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ABSTRACT

Making use of an extension of a recently proposed, relatively simple, approximate method of analysis,
a critical evaluation is made of the response to horizontal ground shaking of flexible walls retaining a
uniform, linear, viscoelastic stratum of constant thickness and semiinfinite extent in the horizontal
direction. Both cantilever and top-supported walls are examined. Following a detailed description of
the method and of its rate of convergence, comprehensive numerical solutions are presented that
elucidate the action of the system and the effects of the various parameters involved. The parameters
varied include the flexibility of the wall, the condition of top support, and the characteristics of the
ground motion. The effects of both harmonic base motions and an actual earthquake record are
examined. Special attention is paid to the effects of long-period, effectively static excitations. A
maximum dynamic response is then expressed as the product of the corresponding static response and
an appropriate amplification or deamplification factor. The response quantities examined include the
displacements of the wall relative to the moving base, the dynamic wall pressures, and the total wall

force, base shear and base moment.
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EXECUTIVE SUMMARY

The study reported here is the sixth in a series of investigations of the response to ground shaking of
retaining walls and deeply embedded vertical cylindrical structures. The objectives of these studies
have been to provide insights into the dynamic responses of these systems and to formulate rational
but simple methods for their analysis and design. The previous studies were described in Brookhaven
National Laboratory reports 52357, 52372, 52402, 52444 and 52502.

Excepting limit-state analyses, in which the wall is considered to displace sufficiently at the base to
mobilize the full shearing strength of the backfill, past analyses of the dynamic linear response of
retaining walls dealt primarily with non-deflecting, rigid walls. In a recent contribution by the authors,
it has been shown that, for walls that are rigid but elastically constrained against rotation at their base,
both the magnitudes and distributions of the dynamic wall pressures and forces are quite sensitive to
the flexibility of the base constraint and that, for realistic base flexibilities, these effects may be
significantly lower than those computed for non-deflecting, rigid walls. Comparable effects also are
expected for walls that are themselves flexible.

The purpose of this study is twofold: (1) to formulate a method of analysis with which the response to
horizontal ground shaking of flexible walls retaining a uniform, linear viscoelastic stratum may be
evaluated reliably and simply; and (2) to make a critical evaluation of the effects of wall flexibility on
the magnitudes and distributions of the resulting wall pressures, forces and displacements.

The retained stratum in the reported solutions is considered to be of constant thickness and infinite
extent in the horizontal direction, and the walls are considered to be fixed against both deflection and
rotation at the base and to be either free or simply supported at the top. The support points of the wall
and the base of the soil stratum are presumed to be excited by a space-invariant horizontal motion. In
addition to the wall flexibility, the factors investigated include the properties of the stratum, and the
characteristics of the base excitation. Both harmonic and earthquake-induced ground motions are
examined. Special attention is paid to the effects of long-period, effectively static excitations. A
maximum response for the dynamically excited system is then expressed as the product of the
corresponding long-period, static response and an appropriate amplification or deamplification factor.
After describing the method of analysis and discussing the rates of convergence of the resulting
solutions, comprehensive numerical data are presented which elucidate the underlying response
mechanisms and the effects and relative importance of the parameters involved.
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The principal conclusions of the study may be summarized as follows:

1. With the method of analysis and the numerical data presented, the dynamic response of the class
of flexible retaining walls examined may be evaluated readily and with high degree of accuracy.
The method, which makes use of Lagrange’s equations of motion in combination with a recently
proposed model for the action of soil-wall systems, is expected to prove of value in the analysis
of a number of other problems as well.

2. The magnitudes and distributions of the wall displacements, wall pressures and associated forces
induced by horizontal ground shaking in the systems examined are quite sensitive to the flexibil-
ity of the wall. Increasing this flexibility reduces the horizontal extensional stiffness of the
retained medium relative to its shearing stiffness, and this reduction decreases the proportion of
the soil inertia forces that gets transferred to the wall and, hence, the forces developed in it.

3. For realistic wall flexibilities, the total wall force or base shear for cantilever walls may well be
less than one-half of that obtained for fixed-based, rigid walls, with the reduction in the base
moment being even larger. Because of the greater effective stiffness of top-supported walls, the
corresponding reductions for such walls are significantly smaller than for the cantilever systems.

4. Even for the 1940 El Centro earthquake ground motion record, the maximum wall displacement
relative to the moving base for cantilever walls of realistic flexibilities is found to be less than the
values of 0.1 to 0.4 percent of the wall height normally accepted as the minimum required to

develop a limit state in the backfill material.

5. The comprehensive numerical solutions presented and their analysis provide not only valuable
insights into the effects and relative importance of the numerous factors that influence the
response of the systems examined, but also a sound framework for assessing the behavior of even

more complex soil-wall systems.
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SECTION 1
INTRODUCTION

Despite the multitude of studies that have been carried out over the years, the dynamic response of
retaining walls is far from being well understood. There is, in particular, a paucity of conclusive
information that may be used in design applications.

23 in which the wall is considered to displace sufficiently at the base

Excepting limit-state analyses,
to mobilize the full shearing strength of the backfill, past analyses of the dynamic linear response of
such systems dealt primarily with non-deflecting, rigid walls.*7 Only exploratory studies have been
made of flexible cantilever walls,®® and the limited numerical data presented by Sun and Lin® are
believed to be in error. In particular, in their expressions for the pressures induced on rigid walls, the
factor € should appear without the exponent. More detailed accounts of previous analytical and
experimental studies of retaining walls have been presented by Nazarian and Hadjian,'0 Prakash,!!

