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Abstract. The solution of the governing steady transport equations for momentum, heat and
mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled,
nonsymmetric nature of the system of algebraic equations that results from spatial discretization of
the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on
an inexact Newton method with backtracking. In this context we use a particular spatial discretization
based on a pressure stabilized Petrov—-Galerkin finite element formulation of the low Mach number
Navier—Stokes equations with heat and mass transport. Our discussion considers computational effi-
ciency, robustness and some implementation issues related to the proposed nonlinear solution scheme.
Computational results are presented for several challenging CFD benchmark problems as well as two
large scale 3D flow simulations.
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1. Introduction. We consider the simulation of fluid flow governed by the steady transport
equations for momentum, heat, and mass transfer. Discretization of these equations gives rise to
a system of nonlinear algebraic equations, the numerical solution of which can be very challenging.
In most nontrivial calculations, the solution process is computationally intensive and requires so-
phisticated algorithms to cope with high nonlinearity, strong PDE coupling, and a large degree of
nonsymmetry. )

Newton’s method is a potentially attractive nonlinear solution method because of its ability
to address fully the coupling of the variables. In addition, it enjoys rapid (typically g-quadratic)
convergence® near a solution that is not hindered by bad scaling of the variables. However, the
implementation of Newton’s method in the context of interest here involves special considerations.
Determining steps of Newton’s method requires the solution of linear systems, and iterative linear
algebra methods are typically preferred for this. Consequently, obtaining exact solutions of these
systems is infeasible, and the appropriate method is an inezact Newton method [2]. (See §2 below for
a precise description.)

Our primary interest is in evaluating the effectiveness of a proposed inexact Newton method on
these difficult fluid flow problems. In formulating this method, we have given particular consideration
to implementation issues that affect robustness and efficiency. The primary mechanism for enhancing
robustness is a backtracking (linésearch, damping) technique that shortens steps as necessary to ensure
adequate decrease in the residual of the nonlinear system. A feature that is critical to efficiency and
which can improve robustness as well is the use of nonlinear residual information in determining the
accuracy with which the linear subproblems are solved. That is, the accuracy required in solving
the linear subproblems varies as the nonlinear algorithm proceeds, and this accuracy requirement is
based on how well the residual of the linear system reflects the behavior of the nonlinear residual. We
demonstrate in this paper that this scheme often drastically improves computational time and in some
cases can help improve robustness. In addition, we have experimented with several other optimization
techniques (e.g., trust regions, steepest-descent directions) in conjunction with the inexact Newton
scheme. While these algorithmic enhancements may offer advantages over the basic inexact Newton
scheme in some specific situations, we have not observed a general improvement of the algorithm over
a broad range of problems.

To evaluate the proposed method, a number of different fluid problems are considered. All of
these problems use a particular spatial discretization based on a pressure stabilized Petrov—Galerkin
finite element formulation of the low Mach number Navier—Stokes equations with heat and mass
transport. Computational results are presented for several challenging CFD benchmark problems as
well as two large scale 3D flow simulations.

A major goal of this work is to study robustness and efficiency issues related to inexact Newton
schemes and to explore the limits of effectiveness of these methods. There are alternate approaches
to solving difficult nonlinear problems starting from poor initial guesses, such as false time stepping
and continuation schemes, but these are not considered here.

2. The inexact Newton method. We write the system of nonlinear algebraic equations that
results from discretization of the fluid flow equations as

F(u)=0, F:R"—R" 1)

We assume throughout that F is continuously differentiable and denote its Jacobian (matrix) by
F' € R™*™. Given an initial approximate solution up of (1), classical Newton’s method determines
a sequence of approximate solutions by ur4+1 = uxr + sk, where the step si is characterized by the

3 For definitions of the various types of convergence referred to in this paper, see [3].
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Newton equation
F'(ug) sp, = —F(ug). (2)
In an inexact Newton method [2], the Newton equation is relaxed to an inezact Newton condition
IF(ue) + F'(ur) sell < mell F(ur )l 3)

for some 7, € {0,1), where || - || is 2 norm of choice. This formulation naturally allows the use of an
iterative linear algebra method: One first chooses 7x and then applies the iterative solver to (2) until
an s is determined for which the residual norm satisfies (3). In this context, n is often called 2
forcing term, since its role is to force the residual of (2) to be suitably small.

Note that F'(ux)+F'(ux) sk is both the residual of the (2) and the local linear model of F'(ux+s%)
given by the first-order terms of the Taylor series of F' at uz. Thus in reducing the linear residual to
satisfy (3), one will also make progress in reducing the nonlinear residual as long as there is sufficiently
good agreement between F and its the local linear model at the step s;.

It is shown in [2] that, near a solution of (1) at which F' is invertible, the local convergence
of an inexact Newton method is controlled by the forcing terms. In particular, one can obtain local
convergence that is as fast as desired, up to the (typically g-quadratic) convergence of Newton’s
method, by choosing the ni’s to be sufficiently small. For example, if 7 — 0, then the convergence is
typically g-superlinear, and if nx = O(]|F(ux)|]), then the convergence is typically g-quadratic {2].

2.1. The backtracking globalization. To be practically effective, a Newton-like method re-
quires globalization, i.e., augmentation with procedures that enhance the likelihood of convergence
when ug is not near a solution. Various globalization procedures have been developed, primarily
within the context of optimization (see, e.g., [3]), and some of these are discussed in §5. We focus
primarily on backtracking, also known as linesearch or damping, in which steps are shortened as nec-
essary until satisfactory steps are found. The specific backtracking algorithm that we consider here is
the following from [4], whick has also served as the basis of a general-purpose inexact Newton solver
in {13].

Algorithm INB: Inexact Newton Backtracking Method [4]

LET g, max € [0,1), ¢ € (0,1}, AND 0 < fmin < Omax < 1 BE GIVEN.
For k=0, 1, ... (UNTIL CONVERGENCE) DO:
CHOOSE INITIAL W € [0, max] AND s; SUCH THAT

N (ui) + F'(ur) sell < mell 7 (ui)]l-
WHILE {|F'(ur + s&)|| > [1 — ¢(1 — m)] || F(w)]l DO:
CHOOSE 8 € [fmin, Omax]-
UPDATE sy +— 0s; AND ¢ +— 1 —6(1 — m).
SET U1 = Uk + Sk.

Note that, for a given initial 7%, a satisfactory initial sz exists if the Newton equation (2) is
consistent, in particular if F'(uy) is invertible. If a satisfactory initial sx can be found, then we have
from remarks in [4, §6] that Algorithm INB does not break down in the while-loop, i.e., an acceptable
si is determined after at most a finite number of step reductions. Furthermore, it is easy to see
that an inexact Newton condition (3) holds for each s; and 7i determined in the while-loop and, in
particular, for the final s; and ;. Thus each final step s; determined by the algorithm satisfies both
(3) and

F (ur + s}l < [1—2(1 — me)] 1 (s )y (4)
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which can be viewed as a sufficient decrease condition on ||F||. To shed light on this condition, we
denote the actual reduction in ||Fj| by aredr = ||F(uz)|| — [[F(ux + sz)l| and define the predicted
reduction given by the local linear model to be pred, = ||F(uk)|| — ||F(uz) + F'(ux) sel|. Then (3)
and (4) are equivalent, respectively, to pred, > (1 — me)||F(uz)lf and aredr > t(1 — m)|[|F (ur)]l-

In particular, if the inexact Newton condition (3) requires the predicted reduction to be at least
(1 — 9% }||F(ur)||, then the sufficient decrease condition (4) requires the actual reduction to be at least
the fraction t of that amount.

Algorithm INB offers strong global convergence properties combined with potentially fast local
convergence. We have the following theoretical result from [4].

THEOREM 2.1 ([4]). Assume that F is continuously differentiable. If {ux} produced by Algorithm
INB has a limit point ux such that F'(u.) is invertible, then F(u.) = 0 and ur — u.. Furthermore,
the initial si and nr are accepted without modification in the while-loop for all sufficiently large k.

Note in particular that if the iteration sequence has any limit point at which F’ is invertible,
then that point must be a solution of (1) and the iterates must converge to it. Furthermore, the
asymptotic convergence is governed by the initial 7z’s as in the local convergence analysis of [2], and
desirably fast convergence can be obtained by taking them to be suitably small.

