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The merit of any trial lens system with con-
tinuously variable parameters gi(ul, £ ey un)
may be evaluated by tracing sample rays to form
the N=n components EA of an error vector E of
squared magnitude ¢;§:§: Regarding the lens u

as a point of arithmetic space An’ we congsider

the most general mapping m of n-dimensional An
into N-dimensional Euclidean eN and define the
direction of §teepest descent in An of' ¢ relative
to this general mapping m. We then restrict

tuv be the orthonormal lens error mapping of An
into EN. The resulting least squares equations
of steepest descent lead us to a parameter
increment vector AueA such that ¢(B+AE)<¢(3)'
Iteration generates a convergent monotone
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decreasing sequence [¢}~¢L and 1ts corresponding

trial lens sequence (B}*EL, where y; 1s the desired

local optimum lens attainéble by the process from

the first trial lens.

INTRODUCTION

This paper is missionary. Its purpose is to win converts
to the cause of correctly applied nonlinear least squares
optimization techniques. A sizable portion of the running
time of many digital computers 1is occupled with the following
.problem: a certain system is comﬁletely determined by a
choice of n continuously‘Varying parameters, E;(ul, . ',un),
and hence the‘system may be idealized as a point u in arith-
metlc n-space An. The o family of such systems fills a
region of A . It is assumed that.any sample system of the
family may be appralsed by forming an error vector
E(g)s(El, ey, EN), N=n, whose components‘EA(g) measure
the departure frdm perfection of the sample. The positive
scalar ¢§§-§;EQEQ (a repeated index will imply summation
over its range in the absence of any statement to the contrary).
is taken as measuring the merit of the sample and ¢ is called

the merit function, the smaller ¢, the better the sample.'

A sample system E.will be called optimal with respect to its
neighbors in A when ¢(u) 1s a local minimum.

The search for an optimal system is begun by the player's



blindfolded draw of an initial system YUg from the urn An’
He then employs the error vector E and its partial deri-
vatives g,iE(BEl/Bui, I BEN/Bui) to detérmine an
improved system M- Continuing in this way, he forms a
sequence of trial systemS‘LE}g&oxgl,- - + and the corre-
sponding sequence of merit functions {¢}. When the
derived matrix HEA,i(g)H is independent of u the problem
is called linear, and otherwise nonlinear. An intultively

obvious theorem of analysis ensures thét, when the posi-

tive sequence {¢} is monotone decreasing, it converges to
a limit ¢L' Then if Uy be the limit of the corresponding
system sequeﬁce [B}"EL 1s the desired optimal system.
The chiefl result of this paper 1s a constructive
proof that a correct application of the method of non-
linear least squares will restrict the computér to the

formation of a monotone decreasing sequence of merit

fﬁnctions. This is in sharp contrast to a non-monotone
sequence wherein the time costly output of a éelection
cycle nmust be rejected when the new merit function reveals
its system to be poorer than the predecessor.

Definition. Any least squares program which extrava-

gantly commits the computer to the formation of a sequence
{»} which is not monotone decreasing will be called a

malpractice progran.




Observation. Most nonlinear least squares optimiza-

tion programs which have come to our attention have been
malpractice programs. In particular, the lens design
code employed at Los Alamos and written by J. C. Hollad.ayl
is such a program.

As a second illustration to support our observation,
we quote from D. P. Feder2 who comments on the nonlinear
least squares optical design method: "It is a matter of
practical experience that,.when the process converges, the
speed-of convergence is. much greater than in the gradient
method. On the other hand, if the equations areAsuffi—,
ciently nonlinear, the process will diverge, and if this
océurs, the characteristic behavior of the solution vector
is to oscillate wildly about the minimum without ever
getting close to it. This, in fact, seems to be the normal
behavior of the method when used in optical design.”
Feder's description shows that Holladay dces not walk alone

along the pathway of malpractice. It is a trail well

trodden by the optical fraternity!



1., OPTIMIZATION EXAMPLES

let 1t be desired to minimize a given differentiable
function w(ul, .+« +, u") over A,. One may form the error
vector E;(b%/aul, + + -+, dy/5u™) and minimize ¢=E-E. As
a second example, let us seek a solution of the nonlinear
algebraic system Ei(ul, - o+, uM=0, i=1, * * +, n. If
u be a trial solution, we form the error vector
g;(Eng), ey, En(B)) and minimize ¢=E'E over A . As
a third example, let us seek to select from the o family
~of plane curves y=f(x;’ul, - Y un)'that particular
curve of the family which best fits a given set of data
points (xA, yA), A=1, * < -, N, N&n, in the least squares
sense. We form the error vector components
EAEf(XA; 3)-yA, A=1, . - -, N, and minimize ¢=E-E over A .

A fourth example, which is a model of least squares
precision, is the method of R. E. von Holdt3 for computing
the eigenvalues and eigenvectors of a reai symmetric
matrix‘ﬁ. Here one seeks a vector u and a related scalar
A such thét'§2:XEfo. The trial system of our introduction
is now the trial eigenvector u and the corresponding trial
A 1s taken as l=2?§g/ng. The error vector E is defined by
E;Qé&-XE)/{g‘,and ¢=E'E is minimized over A . The writer

has coded von Holdt's method for the IBM Stretch and has

resolved each elgenvalue and eigenvector pair (A, g) of an



exacting 8x8 test ma’crix4 with 14 digit accuracy by the
iteration sequénce {6, 5, 6, 3, 6, 5, 3, 1) per pair

(X, u). The rapid convergence of von Holdt's method as
applied to a highly nonlihear problem first convinced

the writer that lack of monotonicity in the merit function
sequence [¢)} represents a gross defect in any least

squares optimization program which should not be tolerated.



2. LENS DESIGN
A lens designer, faced with a certain imaging problem,
draws upén his background of experlience with such problems
to commit his present design to

1) a certain number n of refracting or reflecting

surf
surfaces Zl’ 22, + + + whose sequential order agrees with
that in which a light ray from an object point meets the
surfaces,

2) achromatization with respect to a specified set

of colors B;'ﬁ=l, Tt Do oqop’

3) a definite selection of refracﬁing materials

0, 1, * * -+ encountered by the ray in 1) in the order
0, 24, 1, 25, 2, - + -+ whose refractive indexes for the
B in 2) are known to be Nogs Tygs * ° ©s

4) a camera box of specified dimensions,

5) refracting or reflecting surfaces which are to be
selected from the 2-parameter family of quadric snrfaces‘
(B, C) of revolution defined by Eq. (12.4), of vertex
curvature B and of form constant C, where C<-1 yields an
oblate spheroid, C=-1 a sphere of radius R=1/B, -1<C<0 a
prolate spheroid, and C>0 an hyperboloid of two sheets.

He then proceeds to optimize his design over the totality
of lens systems compatible with his specifications. Thus,

if he should choose nsurf=6 in 1) and define the sequence



in 3) tobve (&, g, g, a, g, g, a}, azair, g=glass, the
resultant family of sample lens systems will be of the

Lister type illustrated in Fig. 2.1. The parameter set

insert Fig. 2.1 approximately here

u is given by

u"gspoz radius of entrance pupil,

u"lzdepz distance from ZO to plane of entrance pupil,

i, - ' = e
u'=d,;= oriented distance frém Zy to 2444, 1=0, , 6, (2.1)

ut3*!=c = rorm constant.of 5., 1=1, * * °, 7,

so that Fig. 2.1 depicts a representative member faken

from the family of oc?3 such lenses obtained by varying

the ordered set 3E(u'2, ..., ueo) independently. The.
best performing lens in this set will be found by optimizing
the design over A23. Economy in production. however, may
possibly be achieved by imposing conditions of symmetry or

- skew-symmetry and other side conditions on the eligible
family. We shall define such conditions for the computer
by means of a parameter flag vectoragi(f-a, .., feo),

where

1) £1=1 means that ut is independent;

2) =999 means that u' iz to be held fixed at its

input data value;



3) fj=+(-)i%j, i#0, means that w is dependent upon

the independent u' according to the symmetry (skew-symmetry)

condition uJ(dep)=+(-)ui(indep.) (note that 1f the pair

(uo, ui) forms a dependent set, then ui is flagged as

0

independent and u“ as dependent);

i_ i
4) r~*=-999, Osishsurf, means that the spacing u =d;
will be assigned a sequence of input data values as in the
case of the sliding lens in a zoom assembly as discussed
in section 11;

5) £%=9999, O=a=n means that the Spécing uasdd

surf
is dependent upon the independent d's according to the

dependency

do =Dy #D' (e (2.2)

where dr' is summed over the independent d's and qx and

D’ar' are data input constants.

As an example of the use of the parameler flag vector
£ in constraining the’design, let us introduce the following
constraints on the Lister lens of Fig. 2.1:

a) Let the distance from 3, to Z, be a fixed L.
b) Let the lens (2,, 22) be identical with (2, 25).
¢) Let the surfaces 23 and Zg be skew-symmétrical.

d) Llet d,=dg and d2=d5.



e) Let the photographic piate be plane (B7=O,'C7==1).
f) Let all refracting surfaces be spherical (all C's

are -1). The following flag vector f imposes these con-

straints:
£72=-2, £71=01; £96, £lo1, £P=2; r3-9999; =1, £5-2, ®=6;
£7=7, £9-8, £9=9; £10-7, £llg, £12-g; £13-999;
£l=999, 1=14, - - - 20, (all C's held fixed at common

input data value -1).
Here the dependency (2.2) imposed on d3 by a), b), and d) is
and dr' ranges over the independent d's, namely dl’ d2, d6.

-2d2-2d6. Thus a=3'defines the a range in (2.2),

The independent parameters of our constrained system have
been chosen to be (po, dep; d,, dys dg; B?, Bg> B9) so
that our constraints have reduced the dimension of our-
eligible family from 23 to 8. In general, the uncon-
strained lens optimized over A23 will be supérior in per-
formance to the -constrained lens optimized over A8. Only
under the highly improbable circumstance that the optimum
over A23 lies itself ih A8 will the two optima be the same.
In’the sequel 1t should be understood that the param-

eter set g;(ul, o, un) refers to the n independent

parameters of the trial lens as defined by the parameter
flag vector f and a possible renaming. Thus n=23 for the
‘unconstrained Lister lens of Fig. 2.1 while n=8 for the
constrained lens of our example.

-10-



3. LIGHT CONE SAMPLING

In deference to a well established conventlon, Fig. 2.1
shows an entrance pupil of radius Po with its plane normal
to the optical axis and at a distance dep from the object
plane. If an axlal object point Q be regarded as the
veftex of a right circular cone having the entrance pupil
as base, then any ray from Q lying within this cone will
traverse the lens system and reach the plate. Now let
the entrance pupil be subdivided into small squares by
a square mesh and consider the totality of rays emanating
from the axial point Q and passing through the centers of
the mesh squares. This family of rays constitutes a

planar approximation to a finite uniform sampling of the

continuous family of m? rays from the axial object point
Q to all the «? polnts of the entrance pupil. A truly
uniform sampling of the rays from the axial point Q would
result from properly choosing the mesh points to lie
equally spaced on a sphere gbout Q as center rather than
equally spaced on a tangent plane to such a sphere as-we
have done. A desire for simplicity.in computation,
however, prompts us to settle for the planar approximation
to uniform ray sampling just described.

Now, with each sample ray still joining the light cone

vertex Q with a mesh square center, continuously move Q

-11-~



away from its former axial position along the meridional
line normal to the axls and observe the gradually increas-
ing nonuniformity of the fiﬁite ray sampling. As the
principal ray from Q becomes steeply inclined to the
optical axis the finite population sample beéomes grossly
distorted from a uniform sample.

The Holladay lens design code, which employs a con-
ventional entrance pupil normal to the axls as 1n Fig. 2.1,
has been found by B. Brixner to bhe inadequate for the
design of a wide angle lens. As & remedy Brixner proposes

that, for a given pair (d__, po) of Fig. 3.1, a l-parameter

ep
insert Flg. 3.1 approximately here

family of inclined entrance pupils as in Fig. 3.1 replace
the conventional unigque normal entrance pupil of Fig. 2.1.
Thus Brixner proposes that a lens be designed by insisting
that, for Q@ any uvbjJecl polnt, all 1light in the right cir-
cular cone of Fig. 3.1 should traverse the lens and reach

the plate.

