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decreasing sequence ? O h L  and its corresponding 

trial lens sequence ( u ) z L ,  where cL is the desired 
M 

local optimum lens attainable by the process from 

the ,first trial lens. 

INTRODUCTION 

This paper is missionary. Its purpose is to win converts 

to the cause of correctly applied nonlinear least squares 

optimization techniques. A sizable portion of the running 

time of many digital computers is occupied with the following 

problem: a certain system is completely determined by a 
1 n choice of n continuously varying parameters, uz(u , , u ), - 

and hence the system may be idealized as a point M in arith- 
.u 

metic n-space k.  The 2 family of such systems fills a 

region of A,. It is assumed that any sample system of the 

family nay be appraised by foming a.n error vector 

E(U)~(E~, , EN). &I, whose components Eh4(u) measure 
* - 

the departure from perfectfon of the sample. The positive 

scalar @=E-E-E E (a repeated index 1n~il.1 3npl.y summation 
.,.A .- Q ", 

over its rage in the abeence of any statement to the contrary) 

is taken as measuring the merit of the sample and @ is called 

the merit function, the smaller 6,  the better the sample. 

A sample system u will be called opt:lmal with respect to its 
Y 

neighbors In A, when @(u) is a local minimum. 
I*CI 

The search for an optimal system is begun by the player's 



blindfolded draw of an initial system % from the urn An. 

He then employs the error vector E and its partial deri- 
Y 

vatives *I*L E, i:(a~l/aui, , ~EN/~U') to determine an 
improved system ul. Continuing in this way, he forms a 
sequence of trial systerns [u)-u . u and the corre- 

n M0'-lJ 

sponding sequence of merit functions ( 6 ) .  When the 

derived matrix I ~ E * ,  i(~) is independent of u the problem 
A 

is called linear, and otherwfse nonlinear. An Lntultively 

obvious theorem of analysis ensures that, when the posf - 
tive sequence [$) is monotone decreasing, it converges to 

a limit mL. Then if u_L be the limit of the corresponding 

system sequence [u), _uL is the desired opti~nal system. - 
The chief result of this paper is a constructive 

proof that a correct application of the method of non- 

linear least squares will restrict the computer to the 

formation of a monotone decreasing sequence of merit 

functions. This is in sharp contrast to a non-monotone 

sequence wherein the'tiine costly output of a selection 

cycle nust be rejected when the new merit function reveals 

its system to be poorer than the predecessor. 

Definition. Any least squares program which extrava- 

gantly commits the comeuter to the formation of a sequence 

[a] whlcl~ is - not moriotone decreasing will be called a 

malpractice program. 



Observation. Most nonlinear least squares optimiza- 

tion p~ogrms which have come to our attention have been 

malpractice programs. In particular, the lens design 

code employed at Los Rlamos and written by J. C. Hol1ad.a~ 1 

9s such a program. 

As a second. illustration to support our observation, 

we quote from D. P. I?ed.er2 who comments on the nonlinear 

least squares optical d.esign method: "It is- a matter of 

practical experience that, when the process converges, the 

speed .of convergence is.much grecter than in the gradient 

method. On the other hand, if the equat ions are suffi- 

ciently nonlinear, the process will d:Lverge, and if this 

occurs, the characteristic behavlor of the solution vector 

is to oscillate wildly about the minimum without ever 

getting close to it. This, In fact, seems to be the normal 

behavior of the method when used in optlcal design. ! I  

Federls d.escription sho\?ia that Holladay does not wzlk alone 

along t h e  patlzv~ay of malpractice. It is a trail well 

trodden by the optical fraternity! 



1. OPTIMIZATION EXAMPLES 

Let it be desired to minimize a given differentiable 

9;:. ,. ;. :;<<. 
1 n function )(u , ., u ) over An. One may form the error 

1 vector C*ll Ez(&j/au , , a+/%un) and. minimize @-E.E. H* - As 

a second example, let us seek a solution of the nonlinear 
1 algebraic system Ei(u , * ,  un)-0, i=l, * ,  n. If 

u be a trial solution, we form the error vector 
*n 

E(E~(&), - , En(u)) and minimize 6-E* E over %. As * - .-C. * 

a third example, let us seek to select from the an family 

of plane curves y=f (x ;  u', , un) that particular 
\ 

curve of the famfly whfch best fits a given set of data 

points (xA, yA), A=l, , Ny N?1, in the least squares 

sense. We form the error vector components 

E A- =f(xA; u)-yA, A=1, * ,  N, and minimize &E.E A"* a over An. 

A fourth example, whfch is a model of least squares 

precision, is the method of R. E. von ~ o l d t ~  for computing 

the eigenvalues and eigenvectors of a seal symmetric 

matrix A. Here one seeks a vector u and a related. scalar * *54 

h such that Au-Xu=O. Tke trial system of our introduction 
WH* - 

is .now the trial eigenvector - u and the corresponding trial - m 

X is taken aa ~=u'Ad$u. The error vector E is defined by 
m *, nr n*.r 

E=(Au-xu)/iul and $zEeE is minimized over A,. The writer 
- - - A  - 8  Il\ 

has coded von Holdt's method for the IBM Stretch and has 

resolved. each eigenvalue and eigenvector pair (A, m u) of an 



4 exac t ing  8x8 test matrix with 14 digit accuracy by the 

iteration sequence 16, 5, 6,  3 ,  6, 5, 3, 1) per pair 

( A ,  LI). The r a p l a  convergence of von Holdt Is method as 

app l i ed  to a highly  nonl inear  problem first convinced 

the writer that Lack of monotonicfty i n  the m e r i t  function 

sequence ($1 represents a gross defect  in any least 

squares optimization program which should not  be tolerated. 



2. LEXS DESIGN 

A lens designer, faced with a certain imaging problem, 

draws upon his background of experience with such p~oblems 

to commft his present design to 

1) a certain number nSwf of refracting or reflecting 

surfaces Z1, C2, . whose sequential order agrees with 

that in which a light ray from an object point meets the 

SUF~ aces , 

2)  achromatization wfth respect to a specified set 

of colors P ;  /3=1, . ncolor~ 

3 )  a definite selectfon of refracting materials 

. 0, 1, encountered by the ray in 1) in the order 

0,  El, 1, x2, 2, . whose refractive indexes for the 

/3 in 2) are known to be nOg, S, . . .  .Y 

4)  a camera box of specified dimensions, 

5 )  refracting or reflecting surfaces which are to be 

ae bected from the 2-parameter fam%ly of quad.ric surf aces 

(B, C) of revolut9~on def lned by Eq. ( 12.4), of vertex 

curvature B and of form constant C, where C<-1 yields an 

oblate spheroid, C=-1 a sphere of radius R=~/B, -1<C<O a 

prolate spheroid, and 0 0  an hyperboloid of two sheets. 

He then proceeds to optimize his design over the totality 

nf lens systems compatfble with his specifiications. ThusJ 

if he should choose nswf=6 in 1) and define the sequence 



in 3) to be (a, g, g, a, g ,  g, a}, akair, g-glass, the 

resultant family of sample lens systems will be of the 

~ister type illustrated in Pig. 2.1. The parameter set 

insert Fig. 2.1 appro~imately hem? 

u is given by 
YL 

u-2Epor radius of entrance pupil, 

-1- - distance from ZO to plane of entrance pupil, ==dep= 
uL=di= oriented distance from Xi - to =i+1, i=o, * ,  6, (2.1) 

u 6 + b  = vertex curvature of xi, 1=1, . , 7 ,  i- 

u 13+iz~i- form constant of x ~ ,  i=1, ', 7, 

so that Fig. 2.1 depicts a representative member taken 

from the family of a3 such lenses obtained by varying 
the ordered set ua(u-2, 

-*I 

, u20) independently. The 

best perfoming lens in this set will be found by optimizing 

the design over Aa3. Economy in productgon, however, map 

poss5-bly be achieved by imposing conditions of symmetry or 

skew-symmetry and other 'aide cond?.t,lons on t.he eligible 

family. We shall define such conditions for the computer 

by means of a parameter flag vector f~(f-~, 20 
y.L 

* , f  ), 

where 
i 

1) f =i means that ui is independent; 

2) fi=999 means that ui is to be held fixed at its 

input data value; 



3 )  f '=+( - ) i#~ ,  iZ0, means t h a t  uJ i s  dependent upon 

t he  independent ui according t o  the  symmetry ( skew-symmetry ) 
i condi t ion  uJ(dep)=+( - )u  ( indep.  ) ( no t e  that i f  the  p a i r  

0 i i 
(U , u ) forms a dependent s e t ,  then u i s  f lagged as 

independent and uo a s  dependent); 

4 )  fi=-999, S iSnsUrf ,  means t h a t  the  spacing uizdi 

w i l l  be assigned a sequence of input  data values a s  i n  the 

ease of t h e  sliding l en s  i n  a zoom assembly as discussed 

i n  s e c t i o n  11; 

5)  fa=9999. =elsupf means t h a t  the  spacing uazda 

i s  dependent upon the  independent d l s  according t o  t he  

dependency 

da=Da+Dlar Idr ' , 
where d p l  is  summed over t h e  independent d t s  and D, and 

D1arl 
a r e  da t a  input  cons tants .  

AE an cxample of Bhc use of the par*&naLem* Pfag vector 

f i n  cons t ra in ing  the '  design, l e t  us introduce the following 
.u 

constl-aitits un the  Lister l en s  of' F ig .  2.1: 

a )  Let the  d i s t ance  from Co t o  C be a f i xed  L. 
, .  7 

b) Let the  lens (C1, Z2) be i d e n t i c a l  w i t h  (Z4, "9 
c )  Let t h e  surfaces .X and x6 be skew-symmetrical. 3 
a) Let dn=d6 and d =d 

2 5' 



e') Let the photographic plate be plane (8/=0, c7=-J). 

f) Let all refracting surfaces be spherical (all C1s 

are -1). The following flag 'vector f imposes these con- 
m 

straints: 

1 2 4 6 f-2=-2, f'l=-1; f0=6, f =I, f =2; f3=g999; f =I, f5=2, f =6; 
8 f7=7, f=8, f9=9; f10=7, f 12=-g; 13=999 ; 

i f =999, i=14, 20, (all C1s held fixed at common 

input data value -1). 

Here the dependency (2.2) imposed on d by's), b), and d) is 3 
d -L-2dl-2d2-2d6. Thus a=3 defines the a range in'(2.2), 
3- 
and d,, ranges over the independent dfs, namely dl, d2, d6. 

The independent parameters of our constrained system have 

been chosen to be (po, dep; dl, , d i ;  , B ~ ,  B9) so 

that our constraints have reduced the dimension of .our 

eligible family from 23 to 8. In general, the uncon- 

strained lens optimized over 1$3 will be superior in per- 

formance to the constrained lens optidzed over A8. Only 

under the highly improbable circumstance that the optimum 

over A lies itself in A8 will the two optima be the same. 23 
In'the sequel it should be understood that the param- 

1 eter set &z(u , , un) refers to the n independent 

parameters of the trial lens as defined by the parameter 

flag vectorx and a possible renaming. Thus n=23 for the 

unconstrained Lister lens of Fig. 2.1 while n=8 for the 

constrained lens of' o u ~  example. 

-10- 



3 .  L I G H T  COME' SAMPLING 

In deference to a well established convention, Fig. 2.1 

shows an entrance pupil of.radius p wlth its plane normal 0 

to the optical axis and 'at a distance d. from the object 
eP 

plane. If an axial object point Q be regarded as the 

vertex of a right circular cone having the entrance pupil 

as base, then any ray from Q lying within this cone will 

traverse the lens system and reach the plate. Now let 

the entrance pupfl  be subdivided into small squares by 

a square mesh and consider the totality of rays emanating 

from the axial point Q and. passing through the centers of 

the mesh squares. This family of rays constitutes a 

planar approximation to a finite uniform sampling of the 

2 continuous family of Fays from the axial object point 

2 Q to all the oo points of the entrance pupil. A truly , 

uniform sampling of the rays from the axial point Q would 

result from properly choosing the mesh points to ,le 

equally spaced on a sphere about Q as center rathep than 

equally spaced on a tangent plane to such a sphere as we 

have done. A desire for simplicity in computatlon, 

however, prompts us to settle for t h e  planar approximation 

t~  mif form pay sampling just described.. 

Now, with each sample ray still joining the light cone 

vertex Q with a mesh square center, continuously move Q 



away from i t s  former a x i a l  p o s i t i o j ~  a1.or-g , t he  meridional 

l i n e  normal t o  t he  axis and observe the gradually increas-  

ing nonunif ormj-ty 'of the f i n 1  te ray sampling. As the 

pr inc ipa l  ray from Q becomes s teep ly  inc l ined  t o  t he  

o p t i c a l  =axis the  f i n i t e  population s m p l e  becomes gross ly  

d i s t o r t e d  from a u n i f  o m  sample. 

