude of the fundamental component was so large
that at 1°K the output voltage'of 15 volts peak-to-peak from
an intermediate almlolif‘ier"l exceeded. the rated maximum peak
output voltage by 5 volts. Therefore the response of this
amplifier during the time immediately after the resonance

)
envelope for the O(oscillations, when the harmonics of the
cxoscillations resonated, may have been modified.

However, there are several indications. that the4effects
of this large output signal may not have been really serious.
The first of these is that for a constant-frequency signal,
the amplifier in question does not begin to saturéte until
an output level of 90 volts is reached. The second is that
even though the signal dué to the o oscillations below 2°K
was so large that the rated maximum peak output voltage
rating for the amplifier was exceeded, no serious saturation
effects'are evident in the temperature dependence of the
amplitude of these oscillations (Figure 16). Thirdly, from
examination Qf the temperature dependence of the amplitude

of the second harmonic for rising and falling field, it is

evident either that recovery from any saturation effects

'Hewlett Packard Model L50A, Hewlett Packard Company,
275 Page M1ill Road, Palu Alto, California .
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.occurred with quite a long time constant or that saturation

effects wefe not serious. The temperature dependence of fhé
amplitude of the second harmonic of theckloscillations for-
Hﬁﬂﬁ11] has been shown in Figure 21 ahdAit is evident that
the:slopés of the rising and falling field data are not

markedly different. Furthermore, the slope for the temper-

ature depéndence of the second harmonic seems to be already

well-defined at higher temperatures where the electronic
components were far from overload. Tt does not seem that the
magnitudes of the discrepancies in the harmonic mass ratios
which were observed for Hyyﬁ1i]can be explained by failure

of the electronics.

Using'a slight generalization of Equation 30, a further
examination of theveffects of frequency modulation was
carried ogt in an attempt to see whether the anomalous‘mass
results for the harmonics of the(7(oscillafions at the D11]
orientation could be explained in this wéy. We considered

the formula

5 o
M= 5 M - (32)

where

The quantities in the argument of  the sine function appear
in Eguation 12. The Mj represent harmonic terms like those

in Equation 12, and the A, are defined as
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-1 ; ’
Aj = j 2cos(u;flm*)NTexp(-jST)
' e

(33) |

like the amplitude factor (with g =

2) in the expression for
magnetization from which Equation 12 was derived.

By using the condition/&ﬁM/H/<141 and by making repeated

use of the Bessel function expansions

cos(usinx)

w.
Jo(u) + 2 ZZ: J, (u)cos2nx
' n=1 n

and'

sin(usinx) =

O
2 2;; J2n_1(u)sin(2n—1)x

(International Telephone and Telegraph Corporation 1956‘ﬂ»
b.

1065), we arrived at the following expansion for the
. 2 2
quantity y = 8T MF/H":

_2mF 1
1 ¢§ AAL + ....151n(—ﬁ— - AW'. ZVJ?

1 2 2 3 : 20F 1 _ )7/
+£- 2/3 Ay7 o ap(1-a) 2/Z Aghq ']Sl.n(?' gk )
' : | (34)
+):—I—_ A12 + —-—3: ABA‘I. + ] OS(Z-Z-%?' - ';ITT—'Llﬂﬂ/)
2y/2 2y/2
| 2 2 ; ZEE o Xl 4
+[- V2A2A1 + A3(1 - AT) 4 ]S}H(B T - 67)
2 1 27F - 1 o
+[--—AA - — A_A_ + ]mswf—-——ﬁ-67)
8 *1% vz 21 H
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(Terms to second order in A, were retained in the expansion

1
of.each of the harmonics in Eguation 32.)

It is not altogether clear that the expanéion in
Equation 34 has been carried to high enough order to predict
the amplitudeé of the higher harmonics in Equation 32 reliably.
Nefertheless; the temperature dependence predicted by this
formula for values of m¥ and S appropriate to the §<oscilla—
tions at 11{] was found by direct computation for values of
N (Equation 33) ranging from 2 to 6. For m*/r_ne = 0.6 and
S = 1.1 these values of N correspond at T = 1°K to amplitudes
of about .2 to .6 respectively for the quantity V. (Since
the amplitude [dM/dH| is equal to [2TFM,/H?[, thevamplitu'de
-of the fundamental harmonic of y is a tactor of 4T larger
than that of the fundamental harmonic of dM/dH.

The amplitudes of the harmonic components of y were
calculated for values of T between 1 and 4°K, and theée
amblitudes were then plotted on semi log paper just as the
actual dHvA orbit mass data were. The slopes of straight
lines on these ploté were then calculated. Even for N = 5,
the slope of the plot for the calculated temperature
dependehce'of the amplitude for the second harmonic was
reduced by only 8 percént below the value predicted without
frequency modulation. For N = 5 the calculated amplitude
for the fundamental component at 1°K lies about 30 percent

below the amplitude predicted by afstraight line through
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the higher temperatﬁre points. Taken together, these two
resulté are inconsistent with the experimental data which
were shown in Figureé 15 and 21. Thus the formula given by
Equation 34 is not sufficient to account quantitatively fof
the low mass value measured for thec><2 oscillations at the
011] orientation. This fact is not too surprising, and may
merely indicate that our approach is oversimplified. However,
'any furfher investigations to see how much the frequency
modulation effect can affect mass measurements for harmonic
components has been left for further study.

The valueé of m¥ and S for the orbit mass data for the
o oscillations at [110] (Figure 19) are 0.67m_ and 1.2m_
respectively, and we compared the low temperature amplitﬁde—
damping‘effects prediétéd by the previous calculatipns with
the damping obsefved experimentally for these oscillations.
We previously estimated an absélute amplitude of 0.2 for'
the o oscillations at ﬁ1d] and from a drawing like Figure
19, we estimate that the amplitude of the 1°K point is about
20 pcrcent lower than is predicted BY a straight line through
the higher temperature points. The corresponding plot (N=2)
for points calculated from Equation 34 only shows an 8
percent reduction in the amplitude at 1°K.

In summary, although it seemé that the qualitative
features of the ahomalies in the mass measurementé for the

A oscillations and their harmonics at E11J and ﬁ1d] can
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be explained by the frequency modulation effect, further

work would be required for a quantitative explanation.

Appendix D: The Electron Jack and Hole Octahedron Programs
The program which was used to calculate.orbit areas on
the electron jack and hole octahedron sgrfaces consisted of
a hain,curve—tracing program and a function subroutine. The
‘main program traced out the curve of intersection between
the plane of the orbitvaﬁd a surface defined by a relation
F(x,y;z) = 0. The function subroutine evaluated F(x,y,z)
and its derivafives wiﬁh respect to Cartesian coordinates
v' and z' in the plane of the orbit.

The plane of the orbit was an x' = constant plane,of
an x'y'z' coordinate system which was rotated from the
original xyz coordinate sysfem,by the Eﬁler angles %ﬁ 9,‘f'

(Goldstein 1953). The function F(x,y,z) was evaluated

at a point (y!

,z') (read as input) and then at successive
o’“o

points (yi,zé)wheré yi = yé + i4y'. If the function changed
sign between successive steps before forty steps had been
taken, the curve tracing was initiated. The curve of
intersection of the plane of the orbit with the surface
F(xygz) = O was traced by steps along the tangent line.
After each step, coordinates y',z' were faound for which
F(x,y,z) £ 2 x 10—5 was satisfied. This was done by

Newton's method using the component of the normal derivative

to ‘the surface which lay in the plane of the orbit.
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The relations

;- [ux,y,z)j—ﬁr (557)° + (859)° ] |

oy!

«
II'
«

2ar = 24 - [Py ) Z &R - (3P ]

. 3 1 t i 1 ot
were gsed to- replace a point YiaZg ?y a point Yi+1,‘i+1
which was closer to the surface. Steps along the tangent

' were made

. . . , ' - , )
direction from a point yj,zj to a p01n# yj+1,zJ+1

according to the formulas

o= oy g |2E_SJ2F 42 2F _y2
vjo = vy S| EMEDT E0|

oF oF 2 2F 2
2l,, =z} - s[——,//<-—-> : (—)] -
J+1 J oY oy' 2z' v o= yS’z"— 2

The step length s ~.002 was read as input.’

and

For the functions which we used to define the surfaces,

[F(X’y’z’p):]inside surface :7{%(X’y’z’p)i];utside surface

so that the steps along the tangént Véctor def'ine a counter-

clockwise path around the orbit. Therefore the orbit areas
were calculated from the formula

Area = %{Zi}}i”(y;{ - YL oq) ot yi+.1(zi+1' Zi)j}

The sum is over all points on the orbit.