-12-



4, AIMING OF SAMPLE RAYS

Iet the orthonormal triad (sx”fy’lfz) of Fig. 3.1

take the directions of a rectangular Cartesian set of

axes with origin at the center 0' of the inclined entrance

pupil of Fig. 3.1. Let the plane of the inclined entrance
' gy'), where
the pair (gy', gz') of Fig. 3.1 results from the pair

pupil be spanned by the orthonormal pair (gx,

(gy, gz) by a clockwise rotation in the y-z plane through
the angle 9. Sighting from Q we see the inclined entrance

puplil as in Fig. 4.1 The

insert Fig. 4.1 approximately here

dots show those mesh square centers which are interior to
the ineclined entrance pupil of radius po, the mesh squares
having a side.aozpo/qo.

For a given mesh refinement a5 the sample rays from
the object point Q will be traced in the order shown in
Fig. 4.1. The circular symmetry of the lens ensures that
the fate of rays through the left-hand semicircle is known
when that through the right-hand semicircle has been com-
puted. The j;th component qj of the vector g;(ql; A5
gives the number of mesh points in the j-th column of a
quadrant. We regard a single mesh point ray as approx-
imating the refractive fate of the x? rays from Q through
the subarea represented by the mesh point. All mesh points

which are the centers of squares wholly,interior to the

-13-



quadrant are tentatively assigned unlt weight. A plani-
meter, a compass and some common sense serve to-éstablish
the weights of boundary mesh points and occasionally the
tentative unit weight of a near boundary mesh point 1s
altered. The first three welght vectors were found to be
ag=1s 35(0.785, 0.785),
q6=2, H;(l.07l, 1, 1, 1.071; 1.071, 1.071),

a,=3, w=(0.948, 1, 1, 1, 1, 0.948; 0.586, 1, 1, 1, 1, 0.586;
(0.586, 0.948, 0.948, 0.586).
Flawless planimeter measurements would result in aw whoge

2
components w, satisfy 2w1=(ﬂ/2)q0 .

The weight vectors‘y
through qo=10 were carefully determined by_Mrs. R. E. Luders
of Los Alamos.

ILet us now determine the unit vector u directed from
the object point Q of Fig. 3.1 toward a typical inclined
entrance pupil mesh point (xgs Yo' ) whose coordinates are
referred to the inclined triad (Ex’ Ey') of Fig. 3.1. With‘
j designating the column of mesh points in Fig. 4.1 for a
given qo, then _

xo=(3-%)ag, ag=Po/qns =1, * * 5 Qg

vo=(1-3)ag, i=-(ay-1), -(q4-2), « - -, qy.

Inspection of Fig. 3.1 shows that the mesh point with

(

coordinates (xo, y05 0) relative to the inclined triad

(Ex’ syu Eéﬁ with origin at O' has the coordinates

_1h4-

(4.1)

4.2)



(xo, yo'cose, dep+yo'sin6) relative to the triad (e_, e

mx my’ Mz

with origin at 0. Thus the desired unit aiming vector u

referred to the triad (Ex’ e ,‘gz), has the components

3
= = 1 - =
ux‘xo/Mag’ uy—(yO cos® h)/Mag’ uz_(dep+yo‘sin9/Mag,
2 _.2 2 PR
Mag_xo+(yo cos@-h) +(d +y0 sind)

(cos®, sin@):@ep/ d +h )2, n/( d +h y2),

The same program may compare the design resulting from

the conventional normal entrance pupil with that resulting

e

from Brixner's inclined pupil by granting that (cosO, sinb)

)

(4.3)

be defined by either (1, 0) or Eq. (4.3) according to option.

-15-



5. THE IDEAL LENS

Returning to our introduction, we begln any least
squares machine pass with a certain trial lens'3 in storage,
where u is better in a least squares sense than any of its
predecessors, and proceed to appraise the current lens by
forming its error vector E whose'components measure the
departure of the trial u from an ideal lens. The current
machine storage values of the parameter pair (po, dep) of
Flg. 3.1, when taken together with the constant h defining
a particular object point Q, determine a current machine-
storage light cone C(h, Py’ dep) emanating from Q as in
Fig. 3.1. A cholce of q  in Fig. 4.1 defines a set of
mesh points in the base of the light cone and the rays
from Q through these mesh points define our finite planar
approximation to a uniform sample population of the cone's
light.

Definition. We shall say that a sample ray in the

light cone C(h, po,.dep) vignettes when it fails to reach
the photographic plate for any reason whatever. |

A sample ray which traverses the lens and reaches the
platé scores, in a vignetting sense, a successful event,
while one which fails to reach the plate scores a failure.
An ideal lens, which we strive to approximate at conver-

gence, 1s characterized by the following properties at

-16-



convergence:

1) There is no vignetting of any sample ray in the
light cone C(h, P dep) associated with any sample object
point Q@ of height h.

2) There is perfect achromatized focusing, that is,

all sample rays of all design colors B, B¥1, © s Do oqop?
within the light cone C(h, Pos dep) associated with each
tested object point Q will focus on a unique image point
Q. |

3) A1l design'specifications will be met precisely.
Such requirements may include assighed magnification,
Gausslan focal length, f-number, oriented distance from
the last vertex to the exit pupil, minimalvand maximal
allowable spacing between successive vertices and com-

patibility of the physical dimensions of the lens with

Lhose of the intended camera boX.

-17-



6. CENTROIDAL ERROR COMPONENTS
We now begin defining the error vector E for optical

design. F. Wachendorf? formulated the focusing defilciency
of a trial'lens u by a centroidal analysis of the spot
diagram resulting from the multiple image of any test
object point Q projected on the photograpnic plate by
the sample ray population of Fiz. 4.1 of specified color
. An important extension of the Wachendorf method was
the outcome of a serles of consultations between

B. Brixner and J. C. Holladay to which the latter gave
a mathematical formulation. The Hoiladay program , however,
does not Weight each sample ray according to the i1llum-
ination which 1t represents as described for Fig. 4.1,
nor does 1t provide an auvtomatic correction of vignetting
rays or steer the canputation away from shaping a lens
which cannot be made in a shop (the entrance pupll radius
goes negative or some oriented spacing of successive
vertlices changes sign). We present in this and succeeding
sectlons our own modification of the Brixner-Holladay
extension of the Wachendorf method which recognizes the
aspects of lens design just described.

Let Qn, at height h, in Fig. 3.1, F;l, © s Topject?

be a set of object test points chosen arbitrarily as a

discrete representation of a continuous object line

~18-



segment. From QT we trace a ray of color B, 8=1, - -+ -,

n aimed at an inclined trial entrance pupil mesh

coloxr’
point resulting from some arbitrarily chosen 9 sub-
division of Fig. 4.1. The ordered components of the
illumination weight vector w of (4.1) serve to identify
the mesh points. In general, not all mesh points of w
determine a plate—reaching ray. We select that subget -
ﬂﬁr of w which is plate-reaching, as determined by ray-
tracing, whgre ﬂﬁr has the components WE: i%l, < e ey,
NﬁT’ taken by the tracing order of Fig. 4.1 from the
plate-reaching components of w. |

The plate-reaching ray LEBP of color B aimed from
the object point QT>through the mesh point E willl image

QF into the plate point with plate rectangular coordinates
(xﬁﬁr’ ygﬁr), where (O, hp) would be a plate point on a
line through Qrﬂparallel to the optical axis. For every
right-hand semicircular mesh point of Fig. 4,1 there is

a- companion left-hand semicircular mesh point which would
yield the symmetrical companion image(—xgﬁr, ygﬁr). The
NBF images of QT’ together with their companions, form a

plate spot cloud DﬁP of color P with centroid (O, pﬁr), where

Ppr=2gveetpr/Wprs  War=2s (6.1)

(for convenlence in presentation it is assumed here that

not all sample rays vignette, so wﬁr#o). The first set

-19-



of centroidal error components of E\are defined to be

Definition. The statement that a component E, of

E is of welght w, means that E =w &A, wha@»EA measures

A ATA
a certain deficiency of the lens oand Wy is a weight wnich
we assign to EA in the least squares process of minimizing
¢=1E|°.

The greater the weight w(€) of an error measurement
é, the more will € be driven toward O at the possible
expense of other less welghted measurements. The van-
1shing of (6.2) for all B, with B and T fixed, would
imply that the color spot cloud Dgr has coalesced to
coincide with its centroid (O, pBP)'

Next, consider the composite spot cloud DFEEBDﬁT
with centroid (0, pp), where

pFEZBWBFpBr/WF, wr;zﬁwﬁr.
The second set of centroidal error combonents of E are

defined to be

(pﬁn-pn) of assigned vartial weight Car-
To define whét is meant by the "partial weight c(€) of
an error measurement £ we first state that only the
first seft of centroidal components (6.2) of E are
agssociated immedlately with known weights. We seek to

automate the selection of the weight w(€) of any other

-20-
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error meagsurement £ such as (6.4) by giving it a data

input partial weight c(€). At the end of a complete ray-
?race we shall arrive at a root mean square error number
R

Crmsq’
composite focusing error. This number er"q having been
Hao .

defined later by Eq. (7.3), which measures the

determined, we then define

W(E)E((8)/ e )/ U1/ R o)

vhere c(£) and Crmsq 2FC data input constants, both

chosen as 1 prior to testing for better values. Thus

w(€) is automatically set larger when !€!>>erqq and
automatically approaches c(ﬁ)/cramsq as I&l-ﬁrmsq. It

is hoped that testing will reveal our trial data enﬁrieg
c(&)Ecrmsqsl to be satisfactory and so justify their
ultimate removal from input data. The coding device for
coping with the delayed setting of weights implied by
(6.5) wlll be described 1in section 30.

The vanishing of both (6.2) and (6.4) for given T
and all ¥ and B would imply that a) each color spot cloud
DBT nas coalesced to coincide with its centroid (O, pBF)

and b) all the color centrolds have coalesced into a

single point (0, pp), a perfect multicolored image of Qp.

-2]1-~
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T. AREAL ERROR COMPONENTS
Aware that the design parameters comprising the
componenfs of the trial lens u are generally too few in
number to attain the simultaneous vanishing of the
centrolidal components (6.2) and (6.4), Brixner and
Holladay continued to form additional error components
in order to bring the image spot clouds into agreement
with practical requirements of good focusing. Gener-
alizing their treatment to pay heed to our introduction
of welghted illumination and plate-reaching discrimination,
a ray trace from QF of color B through the plage-reaching
mesh points defined by HBP of the previous section enables
us to form the weighted mean squared radius
REFETZEWE[X%BF+(VEBP‘pﬁr)2]}/wﬁr' Wpr=Zgig: (7.1)
of the spot cloud Dﬁr~of color B relative to its centroid
(0, pﬁF)' We shall say that Rgr measurgs'the area of
Dﬁf’ a spot cloud of weight WBPEZEWE. ?he composite spot
cloud DFEZﬁDﬁP of weight WP wil} then have the area
Rﬁs(zﬁwﬁngr)/wr, SR (7.2)
while the composite spot cloud DEZ‘.I_.Dr of weight W will

have the area

2 a2 . '
| ersqz(zFWFRT)/w’ WSE W (7.3)

The areal components of-g{are defined to be

(Rp-R of assigned partial weight cp. (714)

rmsq)

~o0_

.



The vanishing of (7.4) would imply that each multi-
colored spot cloud DF which images QP’ r=1, *y nobject’
is of equal area.

