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Abstract

, Discrete and global symmetries play an essential role in many extensions of
the Standard Model, for example, to preserve the proton lifetime, to prevent
flavor changing neutral currents, etc. An important question is how can such
symmetries survive in a theory of quantum gravity, like superstring theory.
In a specific string model I illustrate how local discrete symmetries may arise
in string models and play an important role in preventing fast proton decay
and flavor changing neutral currents. The local discrete symmetry arises due
to the breaking of the non-Abelian gauge symmetries by Wilson lines in the
superstring models and forbids, for example dimension five operators which
mediate rapid proton decay, to all orders of nonrenormalizable terms. In the
context of models of unification of the gauge and gravitational interactions, it
is precisely this type of local discrete symmetries that must be found in order

to insure that a given model is not in conflict with experimental observations.
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Discrete and global symmetries play a crucial role in many extensions of the Stan-
dard Model. Imposing such symmetries is in general necessary to insure agreement
with various experimental observations. One example is the proton lifetime in the
context of supersymmetric and superstring theories [1, 2, 3]. Supersymmetric theo-
ries give rise to dimension four and five operators which may result in rapid proton
decay. Forbidding such operators requires that we impose some discrete or global
symmetry on the spectrum of specific models. Another example is the flavor chang-
ing neutral currents in supersymmetric models which requires the flavor degeneracy
of the soft breaking scalar masses. For example, in models of loW—energy dynamical
SUSY breaking, the supersymmetry breaking is mediated to the observable sector
by a messenger sector which consists of down-like quarks and electroweak doublets.

The SUSY breaking is mediated to the observable sector by the gauge interactions

- of the Standard Model, which are flavor blind. These messenger sector states would

in general have flavor dependent interactions with the Standard Model quarks which
will induce flavor changing neutral currents. It is therefore imperative that we impose
a discrete symmetry which prevents the undesired interactions.

In the framework of point quantum field theories, it is of course simple to impose
such discrete and global symmetries. However, it is well known that quantum gravity
effects are, in general, expected to violate global and discrete symmetries [4]. The
only exception to this expectation are local discrete symmetries [5]. Local discrete
symmetries are discrete symmetries which arise from broken gauge symmetry. How-
ever, it is still difficult to envision how such symmetries will arise from a fundamental
theory of gravity. The problem is best illustrated in the context of the realistic free
fermionic superstring models [6, 7, 8]. In these models the cubic level and higher
order terms in the superpotential are obtained by evaluating the correlators between

the vertex operators [9, 10]
A~ (VIVIVAVE - V), 1)

where V/ (V) are the fermionic (scalar) components of the vertex operators. The

‘ori-vanishing terms are obtained by applying the rulés of Ref. [10].




‘The realistic free fermionic models contain an anomalous U (1) symmetry. The -
anomalous U(1) generates a Fayet-Iliopoulos term which breaks supersymmetry and
destabilizes the vacuum [11]. Supersymmetry is restored and the vacuum is stabilized
by assigning VEVs to a set of Standard Model singlets in the massless string spectrum,
which break the anomalous U(1) symmetry. These Standard Model singlets in general
also carry charges under the non-anomalous U(1) symmetries which exist in the
superstring models. Therefore, requiring that all the D-terms and F-terms vanish
imposes a set of non-trivial constraints on the allowed VEVs. In this process some
of the fields in the higher order nonrenormalizable terms in Eq. (1) accrue a VEV.
Some of the nonrenormalizable terms then become effective renormalizable operators.
These VEVs, in general, will also break most or all of the additional local U(1)
symmetries and the global and discrete symmetries. So, although, some terms may
be forbidden up to some order in the superpotential, it is difficult to envision, how,
in general, a term which is not protected by an unbroken local symmetry will not
be generated at some order [12]. However, in several phenomenological cases, the
experimental constraints are so severe that we must insure that the dangerous terms
are forbidden up to a very high order. For example, this is the case with regard to the
problems of proton stability and FCNC in supersymmetric theories. For instance,
if we assume that each VEV produces a suppression factor of order 1/10 then to
insure that dimension four baryon and lepton violating operators are not induced up
toorder N =14—15. In pra,cﬁice, one finds that in general, the dangerous operators
are induced at various orders [12]. If the suppression of some of the singlets VEVs
is larger, or perhaps even of order one, then one has to go to even higher orders to
insure agreement with the experimental data.

