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CHARACTERIZATION OF U3Og DISPERSIONS I N  ALUMINUM 

D.  0. Hobson C.  F. k i t t e n ,  Jr. 

ABSTRACT 

Character izat ion of dispers ion f u e l s  i s  e s s e n t i a l  
f o r  es tab l i sh ing  mater ia l  and process spec i f ica t ions  
and can help pred ic t  i r r a d i a t i o n  performance. The 
highly fragmented and s t r ingered  nature of oxides i n  
f ab r i ca t ed  aluminum-base dispers ions required the  
development of an improved technique t o  quant i ta t ive ly  
evaluate  dispers ions containing nonspherical disper-  
so ids .  I n  place of using t h e  point  or l i n e  methods 
developed f o r  spher ica l  oxides, a fragmentation r a t i o  
w a s  measured by counting the  s m a l l  fragments generated 
from t h e  o r i g i n a l  p a r t i c l e s  during f ab r i ca t ion .  This 
technique w a s  successful ly  demonstrated by evaluat ing 
t h e  propensity of t h ree  d i f f e ren t  commercial grades 
of U3O8 powder t o  fragment and s t r i n g e r  during p l a t e  
f ab r i ca t ion .  The res i s tance  of t h e  oxide t o  fragmen- 
t a t i o n  and s t r inge r ing  var ied  with oxide density,  
p a r t i c l e  spher ic i ty ,  surface area,  and p a r t i c l e  spac- 
ing.  Generally, t h e  fragmentation r a t i o  decreased with 
increasing p a r t i c l e  dens i ty  and spher ic i ty .  Fuel inhomo- 
geneity a l s o  induced p a r t i c l e  fragmentation. S t r inger -  
ing increased with increasing oxide surface a rea  but  
depended s t rongly on processing and t h e  a b i l i t y  of t h e  
oxide t o  r e s i s t  fragment a t  ion.  

INTRODUCTION 

The operat ing parameters of advanced research reac tors  have imposed 

severe requirements on t h e  performance and r e l i a b i l i t y  of aluminum-base 

fue l s .  

neutron f luxes  of t h e  advanced reac tors  d i c t a t e  r i g i d  cont ro l  of f u e l  

content and homogeneity within t h e  p l a t e s .  Such tolerances a re  d i f f i c u l t  

t o  achieve with conventional uranium a l loy  technology. Dispersions, how- 

ever, a f ford  t h e  advantages of accurate t o t a l  f u e l  loading, a b i l i t y  t o  

incorporate cont ro l led  known amounts of a burnable poison, and fabr ica-  

b i l i t y  with higher f u e l  concentrations.  Although considerable work has 

been d-one i n  developing t h e  f ab r i ca t ion  technology f o r  aluminum-base 

dispersions,  only l imi ted  s tudies  ha.ve been made t o  charac te r ize  t h e  

d ispers ions ,  

Unlike t h e  now conventional t e s t  reac tors ,  t h e  higher thermal and 
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Character izat ion of a f u e l  d i spers ion  i s  des i rab le  f o r  a t  l e a s t  two 

purposes. The f irst  of t hese  i s  t o  develop a method t o  pred ic t  t h e  

i r r a d i a t i o n  behavior of a f u e l  p l a t e  from a knowledge of t h e  reac t ion  of 

t h e  f u e l  t o  t h e  f ab r i ca t ion  procedures. The second i s  t o  charac te r ize  

t h e  f ab r i ca t ion  behavior of t he  f u e l  s o  t h a t  one can know what proper t ies  

t o  specify when purchasing commercial f u e l .  

t i o n  of t h e  fragmentation and s t r inge r ing  proper t ies  of U3O8 dispersed 

i n  aluminum, based on c r i t e r i a  such as oxide densi ty ,  surface area,  and 

f ab r i ca t ion  procedures, can provide da ta  t h a t ,  when combined with r e s u l t s  

of i r r a d i a t i o n  t e s t ing ,  w i l l  a f fo rd  a sound b a s i s  f o r  pred ic t ing  i r radi-  

a t i o n  behavior. 