-23-



8. CIRCULAR SHAPE ERROR COMPONENTS

The centroidal components‘(6.2) and (6.4) and the
areal components (7.4) exhaust our generalizations of
the spot cloud components of E defined by Brixner and
Holladay. It is possible, however, that the composite
spot clouds DF’ having nearly the same area at conver-
gence, may remain distorted from circular shape. To
ensure both nearly equal and circular areas we form

Xgrs(zﬁwﬁm%ﬁr)/wﬁr’ ngrE[zﬁWE(yﬁﬁr‘pﬁr)EJ/wﬁr’

e 2 -
Xp =(2gWgrXgr)/Mps ¥ =(ZBWBPY§F)/WT’

and define the circular shape components of E to be

(XF'YF) of assigned partial weight c;irc.

Referring to the three characterizations of an
1ideal lens in section 5, the error components (6.2),
(6.4), (7.4) and (8.2) measure the departure of our
trial lens u from the ideal property 2), namely the

perfect focusing of Q. into its unique image Q\.
r , r

_ol_

(8.1)‘

(8.2)



9. VIGNETTING ERROR COMPONENTS

We consider in this sectlon those events which may
be encountered during a ray-trace as supplying the first
evidence that the sample ray will not traverse the entire
lens system and reach the plate to form its image of the
object point Q. The occurrence of such an event will be
the signal to halt the further tracing of the errant ray,
to form a vignetting component of the error vector E,
and to start tracing the next ray in .the mesh of Fig. 4.1.

1) Discriminant component of E. Looking ahead to

Fig. 12.1 and anticipating that the refracting (or
reflecting) surface Zi will be assumed to be a quadric

of revolution, then the axial coordinate z of the refrac-
fion point Q:(x,y,z) will be determined as the solution
of a quadratic equation with a discriminant 52 as defined
by Eq. (13.1). We compare &Q with a bias input constant

€l>o and form the biased discriminant error component

gisig-el when <'12<€l of assigned partial welght ci

2) Feathering component of E. If a palr of succes-

sive refracting surfaces (21-1' Zi) should intersect on
the axis side of the ray segment cut off by them, the ray
will pierce these surfaces in the reverse order (Ei, 21-1)

which will be said to constitute a feathering violation.

We must consider two cases:
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a) d;_;>0, l.e. the ray has suffered an even number

of refilections at the completion of its encounter with

> M= - i i
Z;_q- Define Fi=d; ,+z; -z, ; and compare F: with a bilas

A !
input constant eé)O and form the blased featherlng error

component
&éEFi-eé when Fi(eé of assigned partial weight cj;
b) di_1<0, i.e. the ray has suffered an odd number
of reflections at the completion of its encounter with

z Using the same bias input constant €é>0 of a),

i-1°

compare Fi of a) with —eé and form the blased feathering

error component

&ésFi+€é when Fi>’€é of assigned partial weight cé.

3) Total reflection component of E. In Eq. (13.6)

we shall meet a second discriminant, d;e, with the

optical significance that a ray is transmitted by a
réetfracting surrace Zi
when d'zsb. At a refracting surface we compare 512 with

an input bias constant e§>o and form the biased total

reflection error component

E'qug-e' when g 2<€' of assigned partial weight cl.
37*1 73 3 3

1
when qi?>o and 1s totally reflected

- (9.2)

(9.3)

(9.4)

'4) Intolerable refraction point radius component of E.

As input data we enter B@axE(R?ax, Rgax, * * ) whose i—tb

component measures the maximum refraction point radius

relative to the axis that will be tolerated during a ray-
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trace. At the refraction point (x,

i
1
Riz(x§+y§)2 with RTax and form the intolerable refraction

s Vs zi) we compare

point radius error component

&&ERi»R?ax when Ri>R?ax of assigned partial weilght c&. (9.5)
This completes the description of{the four vignetting

components of E.
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10. DESIGN DEMAND ERROR COMPONENTS

1) Magnification demand. From section 6 and

Fig. 3.1 the object points QF(O, hn, 0), I'=1, « « .,

r‘,
nobject’ are imaged into spot clouds DP with centroids
at the plate points (0, pF)'as defined by (6.3). 1In
terms of a data input magnification vector M@ag with
components M?ag, +(-) for inverted (upright) image,

we form the Brixner-Holladay magnification demand

components of E,

Er E=pL+Mphp of assigned partial weight ¢p®.

2)' Second focal length demand. If a designer

schooled in Gaussian optics should wish to prescribe

t
the second focal length, fassignf of the system, he

need merely trace a paraxial ray paréllel to the axis

Vo = _5
at an object height “"Qparax po,Awith Qparax“lo a

likely choice, meacurc the oboerved oeccond focal length

fébs and form the Brixner-Holladay second focal length
demand component of E,
f_. ' . . . I
€ _l/fObs l/f'assign of assigned partial weight c™.

3) f-number demand. As a working definition of

the f-number of a lens outside of the Gaussian domain,
Brixner aims a meridional ray from QO’ the intersection

of the axls with the object plane = to a normal entranée

O’
puplil point at the radial distance on, with QEl/f? a

-28-
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likely choice, and observes the acute angle 6 which the
refracted ray makes with the axls on emerging from the
system. He defines the working observed f-number to be

(£/#) s = 20coto.

'We éccordingly form the f-number demand component " of
VE:
., _ t/#
g _l/(f/#)obs—l/(f/#)assign of partial weight c™/7.

4) Exit pupll oriented distance demand. Here

Brixner aims a principal ray from an object point at a
~ specified height h above the axis. If the refracted
output ray be observed to intersect the axis at an

oriented distance d from the vertex of the last

expuobs
Zi, then we form the Brilxner-Holladay exit pupll demand

component oftg,

expu._ _
g “1/dexpuobs 1/dexpuassign
expu

of assigned partial

welght ¢
5) Oriented upper bound demand. Referring to

2045 u“l=dep, ui'.:.di as detined by Egs. (2.1), we shall

bound the domain of design freedom of each of these

u=l

parameters by entering as input data a lower oriented

bound vector m;(m—e, m"l, - + +) and an upper oriented

2 1

bound vector Ms(M =, M ~, - - -}, where sign ui=sign

mi#sign Mi' u_z, u—l, uo are always positive, but the

spacings ul=d.i may be of either sign due to possible
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reflections. We define the oriented upper bound demand

components of E by

WP, w1 yhen lulls|Ml| of assigned partial welght c“P.

It is not possible to constrain a design parameter to

stay on the admissible side of its lower oriented bound

by means of forming a lower bound error component, for
change of sign might then occur during sﬁccessive least
squares adjustments and during suéh a slgn reversal the
machine would be appraising a lens of impossible con-

struction. This absurdlty 1s permitted by the Holladay

code in the hope that the sign barrier may agaln be

crossed and so permit the machine to resume design in the

domain of a constructible lens. We shall discuss the'
treatment of the lower oriented bound m imposed on u

through the d's in section 28,

A zero input data entry for a design demand is a signal

to by-pass that demand as being of no design interest.
Thus a designer who has severed his pre-c¢omputer ties
with Gaussian optics will normally consider 2) to be of

scarcely more than textbook interest.
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11. 2zOOM LENS DESIGN
We consider here a zoom lens previously designed by
Brixner6 using the Holladay code. It illustrates type I
of three cormmon zoom types I, II, III, where types II and
IIT will be presented at the end of this section. Brixner

found that the design shown schematically 1in Fig., 11.1

insert Pig. 1l.1 approximately here

provides enough degrees of freedom to yleld good results.

A set of 2m+l arbitrarily spaced object points 0, - - -,

0 are to be imaged into a coﬁmon point O' by 2m+1l

2m+1
equally spaced positions of the sliding lens pair (B, D)

Joined by an inextensible bar of length L/2. For sim-
pliqity in drawing, Fig. 11.1 shows all 15 refracting
surfaces to be plane and shows the sliding lenses B and D
to be midway between the fixed lens pairs (A, C) and

(C, E) respectively.

We assume now that we have selected a common maximum
allowable glass thiclmess M compatible with the distance
L/z within which we must allot the 2m+l equally spaced
stations for the movable lens B. Letting AB represent
the common air space between successive stations of B,
the condition on AB for given L and common maximum glasé

thickness M 1s

3M(end glass)+(2m+1)2M(station glass B)+2(m+1)AB(air gap)=3L,
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.ZAB=[%L—(4m+5)M]/2(m+l).
If we demand that ABEQM, then (11.1) places an upper
bound on our choice of M, namely
MSMmaxE(%L)/(8m+9), Ag=2M for M=M__. . (11.2)
The 2m+l stations for B are now determined by the zoomn
station vector dji’ i=1, - ¢ -+, 2m+l, with the components

Bgs AB+(AB+2M), AB+2(AB+2M), R AB+2m(AB+2M). (11.3)

To define a general zoom lens of type I we now

relax Brixner's demand that all the object points fﬁ of height hi

image into a common point O'. ' We accomplish this by

introducing data input stationimagnification demand

components Mi’ i=1, - . ., 2mt+l, and asking that the

magnification error components pi+Mih1 (1 not summed)

approach O at convergence, where (O, pi) is the centroid

of the multicolored spot cloud imaging Oi‘ If we choose

Mi to satisty Mihi=constant for all i, our generalized

type I zoom lens wlll satisfy Brixner's imaging demand.
To implement a type I design we fix our attention

upon an arbitrary one of the continuous object segments

(OO, Oi) and approximate this by a discrete data input

object point spectrum QFi’ =1, £ whose

T nobjec
last point coincides with Oi' Doing this for each i,
the data input object height vector of section 6 with

components hp now becomes generallzed to a matrix of
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heights h i=1, - -« -, 2m+1.

ri’ object’
The sample ray LEBP of section 6 aimed there from Qp

F=1, - . .y n

now becomes LEBFi aimed from the object point QFi'

A review of the centroid analysis of section 6 shows
that the extra Index i must be added to the centroid
quantities and to their corresponding error components
in order to form the composite zoom stationed error
vector E. Thus the components of § corresponding to

the zoom station i are measuring the departure from

'perfection of the lens when set at station i. The

least squares process will minimize the zoom composite
¢z§:§ by stealing a bit from the performance at one
station to improve that at another. The i-th zoom
station should cause the type I magnification error
components of the form

. mag. o mag
Ieti =pp;tMyhpy of partial welght ;epy™,

to approach 0, where (O,pri) is the centroid of the
multicolored spot cloud imaging QPi of height hPi‘

We begin the zoom design by locking the movable
lens pair (B, D) of Fig. 11.1 in its central position
corresponding to i=mt+l and proceed to optimize the
non-zoom system of 5 lenses A, B, C, D, E relative to
the discrete central object point spectrum QPm+l’

=1, £ with all 10 glass thicknesses free

nobjec
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to vary independently within the constraints m=glass

thickness=M and with the air gaps subject to the constraints

dg=tL-dy-dp-dy,  dyp=b'l-dyy-dy3-dyy, (11.5)
d6=éL—d5-d7, d9=%L—d8—dlo, /

of the type given by Eq. (2.2). Let W ontpa1 D€ the

resulting optimal parameter vector with components

analogous to those of Eq. (2.1). The components of U,ontral

other than u’=d; then define the initial trial lens in the

minimization of the composite zoom error vector resulting

from holding:d3 fixed at the sequence of values given by

Eq. (11.3), as signaled to the program by setting the

parameter flag component f3=—999 as in 4) of section 2.

For each zoom station value of the ailr gap d3 the remaining

air gaps are subject to the zoom constraints
d6=(L/2—d3)—dl—d2-d4—d5—d7,
d9=(d3)+d1+d2+d4"d8'dlo’ | - (11.6)
dyp=(1/2-d5)-dy~dp-dy-dy;~d5-dyy,

of the type given by Eq. (2.2).
The zoom lens of type II results from placing the

2m+l object points 0i on a horizontal line at height h
above the optical axls rather than on a vertical line as

in Fig. 11.1. lLet O 4 be the foot of the perpendicular

0
from 0i to the optical axis ét the distance dOi from 21.