In these paper I discuss how such phenomenologically disastrous operators may
be avoided in superstring models to all orders of nonrenormalizable terms. The
symmetry which forbids the undesired operators arises as follows. The free fermionic
models correspond to orbifold models of toroidally compactified models [15]. In These
models we start with a large symmetry group, like SO(44) or SO(12) x Eg x Eg or
S 0(12) x SO(16) x S O(16), and with N = 4 supersymmetry. The number of super-
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symmetries is reduced to one and the gauge group is broken to one of its subgroup by
the orbifolding. In the realistic free fermionic models, the SO(12) x SO(16) x SO(16)
is typically broken to SO(4)® x SO(10) x U(1)® x SO(16). Alternative three gener-
ation free fermionic models starting with an SO(44) gauge group were discussed in
ref. [13]. The SO(10) symmetry is then broken further to one of its subgroups by
additional boundary condition basis vectors. These additional boundary condition
basis vectors correspond to Wilson lines in the orbifold formulation. The breaking of
the non-Abelian gauge symmetries by Wilson lines gives rise to massless states that
do not fall into representations of the original unbroken SO(10) symmetry. This is
an intrinsic stringy phenomena. I refer to the states from these sectors as Wilsonian
matter states. The basis vectors which break the SO(10) gauge symmetry generate
sectors in the partition function which break the SO(10) symmetry. The massless
states from these sectors carry fractional charges under the U(1) symmetries which are
embedded in SO(10) and which are orthogonal to the generators of SU(3) x SU(2).
Thus, they can carry fractional charge under U(1)y, the weak hypercharge, or they
can carry fractional charge under U(1)z which is embedded in SO(10) and is or-
thogonal to the weak hypercharge. The charge of the Wilsonian states under these
U(1) symmetries, do not have the standard SO(10) quantization. Because of the
appearance of this type of matter from the Wilsonian sectors, we can now get conser-
vations laws which forbid the interactions of the Wilsonian states with the Standard
Model states. For example, if the U(1)z symmetry is broken only by a VEV of the
right-handed neutrino then there will be a residual discrete symmetry which forbids
the coupling of the Wilsonian matter states to the Standard Model states.

The emergence of local discrete symmetries in superstring models is nicely il-
lustrated in the model of ref. [8]. This model is constructed in the free fermionic
formulation [14] and belongs to a subset of free fermionic models. These models uti-
lize a set of boundary condition basis vectors which correspond to Z; X Z; orbifold _
compactification with standard embedding [15]. To show how the local discrete sym-
metry appears in the string model, I first discuss the general structure of this class of

M- free fermionic models. Mere details on the construction of the realistic free fermionic -
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models are given in ref. {7]. |

In the free fermionic formulation all the degrees of freedom which are needed to
cancel the conformal anomaly are represented in terms of free fermions propagating
on the string world-sheet. Under parallel transport around one of the noncontractible
loops of the world—sheet torus, the fermionic states pick up a phase. These phases
for all the 64 world—sheet fermions are collected in the diagonal boundary condition
basis vectors. and span a finite additive group. Modular transformation in general
mix between the different spin structures. Requiring invariance under the rﬁodula.r
transformations restricts the possible choices of boundary condition basis vectors and
the one-loop phases. The physical spectrum is obtained by applying the generalized
GSO projections. The quantum numbers with respect to the Cartan generators of

the four dimensional gauge group are given by

Q) = 3af) + F(f) 2)

where f is a complex world—sheet fermion which produces a space-time U(1) curreht
of the four dimensional gauge group, o(f) and F(f) are the boundary condition and
fermion number of the fermion f in the sector a. Each state in the physical spectrum
and its charges under the four dimensional gauge are represented in terms of a vertex
operator. The cubic level and higher order terms in the superpotential are obtained
by evaluating the correlators between the vertex operators. Following this procedure
we can construct the string physical spectrum and study its phenomenology.