=

Appendix E: Periodogram Analysis

The Whittaker and Robinson (1956) procedure to test a

i
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sequence of numbers Zﬁk} for a periodicity whose period
extends over p consecutive elements of the sequence can be
illustrated by.arranging the elements of the sequence in a
Buys-Ballot table. To -test a éequence éf m terms for a

periodicity p, this table would be constructed as follows:

u_l " u2 u3 R up
upf1 up+2 up#B ceeacas u2p
. . u u
2p+1 2p+2 2p+ e et e
P P . p+3 u3p
ump—p+1 ump—p+2 ump—p+3 et ump
SUMS U U U U

1 2 ‘ 3 p

If there is a component with periodicity p in the data;
this component will péss through all phases of one complete
period in the course of one horizontal row, and will be in
the same phase at each of the termé in one vertical column.
Therefore the part of the signal which is of period p will
- appear with m-fold amplitude in the column sums Ui; .When a
periodicity p exists in the data, the standard deviation of
the means of the column sums will be much larger than when
a periodicity of this period does not exist.

The periodogram analysis consisted of setting up a
Buys-Ballat table for éach tesl period p and theﬁ finding
the'standard deviations 6E)of the means of theAcolumn sums .
Since different eiements of the u sequence were used for each

period test (see Appendix A), it was unecessary to normalize
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each(?} by dividing by the standard deviation of the eiements
of the u sequence which were used at each stép. .When 0; is
plotted vérsus frequency F = Vp to make é periodogram, peaks
i@'cg occur at frequency values‘corresponding to periodic
components which exist in the data.

Whittaker and Rébinson (1956) show that if the elements
of the sequence {ﬁk&lare amplitudes. of Asin(2mx/T) taken at
equally-spaced values of x, the intensity distribution I(p) .

on the periodogram is given by

1 sin2
1(p) =
m sin2

HE?HE§

The characteristics.of this function are well—knowﬁ from the
theory of ideal diffraction gratings (cf. Jenkins and White
1957 p. 330).

| In an attempt to improve our analysis procedures,
several variations of the above method were tried. Kendall
(1946) states that for periodogram analysis of his economic
time series, the Whitﬁaker periodogram was inferior to a

periodogram defined by

I(p) .= A + B2
whore
2 p_1 )
A(P) = ;5 J'E=d U\].:*_‘lcos-J-p
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and

p-1 .
B(p) = —= U. . sinZl
mp =0 T J+1 P

(The Uj are the column sums in the Buys-Ballot table.)
However, for our data, this method seemed to work no better
than the Whittaker method. |
Rudra (1955) has pointed out that the variance of the

elements within each column of the Euys—Ballot table should
be a‘minimum when the test period is near a true periodicity
in the data and has suggested that periodocities‘might be
better detected by'dividing the variance of the column sums
of the Buys-Ballot table by the variandes of the elements
within each column. For our data the minima in the within
column variances turned out to be top shallow to be useful.

| Periodograﬁ analysis was used rather than the well-known
‘power spectrum methods described'by Blackman and Tukey (1959)
because in an early power spectrum program we were not able
to obtain reproducible results when the intefval,over which
laggéd'products were calculated was changéd. We did not

investigate further the reason for this difficulty.

Appendix F: Orbit Masses for the Empirical Férﬁi Surface

As was discussed on page 139, there is no reason to
believe that the functions F and G which were used to define
the shapé of the Fermi surface would aléo predict the masses

correctly. There is, however, an argument which suggests
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that it might be possible to calculate orbit masses to within
a constant scaling factor if the shape of the Fermi surface
were fitted exactly. The shape of the Fermi surface is given

by the solutibns of the equation

W o= E(kx,ky,kz) - Ep =0

where E(kx,k ,kz) is the band structure. In the absence of

Y
any knowledge of E, let

F = H(kx,ky,kz) -Cc =0
(C = constant) represeht a geometrical model for the Fermi

surface which has been fitted to experimenfal data. If the

surfaces W and F coincide, we must have
- QE [QE QHw/bH
k k -
o Y, ° 4 ok akz

at all points on the surface at whichWQHAQKZ # 0. If we can

assume that there is a differentiable function K(kx,ky,kz)

such that
2E _ oH
Y K<kx’ky7kz>9k
y .
and

OE
ok

z

OH
K(kx,ky,kZ)SE;

at all points on the surface, then

2F

_ ' 2H
Sk, = K(kx,k yk )&E—

v z'oky -

‘at all points on the surface. (Here k; is the kn discussed
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_J* L
ak ;k and Bk Qk are continuous on the sur-

face, then the tangentlal derlvatlves of K(k kX ) on the

on page 8.) If

surface are zero so that K(kx’kykz) takes on a constant
value everywhere on the surface. If fhe conditions for
this argument are'actually satisfied, it should be possible
to calculate masses for different orbits to witﬂin a scaling
factor K = constant from integrals like those in Equation 6.
We did not investigate furfher the validity of the
above argument, but instead put the usefulness of such an
argument to an experimental test. The guantities

iy

were easy to compute so they were calculated as-the orbits
were traced to find the extremal areas. There are some
features of the resulting m' wversus kH plots for the electron
jack function which would be expected'to be qualitatively

similar to the true m¥* versus k. . plots if such plots could

H

be obtained. These similarities arise because at many
orientations e minimum number of m¥ minima isifixed by the
nmmbexr of times a plane kH = constant is tangenteto a neck
as kH ie varied from zero to its maximum value. A mass

minimum should occur between two k. values for which tangency

H

occurs (un ess one of these points of tangency occurs for

kH = kF where kF is the extension of the Fermi surface along

the field direction) (cf. Koch, Stradling, and Kip 1964).
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Furthermore, both the experimental mass m* and the mass m'
‘for fhe central orbit on- the electron jack are expécted to
rise steeply as an angle is apﬁroached for which the central
section through the electoon jack is tangent to a neck.
The orientation dependence of the extremal values of

m' which were picked off the plots of m' wversus kH are shown
- in Figure 49b, and we have reproduced Figure 40 in Figﬁre
49a. .It is evident that except for qualitative similarities
of the orientation dependence which are expected to follow
from the shape of the jack, the orientation dependence of

m' (Figure L49b) is not at all like that of m* (Fiéure 495).
It would seem that the argument that orbit masses can be
calculated to within a scaling factor is invalid. One
difficulty in the argument arises when saddle points occur.
Again, we have assumed that the two functions describe pre-
cisely the same surface. Because of experimental uncertain-

ties we should really assume that the function F would

represent the surface in some. least squares sense.

Appendix G: Some Noncentral Areas for the Electron Jack

Knowledge of the dependence of the cross-sectional

magnetic field direction is of interest for several reasons.
The most important reason for this study is, of course, that

the frequencies of de Héas—van'Alphen oscillations are

e am———————————— T




Empirical and calculated orbit masses

Cyclotron resonance mass results of Walsh (1964) (See caption to
Figure 40.) ,

Orientation dependence of some of the (scaled) "orbit masses" for the
empirical model; heavy solid lines: orbits with both extremal area

and extremal mass; light solid lines : orbits with extremal mass only;
dotted lines : orbits having an extremal area for which m' is a
relatively slowly-varying function of k,. These orbits were included
mainly to make this plot have somewhat the same form as Figure 50a,
even though there are great differences between the two plots '
numerically. Quantities m' calculated using the electron jack function
have been scaled so that m' for the central orbit on the electron jack
at D11] is equal to the correspocnding orbit mass as found by cyclotron
resonance., Quantities m' calculated using the hole octahedron function
were scaled so that m' for the central orbit on the hole octahedron

at ﬁ1f] agrees with Walsh's value for this orbit.
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proportional to areas Ab(kH) for'whicha%Fo(kH)AakH = 0. In
order to further illustrate the origin of some of the de Haas-
- van Alphen terms predicted by the empirical model (Figure 38),
we have included in Figure 50 some examples of computed ﬁlots

cﬂ‘AYkH) versus k Using the frequency values which label

H
the points with extremal aree, areas on these plots can be
correlated with predicted frequencies on Figure 38.

