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ABSTRACT 

This report  is  a description of a code fo r  the  I M  7030 computer fo r  

computing two-dimensional react ive hydrodynamic problems i n  cyl indrical  

geometry using a modification of Gentryt s f i n i t e  difference analogs of 

the Eulerian equations of motion for  a compressible f lu id .  

The authors grateful ly  acknowledge the.many helpful discussions with 

R. Gentry and F. Harlow of Group T-3, and, with S. R .  O r r ,  E. Henderson, 

and G. N .  White, Jr . , of Group T-5. 
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I. INTRODUCTION 

This study was undertaken t o  determine i f  the Eulerian approach t o  

reactive hydrodynamic problems might be usem1 i n  solving reactive flow, 

one-component problems which r e su l t  i n  severe d is tor t ion  of a Lagrangian 

mesh. The problem of in t e res t  was the f a i lu re  of a nitromethane detona- 

t i on  wave, w i t h  a numerically resolved reaction zone, caused by s ide 

rarefactions.  The numerical method described i n  t h i s  report  w i l l  compute 

the nitromethane f a i lu re  problem. 

The f i n i t e  difference analogs of the  Eulerian equations of motion 

fo r  a compressible f l u i d  described i n  t h i s  report  a re  similar t o  the FLIC 

method described by Gentry, Martin and ~ a l y , '  which was an outgrowth of 

the work of ~ i c h . *  The OIL method fo r  velocity weighting i n ' t h e  mass flux 

phase of the calculation was found t o  be the  best  method descri'bed i n  the 

l i t e r a t u r e .  The OIL method was developed by M. Walsh's group a t  General 

Atomic Division of General Dynamic Corporation. It was f i r s t  described 

i n  a report written by W .  E. ~ o h n s o n . ~  The densi t ies  used i n  the m s s  

f lux were t rea ted  a s  the new Lagrangian densi t ies  rather  than old Eulerian 

ones. This was first found t o  be useful by Gentry. 
4 

Since reactive hydrodynamic problems require as  much numerical reso- 

lut ion as possible,  the  code (balled ~DE) 'was written t o  make maximum 

use of the large capacity disk storage of the IEM 7030 (STRETCH) computer. 

The m x l  m i ~ m  height of the mesh i s  3000 c e l l s , .  and the maximum number of c e l l s  

i s  200,000. The numerical calculations require suf f ic ien t  time t o  permit 

t h e  data t ransfer  between the disk and core memory t o  be overlapped. 



This report  descr ibes . the  method used i n  complete d e t a i l .  It a l s o  

presents  su f f i c i en t  d e t a i l s  f o r  a coder t o  be able  t o  follow and change 

t h e  code. The l a t t e r  information is  not of i n t e r e s t  t o  the  casual reader. 

11. THE HYDRODYNAMIC EQUATIONS 

The p a r t i a l  d i f f e r e n t i a l  equations f o r  nonvi:scous , nonconducting, 

compressible f l u i d  flow i n  cy l indr ica l  coordinates a r e  

I ,  

Mass 

Momentum 

Energy 

The equations are wr i t ten  i n  f in i te -d i f fe rence  form appropriate t o  a 

f ixed  ( ~ u l e r i a n )  mesh of c e l l s  and used t o  determine t h e  dynamics of t he  

f luid.  The f l u i d  i s  moved by a continuous lgass transport method. 
The first of t h e  above equations, t h a t  of mess conservation, is 

a u t o m t i c a l l y  s a t i s f i e d .  The momentum .. . and energy equations a r e  t r ea t ed  a s  

. follows:'., I n  . the  first s tep ,  t he  :contributions t o  t he  time der ivat ives  

, which a r i s e  from the  t e r k  involving pressure a r e  calculated.  The mass 

is not moved a t  t h i s  step; thus  t he  t ranspor t  terms a r e  dropped. Tenta- 

tive: new values of veloci ty  and in t e rna l  energy a r e  calculated f o r  each 



I n  t he  second s tep ,  the  mass i s  moved according t o  t he  c e l l  velocity.  