2.2. The forcing terms. The forcing terms 7% not only determine the asymptotic speed of
convergence to a solution of (1) but also affect the efficiency and robustness of the algorithm away from
a solution. Indeed, away from a solution, choosing a very small 7; and solving (2) with corresponding
accuracy may result in a step s so long that F(ux + si) disagrees significantly with the local linear
model F{ug) + F'(uk) sk, an outcome termed oversolving in [5]. Oversolving may result in little or
no decrease in ||F|| and, consequently, may necessitate backtracking to obtain an acceptable step; see
§4.3.2 for an illustration. Even if an acceptable decrease in ||F]| is obtained, it may be undesirably
small relative to the expense of obtaining such an accurate solution of (2). A less accurate solution
of (2), in addition to costing less, might give more reduction in ||F|| and place less burden on the
backtracking.

‘We have implemented two forcing term choices from [5] that tend to minimize oversolving while
giving desirably fast asymptotic convergence to a solution of (1). These are as follows:

Choice 1: Select any 79 € [0,1) and choose

|1 = 1P ) + P ) sal
. TPl !

k=1,2,.... (5)

Choice 2: Given v € [0,1] and a € (1, 2], select any no € [0,1) and choose

_ IF )l \* _
nk—ﬁ/(__”F(uk—l)”) ., k=1,2,.... (6)

In our implementation, we use the initial value 70 = 102 with the above choices. Also, to ensure
that 7k < fmax in Algorithm INB, we follow (5) and (6) with the safeguard

T — min{nk, Ymax} (7

It is observed in [13] that local convergence results in [5, Ths. 2.2, 2.3] can be combined with
Theorem 2.1 above to obtain the following convergence theorems for Algorithm INB when the initial
nw’s are determined by (5) or (6) subject to (7).

THEOREM 2.2 ([13]). Assume that F is continuously differentiable and that each nx in Algorithm
INB is given by (5) followed by (7). If {ux} produced by Algorithm INB has a limit point u. such that



F'(ux) is invertible, then F(u«) = 0 and ur —> u«. Furthermore, if F' is Lipschitz continuous at u.,
then

”uk+1 - u"‘" < ﬁ”’U/k - u*””'u'k—l - 'll,.(”, k=1,2,..., (8)

for a constant B independent of k.

Remark. As noted in [5], it follows from (8) that the convergence is g-superlinear, two-step
g-quadratic, and of r-order (1 + v/5)/2.

THEOREM 2.3 ([13]). Assume that F is continuously differentiable and that each n in Algorithm
INB is given by (6) followed by (7). If {ur} produced by Algorithm INB has a limit point u. such that
F'(us) is tnvertible, then F(u.) =0 and ur — ux. Furthermore, if F' is Lipschitz continuous at u«,
then the following hold: If v < 1, then the convergence is of g-order «; if v = 1, then the convergence
is of r-order o and of g-order p for every p € [1, ).

In keeping with {5] and [13], we also implement the following safeguards, which are applied after
7 has been determined by (5) or (6) and before applying (7).

Choice 1 safeguard: Modify nz by m max{??k,m(cljiﬁ)/z} if 7],(‘.‘1_"'1\/3)/ ?>01.

Choice 2 safeguard: Modify n by mx +— max{nk,vn51} if yni_ > 0.1.

The purpose of these is to prevent the initial 7 's from becoming too small far away from a solution.
This can happen coincidentally with either (5) or (6); it can also happen with (5) when backtracking
forces a very short step that results in very good agreement between F and its local linear model.
Note that if {u;} converges to a solution of (1) at which F' is invertible and Lipschitz continuous,
then we have g — 0 with either (5) or (6). It follows that these safeguards eventually become inactive
and do not affect the asymptotic convergence given in Theorems 2.2 and 2.3.

2.3. Other details of the implementation. Various remaining details of our implementation
of Algorithm INB are as follows: We use 7max = 0.9; this fairly large value allows the n:’s to become
correspondingly large if necessary to reduce oversolving. We use ¢ = 10™%; this very small value results
in accepting almost any step that gives a reduction in ||F||. The use of Onin and fmax in Algorithm
INB to determine minimal and maximal steplength reduction is known as safequarded backtracking in
the optimization community. In keeping with common practice, we use Omax = 1/2 and Opin = 1/10
and determine 6 € [fmin, fmax] to minimize a quadratic p(t) that satisfies p(0) = L(|F(u)||?, p(1) =
L|F(ur + se)li?, and p'(0) = L 1|1 F (ux + tsk)||2L__0. The norm is a weighted Euclidean norm with
weights that reflect problem scaling. R

Successful termination is declared if ||F(us)|| < er||F(uo)|], where er = 1072 in the experiments
in §4 below, and the following steplength criterion is also satisfied:

1
—||Wsell2 < 1,
n

where n is the total number of unknowns and W is a diagonal weighting matrix with entries

1

Wi = NG
erfuy’| + €a

in which uf) is the é¢th component of ux and &, = 10~2% and &, = 1072 in the experiments in §4. In
our experience, this second criterion is typically more stringent and is necessary to ensure that finer
physical details of the flow and transport are adequately resolved. Essentially, it requires that each
variable of the Newton correction be small relative to its current value. This assures that all variables
(even variables with small magnitude) are considered appropriately in determining when to halt the

Newton iteration. This weight matrix definition is similar to a criterion used to dynamically control

time step sizes and is standard in general purpose ODE packages such as LSODE [9].
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3. The discretized equations. The governing PDEs used in our experiments are given below.
In these equations the unknown quantities are u, P, T, and Yj; these are, reépectively, the fiuid
velocity vector, the hydrodynamic pressure, the temperature, and the mass fraction for species k.
Momentum Transport:

pu-Vu—-V.-T—pg=0 1
Total Mass Conservation:
V-u=0 ’ 2
Energy Transport:
pCou-VT+V.-q=0 3)
Species Mass Transport:
pu-VY+V-je=0 4)

In these equations, p, g, and C, are, respectively, the density, the gravity vector, and the specific
heat at constant pressure. The necessary constitutive equations for T, q, and jx are given by (5)—(7)
below.

Stress Tensor:

= —PI'+ p{Vu+ VuT} ' . (3)
Heat Flux:
q=-xVT (6)
Species Mass Flux:
je=~pDVY, k=1, ,N-1 )

Here u, &, and Dy, are, respectively, the dynamic viscosity, the thermal conductivity, and the diffusion
coefficient of species k in the mixture.

The above equations are derived by assuming a constant property, multicomponent dilute Newto-
nian fluid mixture with no chemical reactions. Additionally, the Mach number is assumed low so that
effects of viscous dissipation can be neglected in the energy transport equation (3). More information
on this system of equations can be found in [19].

Finally, to complete the system, boundary conditions are imposed on (1)-(4) by taking combi-
nations of Dirichlet conditions on u, P, T, and Y and specified flux conditions on T, q, and ji. In
§4.2, we discuss the specific boundary conditions for each test problem in more detail.

To obtain an algebraic system of equations (1), a Petrov—Galerkin weighted residual formulation
of (1)—(4) is used. This scheme utilizes a pressure stabilized Petrov-Galerkin (PSPG) formulation to
allow equal order interpolation of velocity and pressure, along with streamline upwinding (SUPG) to
limit oscillations due to high grid Reynolds and Peclet numbers. This formulation follows the work
of Hughes et al. [10] and Tezduyar [21]. Specifically, the discrete equations are obtained from the
following equations.




Momentum:
F, = /Q[pu-Vu—V-T—pg]@dQ
+T§QQA (u-V®)[pu- Vu— V- T — pg]dQ
Total Mass:
FP=‘/Q[V-u]<I>dQ+'r,,,1‘,g/ﬂ Ve -[lu-Vu—-V-T - pg]dQ (9)
Energy:

Fr = /[pCpu~VT+V~qJ<I>dQ
@ (10)
+780 | (u-V®)[pCpu- VT +V . q]dQ
. Qe

Species Mass:

Fy, = /[pu'VYk‘FV'J'k]‘I’dQ
A (11)
+755 [ (- V@)[pu- VYi + V- ji]d
Qe

In these, the stability parameters (the 7’s) are functions of the fluid velocity, u, and are given in [10],
[21], [19].

To form the Jacobian F' of the system (1), we first linearize all terms of (8)—{11) except those
containing the stability parameters. The discrete form of these linearized terms is determined by
expanding the unknowns u, P, T, and Y and the weighting function @ in terms of a linear finite
element basis. The contribution to F’ resulting from these terms is then computed by analytic
evaluation. Finally, the contribution to F” of the terms containing the stability parameters is computed
by numerical differentiation and added to the analytically evaluated terms. The resulting Newton
equation (2) is a fully-coupled nonsymmetric linear system.