The plots in Figure 50 also give some idea of the relae‘
tive magnitudes of the curvature factors ’Qzﬁ;/;kHZ}—%
(Equation'12) for the various orbits. As was discussed in
Chapter V, there is some uncertainty as to which of two
possible orbits on the electron jack corresponds to the ﬁ
oscillations. The predicted curvature factors for these‘two
orbits do not appear to be vastly different (Figure 50a) so
that a choice for the appropriate orbit for the ﬂ’oscillations
cannot be made on the basis of the size of the curveture |
facter.

Mﬁnarin and Marcus (1966) have observed an oscillatory
magnetoresistive eize effect in gallium which is periodic in
H rather than vH, These so-called Sondheimer oseillations
(Sondheimer '1950) have been interpreted (Munarin and Marcus
1966, Bloomfield 1966) in terms of orbits on approximately,
parabolic sheets of Fermi surface for Which;W%QkH is een—

stant.. . Lducks1 has obscrved that there are also orbits on

1Dr. T. Loucks, Physics Department, Iowa State Univer-
sity of Science and Technology. Private Communication 1966.
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Some plots of orbit area¢%(k”) versus k. for
. :

the model electron Jjack. Li@ht solid lines

nave been drawn through the calculated points.
Extremal areas are labeled with the correspon-
ding dHvVA frequencies F. Dashed lines give

he estimated behavior of the curves where no
calculations were carried out. Heavy solid
lines are drawn where Dﬁ/QKH is constant.
kHyVﬁ11]. Rough wvalues of the curvature factors
are indicated for the two orbits which predict
frequencies mnear that of the F%oscillations.

/) (10D

k., in (750) plane 12° from B?dj
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his electron jack model for tungsten (Loucks 1966) for which
Qﬁ/akH = constant and has suggested that such oscillations
could possibly be observed in tungsten.

There are orbifs on our empirical model for which
;ﬁﬁakH = constant also, and some of these are shown on
Figure 50. Of course, for some of these orbits,.the linear

dependence of %Pon k.. may wvanish if the <ﬁ10>’dimensions of

H
the jack are reduced slightly (see Chapter 5). (However,
the orbits on Loucks' model which correspond to orbits in

the linear Afversus kH region of our model labeled "a" also

have Qﬂ/EkH = constant.)
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Data Analysis, Fortran Program

for IBM 7074 Computer
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FCRTRAN,COMPILE, MAIN.

[sNaleNeEalalaNaNaNaNaNaNaNal

1179
118
119

1190
117

120
1000

115

116

1161
1162

121

FY
PERIODOGRAM ANALYSIS FOR DE HAAS-VAN ALPHEN EFFECT DATA

THIS PRUGRAM WILL CNLY WORK IF EVERY HALF CYCLE OR MORE IS REAL, ANY

NUMBER OF READINGS MAY BE TAKEN RETWEEN THE MAX AND MIAN CF THE CYCLES ELT
THE MAX ANC MIN MUST BE READ. ALSO +THE FIRST TWO REACINGS ON A PICTURC
MUST BE A MAX AND A MIN AND THE LAST TWwO READINGS MUST BE A MAX AND MIA
NTAD IS THE NUMRER OF CYCLES WHICH ARE TO BE ADDED IN

SUCCESSICN TO MAKE UP ONE TERM FOR THE PERIODOGRAM ANALYSIS
NL =NO. OF POINTS PER LINE

5 IDENTICAL NUMBERS CHANGES THE CALIBRATION LINE IN COMPUTING
10 IDFNTICAL NUMBERS ENCS A DATA SET

DIMENSION INDE(10),WERR(30)}

DIMENSION XLABL(4),YLABL(4),XLAB2(4) ,YLAB2(4},PIX(4),TITLE(4)
CIMENSION U(1002),SM{S00),NLI10),FACC(250),

LHBOX (250 ) , FLEV (301, NLEV1(30)},NLEV2(30),WACC(250),SLMHL(275)
DIMENSION CONA{250),CONC(250),P0SA1(250),FLD1(250),P0SB1{250),
1XPCS1(250) ,CYCLE(250),RH(250),SAMP(250),RERR(250),HIL(250)
CIMENSIUN FLD{3),POSA(3),POSB(3),FACA(3),FAC(3),FACB(3),AMP(3),
LFACP(3).FACX(3),XPOSI3)

EQUIVALENCE {U(L1),RERR(1)),(U(251),POSAL(L1]}),

L(U(SOL) yFLOLIU) )4 (ULT51 ), HILEL) ) o (HIL(L),HBOX(1})

EQUIVALENCE (SM(1),CONA(1)), (CONA{L),POSRL(1}),
1(SM12511,CONCI1)},(CONC(1),XPOSL{L))

CONP=.5

NUPLI=1002

RCAD 1179,XLAB1,YLABl,XLAB2,YLAB2

FORMAT (1645)

READ 119,ALPHA,HILIN,COILK,HZERG,PIX,TITLE

FORMAT (F3.1,F6.1,F8.2,F7.0,8A45) ’

MSTGL=0

MS1G2=0D

MTEST = 0O

M87 = 0 '
RHTES=0. ) HISTCG
0O 1190 11-4,9

NL(I1)=11+8

IF (ALPHA) 120,117,120 : FT 52
STGP 88 FT 46
READ 1000 ,NL{1),NLU2),NL{3),NTAD,FL1,FL2,FL3,NINC,FMINR,FMAXR,MBOX
FORMAT( 4[5, 10X,3F5.0,1542E10.4,13) : '

CALL UPLURLU, )

IFI{NTAD)I115,115,116

NTAD=1

FTAD=NTAD

IF(MBOX)116L,1161,1162

MBOX=1

MBOX=MBOX

PRINT 121y PIX,TITLE,ALPHACOTLK,HZERNWKHILIN

FORMAT(4LHLIDE HAAS-VAN ALPHEN COMPUTATICONS--PICTURE3X,8A5//
19H  ALPHA =FS5.1,8Xs3RK =F10.2,7X, 7THHZERD =F1C.5,8X,8HHILINE =F6.1)
FN = NINC :

HWP = FN/2.

HILIN = HILIN - ALPHA

NHWP = HWP

Fortran Program 1; Data analysis -

e S
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J1 = 0
¥STO = O
122 READ 1?3'(POSA(IZ).FACA([2);FLD(IZ)'FAC(IZ)'POSB(IZ)§
lFACB(lZ).AMP(IZ)'FACP(IZ).XPOS((Z’.FACX(I?),IZ =143)
123 FORMAT(15(F3.0,F2.0})
[F(MSTO)1231,1233,1231
1231 AP=POSA(1)eFACA(L)
BP=POSB(1)eFACB(L}
[FLAP-BP)1232,1241,1232
1232 HILIN = HILIN —ALPHA
1233 nNO 1239 13 =1,3
AP=POSA(I3)eFACA(T3)
AP=PCSA(I13)#FACB(I3)
IF(AP-BP}1238,1234,1238
1234 [F(3 -13)1235,1235,1236
1235 MSTO = 1
GO TC 122
1236 M1 = I3 +1
AP=PGSA(M)1)aFACA(ML}
BP=PCSB(ML)eFACR( M1)
IF{AP-BP)1237,1241,1237
1237 HILIN = HILIN = ALPHA

GO TG 1239

1238 Jl= Jl+ |1
MSTO = 0
POSAL(J1) = POSA(I3)=FACA{]3)
FLOL(JL) = FLD(I3)eFAC(I3)
pPOSBL(J1) = POSB(I3)=FACBII3)
SAMP(J1) = AMP(I13)eFACP(I13)
XPCS1(J1)= XPOSU{I3)«FACX(I3)
HIL(J1) = HILIN

»87 = MBT + 1
GO TC (1239,1308),M87
1308 M87 = 1
RERR(J1) = O.
K20 = Jl-1 o
[E(FLDL(J1) - FLDOL{K20)}1310,1309,1309
1309 MTEST = MTEST + 1 : '
RERR(J1) = 1.
1310 TF{XPOS1(J1) - XPOSL{K20)11311,1314,1312
1311 MSIGL = -1
GU TG 1313
1312 MSIGL = +1 :
1313 IFIMSIGL + MSIG2) 1315, 1314, 1315
1314 MTEST = MTEST + 1
RERRIJI) = 1.
1315 MSIG2 = MSIG1
1239 CONTINUE
12640 GO TC 122
1241 NT = J1

J2 = 0

CO 1245 [4 = 1,NHWP
NSTAR= 14

NEND = 14 + NINC - 1
FLP = 0.