We be l ieve  t h a t  an evalua- 

Various charac te r iza t ion  methods f o r  t h e  evaluat ion of f u e l  disper-  

s ions have been developed i n  t h e  p a s t .  

use i n  t h i s  study. One charac te r iza t ion  method, by Cherubini and 

Peterson, 

f o r  spher ica l  UO;! dispersed i n  s t a i n l e s s  s t e e l  and fabr ica ted  a t  1200°C. 
That method w a s  developed t o  quan t i t a t ive ly  evaluate  fragmentation and 

s t r inge r ing  of t h e  fue l .  

present  study. 

considerat ion i n  t h i s  study, contalned highly fragmented and s t r inge red  

p a r t i c l e s ,  i n  cont ras t  t o  t h e  rounded unbroken U02 p a r t i c l e s  considered 

by Cherubini and Peterson. 

Generally, these  were of l i t t l e  

was a combination poin t  and l i n e  count procedure developed 

Unfortunately, it w a s  not appl icable  t o  t h e  

The aluminum-U308 dispers ions f ab r i ca t ed  a t  500"C, under 

Our purpose, therefore ,  was  t o  f i n d  a s u i t a b l e  way t o  quan t i t a t ive ly  

evaluate  fragmentation and s t r inge r ing  i n  t h e  mater ia l  under considera- 

t i o n  and t o  propose a model t h a t  can be used t o  pred ic t  t h e  f ab r i ca t ion  

behavior of similar f u e l  dispers ions.  I n  t h i s  preliminary study, we d id  

not t r y  t o  co r re l a t e  t h e  degree of fragmentation and s t r inge r ing  with t h e  

r e s u l t i n g  i r r a d i a t i o n  performance. Such an evaluat ion i s  recommended 

because it should provide valuable  information f o r  s e l ec t ion  of s t a r t i n g  

mater ia ls ,  evaluat ion of processing requirements, and est imat ion of 

ove ra l l  f u e l  cos t s .  

'J. H. Cherubini and S. Peterson, A Technique f o r  t he  Quant i ta t ive 
Character izat ion of Dispersions, ORNL-TM-446 (Feb. 28, 1963). n 
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DESCRIPTION OF MATERIAIS 

To obtain a v a r i e t y  of commercially ava i lab le  powders, we held t h e  

spec i f ica t ions  f o r  t h e  u308 t o  a minimum. 

U3Og of p a r t i c l e  s i z e  range -100 +325 mesh was spec i f ied .  

bas i s  samples of commercial powder were obtained from th ree  vendors. The 

as-received proper t ies  of t he  t h r e e  oxides a r e  l i s t e d  i n  Table 1. The 

A high-f i red grade of depleted 

On t h i s  

Table 1. Propert ies  of Commercial Powders of U3O8 

Uranium 
Oxide Sieve Cut Analysis Densitya Surface Area Analysis 

( k) ( g/cm3 ) (m2/g) (%) 

N -80 +lo0 0.009 8.28 0.026 84.60 
-100 +140 21.9 
-140 +200 33.9 
-200 +270 21.8 
-270 +325 15.2 
-325 7 .2  

-100 +140 25.6 
-140 +200 33.3 
-200 +270 20.8 
-270 +325 12.9 
-325 7.2 

-100 +140 7.3 
-140 +200 37.0 
-200 +270 39.8 
-270 +325 13.2 
-325 2.7 

S -80 +lo0 0.19 8.26 0.058 84.72 

D +loo 0.005 8.2% 0.107 82.89 

%acuum impregnation. Numbers rounded off  from four decimal 
p laces .  

S t a t i c  BET krypton adsorption. b 
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oxides a r e  i d e n t i f i e d  by t h e  l e t t e r s  N, S, and D t o  allow t h e  vendors 

t o  remain anonymous. Figures 1, 2, and 3 show t h e  th ree  oxides i n  t h e  

as-received condition. Oxide N w a s  made up of massive i r r e g u l a r l y  

shaped p a r t i c l e s  containing r een t r an t  surface c a v i t i e s .  The S oxide was 

cracked and very angular, almost ac i cu la r .  The D oxide appeared t o  be 

composed of two d i f f e r e n t  types of p a r t i c l e s .  One w a s  i r r e g u l a r l y  

rounded and o f t en  contained a few round holes;  t h e  o ther  was spher ica l  

and somewhat porous. 

Type X8001 aluminum powder, mesh s i z e  -100, was used as  t h e  matrix 

powder and type 6061 aluminum was used f o r  t h e  frames and cover p l a t e s .  

To,promote bonding, t h e  frames were a l c l a d  on two s ides  and t h e  cover 

p l a t e s  on one s ide  with type 1100 aluminum. 

15 I 

Fig .  1. As-Received Type N Oxide. Unetched. 