For given 1 we approximate the continuous objJect segment



(OOiOi) by a discrete set of object points Qp, of heights

h '=1l,: -« -, nobject’ and request that the i-th zoom

1—\’
station reduce the magnification error components

mag. mag
IIean’pPi+Mth’ of assigned partial weight 11°r1 °
to small absolute values.
The zoom lens of type III has but one object segment

(0001) of height h which 1s approximated by a discrete

spectrum of object points Qn of height hF; =1, *+ * °,
Nobject” Data input magnification demand components
1Mi, i=1, - - -, 2m+l, serve to define the lmage require-

ments that the i-th zoom station should cause the neaf

vanishing of the magnification error components

mag._. mag
IIIgri “pPi+Mth of assigned partial weight ITI°T1

-
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12. HERZBERGER'S METHOD OF RAY-TRACING
We begin a summary of M. Herzberger‘s7 method of
ray-tracing. Figure 12.1 shows the input ray emerging

insert Fig. 12,1 approximately here

at Qi from the plane Ei tangent to the optical surface
Zi at its vertex Oi‘ This ray suffers refraction (or
reflection) at Q¥* on Z, and pierces E, ; at Q,; , as
the input ray for the next refraction at Zi+1’ We
define the input vector 54 by

1385 +C 18 _(®£i)ex+®23)e )+2;i 18>

ui N3 18- )
2 o : _ . (12.1
|8, 1507 _y=g, 8p#+eE ps 1=1, > Dgyre*
In terms of the transverse position vector ﬁi giving
the displacement of the tangent plane pilercing point
Qi with respect to the vertex Oi of Zi, we define the
proportional transverse vector
P = = (i) 2L (i) f o= . e e )
B30 183017 et d508y ), 1=, > Pgure- (12.2)

The matrixlg(i) completely defines the ray $; of Fig. 12.1

and wlll be called the ray identification matrix. The
(i+1)
3

next input pair (P, 4, Si+l)’ identified by @
is related to the previous input pair (gi, §i) identified

by 9(1), according to

(1+1)_g(1+1,1)4(1)

) 1=1, + + +, n e (12.3)

The problem of ray-tracing as posed by Herzberger is the

problem of computing the four elements of the refraction
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matrix 9(i+l’i).

Referred to axes along the orthonormal triad

(e, &y’ gz) of Fig. 12.1 with origin at the vertex O,.
of =

17 the equation of Zi, restricted now to be a
quadric of revolution about the optical axis, will be

expressed as
2 2,.2
40 C4): z+%BiCiz —%Bi(x +y<)=0.

We shall call (x, y, z) of Eq. (12.4) the tangential

ZiEZ(B

coordinates of a point of Zi since they are referred to

the tanggntial frame (Oi; &x’ Sy’

also introduce a parallel absolute frame with origin at

0 the intersection of the object plane ZO with the

O,
optical axis. The object point Q of Fig. 3.1 has the

:absolute coordinates (0, h, O0).

In order to determine}g(l) we set i=0 in Fig. 12.1

gz) of Fig. 12.1. We

(12.4)

and recall that now there is no refraction at the object plane

ZO SO §o§§15n0m3

components given by Eq. (4.3). Inspection of Fig. 12.1

shows that
- Ay=-dge tAGH(dy B (85 +80e, ), EoTngu, s

P =CoAgtdeS; from Eq. (12.2)

From the definitions (12.1) and Eq. (12.5) it follows that

¢§i) ¢§é) | nadouy no(dguythu,)
1. 1 - ) ’
.®;i)- ¢§2) Dolx nouy

where u is given by (4.3).
-37-
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13. HERZBERGER'S COMPUTATIONAL PROCEDURE

We summarize the order of computation in making
a Herzberger ray-trace.

1) Select a specific object point Q(O, hp, 0) from
the input data set of object points QF’ =1, « « -, nobject’
introduced in section 6. '

2) Select a specific inclined entrance pupil mesh
refinement number q, as in Fig. 4.1.‘

3) Select a specific mesh point (i, j) with coordi-
nates (xo, yo') gi&en by Eq. (4.2) relative to the in-
clined entrance pupll frame (O} [ g&, gé) of Fig. 3.1.

4) Use the definitions (4.3) to form the unit
aiming vector u referred to the absolute frame (0; [
Ey"gz) of Fig. 3.1. | |

5) Use the definitions (12.6) to form‘g(l).

We now employ induction by assuming that we have
formed the ray ildentification matrix g(i)'and that we
presently seek to form Herzberger's refraction matrix

(i+1,1)

8 in order to form g(i+l) by means of Eg. 12.3).

With the understanding that our attention is now fixed
on the ray 54 as defined by Eq. (12.1) which is about
to be refracted by Zi, we simplify notation by omitting
2ll indices in our computatilons.

6) Form the discriminant
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_ 2)2

AA T AN A

-B°p-B(8-8-ct?), =L, , in (12.1),
of the quadratic equation
2)2-B?£-§(§-S-CC2)

AN

[Bz(g-§-CL2)+(BE-8-6°)1%=(BR- §-¢

yielding the z coordinate of the refraction point Q*

(13.1)

(13.2)

relative to the tangential frame (0.; e, e_, gz) of Fig. 12.1.

17 X" My
7) 1Is §5<e; of (9.1)? If so, form the biased

discriminant error component of (9.1) and start tracing
the next ray in the mesh (i, j) of Fig. 4.1.

8) Form dE(ig)% and solve (13.2) by factoring
to obtain |

z=BP'P/D,  D=q-BE-§+t°#0,
which gives z=0 for B=0.

9) Compute the transverse coordinates of the
refraction poilnt Q*(x, Y, Z)s

x=(®ll+z®21)/ﬁ, y=(¢12+z®22)/§.

10) Form RE(x2+y2)% and test for magnitude.

If too large, form the 1lntolerable padius error component
(9.5) and start tracing the next ray in the entrance pupil
mesh of Fig. 4.1.

11) Eorm the feathering expression Fisdi—1+zi”zi—l’
test for feéthering as in 2) of section 9 and, if feather-
ing is revealed, form the feathering error component of
seption 9. and start tracing the next ray.

12) Form for future use the quantities
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13) Test the product didi—l for sign. If negative,

then Z; 1s a mirror and we define q'=-q, where q is defined

by 8), and go to 17).
14) A positive product d,;d; ; indicates refraction

at Zi and so we form
2_-2 2
q'“=q"-(n
and recognize, as Herzberger seemingly did not, that the
. 2

-n'g)ﬁg, nEn, _qs n'sn,,
condition for total reflection at Zi is q'°E0. To verify
thls, observe that from the refraction law msiné=n'siné'
for the case nd>n' the oriticality condition sin®6=n /n
may be expressed as n®-n'? =(o-s) , where g=nu, |ul=1, and
S 1s the unit normal to T as given by (12.4), directed
from the medium of index n to that of index n'. The
vanishing of d'2 in (13.6) would imply n2-n'2=62/ﬁ2 and
the equality (9-8)°=3"/R® may be eslablished by observing
that z satisfieé Eq. (13.2).

15) Is §'°<e! of (9.4)? If so, torm the biased
total reflection efror component (9.4) and start tracing
the next ray in the mesh (i, j).

16) Form 4'=(3'2)%.

17)  Form ¥=(§'-3)/R°,

©,4 815 i' | 1+9(€-d) d+z¥(E-d)

am—

1 80 | _BJ 1-Bzd

~4o-

(13.5)

(13.6)

(13.7)



This definition of the refraction matrix @ completes
the cdmputational description of Herzberger's method

of ray-tracing.
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14. APERTURE STOP DETERMINATION
In order to locate the aperture stop of a lens at
the termination of convergence, Brixner and Holladay
transfer machine control to a twin ray diagnostic §ub-
routine which traces the two rays R and SR of Fig. 14,1
almed from a selected object point 0(0, h, 0) and of

prescribed color B.

insert Fig. 14.1 approximately here

;R and SR are meridional rays aimed at the extreme ends

* of a diameter of the entrance pupil (dep’ po) of Fig. 3.1

as defined at convergence. Figure 14.1 shows the twin
rays as they transit the space between successive vertex
tangent planes E, and E, ., where by (12.1) and (12.2),

(1) (1) _
021502 8ytati-1820  oAi%(a®i2 / 8y 1)gys =1, 2.

Figure 14.1 shows a point Q on that segment of the

optical axls cut out by E; and E; 4 such that a circle

"with Q as center and plane normal to the axis cuts the

direction lines of the twin rays in 1Q and 2Q. For a

- given palir (E,, E.,,) there will usually be no such point
i i+l

Q between them, but when 1t does exist, and when in addi-
tion the medium between Zi and Zi+l 18 air, then Q
determines the center of the reguired aperture stop of
radius Riu

Our point of view will be to allow Q to move along

_ho-

(14.1)
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the entire axis interval (-«, %) and to halt it when
the oriented segments bear the desired relation
(Q ;Q)=-(Q ,Q). If z, be the oriented spacing out ﬁo,
Q as in Fig, 14.1, then wé shall have located the
’ aperture stop when
z,d;>0 and Izi|<|dil in an engineering sense.

and _A. as defined by (14.1), we seek properly

oMl
chosen scalars A and g and a positive radius Ri such that
*Rigy—'ziez+lAi+hl 84=" (‘219z+2ﬁ1+“2§¢)’
"2yt 8y g = mzg oty g=
Eliminating A and ¢ we obtain

Given méi

O'

ol

__[ c:‘L 1’1 12) 1Ci 1 2 12)]/[ Z:i 1 1 é2) 151 1 2 g )]’

i)
+zy 5y ¢ 22 ]/1 i-1,

Ry=11%912
whenlthe denominator ' of zy is not zero. Inspection of
Fig. 14.1 shows that z; becomes indeterminate when the
twin rays are mirror conjugate with respect to the optilcal
axis, méaning that

_ (1)_ (1) (1) 4(1)
1831708110 %0 =0%0 7 %15 “’2¢12 :

In such an event z; may be chosen arbitrarily. When the
first two equalities of (14.5)'hold, but not the\third,
then there is no solution for Zy.

We have presented the determination of the aperture

stop by the tracing of twin rays of chosen color B from
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a chosen object point of height h. It is anticipated
that different stops will result from varying B and h,
but it seems plausible that a well desligned lens may

yield a family of stops within engineering agreement.

e



15. ANALYTIC DIFFERENTIATION

The knowledge of all the first partial deri#atives of the ray identi-

fication pair {28&§s) as defined by (12.1) and (12.2) at each vertex tan-

7

gent plane Es will enable us to differentiate all components of the error

vector E. From Eq. (12.3),

(3+2)_g(s+1,8)y 9(8), (o+1s8)5(8) oy .. (15.1)

~v~ i Surf’

s0 that ve initiate the induction on 3,9(*) by differentiating o) 46 ge-

a ®

fined by (12.6), where u is defined by Egs. (4.2) and (4.3). Preparing to

(1)

form 3,8°"", we recall the definitions (2.1) of the parameter vector u of

the Lister type lens of Fig. 2.1. From (12.6),

ng(dg3,u +u 3,d;) no(doaiuy+uyaido+haiuz)

(1) _

o/
©
|

» 1 =-2,-1,0,

nyd; Y, nyd iuy “ (15.2)

(1)
2,0,

n

0, 1=1.

From Eqs. (4,2) and (4.3) we obtain

= (§-2 Hn 2
(3 g)qo Xy ag
3 .u = (i-%) 'lcoseM-l+(y’cose-h)a M
2y “2'% ag Yo -2 ag’
d .u_ = (i-}) “Loinem L+ (a +y’'8ino)d Mt
-2 2 qO ag ep Y0 -2 ag ’

3_M ag:: -qolM 3[(J -3)x +(i-%)(y sine-hcose)],

- -1
) a_lux = xoa_lM
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e I -1
d_ju = YoM ]‘o_lcose + Mag‘&Ja-lMag s (15.3)

y ag
3 .u, = (1+y%d sind)M L + M u i Mt
-1Y%2 0°-1 ag * ag z°-1ag ’
d_,8in6 = - h-lsinzecose, d_,cos6 = h'lsin59,
d M= - M-e[u 'y _cos8 + u_(1+y’d .sing)]
-1ag ag- Yy 00-1 VY01 ’
3,8 = B850 Bl = JgY¥y = 3u, = O.