SUML = 0.

sumZz = 0 .

CO 1244 [5 = NSTAR,NEND
[F{ HILLIS) — HIL(14))1243,1242,1243
1242 FLP = FLP+L.

Fortran Program 1 (continued)
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1243 SUML = SUML + ((HIL(IS)-HIL(14))/ALPHA +1.1ePOSAL(IS)
1244 SUM2 = SUM2 + ((HIL(IS)-HIL(T4))/ALPHA +1.1+POSBL(I5)
1 : + ((HIL{T4)-HIL(IS))/ALPHA)*POSAL(T5]
SUML = SUML/FLP
SUM2 = SUM2/FN
J2 = J2 +1 .
1245 RH{J2) = 1.7(COILK#{HIL(J2)+ALPHA®( (FLD1(J2)=SUM2}/(SUFL - SUM21))
1+HZERD) ‘ .

NSTAR = NHWP+1

NEND = NT - NHWP

ENINC = NINC

00 12%1 16 = NSTAR,NEND

SUM1l = 0.

syr2 = 0.
‘FLP1= 0.

syl = 0.

SX1 = 0.

SX2 = 0.

$X3 = 0.

SX4 = 0.

SXY1= 0.

SXY2= 0.

NBOT = I6 —-NHWP
NTOP = 16 +NHWP
FLP2 = N.

FLP3 = 0.

00 1250 I7 = NBOT,NTQOP
IF(HIL(I6)=HILI{T7))1246,1247,1248

1246 C1 = 1.
©c2=0.
€3 = 0.
FLPL = FLPL + L.
GO TC 1249
1247 CL = O.
€2 = 1.
. c3 = O.
FLP2 = FLP2 + 1.
GO TG 1249
1248 C1 = O.
c2 = 0.
€3 = I.
FLP3 = FLP3 +l.
1249 SUML = SUML + C1 ePOSB1(I7)}+ C2s POSAL(I7)
SUM2 = SUM2 + C3 #POSAL{ITI+ C2e POSBLIIT)

XA = XPOS1(I7) -XPOS1(I6&)
SY1 +FLDLI(IT7)

SX1 +XA

X2 = XA=XA

$SX2 = SX2 + X2

SX3= SX3 +X2sXA

SX4 = SX4 + X2eX2

1%
>»

—
non

SXYl = SXY1 + FLCL([T)exA
1250 SXY2 = SXY2 + FLCY(17)ex2
SUML = SUMLI/(FLPLl+ FLP2)
SUM2 = SUM2/{(FLP3+ FLP2)
§X22 = S$X2#SX2 ) g
§X32 = SX3#SX3
SX12 = SXleSX1
§X23 = S$X22#SX2
0L = SYleS¥2#S¥4 + SX1#SX31#SXY2 ¢+ SX2¢5X3#5XYl

Fortram Program 1 (continued)
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1251

1252

1253

1254

1255
1256

1257

OO0

1299

1300
1301
1302
1303

1304
1305
1306

T040
7041
1050
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I -SY1leSX32 —~ SXY1#SX1eSX4 - SXY2eS5X22

C2 = FNINCoSX2#5X4 42.#SX1aSX3#5X2 ~FNINC#SX32 -SX12#SX4 —-§X23

FRAC = N1/C2
J2 = J2 + 1

RH(J2) = 1./(COILKe(HIL{J2)+ALPHA®[{FRAC = SUM2)/{(SUML = SUM2}))

1+HZERD)

NSTAR = NT-NHWP+1
NEND = NT
€0 1257 1
SUML
Sum2
FLP1
FLPZ
FLP3 =
b0 125 I9 = NSTAR,NEND
IF(HIL(I8)~ HIL{I19))1252,1253,1254
cl l.

c2 0.

c3 0.

FLPL =FLP1l+ 1.

GU TO 1255

Cl = 0.

c2 = 1.

c3 = 0.

FLPZ2 = FLP2 +1.

GO TG 1255

cl = 0.

ce2 = 0.

= NSTARYNEND

FLP3 + 1.

SUML + CleP0OSBLI19)+ C2#PUSALIIY)

SUM2 + C3ePOSAL{I9)+ C2#P0SBLI(I9)

SUML/(FLPL + FLP2)

SUM2/{FLP3 + FLP2) .

J2 = J2 +1

RH(J2) = 1./(COTLKe{HIL(J2)+ALPHA#((FLD1(J2)-SUM2)/(SUNM] -
1+HZERD)

(%3
K <
—
[T T T T
.

PART TWO -~ MULTIPLE LINE FIT

NT=TCTAL NC. OF POINTS.

PRINT 1299,HILIN

FORMAT(16H BOTTOM LINE = Fé6.1)

Kil=1

K&4=NT-1 )

CYCLE(L) = 1.

DO 1306 J=2,K4

IF(SAMP(J)-SAMP{J~1))1301,1303,1302
[F{SAMP({J)=-SAMP(J+1))1303,1306,1306
IF(SAMP(J)}-SAMP(J+1)11306,1306,1303

K2=J

DO 1304 K=K1,K2 o
CYCLE(K) = CYCLE(KL) +{(RH(K)=RH(K1))/(RH(K2}=RH(KL1))
K1=K2

CONT INUE

IF{K1-K4)7040,7050,7050

(0 7041 L1=K1,Ké4
CYCLE(LLY=CYCLE(KL)+(RH{LL}~RH({K1))/(RH(K&4)}-RKIK1))
CYCLE(NT)=CYCLE(K&4)+1. .

DO 902 K = 14NT

Fortran Program 1 (continued)

SUM21}1) )
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[FIRHIK)-RHTES)1258,1258,1259

1258 RERR(KI=1.

MTEST=MTEST+1

1259 RHTES=RH{K])
902 CONTINUE

TF(MTEST) 1322,1322, 1320

1320 PRINT 833,MTEST .
833 FORMAT(12H THERE WERE I14,15H READING ERRORS/6X,1CHFIELD LINE

1400
9085
9082
© 1321

1322

1405
1410

1406

1411
1425

1426
1412

1430

1435
1436

18X,AHTUP LINE7X, 11HBOTTOM LINESX,11H X POSITION4X,16HRECIPRGCAL FI
2ELD)

DO 1321 K=1,NT

PRINT 9082,FLDL(K)+POSALIK),POSBLIK)XPOSLIK) JRHIK)

[F(RERR{K))1321,1321,1400

PRINT 0085

FORMAT.(6H ERROR)

FORMAT(1H 5E16.4)

CONT INUE

GC TO 118

K$=2600000000

XMIN=CYCLE(1)

YMIN=RH(1)

CALL GRAPH(NT,CYCLE,RHsKSy7415.,10.40.¢XMIN,04 s YMIN,XLABL,YLABL,
1PIX,TITLE)

CALL LLSID(CONPFLL1+FL2+FL3,MBOXsNT,NLsRH,CYCLE,FMIN,FMAX,1,FACC,

1WACC,HBOX,NBO, DFBOX, JMOMT, JMDMA )

RHMA=RH(NT)

RHMI=RH{1)

NRHC=1

MLINS=0

FTTM=.01

FIM=FTTH

JST=JMOMI

JEN=JMDMA

MLINS=MLINS+1

CALL WAVE(FACC,WACC,FLEV,NLEVL,NLEV2,JST,JEN,JC,FTF,NT,WERR)

[FIMLINS-1)1411,1410,1411

CALL YMIMA(FACC,NT,FACCL,FACCB, INDE,NSSSy1CsM1,1)

PRINT 1606,FLEV(1),FLEVIJC)

FORMAT(5BHK FIRST POINT ON FREQUENCY VS. CYCLE CURVE HAS FREQUENCY
1= E12.5/57H LAST POINT ON FREQUENCY vS. CYCLE CURVE HAS FREQUENCY
2= E12.5) :

CON=.5#(RHMA+RHMI) . ‘

CALL SCLE(FACC,RHMA,RHMI,FACCB,FACCL,CON,NT,.5)

CALL GRAPHINT,CYCLE,FACC,KSs4,0.0)

LONG=0 .