The Holladay lens design cod.e, which employs a con- 

ventional  entrance pupi l  normal t o  the a x i s  as i n  Fig.  2.1, 

has been found. by B. Brimer t o  be inadequate f o r  the  

design of wide angle l ens .  A s  a remedy Brixmer  proposes 

t h a t ,  f o r  a given p a i r  (d. p o )  of Fig. 3.1, a 1-parameter 
ep' 

i n s e r t  Fig. 3.1 approxlmtely here 

family of Incl ined entrance pupils  as rn Flg. 3.1 replace 

the  conventional unique normal entrance pupi l  of Fig. 2.1. 

Thu-s Brixner proposes that  a lens be designed by I n s i s t i n g  

bi-~i:~I; ,  PUI' Q a~u ub JacL p u l ~ ~ t ,  all 11gh1; fli tlie lqight cfy- 

cular cone of Fig. 3.1 should traverse the  l ens  and reach 

the pla te .  



4. A I M I N G  OF SAMPLE RAYS 

Let the orthonormal triad (s, ,ey9 2,)  of Fig. 3.1 

take the directions of a rectangular Cartesian set of 

axes wfth origin at the center Of of the inclined entrance 

pupil of Fig. 3.1. Let the plane of the inclined entrance 

pupil be spanned by the orthonormal pair (zx, e I), where 
-Y 

the pair (E~', gzl) of Pig. 3.1 results from the pair 

(q, eZ) by a clockwise rotation in the y-z plane through 
the angle 8 .  Sighting from Q we see the inclined entrance 

pupil as in Fig. 4.1 The 

insert-Fig. 4.1 approximately here 

dots show those mesh square centers which are interior to 

the inclined entrance pupil of radius po, the mesh squares 

having a side aozpdq0. 

For a given mesh refinement qo the sample rays from 

the object point Q will be traced in the order shown in 

Fig. 4.1. The circular symmetry of the lens ensures that 

the fate of rays through the left-hand semicircle is known 

when that through the right-hand semicircle has been com- 

puted. The j-th component q of the vector q=(ql, q2, - * + )  
j - 

gives the number of mesh points in the j-th column of a 

quadrant. We regard a single mesh point ray as approx- 

imating the refractive fate of the 3 rays from Q through 
the subarea represented by the mesh point. All mesh points 

which are the centers of squares wholly interior to the 



quadrant are tentatively assigned unit weight. A plank2 

meter, a compass and. some common sense serve to. establish 

the weights of boundary mesh points and occasionaily the 

tentative unit weight of a near boundary 'mesh point is 

altered. The first three weight vectors wePe found to be 

q~=l, - ~~(0.785, 0.785)~ 

Flawless planimeter measurements would result in a 2 whose 
2 components wi satisfy Zwl=(?r/2)qo . The weight vectors *U w 

through qo=10 were carefully determined by Mrs. R. E. Luders 

of Los Alamos. 

Let us now determine the unit vector IW u directed, from 

the object point Q of Fig. 3.1 toward a typical inclined 

entiktnce pupil mesh point (x0, yo1.) whose coor t l lnates are 

referred to the inclined triad (zX, e I )  of Big. 3.1. With 
-Y 

j designating the column of mesh points in Fig. 4.1 for a 

given qo, then 

( i - a  0- I=- (q 
9 - 1 )  - -  * ,  qj. 

Inspection of Fig. 3.1 shows that the mesh point with 

coordinates (x0, yo:, 0) relative to the inclined triad 

( ,  e I, 2;') with origin at 0' has the coordinates 
MY 



. 

(x0, yOfcose, d ep +yotsinB) relative to the triad (zX, ey, 2 , )  

with origin at 0. Thus the desired unit aiming vect'or - u 
referred to the triad (zx, E ~ ,  e,), has the components 

Ux +xd Mag , %-(yo cosO-h)/~,~, ~ ~ " ( d ~ ~ + y ~ ~   sine/^,^, 

The same program may compare the design resulting frbm 

the conventional normal entrance pupll with that resulting 

from Brixner's inclined pupil by granting that (cos6, sine) 

be defined by either (1, 0) or Eq. ( 3  according to option. 



5. THE IDEAL LENS 

. Returning t o  our in t roduc t ion ,  w e  begin any l e a s t  

squares  machine pass  with a c e r t a i n  t r i a l  l e n s  u i n  s to rage ,  * 

where u is  b e t t e r  I n  a l e a s t  squares  sense than any of i t s  
mn 

predecessors,  and proceed t o  appra i se  t h e  c u r r e n t  l e n s  by 

forming i t s  e r p o r  vec to r  *... E whose components measure t h e  

depar ture  of t h e  t r i a l  *... u from an i d e a l  l e n s .  The cur ren t  

machine s to rage  va lues  of t h e  parameter p a i r  ( p o ,  d )  of 

Fig .  3.1, when taken t o g e t h e r  with t h e  constant  h de f in ing  

a p a r t i c u l a r  ob jec t  poin t  Q, determine a cur ren t  machine. 

s to rage  l i g h t  cone ~ ( h ,  po, d ) emanating from Q as i n  
eP 

Fig. 3.1.  A choice of qo i n  Fig.  4 . 1  a s e t  of 

mesh po in t s  i n  t h e  base of t h e  l i g h t  cone and t h e  r ays  

from Q through these  mesh p o i n t s  d e f i n e  our  f i n i t e  p lana r  

approximation t o  a uniforrn sample populat ion of t h e  cone ' s  

light. 

Def in i t ion .  We s h a l l  say  t h a t  a sample ray  i n  t h e  

l i g h t  cone ~ ( h ,  po, d ) v i g n e t t e s  when it  fa i l s  t o  reach 
eP 

t h e  photographic p l a t e  f o r  any reason whatever. 

A sample ray  which t r a v e r s e s  t h e  l e n s  and reaches the 

p l a t e  scores ,  i n  a v i g n e t t i n g  sense,  a success fu l  event,  

while one which f a i l s  t o '  reach t h e  p l a t e  scorns a f a i l u r e .  

An i d e a l  l ens ,  whfch we stnofvc t o  approximate a t  conver- 

gence, i s  charac ter ized  by t h e  fol lowing p r o p e r t i e s  - a t  



convergence: 

1) There is no vignetting of any sample ray in the .-- 

light cone C(h, pG, d ) associated with any sample obJect 
eP 

point Q of height h. 

2 )  There is perfect ochrornatized focusing. that is, 

all sample rays of all desfgn colors p, P=l, . 
" ncolor' 

wlthin the light cone C(h, po, d ) associated with each 
eP 

tested. object point Q will focus on a unique image point 

Q' 

3 )  All design specifications will be m e t  precisely. 

Such requirements may include asslgned magnification, 

Gaussian focal length, f-number, oriented distance from 

the last vertex to the exit pupil, minimal and maximal 

allow~able spacing between successive vertices and com- 

patlbility of the physfcal dimensions of the lens with 

Llruse u r  the 9ntended camera box. 



We now b e a n  d.efining the error vector E for optical 
1Y 

design. 3. :tlaahendorf f onnulated. the focusing daf icienoy 

o f  a trial lens u by a centroS.da1 analysis of the spot 
m 

diagram resulting from the multSple  image of sny test 

ob,ject point Q pro3ected on the photographic plate by 

the sample ray population of Pig. 4.. 1 of specified color 

,E. A n  important extenslon of the Wachend.orf method. was 

t h e  outcome of a series of' consultations between 

B. Brirvler and J. C. I-Iolladzy to vrhich the latter gave 

a mathernat!-cal formu2atilon. The IIollad.ay program , however, 

does not weight each sample ray accord.iq to the illum- 

ination wllich it represents as clescribed. for Fig. 4.1, 

nor does it provld.e an av.tomtlc correctim of' vIgnettSng 

rags or steer the canputation away from shaping a lecs 

which cannot be made in a shop (the entrance pupil radius 

goes ne~ative or some oriented. spacing of successive 

vertices changes sign). Ye present in this and succeeding 

sections our o m  modification of the Brixncr-Holladay 

extension of the ~achendorf method which recognizes the 

aspects of lens design Just described. 

k t  Q,, at height hy in Flg. 3.1, r=1, "object9 

be a s e t  of object test points chosen arbitrarily as a 

discrete representation of a continuous object line 



segment. From Qr we trsce aray of color /3, P=l, a ,  

aimed at an inclined trial entrance pupil mesh "color'  . 

point resulting from some arbitrarily chosen qo sub- 

division of Fig. 4.1. The ordered. components of the 

ill-wnination weight vector w of (4.1) serve to identify 
rU 

the mesh points. In general, not all mesh points of w 
U* 

determine a plate-reaching ray. We select that subset 
--, 

w of w which is plate-reaching, as determined by ray- -fir 
N 

tracing, where xpr has the components WF*, E=l, -, 
29 

Igpr .* taken by the tra,cing order of Fig. 4.1 from the 

plate-reaching components of w. - 
The plate-reaching ray 3+pr of color P aimed from 

the object point Qr through the mesh point will image 

Qr into the plate point with plate rectangular coordinates 

( x~fir J YEer). where. ( 0, hr ) would be a plate point on a 
llne through Qr.parallel to the optical a x i s .  For every 

right--hand semicircular mesh point of Fig. 4.1 there 1s 

a, companion left-hand semicircular mesh point which would 

yield the symmetrical companion image(-~q~~, dd J qP1'). The 

Npr images of Q,, together with their companions, form a 

plate - spot cloud D of color ,8 with centroid (0, p ), where Pr Pr 
~ ~ ~ " P ~ ~ f l ~ ~ ~ b ~ ~ ~  Wpr=Zq E T9 (6.1) 

( f o r  convenience in presentatj.on it is askumecl here that 

not all sample rcys v i g n e t t e ,  g o  w, ,~o) .  The first set 
~1 



of centl-oldal e r r o r  components of AU E are def ined  t o  be 

(?ZPr -0) and(y-- EPF -p ~r ) of weight 15. 
W f i n l t i o n .  The statement  t h a t  a component EA of 

E i s  of weight wA means t h a t  EA%*eA, where tA measures 
m 

a c e r t a i n  de f i c i ency  of t h e  l e n s  and wA i s  a urej-ght which 

we a s s i g n  t o  EA i n  the  l e a s t  squares  process  of minimizing 

Tne g r e a t e r  t h e  weight w ( 4 )  of a.n e r r o r  measurement 

4 ,  t h e  more w911 '&, . . be dr iven  toward. 0 a t  the poss ib le  

expense of o t h e r  l e s s  weighted measuremen,ts. The van- 

i sh ing  of ( 6 . 2 )  f o r  a l l  ??, with  19 and r. f i x e d ,  would 
. . 

imply t h a t  t h e  co1.0~ spo t  cloud D has coalesced t b  Pr 
coincide with i t s  cen t ro id  ( 0 ,  p ) . w 

Next.; consid.er t h e  composite spo t  cloud D =C D r- P pr 
wi th  cen t ro id  ( 0 ,  p r ) ,  where 

W ' 7  id ~ ~ - " ~ w ~ ~ P p ~ / ~ ~ ~ r '  r-.p pro 

The second s e t  of c e n t r o i d a l  e r r o r  components of a r e  

defined. t o  be 

( p  -p ) of assigned p a r t i a l  weight c  . PE I?. pr 
To de f ine  what i s  meant by t h e  " p a r t i a l  weight c ( 4 )  of 

an e r r o r  measurement e," w e  f irst  s t a t e  t h a t  only t h e  

f i rs t  se t  nf centroidal components (6 .2 )  of .<-A E a r e  

a s soc ia ted  Immediately with known weights. W e  seek t o  

automate t h e  s e l e c t i o n  of' t h e  weight w ( 4 )  of any o t h e r  



e r r o r  measurement such as ( 6 . 4 )  by g i v i n g  i t  a. d a t a  

inpu t  p a r t i a l  weight c ( c ) .  A t  t h e  end of a complete ray-  

t r a c e  w e  s h a l l  a r r i v e  a t  a r o o t  mean square e r r o r  number 

de f ined  l a t e r  by Eq.  ( 7 . 3 )  whtch measures t h e  .Rrmss J 

composite focus ing  e r r o r .  Thi .s  number Rmsq ha.ving been 

determined,  w e  t hen  clef i n e  

W( F. 12(  4 4 )/cmSq I / (  1 c J 

where c (  ) and cnnsq are d a t a  f~npu t  c o n s t a n t s ,  b o t h  

chosen as 1 p r i o r  t o  t e s t i n g  f o r  b e t t e r  va.lues. T h u s  

v r ( 4 )  Is a u t o m a t i c a l l y  s e t  l a r g e r  when ! E I ? > R ~ ~ ~ ~  and 

a ,utomat ical ly  approaches c (  2 )/cnnsq as 1 4  I0flmsq- ~t 

Is hoped t h a t  t e s t i n g  will reveal o u r  trial d a t a  e n t r i e s  

c ( ~ ) r c m S q ~ l .  t o  be  s a t i s f a c t o r y  and s o  j u s t i f y  t h e i r  

u l t i m a t e  remova.1 from l n p u t  d a t a .  The coding dev ice  f o r  

copri.ng w i t h  t h e  delayed. s e t t i n g  of weigh ts  impl led by 

( 6 . 5 )  w 1 l J .  be d.eucr~:l.trerll I n  s e c t 1  on 3 0 .  