Whitman, 2 and Veletsos and Younan.!3

In a recent contribution by the authors, 4 it has been shown that, for walls that are rigid but elastically
constrained against rotation at their base, both the magnitudes and distributions of the dynamic wall
pressures and forces are quite sensitive to the flexibility of the base constraint and that, for realistic
base flexibilities, these effects may be significantly lower than those computed for non-deflecting,
rigid walls. Comparable effects also are expected for walls that are themselves flexible.

The purpose of this study is twofold: (1) to formulate a method of analysis with which the response to
horizontal ground shaking of flexible walls retaining a uniform, linear viscoelastic stratum may be
evaluated reliably and simply; and (2) to make a critical evaluation of the effects of wall flexibility on
the magnitudes and distributions of the resulting wall pressures, forces and displacements.

The retained stratum in the reported solutions is considered to be of constant thickness and infinite
extent in the horizontal direction, and the walls are considered to be fixed against both deflection and
rotation at the base and either free or simply supported at the top. The support points of the wall and
the base of the soil stratum are presumed to be excited by a space-invariant horizontal motion. In
addition to the wall flexibility, the factors investigated include the properties of the stratum and the
characteristics of the base excitation. Both harmonic and earthquake-induced ground motions are
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examined. Special attention is paid to the effects of long-period, effectively static excitations. A
maximum response for the dynamically excited system is then expressed as the product of the
corresponding long-period, static response and an appropriate amplification or deamplification factor.
After describing the method of analysis and discussing the rates of convergence of the resulting
solutions, comprehensive numerical data are presented which elucidate the underlying response
mechanisms and the effects and relative importance of the parameters involved.
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SECTION 2
SYSTEM CONSIDERED

The systems examined are shown in Figure 2.1. They consist of a semiinfinite, uniform layer of
viscoelastic material that is free at its upper surface, is bonded to a non-deformable, rigid base, and is
retained along one of its vertical boundaries by a uniform, flexible wall. The wall is considered to be
fixed against both deflection and rotation at the base and to be either free or hinged at the top. The
clamped-free and clamped-hinged systems are identified with the symbols C-F and C-H, respectively.
The free boundary is representative of cantilever retaining walls, whereas the hinged or simply
supported boundary is more nearly representative of the support condition for basement walls. The
support points of the wall and the base of the soil stratum are presumed to experience a space-
invariant horizontal motion, the acceleration of which at any time t is )'c'g(t) = X,. Material damping
for both the medium and the wall is considered to be of the constant hysteretic type.

The properties of the soil stratum are defined by its mass density p, shear modulus of elasticity G,
Poisson’s ratio v, and material damping factor &, which is considered to be the same for both

shearing and axial deformations. The factor & is the same as the tand factor used by the second

15,16 404

17,18

author and his associates in studies of foundation dynamics and soil-structure interaction
twice as large as the percentage of critical damping 3 used by other authors in related studies.
The properties of the wall are defined by its thickness t,, , mass per unit of surface area j,,, Young’s
modulus of elasticity E,, , Poisson’s ratio v,,, and damping factor 3,, which, like &, is twice as large
as the corresponding percentage of critical damping.

The wall displacements relative to the moving base and the resulting wall pressures and forces for a
base-excited system can be shown to be identical to those induced in a force-excited system for which
the base is stationary and the stratum and wall are subjected to lateral body forces of intensity
—p X [t) and —p,, X(t), respectively. For excitations with dominant frequencies that are very low
compared to the fundamental frequency of the stratum, the action of a force-excited system may be
easier to visualize than that of the base-excited system.
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SECTION 3
METHOD OF ANALYSIS

The method of analysis employed is an extension of that used in previous studies by the authors.!*

Fundamental to this method is the assumption that, under the horizontal excitation considered, no
vertical normal stresses develop anywhere in the medium, i.e. Gy = 0. It is further assumed that there
is complete bonding between the wall and the retained medium, and that the horizontal variations of
the vertical displacements of the medium are negligible so that the horizontal shearing stresses Txy
can be expressed as T,, = G* (du/dy), where u is the horizontal displacement of an arbitrary point of

the medium relative to the moving base, G* = G(1 +1i0) is the complex-valued shear modulus, and

i=A—1.

3.1 Problem Formulation

The instantaneous value of the wall displacement relative to the moving base,w(1, t), is expressed as
a linear combination of the natural modes of vibration of an appropriately supported, uniform, flexural
beam as

]
w(n,t) = 3, ¢;(n) g;(t) (1)
j=1

where 1 = y/H is a dimensionless measure of the vertical distance y from the base; ¢;(1) is the jth
natural mode of vibration of the beam; q;(t) is a generalized coordinate defining the degree of
participation of the jth mode, ¢;(n), at any time #; and J is the total number of modes considered. For
a wall that is free at the top, ¢;(n) refers to the jth mode of a C-F beam, whereas for a wall that is
simply supported at the top, it refers to the corresponding mode of a C-H beam. The expressions for
these modes are given in the Appendix.

The equations of motion for the system are obtained by repeated application of Lagrange’s equation19

d {STW} T, oV,

.a_E. 5(; = F. ] = 1, 2,...,] (2)

R

where T,, is the kinetic energy of the wall; V,, is its strain energy; F; is the jth generalized force
induced by the soil pressures on the wall; and a dot superscript denotes a differentiation with respect
to time. The kinetic and strain energies are given by
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1
1 ; 3
T, = 5 uwHI(xg+w)2dn 3)
0

Dyt m2
= [y dn “
0

in which X, is the instantaneous value of the ground velocity; w is the corresponding wall velocity
relative to the moving base; a prime superscript denotes a differentiation with respect to 1 ; and
Dy = D, (1+id,) is the complex-valued flexural rigidity of the wall, with D, given by

Byt

Dy = ———~
12(1-V2)

&)
On substituting equations (3) and (4) into equation (2) and making use of equation (1), Lagrange’s
equations reduce to

&

b ‘
R H (5, 60 §; + ;‘§<¢j", 7yq; = F; - p H{0;, D%,  j=1,2..,7 (6)

in which (a,b) denotes the integral over the interval [0,1] of the product of the two bracketed
functions.