. I  
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Fig. 2. As-Received Type S Oxide. Unetched. 

Fig. 3. As-Received Type D Oxide. Unetched. 
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EXPERIMENTAL PROCEDURES 

Following previously developed ATR f ab r i ca t  ion procedures, each 

type oxlde was weighed, mixed with type X8001 aluminum powder, blended, 

and pressed i n t o  f u e l  compacts. 

type 6061 aluminum p i c t u r e  frames and enclosed i n  type 6061 aluminum 

cover p l a t e s ,  and t h e  assembled b i l l e t  was welded together .  

were r o l l e d  t o  p l a t e s  according t o  schedules l i s t e d  i n  Table 2. 

Schedule A used only s t r a i g h t  r o l l i n g .  Schedule B, which included two 

passes of cross ro l l i ng ,  was i d e n t i c a l  with t h e  schedule developed for 
p l a t e  12 of t h e  ATR f u e l  element.2 

These f u e l  compacts were placed i n t o  

The b i l l e t s  

DeveloDment of UqO 6 -Alumi 

Table 2. Rolling Schedules f o r  Character izat ion P la tesa  

Schedule A Schedule B 

Pass Number M i l l  Se t t i ng  Pass Number Mill Se t t ing  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.494 
0.395 
0.316 
0.253 
0.202 
0.162 
0.130 
0.104 
0.083 
0.066 
0.05% 
0.054 

Cold r o l l e d  t o  0.050 i n .  

1 0.494 

2b 
3b 4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

0.395 
0.336 
0.286 
0.229 
0.183 
0.146 
0.118 
0.094 
0.075 
0.066 
0.058 
0.054 

Cold r o l l e d  t o  0.050 in .  

, 

S t a r t i n g  b i l l e t  thickness,  0.617 i n .  Hot r o l l i n g  temperature, 500°C. a 

bCross r o l l .  
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After being ro l led ,  t h e  p l a t e s  were sect ioned t o  provide metallo- 

graphic samples: longi tudina l  samples from both ends and t h e  center  and 

a t ransverse  sample from t h e  center .  

were mounted together ,  polished, examined, and photographed. The center  

longi tudina l  sec t ion  of each p l a t e  was photographed a s  a panorama; some 

40 shots  were made i n  groups of 10 each from 4 sec t ions  of each sample. 

This procedure yielded 24 s t r i p s  of photographs; each s t r i p  represented 

approximately 1/4 i n .  of f u e l  length.  

Since t h e  f u e l  p a r t i c l e s  were highly fragmented, we wanted t o  use a 

The four  samples from each p l a t e  

counting method t h a t  d id  not depend upon l i n e  or poin t  count methods or 
upon random counting methods for t he  determination of fragmentation. A 

very simple expedient w a s  used; we counted every p a r t i c l e  and every f rag-  

ment i n  t h e  24 s t r i p s .  

103,861 fragments. 

photographic s t r i p  and, using a dra.wing pen (Rapidograph 00) with India  

ink, c i r c l e d  every o r i g i n a l  f u e l  p a r t i c l e .  Then, each individual  f rag-  

ment within each c i r c l e  was  do t ted  with India  ink. Following t h i s ,  a l l  

of t h e  c i r c l e s  and a l l  of t h e  fragments were counted. From t h e  counts 

we obtained a fragmentation r a t i o  by dividing t h e  number of fragments by 

t h e  number of o r i g i n a l  p a r t i c l e s .  Figure 4 shows port ions of some of t he  

p l a s t i c  overlays.  

This involved a t o t a l  of 13,584 p a r t i c l e s  and 

To do t h i s  we l a id  a c l e a r  p l a s t i c  sheet over a 

A procedure such a s  t h i s  might lend i t s e l f  t o  computer techniques. 

J u s t  how i s  not r ead i ly  apparent, however, s ince  a human judgment f a c t o r  

i s  involved i n  deciding what w a s  once an o r i g i n a l  p a r t i c l e  and i n  resolv-  

ing t h e  very f i n e l y  powdered f u e l  i-nto ind iv idua l  fragments. 

t h i s  f ac to r ,  t h e  marking and counti-ng procedures were perforce l imi t ed  

t o  one ind iv idua l  who, t o  the  bes t  of h i s  a b i l i t y ,  s t rove t o  perform t h e  

procedures using t h e  same r a t i o n a l e  f o r  a l l  samples. Thus, t h e  r e s u l t s  

a r e  quan t i t a t ive  r e l a t i v e  t o  each other  whether they a r e  absolute  values 

or not .  We be l ieve  t h a t  our values a r e  very near t h e  absolute  values of 

fragmentation, s ince  e r r o r s  i n  judging p a r t i c l e  i d e n t i t y  a r e  noncumulative. 