The  van i sh ing  of bo th  (6 .2)  and ( 6 . 4 )  f o r  g lven  I? 

and a l l  ?? and would. imply t h a t  a )  each c o l o r  s p o t  c loud 

D ~ r  has  coalesced.  t o  colncj.de w i t h  i t s  cen t ro id .  (0 ,  p ) Pr 
and..h) a l l  t h e  c o l o r  centro1d.s have coa lesced  i n t o  a 

s l n g l e  p o i n t  ( 0 ,  pr ) ,  a p e r f e c t  mul-ticolored. image of Qr. 



7. AREAL ERROR COMPONENTS 

Aware that the design parameters comprising the 

components of the trial lens M u are generally too few in 

number to attain the simultaneous vanishing of the 

centroldal components (6.2) and (6.4), Brixner and 

Holladay continued to form additional error components 

in order to bring the image spot clouds into agreement 

with practical requirements of good focusing. Gener- 

alizing their treatment to pay heed to our introduction 

of weighted illumination and plate-reaching discrimination, 
21 

a ray trace from Qr of color /3 through the plate-reaching 

mesh points defined by w of the previous section enables -fir 
us to form the weighted mean squared radius 

of the spot cloud D of color /3 relative to its centroid Br 
3 

(0, ppr). We shall say that Rir , measures 'the area of 

DPr, a spot cloud of weight WPr~X~sy. The composite spot 

cloud +sX D of weight Wr will then have the area B Pr 

while the composite spot cloud D2= rDr of weight W will 

have the area . 

The areal components of-E,are m* defined to be 

( Rr-Rmsq) of assigned partial weight cr . 



The vanishing of ( 7 . 4 )  would imply t h a t  each mul t i -  

colored spot  cloud Dr which images Qr, r=1, nobject '  

is of equal a r e a .  



8. CIRCULAR SHAPE ERROR COt4PONENTS 

The centroidal components (6.2) and (6.4) and the 

areal components (7.4) exhaust our generalizations of 

the spot cloud components of E d.efined by Brixner and 
II..) 

Holladay. It is possible, however, that the composite 

spot clouds %, having nearly the same area at conver- 
gence, may remain distorted from circular shape. To 

ensure both nearly equal and circular areas we form 

and define the circular shape components of gto be 
circ (Xr-yr) of assigned partial weight cr . 

Referring to the three characterizations of an 

.ideal lens in section 5, the error components (6.2), 

(6.4), (7.4) and (8.2) measure the d.eparture of our 

trial lens u from the ideal property 2), namely the 
ICI 

perfect focusing of Qr into its unique image Q;. 



We consider in this section those events which may 

be encountered during a ray-traces supplying the first 

evidence that the sample ray will not traverse the entire 

lens system and reach the plate to form its image of the 

obgect point Q. The occurrence 'of such an event will be 

the signal to halt the further tracing of the errant ray, 

to form a vignetting component of the error vector AH E, 

and. to start tracing the next ray in -the mesh of Fig. 4.1. 

1) Discriminant component - -  of E. Looking ahead to 

Fig. 12.1 and anticipating that the refracting (or 

reflecting) surface Xi will be assumed to be a quadric 

of revolution, then the axial coordinate z of the refrac- 
Q9 

tion point Qi(x,y,z) will be determined as the solution 

of a quadratic equation with a discriminant c2 as defined 
by Eq. ( 1.1). We compare iC with a bias input constant 

cl>O and form the biased discriminant error component 

-2 --2 ci=q when q of assigned partia,l weight Ci ' (9.1) 

2) Feathering component - -  of E. If a pair of succes- 

sive refracting surfaces (Xi - Xi) should Jmtersect on 

the axis side of the ray segment cut off by them, the ray 

will pierce these surfaces in the reverse order (Xi, Xi-l) 

which will be said to constitute a feathering violation. 

We must consider two cases: 



a) di - 1>0, I.. e. the ray has suffered. an even number 

of reflections at the completion of its encounter with 

z. 1-1' Define Fiadi - l+~i-zi - and cornpare P i  with a bias 
I 

input consta.nt~~~>O and form the biased feathering error 

component 

(;-F;-E; when P'<E' of assigned. partial weight c;; i 2 (9.2) 

b) di - i.e. the ray has suffered an odd number 

of reflections at the completion of its encounter with 

=i-1 . Using the same bias input constant E$>O of a), 

compare F i  of a) with and. form the biased feathering 

error component . 

c;aFi+~; when F~>-E,)  of assigned partial weight cb.  (9.3) 

3) Total reflection component - of 5. In Eq. (13.6) 
- '1.2 

we shall meet a second discriminant, ql , with the 

optical significance that a ray is transmitted by a 
? refractlilg Burrace Xi when ai 20 and is totally reflected 

when gf2%. At a refracting surface we compare 612 with 
an Input bias constant E;>O and form the biased total 

reflection error component 
- ' 2  '=q'2-~i when q < s t  of assigned partial weight c ' 

3- i 3 3 (9.4) 

4) Intolerable refraction point radius component - *  of E. 

As input data we enter - R - = ( R ~ ,  y, ) whose i-th 

component measures the maximum refraction point radius 

relative to the axis that will be tol-erated during a ray- 



trace. At the refraction point (xi, yi, zi) we compare 
* with dax and form the intolerable refraction R ~ = ( x ~ + Y ~ )  -- - 

point radius error component 

443~ i - .~ym when R~>T of assigned partial weight c4. (9.5) 
4 

This completes the description of the four vignettfng 

components of E. 
L 



10. DESIGN DEMAND ERROR COMPONENTS 

1) Magnification demand. From section 6 and 

Fig. 3.1 the object points Qr(O, hr3 0), r=1, * ,  

ject' are imaged into spot clouds Dr with centroids 

at the plate points (0, pr ) as defined by (6.3). In 

terms of a data input magnification vector - PImag with 

components +( - ) for inverted ( upright ) image, 

we fom. the Brixner-Holladay magnification demand 

components of E, - 
mag [mag~pr+~I'hr of assigned partial weight by. . r 

2) Second focal length demand. If a designer 

schooled in Gaussian optics should wish to prescribe 

the second focal length, fiSsign, of the system, he 

need merely trace a paraxial ray parallel to the axis 

at an object height h=aarax pO3 with 'parax a 

likely ahoioe, meacwc the obocmrcd oecond focal length 

fAbn and form the Brixner-Holladay second focal length 

demand ccrinponen t of E, 
M 

f- f 4 ='If hbs 'l/fLssign of assigned partial weight c . (10.2) 

3) f-number demand. As a working definition of 

the f-number of a lens outside of the Gaussian domain, 

Brixner aims a merid.iona1 ray from QO, the intersection 

of the axis with the object plane ZO, to a normal entrance 

pupil point at the radial diotace S2po, with %l/(r2 a 



likely choice, and observes the acute angle 8 which the 

refracted ray makes with the axis on emerging from the 

system. He defines the working observed f-number to be 

We accordingly form the f-number demand component ' of 

ef/#=l/( f/#)obs-l/( f/#)assign of partial weight c f/# . 
4)  Exit pupil oriented dl stance demand.. Here 

Brfxner aims a principal ray from an obgect point at a 

- specified height h above the &xis. If the refracted 

output ray be observed to intersect the axis at an 

oriented distance dexpuobs from the vertex of the last 

Xi, then we form the Brixner-Holladay exit pupil demand 

component of g, 
p P u =  

-l/dexpuobs -'ldexpuas s ign of assigned partial 

5) Oriented upper bound demand, Referring to 
-1, 

U =Po, u-L -dep9 ui%ii as derined by Eqs. ( 2 )  we shall 

bound the d,omain of design freedom of each of thgse 

parameters by entering as input data a lower oriented 

-2 -1 bound vector I mr(m , m , * )  and an upper oriented 
1 bound vector .- M.(PI-~, M- , * ) ,  where sign ui=sign 

- 
rn:=sign Mi. u 2, u-I, u0 are always positive, but the 

spacings uL=di may be of either sign due to possible 



reflections. We define the oriented upper bound demand 

components of E - by 
i i euPpu -M when I ui I> 1 M' I of assigned partial weight cup. ( 10.6) 

It is not possible to constrain a design parameter to 

stay on the admissible side of its lower oriented bound 

by means of forming a lower bound error component, for 

change of sign might then occur during successive least 

squares adJustments and during such a sign reversal the 

machine would be appraising a lens of impossible con- 

st~ction. This absurdity 1s permitted by the Holladay 

code In the hope that the sign barrfer may agafn be 

crossed and so permit the machine to resume design in the 

domain of a constmictible lens. We shall discuss the 

treatment of the lower oriented bound - m imposed on g 
through the dls in section 28. 

A zepo input  d a t a  entry for a design aemmd I s  a s lgr~al  

to by-pass that demand a6 being of no deslgn interest. 

Thus a designer who has severed hfs pre-computer tfes 

with Gaussian optics will normally consider 2) to be of 

scarcely more than textbook interest. 



11. ZOOM LENS DESIGN 

!Je consid.er here a zoom lens  previously designed by 
6 Brixner using the  Holladay code. It i l l u s t r a t e s  type I 

of th ree  comon zoom types I, 11, 111, where types I1 and 

I11 w i l l  be presented a t  the  end of t h i s  sec t ion .  Brixner 

found t h a t  t he  design shown schematically i n  Fig. 11.1 

insert  F ig .  m. 1 approximte ly  here 

provfdes enough degrees of freedom t o  y i e l d  good r e s u l t s .  

A s e t  of 2m+l a r b i t r a r i l y  spaced object  points  Q1, 9 

I 

O2mtl are t o  be imaged i n t o  a common point 0 '  by 2m+l 

equa l le  spaced posi t ions  of the  s l i d i n g  lens  p a i r  (B, D )  

joined by an inextensfble  ba r  of length ~ / 2 .  For s i m -  

p l f  c i t y  i n  drawing; F'ig. 11.1 shorvs a l l  15 r e f r ac t ing  

surfaces t o  be plane and shows the  s l i d i n g  lenses  B and D 

t o  be mfdaay between the  fLxed lens  pa i r s  ( A ,  C )  and 

(c ,  E) respecEnvely. 

I4e assune now that we have se lec ted  a comon maximum 

allotiable g l a s s  thfclmess M compatible wfth the  dfstance 

L/2 within which we must a l l o t  t he  2m+1 equally spaced 

s t a t i o n s  f o r  the  movable lens  B. Lett ing % represent  

the common a i r  space between successive s t a t i o n s  of B, 

the condition on % f o r  given L and common maximum g l a s s  

t h f c k n e ~ ~  M i s  

3M(end glass)+(2mn+l)2~( s t a t i o n  g l a s s  ~ ) + P ( m + l ) % ( a i r   gap)=&^, 
(11.1)  



.*.hg=[$~-(4m+5)~]/2(m+l). 

If we demand that $%M, then (11.1) places an upper 

bound on our choice of M, namely 

M%~z( $L)/( 8m+9 ) , %=2M for M=raa. (11.2) 

The 2m+l stations for B are now determined by the zo.om 

station vector d 3i, i=1, , 2m+l, with the components 

$3 4 3 + ( $ + 2 M ) 3  $ + 2 ( % + 2 M ) r  , %+2ni(%+2M). (11.3) 

To define a general zoom lens of type I we now 

relax Brixnerls demand that all the object points Qi of height h 
i 

image into a common point Of. ' We accomplish this by 

introducing data input station magnification demand 

components Mi, f=l, * ,  2m+l, and asking that the 

magnification errorcomponents pi+Mihi (i not summed) 

approach 0 at convergence, where (0, pi) is the centroid 

of the multicolored spot cloud imaging Oi. If we choose 

Mi to satism Mihi=constant for all i, our generalized 

type I zoom lens will satisfy Brixnerfs imaging demand. 

To implement a type I design we fix our attention 

upon an arbitrary one of the continuous object segments 

(oO, Oi) and approximate this by a discrete data input 

object point spectrum Qri3 r=1, ' "object3 whose 

last point coincides with Oi. Doing this for each i, 

the data input object height vector of section 6 with 

components hr now becomes generalized to a matrix of 



heights hri, r=1, . . 
" "object' 1=1, * ,  2m+l. 

The sample ray % of section 6 aimed there from Qr Pr 

now becomes LEpri aimed from the object point Qri. 