4. Numerical experiments.

4.1. The testing environment. The inexact Newton method outlined in §2 was tested by
incorporating it in a parallel finite element reacting flow code called MPSalsa [15]. This code imple-
ments the Petrov-Galerkin formulation described in §3 in a distributed data setting through a process
outlined briefly as follows: The underlying finite element grid is subdivided over processors using the
graph partitioning package CHACO [8], so that the number of finite element nodes in each subdomain
is balanced and the communication cost (essentially proportional to the surface area or perimeter of
each subdomain) is minimized. Using this decomposition, MPSalsa sets up the finite element dis-
cretization, with each processor producing a subset of the discretized equations and Jacobian entries
corresponding to its assigned subdomain. At each inexact Newton iteration, the Newton equation (2)
is approximately solved using the parallel iterative solver package Aztec [11], which provides a number
of solver and preconditioner options.

For this study, we restricted the iterative solver to the restarted GMRES method [14] and the
preconditioner to a domain decomposition scheme using an incomplete factorization, ILU(0) [12] [20],
within subdomains. For the two 3D problems described in §4.4, this preconditioner corresponds to
extracting a block diagonal matrix from the original matrix (where each block is associated with the

local unknowns on a particular processor) and producing an ILU(0} factorization of this matrix. For
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the three benchmark problems described in §4.2, the preconditioner is similar. However, each block

or local processor based matrix is augmented by the set of equations associated with its neighboring
unknowns (points updated by neighboring processors but connected by an edge in the finite element
stencil connectivity graph to an unknown on this processor). Connections to unknowns outside of the
processor’s assigned unknowns or neighboring unknowns are discarded. Thus, equations appearing
in one processor’s matrix may also appear in another processor’s matrix. An ILU(0) factorization
is produced on each local augmented matrix and is essentially applied to each processor’s assigned
unknowns®. This procedure corresponds to overlapping the subdomain preconditioning matrices.
Though this preconditioner requires additional storage compared to the unaugmented systems, it can
significantly improve the overall convergence. More details on Aztec, GMRES, and these parallel
preconditioners can be found in [20].

At each inexact Newton iteration, MPSalsa generates the Jacobian of the discretized system by
a combination of analytic evaluation and numerical differentiation as described in §3 above. The
Jacobian is then used in Aztec for the matrix-vector products required by GMRES. In the present
context, these products are very computationally efficient, and this approach is considerably more
economical for the test problems considered here than a “matrix free” approach in which these products
are approximated by finite-differences of F-values. The ILU(0) preconditioner factors are computed
from the new Jacobian at each inexact Newton step, and this computation entailed considerable
expense in our tests. A strategy that would allow re-use of preconditioner factors over a number of
inexact Newton steps might reduce this expense considerably, but we have not pursued such strategies
in this study.

All tests reported here were run on Intel Paragons operated by Sandia National Laboratories.

4.2. Three standard benchmark problems. The three test problems described below are
" standard benchmark problems used for verification of fluid flow codes and solution algorithms. In all
cases, the GMRES restart value was 200, which was sufficiently large that GMRES stagnation did
not become an issue for even the most difficult of the linear subproblems generated by the inexact
Newton algorithm. We also allowed a maximum of 600 GMRES iterations at each inexact Newton
step, after which the GMRES iterations were terminated and a new inexact Newton step started even

if the condition (3) did not hold. In all cases, the initial approximate solution was the zero vector.

4.2.1. The thermal convection problem. This standard benchmark problem {1] consists of
the thermal convection (or buoyancy driven) flow of a fluid in a differentially heated square box in the
presence of gravity. It requires the solution of the momentum transport, energy transport, and total
mass conservation equations defined in §3 on the unit square in the plane with the following Dirichlet
and Neumann boundary conditions.

T=Tecota, u=v=0 atz=0. (1)
T=Thet, u=v=0 atzr=1 (2)
T

B_y_o’ u=v=0 aty=0. (3)
%:0, u=v=0 aty=1 4)

4 The ILU preconditioner is applied to both assigned unknowns and neighbor unknowns. However,
values from neighbor unknowns are discarded as different values for these unknowns are computed on
neighboring processors.



When equations (1)—(3) and the boundary conditions (1)-(4) are suitably nondimensionalized, two
parameters appear, the Prandtl number Pr and the Rayleigh number Ra. In our study we took
Pr =1 and varied the magnitude of the Rayleigh number. As the magnitude of Ra is increased the
nonlinear effects of the convection terms increase and the solution becomes more difficult to obtain. A
typical solution for this problem is shown in Figure 4.1. All solutions for this problem were computed
on a 100 x 100 equally spaced mesh, which resulted in 40,624 unknowns for the discretized problems.

Twenty Paragon processors were used for all runs.

Fi1G. 4.1. Thermal convection in a square cavity at Ra = 1,000,000: Contour plot of temperature
shows a thermal boundary layer along hot and cold walls.

4.2.2. The lid driven cavity problem. This is a standard benchmark problem [7], [17] con-
sisting of a confined flow in a square box driven by a moving boundary on the upper wall. This
problem requires the solution of equations (1)—(2) defined in §3 on the unit square with the following
Dirichlet boundary conditions.

v=v=0 atz=0. (5)
u=v=0 atz=1. (6).
u=v=0 aty=0. (7
u=Ug, v=0 aty=1. 8)

When equations (1)-(2) and the boundary conditions (5)—(8) are suitably nondimensionalized, one
parameter, the Reynolds number Re, appears. As Re is increased the nonlinear inertial terms in the
momentum equation (1) become more dominant and the solution becomes more difficult to obtain. A
typical solution for this problem is shown in Figure 4.2. As in §4.2.1, all solutions were computed using
a 100 x 100 equally spaced mesh, which resulted in 30,486 unknowns for the discretized problems.
Twenty Paragon processors were used for all runs.

4.2.3. The backward facing step problem. This is a standard benchmark problem [6] con-
sisting of a rectangular channel with a 1 x 30 aspect ratio in which a reentrant backward facing step
is simulated by introducing a fully developed parabolic velocity profile in the upper half of the inlet
boundary and imposing zero velocity on the lower half. As the fluid flows downstream it produces a
recirculation zone on the lower channel wall, and for sufficiently high Re it also produces a recircula-
tion zone farther downstream on the upper wall. This test problem requires the solution of the same

nondimensional equations as in the lid driven cavity problem. The boundary conditions are given by
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FiG. 4.2. Lid driven cavity at Re = 10,000: Contour plot of the stream function shows a main vortez
and ezistence of corner vortices.

u(y) =24y(0.5—y), v=0 atz=0, 0<y<0.5 ‘ (9)
u=v=0 atz=0, -05<y<q, (10)

Tor =0, Toy =0 atz=30, ' (11)
u=v=0 aty=-0.5, (12)

u=v=0 aty=0.5. (13)

As Re is increased the nonlinear inertial terms in the momentum equation (1) become more
dominant and the solution becomes more difficult to obtain. A typical solution for this problem is
shown in Figure 4.3. All solutions for this problem were computed on a 20 x 400 unequally spaced
mesh (not shown), which resulted in 25,623 unknowns for the discretized problems. Sixteen Paragon
processors were used for all runs.

F1G. 4.3. Backward facing step solution at Re = 800: Contour plot of the z-velocity shows recirculation
on lower and upper walls.

4.3. Experiments with the benchmark problems. In this section we report on experiments
aimed at showing the effects of backtracking and of various choices of the forcing terms 7 in (3). We
have used the problems introduced in §4.2 for these experiments because they are well-understood
benchmark problems. Illustrative results for these problems are shown in the tables and figures in

this section. The full set of test results for these problems is given in the Appendix.