The mass which crosses c e l l  boundaries ca r r i e s  with it i n t o  t he  new c e l l s .  

appropriate f rac t ions  of the  mass, momentum, and energy of t he  c e l l s  from 

which it came. This second s tep  accomplishes t he  t ransport  t h a t  was 

neglected i n  the  f i r s t  step.  

I n  the  t h i r d  s tep,  the  amount of chemical react ion i s  determined, 

and the  new c e l l  pressure i s  computed using t h e  HOM equation of s t a t e ;  5 
. . 

The equations we s h a l l  difference a r e  of the  form 

I 

111. THE CODING EQUATIONS AND TECHNIQUES 

Problem Boundaries 

Cell Sides 

Piston (Constant ~ n p u t )  
Boundary 

o r  Continuum 



The Initial Problem Setup 

Cell Quantities. -V velocity 

p - CM - cell density 
I - CI - cell'energy 
P - CP - cell pressure 
T - CT - celi temperature 
W - CW - cell mass fraction 
U - CU - cell t ' vt?l.ocity 
V - CV - cell r .velocity 
A 
p - RHUT - tilde density 
intermediate Quantities 

q - Q1, Q2, Q3, .Q& - Viscosities (locations also used as A quantities 

i n  mass movement) 
Vt' - CMB' - 1/0 (location also used as &I in =is movement) 
H 

U - CUB - cell z velocity tilde 
v 9 CVB.: - cell r velocity tilde 



Phase I. Equation of  S t a t e  and Reaction 

The pressure and temperature a r e  calculated from the  densi ty ,  

i n t e rna l  energy, and c e l l  mass f rac t ion  of undecomposed explosive using 
5 6 the  HOM or  i dea l  gas' equation of s t a t e .  

1. Test t o  determine i f  AV1 /v' , A I / I ,  AW/W from the  previous 

c e l l  and the  present c e l l . a r e - l e s s  than 0.0005, and i f  they a re ,  
. . 

use the  previous c e l l  P and T. 

2. I f  an HOM i t e r a t i o n  e r ro r  occurs arid i f  W i s  > 0.5, resolve 

with W = 1.0. I f  W i s  < 0.5, resolve w i t h  W = 0.0. P r i n t  

the  c e l l  W ,.: P, T and a comment each time the  HOM e r r o r  occurs. 

Knowing T we calculate  W using the  Arrhenius r a t e  law 

where Z* i s  the  frequency fac tor ,  E* the  ac t iva t ion  energy,.R t h e  gas. 
. g  

constant,  and b t  the  time increment. I n  difference form t h i s  is  

1. I f  c e l l  temperature i s  l e s s  than MINWT(~OOO) react ion i s  not 

permitted. 

2. . I f  CW i s  l e s s  than GASW(0.02) s e t  CW = 0. 

3. , Do not reac t  fo r  f i r s t  VCNT (25) cycles. 

Phase I ,  I1 a re  skipped i f  pn < MINGRHO + ( p o - M I ~ G R ~ ~ )  ( w ? )  . 
i 1 ,I 

This i s  fo r  handling f r ee  surfaces,  eliminating f a l s e  dif fusion.  

MINGRHO = 0.5. 



Phase 11. Viscosity and Velocity 

A .  Viscosity Equations 

except on boundary 1 when Q1 = 0 or on piston boundary when 
.id 

K ( ~ ~  +MAPP)(UAPP-un ) if UAPP > u:~, 
13 Qlij = ( 

0 if UAPP < un 
ij 

except on axis boundary when Q2 ' = 0. 
1 j 

except on a continuative boundary 3 when Q3 = 0. 
is 

except . on a continuative boundary 4 when Q& = 0. MAPP , UAPP , PAPP 
iJ 

are piston applied values of msss, particle velocity and pressure. 

Also calculated in the viscosity section are: 

except at piston when P1= PAPP or on continuative boundary 1 when 



except on axis when P2 = 
':j . ' 

except on continuative boundary 3 when ~3 = pn. 
'' 

. .. i 

except on continuative boundary 4 when ~4 = ';j 

B. Velocity Equations 



' A 
Phase 111. ' In t e rna l  Energy and p . : 

. . 