Using (15.2) and (15.3) we may evaluate the non-vanishing ai%(l),

i= -2, -1, 0. We may then use (15.1) to evaluate successively big(s*l)

for s = 1,2,+++, providing that we can form a ®(s+l 5) for s = 1,2,°°"*.

Now (13.7) gives the elements of the refraction matrix ®(s+1,s)

s = 1,2,°** when ve associate the surface index s of Zs wvith V,t,d4,2,B

(s) (s)

in (13.7). Assuming that ¢’ and 3;8 " are known, and recalling from

(12.1) and (12.2) that

s pl8) (8) 2 _q. 2
B ® 0118 %10°8 Sy Bge1 Tl Se * Cour #
_ (5) (s),
§s = e + 022 Sy
(s+1,8)
we seek to form 9 19« . Dropping the refracting surface index s for

convenience, we seek the derivative of © as defined by (13.7). From our

assumed lnowledge of ¢ and d 13 we may form

3,(B:B) = (0 3;911%0121 %10 )s
3;(B-8) = #11%1%1%%21%1%11 * $,50:%p * 2231 12?

{ 2 = . .
3;(8:8) = 2(0,9,8,, + qszgai%d) 3,67 = - 3,(8-8),
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3,3 = 33 {2(8P-5-C°)[(B-8)o B + B, (B-S) + 3, (5-8)]
- [2B(p-P)3,B + B, (P-P)1(§-8-c®) '
- B°(B-R) (14)3, (5-5)-C%,C1}, from (13.1),

3,0 = 3,3 - (P-5)3,B - B, (B:g) - 3,(s:S), from (13.3),

3,2 = D" (2-R)3,B + B, (p-B) - B(R-E)D 13,01,

?,(-4) = Bzaic-i-(c+l)(Baiz-o-iaiB)-(Baid-l-d_BiB), from (13.5),

=2
) iR

1]

[(22-2)8, - (5-1) (B, 2+23,B)JC PR "0, (5°8) grom (13.5),

bt

3;,a" = -2 15 for reflection at 2 from 13) section 13,

3.9’ %a'-l[éaéia-(ng-n'2)a£§2] for refraction at . from (13.6),
d.¥ = ﬁ'a[a q’'-3,q -Hﬁénﬁg] - from (13.7).

i i i i
From these equations and (13.7) we obtain the desired derivatives

2 iell

i

W, (&-d) + (e-dl, ¥,

i

3.0 3,d + W(%-E)aiz + z(E-E)aJ; + z‘ﬁai(ﬁ-ﬁ),

i~1e
. (15.4)

i

3,0,, = - G’vaimBaiw),

9180

I

- (z‘\iaiB + B?I;aiz + Bzaiﬁ';).

The method of combined ray-tracing and anglytic differentiation is now

clear. A ray is traced from an object point Q to the plane E, of Fig.

1
12.1 and is defined at Ql’ its piercing point of Eys by the ray identifi-
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RPN Y

(l), sensitive only to the 3 parameters

(1)

cation matrix of Eq. (12.6), &

(po, dep, do). We interrupt the ray-trace at E; to form 3,8’ by the
definition (15.2). We then resume the ray-trace by forming the refrac-
(2,1) (2,1)

tion matrix ® at Zl as defined by (13.7). We observe that e

is sensitive only to the parameters (po, d,
(2) _ @_(2’1)9;(1)

o’ 4y &5 By cl). We then

use Eq. (12.3) to form $ and differentiation by means of

Egs. (lS.?)through (15.4) prévides aiﬁ(e). Successively determining the

(s) 5 4(s)y.

matrix pairs (g‘ , arg both ‘sensitive only to the parameters

cey C ),

(dO’ dep’ dos dl’ try dgyi Byy 0oy B s-1

1’ s-1° Cl’
at each vertex tangent plane Es’ we eventuslly obtain ¢ and aig at the
vertex tangent plane E of the curved photographic plate L(B,C). For a
plane plate E = Z(O,-l). We now use (13.4) to compute the plate spot

(x,¥), and differentiation gives

= -1 -1 .
3= ¢ (3,3, + 8,9;2 + 23,3, + 3 "»,(5-8)],

(15.5)

-1 , -1 ,
3,7 = ¢ a8, + 3,9,2 + 23,8, + H T w, (S:5)].

The plate spot derivatives (15.5) and the knowledge of the ray identi-
fication matrix gfs) at each vertex tangent plane Es and of its derivatives
akg(s) enable us to differentiate all the components of E as defined in sec-

tions 6, 7, 8, 9, and 10.
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16. FEUCLIDEAN M~-SPACE eM

Let'e,, A=1, *°*, M,be an orthonormal set of base vectors spanning

MA,

Euclidean M~-space £ This means that the scalar product g is given

M’ A
bY £, °8p = Bpps Vhere 8, = 1(0) for A = (#)B. Any matrix HF H of con-
stant elements for which | | # 0 defines a new set of base vectors £a

spanning 81\1 defined by SA = Me"QFQA (sun repeated index over its range 1,

., M) vhose scalar products define a positive-definite matrix e, H,
where
Gpp = £5 285 = FoaFom® (16‘.1)

These new base vectors ~§A are in general skew and of non-unit length, the

N\

conditions that they themselves be likewise orthonormal and obtainable from

by a rigid rotation in €

the orthonormal base & N being G = FQ,AFQB _8
We shall assume that ||F H is not a rotation matrix and shall agree tha.tm\A
will designate an orthonormal base of 6 and fA a skgy base. If .Y.. be any
vector of 8M’ its components may be referred either to”?\A or "fA’
N 1 i
y* = ~§QEQ = £RVJ =**Q,FQ,RVJ EA = FARVI »
(16.2)

2 R
|17 = 8B B, = GQRVQ’V .

The Kronecker delta, & AR’ gives the components of the Euclidean metric tensor
g in the base SA while GAB gives the components of this same tensor in the
base ,E'A'

If we confine our attention to 83 and a rectangular Cartesian systenm

(0; 31; Los 35) with origin at O and axes along the orthonormal base -direc-
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tiOns’gA, we are concerned with the Cartesian analytical description of
the space of Euclidean geometry. It is rich in geometric concepts asso-
ciated with points, distances between points, lines, angles between lines,

curves, planes, surfaces, gradient direction at a point on a surface, etc.
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17. ARITHMETIC SPACE An

Arithmetic n-space An is as poor in geometry as Euclidean M-space is
rich. An arithmetic point is merely an ordered set of n numbers, u = (u}
vee, un), and the totality of such ordered sets constitutes An by sterile
definition. It is a grinding task to squeeze any fruitful ideas out of A,
because it has no structure, no metric which serves to measure the "distance"
between neighboring arithmetic points u and u+ dg. Our trial lens has been
idealized as a point of An. As a prerequisite for measuring the distance ::
between a neighboring pair of lenses (g, u+ d&) -ta.kep from A’:1 we must relieve'
'the poverty of An by endoving it from outside itself with a metric, a com-
modity which it does_not hgve in its owﬁ right. This may be accomplished by

mapping the geometrically barren An upon the bountiful E‘,M.
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18. GENFRAL MAP OF An ONTO EM

To map-the arithmetic points u of An into the géometric points V of
Euclidean space £, we make an arbitrary choice of the mapping arguments

M, FAB’ VA(g)], where M defines the dimension of g, defines a skew

FAB

base f, = SQFQA in €, and VA(B\) are differentiable functions defining

A
the mapping according to the equations

. = Q/y = o R a ‘ '
Beh V= gFpoV-(a) = £V (wleey, M= n. | | (13.1)
As u ranges over n-dimensional An its geometric image point‘}‘/(&) ranges
over a hypersurface SneE‘:M swept out by the free terminus of the displace-
ment vector V. The tangent n-plane Zn(&) to S at V('}“x)esn is spanned by

the base vectors

8

(u) Eiqv?i(l‘*)’ Vlji =3,V - (18.2)

and its maximum possible dimension will be n. At a singular point geAn,
for-yhich rank ||\I“\1 (|| = r < n, the linear tangeul spuce of s, is r-
) ’

dimensional.
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19. METRIC INDUCED IN An

The neighboring arithmetic pair (‘:‘.l u + du) defines an infinitesimal

n-tuple dueA vhich maps under (18.1) vy
dyeA -~ &Y (y,dw) = o _(uw)du'el (u) ' (19.1)

In the sense of the mapping we may now associate with'dg\eAn a scalar magni-

tude |du| defined by

ldﬂ]e = |d&(g,dg)|2 = grs(}&)durdus,
(19.2)

gy, (w) = g, (w)°g, (@) = Gv? (v ().

' One says that the mapping (18.1) has induced the metric g, . of (19.2) on

An’ itself devoid of any metric.
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20. DIRECTION OF STEEPEST DESCENT

There has been much discussion in the literature of '"the direction of

steepest descent”

at a specified trial point 3€An of a sealar function

cp(x\) A variable over An. All such discussions that have come to our at-
tention have shared a common oversight, a failure to define the word "steep-
est.” We present here a correct formulation of steepest descent.

Since steepness is a metric concept, there can be no measurement of the
instantaneous rate of change of a function ©(y) as the arithmetic point y
moves along an arithmetic curve CeA n until after a metric has been induced

. in An by a mapping of An into Buclidean space. We accordingly assume that
the mapping (18.1) has been applied so that we have thereby induced in An

the metric gij(g) of (19.2). The situation is now that we find ourselves

at a trial arithmetic point A‘..*“:An at which our ¢ takes the value cp(g) and

wve consider an arbitrary arithmetic curve CfsAn on the trial point u. Equa-
tions of the form vi= vi(s), vi(o) = ui, parameterize C with respect to arc
length s along C when the arithmetic tangent t with components g = dvi/ds‘ o
is & unit M, the condition from (19.2) being grs(g)trts = 1. With arc
length now defined, the directional derivative dcp/ds\o = cp’r(g)tr measures
the initial rate of change of ¢ with respect to the arc length parameter s

as we evaluate cp(l) along C issuing from u. With the observer at the trial
'ge_An, there exists a famlly of mn-l such unit directions t issuing from y and
we seek that t from the family along which the directional derivative cp’_r(&)tr

is stationary. Now the problem of seeking a stationary value of ¢ I.(}‘1‘)1:1' as t
’ A

ranges over the unit sphere grs(}x‘)trts-l = 0 may be solved by introducing a

lagrange multiplier8 A to form ¥(t,\) A(grstrts-l) + O rtr and. by imposing
)

~54-



the conditions %aq;/ati = 0, namely
g, (Wz' + o.(uw) =0, z% =rtl. (20.1)
1Y m ,im e .

These are the equations of steepest descent for a function @(v) at a trial

point YeA relative to the metric (}3\) of (19.2) induced on A by the

gid
mapping (18.1) of A  into &.

When uisa noﬁ-singula.r point of the mapping (18.1), for which rank
“V-?i(g)u = n, then lgij(}i” #£ O from the definition of 8y 5 in (19.2). 1In
this case the steepest deséent system (20.1) has a M solution z. We
eliminate the Lagrange multiplier A from 2t = At in (20.1) to obtain as. the’

unit direction of steepest descent t' = zi/|£|, vhere from (16.1) and (19.2)

2 _ r s _ ' - r -
|“=8.22 =FF, >0, FA"FARVF:r(H.)Zf | (20.2)

which yields the minimizing directional derivative

@, = w2/ l2| - - 222z - - 2zl

when ®; is eliminated by (20.1).
. b 4 .
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21. PRIMITIVE MAP OF A INTO en

We shall say that the choice of mapping arguments [M = n, Fij = 513’
Vi(g) = ui] of section 18 defines the primitive map of A, into g for

vhich (18.1), (19.2), and (20.1) reduce to

r
w -V =eucel
MgAn L=gue,

(21.1)

]

g W =8, 2= -3, W,

Otherwise expressed, the primitive map of An into Bn results from setting
up a rectangular Cartesian coordinate system in fuclidean 8n and defining

the image °f,2FAn to be the geometric point with rectangular Cartesian co-
9

ordinates (ul, ceey, u?).