IF(MLINS~4)1412,1425,1425

PFTM=100.2FTM

PRINT 1426.PFTM

FORMAT(36HK FRFQUENCY PROFILE ESTIMATES WITH  F8.4,2CH PERCENT
1RESOLUTION /6X, 9hFREQUENCYSX,SHFIRSTS5X,4HLAST7X,SHERROR/ 24X,
2SHCYCLESX, SHCYCLE)

DO 1440 J5=1,JC
LEN=NLEV2(JS )~ NLEVl(Js)

IFILEN-LONG)1435,1435,1430
LONG=LEN
JLON=JS
JFIRC=NLEV1(JS)

JLASC=NLEV2(J5)

TF(MLINS-411437,1436,1436

TFLEN~10)1437,1437,1427

Fortran Program 1 (continued)
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1427
1428
1437

1438
1440

1441

1442

1443

1444
1445

1446
1447
1429

1480

1408
-1409

801
802

Fortran Program 1 (continued)
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PRINT 1428,FLEV(JS)«NLEVL(JS)sNLEV2(JIS5) WERRIJS)
FORMAT(1H E16.7,5X, 155X, 15+5%,E16.7)
NST=NLEV1(JS)

NEN=NLEV2{J5)

D0 1438 J6=NST,NEN

FACC(J&6)=FLEV(JS)

WACC(J6)=WERR{JS)

CONT INUE

JsT=1

JENSNT

XT=MLINS

XDIFF=LONG

XT=XT/XDIFF

FTM=XT ' &
FFIMLINS—4)1405,1442,1442 ’
FPRO=RH{JLASC)=-RH(JFIRC)

[F(JLON=1)1446,1444,1443

J5=JLON-1

JBEG=NLEV1(J5)

JEND=NLEV2(J5)

RHCE1=0.5%{RH{JBEG) +RHIJENC))
RHCE2=0.5#(RH{JFIRCI+RHIJLASC)) .
AB=XT#FLEV{JLON) # (RHCE2-RHCEL)/(FLEV{J5)=FLEV(JLON))
AB=ABSF(AB)

FPRO=FPRO+AR

IF({JLON=JC)1445,1446,1446

JS=JLON+1

JBEG=NLEV1(J5)

JEND=NLEV2(J5)

RHCE1=0.5#(RH(JBEG) +RH{JENG))

RHCE2=0.5# (RHIJFIRCI+RH{JLASC))

AB=XT#FLEV(JLON)# (RHCE2-RHCEL)/{FLEV{JS)=FLEV(JLON)}
AB=ABSF(AB)

FPRU=FPRO+AB

GO TO (1447,9902),NRHC

PRINT 1429 .
FORMAT (20K IDEOGRAM ESTIMATES/9X,9HFREQUENCY12X,9HINTENSITY) 1
FBOX=FMIN

NSSS=1
CALL YMIMA(HBOX,N80,HBOXM,HBOXT,INDE,NSSS¢10,M1,2)
CO 1480 J5=1,M1 :
1F=INDE(J5)

FI=1F

FI=FBOX+F1»DFBOX

PRINT 1408,FI,KBOX(IF) ] -

DO 1409 J5=1,NE0 i
FROX=FBOX+DFBOX

U(J5)=FROX

FORMAT(1H 2E20.8)

CUNT INUE

CALL YMIMA(SAMP,NT,SAMPL ,SAMPB, INDEINSSS,1CsM1,41)
CON=RHMI . .

CALL SCLE{SAMP,RHMA4RHMI,SAMPB,SAMPL,CON,NT,.5)
CALL GRAPHINT,CYCLE,SAMP,KS,4,0.0)

XMIN=U( L) .
CALL GRAPH(NBO,U,HBOXKS¢448ey10.,04+XMIN,C. HBOXM,XLAB2,YLAB2, o
LPEX, T1ITLE) '
IF(FMAXR)8B1,81,801
IF(FMINR) 81,811,802
FMIN « FMINR
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FMAX = FMAXR

GO TO 803
81 FMIN = FMIN
FMAX = FMAX
803 NC = NI - 1
C
C PART 3 PERIODOGRAM ANALYSIS
[
8032 DO 811 K=1,NC
CONALK) = (SAMP(K+1l} — SAMP(K))}/(RH(K+1) -RH(K})
CONB = ~CONA{K)#RH(K)
811 CONC(K) = CONB + SAMP(K}
PMIN 1./FMAX

PMAX = 1./FMIN
NSTUOR=NUPL [+9750
ULIM = NSTGR
GUA=(PMAXeULIM )/{RH{NTI=RH(1))
TF({QUA-274.)8113,8113,8112 ,
8112 ULIM=(274.#(RHINT)I=RH(1)))/PMAX
NSTOR=ULIM
UL IM=NSTOR
8113 DRH = (RH(NT)I-RH(1))/ULTM
FTMC=2.9DRH®FMAX
IF{FTMC-FTM)9902,9901,99C1
9901 MLINS=MLINS-1
FTM=FTMC
NRHC=2
GO TC 1405
9902 FPRO=FPRO/DRH
HFPRO=.5FPRQO
NHPRO=HFPRO
HFPRO=NHPRO
NPRO=2#NHPRO
RHS =RH({1) - ORH
NP = NSTOR
K = 1 )
PRINT 8116+LONG, NTAD,CYCLEINT)
8116 FORMAT(23HK PERIUDOGRAM ESTIMATES/
1 2HJ 15,33H CYCLES AT A TIME WERE CONSIDEREC /
2 15,57H CYCLES WERE ADDED TO.MAKE A SINGLE TERM FCR THE ANALYSTS/
322H THERE WERE A TOTAL OF F5.0, 7H CYCLES/
49X, 9HFREQUENCYL12X,9HINTENSITY)
00 839 [ = 1,NUPLI
RHS = RHS + DRH
813 0O 815 J = K,yNT
IF(RHS=RH{J+111R14,R14,RIS
814 K30 = J
GO TO 841
815 CONTINUE
841 K = K30
839 U(I)= CONC(K)+CONA{K)#*RHS
LU = NP = NUPLI
- DO 816 I = 1,LU
RHS = RHS + DRH
DO 8152 J = K4NT
: IF{RHS —RH(J+1))8151,8151,8152
8151 K30 =4
GO TC 8153
8152 CUNTINUE
K193 K=K 3U

Fortran Program 1 (continued)
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840

816

8171
817

818

820
821
822
882
AA83

950
951

992
953
S54
955
956
957
958

8241
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MK = 1
A = CONC(K) + CONA(K)®eRHS
CALL UPCOR{A,MK)

CONT INUE
RHL = 0.0
Nl = O
N2 = 0
RHS = 0.0

FLPLl=1./FLEV(1)
IF(FLP1-PMIN)IBLT71,8171,817
PMIN=.95«FLP1

ro 822 1 = 1,9000

RHL = RHL + ORH

IF(RHL - PMIN)IB18,820,82C

N1 =N1+1

N2 = N2 + 1

RHS = RHS + DRH

GO 70 822

IF{RHL - PMAX)B21,821,882
N2=N2+1

CONT INUE

MSTE = 1

RHS = RHS - DRH

RHTES=RHS

MF=0

INTE=0

J5=1

DO 832 1 = N1,N2 +MSTE
SFNUM=0.

SUMU=0.

SUMU2=0.

MF=MF+]

N3 = 1

RHS = RHS + CRH

RRHL=1./RHS
IF(RRHL=-FLEV(JS511)950,950,952
IF{J5-JC)951,958,958

J5=J5+1

JBEG=NLEV1{J5-1)
JEND=NLEV2(J5-1)
RHCEL1=(0.5#(RH({JBEG)+RH(JEND))}-RK(1))/CRH
JBEG=NLEV1(JS)

JEND=NLEV2(J5)
RHCE2={0.5#{RH{JBEG)+RHIJEND)}-RH{11})/DRH
FACT.1={RHCE2-RHCEY1)}/(FLEV(JS)I-FLEV(J5-1))
1P{J5=11958,950,;953 '
RHCEN={RRHL-FLEV(JS-11})«FACT1+RHCE]
NCEN=RHCEN ’
IF{NCEN-NHPR0O)958,958,956
IF(NCEN+NHPRO-NSTOR)957,958,958
INTE=NCCN-NHPRO

D0 827 J=1,N3

FNUM=0.