A review of the centroid analysis of section 6 shows 

that the extra index i must be added to the centroid 

quantities and to their corresponding error components 

in order toqform the composite zoom stationed error 

vector E. Thus the components of E co~respond.ing to 
*LI m 

the zoom station i are measuring the departure from 

perfection of the lens when set at station I. The 

least squares p~ocess will minfmize the zoom composite 

@=E0E by stealing a bit from the perfomance at one 
rm m 

station to improve that at another. The i-th zoom 

station should cause the type I magnification error 

components of the form 

<Ygzp +M h of partial weight , I rl ri i ri 
to approach 0, where (O,pri) is the centroid of the 

multicolored spot cloud imaging Qri of height hri. 

We begin the zoom design by locking the movable 

lens pair (B, D) of Fig. 11.1 in its central position 

corresponding to i=m+l and proceed to optimize the 

non-zoom system of 5 lenses A, B, C, D, E relative to 

the discrete central object point spectrum QT'm+l, 

r=1, 
"objectp with all 10 glass thicknesses free 



to vary independently within the constraints -lass 

thickness% and with the air gaps subject to the constraints 

of the type given by Eq. (2.2). Let ;central be the 

resulting optimal parameter vector with components 

analogous to those of Eq. (2.1). The components of ,ucentral 

other than u3=d, then define the Initial trial lens in the 
3 

minimization of the composite zoom error vector resulting 

from holding d fixed at the sequence of values given by 3 
Eq. (1L.3), as signaled to the program by setting the 

parameter flag component fJ=-999 as in 4) of section 2. 

For -- each zoom station value of the alr gap d 3 the remaining 

air gaps are subject to the zoom constraints 

d6=(~/2-d3)-dl-d2-d4-d5-y, 

dg=( d3)+dl+d2+d4-dB-dlO, 

d12" (L/2-d3)-d, -- -d2-d4-all-d13-dl$, 
of the type given by Eq. (2.2). 

The zoom lens of type I1 results from placing the 

2m+l object points Oi on a horizontal line at height h 

above the optical axis rather than on a vertical line as 

3.n Fig. 11.1. k t  OO1 be the foot of the perpendicular 

from Oi to the optical axis at the dist.ance doi from C1. 

For given i we approximate the continuous object segment 



(OOiOi) by a discrete set of object points Qri of heights 

hr, r=1,. 
* '  "object ; and request that the i-th zoom 

station reduce the magnification error components 

'ma& mag e - . zp  +M h of assigned partial weight IICri , 11 r i ,  ri i rJ -- . (11.7) 

to small absolute values. 

The zoom lens of type I11 has but one object segment 

( 0~0~) of height h which is approximated by a discrete 

spectrum of object points Qr of height hr., r=1, * ,  

*objecte Data Input magnification demand. components 

Mi, i=1, - * ,  -1, serve to define the image require- 

ments that the i-'th zoom station ahould cause the near 

vanishing of the magnificatSon error components . 
mag emagzp +M h of assigned partial weight III~rI . 111ri ri i r  



12. NERZBERGER'S b'IETHOD OF RAY-TRACING 

We begin a summary of M. ~erzberger's~ method of 

ray-tracing. Figure 12.1 shotvs the input ray emerging 

insert Fig. 12.1 approximately here 

at Qi from the plane Ei tangent to the optical surface 

Zi at its vertex Oi. This ray suffers refraction (or 

reflection) at Q* on Xi and pierces Ei+l at Qi+l as 

the input ray for the next refraction at We 

define the input vectorsi by 

In terms of the transverse posItion vector ii gOiving 

the displacement of the tangent plane pfercing point 

Qi with respect to the vertex Oi of Pi, we define the 

proportional tra,nsverse vector 

P =< A S(a(i), -l-@(ile 1, iPi, . . . --i-i-Li 11-x 12-y n ~ w f  (12.2) 
The matrix $(I) completely defines the ray si of Pig. 12.1 
and will be called the rax identification matrix. The - 

next input pair gi+l ), identified by 4) 
(i+l) 

AY 
J 

is related to the previous input pair (xi, 53) identified 
by . .. according to 

The problem of ray-tracing as posed by Herzberger is the 

problem of computing the four elements or the refraction 



matrix Q (i+l, i) 
LII 

Referred to axes along the orthonormal triad 

e ) of Fig. 12.1 with origin at the vertex Oi - 
( 9  2y' -2 

of Xi, the equation of Xi, restricted now to be a 

quadric of revolution 

expressed as 

about the optical axfs, will be 

We shall call (x, y, z) of Eq. (12.4) the tangential 

coordinates of a point of Zi since they are referred to 

the tangential frame (Oi; sX, f?y, e.&) of Fig. 12.1. We 

also introduce a parallel absolute frame with origin at 

the intersection of the obJect plane Xo with the O09 

optical axzs. The object point Q of Fig. 3.1 has the 

.absolute coordinates (0, h, 0). 

In order to determine rU @ (l) we set i=O in ~ i g .  12.1 

and recall that. now there is no refraction at the object plane 

Z0 so s as En u where 5 is the unit aiming vector with 4 1 &' 

components gfven by Fa. (4.3). Inspection of Fig. 12.1 

shows that 

d e + A + d  
a &=- ocr! -o ( dSo)(&l+Cez), C0~nOuz; 

. :~~=5~&,+d&~ from ~ q .  ( 12.2) (12.5) 

From the definitions (12.1) and Eq. (12.5) it follows that 

where u is given by ( 4.3 ) . 
**. 



13. HERZBERGER'S COMPUTATIONAL PROCEDURE 

We summarize the order of computation in making 

a Herzberger ray-trace. 

1) Seaect a specific object point Q(0, hr, 0) from 

the input data set of object points Qr, r=1, ' "object' 

introduced in section 6. 

2) Select a specific inclined. entrance pupil mesh 

refinement number qo as in Fig. 4.1. 

3) Select a specific mesh point (i, . j ) with coordi- 

nates (x0, yo1 ) given by Eq. (4.2) relative to the in- 
\ cllned entrance pupil frame ( 0 ;  gx, c&, of Fig. 3.1. 

4) Use the definitions (4.3) to form the unit 

aiming vector u referred to the absolute frame (0; &, 
m 

e e ) of Fig. 3.1. --y' --z 

CM 

(1) 5) Use the definitions (12.6) to form @ . 
We now employ induction by assuming that we have 

formed the ray identification matrix $ ( i, and that we 

presently seek to form Herzbergerls refraction matrix 

+ )  in order to f o r m 2  
AY 

(i+l) by means of ~ q .  12.3). 

With the understanding that our attention is now fixed 

on the ray si as defined by Eq. ( 12.1) which is about 

to be refracted by Xi, we simplify notation by omitting 

all indices In our computatfons. 

6) Form the .discriminant 



of t h e  quadra t i c  equat ion 

4% 
y i e l d i n g  t h e  z coordinate  of t h e  r e fpac t ion  poin t  Q 

r e l a t i v e  t o  t h e  t a n g e n t i a l  frame ( O i ;  zX, zy, e,) of Fig.  12.1.  
- .2 ' 

7 )  IS q - < E ~  of ( g . l ) ?  If so ,  form t h e  b iased  

discriminant e r r o r  component 'of ( 9 . 1 )  and s t a r t  t r a c i n g  

t h e  next ray  i n  t h e  mesh ( f ,  j )  of Fig.  4.1. 
1 -2 -- 

8) F o m  + ( q  ) 2  and. so lve  (13.2) by f a c t o r i n g  

t o  ob ta in  
2 Z=BP- - a  P/D, E ~ - B P *  h - s+P f 0, 

which g ives  z=0 f o r  B=O. 

9 )  Compute t h e  t r ansverse  coordina tes  of t h e  
H 

r e f r a c t i o n  poin t  Q (x,  y, z ) ,  

x=( oll+zdP21)/<, Y = ( ~ ~ ~ + z @ ~ ~  )/( 
2 2-$ 10)  Form Rr(x.+y ) and t e s t  f o r  magnitude. 

If too  l a rge ,  form t h e  i n t o l e r a b l e  r ad ius  e r r o r  component 

(9.5) and s t a r t  t r a c i n g  t h e  next  r ay  i n  t h e  ent rance  pup i l  

mesh of Fig.  4 .1 .  

11) Form t h e  f e a t h e r i n g  expression F i ~ d ~  - l+zi-zi - 

t e s t  f o r  f e a t h e r i n g  a s  i n  2 )  of s e c t i o n  9 and, if f e a t h e r -  

ing is revealed,  form t h e  f e a t h e r i n g  e r r o r  component of 

s e c t i o n  9. and start  t r a c i n g  t h e  next  ray .  

12)  Form f o r  f u t u r e  use t h e  q u a n t i t i e s  

-39- 



13) Test the product didi-l for sign. If negative, 

then Zi is a mirror and we define 61--6, where q is defined 

by 8), and go to 17). 

14) A positive product didi-l indicates refraction 

a.t Xi and so we form 

- 2 - 2  2 2 - 2  q t  aq -(n -nt )R  , n ~ n ~ - ~ ,  n t m  i' ( 1 3 . 6 )  
and recognize, as Herzberger seemingly did not, that the 

condition for total reflection at .Xi is qf2~0. To verify 

this, observe that from the refraction law 'nsine=ntsinel 

2 2 2 for the case rDnt the criticality condition sin B=nl /n 
2 may be expressed as n2-n12=(b-s) , where zpng, 1 ,  and 

6 Is the unit norinal to C as given by (12.4), directed 
U* 

from the medium of index n to that of index nt. The 
2 ,2-2 -2 vanishing of qt2 in (13.6) would imply n -n =q /R and 

? _ - 3  -? the equallcy (z  - s) '=q /R'- may be esLablialied by abaerving 

that z satisfief3 Eq. (13.2). 
'3 

15) IS ij1'<s; of (9.4)? ~f SO, ~OZTII the biased 

total reflection error component (9.4) and start tracing 

the next ray in the mesh (i, j). 
2 "  

16) ~ o r m  $r($ )2. 

17) Form ~ i - ( q  -c)/R~, 



This clefLnitj-on of the refraction mat~ix 2 completes 
the computational description of Herzbergerls method 

of ray-tracing . 



14. APERm STOP DETERMINATION 

I n  order  t o  l oca t e  t he  aper ture  s top  of a lens a t  

t he  terminzition of convergence, Brixner and. 11oll.aday 

t r a n s f e r  machine control  t o  a - twin ray diagnost ic  sub- I 

rou t ine  which t r aces  the  two rays sR and & o f  F ig .  14.1 

a w e d  'from a se lec ted  object  point O(0, h, 0 )  and of 

prescribed co lor  ,3. 

i n s e r t  Ff .g . 14 .1  approximztelg here 

R and 2E a re  meridions1 rays al.rned a t  the  extreme ends 1- 

of a  diameter of the  entrance pupil  ( d  p o )  of Ffg. 3.1 ep' 
as defined a t  convergence. Figme 14.1 shows the  twin 

rays as they t r a n s i t  the  space between successive ver tex  

tangent planes El and where by (12.1) and (12.2),  4 
:1 
4 

s = @(')e +--c e =( a"ii )/acr )syj a=l, 2. (14.1) -i-a 22 --y m i-1mz' w i -  

Figure 14.1 shows a point Q on that segment of the  

op t i ca l  axis cut  :out by El and Eicl such t h a t  a c ipc l e  

with Q as cen te r  and plane normal t o  t he  axis cuts  the  

d i r ec t ion  l i n e s  of the twin rays i n  1Q and ,Q. C. FOP a 

I given p a i r  (El, Ei+l) t he re  w i l l  usual ly  be no such point  

Q between them, but  when it d.oes e x i s t ,  end when S.n addi- 

t i o n  the  medium between Xi and Ci+l is - a i r ,  then Q 

determines the center  of t he  required aperture s t o p  of 

radius  Ri.. 

Our point  of view w i l l  be t o  allow Q t o  move along 



the entire axis interval ( - 0 0 ,  6) and to halt it when 

the oriented segments bear the desired relation 

( &  2&). If zi be the oriented. spacing out to 

Q as in Fig. 14.1, then we shall have located the 

aperture stop when 

zidi>O and 1 zi 1 < 1 di 1 in an engineering sense. (14.2) 

Given di and.,Ai as defined by (14.1)~ we seek properly 

chosen scalars X and p and a positive radius Ri such that 

-R;%=-Z i-z e + 14. A +xlgi?i=-( - ~ ~ & + ~ k + p ~ E ~  3 

-zi+XICi-l = - Z ~ + ~ ~ C ~ - ~ = O *  

Eliminating X and p we obtain 

when the denominator'. of zi is not zero. Inspection of 

Pig. 14.1 3110'~~~ L h x t  zi becomes lndctemihate when the 

twin rays are mirror conjugate with respect to the optical 

axis, meaning that 

In such an event zi may be chosen arbitrarily. When the 

first two equalities of (14.5) hold, but not the third, 

then there is no solution for zi. 