This primitive mapping yields Cauchy's formula-
tion of the direction of steepest descent of ¢ as that of the negative gra-
dient of ®. Since the derived mapping matrix HVTJ(B) = 5ijn is now the
ident;ty matrix, all points 3§An are nonsingular points of the mapping.

The simplicity of the metric gij = 5, , causes the steepeét descent system

i3
(20.1) to appear in the solved form of (21.1).
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22. ORTHONORMAL ERROR MAP OF An INTO 81\1

The primitive mapping of the previous section appeared conspicuously
as the mapping of least imagination. As a mapping for optimizing a lens

system, it ignores the intrinsic error vector E of components s A=1,

Ep
++¢, N. In order to enrich the mapping by the inclusion of E, ve now choose

the mpping arguments (M= N, F, = 8,., VA(,\}‘.)

normal error mep of A into gy for which (18.1), (19.2), and (20.1) become

EA(.‘A)] as defining the ortho-

yeA — E = g F (uety,
(22.1)

r 3 _ . = .
8,2 + 0,3 =0 g ,(w=rg W .

Here also we are open to the charge of lagking imaginatiop, for why have we
chosen to treat our error components EA(}&) as components of E relative to
an orthonormal base £ rather than relative to some intrinsically chosen
skew base ~§A(~‘5~) = SQFQA('B)’ with FAB(B\) presumably dependent on the cur-
r'ent trial lens ,ueAnAwhich we seek to improve? There does indeed exist
such an intrinsic skew base ~£A(~‘5~)’ bu:b its computation for the optiecs case
N >> n is too formidable to be practical for todey's computers and so we

shall present this in another paper. , )
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25. GEOMETRY OF ERROR MAPPING

A significant achievement of the error mapping leading to (22.1) is

that the function ¢ which we seek to minimize is now intrinsically related

to the mapping [N’SAB’EA(E)] by @ = |“‘I~3‘|2 This eircumstance enables us to

derive by geometric reasoning the steepest descent system
r
EQ’iEQ,rz + EgE 4 0 (23.1)

for @ = L§|2 relative to this mapping. Nemely, as y ranges over A its
geometric image ranges over the hypersurface Sne?,N swept out by the free

terminus of the mapping vector E = (u) with its fixed terminus at the

£
origin O of a rectangular Cartesian coordinate system in 81\! with axes in
the directions of Ly A=1, +-+, N. The current trial lens u is imaged
into the geometric point E(u)eS . We shall minimize ¢(y) = |E(X)|2 in the
neighborhood of our current trial u by finding that &neAn for which g (gm) |
is that point of S in the neighborhood of E(,g)esn which is the closest to
0. Seeking an arithmetic n-tuple geAn such that the arithmetic line u+ nz,
n > 0, vill give the direction of steepest descent of ¢ = |§J2 at =0,

we replace the curved SneCN by its tangent n-plane Zn(g)eeN spanned by the
n vectors g, (u) = 'SQEQ,i(B*) when rank HEA,i(g)l\ = n. Since the flat L ap-
proximates the ;:urved Sn in the neighborhood of the point of tangency g(g),
the direction zeA of steepest descent of IE(,Y..)IQ as E(x) sweeps out the
curved . will be identical with that of steepest descent of |3|2 as

2{ sweeps out the tangent n-plane Zn(B«)’ The displacement vector . from

0 to any point of the tangent n-plane Zn(&) is of the form Z;:-: gr(g)zr + E(u).

-58-



Now the desired direction in Zn(g) of steepest descent of \E"\e’és |§| C
ranges over Zn(g) is given by the direction of the tangential vector
gi(g)zr vhen z = (zl, oo, zn)eAn is chosen such tﬁatlgr(ggzr gives the
displacement in Zn(g) from the contact point Eﬂg) to the foot of the per-
pendicular from the origin Q onto Zn(g). The coudiﬁions on zi giving the

equations of steepest descent are thus identical with (23.1),

zr+EE

r —
g3 (g2 +E) = By By . Qfq,1 = 0. (23.2)
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2k, SINGULAR POINTS OF ERROR MAP

The debugging of our IBM Stretch lens design code was undertaken from
an initial trial Lister type lens u as shown in Fig. 2.1. This had been
previously obtained by Brixner as a completed design using the Holladay
program as revi;ed and written by C. A. Lehmanlo for the IBM 7090. It may
therefore be assumed that our trial u was near an optimum. We cénstrained
the system by a certain choice of the parameter flag vector f of section 2
which left us with 12 design parameters out of a possible 25. A nonsingular
linear system solver showed that the elements of the coefficient matrixl
“gijn of the 12x12 linear system (23.1) ranged in absolute value from order
10-9 to 105. The exponent sequence of the Gaussian pivots was {-2, -4, -2,
-2, =5, =5, -4, -7, -9, -12,'-17, -18} and the determinant was of order
10-77! If we define the approximate machine zero for this matrix Hgijn to
be of order 10'12, obtained as the product of the maximum element of order

lO3 by the machine accuracy 10-15, we see that the system is of rank 10 at

most and should not be processed as a nonsingular system.

A triel lens veA 1is & singular point of the error map E(u) when the
columns i = 1, -+, n of the derived matrix HQA,ngHl are linearly dependent,
meaning that there exists & set of constants y = (wl, cee, wn) not all O,

r . ~
such that EA;r(E)w =0 forA=1, -+, N. Since 85 = EQ,iEQ,j from Eq.

(22.1), we have g; V. = 0 and hence 'gij‘ = 0. Conversely, let ‘gijl =0

and let w now be any solution of 8y Yy = 0. Then BrgWp ¥y = VQVQ = 0, where

= r ¢ = i ‘ =
VA = EA,rw , and so VA 0. But this means that any w saﬁisfylng 8 V0 0

also satisfies EA,rwr = 0. Thus rank Hgijn

rank HEﬁ’jH.
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To test the singular system (25.1) for consistency we choose w to be

T .
a solution of wsgsj = 0 and form wsgsrz = - EQEQ’ sws' The coefficients

of the z's are now zero and the necessary and sufficient condition for

consistency of the singular system is that EQEQ Vs should likewise vanish.
’

But this condition is satisfied since we know that EA Vs = O for A =1,
R :

«ee, N.

Consider now a singular point ueA for vhich rank HEA’j(,g‘)H =r<n.
Then rank Hgij(,g)u = r and the homogeneous system girwr = O admits n-r
linearly independent solutions Mo Let ,,C; be some arbitra.rily‘ chosen parti-
cular solution of the consistent singular system girz,r + B I = 0, then

the most general particular solution is of the form z=(+c pgp and

A

1

|21 = g, 2"2% = g, (CTre v TV (e v ®) = 8, C7C° = |¢|°. (24.1)

rs pp o0

From this we conclude that the steepest descent directional derivative - 2|z]
of Eq. (20.3) is independent of the choice of the particular solution z of

the singular consistent system (23.1) resulting from a singular trial point u.

3

We follow R. E. von Holdt” by selecting from the T particular solu-

tions z = € + cpyp that uniquely determined solution for which HEJ\Q = 272"

o

is a minimum. To arrive at this selection we first orthonormalize the n-r

w's such that ¥y'¥g = warwBr = 508 and then choose the c¢'s so that the parti-
cular solution z is orthogonal to these orthonormalized v 's, the conditions

being

Ho'E T Ea ¥t Y Ml T Syt ¥ G O (24.2)

We designate by the particular solution resulting from z = C + c_pyp when

A

Z
[
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the ¢'s have been chosen by Eq. (24.2). Then any other particular solution

i £ (o) zZ = W
is of the form Z ‘Em +T and

1% = (g + 7o) (2g + T = llzgll® + 7 > llzg)l® (24 .3)

since now Qﬂnﬂiz) = 0.

Conclusion: An efficient subroutine for solving the steepest descent
system (23,1) should process the system as nomsingular wvhen no Gaussian
pivot drops in absolute value below the approximate machine zero for the
matrix Hgij“’ When the trial lens y is a singular point, the rank r of
gij(g) should be determined and an orthonormal set of‘n—r solgtions/gd
of the homogeneous system girwr = 0 should be computed. . From these, and °
any arbitrarily chosen particular solution4g3 the unique particular solu-
tion g which minimizes the norm Hgﬂ,'g~ranging over the o™ © particular
solutions, is determined.

He who has coded R. E. von Holdt's excellent eigenvalue-gigenvector
subroutine mentioned in section 1 has but to reach in his card file fof
such a linear system solver; others face a job of work. Tﬁe futility of
attempting to use a nonsingular linear system solver at a singular trial u

has driven malpractitioners to the artful dodge of varying only a few para-

meters at a time.

-62-



25. GRADIENT MAP OF An INTO En

Let o(u), UeA , be any scalar function ¢ vhich we seek to minimize
over An' We shall formulate this minimiza,ti'on problem by the following
chain of procedures: .

1) Map A, into & by the primitive mapping [n,sij,ui] of (21.1) so

that the arithmetic function ¢ defined over An now becomes the geometric

point function @(V],V = Srureen, defined over e

2) Form the gradient error vector Eg = IO P 4= Bcp/apxi , and map
Euclidean en' onto itself by the choice of mapping arguments [n,Bij,cp,i] .
The steepest descent equations (20.1) for minimizing any scalar point func-
tion YW{V], ¥ = grure&‘ln, are written in terms of the éradient mapping metric

(19.2),
»81 ,8J’

. 2 3
girzr + Jé‘l’,i = 0’ gi,j Ep © q),i.j =0 cp/aulauj‘ (25'1)

3) Now define the scalar ¥ to be intrinsically related to the gradient

]

2 )
mappi vector E by the definition = |E . Then (25.1) reduces
pping B, by v=|E] I (25.1)

to

O

o (o zr+cp ) = O when |c,o’ij(’g“)|v =

y8i 7 ,8Y »S

(25.2)

. r .
R 0 when lq’,ij(}i)l £ 0.

1 ’

If we now restrict the general ¢ of (25.2) by making the choice

P = |E| 2, where E 1s the optical error vector, then the nonsingular point

(lo . .(u)| £ 0) form of (25.2) gives the nonsingular point second order
PR Ry : -

equations of steepest descent for the scalar ¢ = ¢ GC r relative to the
R . R
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gradient mapping [n,SiJ. ,qx, i] ,

r -
(EQ’iEQ,r + EQEQ’ir)z + EQEQ,i = 0. (25.3)

At a singular point u the system (25.3) must be replaced by the first of
(25.2). | |

The i)reparatory primitive mapping in 1) is motivated by the awareness
that cp,ij(g) are components of a covariant tensor only when the u's are

rectangular Cartesian coordinates.
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26. STATIONARY POINT CIASSIFICATION

We assume now that our trial point of An is a stationary point Bs of
the scalar ¢ = L§]2, wherelg‘is the optical error vector. We seek to de-
termine whether u_ be a maximm, a minimum, or a saddle point of Lg!z by
the following procedure.

1) Consider any neighboring point pair (g,x‘)eAn end define z = y-u.
| 2) Make the primitive mapping [n,5, j,ui] of A into €_ so that
Q= tgje, an arithmetic function defined over A, nov becomes a geometric
point function ¢ defined in rectangular Cartesian coordinates ui over 6n.

: 2
3) Expand 9 = |E|” in a ‘Taylor series avout:u,

(Wa'z" + -, - (26.1)

e

e(utz) = o(y) + m’r(g)zr *EP Ly

vhere the dots indicate terms of higher order in thé z's., .
4) Now restrict u to be a stationary point u_of ¢ so that ¢ .(u ) = 0.
- g, s1™s

By choosing all |z;| sufficiently small the truncated Taylor series Prps
on(u+z) = plu) + 30 _, (u)22% ' (26.2)
T3/ = Pllg 2¥,rt'~s ’ *

approximates ¢(gsfa) to within any desired accuracy. Inspection of (26.2)

gives the followlng classifications of a stationary point;gseAn:

. - r s
M, is a minimum, maximum, or saddle point of @(u) when @2(3) = Q,rscﬁs)z A

is positive d

o

N - P - -~ -

efinite, negative definite, or indefinite respectively."