SUMM = 0.0

NBEG = J + INTE

MO = NRFG-T

NUP = NBEG + NPRO - NUPLI
IFINUP)B241,8241,8242

NUPL = NUP + NUPLI

N4Q = 2

1 (continued)
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8243
B244

R25
849

8491

8492

826

8261

H262

8263
A264
8265
A266
8267

8268
8269
8270

8271

8272
827

828
829
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GO TC 825

NUP1 = NUPLI

[F(NUP - LU)B244,8244,8243
NUP = LU

N&4Q = 1

TFINBEG - NUPLI)B25,825,8492
D0 R491 K = NREG,NUPL,I

SUMM = SUMM + UI(K) '
SUMU2=SUMU2+U (K ) #U (K}
FNUM=FNUM+ 1. .

CONTINUE

MO = K

MK=MQ

GO TO (8492,8261),N40

MQ = MQ+]

MS = M@ - NUPLI

NO 826 K = MS,NUP,!

MK = =K

IND=K

A=GETU(IND) .

sow woe SUBSCRIPTED VARIABLE NOT DIMENSIONEC
FNUM=FNUM+1. ’

SUMM = SUMM + A
SUMU2=SUMU2+ A=A

CONT INUE

MK=—-MK

SM{J)=SUMM

FNUM1=FNUM

SUMU=SUMU+SM(J)
SFENUM=SFNUM+FNUM
IF{NTAD~1)8272,8272,8262
FNUM=1.

Al=0.

MFI=NBEG-2%1

MLA=MK+20]

CO 8271 KIT=2,NTAD
FNUM=FNUM+1.,

MRIF=MFI+KIT#l]
IFIMRIF~-NUPLT)8263,8263,8264

T1=U(MRIF)
G0 TO R265
MRIF==MRIF

CALL UPCORI(T1,MRIF)
MRIL=MLA-KITsI

GO TC (8266,8269),N40
IF{MRIL)B268,8268,8267
MRIL=-MRIL

CALL UPCORIT2,MRIL)

GO TO 8270
MRIL=MRIL+NUPLI
T2=U(MRIL)}
Al=(FNUM=2.)8ALl/FNUM +(T1+T2)/FNUM
SM{J)=SM(J)-A1

CONT INUE
SM{J)=SM(J)/(FNUM1+1.~-FTAD)

CONT INUE

VARU=SUHU2/STNUM (SUNU/STRUM)eeZ
AVE = 0.0

D0 829 J=1,N3
AVE = AVE+SM(J)

Program 1 (continued).
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< GN=J
AVE = AVE/GN
SUMN = 0.0

830 DO A31 J = 1,N3
SM({J) = SM{J} - AVE

831 SUMN = SUMN + SM(J)w#SM(J)
SUMN = SUMN/GN
SUMH1 {MF)=SUMN/VARU

832 CONTINUE
0O 834 [=1,MF
RHTES=RHTES +DRH
RRHL=1./RHTES

834 U 1)=RRHL
XMIN=U(MF)

CALL YMIMA(SUMH1,MF,YMIN,YMAX,INDE,NSSS+10,M1,2)
DO 855 JS5=1,M1
[F=INDE{JS5)

855 PRINT 1408,U(IF),SUMHL{IF)
caLL SCLE(SUMH1,HBOXT,HROXM, YMAX, YMIN 4HBOXT ,MF,1.)
CALL GRAPH(MF,U,SUMH1,KS,3,0.0)
A = A
A2 A2
MK MK
CONP=CONP
‘FL1=FL1
FL2=FL?

FL3=FL3
KS=KS
XMIN=XMIN
YMIN=YMIN
JST=JST
JMCMI=JMDMI
JEN=JEN
JMAMA=JMOMA
Jc=J¢C
CON=CON
NSSS=NSSS
DFBUX=DFBOX
NBO=NBO

GO TC 118
END

Fortran Program- 1 (continued)
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GN=J
AVE = AVE/GN
SUMN = 0.0
830 00 831 J = 1,N3
SM{J) = SM{J) = AVE

831 SUMN = SUMN + SM(J)eSM(J)
SUMN = SUMN/GN
SUMHL (MF)=SUMN/VARYU

832 CONTINUE
DO 834 [=1,MF
RHTES=RHTES+DRH
RRHL=1./RHTES

B34 U(1)=RRHL
XMIN=U({MF)
CALL YMIMA(SUMH1,MF,YMIN,YMAX,INDE,NSSS+10,M1,2)
DO 855 JS=1,M1
IF=INDE(JS)

855 PRINT 1408,U(IF),SUMHL1{IF)
CALL SCLE(SUMH1,HBOXT,HROXM, YMAX,YMIN HBOXT,MF,1.)
CALL GRAPH(MF4yU,SUMH1,KS,3,0.0)
A = A
A2 = A2
MK .= MK
COnP=CONP
FLL=FL1
FL2=FL?2
FL3=FL3
KS=KS
XMIN=XMIN
YMIN=YMIN
JST=JST
JMCMI=JMDMI
JEN=JEN
JMOMA=JMOMA
Jc=J¢C
CON=CON
NSSS=NSSS
DFBUX=DFBOX
NRO=NBO
GO TO 118
END

Fortran Program 1 (continued)
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FGRTRAN,SCAN, LLSIC.

SUEROUTINE LLSTD(CONP,FLL,FL2,FL3,MBOX,NT+NL,RH,CYCLE,FMINL,FMAXL,
140 FACC WACC 4 HBOX yNBOyDFBOX y JMCMI 4 JMDMA)
NIMENSION HBOX{250),NACT(250),ERRL1(250},
LFRENL(251)+NL(10},RH{250),CYCLE(250),FACCI250),WACCI25C)
EQUIVALENCE (FREQL(2),NACT(1))
JMNMA=0
JMOMI=500
ERRI¥=10,%#12
MCOU=0
M37=MB0OX
N0 1319 M=1,NT
FACC(M)=0.

1319 WACC(M)=0.
GO TO (1320,1322),MB0X

1320 DO 1321 M=1,400

1321 HBGX(M)=0.

1322 £O 500 KK=1,10
J1=J¢
NLK=NL (KK)
IF(NLK)5001,5001,111

111 JC=NLK

] DO 112 J = 1,JE

112 NACT(JY=1
FN=NLK
SUMX? = 0.0 - .
SUMX=0.0 . FT095
SUMXY=0.0 ) FT096
SyMY=0.0 ) FT097
JF=J1 ’
JL=JE

28 DO 3 J=JF,JL

BJE=CYCLE(J)
R2=RH(J)
SUMX2=SUMX2+BJE#2 .
SUMX=SUMX+BJE . .
SUMY=SUMY +82 ’
SUMXY=SUMXY +BJE®B2

3 CONTINUE

31 DEN=FN#SUMX2-SUMX®#SUMX . )
FM= (FNeSUMXY-SUMXeSUMY)/DEN FT1C4
B= (SUMX2#SUMY-SUMXeSUMXY)/DEN : ’ FT105
CIFM=0.
Sur=0.

00 4 J=J1,JE
ERRI(JI=RH{J)~(FMsCYCLE(J)+B}
FRR1{JY=ABSF(ERRL(J))
MGO=NACTI(Y) )
GO TO (4000,4),MGO
4000 SUM=SUM+ERRL(J)*ERRL(J)
IF(ERRLI(JI-DIFM)I4,4,4001
4001 DIFM=ERRL(J)
4 CONTINUE
SD=SUM/FN
SN=SARTF(SH)
MCOU=MCOU+L
F1L=FL1SD
F2L=FL2*SD

Fortran Program 1 (continued)
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* 4003
4004
44

&7
410

411
42

412
413

43

4910
4911
4912
4913
492
493

494
495
496
497
498

4490
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F3L=FL3*SD

GO TC (4002,4002,4002,491),MCOU
IF{DIFM-F1L)40N3,410,410
IF(DIFM=F2L) 400444y 44
IF(DIFM-F3L)491,47,47

FIL=F2L

GO TC 410

FIL=F3L

00 43 J=J1,JE

BL=CYCLE(J)

B2=RH(J)

NAC=NACT(J)
IF{ERRI(J)I-F1IL1412,411,411

GO TG (42,43),NAC

NACT (J)=2

SUMX2=SUMX2-Bles2

SUMX=SUMX-1d1

SUMY=SUMY~-R2

SUMXY=SUMXY-B1#B2

FN=FN-1.