The most l i k e l y  e r r o r  i n  t h i s  procedure r e s u l t s  from t h e  i n a b i l i t y  t o  

discr iminate  and count t h e  very s m a l l  fragments dispersed among the  l a r g e r  

fragments . 

Because of 

. 
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Fig. 4.  Port ions of P l a s t i c  Overlays Used t o  Index Rolled P la t e s .  
The closed curves enc i r c l e  t h e  p a r t i c l e s  judged t o  r e s u l t  from fragmenta- 
t i o n  of an o r i g i n a l  p a r t i c l e .  The dots  represent ind iv idua l  fragments. 
The cross marks ind ica t e  t h a t  t h e  enc i rc led  marks have been t a l l i e d .  
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Good reproducib i l i ty  w a s  obtained i n  fragmentation determinations 

None var ied  more than  +lo% from t h e  average made on t h e  D and TJ oxides. 

value f o r  e i t h e r  oxide. The S oxide showed a much wider v a r i a t i o n .  

Cursory attempts were made t o  charac te r ize  t h e  oxides on t h e  bas i s  

of s t r inger ing ,  but t h e  very highly s t r inge red  nature  of t h e  p a r t i c l e s  

precluded any quant i ta t ive  measurements. 

q u a l i t a t i v e l y  i n  a l a t t e r  por t ion  of t h e  r epor t .  

S t r inger ing  w i l l  be discussed 

RESULTS AND DISCUSSIONS 

. 

Our a i m  has been t o  quan t i t a t ive ly  charac te r ize  t h e  oxides and t o  

prepare a model t h a t  could possibly be used t o  p red ic t  t h e  f ab r i ca t ion  

behavior of t h e  dispersoid i n  d ispers ion  f u e l s .  I f  successful,  such 

da ta  would be of valuable  ass i s tance  i n  quan t i t a t ive ly  assessing t h e  

i r r a d i a t i o n  performance of t h e  f u e l .  

Quant i ta t ive data  were obtained on t h e  fragmentation behavior of 

t h r e e  U308 oxide types dispersed i n  aluminum and f ab r i ca t ed  by t h e  two 

d i f f e ren t  r o l l i n g  p rac t i ces  described i n  Table 2. 

ures  y ie lded  t h e  fragmentation r a t i o  values shown i n  Table 3 together  

with t h e  da ta  used t o  ca l cu la t e  t h e  r a t i o s .  

The counting proced- 

"he t y p i c a l  appearances of t h e  types S, N, and D oxide dispers ions 

i n  t h e  photomicrographs used i n  obtaining t h e  fragmentation r a t i o s  a r e  

shown i n  Figs .  5, 6, and 7, respec t ive ly .  These microstructures  w e r e  

taken i n  t h e  longi tudina l  d i r ec t ion  of t h e  f ab r i ca t ed  p l a t e s  f o r  both 

r o l l i n g  schedules. I n  both Figs.  6 and 7 t h e  number of p a r t i c l e  f rag-  

ments appears grea te r  i n  p l a t e s  f ab r i ca t ed  by c ross - ro l l i ng  schedules. 

This observation i s  i n  agreement with t h e  fragmentation index r a t i o s ,  

although t h e  value f o r  t he  D-type oxide does not take  i n t o  account t he  

mater ia l  contained i n  t h e  f i n e  s t r ingered  t a i l s .  

i n  Fig.  7, was t o o  f i n e l y  divided t o  be resolved i n  t h e  photographs and 

a l s o  was believed not t o  be a manifestat ion of f ragmentat ionbut ,  Instead,  

f i n e  mater ia l  from the  surface of t h e  i n i t i a l  p a r t i c l e s  (see Fig.  3 ) .  

Thus, t h e  values f o r  t h e  D-type oxide represent  a measure of t h e  i n t e g r i t y  

of t h e  bodies of t he  p a r t i c l e s  seen i n  t he  matrix and t h e  mater ia l  scoured 

from t h e  p a r t i c l e  surface.  