"ot
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.27. THE CAUCHY LINE Lc

We return to the system (23.1) for the‘ direction of steepest descent
of @ = lgje relative to the orthonormal error mapping [N’aij’EA(B*)] of
section 22. Cauchy9 showed how one could depart from e trial 3€An to ar-
rive at a yeA such that o(v) < @(u) by considering ¢(utnz), n increasing

continuoxisly from O. We shall call this arithmetic half line v E gmgdn,

departing from our trial u in the direction of steepest descent, the Cauchy

line I"C o

We begin by considering the geometric half line Izezn(“\i),
L. Z‘;(Tl_) = E(u) + rEr(g)zr, z satisfying (23.1), . (27.1)

vhich departs from the contact point E(u) (given by m = 0) of the tangent
n-plane Z’n(&) to S -and is directed toward the foot L= E(w) + hg\r(x)zr
(given by n = 1) of the perpendicular from O onto Zn(y‘). As n increases

from O the displacement vector Z'.‘(n) of squared magnitude

s

IZ|% = |2+ g _271% = |B|° + engyg 2" + ﬁegrszrz (27.2)

et ]
sweeps out Iil The minimum of |:[,m('n)|2 occurs for m satisfying

Tr s r r s ‘
Ng.gZ Z = - EQEQ,r.z = g.g2 z from (23.1) -

so that nn = 1 minimizes lg(n)]z along Izezn(g). This exercise in formalism
merely rediscovers what we already know, namely that ;(l) =E+ grzr, 2z
satisfying (23.1), gives the least displacement from O to points on Zn(g)'.

H
Of much greater concern to us is the behavior of -
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oln] = |E[n]|2 = |E(B+r&)|2, za solution of .(23.1), . (27.3)

as the Euclidean displacement vector g(wg ) traces a curve Cnesn vhile
X = utnz moves along L.eA . Expanding (27.3) in a Taylor series and sub-

stituting (27.2) gives
oln] = l;(n)lg + ,&(2) 'ﬁ,rs(\}“)zrzsne B, ‘ (.2701'.)

If the trial ueA 1is near a stationary point u  of @ so that |cp,i(3‘)[ ~ 0,

then the solutions zl of Egs. (23.1) satisfy Izil ~ 0 rega.rdléss of whether

|gij(g)| be singular or nonsingular, in the latter case because we then choose

the particular solution minimizing ngle = 272 . We conclude that for y near

4, the truncation of the expanéion (27.4) résulting from.negleéting terms of

order higher than 2 in the z's yields a good 4approximation to pln] for n < 1.-
For the trial y well removéd from a stationary point Yo of ®, and this

is the situation in the early stages of a’ lens design, truncation of the

terms of order 3 and higher in the expansion (27.4) cannot be justified.

Because of this and because in any case evaluating the terms "E‘(g)-E . .(g)

M,lJ

would require formidable analysis and computation for a lens problem, we

renounce any attempt at approximating ¢(n] at the points tnz of the Cauchy

£y

line L, in favor of evaluating ®ln] to within machine accuracy by ray-tracing.
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28. MINIMIZING  ALONG LC

With a trial lens u in the machine, we follow Cauchy9 by narrow-
ing our search for the next trial lens to an inspection 6f the ot
lenses xﬂn) on the Cauchy line LC: an) = u+ qggAn passing through

u in the direction of steepest descent for ¢. -Thus, along C,

oln] = olurnz),
(28.1)
dm/dn|o = _(u)z =-2 grszrzs < 0 from (20.2).

Figure 28.1 shows a graph of o(n]. Its negative slope at 1 = 0, as evi-

insert Fig. 28.1 approximately here

denced by (28.1), ensuréé the possibility of finding a point Xﬂn)eLC for

vhich mQx) = p[n] < of0] = ®(u). Any reasonable approximation to a local

minimum of ¢[n] on LC will be satisfactory. We must be aware that machine

time spent in refining our approximation to a local’mini@um on LC might

possibly be spent more effectively by getting started on the next least

squares pass proceeding from the acceptance of a less refined loeal mini-

mum on LC’ We present what seems to us an adequate exploration of LC.
Prior to beginning our march along L, as in Fig. 28.1 we must refer

back to our introduction near Eq. (10.6) of a data input oriented loﬁer

bound vector m which imposes the constraints ui >(<)m{ when ui>(<)O,i=-2,---,

n These constraints are saying that Do and the various axial‘spacings

surf”’
-must be bounded away from a possible reversal of sign. Consideration of

these yields an upper bound Nuax with the pfoperty that for any n satis-
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fying n < n the Cauchy replacement new u = old u + nz will avoid any
such violation of m. Any attempt to minimize p[n] for n > n ‘signals
a) the end of our march along Ls b) the acceptance as optimal n along

LC of the last ray-trace value of m preceding the violation n > n ’
and c) the freezing of the distance parameter, or parameters, which caused‘
the setting o? n frqm further design variations over the next Doreeze

least squares passes, where n is a data input control integer.

freeze
Now choose a first Cauchy line probing point n = an which on the
first least squares pass we select as n E-min(%,ﬁmax), this preference
for % resulting purely from ignorance. Evaluate m[An] by a ray-trace
" and compare [ 0] with @[ An]. Either we have case II, o@(an] = ¢[0], or
Case I, plan) < ©l0]: Here we proceed as in Fig. 28.1. We seek to
extend the monotone decreasing sequeﬁce {wlo),0lan]} vy successi&e ray-
trace evaluations of ¢ at the abscissa sequence {ni}, where Mo 2 0 and
ng =Nyt Qi-lAn, i=1,2,-++, to obtain the corresponding ordinate
sequence {w[ni]}. An interruption in the monotone decrease of [m[nil],

such as occurs at 1 = 5 in Fig. 28.1, signals a ray-trace evaluation of

¢ at the midpoint of the last interval (ni_l,ﬂi). We are now left with

4 equally spaced terminating points (Pl,PD,PB,Pu) with abscissae (ﬁl,ﬁg,

ﬁ}’ﬁh) and ¢ values ($1’$2’65’$h)' We compare the end values &l and $k

and reject the larger. This reduces our terminating quartet to a triplet
which, after a possible renaming, we call Pi(ﬁi,$i), i=1,2,35. Ve pre-
pare now t0 pass a parabola with a vertical axis through this triplet by
testing the point triplet discriminant D = @l - 252'+ @5. Vhen D = (<)O

we by-pass the interpolating parabola since now the points (Pl’PE’Pj) are
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collinear (lie on a parabola with vertex concave dovmward). For D > O we

form A%}, the vertex abscissa relative to the middle abscissa ﬂe,

ofi = B(/D)(F L), =B B, (28.2)
I -
] |

and reject the interpolation when | |4%| = ﬁ5 - 1. ‘

i .

Otherwvise we evaluate ¢[ﬁ2+aﬁ] by ray-tracing ‘and choose the minimum of ;

62,$3, and @[ﬁ2+aﬁ] vhose abscissa will serve as the optimal 1 along Ly-

Case II, ¢lan] > pl0]: Our first trial probe at Ng = AN is now too far
to the right and so we evaluate ¢ at the abscissa sequence
{qi},qi =M - 2-?An, i=1,2,:++, to obtain the ordinate sequence {Q[ﬂi]}.
We ignore @[ni] until we reach an 1 for which @[ni] < @lo], which in Fig.

28.2 occurs at 1 = 2. This signals the beginning of a monotone decreasing

Insert Fig. 28.2 approximately here

sequence {@} which is first interrupted in Fig. 28.2 at 1 = 4. This inter-
ruption at ni is the signal to go back to the right and make é ray-trace at
the midpoint of the interval (n, ,,M,_,) to establish the intermediate P,
in Fig. 28.,0. Wec are now lefl wlth o terminating quartet of equally spaced

station points (Pl’Pa’PB’Ph) and we proceed to approximate the optimal n as

in case I.

The blind choice 13 = 1 as optimal along Lb is the hallmark of the least
squares malpractitioner. We present a case history to show how disastrous
this choice may be. C. A. Lehman coded at our request a curve fitting
3)2

program which determines the circle (x-u})? + ,(y-ue)2 - ()€ = 0 best

fitting a set of data points (XA’yA)’ A=1,+,N, which appear to lie on
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a circle. A test run vas made on a set of 5 points chosen to lie on the
circle u = (40,20,100). We chose u = (1,1,1) as the first trial u vhich

gave @ = 5.8(108)

3.8+08 and z = (39,19,4058.5). Thus the malpracti-

tioner's choice n = 1 would yield as the next trial circlé u = (40, 20,
4059.5) with ¢ = 3.44+14! Here we have case II of Fig. 28.2 and the best
station value of n was m = 0.03125, yielding the Cauchy optimal trial
circle (2.22,1.59,128) for which ¢ = 1.7+07. The monotone decreasing
sequence {¢} promised in our introduction was {1;7+o7, 6.8+05, 1.3+00,
L,7-08} corresponding to the Cauchy optimal n's {.03125, /939, 1.00k,
.99996} and the u's dt convergence showed 8 digit accuracy.

We used this same problem to test a curve fitting program written
by the sfatisticians at Los Alémos who adhere to the fopular choice n = l.'l
This yielded the nonmonoténe'sequence {w} = {1.5+09,. 1.4+15, 8.5+13,
5.3+12, 3.2+11, 1.9%10, 8.6+08, 1.7+07, 2.7#0k4, 8.8-02, 2.9-07} and the
solution was found to 8 digit accuracy. It is perhaps the occasional
"success" of'his 1N = 1 program which makes the malpractitioner's conver-
gion difticdult.

Some malpractitioners concede that n = 1 may not be optimal at the
early stages of convergence, but they are‘convinced that oﬁtimal n-1
as the trial u - u,, a stationary point of . This conviction may bhe

challenged by the example

E = (u,v,h2+u2+ve), z = (-yu,-yv),

v = [l+2(h2+u2+v2)]/[l+h(u2+v2)].

Clearly n = l/w is optimal along LC and yields the minimizing point
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u = (0,0) at the end of the first least squares pass. As the trial.
u~ (0,0) the optimal n - l/(l+2h2) £1 for h £ 0. One may be tempted
to extrapolate from this example and conjecture that yhen minimum ¢ -+ O
optimal n - 1.

If it should be found that in the majority of cases optimal n tends
to 1 as u =~ u_, then the choice An= Hprevious optimal n) would be a
favorable selection for the first probe of LC after the first least
squares pass. Near convergence this would cause the intermediate point

P5 of Fig. 28.1 to be established by a ray-trace near the expected optimasl

no
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29. HOLIADAY'S OPTICS CODE

It may interest current users of the Holladay lens design code to
learn vwhat is in it. The code employs what some might call numerical
differentiation. This is initiated by the input data entry of a parameter

increment vector Au and the program forms by ray-tracing

I, = ;E;(g’-Aul) - E(u), g&-Aui = (u}"',ul+Aui, ceeu®), (29.1)

Definition. We shall say that gi/Aul is approximating the partial

derivative E i in the Holladay sense.
?

If we write the steepest descent system (23.1) in the vector form

AN

b4

L. -g)rzr+§\-§ 1 = 0, approximate E i in the Holladay sense, and multiply
3 . 4 }
by Aut , with no summation on i, we obtain Holladay's epproximation to

(23.1)

r i_ i i
I IN +EI =0,z =N, (1 not summed). (29.2)

The accuracy of lhe spproximate system (20.2) is measured hy the accuracy
of the approximations ;‘l/Aui to E ..

3
I)%‘

We define ||ay]| = (au'au®)? and observe that, with decressing ||ayl,

1L~ 0as Hijlg and |I, «:Lj' - 0 as Hz_\.gnen When not near a stationary
poiht u,, wve have Hg” 4 0, and hence ]./>\i - 0 as Aui. The ill-chosen scal-
ing resulting from Holladay's differential approximation (29.2) to the cor-
rect system (23.1) imposes severe demands upon a computer with only a finite
number of biis. The Holladay program attempts to solve (29.2) with a non-
singular linear system solver, a highly unjustified commitment which readily

leads to trouble.