The basis which generate the realistic free fermionic models, typically consists
of eight or nine boundary condition basis vectors. These are typically denoted by
{1, S, b,,b;, b3,, 8,7}. The boundary conditions correspond to orbifold twisting and
Wilson lines in the corresponding bosonic construction. However the correspondence
is usually not apparent. The construction of the free fermionic standard-like models
is divided to two parts. The first part consist of the boundary condition basis vector
of the NAHE set, {1, 5,5,,5,, b3}. This set of boundary condition basis vectors plus
the basis vector 2y, correspond to Z; x Z, orbifold compactification with standard

embedding. The set {1,5,({ =1 + by + by + b3, 2} produces a toroidally compactified

" “model with N = 4 space-time supersymmetry and S0(12) x SO(16) X SO(16) gange
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group. The action of the basis vectors b, aﬁd b, corresponds to the Z; x Z, twisting
and reduce the number of supersymmetries to N = 1 and the gauge group is broken
to SO(10) x U(1)® x SO(16) x SO(4)3x. The NAHE set plus the vector 2 is common
to a large number of realistic free fermionic models and to all the models which are
discussed in this paper. At this level each one of the basis vectors by, b, and b3 gives
rise to eight generations in the chiral 16 representation of SO(10).

The next stage in the construction of the realistic free fermionic models is the
construction of the basis vectors {a,ﬂ,r"/}. This set of boundary condition basis
vectors reduces the number of generations to three generations one from each of the
sectors b;, b, and bs. At the same time the SO(10) gauge group is broken to one of
its subgroups, SO(6) x SO(4), SU(5) x U(1) or SU(3) x SU(2) x U(1)*. The hidden
SO(186) is also broken to one of its subgroups and the horizontal SO(6)® symmetries
are broken to U(1)", where n can vary between three and nine. In the free fermionic
standard-like models the SO(10) symmetry is broken to SU(3) x SU(2) x U(1)¢ x
U(l)L*. The weak hypercharge is given by

Uy =1/3U(1)c +1/2U(1)L
and the orthogonal U(1)zs combination is given by
Ul)z» =U(l)e = U(1)z.

The three twisted sectors b, b, and b3 prodtice three generations in the sixteen
representation of SO(10) decomposed under the final SO(10) subgroup. These states
carry half integral charges under the U(1)z gauge symmetry,

& = (030 Daasmy 3)
w = 13,5 ~Dleasan-am; @
Q = [(3,%);(2, 0)]a/ea/2.(2/3-1/3) (5)
Ny = [(1,%);(1,—1)](0.5/2.0)§ (6)
TUWe =W Wpr s UM = W, :
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d, = [(3, -5); (1, 1))a/3.-3/2,1/3); (7)

3
L = (3, —35 (2 0)}(-1/2,~3/2,(0.1))» (8)

where I have used the notation

[(SUB)e; UM)e); (SU2); UML) @y.@z1@em.} (9)

Similarly, the states which are identified with the light Higgs representations are
obtained from SO(10) representations which are broken by the GSO projections of
the additional basis vectors a, £, 7.

The basis vectors a, § and - correspond to Wilson lines in the bosonic formula-
tion. These additional basis vectors give rise to additional massless spectrum. The
massless states which arise due to the Wilson line breaking cannot fit into represen-
tations of the original unbroken SO(10) symmetry. I will refer to these generically
as exotic Wilsonian matter states. They carry non-standard SO(10) charges un-
der the U(1) symmetries which are embedded in SO(10). These two U(1) are the
weak-hypercharge, U(1)y, and an orthogonal combination, U(1)z:. Thus, the exotic
Wilsonian states carry fractional charges under, U (l)y or under U(1)z.

Each Wilsonian sector in the additive group breaks the SO(10) symmetry to one
of its subgroups, SO(6) x SO(4), SU(5) x U(1) or SU(3) x SU(2) x U(1)?. Thus, the
physical states from each of these sectors are classified according to the pattern of
S50(10) symmetry breaking. Below I list all the exotic Wilsonian states which appear
in the realistic free fermionic models and classify the states according to the pattern
of symmetry breaking.