GO TO 43

GO TC (43,413),NAC

NACT(J)=1

SUMX2=SUMX2+B1##2

SUMX=SUMX +81

SUMY=SUMY+B2

SUMXY=SUMXY+B1#82

FN=FN+l.

CONT INUE

GO TC 31

RAD=( {SUM/ (FN=2.0))#FN)/ABSF(DEN)
ERRL{JL)=SURYF{RAN)/CONP
FREQL(J1)=CONP/FM
ERRL(J1)=ERR1{J1)I*(FREQL(JL)#e2)
B1=CYCLE(J1)

CYM=0.5¢{B1+RJE)

JME=CYM .
FACC(JMN)=FACC{JMD) #FREQL{J1)/ERRL(JL)ww2
WACC {JMD)=WACCIJMD) +1./ERRL(JL1 ) we2
[F(JMD-JMDMT1164910,4910,4911
JMOMI=JMD
[F{IMD-JMDMAY4913,4912,4912
JMOMA=JMD

IF(KK=1)492,492,498

GO TG (493,494),M37

M37=2 ’

FMIN = FREQ1(J1)

FMAX = FREQL1(J1)

IF(FREQLIJLY = FMIN)495,496,496
FMIN = FREQL(J1)
IF(FREQL(J1)-FMAX)498,498,497
FMAX = FREQL(J1)

J1=J1+1

JE=JE+?

MCCOU=0 .
IF(JE-NT)4490,4490,5

NACT{JE)=1

JF=JE

JL=JE

B2=RH(J1-1)

Fortran Program 1,(continued)
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SUMX2=SUMX2-Blse?
SUMX=SUMX-B1
SUMY=SUMY-82
SUMXY=SUMXY~BleR2
FNT=NLK
[F{FNT-.,1~FN)28,28,4495
4495 Jb6=JE-1
JB=Ji-1
DO 4497 J5=JB,J6
NAC=NACT(J5)
GO TO (4497,4496),NAC
4496 FN=FN+1.
B1=CYCLL(J3)
R2=RH(JS)
SUMX2=SUMX2+R1ew?2
SUMX=SUMX+B1
SUMY=SUMY+B2
SUMXY=SUMXY+B1*B2
NACT{JS)=1
4497 CONTINUE
GO YC 28
§ JEND=NT-NLK+1
i IFIKK-1)5991,5991,599
599 IF(NLK-30)800,800,600
5991 IF{NLK-3G)601,601,600
600 PRINT 6,NLK
6 FORMAT(G6TH LINEAR LEAST SQUARES ANALYSIS WITH FIT LENGTH 14/
IY1H  1ST CYCLEL1OX,5HERROR16X, 9HFREQUENCY)
601 0O 71 J=1,JEND :
IF(ERRL{JI-ERRIM)I60,+604+61
60 ERRIM=ERR1(J)
61 IF(J-1163,A3,65
63 IF{ERRL(J) ~ ERRL(J+1))T,7,71
65 IF(J-JENDIG6T,66,66
66 IF(ERR1{J) - ERRI{J - 1))7,7,71
67 1F(ERRL(J) - ERR1 (J -1))68,68,71
68 [FLERRL{J) - ERRL (J+1))7,7,71
7 EFINLK=-30)71,71,700
70C CYC=CYCLE{J)
PRINT 8,CYC,ERRL(J),FREQL(J)
8 FORMAT(F8.1,2X,E20.8,2X,E20.8)
71 CONTINUE
800 GO TO (1400,1404),MBOX
1400 MBCX=2 : HISTCG
FMIN1=.9sFMIN
FMAX1=1.1¢FMAX
FMIN=PMIN]
FMAX=FMAX1
NFROX=FRR1IM
BOXT=(FMAX-FMIN) /DFBOX . HISTGG
I[F{BOXT=-249,.11402,1402,1401
1401 CFBOX={FMAX-FMIN)/249.
1402 NBG=0
FBOX=FMIN1
00 1403 J4=1,400
NBC=NBC+1 . HISTCG
FRNX=FRNX+NFROX
IF (FROX-FMAX)1403,1403,1404
1403 CONTINUE HISTCG
1404 DO 1410 J2=1,JEND

Fortran Program 1 (continued)
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ERR1(J2)=1.414213«ERR1(J2)
FOIFF=(FMINI~FREQL(J2)}/ERRLI(J2Z)
DFBC=DFROX/ERR1(J2)

DO 1407 J3=1,N80
ENIFF=FNIFF+NFBC
IF{FCIFF-3.)1405,1405,1410
IF(FOIFF+3.)1407,1406414C6
EX==FNIFFeFDIFF
HBUX(J3)=HRBOX(J3)+DFRCeEXPF{EX)
CONT INUE

CONT INUE

CONTINUE

N0 1413 J5=JMDMI,JMDMA
B8=1./WACC{JS)
FACC(JS)=ReFACC{JS)
WACC(JS51=SQRTF(B)

CONTINUE

RETURN

END

Fortran Program 1 (continued)
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FCRTRAN,SCAN, WAVE.

SUBRGUTINE WAVE(FACC,WACC +FLEV,NLEV1yNLEV2,JMDMI,JVDMA,JC,FTH,NT,
LWERR)
DIMENSTON WACC(250),FACC(250),FLEV(30),NLEVL(30),NLEV2(30),
IWERR(30) .
JMOMSuJMOM]
1415 JMCMI=JMDMS
J1s=1
JC=0
JMCMO=UMDMI
1420 FTEST=FACC(JMDMQ)
NO 1460 J5=JMDMI, JMDMA
BF=FACC(JS) .
IFIBF-FTEST)1460+1450,1450
1450 FTEST=RF
1460 CONTINUE
DF=FTMeFTEST
JC=JC+1
IF{JC=30)1417,1417,1416
1416 FTM=2_ FTHM
"GO TO 1415
1417 CO 1422 JS=JMDM[,JMOMA
1419 CH=ABSF{FTEST~FACC{JS))
IF(CH-DF)1421,1421,1422
16421 JIE=J5
1422 CONTINUE
SUM=0,
SUMW=0.
DO 1423 JS=IMOMILJIE
BW=WACC(JS)
. SUM=SUM+FACC(JS)/BWee2
1423 SUMW=SUMW+1./BWee2
SUM=SUM/SUMW
FLEV{JC)=SUM
NLEVL(JCI=J1S
TNLEV2(JC)I=JIE
BW=1./SUMW
WERR(JC)=SQRTF(BW)
JMOMI=JIE+]
J1S=JMNMI
JMDMQ=JMDMI
IF(JMOMI~-JVMDMA)1420,142041425
1425 NLEV2(JC)=NT
D0 1414 JS5=1,JMDMS
1614 FACCIJUS)=FLEVI(1)
DO 1424 JS5=JMDMAWNT
1424 FACC(JSISFLEV(JC)
RETURN
END

Fortran Program 1 (continued)




231

FCRTRAN,SCAN, YMIMa.

laXaiakakakal

41
42

421
422
43

46

46

61
62
63

64
-1

69
70

Fortran Program

SUBROUT [NE YMIMALA,N? , AMIN,AMAX, IND,NSSS NMIA,¥1,MCO)

CIMENSEON AL275),XM{10),INOCLIO)

CALL YMIMA WITH MGO =1 [F ONLY THE MAXIMUM AND MINIMUM ELEMENTS
OF THE ARRAY A& ARE DESIRED. MGOD =2 IF RELATIVE EXTREMA ARE WANTED
CALL YMIMA WITH NSSS=-] TO GET THE NMIA LOWEST RELATIVE

MINIMA IN AN ARRAY X(1) WITH N2ELEMENTS

CALL YMIMA WITH NSSS s+l TO GET THE NMIA HIGHEST RELATIVE

MAXIMA IN AN ARRAY X{1) WITH N2 ELEMENTS

AMAX==10. 30 ’

AMIN=10,9230 :

CO 3 f=1,N2
IFLA{T)-AMINI2, 21421

AMIN=AL{T)
TFiA(T)-AMAX13422,22

AMAX=A(T)

CONTINUE

GO TC (70,10)+MG0

NS=0

NMIAT=NMIA-1

N5520

DO 1 Jl=1,NMIA

XM{J1})=0.

