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Abstract 

nd global symmetries play an essential role in many extensions of 

the Standard Model, for example, to preserve the proton lifetime, to prevent 

flavor changing neutral currents, etc. An important question is how can such 

symmetries survive in a theory of quantum gravity, like superstring theory. 

In a specific string model I illustrate how local discrete symmetries may arise 

in string models and play a n  important role in preventing fast proton decay 

and flavor changing neutral currents. The local discrete symmetry arises due 

to the breaking of the non-Abelian gauge symmetries by Wilson lines in the 

superstring models and forbids, for example dimension five operators which 

mediate rapid proton decay, to all orders of nonrenormalizable terms. In the 

context of models of unification of t h e  gauge and gravitational interactions, it 

is precisely this type of local discrete symmetries that must be found in order 

to insure that a given model is not in conflict with experimental observations. 
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Discrete and global symmetries play a crucial role in many extensions of the Stan- 

dard Model. Imposing such symmetries is in general necessary to insure agreement 

with various experimental observations. One example is the proton lifetime in the 

context of supersymmetric and superstring theories 11, 2, 33. Supersymmetric theo- 

ries give rise to dimension four and five operators which may result in rapid proton 

decay. Forbidding such operators requires that we impose some discrete or global 

symmetry on the spectrum of specific models. Another example is the flavor chang- 

ing neutral currents in supersymmetric models which requires the flavor degeneracy 

of the soft breaking scalar masses. For example, in models of low-energy dynamical 

SUSY breaking, the supersymmetry breaking is mediated to the observable sector 

by a messenger sector which consists of down-like quarks and electroweak doublets. 

The SUSY breaking is mediated to the observable sector by the gauge interactions 

of the Standard Model, which are flavor blind. These messenger sector states would 

in general have flavor dependent interactions with the Standard Model quarks which 

will induce flavor changing neutral currents. It is therefore imperative that we impose 

a discrete symmetry which prevents the undesired interactions. 

In the framework of point quantum field theories, it is of course simple to impose 

such discrete and global symmetries. However, it is well known that quantum gravity 

effects are, in general, expected to violate global and discrete symmetries [4]. The 

only exception to this expectation are local discrete symmetries [5]. Local discrete 

symmetries are discrete symmetries which arise from broken gauge symmetry. How- 

ever, it is still difficult to envision how such symmetries will arise from a fundamental 

theory of gravity. The problem is best illustrated in the context of the realistic free 

fermionic superstring models [6, 7, 81. In these models the cubic level and higher 

order terms in the superpotential are obtained by evaluating the correlators between 
the vertex operators 19, 101 

where K’ ( K b )  are the fermionic (scalar) components of the vertex operators. The 

- G- --- ri&i-va&hi&g terms a e  obtained-by applying the rpl& of Ref. [lo]. 



The realistic free fermionic models contain an anomalous U(1) symmetry. The 

anomalous V (  1) generates a Fayet-Iliopoulos term which breaks supersymmetry and 

destabilizes the vacuum [ll]. Supersymmetry is restored and the vacuum is stabilized 

by assigning VEVs to a set of Standard Model singlets in the massless string spectrum, 

which break the anomalous U(1) symmetry. These Standasd Model singlets in general 

also carry charges under the non-anomalous U(1) symmetries which exist in the 

superstring models. Therefore, requiring that all the D--terms and F-terms vanish 

imposes a set of non-trivial constraints on the allowed VEVs. In this process some 

of the fields in the higher order nonrenormalizable terms in Eq. (1) accrue a VEV. 
Some of the nonrenormalizable terms then become effective renormalizable operators. 

These VEVs, in general, will also break most or all of the additional local U(1) 
symmetries and the global and discrete symmetries. So, although, some terms may 

be forbidden up to some order in the superpotential, it is difficult to envision, how, 

in general, a term which is not protected by an unbroken local symmetry will not 

be generated at some order [12]. However, in several phenomenological cases, the 

. 

experimental constraints are so severe that we must insure that the dangerous terms 

are forbidden up to a very high order. For example, this is the case with regard to the 

problems of proton stability and FCNC in supersymmetric theories. For instance, 

if we assume that each VEV produces a suppression factor of order 1/10 then to 

insure that dimension four baryon and lepton violating operators are not induced up 

to order N = 14 - 15. In practice, one finds that in generd, the dangerous operators 

are induced at various orders [12]. If the suppression of some of the singlets VEVs 
is larger, or perhaps even of order one, then one has to go to even higher orders to 

insure agreement with the experimental data. 