3.2 Evaluation of Generalized Forces

The as yet undetermined generalized forces F; are the coefficients in an expansion of the variation of
the work done by the soil pressures, dW , by variations in the generalized coordinates qu ,i.e.,
5 -
W = Y F;dq 7
j=1
These forces are determined as follows. First, the normal pressures exerted by the soil on the wall,
o(n, t), are expressed as the sum of two components as

G(Tl’ t) = r(n: t) + Gf(n: t) (8)

where G, represents the component associated with a non-deflecting rigid wall, and ©; represents the
component associated with the wall flexibility. The work \/ may then be expressed as

W = H(o,, W) + 2 (0, W) ©)

Inasmuch as the pressure component o, is considered to pre-exist and is independent of the wall
displacement, the factor 1/2 is not needed in front of the first term. The sign convention for pressures
and displacements is that used in theory of elasticity. Specifically, displacements are considered to be
positive when inward, i.e., when directed along the positive x-axis, and normal stresses are positive
when tensile. On taking the variation of W, recalling that 6, is independent of w, and making use of




equation (8), the jth generalized force F; is expressed as

_ ow,  H ow, . ,00¢
F_l - H(Gr:a—qj' + §{<Gf9%—j>+(a_qj’ W)} (10)

The stress components in the above expressions are evaluated by application of the model for the soil-
wall system proposed earlier by the authors.!* Shown in Figure 3.1, the wall in this model is
considered to be connected by a set of springs and dashpots to a cantilever shear-beam having the
properties of the retained medium. The shear-beam represents the action of the soil stratum at the far-
field while the springs and dashpots, which have frequency-dependent properties, simulate the
restraining action of the medium between the far field and the wall. Strictly speaking, the model is
used to evaluate the response of the system to a harmonic excitation. The response to an arbitrary
transient excitation is then determined by application of Fourier transform techniques.

For a harmonic base motion with an acceleration
£,(t) = Xge'™ (11)

in which X, is the acceleration amplitude and o is the circular frequency of the motion, the
horizontal displacement of the shear-beam relative to the moving base at an arbitrary elevation and
time, u (7, t), may be expressed as

N .
u(n, 1) = Y Uy,(m) e™ (12)

n=1

where V,, is the nth natural mode of vibration of the shear-beam, given by

. [2n-1)m
Vo) = sin[ 22 (13)
U, and ®, are the corresponding participation factor and circular natural frequency, given by
)
16 pX H 1 1
U= -5 ; T a4
nw G (2n-1) 1-(0/®,) +id
and
_(@n-1Dm Vs
O, = =5 (15)

respectively, v, = AJ/G/p is the shear-wave velocity for the medium, and N is a sufficiently large
integer representing the total number of modes considered. If the displacement of the wall is
expressed similarly in terms of the natural modes of the shear-beam as




N .
win,t) = Y Wy m) e (16)

n=1
where W are participation factors that remain to be determined, then the total dynamic wall pressure
G(1,t) may be computed from!4

N .
o(m,t) = ¥, Ky (U= W,) y,y(n) e a7
n=1
The quantity K in this expression represents the complex-valued impedance or dynamic stiffness of

the spring-dashpot combination when both the shear-beam and the wall vibrate in the nth shear-beam
mode ¥, (1), and it is given by14

K, = G-l /IEV = 1 +i8)1 - (0/0,) +i8] (18)

Incidentally, the sum of the terms in equation (17) involving the factors U, represents the pressure

component G, for arigid wall, whereas the sum of the terms involving the factors W, represents the
pressure component O associated with the wall flexibility.

It is important to note that the expansion defined by equation (16) is used only for the evaluation of the
wall pressures, the wall displacements being determined from equation (1). This expansion is possible
because the shear-beam modes constitute a complete set of functions in the interval [0,1] and may,
therefore, be used as a basis for the representation of any function in that interval 20

The participation factors W in equation (16) are determined by expanding the jth mode of vibration
of the wall ¢;(n) in terms of the shear-beam modes Y, (1) . On making use of the orthogonality
property of the latter, one obtains

N <¢ H W >
o) = ), ——< v, (n) (19)
’ ngll <Wn 4 Wn> :
and on noting that for the harmonic response considered, the generalized coordinates q; are of the
form

q;(t) = Q;" (20)

equation (1) may be written as

J N (¢ > ¥, ) iot
w(n, t) = { —L—=y (n)}Q-e (21a)
jgl ngll (Yo v,y " !

Or as




N J (q) ¥ > } iot
,t) = —L—2Q; v, 21b
w(n, t) E,l{jgl . Q; fwa(me (21b)
From equation (16), it then follows that
(955 W)
\'\Y —17 Q. 22
" JZI <Wn’ Wn) QJ ( )

'The expressions for the pressure components 6, and ¢; may finally be written as

N
o.(mt) = Y KUy, (n)e™ (23)

n=1

and

N .
Gf (Tl: t) = - 2 Kan Wn(n) elmt

n=1

<¢J ’ Wn) iot &9
) —,21{ n§=:'1 (W Wy) ‘lfn('ﬂ)} %e
Similarly, the integrals in equation (10) may be written as
<6r, > = nle Uy (05, v, e (25)
o [ e (05 W) (0 o) iot
G = eody =T TR o 9

3.3 Equations of Motion

With the elements of FJ- established, the equations of motion of the soil-wall system are obtained by
repeated application of equation (6) for each of the J generalized coordinates g; - It should be noted
that the wall displacements in this equation are defined by equation (1) rather than equation (16).