A .  Piston Energy Constraint 

For t h e  f i r s t  VCNT cycles t he  i n t e rna l  'energy is  calculated 

from 

A 
B. p Calculation 

On p is ton  boundary, 'U 
i- 1, j = 

On boundary 3, Ui+, , j = Ui 

On boundary 4, Vi ,J+l = Vij 



On boundary 1, Ui_l, = Ui 

n 
For pi < MINGRHO + ( P~-MINGRHO) (wn . ) , E; = IO and the  r e s t  of Phase 

i J i j  ' 
I11 is  skipped. 

C . In t e rna l  Energy Equation 

. ( s r  f n  
1 n r-n r -n 

+Sr7? - qi, -*(SjVi j -lvi , j  -1 
+ Zi 'i,jd j+l i , j+ l  3 l j  

1 



n n .n +S" ) except. on axis boundary when V1 = (V +V ). v1 = (vi,J-l i,j-1 13 ij 

n +? ) except on continuative boundary 4 when v 2 =  (vi,.j+l .f,j+l . 

n +il" .) except on piston boundary when U1 = 2UAPP u1 = (ui-l,j i - 1 , ~  
and on continuative boundary 1 when 

n +0" .) except on continuative boundary 3 when u2 = (~i+l,j i + l , ~  



Total  energy 

Phase PV. Mtrss Movement 

The v i scos i t i e s ,  Q1 through Q4 a r e  no longer needed, and t h e i r  storage 

locations are used t o  s to re  t he  changes i n  various physical  quant i t i es  as 

the  m s s  is  moved. Mass i s  not moved unless t he  pressure o f , t h e  c e l l  *om 

which the  mass moves i s  greater than F'REPR (0.0005). 

Q 1  - hE change i n  energy 

Q2 - AW. change i n  &ss f rac t ion  

Q3 - APV change i n  V momentum 



~4 - APU change in U momentum 

CMB - 194 change in mass 

Mass movement across side 2 . . 

1. For an axis c e l l Q l =  Q2= Q3= ~ 4 =  CMB= 0 and no mass i s  moved. 

'" ' )Lva A,  mass moves from ce l l  i ,  j-1 to ce l l  i d .  2. A 2 0,  DM = ( p i , j - l  

m o o  movee from ce l l  ij t o  cell i , J -1 .  I 



Mass movement across s ide  1 . .. 

1. For a p i s ton  boundary c e l l  we have 

For A < 0 no mass i s  moved. 

For A 2 0, DM = (MAPP)A, mass moves from pis ton Lo c e l l  i j  . 

2. For continuative boundary 1 c e l l  



DM = ( 3 ) ( ~ ) .  mass moves from c e l l  i-l., j .'to ce l l  i j .  

- " (DM) Q1ij - Q1ij + E%-l,3 
- - E" (DM) Q1i-1, 3 - Q1i-ljJ *-J,J 

CMB = CMB + DM 
i 3  i 3 

CMB = Wi-l,J - mi 
i -1,3 



Mass movement on. s ide  3 

Except on the  continuative boundary 3, t h i s  mass movement i s  taken care  

of by the  mass movemerk across s ide  1 of the  c e l l  d i r e c t l y  above. 

On the  boundary 

Mass movement on s ide  4 

Except on the continuative boundary 4, ' t h i s  mass movement i s  taken 



care of  by the mass movement across side 2 of the c e l l  on its right .  

On the boundary 

a) . A 2 0  mass moves out of c e l l  i j . 

b) A < 0 mass moves into c e l l  i j .  . . 



Phase V. Repartition 

Add on gass moved quantities 

For pn > MINGRHO + ( pO-a~~~) (w;.J) 
id 

Far pn i j s MINGRHO + ( p o - M I N ~ ~ ~ ~ )  (w;~) 



I V .  TIlE PISTON OR CONSTANT I N P U T  BOUNDARY 

To obtain a smooth i n i t i a l  piston p r o f i l e  it was found necessary t o  

s e t  t h e  i n t e rna l  energy o f -  t h e  c e l l s  f o r  t he  first VCNT (25) cycles t o  

Another method which did not require  i n i t i a l l y  adjust ing the  i n t e rna l  

energy t o  obtain a smooth i n i t i a l  p is ton p r o f i l e  was t o  feed i n  t he  last 

10  c e l l s  of a previously calculated f l a t  topped shock as the  s t a r t i n g  

conditions of a new calculat ion.  . 