We have presented the determination of the aperture 

stop by the tracing of twin rays of chosen color /3 from 



a chosen object  point of height h. It i s  an t ic ipa ted  

t h a t  d i f f e r e n t  s tops  w i l l  r e s u l t  from varying /3 and h, 

but it seems plausible  t h a t  a well  designed lens  may 

y i e l d ' a  family of s tops  within engineering agreement. 



15. ANALYTIC DIFFERENTIATION 

The knowledge of a l l  the f i r s t  p a r t i a l  derivatives of the  ray identi-  

f i ca t ion  pa i r  (^Psy$3s) as defined by (12.1) end (12.2) a t  each vertex tan- 

gent plane Es w i l l  enable us t o  d i f fe rent ia te  all components of the error  

vector E. From Eq.  (12.3), 
*U 

so t h a t  we i n i t i a t e  the induction on a i ( s )  by d i f fe rent ia t ing  II 0 ( l )  as de- 

fined by (12.6), where u is  defined by E q s .  (4.2) and ( 4 . 3 ) .  Preparing t o  - 
form i3if(1)y we r e c a l l  the  def ini t ions (2.1) of the parameter vector M u of 

the  Lister  type lens of Fig. 2.1. From (12.61, 

a m(') - o, i r 1.. 
i,- 

From E q s .  (4.2) and (4.3) we  obtain . 

a - 2"x = ( ~ + ) ~ b ; ) ~ ~ a - , ~ ~  , 
- 1 8- u 2 ( i ~ ) ~ f o s 9 M 0 1 +  (yhcos9-h)a-2~ag , 

2 Y at3 

- 1 a -2 u z s ( i -&)%ls ine~- l+ (d  + ~ ; s i n e ) a - ~ M ~ ~  , 
ag eP 



-1 
( l + y ~ a - ~ s i n e ) ~ - ~  + M uZa M , az - l a 3  

-1 2. 3 a - lsinO 3 - h s i n  Bcose, a - l ~ ~ ~ e  ' h-'sin 9, . 

U s i n g  (15.2) and (15.3) we may evaluate the  non-vanishing a cD 
(1) 

i- ' 
i = -2, -1, 0. We m a y  then use (15.1) t o  eve.luate successively b i t  

(s+l)  

(s+l,s) for s r 1,2;***.  f o r  s = 1,2, *, providing tha t ,  we can form 

(a+l,s) for . . . . 
Now (13.7) gives the  elements of the  refract ion matrix 2 

- - - 
s = 1,2, when we associate the  surface index s of Cs w i t h  ),t,d, z,B 

-. 
i n  (13.7). ~ssuming tha t  Iw. 0") and a i k s )  a r e  known, i d  recallin& from 

(12.1) and (12.2) tha t  

we seek t o  form aig ( " l ~ ~ ) .  Dropping the refract ing surface index s f o r  

convenience, we seek the  derivative of ma 63 as defined by (13.7'). From our 

assumed howledge o f 2  and a f z w e  may form 
. . 



- 
aiD = aiq - ( P * s ) ~ , B  4*..411. - ~ ~ ~ ( 2 ~ 2 )  - ai(s*s), -*.A from (13.3), 

aiz D-+ ( P . P ) ~ ~ B  a I + ai (P*P) U * - B ( P * P ) D - ~ ~ D I ,  r U M L  

2 -2 a i ~ 2  r [(~T-~)a~-~-l)(aa,z+~$~)]c -R C - % ~ ( S O S )  - m, from (13.51, 

a ,;I = - a,< for  ref lect ion a t  from 13) section 13, 

a,<' = *<'-'[2tas- (n2-nl ' )a ia  fo r  refract ion a t  C from (13.61, 

-2 - -- .. -4 . , aiT 2 R [ai<'-ajq - Q ~ ~ R -  1 - from (13.7). 

From these w.ertions and (13.7) w e  obtain tha dea;lred dcriva%ivas 

The method of combined ray-tracing and analytic different iat ion i s  now 

clear .  A ray i s  traced from an object point Q t o  the plane El of Fig. 

12.1 and i s  defined at  Q1, i t s  piercing point of El, by the  ray ident i f i -  



(1) cation matrix of Eq. (12.61, 9 , seneitive only to the 3 parameters 
.+A 

(po, dep, do). We interrupt the ray-trace at El to form aie(') by the 

definition (15.2). We then resume the ray-trace by fonning the refrac- 

tion matrix O (2'1) at El as defined by (1) .7). We observe that @ (2,l) - *** 

is sensitive only to the parameters (po, d do; dl; Bl; c~). We then 
ep' 

use Eq. (12.3) to form 4 E 8 
11111 

(2) (2'1)@(1) and differentiation by means of 
FY * 

Eqs . (15.2) through (15.4) provides a &(2 . Successively determining the 
(s matrix pairs (4 d , ai2(so 1, both sensitive only to the parameters 

at each vertex tangent plane E,, we eventually obtain Q and 3 2  at the 
a 

vertex tangent plane E of the curved photographic plate C(B,C ) . For a 
plane plate E = 2(0,-1). We now use (13.4) to compute the plate spot 

(x,y), and differentiation gives 

The plate spot derivatives (15.5) and the hailedge of the ray identi- 

fication matrix @ at each vertex tangent plane ES and of its derivatives * 

a&(') enable us to differentiate all the components of E as defined in aec- 
I).I 

tions 6, 7, 8, 9, and 10. 



16. EXJCLIDW M-SPACE % 

Let&, A = 1, * o *  , &be an orthonormal set of base vectors spanning 
Euclidean M-space EM. This means that the scalar p r o d ~ c t ~ ~ ~ ~  is given 

by $-% = BAB, where €jAB = l(0) for A = ( f ) ~ .  Any matrix I(FAB(I of con- 

stant elements for which lFABl f 0 defines a new set of base vectors& 

spanning EN defined by f E e F (sum repeated index over its range 1, 
4 CllCQw 

*, M) whose scalar products define a positive-definite matrix IIG~.JJ , 
where 

These new base vectors& are in general skew and of non-unit length, the 
\ 

conditions that they themselves be likewise orthonormal and obtainable from 

the orthonormal base5 by a rigid rotation in EN being Gm E F F 
QA QB" 'AB* 

We. shall assume that I I F ~ I ~  is - not a rotation matrix and shall agree that 

,rill designate an orthonormal base of eM and f a skew base. If V be any -A - rm 

vector of eM, its components may be referred e i ther  to& or fX, 

The Kronecker delta, BAB, gives the components of the Euclidean metric tensor 

G in the base e while GAB gives the components of this same tensor i n  the * --A 

base fA. 
M 

If we confine our attention to ej and a rectangular Cartesian system 

e ) w i t h  origin at 0 md axes along the orthonormal base direc- (0; -el, $3 -3 



tions 3, we are concerned with We Cartesian analytical description of 

the space of'Euclidean geometry. It is .rich.in geometric concepts asso- 

ciated with points, distances between points, lines, angles between lines, 

curves, planes, surfaces, gradient direction at a point on a surface, ,etc. 



17. ARI2RMETIC SPACE An 

Arithmetic n-space An is as poor in geometry as mclidean M-space is 

J. rich. An arithmetic point is merely an ordered set of n numbers, 2 s  (u, 

*, un), and the totality of such ordered sets constitutes An by sterile 

definition. It is a grinding task to squeeze any fruitful idea6 out of An 

because it has no structure, no metric which serves to measure the "distance" 

between neighboring arithmetic points u and u + du. Our trial lens has been 
ICU, *N - 

idealized as a point of An. As a prerequisite for measuring the distance *: 

- 
between a neighboring pair of lenses (u, 2 + d.) taken from A we must relieve - n 

the poverty of An by endowing it from outside itself with a metric, a com- 

modity which it does not have in its own right. This may be accomplished by 

mapping the geometrically barren An upon the bountifuleM. 



~d map.the arithmetic points u of An into the geometric points V of 
AU 15) 

Euclidean space e, we make an arbitrary choice of the mapping arguments 

[M, FAB, v~(I.$], where M defines the dimension of e, F defines a skew 
AB 

basezA =&FA in e, and @(u) are differentiable functions defining - 
the mapping according to the equations 

As 2 ranges over n-dimensional An its geometric image point ~ ( u )  ranges 
-&.A 

over a b9?ersurface Sn€% swept out by the free terminus of the displace- 

ment vector v. The tangent n-plane to Sn at V(U)ES is spanned by 
H. n 

the base vectors 

and its maximum possible dimension will be n. A t  a singular point udn, 

for.<iihich rank II@ (n)/l = r 4 n, thc linear tmg.i~t s w c s  of S is i- 
9 1  - n 

dimensiorul . 



The neighboring arithmetic pair (3 + dg) defines an infinitesimal 

n-tuple d2cAn which maps under (18.1) by 

In the sense of the mapping we may now associate with dFn a scalar magni- 

tude 1 dul defined by 
ISI 

One says that the mapping (18.1) has induced the metric g of (19.2) on 
f ij 

An, i'tself devoid of any metric. 



20. DIRECTION OF STEEPEST DESCENT 

There has been much discussion in the literature of "the direction of 

steepest descent" at a specified trial pointF% of a scalar function 

cp(v), variable over A . All such discussions that have come to our at- 
n 

tention have shared a common oversight, a failure to define the word "steep- 

est." We present here a correct formulation of steepest descent. 

Since steepness is a metric concept, there can be no measurement of the 

instahtaneous rate of change of a function c p ( z )  as the arithmetic point 2 

moves along an arithmetic curve CEA, until - after a metric has been induced 

in An by a mapping of An into Euclidean space. We accordingly assume that 

the mapping (18.1) has been applied so that we have thereby induced in An 

the metric g .(u) of (19.2). The situation is now that we find ourselves 
IJ " 

at a trial arithmetic point %An at which our rp takes the value cp(u) .*..I and 

we consider an arbitrary arithmetic curve C a n  on the trial point 2. Equa- 
i i i tions of the form vi = v (s), v (0) = u , parameterize C with respect to arc 

i i 
lergth s along C m e n  the arithmetic tangent M t with components t = dv /dslo 

is a - unit vector, the condition from (19.2) being grs(2)trts = 1. With arc 

r 
length nuw defined, the directional derivative dcp/ds\ = cp (2) t measures 

9 r 
the initial rate of change of cp w i t h  respect to the arc length parameter s 

as we evaluate ~ ( v )  along C issuing from k. With the observer at the trial 
A 

n- 1 u€An, there exists a family of such unit directions 2 issuing from and 
m. 

we seek that t- from the family along which the directional derivative cp , (u)tr 
,r - 

is stationary. Now the problem of seeking a stationary value of cp (u)tr as t 
rr - r51* 

r u e s  over the unit sphere grS(;)trt5-1 = 0 may be solved by introducing a 

8 
Isgrange multiplier A to fm *(t,h) + q~ tr and by imposing 

# r 



the conditions @*/ati = 0, namely 

These are the equations of steepest descent for a function q(v) at a trial , ' 

Iln 

point %dln relative to the metric g (u) of (19.2) induced on An by the 
13 - 

mapping (18.1) of /in into eM. 

When & is a non-singular point of the mapping (18.1), for which rank 

llfli(~)l( = n, then 1 g . (u)] 0 from the definition of gi in (19.2). In 
0 IJ * 

this case the steepest descent system (20.1) has a unique solution 2. We 

i eliminate the Iegrange multiplier A from zi = At in (20.1) to obtiin ns the. 

unit direction of steepest descent ti = ~ ~ / ( ~ l ,  where from (16.1) and (19.2) - 

which yields the minimizing directional derivative 

when cp is eliminated by (20.1) . , 



21. PRIMTTIrn MAP OF An INTO e 
n 

We shall say that the choice of mapping arguments [ M E  n, Fij 2 6ij, 

i i V (z) E u ] of section 18 defines the primitive map of An into En for 

which (18.11, (l9.2), and (20.1) reduce to 

Otherwise expressed, the primitive map of An into En results from setting 

up a rectangular Cartesian coordinate system $n !>kclidem en and defining 

the image of ;€An to be the geometric point with rectangular Cartesian co- 

1 n 
ordinates (u , * * * ,  u ). This primitive mapping yields ~ a u c h ~ ' s ~  formulk- 

tion of the direction of steepest descent of cp as that of the negative gra- 

i i 
dieit of q .  Since the derived mapping matrix 1 ) ~  . (2) - 6 jl\ is nbr the 

r J  

identity matrix, all points &din axe nonsingular points of the mapping. 
- .  

The simplicity of the metric giJ = Bij causes the steepest descent system 

(20.1) to appear in the solved form of (21.1). 