4.3.1. An illustration of backtracking. Backtracking or other forms of globalization are of-
ten omitted in engineering codes. While an unglobalized inexact Newton method can be effective in
special situations, e.g., when the initial guess is close to the final solution or the problem is almost

10



linear, it will often fail to converge in more general circumstances. To illustrate the effects of back-
tracking, we show in Figure 4.4 convergence histories with and without backtracking over the first
200 GMRES iterations (spanning a number of inexact Newton steps) for the backward facing step
problem with Reynolds number 600. In particular, denoting the approximate solution of the Newton
equation at each GMRES iteration by 3, we plot log || F(ux + 5)|, where ux is the approximate solu-
tion of the nonlinear system at the current Newton step. The solid curve shows log || F (ux + 3)|| when
backtracking is enabled while the dashed curve shows these values when backtracking is not used. The
vertical intervals in the solid curve indicate the occurrence of backtracking. Note that these curves are
identical at the first inexact Newton step through the first 76 GMRES iterations (the apparent plateau
is actually a period of very slow increase in log || F(u« + 5)||); however, they diverge at the end of that
step as a result of backtracking and continue to diverge increasingly thereafter. Safeguarded Choice 1
forcing terms were used, with 9o = 10~%; this fairly small 7o accounts for the relatively large number
of GMRES iterations at the first step. The dotted and dash-dotted curves in Figure 4.4 correspond to
the linear model norm, i.e., log || F'(uz) + F'(uz)3]|, for the nonbacktracking and backtracking cases,
respectively. Note that there is considerable divergence of log || F(ux + 3)|| and log || F{ur) + F” (ux)3||
at each inexact Newton step, both with and without backtracking. Thus the safeguarded Choice 1
forcing terms failed to maintain good agreement between the nonlinear residual and the local linear
model during the first 200 GMRES iterations, and backtracking was necessary to ensure a decrease in
the nonlinear residual norm. For perspective, we show in Figure 4.5 the entire convergence history for
the backtracking case. From this, one sees that, after the first 200 GMRES iterations, backtracking
was necessary during occasional periods of difficulty, but eventually good agreement was maintained
between the nonlinear residual and the local linear model and convergence was ultimately obtained
without further backtracking.

10r
— F{u) with backtracking
- - F(u) without backtracking i
-~-~ linear mode! with backiracking hia
----- linear mode! without backtracking !
!
5r i
- !
£ /
<) PSR
o s
T d
3 '
[74 7
© !
g» /
0 -
v
\
N
_5 1 1 1 ‘-\"\ 1 1 1 1 J L )
0 20 40 60 80 100 120 140 160 180 200

GMRES iterations
F1G. 4.4. Convergence history, first 200 GMRES iterations.

4.3.2. An illustration of oversolving. To illustrate the issue of oversolving, we show in

Figures 4.6 and 4.7 convergence histories for two different forcing term choices, Choice 1 and n, = 1074,
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Fi1G. 4.5. Entire convergence history

both with backtracking, for the lid driven cavity problem at Reynolds number 1000. For each forcing
term choice, the plots show the nonlinear residual norms and linear model norms versus the number
of GMRES iterations as in the previous figures. Oversolving is indicated by the gaps between these
curves, in which GMRES continues to reduce the linear model norm while the nonlinear residual
norm typically stagnates or even increases. Oversolving is associated with significant disagreement
between the linear model and the nonlinear residual; once it begins, subsequent GMRES iterations are
usually wasted effort and may even be counterproductive. With the Choice 1 forcing terms, modest
oversolving is evident until just beyond 700 GMRES iterations but is subsequently too small to be
visible in the plots. With 7 = 10™%, oversolving is much more pronounced and contirues for many
more GMRES iterations; convergence is ultimately obtained but much less efficiently than with the
Choice 1 forcing terms.

4.3.3. A robustness study. We conducted a comprehensive study involving the benchmark
problems with the goal of assessing the general robustness of an inexact Newton method with and
without backtracking and with various choices of the forcing terms. In this study, the parameters that
determine the difficulty of the benchmark problems were varied over wide ranges.

The forcing term choices included in the study were safeguarded Choices 1 and 2 and two constant
choices. For Choice 2; we used ¥ = 0.9 and allowed o = 1.5, which gives asymptotic convergence of
g-order 1.5 (about the same as the r-order (1 + 1/5)/2 convergence of Choice 1), and & = 2, which
gives asymptotic g-quadratic convergence. The two constant choices have occasionally been used by
others and represent somewhat different approaches. The first, m = 107}, requires only moderate
accuracy in solving the Newton equation (2) at each inexact Newton step and gives only moderately
fast asymptotic ¢g-linear convergence near a solution. The second, 7 = 10™%, requires considerable
accuracy and results in a step that should usually give about the same performance as the exact
Newton step, with very fast asymptotic g-linear convergence near a solution.

The results of the study are shown in Table 4.1, which shows numbers of failures for these
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forcing term choices with and without backtracking. To help show where failures occurred, we have
somewhat arbitrarily divided cases into “easier” and “harder” parameter ranges for each problem.
{However, some of the “easier” problems may not be easy in any absolute sense.) For the thermal
convection problem, the “easier” problems are with Ra = 10%, 10%, and 10°; the “harder” problem is
with Ra = 108, For the lid driven cavity problem, the “easier” problems are with Re = 1,000, 2,000,
3,000, 4,000, and 5,000; the “harder” problems are with Re = 6,000, 7,000, 8,000, 9,000, and 10,000.
For the backward facing step problem, the “easier” problems are with Re = 100, 200, 300, 400, and
500; the “harder” problems are with Re = 600, 700, 750, and 800.

Forcing Thermal Lid Driven Backward
Term Convection Cavity Facing Step
M Easier | Harder || Easier | Harder || Easier | Harder
0 0 0 Q ¢! 1
Choice 1
0 1 0 5 0 4
Choice 2 0 0 1 1 0 3
=151 g 1 1 4 0 4
Choice 2 0 0 0 0 0 2
=2 0 1 1 5 1 4
0 0 4 5 1 4
107t
0 1 5 5 1 2
oo 0 3 4 2 4
10™
0 1 5 5 3 4
TABLE 4.1

Distribution of failures: For each choice of nx, the upper and lower lines are the number of failures
with and without backtracking, respectively.

Table 4.1 shows that backtracking generally improves robustness for every choice of the forcing
terms considered here. Indeed, in only one case above (nx = 10™", backward facing step, “harder”
problems) did backtracking result in more failures than no backtracking; we have no explanation for
this case and regard it as anomalous. Table 4.1 also shows that the Choice 1 and 2 forcing terms
generally give greater robustness than the constant choices, with or without backtracking. However,
the table also shows that neither backtracking nor an effective forcing term choice alone is sufficient; -
both are necessary for good robustness. The best combination seen in Table 4.1 is Choice 1 with
backtracking, followed closely by Choice 2, o = 2, with backtracking.

4.3.4. An efficiency comparison of Choice 1 and Choice 2 forcing terms. We follow
the robustness study above with a study aimed at assessing the relative efficiency of the Choice 1 and
Choice 2 forcing terms on the benchmark problems when backtracking is used. The constant forcing
term choices used above are not included here because their high failure rates precluded obtaining a
sufficiently broad set of test problems. However, we note that in cases in which these constant choices
succeeded, they often resulted in much less efficiency than the Choice 1 or Choice 2 forcing terms; see,
in particular, the results in the A};pendjx for the backward facing step and lid driven cavity problems,
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in which the constant choice n; = 10™* is notably less efficient than the Choice 1 or Choice 2 forcing
terms.

As in §4.3.3 above, in Choice 2, we took v = .9 and used o = 1.5 and & = 2 in this study. The
test cases considered were those in which all three of these forcing term choices resulted in success, as
follows: Ra = 10%, 10%, 10°, and. 10° for the thermal convection problem; Re = 1,000, 3,000, 4,000,
5,000, 7,000, 8,000, 9,000, and 10,000 for the lid driven cavity problem; and Re = 100, 200, 300,
400, and 500 for the backward facing step problem.

The results of the study are shown in Table 4.2, which, for the different forcing term choices,
gives mean numbers of inexact Newton steps, backtracks, and GMRES iterations, and mean run
times (in seconds). All are geometric means except in the case of backtracks, in which they are
arithmetic means. (There were no backtracks in some cases, and so geometric means were not defined
for backtracks.)

Inexact
Newton | Back- | GMRES Time
Forcing Term 7z Steps | tracks | Iterations | (Seconds)

Choice 1 36.5 414 4054.1 792.1

Choice 2, a = 1.5 36.3 49.8 4189.6 824.2

Choice 2, a.=2 32.8 48.5 3951.6 779.4
TABLE 4.2

Forcing term comparison: “Backtracks” gives arithmetic means; all other columns give geometric
Tneans.

Overall, Choice 1 and Choice 2, o = 2, performed slightly better than Choice 2, o = 1.5, which
finished last in every category except inexact Newton steps, in which it essentially tied Choice 1.
In comparing Choice 1 to Choice 2, o = 2, it is notable that the former required fewer backtracks
while the latter required fewer inexact Newton steps. This is not surprising: Choice 1 is aimed
directly at maintaining good agreement between the nonlinear residual and the local linear model
and, consequently, should relieve the backtracking of much of its burden; Choice 2, a = 2, is more
“aggressive” and gives asymptotic g-quadratic convergence, which may result in more backtracking
away from the solution but reduce the number of inexact Newton steps in the end.

We also carried out 2 similar comparison involving only Choice 1 and Choice 2, & = 2, on a
somewhat larger test set on which both of these choices gave success. The results are similar to those
in Table 4.2, and so they are not included here.