The SO(6) x SO(4) type sectors are sectors with boundary conditions {1,1,1,0,0}

for the complex fermions $1%. These type of sectors give rise to states with the

charges
1 .
(3, 3); (L, 0))aseaszaze) , (10)
= 1
(3, '—5); (1,0))(=1/6,-1/2,-1/6) 5 (11)

o 1(350)5 (2,0 e0uar 5 % e (12)




[(1,0); (1, £1)] 172, 51/2.41/2) (13)
[(1,£3/2); (1,0))(1/2,21/2.41/2) (14)

The SU(5) x U(l) type sectors are sectors with boundary conditions
{1/2,1/2,1/2,1/2,1/2} for the complex fermions 1" *. These type of sectors give

rise to states with the charges

[(1,£3/4); (1, £1/2)]x1/2.41/4,21/2) (15)

Finally, the SU(3) x SU(2) x U(1)? type sectors are sectors with boundary conditions
{1/2,1/2,1/2,-1/2,—1/2} for the complex fermions 3%, These type of sectors
give rise to states which carry the usual charges under the Standard Model gauge

group but carry fractional charges under the U(1)z symmetry.

1 1
[(3> Z)’ (1, 5)](—1/3,-1/4,—1/3);
- 1 1
[(3, _Z); (1, '2')](1/3,1/4,1/3) ;
3 1
[(1, iz); (2, ﬂ:5)](11/2,i1/4,(1,0);(o,—1)) ;
3 1
[(1, iz); (1, :Fé')](o.is/‘x,o) (16)

The SO(6) x SO(4) and SU(5) x U(1) type Wilsonian matter states carry fractional

electric charge +1/2 and therefore must be either, confined, diluted or have a mass

of the order of the Planck scale. Because the Wilsonian matter states appear in

the realistic free fermionic models in vector-like representa,tidns, in general, they can

get mass at a scale which is much higher than the electroweak scale. In specific

string models, detailed scenarios were proposed in which these states are confined

or become supermassive. The SU(3) x SU(2) x U(1)? type Wilsonian matter states

transform as regular quarks and leptons under the Standard Model gauge group or

are Standard Model singlets. These type of states may have important cosmological.
and phenomenological implications.

To illustrate how the local discrete symmetries arise in the the superstring models

- 8% T focus on thé Wilsoniani color triplets in Eq. (16). These color triplets transform’
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under the Standard Model gauge group as right;handed down-type quarks, with weak
hypercharge +1/3. Thus, they can fit into the five representation of SU(5). They
may form interaction terms with the Standard Model states which are invariant under
the Standard Model gauge group. However, they carry fractional charge under the
U(1)z which is embedded in SO(10). While the Standard Model states are obtained
from the sectors b;, b, and b3 and have charges n/2 under the U(1)z: symmetry, the
Wilsonian color triplets have charges +1/4 under the U(1)z symmetry. In Eq. (17)
all the possible interaction terms of the Wilsonian triplets with the Standard Model

states are written

LQD, uesD, QQD, wSdsD, & NED,
QDh B
DDuS (17

The form of the interaction terms is f;f;D¢"™ or fiDD¢"™ where f; and f; are the
Standard Model states from the sectors by, b; and b3 and D represents the Wilsonian
triplet. The product of fields, ¢”, is a product of Standard Model singlets which
insures invariance of the interaction terms under all the U(1) symmetries and the
string selection rules. If all the fields ¢ in the string ¢™ get VEVs then the coefficients
of the operators in Eq. (17) will be of the order (¢/M)", where M ~ 10'® GeV is
a scale which is related to the string scale and 1 am assuming that the numerical
coefficients of the correlators of the interactions terms are of order one. Because of the
fractional charge of the Wilsonian -color triples under the U(1)z all the interactions
terms in Eq. (17) are not invariant under U(1)z:. The total U(1)z charge of each
of these interaction terms is a multiple of £(2n + 1)/4. Thus, for these terms to
be allowed the string ¢™ must break U(1)z and must must a total U(1)zs charge in
multiple of &(2n + 1)/4. Thus, the string of Standard Model singlets must contain a
field which carries fractional U(1)z: charge =(2n +1)/4. In the model of ref. [8] the
only Standard Model singlets with fractional U(1)zs charge transform as triplets of
the hidden SU(3)y gauge group. Therefore, if we make the single assumption that

#B% - -the hidden SU(3)y gauge group remains unbrokerf then all the interaction terms




between the Wilsonian triplet and the Standard Model states are suppressed to all
orders of nonrenormalizable terms. In this case the U(1)z symmetry may be broken
by the VEV of the right-handed sneutrino, which carry charge @z = £1/2. Thus,
in this case a residual Z; local discrete symmetry remains unbroken and suppresses
the couplings of the Wilsonian triplets to the Standard Model states. However, since
the states which transform under the hidden SU(3) gauge group always appear in
vector-like representations, invariance under the hidden SU(3) guarantees that the
discrete Z, symmetry remains unbroken also if the U(1)z gauge symmetry is broken
by the VEVs of the hidden SU(3) triplet representations. Thus, the local discrete
Z4 symmetry remains unbroken and forbids the couplings in Eq. (17) to all orders of
nonrenormalizable terms.