22. ORZIIONORMAL ERROR mP OF An Irn eN 

The primitive mapping of the. previous section appeared conspicuousl.y 

as the mapping of least imagination. As a mapping for optimizing a lens 

syatem, it ignores the intrinsic error vector 2 of components EA, A = 1, 

N. In order to enrich the xmpping by the inclusion ofz, we now choose 

- the mapping arguments [M 3 N, F~~ - - BAB, vA($ ~~(211 as defining the ortho- 

normal error map of A into eN for which (18.11, (l9.2), and (20.1) become n 

Here also,we are open to the charge of' lacking imagination, for why have we 

chosen to treat our error components E (u) as components of 2 relative to 
A - 

an orthonormal base e rather than relative to some intrinsically chosen --A 

skew base f (u) =- e F (3)) with F (u) presumably dependent on the cur- 
*A* --&@ AB - 

rent trial lens 3dn which we seek to improve? There does indeed east 

such an intrinsic skew base &(&), but its computation for the optics case 

N >>'n is too formidable to be practical for today's computers and so we 

, . 
shall present this in another paper. I 



23. GEOMETRY OF ERROR MAPPING 

A significant achievement of the  error mapping leading t o  (22 .l) i s  

tha t  the function cp which we seek t o  minimize i s  nar in t r ins i ca l ly  related 

t o  the  mayping C N , S ~ ~ , E ~ ( ~ ) ]  by cp E 131 2. This circumstance enables us t o  
1U 

derive by geometric reasoning the steepest descent system 

'Q, iEQ,rzr + E&, i " O 

2 for  q . 19 rela t ive  t o  t h i s  mapping. Namely, a s  2 ranges over A i t s  n 

geometric image ranges w e r  the  hypersurface SneeN swept out by the f ree  

terminus of the mapping vector E = e E (u) with i t s  fixed terminus a t  the  - -Q Q -  

origin 0 of a rectangular Cartesian coordinate system i n  t3 with axes i n  N 

t he  directions of e A 1, * * * ,  N.  The current t r ia l  lens u is  imaged dA' y.l 

2 in to  the  geometric point E ( U ) E S ~ .  We sha l l  minimize cpe) 5 I E ( & ) ~  i n  the 
-4Y 

neighborhood of our current t r ial  y by finding tha t  &€An for which ~ (1~ )  

i s  tha t  point of Sn i n  the  neighborhood of E(&)Es~  which i s  We closest  t o  

0. Seeking an arithmetic n-tuplezeAn such that the  arithmetic l i n e  % +  

17 > 0, will give the direction of steepest descent of cp E * a t  q = 0, 

we replace the curved SneeN by i t s  tangent n-plane x n ( u ) ~ e ,  spanned by the 

n vectors o (u) 2 S Q E ~ ,  (- *i - u)  when rank IIE*, ()?)I1 = n. Since the  flat zn ap- 

proximates the  curved Sn i n  the neighborhood of the point of tangency ~ ( 2 ) ~  

the  direction adn of steepest descent of I E ( V ) \ ~  a s  E ( V )  sweeps out the  
llll- YYI 

2 curved Sn H i l l  be ident ical  with tbt of steepest descent of .- as 

weeps out the  tangent n-plane En(%). The displacement vector 5 from 
Y 

r 0 t o  any point of the tangent n-plane zn(u) i s  of the form d err ($z + %(u) . - * 



, , 
Now the  desired direction i n  %(?) of steepest descent of I C I ; ~ . ' ~ ~  - '(XI Y 

ranges over En(%) i s  given by the direct ion of the taagent ial  vector 

r 1 r 
0 (u)z  when ..A z E ( Z  , *.. 9 z n ) d n  i s  chosen such thatgr(%)z ggies the  -r 

displacement i n  En(;) from the  contact point - ~ ( u )  W t o  the foot  of the  per- . ' 1  

i 
pendicular from the  or igin 0 onto zn(%). The conditions on z giving We 

equations of steepest descent are thus i d e n t i c d  with (23.11, 



24. SIIYGULCIR POINTS OF ERHOR MF\P 

-. , 

The debugging of our IBM Stretch lens design code was undertaken from 

i n i t i a l  t r ial  L i s t e r  type lens u a s  shown i n  Fig. 2.1. This had been 
I*H 

previously obtained by Brixner as a completed design using the  Holladay 

program a s  revised and written by C .  A. ~ehman" for  the IBM 7090. It may 

therefore be assumed tha t  our t r i a l 2  was near an optimum. We constrained 

the  system by a cer tain choice of the parameter f l ag  vector - f of section 2 

which l e f t  us w i t h  12 design parameters out of a possible 23. A nonsingular 

l i nea r  system solver showed that the elements of the  coeff ic ient  matrix 

llgijll  of the  12x12 l inear  system (23.1) ranged i n  absolute value from order 

lo-' t o  lo3. The exponent sequence of the Gaussian pivots w a s  [-2, -4, -2, 

-2, -5, -5, -4, -7, -9, -12, -17, -18') and the determinant was of order 

If we define the  approximate machine zero for  this matrix \ /g  I( t o  i s  
be of order 10-12, obtained as the product of the  maximum element of order 

3 10 by We machine accuracy 10-15, we see tha t  t he  system is  of rank 10 a t  

most and should not be processed a s  a nonsingular system. 

A t r ial  lens ueA i s  a singular point of the  error  map ~ ( 2 )  when the - n 

columns i = 1, *:*, n of the  derived matrix ( (E  (??)I( are l inear ly  dependent, 
A, i 

meaning that there ex is t s  a s e t  of constants I (wl, . *, I? ) not a l l  0, 
n 

such t ha t  E (u)wr = 0 for  A = 1, * * *  , W. Since g E E E from Eq. 
A,r - i j  Q , i Q , j  

(22.1), we have girwr = 0 and hence I g .I = 0. Conversely, l e t  lgijl = 0 
IJ 

and l e t  - w now be solution of girwr = 0. Then grSwrws = VQ& = 0, where 

- r VA = EA,rv , and sb V = 0. But t h i s  means tha t  any w satisfying'  girwr = 0 
A *C* 

a l so  s a t i s f i e s  EA, rwr = 0. Thus rank I(g .\I  = rank I I E ~ ,  . 
i J 



To test the sjngular system (23.1) for consistency we choose w to be 
rm 

r a solution of w g = 0 and form wSgsrz = - EQEQ,sws. The coefficients 
s 39 

of the zls are now zero and the necessary and sufficient condition for 

consistency of the singular system is that E I3 Q Q, sws should lf kewi se vanish . 
But this condition is satisfied since we know that EA,=wS - 0 for A = 1, 

Consider now a singulw point q A n  for which rank I~E,,~($II = r .< n. 
r 

Then rank 11giJ(2)\1 = r and the homogeneous system girw = 0 admits n-r 

linearly independent solutions&. Let C be some arbitrarily chosen parti- 
w 

cular solution of the consistent singular system girz? + 1 1 = 0, then 
. Q Q,i 

the most general 'particular solution is of the formz= 5 + c w and 
P * P  

. . 

From this we conclude that the steepest descent directional derivative - 2121 

of Eq. (20.3) is independent of the choice of the particular solution &u z of 

the singular consistent system (23.1) resulting from a singular trial point E. 
3 n-r We follow R. E. von Holdt by selecting from the m particular solu- 

2 r r  tions z e C + c w that uniquely determined solution for which \Id) r z z . 
I .  P'-P 

is a minimum. To arrive at this selection we first orthonormalize the n-r 

r r wls such that ~ ~ 9 %  5 w w 
MI a B = 6@ 

and then choose the cls so that the parti- 

cular solution 2 is orthogonal to these ~rthonormalized'~~s, the conditions 

being 

We designate byzn the particular solution resulting from z C + c w when m 



the  c 's have been chosen by Eq. (24.2). Then any other par t icular  solution 

i s  of the  form & n  z + T w and 
"m pup 

since now (&*%I = 0 .  

Conclusion: An ef f ic ien t  subroutine for  solving the  steepest descent 

system (23.1) should process the system a s  nonsingular when no Gaussian 

pivot drops i n  absolute value below the approximate machine zero for  t h e  

matrix I\g 1 ) .  When the  tr ial  lens g i s  a si-ar point, t he  rank r of 
iJ 

g. . (g) should be determined and an orthonormal s e t  of n-r solutions w 
1 J  "'a 

r of the  homogeneous system girw = 0 should be computed. From these, snd ' 
any a r b i t r a r i l y  chosen part icular  solution 5, the  unique part tcular  solu- 

IUL 

n-r t i o n  which minimizes the  norm IUI, z ranging over the  w part icular  

solutf  ons, i s  determined. 

He who has coded R .  E.  von Holdt's excellent eigenvalue-eigenvector 

subroutine mentioned i n  section 1 has but t o  reach i n  h i s  card f i l e  fo r  

such a lineax system solver; others face a job of work. The f u t i l i t y  of 

attempting t o  use a nonsingular l inear  system solver at  a singular tr ial  2 

has driven malpractitioners t o  the artful dodge of varying only a few para- 

meters at a time. 

i 



Let cp(u), zcAn, be any sca la r  function cp which we seek t o  minimize 

over An. We s h a l l  formulate this minimization problem by the  following 

chain of procedures: 

1) Map An i n t o  en by the  primitive mapping [n,bi j,ui] of (21.1) so 

t h a t  the  ari thmetic function cp defined over An now becomes the  geometric 

r 
point  function qW $2 = o r u  ten, defined over en. 

2)  .Form the  gradient error  vector gg ,ercp, ,, q i= 
i - acplau , and mtap 

Euclidean e onto i t s e l f  by the  choice of mapping arguments [r1,6~~,rp 1. n , i 
The steepest  descent equations (20.1) fo r  minimizing any sca la r  point func- 

r 
t i o n  ~ L ] ,  I! = _eru €en, a r e  w i t t e n  i n  terms of t he  gradient mapping metric 

(19.2), 

3 )  Now def ine the  sca la r  JI t o  be i n t r i n s i c a l l y  re la ted  t o  the  gradient 
2 

mapping vector E by the  def in i t ion  9 = (&I cp,rq,r . Then (25.1) reduces 
% 

r 
v, s i  (y, .r z + q P s )  = 0 when lq,ij($)l = 0 

.'. cp ir~rw,i = 0 when (u) l  4 0. 
# 115 - 

I f  we now r e s t r i c t  t he  general cp of (25.2) by making t he  choice 

cp Z El 2, where & i s  the  op t i ca l  e r ror  vector, then the nonsingular point 1- 
( (cp (u-) I f 0 ) form of (25.2) gives the  nonsingular ,point  second order . , 1 5  
equations - of steepest  descent -- fo r  t he  scalar  I) 5 

, Q,rv,r relative t o  t he  -- 



gradient nappi% [n 6 .fl. 
, T J  , 

A t  a singular point 2 t he  system (25.3) must be replaced by the f i r s t  of 
' 

(25.2). 

The preparatory primitive mapping i n  1) is motivated by the  awareness 

t h a t  q~ (2) a r e  components of a covariant tensor only when the  u ' s  are , ij 
recta.ngu1a.r Car tes im coordinates. 



We assume now tha t  our t r i a l  point of A i s  a stationary point u of 
n YCB 

t he  scalar  cp r 121 2, where 2 i s  the opt ical  error  vector. We seek t o  de- 

2 
termine whether & be a maximum, a minimum, or a saddle point of I E ~  by - 
the  following procedure. 

1) Consider any neighboring point pair (yv)cA, and define z sy-x. 
2) Make the primitive mapping [ n , ~  ,ul] of A i n to  en so tha t  

i S n 
rp = ( ~ 1  2, an arithmetic function defined over A now becomes a geometric n9 

I point function rp defined i n  rectaagular Cartesian coordinates u over en. 

J )  ~ x p a n d  9 = )E\ i n  , a  "Taylor s e r i e s   about:^, 
ASI 

tihere the  dots indicate terms of higher order i n  the z l s .  

4) Now r e s t r i c t  y t o  be a s tat ionary point yj, of cp so tha t  9 (u ) = 0. 
t i  - 

i By choosing a l l  1 z 1 suf f ic ien t ly  small the truncated Taylor ser ies  q+,, 

approximates rp(ya4-2) t o  v i th in  any desired accuracy. Inspection of (26.2) 

gives the  fo l l a i ing  c lass i f ica t ions  of a stationary po in t ' u  EA . 
-s n' 

u i s  a minimum, maximum, or saddle point of ~ ( u )  when q 2 b )  E 
'LCS mL, 

(u 1zrz9 
',.6 , 

i s  posi t ive def ini te ,  negative defini te ,  or indefini te  respectTvely. 
.- ,. .... ,r - . . -  . -  - 

rr 



We return to the system (23.1) for the direction of steepest descent 

of = Id2 relative to the orthonormal error mapping [N 6 E (%)I of 15' A 
9 section 22. Cauchy showed how one could depart from a trial&eA, to ar- 

rive at a van such that CQ (v) m < cp(2) by considering cp( -qL) ,  q increasing 

continuously from 0. We shall call this arithmetic half line TT,=-~LZA~, 

depasting from our trial k i n  the direction of steepest descent, the Cauchy 

line LC. - 
We begin by considering the geometric half line -- 

which departs from the contact point g(&) (given by q =. 0) of the w e n t  

n-plane L(u) to Sn .and is directed toward the foot = ~(2) + o (u)zr 
M -r - 

by q = 1) of $e perpendicular from 0 onto Xn($. As q increases 

from 0 the displacement vector z(q) of squared magnitude 

sweeps out k. The minimum of IC(q) - 1 ' occurs for q satisfying . 

r s r r s 
WrSz z = - EQEQ9r z = gr,z z from (23.1) . 