The self-imposed near singularity of his system (29.2) compelled
Holladay to abandon any attempt to vary all design parameters at once
in favor of the expedignt of varying only a few parameters at a time.
Since test runs confirmed our analysis following Eq. (29.2) of the ex-
treme sensitivity of the coefficient matrix "E{'lgu of (29.2) to the
smallness of ||Aul|, Holladay sought to mollify the robot's protest by
rescaling his leat the end of each least squares pass in preparation

for the next according to the storage substitution
1i_, 2 2 iy .
new Au- = [ei /c51i£1) ] (01d au' ), (i not summed),

where eie,i=l,---,n, are data input confrol constants. What this perturba-
fidn in Ay does simultaneously to the coefficient matrix Hliigﬁl and to the
Holladay approximation to E%i we leave to the reader's speculation.
Holladay makes the usual malpractice choice n = l, namely new
ui = old ui+h?Au;, i not summed. His only concession to Cauchy's 1?&7
recommendation in this matter is to compare A __ = max]hi|,1=l,"', n,
with a positive input data control constant A, and when hma# > A he de-
fines

new ub = o0ld u1+(A/Kmax)x?Aui, (i not summed).

The Holladay code does not generate a monotone decreasing sequence
{w} and it conteins no convergence exit. To obtain compliance with the
designer's date input f-number demand it does not form the error component
(10.4) as we have done butvrather perturbs the new lens obtained by the
least squares process to force compliance with the required f-number. Ob-

viously any such perturbation may be sufficient to upset the ﬁonotonicity
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of the sequeﬂce {w). The sample rays of Fig. L.l are not weightedAaccord-
ing to the illumination they represent nor is there any attempt to auto-
mate the choice of weights corresponding to the error components. There
is no formation of vignetting error components as presented in section 9
to steer the next least squares pass so as to remove the cufrent vignetting.

It is easy to see how Holladay's expedient of varying only a few
parameters at a time can lead to a successful result. The directional
derivative (20.3) of 0 is negative rggardless of the number n of inde-
pendent parameters that are allowed to vary at any least squares pass.
Thus varying only a few parameters at a time will still generate a mono-
tone decreasing éequence‘{m} if one proceeds correctly by using the method
of this paper.

Since we have been drawn into presenting a machine approximation of
gkiiin the Holladay sense, we conclude this section by reforting our own

b4

experience with the machine approximation of E\i in the mathematical sense.
. 2

To obtain this we consider the o seguence {QAio}’ A and i being held fixed,

where
= . i - v i i = -a i - LRI
Uio = [Bylurow) - B (wW)/su,, su) = 10%u_, o a=1,2,"",  (29.3)
with Auitart = 1 a likely data input choice to initiate the first least

squares pass. Next we mgke the following assumptions:
1) EA i(g‘) 1s best approximated by that  which signals the inter-
H

Q

ruption in the monotone trend of the difference sequence {|Q Aiowll}'

Ala ~
2) With optimal o determined by 1), this same a yields the best practi-

cally obtainable machine approximation to EA,i(gQ for any A.
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3) To simplify the determination of the optimal a in 1) we may re-
place E, in (29.3) by the y coordinate of the plate spot resulting from
tracing a ray of arbitrarily chosen color B from the highest object point
QT aimed through the lowest entrance pupil mesh point 1 of Fig. h.1.

Under these assumptions we define yc’x = [y(gi-Au;):-y_(g)]/Aﬁé and . tune
Aué for numerical differentiation by choosing Au; = lo-aAuitart’ where Q
signals the interruption in the monotone trend of the difference sequence
{|yé*1 - y&l]. For the Lister type lens of Fig. 2.1, with the trial u
chosen as the near optimum from a previous Holladay code run, and for i = 7
giving ul = B = 0.0459, the vertex curvature of Zl’ the tuning sequence
{y&} gave {23.7, 21.7h, 21.6L41, 21.6332, 21.632k, 21.632313, 21.6323040,
21.6%23041, 21.6323%3,+++} where the dots represent difference guotients
diverging from the best obtainable approximation 21.6323041. Tests con-
firm that a 15 digit machine can approximate an optical derivative for the
Lister lens of Fig. 2.1 accurately to about 8 digits. The derivatives may
be retuned at the beginning of the next least squares pass by starting with
a coarsened increment vector Auitart where Agitart = lOeAuild would be a
likely choice, This permits the tuning sequence to arrive at a coarser in-
’crement Aui at the next.parameter point if it should seek to &o so. Tuning
may be by-passed as the trial u-u,a stationary point of ®w. Our Stretch
code now contains numerical differentiation and later we shall include the
option of analytic differentiation. In this way we may compare numerical

and analytic derivatives for agreement and may obtain comparative running

times and resolutions. -
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30. STORAGE REQUIREMENT

We examine the storage necessary for forming the
steepest descent system (23.1). If we should choose
to form gijsEQ,iEQ,j by first forming and storing the
rectangular NXn matrix “EA,in’ inspection of (23.1)
shows that such a procedure would demand (n+1)(n+N)
cells. Referriné to sections 6, 7, 8 we see that N
is dominated by the need to store spot coordinates
and the number of spots is dominated by the number
n(qo), the number of semicircular entrénce pupil mesh
points corresponding to the mesh refinement choice of
Fig. 4.1. In approximating N we consider the case
wherein all rays from a test object point QP’ =1,

LI ¢! reach the plate to form a spot. We

object
list side by side the 'spot components of E and their

storage demands:

xEBT’ yEﬁF“pBF of (6.2), gn(qo)'ncolor'nobject’
pﬁP"pP of (6.4), ncolor'nobject’
RP'ersq of (7.&), Xp-Yp of (8.2), enobject’
and conclude that
Nznobject[ncolor(Qn(qol)+1')+2]' (30.1)

Only testing can reveal how many object points Qr should
be used to approximate a continuous object segment and

how fine the entrance pupil mesh of Fig. 4.1 should be
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chosen. The code prbvides for starting a new design by
converging on (nobjectf qo)s(l, 1), then conyerging on
(2, 1), (3, 1), + - + until all desired object points
have been brought to focus for qo=l. Then the lens 1s
brought to a sequence of convergences resulting from

» 2), (n * * until the last refine-

(nobject_ object’ 3)s -
ment 1n the entrance pupll mesh shows no discernible
improvement over the previous refinement. Testing will
reveal whether this graduai procedure will minimize
preconvergence vignétting and running time as compared

to stafting at once with all object points and a fully
refinéd mesh.

We apticipate that (nobJect* N, olop? qo)5(5, 3, 3)
will produce a fine Lister type lens, but let us be
pessimistic and count the storage requirement for a
(10, 6, 10) design of the Lister léns of Fig. 2.1. We
“have n(10)=158. Let us deslgn on all the n=23 parameters
(2.1) of this lens. Then, from (30.1),

N¥10{6(317)+2]=19, 040 and (n+1)(n+N)R457,512.
The Holladay code would demand this number of words,
457,512, for the formation of its system (29.2) since it
forms this system by first forming and storing !IEAH and
the Nxn matrix ﬂIAiH, where I.-T,=To;To,.

A

The Holladay storage demand is of course preposterous.
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Returning to the steepest descent Egs. (23.1), which we
now write compactly as
iy = = =
81pZ t01=0,  84355Eq 4Bq, 50 P1¥EQFq, 1
we observe that the full matrices ”EA” and HEA i” are

of no interest, for we are concerned only with the

contributions of their elements to the formation of the

coefficients gij and b1 of (30.2). To record this con-
tribution we have merely to initial the cells gij and bi
. with O and then add in the contribution from any error
component EA and its partial derivatives EA,i just as
soon as they have been formed by ray—tracing. Thqs the
spot component Xpar of (6.2) may be differentiated imme-
diatel& after the completion of the ray-trace which
determines it and the contributions of XEBF and xEﬁP,i
may be promptly added to gij and bi after which both
KBF and xEﬁF,i may he forgotten, This avoldance of
storing the full matrices HEAH and ”EA,i” reduces the
storage demand in forming (23.1) from Holladay's 457,512
words to our 5,523 words. )

We return now to Eq; (6.5) which shows the "delayed"

weight assignmentxﬂ&ﬁﬂc(&)/(c q)]lél attached to

rmqurms
any error measurement £, other than the centroidal error
measurements (6.2), in forming the error component E(£)=

w(€)E. We say "delayed" because R defined by (7.3)

rmsq
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.
RNY

is not known at the time of the ray-trace measurement of

€ and hence we must postpone the division by ersq until

the entire entrance pupil mesh has been traced. The

contribution of all such delayed weight components E(¢)
of E are added in auwxiliary storage blocks gij and bi;
initialed by 0, and at the final time of détermining

= !
ersq we make the storage replacement new giﬂ_old gij+giJ/ersq

"and similarly for the b,.
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31. COLASL CODING LANGUAGE
Our lens design code has been written in the COLASL
language published in 1963 at ILos Alamos by G. L. Carter,
K. G. Balke, and B. A. Bacon. As an 1llustration of
COLASL we form [%(g__z 2z )%-;/’5]/13:

rs“rs
n 2_ 1 -
Form |z| “BpsZrly initial sum" z .=0.
Thru Rl(s=1, 2, - - +, n).

Rl Zpoo™ZpnotBr g ZpZs: (r=1, 2, - - -, n).

Zrag=( O Zpag - ¥5)/13.

This coding language 1s outstandingly superlor to any
other such language that we have seen in its close
resemblance to staﬁdard mathematical fprmalism and

as a universal programming Latin for communicating the
details of a code to any computing laboratory.

We intend to publish the complete COLASL lens design
prograi, order by order, as a LASL report, to be ready
hopefully in 1966. With the help of this publication
of our COLASL code and with a COLASL manual, the latter
now available on request from Glenn L. Carter, Los Alamos
Scientific lLaboratory, Los Alamos, N. M., any experienced
programmer can write our lens design program in a language
suitable to his machine. We emphasize that, as an auto-

matic coding device, COLASL is restricted to our own IBM

7030 (Stretch) machine. It is possible, however, that by
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1966 we may be able to supply a binary lens design deck

capable of being run on any IBM 7030.
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32. TWO PROPHECIES

It seems fitting that a paper begun with missionary
intent and developed with evangelistic zeal should end
with a prophecy. Such an utterance from the sibyl's
cave is not without precedent in the literature.

Herzberger concludes his book, MODERN GEOMETRICAL OPTICS,
with this prophecy.

"The author believes that the most valuable development
in theoretical optics in the near future will consist of
- analyzing and simpllifying fifth-order approximation
formulae and studying fifth—order models of varlous types
of optical systems.”

The truncated Taylor series in optical theory vias the
natural approach to approximating tedious, but exact,
computation. This began by retaining the first order terms,
and was successively refined to retain next the third and
now the fifth.order terms. Do these fifth order truncations
provide the ultimate in desired precision? We think not.

A new era of computational feasibility has dawned. The lens
designer has but to rub the magic lamp and the jinni of the
lamp éppears to do his bidding.

Perhaps it is the specification "theoretical optics"
which may save Herzberger's prophecy from becoming dis-

credited. If we replace this by "practical lens design,"
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then our own assault on prophecy prompts us to declare
that the truneated Taylor sepies method in practical lens
design will be encased in glass, properly labeled, and
given an honored place in the Smithsonian Museum between
the Wright brothers' plane that was launched at Kitty

Hawk and Lindbergh's Spirit of St. Louis!
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ILLUSTRATIONS

Fig. 2.1. Lister type lens.

Fig. 3.1. Inclined entrance pupil and rignt
circular light cone.

Fig. 4.1. Inclined entrance pupil mesh.

Fig. 11.1. 2m+l-station zoom lens, case m=2, type I.

Fig. 12.1. Herzberger's method of ray-tracing. |

Fig. 14.1. Aperture stop determination.

Fig. 28.1. Minimizing ¢[n] along L,, case I:
¢[ny I<el0].

Fig., 28.2. Minimizing ¢[n] along L,» case Ii:
¢{nyl=slo].
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