4.4. Experiments with two 3D problems. In §4.2 and §4.3, we have shown the effects on
method performance of backtracking and various forcing term choices through illustrative examples
and statistical studies involving three well-known 2D benchmark problems. These studies show, in
particular, that backtracking coupled with an effective forcing term choice can lead to very significant
overall improvement in robustness and efficiency over a range of problems. However, in our testing,
we also observed considerable variations in the performance of different method options on individual
problems; it was by no means true that a particular set of options always worked best.

In this section, in order to illustrate variations in method behavior as well as to show performance
on particular realistic problems, we outline specific case studies of two large-scale 3D flow simulations.

4.4.1. A CVD reactor transport problem. This example problem involves computing the
3D solution for fluid flow, heat transfer and the mass transfer of three chemical species in a horizontal
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tilted chemical vapor deposition (CVD) reactor. The problem has three fluid velocities, the hydrody-
namic pressure, temperature and three chemical species as unknowns at each finite element node. The
CVD reactor has a rectangular cross section with a tilted lower surface with an embedded spinning
disk which cannot be accurately represented with a structured mesh (see Figure 4.8). Fluid enters
in the larger cross sectional area inlet and accelerates up the inclined surface with the inset rotating
heated disk. At the elevated disk temperature, chemical reactions are initiated to deposit gallium ar-
senide (GaAs). In this example, we only transport the precursors for this reaction (tri-methylgallium,
GaMegs, arsine, AsHs) and a carrier gas (hydrogen, Hz2) and do not allow chemical reactions. In our
example calculation, the inlet velocity is 60 cm/s, the inlet temperature is 600 degrees K, and the
disk rotates at 200 rpm and is heated to 900 degrees K. To simulate the deposition process, we use a
Dirichlet condition on the reactants that introduces significant diffusion gradients and boundary layers
that approximate the average behavior of the full reacting system depositing GaAs on the rotating
disk. (Results for the full reacting CVD system can be found in [18], [16]). In practice CVD reactors
are run at low pressures and fluid velocities, and thus the Reynolds numbers are small (Re = 1.0).
Therefore, SUPG stabilization was not needed. In addition, for gasses at these temperatures and
pressures, the Prandtl number and the Schmidt number (analogous to the Prandtl number) for mass
transport are approximately one as well. A typical flow solution is shown in Figure 4.9, where the
streamlines show the effect of the counter clockwise rotation of the disk. Included is a contour plot
of the concentration of tri-methylgallium at the heated surface. This contour plot is from the full
reacting flow solution ([16]).

For these experiments, the number of unknowns for the discretized problem was 384,200. The
number of Paragon processors used was 220. The GMRES restart value was 100, with a maximum
of 600 GMRES iterations allowed at each inexact Newton step. Since these experiments are intended
to be illustrative, we considered only three representative forcing term choices, viz., Choice 1 and
the two constant choices 7 = 107! and nx = 10~%. Results for these forcing term choices, with
and without backtracking, are shown in Tables 4.3 and 4.4. It is notable that, for this problem,
performance was worse with backtracking than without for every forcing term choice. Furthermore,
the best performances (at least in terms of time) were from the constant choices without backtracking.
In fact, the choice 7 = 10™*, which was the clear winner in terms of time, took far fewer inexact
Newton steps than the other two choices and never invoked backtracking even when it was allowed,

i.e., initial inexact Newton steps were always acceptable.

Inexact _
Newton { Back- [ GMRES Time
Forcing Term 75 Steps | tracks | Iterations | (Seconds)

Choice 1 25 3 1503 924.9
107! 13 1 1315 593.8
10™* 5 0 1531 444.5

TABLE 4.3

Results for the CVD reactor problem with backtracking.

4.4.2. A 3D duct flow problem with contamination transport. This 3D problem models
the steady flow of air through an expanding cross section duct. On the lower surface of the duct a
recirculation region forms as in the backward facing step example. The physical problem of interest

is to solve for the flow field and for the downstream transport of ionized air molecules produced from
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Inexact
Newton | Back- | GMRES Time
Forcing Term Steps | tracks | Iterations | (Seconds)

Choice 1 20 0 1052 707.9
107! 12 0 1051 511.5
107 5 0 1531 445.5

TABLE 4.4

" Results for the CVD reactor problem without backiracking.

a small source of nuclear ionizing radiation located on the lower wall behind the step. The goal of the
simulation is to computationally predict the presence of the nuclear contamination in concentrations
high enough to detect experimentally by special sensors. This information is to be used to aid in the
economical decommissioning of old nuclear facilities.

The numerical computation requires the solution of the momentum transport, total mass and
contaminant species conservation equations defined in §3. The domain is a duct of width .2 meters
by 8 meters long, with an inlet height of .1 meters and outlet of .2 meters. The mesh is finer near
the solid walls and the step expansion location. The Reynolds number based on the outlet height is
400 and the Schmidt number is 1.0. A typical solution for this problem is shown in Figure 4.10. This
figure shows a contour plot of the x-velocity on the center-plane of the duct, an isosurface plot of an
accelerated flow region in the upper duct, and a lower 3D recirculation region with negative velocities
located behind the step. For these experiments, the number of unknowns for the discretized problem
was 477,855. The GMRES restart value was 160, and a maximum of 640 GMRES iterations was
allowed at each inexact Newton step. The number of Paragon processors used was 256.The forcing
terms considered here are Choice 1 and the two constant choices 7, = 107! and 7 = 1074,

Backtracking was necessary for success on this problem; the method diverged without backtrack-
ing. Results with backtracking are given in Table 4.5. Notice that while Choice 1 required the most
inexact Newton steps, it also took the fewests number of GMRES iterations and, consequently, the
least amount of CPU time, in spite of the time required to create new Jacobians and preconditioners
at the additional inexact Newton steps. We should note that the run time advantage of Choice 1 over
7% = 10™* would have been even larger had the maximum number of GMRES steps been set higher.
Indeed, the linear solver frequently took the maximum number of steps (640) without achieving con-
vergence when 7 = 10™%, and thus a larger maximum number of GMRES steps would have resulted
in an even greater difference between the Choice 1 run times and the 7 = 10™% run times.

In the true physical problem of interest here, there is also a volumetric ion reaction source term.
Results for these solutions are very similar to those of Table 4.5. In a later manuscript, we will
consider the inclusion of the reaction terms in the transport equations and study the convergence of
the inexact Newton methods.

~ 5. A comment on trust region methods. In additional testing not reported here, we also
experimented with several variations of the backtracking algorithm that employed techniques associ-
ated with trust region methods. In a trust region method, steps are constrained to lie within spherical
or ellipsoidal neighborhoods in which the linear model is “trusted” to represent the nonlinear residual
well. Within each such neighborhood, a step is chosen to minimize approximately the norm of the
local linear model; the size of the neighborhood is then adjusted for the next step to reflect agreement
of the local linear model and the nonlinear residual. A popular trust region implementation is the
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F16. 4.10. The duct flow problem (top view) showing a center-plane plot of z-velocity contours.
Isosurfaces show an accelerated flow region on the upper portion of the duct and a lower recirculation
region.

dogleg method, in which a step is chosen to minimize the local linear model norm within the trust
region along the dogleg curve, which joins the current point, the steepest descent point (the minimizer
of the local linear model norm in the steepest descent direction), and the point determined by the
Newton step. We omit further details and refer the reader to [3].

We carried out a number of experiments with a straightforward extension of the dogleg schema
to the inexact Newton context, in which the inexact Newton step played the role of the Newton
step.® In these tests, we experimented with several different norms (to properly capture the different .
physical scales of the variables) in defining trust region neighborhoods. For the most part our results
indicate that, in the present context, such a trust-region method can be fairly competitive with back-
tracking. However, we noticed no particular improvement in overall robustness, although occasionally
one method converged when another would not and vice-versa.® Moreover, the trust region method
usually required slightly more CPU time than the backtracking method: There were fewer function

5 The MPSalsa testing environment was modified to allow the computation of products of the
transpose of the Jacobian with vectors, which in turn allowed the computation of steepest descent
steps.

® Only with the constant choice 7% == 10~ did we observe that the trust region method was more
robust than backtracking. However, usually the CPU times for this choice were longer than for either
Choice 1 or Choice 2 with backtracking.
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Inexact

Newton | Back- | GMRES Time
" Forcing Term 7. Steps | tracks | Iterations | (Seconds)

Choice 1 28 6 13,450 3554.5
107! 25 7 15,477 3953.9
107* 24 6 15,360 3915.1

‘TABLE 4.5

Results for the duct flow problem.

evaluations due to less backtracking, but this savings was outweighed by the cost of more inexact
Newton steps due to the scaling back of steps.