2 
so that q = 1 minimizes IC(q)1 along I"nis exercise in formalism 

r merely rediscovers what we already know, namely that Z(1) s & + g,z , 5 
Y 

satisfying (23 .l), gives the least displacement from 0 to points on En($ 
J 

Of much greater. concern to us is the behavior of 



2 ] = [ ( 1  , a solution of .(23.l), 

as the Euclidean displacement vector E(-wI)~) traces a curve C ES while 
'I n 

v = wq& moves along L EA . Expanding (27.3) in a Taylor series and sub- - - C n 

stituting (27.2) gives 

If the trial g A n  is - near a stationary point & of cp so that Icy (u)l a 0, 
,f - 

i then the solutions zi of Eqs. (23.1) satisfy lz I f: 0 regardless of whether. 
I g . ( 1 be singular or nonsingular, in the latter case because we then choose 
13 

r r the , particular solution minimizing ((dl e z z . Ye conclude that for u_ near 

u the truncation of the expansion (27.4) resulting from neglecting tems of 
'-9 

order higher than 2 in. the z ' s yields a good approximation to cp[q] for q S 1. * 

For the trial kvell removed from a stationary point & of cp, and this 

is the situation in the early stages of a' lens design, truncation of the 

tems of order 3 and higher in the expansion (27.4) cannot be jus'tified. 

Because of this and because in any case evaluating the terms *g, (k) 
would requfre formidable analysis and computation for a lens problem, we 

renounce ~ t n y  attempt 9 approximatiq cp[r\] at the points ~ht r \z  of the Cauchy -- *- - 
3 

line LC in favor of evaluating cp[pctl] to within machine accuracy 3 =-tracing. - --- - 



With a trial lens y in the machine, we follow Cauch? by narrov- 

ing our search for the next trial lens to an inspection of the a 1 

lenses ~ ( q )  on the Cauchy line LC : ~ ( q )  - u + %€An pasSing through 

u in the direction of steepest descent for cp. T'hus, along C, 
rY 

r r s 
%/dtllo v,,(s)z = - 2 grsz 2 < o from (20.2). 

Figure 28.1 sh&s a graph of q[r\]. Its negative slope at 11 = 0, as etri- 

insert Fig. 28.1 approximately here 
- 

denced by (28.1), ensures the possibility of finding a point * V(~)EL for 
C 

which cp(~) cp[q] < q[0] r cp(2) . Any reasonable approximation to a local 
minimum of cp[q] on LC will be satisfactory. We must be aware that machine 

time spent in refining our approximation to a local minim on LC might 

possibly be spent more effectively by getting started on the next least - 
b 

squares pass groceeding from the acceptance of s less refined local mini- 

mum on L We present what seeme to us an adequate exploration of LC. C' 

Prior to beginning our march along LC as in Fig. 28.1 we must refer 

back to our introduction near Eq. (10.6) of a data input oriented lower 
i i bound vector m which imposes the constraints u >(c)rn .- when u\(c)0, i=-2, . , 

n surf' These constraints are saying that po and the various axial spacings 

-must be bounded away from a possible reversal of sign. Consideration of 

these yields an upper bound with the property that for any q satis- 



fying q 5 & the Cauchy replacement new u = old % +  qz-will avoid any 

such vlolation of - m. Any attempt t o  minimize c p [ ~ ]  fo r  q > rl,ax -signals 

a )  the end of our march along LC, b )  the  acceptance as optimal q along 

LC of the l a s t  ray-trace value of q preceding the violation q > b, 

and c )  the  freezing of the distance parameter, or parameters, which caused 

the  se t t ing  of from f'urther design variations over the next nfreeze 

l e a s t  squares passes, where n i s  a data input control integer. 
freeze 

Now choose a f i r s t  Cauchy l i n e  probing point q = Aq which on the 

f i r s t  l e a s t  squares pass ve select  as Aq 5 .min(&,&), t h i s  preference 

for  2 resul t ing purely from ignorance. Evaluate cp[~q] by a ray-trace 

and compare cp[0] with cp[nq] . Either we have case 11, cp[bql 2 cp[O], or 

Case I, c p [ ~ ~ ]  < cp[01: Here we proceed a s  i n  Fig. 28.1. We seek t o  

extend the monotone decreasing sequence [cp[ 0 1 ,cp[ AT I] by successive ray- 

t r ace  evaluations of cp a t  the  abscissa sequence (qi], where qo = 0 and 

= i-1 
qi - qi-l + 2 AT, i = 1,2, *, t o  obtain the corresponding ordinate 

sequence (v[qi]] . An interruption i n  the  monotone decreaee of (rpfqll}, 

such a s  occurs a t  i = 2 i n  ~ i g .  28.1, signals a ray-trace evaluation of 

cp a t  the midpoint --- of the l a s t  in te rva l  (qi-l,qi . We m e  now l e f t  with 

4 equally spaced terminating points ( P ~ ,  p2,pJ,p4) with abscissae (?1,qP9 

?j3,fi4 ) and cp values (@ 1 , 2 , , 4 ) .  We compare the  end values G1 and $ 

and re j ec t  the  larger .  This reduces our terminating quartet  t o  a t r i p l e t  

0" 

which, a f t e r  a possible renaming, we c a l l  pi (?i,cpi 1, i = 1,2,). We pre- 

pare now t o  pass a parabola with a ve r t i ca l  ax is  through t h i s  t r i p l e t  by 

t e s t ing  the  point t r i p l e t  discriminant D G1 - 4, + $3a When D = (C)O 

we by-pass the  interpolating parabola since now the points (p1,p2,pJ) a r e  



col l inear  ( l i e  on a m a b o l a  with vertex concave d~brn~rard). For D > 0 we 

form Aq, the  vertex abscissa r e l a t ive  t o  the  middle abscissa B/ 2' 

A = D - , N =  ?j -$ 
, 1 3' 

(28.2) 
3 2 

... - 
I . * 

,-a- ' 

and r e j e c t  t h e  interpolation when1 ldql  2 qJ - q2. f 

i 

Otherwise we evaluate cp[q,+~flI by ray-tracing-and choose the minimum of I 

?$2,$3, and q)[i2+aij] whose abscissa w i l l  serve as the optimal q along L 
C 0  

Case 11, p [ ~ q ]  2 cp[01: Our f i r r t  t r i a l  probe a t  T ) ~  = A7 i s  now too far 

t o  the  r igh t  and so we evaluate cp a t  t he  abscissa sequence 

- i hi] ,qi = Ti-, - 2 A?, i = 1,2, *, t o  obtain the ordinate sequence {q['li 11 . 
We ignore g[qi] u n t i l  we reach an i fo r  which g[qi] < ~d01,  which i n  Fig. 

28.2 occurs a t  i = 2. This signals the  beginning of a monotone decreasing 

Inse r t  Fig; 28.2 approximately here 
- - -  - -  - 

sequence [ cp )  which i s  f i r s t  interrupted i n  Fig. 28.2 a t  1 = 4. This fnter- 

ruption a t  qi i s  the signal t o  go back t o  the  r ight  and make a ray-trace a t  

the  midpoint of the in te rva l  (q1-1,q1-2) t o  establ ish the intermediate P 3 
in Fig. 28.2. We w e  now l e f  L 1~1th u ternriii%ting quartet of equally spaced 

s ta t ion  point6 (P1,p2,p3,p4) and we proceed t o  approximate the  optimal q as 

i n  case I. . , 

The blind choice q = 1 a s  optimal along LC i s  the hallmark of the  l eas t  

squares malpractitioner. We present a case his tory t o  show how disastrous 

t h i s  choice may be. C .  A. Lehman coded a t  our request a curve f i t t i n g  

1 2  program which determines the  c i r c l e  (x-u ) + i y  -u212 - (u312 = 0 best 

f i t t i n g  a s e t  of data points ( x ~ , ~ ~ ) ,  A = 1, ***,N, which appear t o  l i e  on 



a circle. A test run was made on a set of 5 points chosen to lie on the 

circle 5 = (40,20,100). We chose - u - (1,1,1) as the first trial Y u which 

8 gave CQ = 3.8(10 ) E 3.&08 and Y z =- (j9,19,4058.~). Thus the malpracti- 

* tioner's choice q = 1 would yield as the next trial circle *.* u E (40,20, 

4059.5) with cp = 3. k14.1 Here we have case I1 of Fig. 28;2 and the best 

station value of q was q = 0.03125, yielding the Cauchy optimal trial 

circle (2.22,l. 59,128) for which cp = 1.7+07. The monotone decreasing 

sequence (cp] promised in our introduction was ( 1.7+07# 6.8t05, 1 .FOO, 

4.7-085 co~responding to the Cauchy optimal 'q's { .03125, ."939, 1.004, 

.999963 and the u's dt convergence shoved 8 digit accuracy. 

We used this same problem to test e. curve fitting program written 
by the statisticims at Los Alamos who adhere to the popular choice q = 1. 

This yielded the nonmonotone' sequence (rp) rn [ 1 .%09,. .1.4+15, 8. %13, 

5.>12, 3.2+11, 1.910, 8.6+08, 1.7+07, 2.7+~4, 8.8-02, 2.9-07) and the 

solution was found to 8 digit accuracy. It is perhaps the.occasiona1 

"success" of his 'q = 1 program which makes the malpractitioner's conver- 

sion difficult. 

Some malpractitioners concede that q = 1 may not be optimal at the 

early stages of convergence, but they are convinced that optimal q -r 1 

as the trial u + us, a stationary point of cp.  This conviction may be 

challenged by the example 

Clearly q = l/ly is optimal along LC and yields the minimizing point 



u r (0,0) a t  the end of the f i r s t  l e a s t  squares pass. As the t r i a l  m 

u - ( 0 ~ 0 )  the optimal q 4 1/(1+2h2) f 1 for h # 0.  One may be tempted 

t o  extrapolate from t h i s  example and conjecture tha t  when minimum cp -o 0 

optimal q-o 1. 

If it should be found tha t  i n  the majority of cases optimal rl tends 

t o  1 as u -. u then the choice Aq %previous optimal q) would be a s9 

favorable selection for  the f i r s t  probe of LC a f t e r  the f i rs t  l e a s t  

squares pass. Near convergence t h i s  would cause the intermediate point 

P of ~ i g .  28.1 t o  be established by a ray-trace near the expected optimal 3 



It  may in t e res t  current users of the  Holladay lens design code t o  

learn w h a t  i s  i n  it. The code employs what some might c a l l  numerical 

different iat ion.  This i s  i n i t i a t ed  by the input data entry of a parameter 

increment vector A%and the program forms by ray-tracing 

Definition. We sha l l  say tha t  I i /~ui  - i s . approximating - the  partial 

deriyative gSi -- i n  the  Bolladay - sense. 

I f  we wri te  the  steepest descent system (23.1) i n  the vector form 

E *E zr+g*g = 0, approximate i n  the Holladqy sense, and multiply 
*,i -,r 3 

i by Au , trith no summation on i, Ire obtain Holladay's epproximation t o  

(23.1) 

i i 
1 . 0 1  hr + g L i  = 0, zi. h A u ,  
u\l -r ( i not summed) . (29.2) 

'llhe accuracy UP appi30ximate a y s + a  (23.2) ie m ~ a s ~ r r e d  by tmhe accuracy 

i 
of the approximations &/nu t o  E . -, i 

r s 8  We define I ~ A ~ I  f (Au nU ) and observe that ,  with decreasing I ) A $ ~ ,  
2 

1 01 + 0 as I l ~ ? ? j /  and *AJ 1 4 0 a s  I)n2\1 2n. when not ikar a stat ionary 
-1 -j 

point %, we have 1(41 4 0, and hence l/hi 4 0 a s  nui. The ill-chosen scal- 

ing resul t ing fiom Holladay's d i f f e ren t i a l  approximation (29.2) t o  the  cor- 

r e c t  system (23 .I) imposes severe demands upon a computer with only' a f i n i t e  

number of b i t s .  The Holladay program attempts t o  solve (29.2) with a non- 

singular l inear  system solver, a highly unjust i f ied commitment which ref l i ly  

leads t o  trouble. 