This material ,  as shown 
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Table 3 .  Experimental Fragmentation Data 

Number of Number Fr a gmen- 
Oxide, t a t i o n  Average Original  of Rolling View Schedule Number P a r t i c l e s  Fragments Index 

870 

'704 

67 1 

838 
(3083)  

600 

611 

63 6 

600 
(2447)  

468 

5 18 

557 

458 
(2001)  

622 

561 

556 

482 
(2221)  

450 

501 

508 

554 
(2013)  

491 

465 

352 

511 
(1819)  

5545 

5443 

5066 

7200 
( 23 , 254) 

5314 

5289 

5677 

5023 
(21,303)  

2886 

3277 

3785 

2579 
(12 ,527)  

5812 

5746 

5341 

5328 
(22 ,227)  

3049 

3384 

3359 

4092 
(13 ,884)  

2'758 

2561 

2252 

3095 
(10,666)  

6.37 
7 .'73 7.54 

7.55 

8.59 

c 

8.86 
8.66 8.70 

8.93 

8.37 

6.17 

6.33 
6.79 6.26 

5.67 

9.34 

10.24 
9.61 10.01 

11.05 

6.78 

6.75 
6 .61  6.90 

7 .39  

5.62 

5.51 
6.40 5.86 

6.06 A 
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2 -  Y-6 I 428 

Fig. 5 .  Longitudinal Views of t h e  S Oxide i n  Rolled P la t e s .  
Unetched. ( a )  P l a t e  C-7-S, schedule A. ( b )  P l a t e  C-1-S, schedule B. 

_. 
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f 
! 

Fig.  6 .  Longitudinal Views of t h e  N Oxide i n  Rolled P la t e s .  
Unetched. ( a )  P l a t e  C-9-N, schedule A. (b)  P l a t e  C-3-N, schedule B. 
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. 

Y-6 I433 

Y-6 I427 

_I 

Fig. 7. Longitudinal Views of t h e  D Oxide i n  Rolled P l a t e s .  
Unetched. (a) P l a t e  C-11-D,  schedule A. ( b )  P l a t e  C-5-D, schedule B. 
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The appearance of t h e  S-type oxide, shown i n  Fig. 5, along with t h e  

corresponding fragmentation index r a t i o  f o r  t he  two r o l l i n g  schedules 

deserves some explanation. The S-type oxide had t h e  lowest densi ty  of 

t h e  th ree  oxides t e s t e d  and general ly  appeared t o  fragment t h e  most. 

as-received powder, shown i n  Fig.  2, had cracks and an angular, almost 

ac icu lar ,  shape. 

(only s t r a i g h t  r o l l i n g ) ,  each p a r t i c l e  broke up i n t o  an average of 10 
fragments. This requires  l i t t l e  explanation. When t h e  same oxide was 

r o l l e d  according t o  schedule B, however, t h e  fragmentation r a t i o  dropped 

t o  7.5. 
incorporated i n t o  t h e  t h i r d  and four th  passes.  

r o l l i n g  fu r the r  elongated the  very f r i a b l e  S p a r t i c l e s  i n  a d i r ec t ion  

normal t o  the  s t r a i g h t - r o l l i n g  d i r ec t ion  and therefore  out of t h e  plane 

of po l i sh  of t h e  metallographic specimen. I n  other  words, t h e  fragments 

were the re  but could not be seen. The contrast  between Fig. 8,  a t r ans -  

verse  view of an exclusively s t r a i g h t - r o l l e d  p l a t e  containing S-type 

oxide and Fig.  9, a t ransverse  view of a c ross - ro l led  p l a t e  containing 

t h e  same oxide, supports t h e  contention. S igni f icant  s t r inge r ing  i n  t h i s  

d i r ec t ion  i s  seen only i n  t h e  c ross - ro l led  p l a t e .  

The 

When t h e  oxide was r o l l e d  according t o  schedule A 

This schedule includes a cross  roll of 28% reduction i n  thickness,  

We be l ieve  t h a t  t h i s  cross  

A co r re l a t ion  of t h e  measured fragmentation index t o  t h e  i n i t i a l  oxide 

p a r t i c l e  proper t ies  w a s  found t o  pose a somewhat sub t l e  problem. 

t h i s  d i f f i c u l t y  would have been s impl i f ied  i f  a grea te r  v a r i a t i o n  i n  

i n i t i a l  p a r t i c l e  proper t ies  had been se l ec t ed  f o r  t h i s  study. 