In these paper I discuss how such phenomenologically disastrous operators may 

be avoided in superstring models to all orders of nonrenormalizable terms. The 

symmetry which forbids the undesired operators arises as follows. The free fermionic 

models corresphnd to orbifold models of toroidally compactified models [15]. In Tliese 

models we start with a large symmetry group, like SO(44) or SO(12) x E8 x E8 or 

SO(12) x SO(l6) x sO(lS), and with N = 4 supersymmetry. The number of super- - -  --- _ -  5 
u- .Y 
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symmetries is reduced to one and the gauge group is broken to one of its subgroup by 

the orbifolding. In the realistic free fermionic models, the SO( 12) x SO(16) x SO( 16) 

is typically broken to SO(4)3 x SO(l0) x U ( l ) 3  x SO(16). Alternative three gener- 

ation free fermionic models starting with an SO(44) gauge group were discussed in 

ref. [13]. The SO(l0) symmetry is then broken further to one of its subgroups by 

additional boundary condition basis vectors. These additional boundary condition 

basis vectors correspond to Wilson lines in the orbifold formulation. The breaking of 

the non-Abelian gauge symmetries by Wilson lines gives rise to massless states that 

do not fall into representations of the original unbroken SO(l0) symmetry. This is 

an intrinsic stringy phenomena. I refer to the states from these sectors as Wilsonian 

matter states. The basis vectors which break the SO(l0) gauge symmetry generate 

sectors in the partition function which break the SO(l0) symmetry. The massless 

states from these sectors carry fractional charges under the U(  1) symmetries which are 

embedded in SO(10) and which are orthogonal to the generators of SU(3)  x SU(2) .  
Thus, they can carry fractional charge under U ( l ) y ,  the weak hypercharge, or they 

can carry fractional charge under U ( l ) p  which is embedded in SO(l0) and is or- 

thogonal to the weak hypercharge. The charge of the Wilsonian states under these 

U(1) symmetries, do not have the standard SO(l0) quantization. Because of the 

appearance of this type of matter from the Wilsonian sectors, we can now get conser- 

vations laws which forbid the interactions of the Wilsonian states with the Standard 

Model states. For example, if the U ( l ) p  symmetry is broken only by a VEV of the 

right-handed neutrino then there will be a residual discrete symmetry which forbids 

the coupling of the Wilsonian matter states to the Standard Model states. 

The emergence of local discrete symmetries in superstring models is nicely il- 

lustrated in the model of ref. [SI. This model is constructed in the free fermionic 

formulation [14] and belongs to a subset of free fermionic models. These models uti- 

lize a set of boundary condition basis vectors which correspond to 22 x 2 2  orbifold .- 
compactification with standard embedding [15]. To show how the local discrete sym- 

metry appears in the string model, I first discuss the general structure of this class of 

ir - --free ferpionic models. More details on the construction e af the realistic fre6fermionic Y 
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models are given in ref. [7]. 

In the free fermionic formulation all the degrees of freedom which are needed to 

cancel the conformal anomaly are represented in terms of free fermions propagating 

on the string world-sheet. Under parallel transport around one of the noncontractible 

loops of the world-sheet torus, the fermionic states pick up a phase. These phases 

for all the 64 world-sheet fermions are collected in the diagonal boundary condition 

basis vectors. and span a finite additive group. Modular transformation in general 

mix between the different spin structures. Requiring invariance under the modular 

transformations restricts the possible choices of boundary condition basis vectors and 

the oneloop phases. The physical spectrum is obtained by applying the generalized 

GSO projections. The quantum numbers with respect to the Cartan generators of 

the four dimensional gauge group are given by 

(2) 
1 

Q ( f )  = 24f) + F(f) 
where f is a complex world-sheet fermion which produces a space-time U( 1) current 

of the four dimensional gauge group, a ( f )  and F ( f )  are the boundary condition and 

fermion number of the fermion f in the sector CY. Each stake in the physical spectrum 

and its charges under the four dimensional gauge are represented in terms of a vertex 

operator. The cubic level and higher order terms in the superpotential are obtained 

by evaluating the correlators between the vertex operators. Following this procedure 

we can construct the string physical spectrum and study its phenomenology. 