Steady-State Reaction Zone Pistoa! 

The steady-state p i s ton  was computed by i t e r a t i o n  f o r  a given detona- 

t i o n  veloci ty  by using the  amount of react ion t h a t  has occurred i n  a c e l l  

near t h e  p i s ton  t o  determine the  proper pis ton density,  energy and 'pa r t i c l e  

veloci ty .  

Used axis c e l l  of f i f t h  layer  t o  get  Piston W .  For fast react ion it 

was found necessaky t o  use a lower W f o r  Piston W by multiplying b y ' a  

constant (WISF) . 
I. Given a W ,, tissuue a V'. 

2 2 2 .  Find Pr from Pr - P, = ( p ) (D) (vA-V' ) , t he  Rayleigh Line. 

3. Calculate I from I - I. ='8Pr) (V;-Vt ) . 
4. With V '  , I,  and W ,  compute P from HOM equation of s t a t e .  

5 .  I t e r a t e  on V t  u n t i l  Pr - P i s  l e sa  than 1 x low5. 
6 .  Calculate U = J(P-P~)(v;-v'J and ass ign it t o  UAPP, assign 1 / ~ '  

t o  MAPP, assign I + +(MAPP) (UAW)' t o  EAPP. 

V. THE DISK BTOMCIE AND USAGE. 

The.calc.ulation proceeds as i f  t h e  layers  i n  t he  z di rec t ion  a r e  on . 

a barreh - the  last layer  a t  nth cycle i s  followed by t h e  f irst  a t  n+lth 

cycle. There are t w o b a r r e l s  - one containing t h e  c e l l  quant i t i es  and 



one containing the  intermediate quant i t i es .  The intermediate quanti ty 

ba r r e l  has four layers  a round. l t .  

'For an e ight  l ayer  problem the  layers  labeled A ,  B, C ,  . . . H,  the. 

calculat ion proceeds a s  follows: 

Pass through loop Phase of Calculation 

I I1 111. . IV V write  on disk 

C B A  

D C B  

E D C  

H  G F E D  

H G F E  

, H  G  F . .  

. H  G 

H 

After t h i r t een  passes t h e  time is incremented, 'plott ing and pr in t ing  

a r e  done, and the cycle is  s t a r t e d  over again. 

The skipping of various pa r t s  of t he  calculat ion is  controlled by 

changing branch inst ruct ions  t o  NOP's and vice versa. 

The , b a r r e l  operation is described below: 

1. When a l l  the  layers  can be held i n  core. (WD NSCMAX) 

When phase V has been completed for  a l ayer ,  it is transmitted t o  

the  disk and t o  t he  proper-core locat ion fo r  t he  next cycle,  e.g. 

8 layers  i n  core 

A B C D E F G H  

a f t &  phase V on A i s  completed 

A B C  D E F ' G  H A '  



a f t e r  phase V on B i s  completed . . 

A B C D E F G H A '  B' e tc .  

When the  top of core storage i s  reached, the  next layer  goes at the  

bottom of c e l l  storage, e.g. for  an 8 layer calculation i n . a  10 layer 

capacity core, we have 

i n i t i a l l y  I A I B J c I D J E I F I G J H I  1 . I ' 
. 

a f t e r  1 complete cycle 

J c l  I D *  I E '  I F '  10 '  J H *  I G I H I A *  I B '  I 
a f t e r  2 complete cycles 

l ~ ~ l l r ~ ~  ~ G ~ I K ~ I G *  I H '  I A ~ ~ B * * J c " J D ~ I  
2'. When a l l  the  layers w i l l  not' f i t  i n  core (NMRD > NSCMAX), 

e.g. ,  8 layers i n  6 layer  capacity 

i n i t i a l l y  ~ A I B ( C  I D J E I F I  

a f t e r  phase V of A i s  completed,  g goes t o  disk,  and G is  read i n  

J G [ B ( C  I D I E ' I F I  
a f t e r  phase V of B i s  completed, B goes t o  disk and H i s  read i n  

~ G I H I C I D I E I F I  
a f t e r  phase V of. H has been calculated, H goes t o  disk and F is  read i n  

1 E'I $1 A'\ $1 c'I D'I 
The number of layers  required for  the  calculation increases with time a t  

a r a t e  charac ter i s t ic  of the  problem. Graphing and print ing use the  same 

technique, except t h a t  graphing uses a l l  the  layers.  