For the harmonic excitation considered, the resulting equations of motion may be written as

([S1-0’[M]) {Q} = -pXH{A} @7
in which [M] is a J XJ diagonal mass matrix with elements
m;; = ((l)j, ¢j) n H (28)

and [S] is a full stiffness matrix of the same size with elements

3-5
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D o {93 Wa) (i Vi
S = (07, 40) 38y + H Y, el Ty 29
ik i* vk H3 Jk “ (v, w,) n
where 8y is the Kronecker delta
0 j=#k
Bk = { 1 =k (30)

Finally, {Q} is the vector of the amplitudes of the generalized coordinates Q;, and {A} is a vector
of normalized exciting forces with elements

i» W KUy 31)

a; = ’
(6; >pH pXHn_l

With the vector {Q} determined from the solution of the system of algebraic equations (28), the
generalized coordinates q; are determined from equation (20), the wall displacement are determined
from equation (1), and the wall pressures are determined from equation (8) by making use of
equations (24) and (25). The total dynamic wall force, P(t) , and the moment of this force about the
base, M(t), are finally determined by appropriate integrations of the wall pressures and associated
inertia forces. The results are

P(t) = H<6: 1) - uwHKg(t) - l.le <W7 1)

N <¢ > “Vn } it
=H)» K ——2Q; ,1
ngl n{ ng <Wn’ Wn> ) <Wn > © (32)

X H s 0 S (1) Qe
i=1

B(t) = HX0, M) - 5 1, H%y(0) = i H (W, )

N J . .
=H ZIK,,{U,r_ l—-ﬁ”z“)} Q; }(wn) e (33)
n= j= n’ n

J .
~ S X+ o B (45, Qe
i=1
For a clamped-free wall, the force P(t) is clearly equal to the base shear in the wall, V,(t), and the
overturning base moment M(t) also equals the corresponding wall moment, M, (t) . For the clamped-

hinged wall, the base wall moment is determined by differentiation of the wall displacement, i.e., from

(34)

o = DF

and the corresponding base shear is computed by considering the equilibrium of moments about the




hinged support, i.e. from
Vu(®) = P(O) - = [M(0) - My(0)] (35)

The latter expression converges faster than that obtained by triple differentiation of the wall
displacement. Shears and moments are considered to be positive when induced by positive normal
pressures.

The beam modes ¢;(n) for the two sets of boundary conditions examined and the expressions for the
various integrals of these modes in the equations presented are given in the Appendix.

3.4 Problem Parameters

The primary parameters affecting the response of the system are the relative flexibility of the wall and
retained medium, defined by

_ g’

4, =& (36)

w

the support condition of the wall at the top, and the characteristics of the base motion. For a harmonic
excitation, the response is controlled by the frequency ratio ®/®, , where ® is the circular frequency
of the base motion and of the resulting steady-state response, and ®, is the fundamental circular
natural frequency of the stratum when it is considered to act as an unconstrained, vertical cantilever
shear-beam. For an arbitrary transient excitation, the relevant stratum property is its fundamental
cyclic frequency f; = ®;/27, or its corresponding period T; = 1/f; = 2r/®,, given by
T, = — 3

=3 37
Additional parameters are Poisson’s ratio and the damping factor for the soil, v and &, the damping
factor for the wall 8,,, and the ratio of mass densities for the wall and the retained medium p,,/pH.

As a measure of the range of d,, values that may be encountered in practice, consider a concrete wall
with E, =3 X 10° psi, v, =0.17 and a height-to-thickness ratio H/t, =10 retaining a soil for
which the unit weight ¥ = pg = 100 1b/ft>. On noting that

GH’

_ _ _vy G (H
4y = B =120 -V g (tw)z (38)

and that G = pv2, one finds that d,, varies from 3.35 for a soil with v, = 200 ft/sec to 30.2 for a

soil with v, = 600 ft/sec.

For the solutions presented in the following sections, the wall, unless otherwise indicated, is
considered to be massless (i.e., W, = 0); Poisson’s ratio for the soil is taken as v =1/3; and the




damping factors for the soil and wall are taken as 6 = 0.1 and 3, = 0.04, respectively (i.e., as 5% and
2% of critical damping). The frequency ratio ®/®, for harmonic motions is varied over a wide range,
and so is the natural period T, of the stratum for the earthquake ground motion.

3-8




Shear-Beam
MV 1
—
Flexural AAAA
’\/\M
11
. Y
Y S S S S S S SSSSSSSS SSS S SAS AS S SS f
<>
x(2)

~

Figure 3.1 Modeling of system.




SECTION 4
STATIC RESPONSE

It is desirable to begin by examining the responses obtained for excitations the dominant frequencies
of which are extremely small compared to the fundamental natural frequency of the soil-wall system
(i.e., for values of ®/®; = 0 or f; — ). Such excitations and the resulting effects are referred to as
‘static’ and are identified with the subscript st. This term should not be confused with that normally
used to represent the effects of gravity forces. In the equivalent, force-excited version of the problem
referred to previously, the static excitation is represented by horizontal body forces of intensity —p Xg
for the retained medium and —ung for the wall. A maximum dynamic effect for an arbitrary
transient excitation is then expressed as the product of the corresponding static effect and an
appropriate amplification or deamplification factor.