The basis which generate the realistic free fermionic. models, typically consists 

of eight or nine boundary condition basis vectors. These are typically denoted by 

(1, S, bl ,  bz,  &, a, /3,7}. The boundary conditions correspond to orbifold twisting and 

Wilson lines in the corresponding. bosonic construction. However the correspondence 

is usually not apparent. The construction of the free ferniionic standard-like models 

is divided to two parts. The first part consist of the boundary condition basis vector 

of the NAHE set, (1, S, bl, &, b3}. This set of boundary condition basis vectors plus 

the basis vector 27, correspond to 2, x 2 2  orbifold com~pactification with standard 

embedding. The set (1, S, = 1 + bl + + b3,27] produces a toroidally compactified 

-- bodelwitK N = 4 space-time supersymmetry an4 5’D( 12) x SO( 16) x-SD(16)  gauge - 
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group. The action of the basis vectors bl and b2 corresponds to the 2 2  x 2 2  twisting 

and reduce the number of supersymmetries to N = 1 and the gauge group is broken 

to SO( 10) x U(l)3 x SO( 16) x SO(4I3 x. The NAHE set plus the vector 27 is common 

to a large number of realistic free fermionic models and to all the models which are 

discussed in this paper. At this level each one of the basis vectors b l ,  b2 and bs gives 

rise to eight generations in the chiral 16 representation of SO(l0). 
The next stage in the construction of the realistic free fermionic models is the 

construction of the basis vectors ( c L , / ? , ~ ) .  This set of boundary condition basis 

vectors reduces the number of generations to three generations one from each of the 

sectors b l ,  b2 and &. At the same time the SO(l0) gauge group is broken to one of 

its subgroups, SO(6) x S0(4), SU(5)  x U(1) or SU(3) x SU(2) x U(1)2. The hidden 

SO(l6) is also broken to one of its subgroups and the horizontal SO(6)3 symmetries 

are broken to U ( l ) n ,  where n can vary between three and nine. In the free fermionic 

standard-like models the SO(l0) symmetry is broken to SU(3) x SU(2) x U(l)c x 

U ( ~ ) L * .  The weak hypercharge is given by 

and the orthogonal U ( l ) p  combination is given by 

U(1)Zj = U(l)C - U(1)L. 

The three twisted sectors bl, b2 and & produce three generations in the sixteen 

representation of SO( 10) decomposed under the final SO( 10) subgroup. These states 

carry half integral charges under the U(l)zt gauge symmetry, 

(3) 

(4) 

(5') 

(6) 

3 4 = w, 5); (1,1)1(*,1/2,1); 
1 

u; = [(3, -5); (1, -1)1(-2/3,1/2,-2/3); 

= [(I, 5); (1, -1)1(*,5/2,0); 

1 ._I 

3 
0 E [(3,2); (2,0)1(1/6,1/2,(2/3,-1/3)) 

K 
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where I have used the notation 

Similarly, the states which are identified with the light Higgs representations are 

obtained from SO(l0) representations which are broken by the GSO projections of 

the additional basis vectors Q, p, 7 .  

The basis vectors CY, /3 and 7 correspond to Wilson lines in the bosonic formula- 

tion. These additional basis vectors give rise to additiorial massless spectrum. The 

massless states which arise due to the Wilson line breaking cannot fit into represen- 

tations of the original unbroken SO(l0) symmetry. I will refer to these generically 

as exotic Wilsonian matter states. They carry non-standard SO(10) charges un- 

der the U(1) symmetries which are embedded in SO(l0). These two U(1) are the 

weak-hypercharge, U( 1)y, and an orthogonal combination, U( l)p. Thus, the exotic 

Wilsonian states carry fractional charges under, U( 1)y or under U( 1)zt. 