In addition to this dogleg implementation, we also conducted some experiments involving the
following: (1) imposing a trust region-type steplength constraint on initial inexact Newton steps used
in backtracking; (2) backtracking from initial inexact Newton steps along the dogleg curve, rather
than simply scaling back the steps as in straightforward backtracking; (3) modifying GMRES so that
the first iterate is the steepest descent step.” In no case did we observe any overall advantage over
the straightforward backtracking method.

6. Summary discussion. We have proposed an inexact Newton method with a backtracking
globalization for the solution of the steady transport equations for momentum, heat, and mass transfer
in flowing fluids. The algorithm offers choices of the forcing terms (the criteria that determine the
accuracy of solutions of the linear subproblems) that are intended to enhance the robustness and
efficiency of the method by maintaining good agreement between the nonlinear residual and its local
linear model at each inexact Newton step. Theoretical support for the algorithm shows that it has
strong global convergence properties together with desirably fast (up to g-quadratic) local convergence.

Extensive testing on three standard 2D benchmark problems has shown that both backtracking
and an effective forcing term choice can greatly improve robustness. However, neither alone is suffi-
cient; both are necessary for the best overall performance. In our tests on the benchmark problems,
the greatest overall robustness was obtained with backtracking in combination with the Choice 1
forcing terms, followed closely by the Choice 2 forcing terms with @ = 2. (See §2.2 for these forcing
term formulations). Compared to Choice 1, Choice 2 with o = 2 tended to require more backtracks
but to take fewer inexact Newton steps in our experiments.

Tests on two 3D problems have shown the effectiveness of the algorithm on realistic large-scale
flow simulations. Results for the second problem, a duct flow problem, reflect the overall results
on the 2D benchmark problems: Backtracking was necessary for success, and, with backtracking,
Choice 1 forcing terms resulted in considerably greater efficiency than either of two constant choices
considered. In contrast, for the first problem, a CVD reactor problem, all three of these choices Vga.ve
better performance without backtracking, and the best performance was obtained with the very small
constant choice nx = 107%. This demonstrates that no single strategy is best for all problems; the

best course is to have a number of options available.

7. Acknowledgments. The authors would like to thank Andrew Salinger for the use of the
3D CVD mesh and for helpful suggestions and debugging related to the MPSalsa analytic Jacobian
entries. '

7 This simple modification requires an initial product F’(zx)” F (), followed by an additional dot
product and “saxpy” at each iteration.
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Appendix. On the following pages, we give the full set of test results for the experiments
on the benchmark problems described in §§4.2-4.3. For each problem, the first column of results
gives values of the appropriate parameter, viz., the Rayleigh number Ra for the backward facing step
and thermal convection problems and the Reynolds number Re for the lid driven cavity problem.
The second column (S/F) shows a success/failure flag: “0” indicates success; “~1” indicates either
failure to succeed within the maximum allowable number of inexact Newton steps (either 100 or
200 steps in each case) or stagnation, as determined by failure to achieve sufficient reduction in the
nonlinear residual norm for fifteen consecutive steps; “—2” indicates backtracking failure, i.e., failure to
determine a successful step within the maximum allowable number of backtracks (eight). The third
through eighth columns show, respectively, numbers of inexact Newton steps (Newt), numbers of
function evaluations (#f()), numbers of backtracks (Bkt), numbers of GMRES iterations (GMRES),
final residual norms (}|r||), and total run times in seconds (time). In some cases, test runs were
terminated because of exceeding the allowable run time, machine failure, or other reasons. In these
cases, if ultimate failure was clear, the runs were not repeated; these runs are indicated by “terminated

but clearly failing” in the tables.




Backward
Choice 1

Re_100
Re_200
Re_300
Re_400
Re_500
Re_600
Re_700
Re_750
Re_800

Choice 2

Re_100
Re_200
Re_300
Re_400
Re_500
Re_600
Re_700
Re_750
Re_B8Q0

Choice 2

Re_100
Re_200
Re_300
Re_400
Re_500
Re_600
Re_700
Re_750
Re_800

Re_100
Re_200
Re_300
Re_400
Re_500
Re_600
Re_700
Re_750
Re_800

Re_100
Re_200
Re_300
Re_400
Re_500
Re__600
Re_700
Re_750

Facing Step problem without backtracking

forcing terms
S/F Newt #£() Bkt GMRES NN time
¢} 12 24 0 696 6.926e-11 1.355e+02
0 i2 24 0 741 5.316e-10 1.449e+02
0 15 30 0 925 4.657e-10 1.779%e+02
4] 27 54 0 1123 2.430e-10 2.461e+02
¢} 40 80 0 1107 2.002e-07 3.033e+02
-1 200 400 0 56120 2.950e+04 9.096e+03
-1 200 400 0 57134 8.542e+03 9.215e+03
-1 200 400 [¢] 56041 1.586e+04 9.070e+03
-1 200 400 0 65592 1.37%e+04 1.055e+04
forcing terms, gamma = .9, alpha = 1.5
S/F Newt #£() Bkt GMRES flel ) time
0 11 22 0 695 3.951e-10 1.308e+02
0 13 26 0 8l6 2.906e-11 1.582e+02
0 16 32 0 970 3.715e-10 1.845e+02
0 24 48 0 1054 3.460e-09 2.24%e+02
o] 44 88 ] 1436 1.776e-08 3.498e+02
-1 200 400 0 60995 2.378e+03 9.850e+03
-1 200 400 [o] 57442 1.145e+04 9.308e+03
-1 100 200 0 28814 3.524e+03 4.675e+03
-1 100 200 ¢} 28805 2.772e+03 4.671e+03
forcing terms, gamma = .9, alpha = 2
S/F Newt #f() Bkt GMRES RE2N time
-0 10 20 o] 732 1.566e~-12 1.375e+02
0 11 22 o] 733 1.135e-11 1.470e+02
0 14 28 0 817 4.458e~-11 1.718e+02
0 24 48 0 1115 1.316e-10 2.419e+02
-1 200 400 0 56808 1.652e+04 9.320e+03
-1 127 ... {(terminated but clearly failing)
-1 100 200 0 28936 1.772e+03 4.777e+03
-1 100 200 0 26319 3.997e+03 4.296e+03
-1 100 200 0 26044 4.213e+03 4.217e+03
Eta = 1.0e-4 forcing terms
S/F Newt #f() Bkt GMRES =l time
o] 6 12 ¢} 906 3.063e~10 1.501e+02
0 8 16 0 1378 2.367e-10 2.363e+02
-1 200 400 [¢] 84412 2.362e+04 1.363e+04
-1 100 200 ¢} 38874 7.057e+03 6.325e+03
-1 100 200 0 39932 1.660e+03 6.389e+03
-1 100 200 o] 35472 3.013e+03 5.689e+03
-1 100 200 0 36867 1.702e+03 5.882e+03
-1 100 200 o] 41772 1.467e+03 6.678e+03
-1 100 200 0 25773 4.706e+03 4.160e+03
Eta = 1.0e-1 forcing terms
S/F Newt #f() Bkt GMRES RN time
0 9 18 0 €57 4.448e-08 1.138e+02
0 11 22 0 887 6.528e-09 1.488e+02
0 11 22 0 871 7.445e-08 1.462e+02
0 13 26 0 1024 5.92%e-08 1.75%9e+02
-1 200 400 0 61845 1.293e+04 1.003e+04
-1 134 ... (terminated but clearly failing)
0 23 46 0 1405 2.93%e-07 2.496e+02
0 30 60 0 2088 2.820e-08 3.658e+02
-1 100 200 o) 36931 2.014e+03 5.974e+03

Re_800
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Backward Facing Step problem with backtracking