Perhaps 

Generally, t h e  amount of fragmentat ion  and subsequent s t r inge r ing  

i s  r e l a t e d  t o  the  dens i ty  of t h e  oxide. Density, i n  t h e  absence of com- 

p l i c a t i n g  f ac to r s ,  i s  a d i r e c t  ind ica t ion  of p a r t i c l e  s t rength  and 

i n t e g r i t y .  

P a r t i c l e  shape can be an overr iding f ac to r ,  though, i n  causing p a r t i c l e  

breakup and s t r inge r ing .  

3 This has been demonstrated f o r  spheroidal  UO;! p a r t i c l e s .  

T 

.' 

3A. J. Taylor, J. H. Cherubini, J. M. Robbins, and M. P. Haydon, 

A 

? 
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Fig. 8. Transverse View of a Straight-Rolled (Schedule A) Plate 
Containing S Oxide. 

Y-6 I422 
" 1  K 

Fig. 9. 
taining S Oxide. 

Transverse View of a Cross-Rolled (Schedule B) Plate Con- 
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As discussed previously,  t h e  D-type oxide had a low fragmentation 

r a t i o  and had a high dens i ty  (8.28 g/cm3). 

evidence (Fig.  3 ) ,  t h i s  oxide appears t o  be composed of two d i f f e ren t  

types of p a r t i c l e s .  

ing  a small number of round holes .  

porous. 

t h e  center .  Since t h i s  oxide had a high dens i ty  measured with a vacuum 

impregnation technique, t h e  poros i ty  must be interconnected. The high 

surface a rea  found f o r  t h i s  oxide supports t h i s  contention. Examination 

of t h e  as - ro l led  p l a t e  microstructure  revealed t h a t  t h e  outer  l aye r s  of 

t h e  spher ica l  p a r t i c l e s  were s t r ipped  off  during r o l l i n g .  This produced 

an elongated t a i l  extending from each p a r t i c l e  i n  t h e  r o l l i n g  d i rec t ion .  

These t a i l s  were composed of f i n e s  t o o  small t o  be resolved i n  t h e  

microscope. When counting t h e  fragments, we a r b i t r a r i l y  ignored t h e  

t a i l s  and c l a s s i f i e d  them as  surface f i n e s  t h a t  were scoured f r o m t h e  

parent  p a r t i c l e s .  

ex t en t .  However, from a s t r i c t  fragmentation standpoint,  t h e  co r re l a t ion  

between dens i ty  and p a r t i c l e  i n t e g r i t y  s t i l l  s tands.  

According t o  metallographic 

One was an i r r e g u l a r l y  rounded s o l i d  of ten  contain- 

"he o ther  was spher ica l  and somewhat 

The surface of t h i s  p a r t i c l e  seems t o  have higher poros i ty  than 

This dec is ion  perhaps has biased t h e  r e s u l t s  t o  some 

The N-type oxide was d i f f e r e n t  f r o m t h e  other  two type oxides i n  

t h a t  it w a s  more s e n s i t i v e  t o  cross  r o l l i n g .  This oxide w a s  made up of 

massive i r r e g u l a r l y  shaped p a r t i c l e s  containing reent ran t  surface cavi- 

t i e s .  We be l ieve  t h a t  t h i s  shape c h a r a c t e r i s t i c  r e su l t ed  i n  a grea te r  

s u s c e p t i b i l i t y  t o  fragmentation during a c ros s - ro l l i ng  procedure than  i n  

a purely s t r a i g h t - r o l l i n g  schedule. The p a r t i c l e s  developed a p re fe r r ed  

o r i en ta t ion  t o  each r o l l i n g  d i r ec t ion .  Hence, o r i en ta t ion  d i r ec t ion  

changes twice during a schedule t h a t  c a l l s  f o r  cross  r o l l i n g .  The S 
oxide on one hand w a s  very b r i t t l e  t o  s t a r t  with and fragmented e a s i l y  

on t h e  f i rs t  pass .  

due t o  cross  r o l l i n g  per  s e .  The N oxide, on the  other  hand, w a s  appar- 

en t ly  a s t rong  oxide t h a t  w a s  more r e s i s t a n t  t o  fragmentation than the  

S oxide. 

was ab le  t o  resist fragmentation t o  a high degree. 

t he  other  hand, forced t h e  p a r t i c l e  t o  conform successively t o  t h e  th ree  

d i f f e ren t  d i r ec t ions  involved, and t h e r e  was a f a r  g rea t e r  chance f o r  

p a r t i c l e  breakdown. 