4.1 Convergence of Solutions

The accuracy of the solutions for the method of analysis presented clearly depends both on the
number of flexural beam modes J and on the number of shear-beam modes N considered. Part (a) of
Figure 4.1 shows the heightwise variations of the wall displacements computed for a cantilever (C-F)
wall with d,, =20 for several different combinations of J and N; and part (b) shows the variations of
the corresponding wall pressures. Displacements are normalized with respect to ngHZ/ G and
pressures with respect to pXH . The wall in these solutions is presumed to be massless and Poisson’s
ratio for the retained medium is taken as v=1/3. Unless specifically otherwise indicated, the same
conditions are presumed for all solutions that follow.

It is clear from Figure 4.1 that the number of shear-beam modes required for convergence is
considerably larger than that of the flexural beam modes. Additionally, this number is much larger for
wall pressures than for displacements. Considering that the exact distribution of wall pressures, unlike
that of displacements, is so much different from that obtained with J =N = 1, this result should not be
surprising. The precise definition of the actual, smoothly varying wall pressures for the conditions
examined here requires no more than 3 beam modes and no less than 50 shear-beam modes. The
solutions in the following sections were obtained with this, or a somewhat larger, number of modes.

The upper part of Figure 4.2 shows the rates of convergence of the total wall force per unit of wall
length, P, or base shear per unit of wall length, (Vy),,, for cantilever (C-F) walls having several
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different values of the relative flexibility factor d,, . A normalized measure of this force is plotted as a
function of the number of flexural beam modes J and selected numbers of shear-beam modes. The
corresponding information for the overturning base moment (My),, is displayed in the lower part of
the figure.

It is observed that the rates of convergence for these forces, particularly for the base moment, are
much more rapid than for the wall pressures. Additionally, these rates decrease with increasing wall
flexibility, and even for the largest values of d,, considered, excellent results for both base shear and
base moment are obtained with as few as 2 or 3 beam modes and 5 to 10 shear-beam modes.

Although strictly applicable to cantilever walls, the indicated trends also hold for walls that are simply
supported at the top. This is demonstrated in Figure 4.3, which shows the corresponding plots for the
base shear and base moment of top-constrained systems.

The convergerice rates in the foregoing discussion were for a long-period, effectively static excitation.
For dynamic excitations of the type associated with earthquake-induced ground motions, the
convergence rates would be expected to be even better as the responses are likely to be influenced less
by the contributions of the higher modes of vibration than are the corresponding static responses.

4.2 Wall Pressures

Figure 4.4 shows the precise distributions of the wall pressures for systems with values of d,, in the
range between zero and 40. The plots on the left are for cantilever walls, whereas those on the right
are for walls that are simply supported at the fop. The other parameters for the systems examined are
the same as those identified earlier.

It is observed that both the magnitudes and distributions of the pressures are quite sensitive to the
flexibility of the wall and substantially different for the two sets of support considered. Increasing the
wall flexibility reduces the horizontal extensional stiffness of the medium relative to its shearing
stiffness, and this reduction, in turn, increases the proportion of the inertia forces transmitted by
horizontal shearing action to the base, and decreases the proportion transmitted to the wall. For rigid
walls (d,, =0), the pressures increase almost as a quarter-sine from zero at the base to a maximum at
the top, whereas for the flexible walls, there is a sharp change in the intensity of the pressure near the
top, with the pressure increasing for the top-constrained system and decreasing and changing signs for
the cantilever system. ‘

4.3 Wall Forces

In the upper part of Figure 4.5, the static values of the total wall force, P, , for both cantilever and top-
supported walls are plotted as a function of the wall flexibility factor d. As might have been
anticipated from the information on wall pressures presented earlier, an increase in wall flexibility
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reduces the wall force, the reduction being significantly larger for cantilever walls than for top-
constrained walls. Considering that the effective flexibility of a cantilever wall of a specified value of
d,, is substantially larger than that of a top-constrained wall of the same d, value (for a pressure that
increases as a quarter-sine from base to top, the ratio of the two flexibilities is 27), the latter trend
should not be surprising.

In the lower part of Figure 4.5, the centroidal height, h,, defined as the distance from the base to the
point of application of the resultant wall force, is plotted normalized with respect to the height of the
medium H for each of the two support conditions considered. Note that, whereas for cantilever walls,
the hg,/H ratio decreases from 0.6 for a rigid wall to less than 0.3 for walls of high flexibility, for the
top-constrained walls, it has practically the constant value of 0.6.

For the cantilever walls, P, also represents the ‘static’ value of the base shear in the wall (Vy),,, and
h,, also represents the height by which P, must be multiplied to yield the ‘static’ value of the base
wall moment (My),, . These relationships do not, of course, hold true for top-constrained walls. In
Figure 4.6, the base shear in the wall of such systems is plotted normalized with respect to the total

wall force P, and the corresponding base moment is plotted normalized with respect to P, H.

Normalized values of B, (V,),, and (M;),, for both cantilever and top-supported walls are also
listed in Table 4.1, along with the corresponding centroidal heights hg, .

4.4 Wall Displacements

In Figure 4.7, the displacément configurations for cantilever and top-constrained walls are plotted
normalized to a unit peak value for values of the relative wall flexibility factor d,, between zero and
40. It is observed that, within this range of d,, values, the displacement configurations, particularly
those for the top-supported walls, are insensitive to the value of d, involved. As d, — 0, the
configurations naturally approach those obtained for a beam subjected to the pressures induced on a
non-deflecting, rigid wall.