The self-imposed near singuhrity of his system (29.2) compelled 

Holladay to abandon any attempt to vary all design paxameters at once 

in favor of the expedient of varying only a few parameters at a time. 

Since test runs confirmed our analysis following Eq. (29.2) of the ex- 

treme sensitivity of the coefficient matrix il~~*l~ll of (29.2) to the 

smallness of \ I A ~ \ ,  Holladay sought to mollify the robot Is protest by 
rescalfng his Akat the end of each least squares ~ S S  in preparation 

for the next according to the storage substitution 

Q i new nui e e i 2  1 (old Au , (i not summed), 

2 where e ,id, *, n, are data input control constants. mat this pertui-ba- i 

tidn in A& does simultaneously to the coefficient matrix 111 01 1) and to the 
"3. --J 

Holladay approximation to 5, we leave to the reader s speculation. 

Holladay makes the usual malpractice choice 7 1, namely new 

i i i  ui = old u +h Au ., i not summed. His only concession to Cauchy s 1847 
, 

i 
recommendation in this matter is to compare h- E maxl h ( , i=l, ', n, . , 

with a positive input data control constant A, and when A m >  A he de- 

P%nes 

i i i new ui E old u+(~/k-)~iru, (i not summed). 

The Holladay code does not generate a monotone decreasing sequence 

[cp] and it contains no convergence exit. To obtain compli ance with the 

designer's data input f-number demand it does not form the error component 

(10.4) as we have done but rather perturbs the new lens obtained by the 

least squares process to force compliance with the required f-number. Ob- 

viously any such perturbation may be sufficient to upset the monotonicity 



of the sequence {v) . The sample rays of Fig. 4.1 are not weighted accord- 
ing to the illumination they represent nor is there any attempt to auto- 

mate the choice of weights corresponding to the error components. There 

is no formation of vignetting error components as ,presented in section 9 

to steer the next least squares pass so as to remove the current vignetting. 

It is easy to see how Holladayts expedient of varying only a few 

parameters at a time can lead to a successful result. The directional 

derivative ( 2 0 . 3 )  of v is negative regardless of the number n of inde- 

pendent parameters that are allowed to vary at any least squares pass. 

Thus varying only a few parameters at a time will atill generate a mono- 
. I 

tone decreasing sequence [rp) one proceeds correctly by using the method 

of this paper. 

Since we have been drawn into presenting a machine approximation of 

E in the Holladay sense, we conclude this section by reporting our o h  *, i 
experience with the machine approximation of Zpi in the mathematical sense. 
TO obtain this we consider the a sequence [Q&J, A and i being held fixed 

-9 

where 

i 
with Oustart 1 a likely data input choice to initiate the first least 

squares pass. Next we make the follcnring assumptions: 

1) E*,~(L) io best approximated by that a which signals the inter- 

ruption in the monotone trend of the difference sequence [ I& nia - Qniwll] 
2 )  With optimal a determined by l), this same a yields the best practi- - 

tally obtainable machine approximation to E (9 for any A. 
A , i  

-75- 



3 )  To simplify the  determination of the  optimal o i n  1) w e  may re- 

place EA i n  (29.3) by the  y coordinate of the  p la te  spot resul t ing from 

tracing a ray  of a r b i t r a r i l y  chosen color from the  highest object point 

+ aimed through the lowest entrance pupil mesh point 1 of Fig. b.1. 

i '1 Under these assumptions we define y& 2 [y(u+~ucr)+y~(u) - ] /bu and :tuna 
O 

i -a i bu for  numerical d i f fe rent ia t ion  by choosing bui 1 10 nustart, where a 
Q a: 

signals the interruption i n  the  monotone trend of the difference sequence 

[IY&cl - yhl). For the Lister type l'ena of Fig. 2..1, with the t r i a l  - u 

chosen as the near optimum from a previous Holladay code run, and for  i = 7 

giving u7 3 %E 0.0459, the vertex cu rva tke  of xl, the tuning sequence 

[ y&l gave (23 .7, 21.74, 22.641, 21.6332, 21.6324, 21.632313, 21.6323040, 

21.6]i23041, 21.63233,-0.) where the dots represent difference quotients 

diverging from the  best  obtainable approximation 21.6323041. Tests con- 

firm tha t  a 15 d i g i t  machine can approximate an opt ical  derivative for  the 

Lister  lens of Fig. 2.1 accurately t o  about 8 d ig i t s .  The derivatives may 

be retuned a t  the  beginning of the  next l eas t  squares pass by startine with 

a coarsened increment vector Au where Au i - 
s t a r t  s t a r t  would be a = 10 nuold 

l i k e l y  choice. This permits the  tuning sequence t o  a r r ive  a% a coarser in- 

i crement Au at  the  next parameter point i f  it should seek t o  do so. Tuning 

may be by-passed a s  the  t r ia l&-.&,  a stationary point of cp. Our Stretch 

code now contains numerical different iat ion and  late^ we sha l l  include the 

option of analyt ic  different iat ion.  I n  t h i s  way we may compare numerical 

and analyt ic  derivatives for  agreement a d  may obtain compa,r~ttive running 

times and resolutions.  



30. STORAGE REQUIREMENT 

We examine the storage necessary for forming the 

steepest descent system (23.1). If we should choose 

to form gIj'EQJiEgJj by first forming and storing the 

rectangular NXn matrix E , 1 , inspection of ( 23.1 ) 

shows that such a procedure would d.emand (n+l)(n+~) 

cells. Referring to sections 6, 7 ,  8 we see th&t N 

is dominated by the need to store spot coordinates 

and the number of spots is dominated by the number 

n(qo), the number of semicircular entrance pupil mesh 

points correspondLng to the mesh refinement choice of 

Fig. 4.1. In approximating N we consfder the case 

wherein all rays from a test object point Qy, r=1, 
. . 

" nobject reach the plate to form a spot. We 

list side by side the 'spot components of 8 and their 

storage demands: 

X ~ p r  Y ~ ~ r  +PI- of (6.2) , 2n(q~) ncolor* "object J 

P of (6.4)J Ppr- r "co10r'~object~ 

Rr-Rrmsa of 4 Xr-Yr of (8.2), 2nobjectJ 

and conclude that 

Only testing can reveal how many object points Qr should 

be used to approximate a continuous object segment and 

how fine the entrance pupil mesh of Fig. 4.1 should be 



chosen. The code pr'ovides for starting a new design by 

converging on (nobject, qO)~(l, 1). then converging on 

(2, I), (3, 11, until a11 desired object points 

have been brought to focus for qo=l. Then the lens is 

brought to a sequence of convergences resulting from 

("objects * ) '  (nobject , 3), until the last refine- 

ment in the entrance pupil mesh shows no discernible 

improvement over the previous refinement. Testing will 

reveal whether this gradual procedure will minimize 

preconvergence vignetting and running time as compared 

to starting at once with all object points and a fully 

refined mesh. 

We anticipate that (nobJect,- ncolor, qO)z(5, 3 ,  3) 

will produce a fine Lister type lens, but let us be 

pessimistic and count the storage requirement for a 

(10, 6, 10) design of the Lister lens of F1g. 2.1. We 

have n( 10)=158. Let us design on all the nz23 parameters 

(2.1) of this lens. Then, from (30.1), 

~10[6(317)+2]=19,040 and (n+l)(n+~)*57,512. 

The Holladay code would demand this number of words, 

457,512, for the formation of its system (29.2) since it 

form3 this system by first forming and storing ! l ~ ~ l l  and 

the Nxn matrix 1 1 1 ~ ~  11, where Ii*~J~IQi~Qj. 

The Holladay storage demand is of course preposterous. 



Returning to the steepest descent Eqs. (23. l), which we 

now write'c~mpactl~ as 

we observe that the full matrices llEAll and 1 1 ~ ~  .I1 are ' 

, I 
of no interest, for we are concerned only with the -- 
contributions of their elements to the formation of the 

coefficients giJ and bi of (30.2). To record this con- 

tribution we have merely to initial the cells gij and bi 

with 0 and then add in the contribution from army error 

component EA and its partial derivative's EA . just as , I 
soon as they have been formed by ray-tracing . Thus the 

spot component x of (6.2) may be differentiated imme- 

diately after the completion of the ray-trace which 

determines it and the contributions of x Epr and EPr, 

may be promptly added to g and bi after which both i Y  
xP1. and xXpr, may he fnrgottan. This avoidance of 

storing the full matrices 1 1 ~ ~ 1 1  and IIEA, reduces the 

otoraie demand in forming (23.1) from Holladay s 457,512 

words to our 5,523 words. 

We return now to Eq. (6.5) which shows the "delayed" 

R ) I  1 ~ 1  attached to weight assignment w(SFlc( 4 )/( cmsq mss 
any error measurement 42 other than the centroidal error 

measurements (6.2), in forming the error component ~ ( 4 ) r  

w(5)4. We say "delayed" because Rrmsq defined by (7.3) 



is - not known at the time of the ray-trace measurement of 

and hence we must postpone the division by R msq 
until 

the entire entrance pupil mesh has been traced. The 

contribution of all such dels.yed weight components E( 4 ) 
. . 

of E are added in auxiliary storage blocks g 1  and bi: ij . 

initialed by 0, and at the final. time of determining 

Rmsq we make the storage replacement new gi3sold g ij +gt I j  /R rmsq 
r 
and similarly for the b;. 

.- - . 



31. COLASL CODING LANGUAGE 

Our lens design code has been written in the COLASL 

language published in 1963 at 1,os Almos by G. L. Carter, 

K. G. Balke, and R. A. Bacon. As an fllustration of 

COLASL we form [&( gr,z,zs I$- J51/13: 
2 "~orm I z l  =grszrzs, initial sum" z =o. mag 

Thru Rl(s=l, 2, * ,  n). 

This coding language is outstandingly superior to any 

other such language tha,t we have seen in its close 

resemblance to standard mathematical formalism and 

as a universal programming Latin for communicating the 

details of a code to any computing laboratory. 

We intend to publish the complete COLASL lens design 

p r u g r a n ,  order by omer, as a LASL report, to be ready 

hopefully in 1966. With the help of this publication 

of our COLASL code and with a COLASL manual, the latter 

now available on request from Glenn L. Carter, Los Alamos 

Scientific Laboratory, Los Almos, N. M., any expe~ienced 

programmer can w~ite our lens deslgn program in a language 

suitable to his machine. We emphasize that, as an auto- 

matic coding device, COLASL is restricted to our ovm I B M  

7030 (stretch) machine. It is possible, however, that by 



1966 we ,may be able t o  supply a binary lens design deck 

capable of being run on 'any 'IBM 7030. 



32. TWO PROPHECIES 

It seems fitting that a paper begun vrith missionary 

intent and developed with evangelistic zeal should end 

4 with a prophecy. Such an utterance from the sibyl's 

cave is not without preced.ent in the literature. 

Herzbesger concludes his book, MODERN GEOMETRICAL OPTICS, 

with this prophecy. 

 h he author believes that the most valuab1.e development 

in theoretical optics in the near future wTll consist of 

- analyzing and simplifying fifth-order approximation 

formulae and studying flfth-order models of varlous types 

of optical systems. It 

The truncated Taylor series in optical theory was the 

natural approach to approximatiw tedious, but exact, 

computation. This began by retaining the first order terms, 

and was successively refined to retain f i eXe  the thira and 

now the fifth order terms. Do these fifth order truncations 

provide the ultimate In desired precision? We think not. 

A new era of computational feasibility has dawned. The lens 

designer has but to rub the magic lamp and the jinni of the 

lamp appears to do his b1dd.i~. 

Perhaps it is the specification "theoretical optics" 

which m y  save Herzbergerls prophecy from becoming dis- 

credited. If we replace this by "practical lens d.esign, 11 



t hen  our own a s s a u l t  on prophecy prompts us  t o  d e c l a r e  

t h a t  t h e  t runcated  Taylor s e r i e s  method i n  p r a c t i c a l  l e n s  

d.esign w i l l  he encased i n  g l a s s ,  properly labe led ,  and 

g iven  an  honored p lace  i n  t h e  Smithsonlan Museum between 

t h e  Wright brothers' plane t h a t  b as launched a t  Kf t ty  

Havik and Lindbergh s S p i r i t  -- of S t .  Louf s ! 
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ILLUSTRATIONS 

Fig. 2.1. Lister type lens. 

Fig. 3.1. Inclined entrance pupil and right 

circular light cone. 

Fig. 4.1. Inclined entrance pupil mesh. 

Fig. 11.1. 2m+l-station zoom lens, case m=2, type I. 

Fig. 12.1. Herzbergerf s method of ray-tracing. 

Fig. 14.1. Aperture stop determination. 

Fig. 28.1. Minimizing 6(q] along LC, caEe I: 

Pig. 28.2. Minimizing @[q] along LC, case 11: 


