IND(JLI=0

00U 6 J=1,N2
IFLA{J+1)~-A(J)19,6,8

NS==1

GO 16 4

NS=1
IFINS+NSS159,41,59

IFINSS~NSSS159,42,59

PM=A(JS)

CO 43 J1=1,NMIAT

NyM=JL
IFINSSS1421,421,422
[FIPM=XM({J1))0b,44,47
[F(PM=YM(J1})63,44,644

CONTINUE

GO TC 59

NUP=NMIA-NUM

CO 46 J1=1,NUP
ITaNMiA-JLl+]
[R=NMI&-J1

XM(IT)=XM{]8)
INCCITI=INCUIB)

CONT [NUE

Amiinym) =pPM

INDINUM)=J

NSS=NS

CONTINUE

M1=0

CO 62 J1=1,NMIA
IFLIND(JL))63463461

M1=ME+]

CONTINUE

CU 69 f=1,M1
IMIN=9939999

£0 66 J5=1,M1

TECINDIJS)-IMINIEL, L4, 66
[MIN=IND(JS)

= )8

CONT INUE

INCLJCI=INDIT)
IND(I)=IMIN

HRETURN

END

1 (continued)
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FCRTRAN,SCAN, SCLE.

SUBROUTINE SCLE(A,BB,BLsABsALsCONyN,SCF)
DIMENSION A(325) -
FACT=SCF=(BR-BL)/{AB-AL)
DO 1 I=14N

1 A{I)=FACT=#(A(I)=~-AL)+CON
RETURN : :
END '

AUTO,LIST,DECK,GETU

Fortran Program .1 (continued)
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OPERAND . ¢D NO

LINE | LABEL [¢14
PRCGRAV GETU PAGE
01 EXECUTE CNTRL 7 ) e ' 0001
02 nc
23 AGETU 2
X 0002
X
04 +0+0+1000+0+910000C002
X -
X
X
X .
05 ORIGIN CNTRL 1000
06 @ !
Q7 . FLAG FUNCTION GETU FOR OBTAINING NUMBERS STORED IN
ng e UPPER CORE. USE -~ VALUE=GETU(INDEX) WHERE INDEX
0y e .GT. ZEROD AND .LT. OR .EQ. 9800
10«
11 e STORAGE NEEDED - 10 LOCATIONS
12 »
13 o TIMING (INCLUDES BLX INTO GEYU AND ZST1 AFTER IT)
14 - o 108 MICROSEC.
15 @ WARNING = IF 1/0 1S OPERATING WHEN GETU IS ENTERED
16 » GETU WILL WAIT FOR I/0 TO CEASE AND TIMING IN THIS
17 - IS UNPRECICTABLE.
18 3 .
19 ZAl 0+X94 0003
20. STO1L 0 (6+49)+1 .
21 XLIN 98,0 '
22 BCB Ly .
23 BCA 240
24 nc
25 +0400100000 0004
26 LAl 9999+X98
27 oc -
28 +0400200000
29 B 2+X94
30 END CNTRL 10CO
X 0005

INDEX WORNS USED INDICATED BY ZEROS

Lac

0325
0326
0327
0328
0329
0330
0331

1000
1001
1002
1003
1004

1005
1006

1007
1008

A7
AQG
+0C
+0C
+0C
+0C
+91

+13
-12
-48
+51
+51

+04
+13

#04.

+01

+01

111111010101 11221121 2022032202020 0822220200 2322222220200 202 0200201003012121211111111111

SWITCHES USED INDICATED -BY ZEROS
111111ti11lgntiitnginningigg

Fortran Program 1 (continued)
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AUTO,LIST,DECK,UPCOR
LINE LABFL op OPERAND
PROGRAM UPCOR PAGE 00
01 EXECUTE CNTRL 7
02 oc
03 AUPCOR ?
X
x .
ce +0+0+1000+0+310000C002
X
X
X
X -
05 ORIGIN CNTRL 1000
06 Al 1+X94
07 STOL  +(6,9141
08 Zal 0
00 Bz1  2ERO
10 BML  GET
11 pUT 1571 98(0,5)
12 IAL 0eX94
13 STOL 26,9141
14 280 0
15" BCE 1,
" le RCB 2,
17 nc ,
18 +0400100000
t9 ZsT1 9999+X98
20 ne
21 +0400200000
27 8 3+X94
23 GET ISTL 9810,5)
>4 Wsp 98
25 241 0+X94
26 STOL  e(6,9)+6
27 BCB  law
28" ARCB 2,
29 nc
30, +0400100000
31 Al 9999+X%X98
32 oc :
33 +0400200000
34 76T 0
35 : 8 3+X94
36 ZERD “xL 98,+0100000000
37 ZAl +0
38 BCB Lo
39 BCB 20 ®
“0 nc
41 +0400100000
42 ISTL  0ex1
Fortran Program 1 (continued)

CD NO

0001

0002

" 0003

0004

0005

0006

0007

0008

0009

Lec

0325
0326
0327
0328
0329
0330
0331

1000
1001
1002
1003
1004
1005
10C6
1007
1008
1009
1010

1011
1012

1013

. 1014

1015
1016

1017

1018
1019
1020

1021
1022

1023
1uZ4
1025
1026
1027
1028
1029

1030
1031

AB4
ACC
+0C
+0C
+0C
+0C
+91

+12
-1z
+13
+1C
-1C
-11
+12
-1z
+12

‘451

+51

+04
-11

+04
+01
-11
-03
+12
-12
+51
+51

+04
+13

+04
~-11
+01
+45
+13
+51
+51

+04
-11




LINE LABEL ap QPERAND
PROGRAM UPCCR * PAGE 00
43 RS 98,RNM
44 oC
45 +0400200000
46 3] . I+X94
477 RUW NOP 9799(0,1)
48. END CNTRL 1000

X

X

X

INCEX WORDS USED

INDICATEO BY ZEROS
Ollllllllll111111l11!11111111111lll1111111111111111111111111111111111111111111111111111

SWITCHES USEC INDICATED BY ZEROQS
10111 2121210921020110111112101L0

OBJECT

OBJECT

STAR

FCRTRAN JCB

MATINPRCG 1500 RELOCATEN 8Y 0500
REQUESTS SUBROUTINE UPCOR
REQUESTS SUBROUTINE GRAPH
REQUESTS SURROUTINE LLSID
REQUESTS SUBROUTINE WAVE
REQUESTS SUBROUTINE YMIMA
REQUESTS SUBROUTINE SCLE
REQUESTS SUBRCUTINE GETU

LLSID 7118 RELOCATED 8Y 6118
REQUESTS SUBROUTINE SQRTF

WAVE 8464 RELOCATED BY T464
REQUESTS SUBROUTINE SORTF

YMIMA 8682 RELQOCATED BY 7682

SCLE 8952 RELOCATED BY 7952

GETU 9004 RELOCATED BY 8C04

UPCOR 9013 RELOCATED BY 8013

GRAPH 9051 RELOCATED B8Y 8C51
REQUESTS SURRGUTINE SMUT

SMUT 9201 RELOCATED BY 8201

LIBRARY ROUTINES

SQRTF . 9399 RELOCAYED BY 9074
REQUESTS SUDROUTINE ERRTYPE

ERRYYP

MISSING SUBROUTINES

NCNE
CCMMON 94
LAST LCCATION

99
USED 9465

9444 RELOCATED BY

8444

235

LOCATIONS

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
B8RANCH
BRANCH

AT
AT
AT
AT
AT
AT
AT

LOCATIONS

BRANCH

AT

LOCATIONS

BRANCH

AT

LOCATIONS
LOCATIONS
LOCATIONS
LOCATIONS
LOCATIONS

RRANCH

AT

LOCATIONS

LOCATIONS

BRANCH

3

LOCATIONS

Fortran Program 1 (continued)

3672
3673
3674
3675
3676
3677
3678

7863 .

8644

9170

Yau s

CD NOQ

0010

0011

Loc

1032
1033
1034
1035

1036

1037

+65

+04
+01
~01

+01
+00
«01

AN ]