Choice 1 forcing terms

S/F Newt #£() Bkt GMRES | x| time

Re_100 o] 10 21 1 799 6.673e-12 1.376e+02
Re_200 [¢] 14 32 4 937 2.651e-11 1.755e+02
Re_300 o] 17 41 7 1024 3.046e-10 2.059e+02
Re_400 0 36 89 17 1440 6.626e-10 3.252e+02
Re_500 o] 57 166 52 2045 5.616e-06 4.838e+02
Re_600 0 0] 293 113 3709 2.504e-06 8.307e+02
Re_700 ¢} 135 500 230 6889 1.911e-08 1.435e+03
Re_750 -1 50 284 184 =~ 1511 1.231e-01 5.024e+02
Re_800 4] 146 484 192 8766 2.572e-08 1.667e+03
Choice 2 forcing terms, gamma = .9, alpha = 1.5
S/F Newt #£() Bkt GMRES RN time
Re_100 o 10 21 1 794 2.087e-10 1.403e+02
Re_200 ¢ 15 34 4 951 2.392e-10 1.880e+02
Re_300 o] 16 38 6 1048 9.707e-11 2.150e+02
Re_400 [¢] 35 87 17 1412 2.965e-08% 3.262e+02
Re_500 0 65 197 67 2556 4.443e-08 6.09%e+02
Re_600 -1 37 228 154 1658 9.957e-02 4.370e+02
Re_700 -1 42 257 173 1322 1.353e-01 4.383e+02
Re_750 Q 125 440 190 6591 3.441e-08 1.339e+03
Re_800 -1 31 182 120 666 1.742e-01 2.911e+02
Choice 2 forcing terms, gamma = .9, alpha = 2
S/F Newt #£() Bkt GMRES |z} time

Re_100 [ 9 19 1 793 9.126e-14 1.422e+02
Re_200 Q 13 31 5 882 7.090e-12 1.840e+02
Re_300 4] 14 35 7 1009 1.456e-11 1.972e+02
Re_400 o] 30 76 16 1290 2.562e-10 2.974e+02
Re_500 o] 49 136 38 1947 7.029%9e-09 4.555e+02
Re_600 0 86 283 111 3687 7.603e-08 8.777e+02
Re_700 0 139 593 315 8160 1.814e-08 1.660e+03
Re_750 -1 40 215 135 1203 1.346e~-01 3.905e+02
Re_800 -1 43 237 151 1601 1.106e-01 4.528e+02

Eta = 1.0e-4 forcing terms

S/F Newt #£() Bkt GMRES fixrtid time
Re_100 0 7 15 1 1064 2.751e-11 1.802e+02
Re_200 o] 9 22 4 1600 6.582e-11 2.763e+02
Re_300 0 11 30 8 2357 7.338e-11 4.031le+02
Re_400 -2 23 146 101 6419 1.180e-01 1.111e+03
Re_500 -2 7 47 34 1850 3.836e-01 3.255e+02
Re_600 -2 17 101 68 5619 1.437e-01 9.338e+02
Re_700 -2 14 92 65 4402 2.93%e-01 7.430e+02
Re_750 -2 29 207 150 12090 2.309e-01 2.016e+03
Re_800 -2 34 282 215 18797 3.417e-01 3.151e+03

Eta = 1.0e-1 forcing terms

S/F Newt #£() Bkt GMRES IRESN) time
Re_100 0 10 21 1 900 8.528e-09 1.459e+02
Re_200 0 12 29 5 988 2.199e-08 1.680e+02
Re_300 0 13 35 9 1173 9.388e-08  2.000e+02
Re_400 -2 13 101 76 1194 2.819e-01  2.510e+02
Re_500 o 19 55 17 676 1.542e-07  2.854e+02
Re_600 -1 67 571 437 10987 1.592e-01 2.129e+03
Re_700 -2 12 92 69 1022 4.108e-01 2.179e+02
Re_750 -2 39 330 253 5086 3.271le-01 1.017e+03
Re_800 -1 25 215 165 2274  4.127e-01  4.831e+02
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Lid Driven Cavity problem without backtracking

Choice 1 forcing terms

S/F Newt #£() Bkt GMRES IRE2E! time

Re_1000 0 30 60 0 2122 2.630e~15 4.541le+02
Re_2000 o} 41 82 o] 3565 5.205e-15 7.446e+02
Re_3000 [¢] s1 102 o] 6164 8.029%e-12 1.208e+03
Re_4000 [¢] 71 142 0 5647 3.38%e-12 1.218%e+03
Re_5000 [¢] 83 166 0 6527 1.844e-11 1.417e+03
Re_6000 -1 200 400 o] 67183 6.207e+03 1.174e+04
Re_7000 -1 200 400 o} 81214 1.002e+03 1.411e+04
Re_8000 -1 200 400 o] 74175 5.448e+03 1.28%9e+04
Re_9000 -1 200 400 o] 86770 3.853e+03 1.500e+04
Re_10000 -1 131 ... (terminated but clearly failing)

Choice 2 forcing terms, gamma .9, alpha = 1.5

sS/F Newt #£() Bkt GMRES flxti time
Re_1000 0 23 46 0 2565 2.270e-15 5.116e+02
Re_2000 0 34 68 [ 3347 3.583e-14 6.811le+02
Re_3000 0 56 112 o] 5248 5.928e-12 1.08le+03
Re_4000 -1 200 400 o} 78050 3.680e+03 1.357e+04
Re_5000 0 83 166 0 5366 3.389%9e~11 1.239e+03
Re_6000 0 115 230 0 7170 1.072e-12 1.687e+03
Re_7000 -1 200 400 0 84788 1.215e+03 1.467e+04
Re_8000 -1 100 200 0 36641 5.696e+03 6.427e+03
Re_9000 -1 100 200 o] 38108 2.879e+03 7.307e+03
Re_10000 -1 100 200 0 32570 7.362e+03 5.744e+03
Choice 2 forcing terms, gamma .9, alpha = 2

S/F Newt #£f() Bkt GMRES | 1=l time
Re_1000 o] 40 80 o] 2662 2.968e~15 6.010e+02
Re_2000 (¢} 29 58 0 3509 1.18le-12 6.907e+02
Re_3000 o} 47 94 [ 5577 7.942e-12 1.113e+03
Re_4000 0 61 122 0 6750 8.215%5e-12 1.375e+03
Re_5000 -1 200 400 o] 76219 2.659e+03 1.330e+04
Re_6000 -1 200 400 0 80877 8.966e+03 1.404e+04
Re_7000 -1 100 200 0 31671 1.940e+03 5.634e+03
Re_8000 -1 100 200 0 40775 2.628e+03 7.736e+03
Re_9000 -1 100 200 0 35977 4.576e+03 6.265e+03
Re_10000 -1 50 100 [¢] 18857 2.963e+03 3.266e+03
Eta = 1.0e-4 forcing terms

S/F Newt #f£() Bkt GMRES IHEAR time
Re_1000 -1 200 400 o] 96406 2.67%9e+03 1.662e+04
Re_2000 -1 80 ... (terminated but clearly failing)
Re_3000 -1 100 200 0 49811 2.827e+03 9.376e+03
Re_4000 -1 100 200 o] 43776 1.725e+04 7.565e+03
Re_5000 -1 50 100 o] 25476 5.325e+03 4.374e+03
Re_6000 -1 50 100 o] 24458 5.393e+03 4.194e+03
Re_7000 -1 50 100 0 25907 3.471e+03 4.457e+03
Re_ 8000 -1 50 100 o] 22716 5.028e+03 3.908e+03
Re_9000 -1 50 100 0 26342 6.895e+03 4.519%e+03
Re_10000 -1 50 100 0 26485 2.946e+03 4.551e+03
Eta = 1l.0e-1 forcing terms

S/F Newt #£() Bkt GMRES el time
Re_1000 -1 189 ... (terminated but clearly failing)
Re_2000 -1 84 ... (terminated but clearly failing)
Re_3000 -1 100 200 0 50882 2.334e+03 8.753e+03
Re_4000 -1 100 200 0 47878 3.394e+03 8.248e+03
Re_5000 -1 100 200 0 42786 6.101e+03 7.388e+03
Re_6000 -1 100 200 0 54918 3.909e+03 9.428e+03
Re_7000 -1 100 200 0 53013 4.337e+03 9.121e+03
Re_8000 -1 100 200 0 47922 5.469e+03 8.227e+03
Re_9000 -1 100 200 0 50902 2.043e+03 8.741e+03
Re_10000 -1 100 200 o} 42473 8.496e+04 7.319e+03
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Lid Driven Cavity problem with backtracking

Choice 1 forcing terms

S/F Newt #£() Bkt GMRES | 1= | time
Re_1000 [¢] 21 45 3 2790 2.567e-15 5.152e+02
Re_2000 [¢] 36 87 15 4275 6.235e-14 8.062e+02
Re_3000 0 57 145 31 6987 1.630e-13 1.299e+03
Re_4000 0 69 174 36 7484 4.426e-12 1.426e+03
Re_5000 0 74 193 45 8124 2.47%e-11 1.523e+03
Re_6000 0 86 232 60 9864 5.201e-12 1.836e+03
Re_7000 0 102 289 85 11148 1.207e-11 2.109e+03
Re_8000 0 120 330 a0 16110 1.355e~-11 2.977e+03
Re_9000 0 149 432 134 22112 2.24%e-11 4.099e+03
Re_10000 0 183 547 181 26519 1.306e-10 4.886e+03
Choice 2 forcing terms, gamma = .9, alpha = 1.5