Card - Col . - Format Data - 
'1 1-72 72H ' Problem description 

1-18 E0.1.11.3 Delta R 2 

. :  19-36 E O . l . 1 1 .  Delta Z 

37-54 E0.1.11.3 Delta T 

. 3 . 1-18 E0.1.11.3 Activation Energy 

19-36 ~ 0 . 1 .  11.3 Frequency 

37-54 E0.1.11.3 .Minimum temp. t o  burn 



Card .- Col. - .  Formst Data - 
' 4  1-18 EO.1.11.3 Vo ' for equation of state = llp0 

19-36 ~0.1. 11.3 Initial cell pressure 

37-53 . E0.1.11.3 'Initial cell temperature 

0 1 11 3 piston detonation velocity 

EO.l.ll.3.. Piston initial volume guess 

E0.1.'11.3 Viscosity constant 

V1*5 0 for HOM, 1 for'ideal gas 

V1*5 0 for no reaction, 1 for reaction 

V1*5 Number of cycles between prints 

V 1*5 Number of cycles between graphs 

V1*5 Number of cycles between disk 
dumps 

V1*5 Graph type (Hee below) 

7 + following cards - equation of state cards for HOM or ideal gas 
- for HOM - 4 cards for solid parameters, then 5 cards for gas 
parameters 

- for ideal gas - 1 card 
7 1-18 ' E0.1.11.3 

19-36 E0.1.11.3 

37-54 .E0.1.11.3 

8 o r 1 6  1-5 VOWS ' 

g o r 1 7  1-5 V0*5 

ten end 6-10 . . V W 5  

11-15 ' VO"5 

16-20 VW5 

21-32 . .~0.1.6.2 . 

33-44 ~0.1.6.2 

45 -58 ~0.1.6.2.1 

59-72 ~0.1.6~2.1 

Gamma 

Q 

Cv 
Number of mesh set up cards 

Z mln 

zmax 

R min 

R lnax 

Density 

Internal energy 

U velocity with flag 

V 'velocity with flag 
Cells in the mesh that are not. 
within the limits of any card are 
set empty with o=T=I=U=V=W=O and 
EP0 . 



Graph type number 

0 No graphs 

1 Isotherm 

2 Isobar  

3 Isotherm and Isobar 

4 Isopycnic 

5 Isopycnic and Isotherm 

6 Isopycnic and Isobar 

7 Isopycnic,  Isobar, and Isotherm 

The individual c e l l  f l a g s  t h a t  a r e  s e t  by t h e  input cards a r e  described 

below: 3 

1. To put  a cont inuat ive  boundary on s ide  1 s e t  U f l a g  on CU which i s  a 2. 

2. To put a cont inuat ive  boundary on s ide  3 s e t  V f l a g  on CU which i s  a 1. 

3 .  To put  an a x i s  boundary on s ide  2 s e t  U f l a g  on CV which i s  a 2. 

4. To put  a coiltinuative boundary on s ide  4 s e t  V f l a g  on CV which i s  a 1. 

5. To put  a p i s ton  'boundary on s ide  1 s e t  T f l a g  on CU which is a 4. 

To keep mass from flowing from c e l l  i + l , j  i n t o  c e l l  i , j  o r  from c e l l  i , j  

i n t o  c e l l  i + l , j  s e t  continuative boundary on s ide  3 of c e l l  i , j  and s e t  

cont inuat ive  o r  p i s ton  boundary on s ide  1 of c e l l  i + l , j . '  

A c e l l  may not be both on boundaries 1 and 3 ' o r  on boundaries 2 and 4.  
I 

The f l a g  conventions used f o r  i n i t i a i  problem set-up a r e  described below: 



C ont i n w m  

Continuum 

+ 
r 

Region 'Flags 

.U f l a g  on CU 

U f l a g  on CU,  U f l a g  on CV 

u f l a g  on cv 
U f l a g  on CV, V f l a g  on CU 

V f l a g  on CU 

V f l a g  on CU, V f l a g  on CV 

V f l a g  on CV 

V f l a g  on CV, U f l a g  on CU 

No f l ags  

Pis ton is  indicated by a T  f l a g  on CU. 