Each Wilsonian sector in the additive group breaks the SO(l0) symmetry to one 

of its subgroups, SO(6) x S0(4), SU(5)  x U(1) or SU(3)  x SU(2) x U(1)2. Thus, the 

physical states from each of these sectors are classified according to the pattern of 

SO( 10) symmetry breaking. Below I list all the exotic Wilsonian states which appear 

in the realistic free fermionic models and classify the states according to the pattern 

of symmetry breaking. 

The SO(6) x SO(4) type sectors are sectors with boundary conditions {1,1,1,0,0} 

for the complex fermions $1*.-*35. These type of sectors give rise to states with the 

charges 
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The SU(5)  x U(1) type sectors are sectors with boundary conditions 

{1/2,1/2,1/2,1/2,1/2) for the complex fermions $'9'*-9'. These type of sectors give 

rise to states with the charges 

Finally, the SU(3) x SU(2) x U(1)' type sectors are sectors with boundary conditions 

{1/2,1/2,1/2, -1/2, -1/2} for the complex fermions @9...7'. These type of sectors 

give rise to states which carry the usual charges under the Standard Model gauge 

group but carry fractional charges under the U(l)zt symmetry. 

The SO(6) x SO(4) and SU(5)  x U(1) type Wilsonian matter states carry fractional 

electric charge f1/2 and therefore must be either, codned, diluted or have a mass 

of the order of the Planck scale. Because the Wilsonian matter states appear in 

the realistic free fermionic models in vector-like representations, in general, they can 

get mass at a scale which is much higher than the electroweak scale. In specific 

string models, detailed scenarios were proposed in which these states are confined 

or become supermassive. The SU(3) x SU(2) x U(1)2 type Wilsonian matter states 

transform as regular quarks and leptons under the Standard Model gauge group or 

are Standard Model singlets. These type of states may have important cosmological. 

and phenomenological implications. 

To illustrate how the local discrete symmetries arise in the the superstring models 

1 focus on thd Wilsonim color triplets in Eq. (16). tT41ese color triplets transform 
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under the Standard Model gauge group as right-handed down-type quarks, with weak 

hypercharge f1/3.  Thus, they can fit into the five representation of SU(5) .  They 

may form interaction terms with the Standard Model states which are invariant under 

the Standard Model gauge group. However, they carry kactional charge under the 

U (  l)zl which is embedded in SO( 10). While the Standard Model states are obtained 

from the sectors bl ,  b2 and b3 and have charges n/2 under the U(l)zt symmetry, the 

Wilsonian color triplets have charges f1/4 under the U(l)zt symmetry. In Eq. (17) 

all the possible interaction terms of the Wilsonian triplet,s with the Standard Model 

states are written 

I 

The form of the interaction terms is fifjD4” or f;DD#P where f; and fj are the 

Standard Model states from the sectors bl ,  b2 and b3 and D represents the Wilsonian 

triplet. The product of fields, qP, is a product of Standard Model singlets which 

insures invariance of the interaction terms under all the U(1) symmetries and the 

string selection rules. If all the fields 4 in the string @ get VEVs then the coefficients 

of the operators in Q, (17) will be of the order (c$/M)”, where A4 - 10l8 GeV is 

a scale which is related to the string scale and I am assuming that the numerical 

coefficients of the correlators of the interactions terms are of order one. Because of the 

fractional charge of the Wilsonian color triples under the U(l)zt all the interactions 

terms in Eq. (17) are not invariant under U(1)zt. The total U(l)zl charge of each 

of these interaction terms is a multiple of f(2n + 1)/4. Thus, for these terms to 

be allowed the string 4’’ must break U(l)zt and must must a total U(l)zt charge in 

multiple of f ( 2 n  + 1)/4. Thus, the string of Standard Model singlets must contain a 

field which carries fractional U(1)zt charge f(2n + 1)/4. In the model of ref. [8] $he 

only Standard Model singlets with fractional U(1)zt charge transform as triplets of 