The maximum values of the wall displacements may be expressed either in terms of the wall

properties as

3

P H

(Wstdmax = €1 ;)w (39)
or, more conveniently, in terms of the properties of the retained medium as
] s ve2
pX.H XH
(Wadmax = 28 = 75 (40)

s

where ¢, and c, are dimensionless coefficients that are functions of the flexibility factor d,, , and are
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interrelated by : ;

P d ‘
¢y = ¢ — (41)

pXH
These coefficients are plotted in Figure 4.8 and are also listed in Table 4.1. It is noteworthy that the
ratio of these coefficients for the cantilever and top-supported walls range from 25.6 for rigid walls
(d,, =0) to 3.65 for walls with d,, = 40. This large variation is due partly to the difference in the top
support conditions and partly to the significantly different distributions of wall pressures in the two
cases (see Figure 4.4).

For some insight into the magnitude of the maximum displacements that may be encountered in
practice, consider a concrete wall of height H =15 ft and thickness t, = 1.5 ft retaining a medium
with v, =400 ft/sec and subjected to a ground motion with X,=0.3g, where g is the gravitational
acceleration. With E, =3 X 10° psi, v, =0.17, and a unit weight for the soil of y=pg=100 1b/£83,
d,, is determined from equation (38) to be 13.4. This leads to ¢, = 0.427 for the cantilever wall and to
¢, =0.063 for the top constrained wall. The corresponding maximum displacements, determined
from equation (6), are 0.039% of the wall height for the cantilever wall and only 0.006% of the wall
height for the top-constrained wall. Even with a dynamic amplification factor of 2.0 which, based on
information presented in the following sections, represents a reasonable maximum for intense
earthquake ground motions, these values are below the 0.1% to 0.4% range widely accepted as
representing the displacement ratios required for the development of a limit state in the backfill
material 2!
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Table 4.1: Normalized ‘static’ values of total wall force Py;, centroidal height &, , base

shear (V),, base moment (M,),,, and of displacement factors c¢; and ¢, for
clamped-free (C-F) and clamped-hinged (C-H) walls.
Displacement
P, ﬁs_f Vo)., | ()., splacement Factors
d,, ngH2 H Py | PyH € c,
CF|CH|CF|CH|CH |CH| CF C-H C-F C-H
0 | 0.940 | 0.940 | 0.599 | 0.599 | 0.528 | 0.127 | 0.1572 |0.00614 | 0.0000 | 0.0000
1 ]0.838 | 0.931 | 0.553 | 0.600 | 0.526 | 0.126 | 0.1394 |0.00609| 0.1169 | 0.0057
2 10.770 | 0.922 | 0.517 | 0.601 | 0.524 | 0.125 | 0.1254 {0.00604| 0.1931 | 0.0111
3 10.721 | 0.914 | 0488 | 0.602 | 0.522 | 0.124 | 0.1140 |0.00598 | 0.2465 | 0.0164
4 | 0.683 | 0.906 | 0.463 | 0.604 | 0.520 | 0.123 | 0.1047 |0.00593| 0.2859 | 0.0215
5 | 0.653 | 0.898 | 0.443 [ 0.605 | 0.518 | 0.122 | 0.0968 {0.00588{ 0.3161 | 0.0264
10 | 0.561 | 0.864 | 0.375 | 0.610 | 0.508 | 0.118 [ 0.0711 }0.00564( 0.3991 | 0.0487
15 | 0.511 | 0.834 | 0.336 | 0.615 | 0.499 | 0.114 | 0.0568 |0.00542| 0.4355 | 0.0678
20 | 0477 | 0.808 [ 0.310 | 0.620 | 0.491 | 0.110 | 0.0477 |0.00521| 0.4551 | 0.0842
25 | 0.451 | 0.785 | 0.292 | 0.624 | 0.483 | 0.107 | 0.0414 |0.00502| 0.4669 | 0.0986
30 | 0.431 | 0.765 | 0.279 | 0.628 | 0.476 | 0.104 | 0.0367 |0.00485| 0.4745 { 0.1113
35 | 0.413 | 0.747 | 0.268 | 0.631 | 0.470 | 0.101 | 0.0331 |0.00468| 0.4796 | 0.1225
40 | 0.399 | 0.731 | 0.259 | 0.635 | 0.464 | 0.099 | 0.0303 |0.00453| 0.4832 | 0.1325

* Por C-F walls, (V,),, = P, and (M,),, = P, h,
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Figure 4.2 Convergence of base shear and base moment in wall of statically excited systems;
C-F walls of different flexibilities, L, =0, v = 1/3.
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for statically excited systems with different wall flexibilities; 1, =0, v =1/3.
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SECTION 5
HARMONIC RESPONSE

For the results presented so far, the dominant period of the excitation was considered to be long com-
pared to the natural period of the retained material. In this section, the steady-state response of the
system to a harmonic excitation of an arbitrary frequency is examined.

In the left part of Figure 5.1, the real-valued amplitude or maximum value of the total wall force per

unit of length, P for harmonically excited systems with a cantilever wall are plotted as a function

max?
of the frequency ratio ®/®; for several values of the flexibility factor d, . The results, which for the
cantilever system considered also define the amplitude of the base shear per unit of wall length,
(V) max » are normalized with respect to the common factor pX'gHz. As before, Poisson’s ratio and
the damping factor for the retained medium are taken as v=1/3 and 8 = 0.1, with the damping fac-

tor for the wall as 8, = 0.04 (or 2% of critical damping).

As would be anticipated from the information for statically excited systems presented in the upper
part of Figure 7, an increase in wall flexibility reduces the resulting wall force. However, the reduction
is by no means uniform over the full range of frequencies. In particular, the reduction is substantially
smaller at and near resonance than under static conditions of loading.