YII. THE ISOPL#I' SmOUTINE 

ISOPIMT i s  a  p lo t t i ng  program which produces graphs of isotherms, 

isobars,  e t c  . , on the  4020. The input consis ts  of the  x and ,y coordinates 

and a . func t ion  value (temperature, pressure,  e t c . )  a t  each point i n  a two- 

dimensional la ' t t ice ,  t he  boundaries on x  and y f o r  the  .graph, t he  number 

of l a t t i c e  points  i n  the  x .d i r ec t ion ,  t he  t o t a l  number of l a t t i c e  points ,  

t he  number of words i n  core between t h e . x  coordinate of one c e l l  and the 
" 

x  coordinate of the  next c e l l  i n  the  x  d i rec t ion  ( the  difference i s  

assumed to be the  same as t h a t  between y l s  and function values),  and the 

numerical difference of the  function value between two i so l ines .  

The ca l l i ng  sequence is: 



L V I , $ ~ ~  ,$+I 
B, ISOPIMT$P 

,NCEU Total  # of l a t t i c e  points 

,x address of x coordinate 
,NXDIFF # words between successive x coordinates 

,y . .  y coordinate address 
,NXCELL # of l a t t i c e  points i n  x di rec t ion  

, F address of function 
,DELTA difference between i so l ines  

,XYB location of 4 woras giving x,  y buunilttrles 

example: 4' x 5 l a t t i c e  of values 

with x ' s ,  y's, and P ' s  arranged i n  core' as follows: 

and x range from 0 t o  3 ,  y range from 0 t o  4, p lo t t i ng  l i n e s  every .l. 

The c a l l i n g  sequence is  then: ' 



Note: Whether the x,  y, and P 's  a r e  stored as vector6 or  i n  individual 

blocks, the 2 coordinate o f ' t h e  next c e l l  i n , t h e  y direct ion must be 

(NXCEU)(NXDIFF') words away (e .g. ,  x5 i s  four words from xl: stored 

x1,x2>xJ>x4)x5) 

The method: 

The quant i t ies  for  four points a r e  brought i n  

Determine i f , a n  i so l ine  crosses s ide 1. 

(integer par t  (P~/DELU'A)+~)DELTA = PI' 

I f  W < P4 a l i n e  crosses s ide 1, and we f i n d t h e c o o r d i n a t e s  of the 

point a t  which it crosses 



P1 > p4 

IT = ( integer  p a r t  (P~/DELTA)+~)DEI(PA 

I f  PT < P1 a l i n e  crosses s ide 1 a t  

We then proceed t o  f ind  out which other sid.e t h i s  i so l ine  crosses. It 

crosses s ide 2 i f  P C PT < Pg o r  P1 . PI' > Y2. The coordinates of the 
1 

point. a t  which it crosses are:  

(X- - x - )  1 2  kt' = (m-p2)-- )+ X2 
1 2  

Having found the  point ,  a vector i s  drawn from ( x ' , y l )  t o  (x",yt') using 

a 4020 d r a w  vector subroutine. 

PT i s  incremented by DELTA, and i f  PI! < P4 another l i n e  crosses 

s ide  1. One then goes back t o  f ind  out what other s ide t h i s  l i n e  crosses. 

This continues u n t i l  IT > P4, then one moves t o  s ide 2 t o  see i f  any l ines  

cross  s ide 2. The l i n e s  crossing s ide 2 a re  connected t o  s ides  3 o r . 4  

since l ines  from side 1 t o  s ide 2 have already been drawn. Similarly l i nes  

between sides 3 and 4 a r e  drawn. 
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