S/F Newt #£() Bkt GMRES NEN time
Re_1000 0 21 43 1 2613 2.594e-15 4.996e+02
Re_2000 -1 60 252 132 3757 4.030e-02 7.916e+02
Re_3000 0 51 135 33 6941 7.310e-13 1.287e+03
Re_4000 0 66 171 39 8410 2.624e-12 1.569e+03
Re_5000 0 70 188 48 7717 1.47%e-11 1.451e+03
Re_6000 -1 37 152 78 2500 1.503e-01 5.144e+02
Re_7000 o] 98 292 96 11195 6.132e-11 2.095e+03
Re_8000 0 125 389 139 16777 3.047e-11 3.109e+03
Re_9000 0 144 442 154 17824 9.513e~-11 3.337e+03
Re_10000 0 185 599 229 26288 7.010e-11 4.861e+03
Choice 2 forcing terms, gamma = .9, alpha = 2

S/F Newt #£() Bkt GMRES NEIN time
Re_1000 0 20 44 4 2826 2.50%9e-15 5.395e+02
Re_2000 0 34 88 20 4195 5.246e~-15 8.062e+02
Re_3000 0 50 136 36 5952 2.237e-12 1.139e+03
Re_4000 0 62 184 .60 7836 1.013e~-11 1.478e+03
Re_5000 0 70 199 59 7326 1.525e-10 1.409e+03
Re_6000 0 85 251 81 9601 8.992e-12 1.847e+03
Re_7000 0 102 314 110 11214 5.275%5e-11 2.171e+03
Re_8000 0 116 341 109 15326 2.773e~-11 2.844e+03
Re_9000 0 139 421 143 19517 6.58%9e-11 3.635e+03
Re_10000 0 180 580 220 27252 S.041le-11 5.011e+03
Eta = 1.0e-4 forcing terms

S/F Newt #£() Bkt GMRES HEAR time
Re_1000 0 23 84 38 10267 2.865e~15 1.802e+03
Re_2000 0 21 75 33 10140 1.309e-~-14 1.769%9e+03
Re_3000 -2 26 133 82 14715 1.836e-01 2.58%e+03
Re_4000 -1 22 122 78 11201 6.310e-01 1.977e+03
Re_5000 -2 42 211 128 24085 1.110e-01 4.241e+03
Re_6000 -1 25 134 84 14294 5.188e~-01 2.521e+03
Re_7000 -2 11 58 37 5061 7.978e-01 9.010e+02
Re_8000 -2 6 32 21 2912 8.558e~-01 ~ 5.153e+02
Re__9000C -1 33 161 o5 18953 5.298e-01 3.336e+03
Re_10000 o] 30 74 14 17138 3.374e-11 2.962e+03
Eta = 1.0e-1 forcing terms

S/F Newt #f£() Bkt GMRES REIN time
Re_1000 o] 22 51 7 2798 3.840e~-14 5.230e+02
Re_2000 -2 30 146 87 3331 9.722e~-02 6.415e+02
Re_3000 -2 27 144 o1 3725 2.845%5e-01 7.173e+02
Re_4000 -1 36 181 109 4927 1.794e-01 9.482e+02
Re_5000 -1 26 128 76 3273 7.602e-02 6.321e+02
Re_6000 -2 27 126 73 3221 4.894e~-02 6.114e+02
Re_7000 -2 14 63 36 1900 7.791e-02 3.630e+02
Re_8000 -2 18 79 44 2068 8.373e-02 3.925e+02
Re_9000 -1 42 226 142 6247 3.365e-02 1.237e+03

Re_10000 -2 22 100 57 2889 1.450e~01 5.576e+02
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Thermal Convection in the Sguare problem without backtracking

Choice 1 forcing terms

S/F Newt #f() Bkt GMRES Pl time
Ra_1.0e03 0 6 12 0 2255 8.867e-15 4.303e+02
Ra_1.0e04 0 15 30 0 3370 1.786e-10 6.81le+02
Ra_Jl.0e05 0 29 58 0 4667 2.258e-11 1.011le+03
Ra_1.0e06 -1 200 400 0 64430 8.015e+03 1.281le+04
Choice 2 forcing terms, gamma = .9, alpha = 1.5

S/F Newt #f£() Bkt GMRES RESN] time
Ra_1.0e03 v} 6 12 0 2482 3.385e-13 4.740e+02
Ra_1.0e04 0 11 22 0 3855 2.848e-12 7.460e+02
Ra_1.0e05 0 30 60 0 4265 1.031e-10 9.367e+02
Ra_1l.0e06 -1 200 400 0 59388 4.135e+03 1.185e+04
Choice 2 forcing terms, gamma = .92, alpha = 2

S/F WNewt #f() Bkt GMRES el time
Ra_1.0e03 0 5 10 0 2151 7.304e-13 4.146e+02
Ra_1.0e042 0 9 i8 o] 3506 2.677e-12 6.777e+02
Ra_1.0e05 0 20 40 0 3651 4.434e-11 7.630e+02
Ra_1.0e06 -1 200 400 0 57746 6.610e+03 1.156e+04
Eta = 1l.0e—4 forcing terms

S/F Newt #f() Bkt GMRES Izl time
Ra_1l.0e03 0 5 10 0 2101 7.060e-13 4.009e+02
Ra_l.0e04 ¢ 8 i6 0 4004 3.651le-13 7 .750e+02
Ra__1.0e05 o] 12 24 0 6619 2.90%e-12 1.258e+03
Ra_1.0e06 -1 137 ... (terminated but clearly failing)
Eta = 1.0e-1 forcing terms

S/F Newt #f() Bkt GMRES k2N time
Ra_1.0e03 0 9 i8 0 1877 2.518e-10 3.693e+02
Ra_l.0e04 0 12 24 0 3033 6.074e-11 5.753e+02
Ra_1.0e05 0 16 32 [¢] 5154 2.747e-11 1.005e+03
Ra_1.0e086 -1 156 ... (terminated but clearly failing)
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Thermal Convection in the Sguare problem with backtracking

Choice 1 forxrcing terms

S/F Newt #f() Bkt GMRES el time
Ra_1.0e03 0 6 i2 0 2255 8.867e-15 4.261le+02
Ra_1.0e04 o} 12 25 1 3399 3.050e-11 6.632e+02
Ra_1.0e05 0 22 52 8 3804 8.665e-13 7.937e+02
Ra_l.0e06 ¢} 23 5S4 8 2628 2.263e~-10 5.931e+02
Choice 2 forcing terms, gamma = .9, alpha = 1.5

S/F Newt #f£() Bkt GMRES REdN time
Ra_1.0e03 0 6 i2 0 2482 3.385e-13 4.730e+02
Ra_1.0e04 0 11 22 0 3855 2.848e-12 7.477e+02
Ra_1.0e05 ¢} 21 47 S 4561 4.043e-11 9.340e+02
Ra_1.0e06 o] 27 61 7 2921 8.741e-11 6.485e+02
Choice 2 forcing terms, gamma = .9, alpha = 2

S/P Newt #f() Bkt GMRES BE3R time
Ra_1.0e03 o} S 10 4] 2151 7.304e~13 4.130e+02
Ra_1.0e04 o] 9 18 0 3506 2.677e-12 6.756e+02
Ra_1.0e05 0 18 42 6 3925 6.098e-12 7.894e+02
Ra_1.0e06 0 24 59 11 2993 8.966e-12 6.526e+02

Bta = 1.0e-4 forcing terms

S/F Newt #f£() Bkt GMRES el time

Ra_1.0e03 0 ) 10 0 2101 7.060e-13 4.012e+02
Ra_1.0e04 o] 8 16 ¢] 4004 3.651e-13 7.72%9e+02
Ra_1.0e05 0 11 23 1 5830 1.91%e~12 1.126e+03
Ra_1.0e06 0 22 83 39 10856 3.414e-11 2.143e+03

Eta = 1.0e-1 forcing terms

S/F Newt #f() Bkt GMRES HESN! time
Ra_1.0e03 0 9 18 0 1877 2.518e-10 3.671e+02
Ra_1.0e04 0 12 24 0 3033 6.074e~11 5.711le+02
Ra_1.0e05 0 15 37 7 3267  7.188e-11 6.502e+02
Ra_1.0e06 0 16 38 6 2366 4.164e~-10 4.946e+02
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