This rendered it insens i t i ve  t o  f u r t h e r  fragmentation 

When subjected t o  only s t r a i g h t  r o l l i n g  i n  schedule A, it 

Cross r o l l i n g ,  on 

I 

b' 
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We define s t r inge r ing  as  t h e  elongation of fragmented oxide p a r t i c l e s  

i n  t h e  r o l l i n g  d i r ec t ion .  

charac te r iza t ion  p l a t e s ,  we observed a r a the r  elementary t r u t h :  

ing upon where i n  t h e  r o l l i n g  schedule the  p a r t i c l e s  s t a r t e d  t o  fragment, 

t h e i r  elongation or s t r inge r ing  w a s  due t o  t h e  remainder of t h e  r o l l i n g  

schedule. 

I n  going through t h e  counting procedure on t h e  

depend- 

The r e l a t i v e  l i f e  of a coherent f u e l  p a r t i c l e  d i r e c t l y  determines 

t h e  r e l a t i v e  degree of s t r inge r ing  t h a t  occurs during r o l l i n g .  

shown i n  Fig.  10, which i s  an idea l ized  i l l u s t r a t i o n  of t h i s  e f f e c t .  I n  

t h i s  i l l u s t r a t i o n ,  four similar p a r t i c l e s  a r e  assumed t o  undergo iden t i -  

c a l  r o l l i n g  treatments.  The f i r s t  p a r t i c l e  i s  pos tu la ted  t o  f r ac tu re  on 

t h e  f irst  pass, t h e  second on t h e  second pass, t h e  t h i r d  on t h e  f i f t h  

pass, and t h e  four th  on t h e  seventh pass.  By t h e  t e n t h  pass, as  a r e s u l t  

of repeated fragmentation, t h e  par t - ic les  a r e  v a s t l y  d i s s imi l a r  i n  length,  

with t h e  f i r s t  p a r t i c l e  t o  fragment being t h e  longest .  This i s  a very 

elementary concept, but it i s  important because it r e l a t e s  s t r inge r ing  

d i r e c t l y  t o  p a r t i c l e  s t rength .  

This i s  

ORNL-  DWG 65-10423 

ROLLING DIRECTION ---e 

I? d3 1st PASS 

Fig. 10. Ideal ized Representation of t h e  Relationship Between 
P a r t i c l e  Li fe  and Str ingering.  



A t  t h e  p l a t e  f ab r i ca t ion  temperature of 

s u f f e r  l i t t l e ,  i f  any, p l a s t i c  deformation. 

500°C the  f u e l  p a r t i c l e s  

Theref ore, a l l  elongat ion 

i s  e f f ec t ed  by t h e  p l a s t i c  flow of t h e  aluminum matrix. 

i n t e g r i t y  by t h e  p a r t i c l e s  i s  magnified by t h e  elongating ac t ion  of t he  

p l a s t i c  aluminum. 

Any loss  of 

We pos tu la te  t h a t  s t r i n g e r  length decreases with increasing p a r t i c l e  

l i f e .  

r o l l i n g  temperature, p a r t i c l e  spher ic i ty ,  and p a r t i c l e  spacing and 

decreases with surface area.  

with t h e  t o t a l  number of r o l l i n g  passes.  

l i f e  depends on t h e  amount of reduction per  pass, t h e  amount of f u e l  i n  

t h e  core, and t h e  amount of cross  r o l l .  

among these  va r i ab le s  would be d i f f i c u l t  a t  present  t o  guess and were not 

evaluated i n  t h i s  study. 

Also, p a r t i c l e  l i f e  increases  with inherent p a r t i c l e  density,  

The number of surviving p a r t i c l e s  decreases 

We a l s o  pos tu l a t e  t h a t  p a r t i c l e  

The exact i n t e r r e l a t ionsh ips  

From measurements of s t r i n g e r  length and from a knowledge of p a r t i c l e  

s i z e  d i s t r ibu t ion ,  one should be ab le  t o  a r r i v e  a t  a value f o r  t h e  average 

p a r t i c l e  l i f e .  Unfortunately, however, one cannot d i r e c t l y  measure t h e  

length of f u e l  p a r t i c l e s  from a two-dimensional photograph. 