The interrelationship of the dynamic and ‘static’ forces may better be appreciated from the right-hand
plots of Figure 5.1, in which the ratio of the maximum values of the two forces (the amplification fac-
tor, AF) is plotted as a function of the frequency ratio for the same three values of the flexibility factor
d, .
It is observed that: (a) the peak or resonant values of the amplification factors occur at exciting fre-
quencies equal to the natural frequencies of the stratum, i.e., when ®/®; = 1,3, 5, ...; (b) the abso-
Iute maximum amplification factors are attained at the fundamental frequency of the stratum; and (c)
the latter factors are quite sensitive to the relative flexibility factor d,, . For arigid wall (d,, = 0), it is
well known®7 that the absolute maximum amplification factor is 1/ JS, or 3.16 for the value of
8 = 0.1 considered. By contrast, for flexible walls, this factor is larger due to the reduced capacity of
such walls to reflect and dissipate by radiation the waves impinging on them. As d,, tends to infinity,
the soil-wall system tends to respond as an unconstrained cantilever shear-beam, and the absolute




maximum amplification factor tends to 1/0 =10, the value applicable to a viscously damped single-
degree-of-freedom oscillator.

In Figure 5.2, the absolute maximum values of the amplification factors for cantilever and top-con-
strained walls are compared over the complete range of d,, values examined. It is observed that the
results for the top-constrained wall are significantly lower than for the cantilever wall. As previously
indicated, this is due to the fact that, for a specified, finite value of the relative flexibility factor d, , the
effective stiffness of the top-constrained system is higher than that of the cantilever.
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SECTION 6
TRANSIENT RESPONSE

Figure 6.1 shows normalized values of the absolute maximum wall force per unit of length, |Pmax| ,
for systems subjected to the first 6.3 sec of the N-S component of the 1940 El Centro, California
earthquake record, the peak acceleration of which is X, = 0.312g. The plots on the left are for canti-
lever walls, while those on the right are for top-constrained walls. The system parameters are the same
as those for the harmonically excited systems examined in the preceding sections and are also identi-
fied on the figure heading. The results are plotted as a function of T; = 2n/®,; = 4H/v,, the funda-
mental natural period of the soil stratum when it is considered to respond as an unconstrained
cantilever shear-beam. As a measure of the range of T, values that may be encountered in practice, it
is noted that for values of v between 250 and 1000 ft/sec and values of H between 10 and 50 ft, the
value of T, falls in the range of 0.04 to 0.8 sec.

The plots in Figure 6.1 are similar to, but by no means the same as, the response spectra for similarly
excited, viscously damped single-degree-of-freedom systems. Specifically, for low-natural period,
stiff strata, the wall force is the same as that obtained under static conditions of loading. With increas-
ing T, or increasing flexibility of the stratum, the force levels increase, and after attaining nearly hor-
izontal plateaus, they reach values that may well be less than the low-period, static values. For reasons
already explained for statically and harmonically excited systems, the reduction in the force level
achieved with a specified value of the relative wall flexibility factor d,, is smaller for top-constrained
walls than for cantilever walls.

The interrelationship of the maximum dynamic and long-period, static wall forces can better be seen
in Figure 6.2, in which the information already displayed in Figure 6.1 is replotted in the form of
amplification factors.

In Figure 6.3, the average values of the amplification factors for total wall force in the period range
from T; = 0.1 to 0.5 sec are replotted as a function of the flexibility factor d,,. The period range
considered corresponds to the highly amplified, nearly horizontal region of the plots in Figures 6.1
and 6.2. It is observed that, for the cantilever walls, these factors range from 1.32 to 1.89, whereas for
the top-supported walls, they range from 1.32 to 1.51. It should be recalled that these results are for a
medium with a damping factor & = 0.1 (5% of critical damping). An increase in soil damping will




naturally further reduce the amplification factors.

The normalized values of the centroidal heights h for the seismically excited systems are finally plot-
ted in Figure 6.4 as a function of the fundamental period of the stratum T, . These heights, which for
cantilever walls represent the heights by which the maximum wall force must be multiplied to yield
the overturning base moment, are relatively insensitive to variations in T, , and may, for all practical
purposes, be taken equal to those reported in Figure 4.5 and Table 4.1 for the corresponding statically
excited systems. The same can also be shown to be true of the normalized values of base shear and
base moment, (Vi) nax/Prmax 20d Mp) oy ProaxH-
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SECTION 7
EFFECT OF WALL INERTIA

For the systems considered so far, the wall mass was presumed to be negligible compared to the mass
of the retained medium. The inertia of the wall has a twofold effect: (a) it modifies (generally
decreases) the wall pressures induced by the retained medium; and (b) it induces additional forces on
the wall. The net effect, which is generally an increase in the magnitude of the wall forces, may be
evaluated exactly from the information presented, but the following simpler, approximate procedure
would be adequate for all practical purposes.

The maximum force per unit of wall length for a wall with mass, PY__ , may be related to that of the

massless wall, P, , by

Pl-'-

max

= Ppay + My Xg(AF) (42)

in which m,,, represents the effective mass per unit of wall length, and the amplification factor AF
may be taken equal to that for the massless wall. The value of m,, , normalized with respect to the
corresponding wall mass m,, = 1, H, is plotted as a function of the relative flexibility factor d,, in
Figure 17. Both cantilever and top-constrained systems are considered. For rigid walls, the ratio is nat-
urally unity, but for flexible walls, particularly for the more compliant cantilever systems, the effective
mass is substantially smaller than the actual mass.

With the maximum force for a wall with mass determined, the corresponding base moment and end
reactions may be determined by considering the latter forces to bear the same relationship to the wall
force as those applicable to massless walls. This is tantamount to taking the centroidal height /& and
the ratios of (Vy)ax”Pmax a2 (Myp)max”/ PraxH for the wall with mass equal to those for a mass-
less wall.
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Figure 7.1 Effective wall mass for statically excited systems with different wall flexibilities; v = 1/3.
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SECTION 8
CONCLUSIONS

Following are some of the more important conclusions of this study.