the hidden s U ( 3 ) ~  gauge group. Therefore, if we make the single assumption that 

then all the interaction terms - P- - 
e- - = the hidden: s U ( 3 ) ~  gauge group remains unbroked c - 
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between the Wilsonian triplet and the Standard Model states are suppressed to all 

orders of nonrenormalizable terms. In this case the U ( l ) p  symmetry may be broken 

by the VEV of the right-handed sneutrino, which carry charge &zf = f 1 / 2 .  Thus, 

in this case a residual Z4 local discrete symmetry remains unbroken and suppresses 

the couplings of the Wilsonian triplets to the Standard Model states. However, since 

the states which transform under the hidden SU(3) gauge group always appear in 

vector-like representations, invariance under the hidden SU( 3) guarantees that the 

discrete 2, symmetry remains unbroken also if the U(l)zl  gauge symmetry is broken 

by the-VEVs of the hidden SU(3) triplet representations. Thus, the local discrete 

2 4  symmetry remains unbroken and forbids the couplings in Eq. (17) to all orders of 

nonrenormdizable terms. 

The appearance of a good local discrete symmetry in this manner is an intrigu- 

ing miracle. The phenomenological implications are striking. The string scale gauge 

coupling unification requires the existence of the Wilsonian color triplets at an in- 

termediate energy scale [17]. However, the intermediate color triplets may, a priori, 

mediate rapid proton decay through dimension five operator. The existence of the 

local discrete symmetry forbids the dangerous dimension five operators. The exis- 

tence of the local discrete symmetry indicates that the Wilsonian color triplets have 

interesting cosmological implications [18], and may result in testable experimental 

predictions of the superstring models. Finally, if we consider the color triplets as the 

messenger sector in dynamical SUSY breaking scenarios [19], then the local discrete 

symmetry guarantees that the interaction of the messenger sector with the Standard 

Model states occurs only through the gauge interactions. In this case indeed the 

problem with flavor changing neutral currents in supersymmetric models is resolved. 

In the context of models of unification of the gauge and gravitational interactions, 

it is precisely this type of local discrete symmetries that must be found in order to 

insure that a given model is not in conflict with experimental observations. .- 
In this paper I have shown how local discrete symmetries may arise from su- 

perstring derived models. The proposed local discrete symmetries arise due to the 

m - - b r e a k i n g - o f  the non-Abelian gauge symmetries by Wflson lines in the superstring 
u- 
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models. The breaking by Wilson lines give rise to  massless states that cannot fit 

into representations of the original unbroken non-Abelian gauge symmetry while the 

Standard Model spectrum and phenomenology are obtained from representations of 

the original unbroken non-Abelian gauge symmetries. The unique stringy breaking 

of the non-Abelian gauge symmetries by Wilson lines :may therefore result in lo- 

cal discrete symmetries which forbid the interactions of the Wilsonian matter states 

to the Standard Model states. The local discrete symmetries are good symmetries 

also when quantum gravity effects are taken into account and survive to all orders 

of nonrenormalizable terms. From the low energy point of view such local discrete 

symmetries are essential, for example, to prevent flavor changing neutral currents in 

gauge mediated dynamical SUSY breaking scenarios, to prevent rapid proton decay 

from dimension five operators, etc. The proposed local discrete symmetries were il- 

lustrated in a specific free fermionic model. However, the use of Wilson line breaking 

is common to a large class of superstring models. Therefore, similar symmetries may 

arise in other superstring standard-like models [20]. It will also be of interest to 

examine whether string models which do not use Wilson line breaking [21] give rise 

to similar symmetries. In the context of models of unification of the gauge and grav- 

itational interactions, it is precisely this type of local discrete symmetries that must 

be found in order to insure that a given model is not in confiict with experimental 

observations. 

This work is supported in part by DOE Grant No. DE-FG-0586ER40272. 
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Table 1: Massless Wilsonian states with fractional U(1)zt charge in the model of 
ref. [SI. The first two pairs are the Wilsonian down-like color triplets. The last two 
pairs are the hidden sector triplets with vanishing weak hypercharge and fractional 
U ( 1 ) p  charge. 
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