i n  t h e  l i t e r a t u r e ,  

of a const i tuent  dispersed i n  an a l l o y  may be ca lcu la ted  from e i t h e r  

a r e a l  or  l i n e a l  ana lys i s .  However, we have no simple way t o  measure t h e  

geometry of p a r t i c l e s  of a cons t i tuent  embedded i n  an opaque medium. Or 
more p r a c t i c a l l y ,  we cannot measure t h e  envelope of a p a r t i c l e  a s  it 

fragments. 

i s  contained within a f l a t t e n e d  envelope, as shown i n  Fig.  11. The f igu re  

c l e a r l y  shows t h a t  a specimen mounted and polished t o  show a longi tudina l  

view would seldom, if ever, show t h e  t r u e  length of t h e  p a r t i c l e .  By 

successive grinding and pol i sh ing  of t h e  mounted specimen, one might 

determine t h e  s t r i n g e r  lengths  i n  a volume of matrix and from t h i s  a r r i v e  

a t  a value f o r  t h e  average p a r t i c l e  l i f e ,  but  t h e  e f f o r t  expended i n  

As  discussed 

a s t a t i s t i c a l  approximation of t h e  volume f r a c t i o n  

We pos tu l a t e  t h a t  as a p a r t i c l e  fragments during ro l l i ng ,  it 
Y 

‘J. E. H i l l i a rd ,  Volume-Fraction Analysis by Quant i ta t ive Metallog- 
raphy, Rept. N o ,  61-RL-2652M, G.E. Research Laboratory (March 1961). 
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PLANES OF 
METALLOGRAPHIC 

POLISH 
- ROLLING DIRECTION - 

ELOPE OF FRAGMENT 

PLAN 'VIEW 

[- ORIGINAL PARTICLE 

E- 

E L EVATl ON 

Fig.  11. Idea l ized  Representation of t h e  Di s t r ibu t ion  of Fragments 
and I t s  Effec t  on Metallographic Examination. 

proving a r a t h e r  apparent t r u t h  might not be worthwhile. 

be l i eve  tha t  s t r i n g e r  length  i s  r e l a t e d  t o  p a r t i c l e  l i f e ,  but  we do not 

have t h e  means f o r  showing t h e  quan t i t a t ive  r e l a t ionsh ip .  

Thus, we 

CONCLUSIONS 

The exploratory nature  of t h i s  work excludes drawing f i r m  conclusions. 

Our purpose was t o  e s t a b l i s h  a s u i t a b l e  way t o  quan t i t a t ive ly  evaluate  

fragmentation and s t r i n g e r i n g  i n  d ispers ion  p l a t e s  containing i r r e g u l a r  

a s  wel l  as spher ica l  oxide p a r t i c l e s .  No attempt w a s  made t o  co r re l a t e  

our f ind ing  with t h e  subsequent i r r a d i a t i o n  performance of t h e  fue l ,  

although such a co r re l a t ion  would be b e n e f i c i a l  i n  evaluat ing f u e l  pro- 

cessing requirements and poss ib le  f u e l  cost  reduct ions.  
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In general ,  we found t h a t  fragmentation experienced by oxide 

p a r t i c l e s  during p l a t e  processing could r e s u l t  from lack of apparent 

s t rength  a s  r e f l e c t e d  by dens i ty  and microstructure and t o  sometimes 

overr iding f a c t o r s  of p a r t i c l e  shape. 

t h e  f ab r i ca t ion  behavior of oxide p a r t i c l e s  can possibly be predicted 

from t h e  physical  p roper t ies  of t h e  oxide and t h e  p a r t i c l e  shape. 

Although not conclusively shown, 

The method used t o  determine t h e  fragmentation index appears v a l i d  

f o r  charac te r iz ing  t h e  qua l i ty  of t h e  dispers ion with respect  t o  i n i t i a l  

oxide proper t ies .  

p a r t i c l e s  with a low i n i t i a l  densi ty  were more prone t o  fragmentation. 

As  in t h e  case of dispers ions of spher ica l  oxide, 

Although we were unable t o  quan t i t a t ive ly  evaluate  f u e l  p a r t i c l e  

s t r inger ing ,  t h e  degree of s t r inge r ing  appeared t o  be associated with 

t h e  r a t e  of p a r t i c l e  fragmentation. 

initial rolling passes exhibi ted a l a r g e r  degree of s t r inger ing .  Simi- 

l a r l y ,  oxides with l a rge  surface areas  were a l s o  more prone t o  surface 

p a r t i c l e  scorning and t h e  subsequent s t r inge r ing  of t h e  f i n e  p a r t i c l e s .  

P a r t i c l e s  which fragmented during 
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