The appearance of a good local discrete symmetry in this manner is an intrigu-
ing miracle. The phenomenological implications are striking. The string scale gauge
coupling unification requires the existence Vof the Wilsonian color triplets at an in-
termediate energy scale [17]. However, the intermediate color triplets may, a priori,
mediate rapid proton decay through dimension five operator. The existence of the
local discrete symmetry forbids the dangerous dimension five operators. The exis-
tence of the local discrete symmetry indicates that the Wilsonian color triplets have
interesting cosmological implications [18], and may result in testable experimental
predictions of the superstring models. Finally, if we consider the color triplets as the
messenger sector in dynamical SUSY breaking scenarios [19], then the local discrete
symmetry guarantees that the interaction of the messenger sector with the Standard
Model states occurs only through the gauge interactions. In this case indeed the
problem with flavor changing neutral currents in supersymmetric models is resolved.
In the context of models of unification of the gauge and gravitational interactions,
it is precisely this type of local discrete symmetries that must be found in order to

insure that a given model is not in conflict with experimental observations. .

In this paper I have shown how local discrete symmetries may arise from su-

perstring derived models. The proposed local discrete symmetries arise due to the

4w -breaking: of the non-Abelian gauge symmetries by Wilson lines in the ‘superstring -
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models. The breaking by Wilson lines give rise to massless states that cannot fit
into representations of the original unbroken non—A’belian gauge symmetry while the
Standard Model spectrum and phenomenology are obtained from representations of
the original unbroken non-Abelian gauge symmetries. The unique stringy breaking
of the non-Abelian gauge symmetries by Wilson lines may therefore result in lo-
cal discrete symmetries which forbid the interactions of the Wilsonian matter states
to the Standard Model states. The local discrete symmetries are good symmetries
also when quantum gravity effects are taken into account and survive to all orders
of nonrenormalizable terms. From the low energy point of view such local discrete
symmetries are essential, for example, to prevent flavor changing neutral currents in
gauge mediated dynamical SUSY breaking scenarios, to prevent rapid proton decay
from dimension five operators, etc. The proposed local discrete symmetries were il-
lustrated in a specific free fermionic model. However, the use of Wilson line breaking
is common to a large class of superstring models. Therefore, similar symmetries may
arise in other superstring standard-like models [20). It will also be of interest to
examine whether string models which do not use Wilson line breaking [21] give rise
to similar symmetries. In the context of models of unification of the gauge and grav-
itational interactions, it is precisely this type of local discrete symmetries that must
be found in order to insure that a given model is not in conflict with experimental

observations.

‘This work is supported in part by DOE Grant No. DE-FG-0586ER40272.
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1| BHr+¢ (3,1) e (3,1) 11
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2 4 ) ) 0 1 1 15
Hy | b+ st (1,1) e T T (1,1) 1o
—— - 4 2 —— -— — 0
H 4 4 4 1,3 3 5
1| B+ +€ (1,1) 3 _1 1 X ) o 0 (1,3) 3 $
1 2 i i 0 1.3 3
-2 5
H, bl+b3+ (1,1) 3 _1 1. ] 3 . 5 ( 53) " 3
)i R T R 0 1,3 3
<] ]
Hy | B+y+¢ 1,1) 3 o1 1 1 (1,3) g 3
1 3 s 75 5 0 0 0 (1,3) 3 s
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Table 1: M .
: assle: i . .
ss Wilsonian states with fractional U (1)z ch i
ref. [8]. The first two paj ) z+ charge in the model of
. pairs are the Wilsonian down-like color tri
pairs are the hidden sector triplet h color triplets. The last two
riplets with vanishing
weak hyperc ;
U(1)z charge. ypercharge and fractional
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