1.

With the method of analysis and the numerical data presented, the dynamic response of the class
of flexible retaining walls examined may be evaluated readily and with high degree of accuracy.
The method, which makes use of Lagrange’s equations of motion in combination with a recently
proposed model for the action of soil-wall systems, is expected to prove of value in the analysis
of a number of other problems as well.

The magnitudes and distributions of the wall displacements, wall pressures and associated forces
induced by horizontal ground shaking in the systems examined are quite sensitive to the flexibil-
ity of the wall. Increasing this flexibility reduces the horizontal extensional stiffness of the
retained medium relative to its shearing stiffness, and this reduction decreases the proportion of
the soil inertia forces that gets transferred to the wall and, hence, the forces developed in it.

For realistic wall flexibilities, the total wall force or base shear for cantilever walls may well be
less than one-half of that obtained for fixed-based, rigid walls, with the reduction in the base
moment being even larger. Because of the greater effective stiffness of top-supported walls, the
corresponding reductions for such walls are significantly smaller than for the cantilever systems.

Even for the 1940 El Centro earthquake ground motion record, the maximum wall displacement
relative to the moving base for cantilever walls of realistic flexibilities is found to be less than the
values of 0.1 to 0.4 percent of the wall height normally accepted as the minimum required to
develop a limit state in the backfill material.

The comprehensive numerical solutions presented and their analysis provide not only valuable
insights into the effects and relative importance of the numerous factors that influence the
response of the systems examined, but also a sound framework for assessing the behavior of even
more complex soil-wall systems.
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SECTION 10
APPENDIX. NATURAL MODES AND INNER PRODUCTSS

The jth natural mode of vibration of the beam or wall without the retained medium is given by
¢;(n) = coshA;n — cosA;n — o; [sinhAn — sinAym ] 43)

in which lj and o; are dimensionless factors that depend on the end support conditions. The jth
circular natural frequency of the wall, ®,, ;, is related to Kj by

o = A; [Py, )
w,j T H2 W,

The first five values of ?\.j and o for the two sets of boundary conditions considered here are given in
Young and Felgar22 and are reproduced in Table 11.1.

The inner products or integrals in the various expressions presented in the body of this paper are as

follows:

(¥, ¥y =05 45)
(0505 = 1 (46)
(07, 07y = A] 47

20

C-F: .

j
(6 1) = _ (48)

o 2% +(—1)’+1,{La?+1—,\/a?—1
i
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C-F: %_
A;
<¢J’ Tl) =3 : (49)
. 2“"1[(—”’«/0‘?*1 + o -1 ]
C-H: >
A;
o 2ME -4(—1 1“*" aE,]
xj ~-g,
C-H: .
i~ _ (_1)"“‘xja§|:(—1)jJa§+1- Joi -1 ]

in which &, = (2n-1)n/2. Equations (46)-(49) are given in Felgar’, while the rest were derived

from basic principles.
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Table 10.1 Dimensionless factors A; and ¢; in expressions for natural modes of

vibration of clamped-free (C-F) and clamped-hinged (C-H) flexural beams

Order of C-F Beams C-H Beams

Mode j A o A o
1 1. 8751 0410 0.73409550 | 3.9266 0230 1. 0007 7730
2 4.6940 9113 1.0184 6644 | 7.0685 8275 1. 0000 0144
3 7. 8547 5743 0.9992 2450 | 10.2101 7613 1. 0000 0000
4 10. 9955 4074 1.0000 3355 | 13.3517 6878 1. 0000 0000
5 14. 1371 6839 0.9999 9855 | 16.4933 6143 1. 0000 0000
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SECTION 11
NOTATION

The following symbols are used in this report:

3

{A}

elements of {A}

vector of normalized exciting forces

dimensionless factors in expressions for maximum wall displacement

relative wall flexibility factor defined by equation (36)

flexural rigidity per unit of wall length, defined by equation (5)

complex-valued flexural rigidity of wall [= D (1 +13,)]

Young’s modulus of elasticity for wall

fundamental cyclic frequency of retained medium when it is assumed to respond as an
unconstrained cantilever shear-beam

generalized force

acceleration due to gravity

shear modulus of elasticity for retained material

complex-valued shear modulus for retained material [= G(1 +19)]

centroidal height, defined as distance from base to point of application for dynamic wall
force P

[= /11

integer defining order of beam mode under consideration

integer defining total number of beam modes considered

dynamic impedance of spring-dashpot combination when both the wall and the retained
medium at the far-field vibrate in the nth natural mode of a uniform, cantilever shear-beam
elements of [M]

mass per unit length of wall

effective mass per unit length of wall

mass matrix

instantaneous value of overturning base moment per unit of wall length induced by force P
bending moment at base of wall

integer defining order of shear-beam mode under consideration

integer defining total number of shear-beam modes considered

instantaneous value of total dynamic force per unit of wall length

generalized coordinate

amplitude of jth generalized coordinate

vector of amplitudes of generalized coordinates
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elements of

stiffness matrix

thickness of wall

fundamental natural period of retained medium when it is considered to respond as an
unconstrained cantilever shear-beam

kinetic energy of wall

horizontal displacement of an arbitrary point of medium relative to moving base

horizontal displacement of base-excited shear-beam relative to moving base

participation factor in expression for displacement of shear-beam

horizontal position coordinate

vertical position coordinate

shear-wave velocity for retained material

instantaneous value of dynamic base shear in wall

strain energy of wall

wall displacement relative to moving base

participation factor in expression of dynamic displacement of wall

work done by wall pressures

instantaneous value of ground acceleration

maximum ground acceleration

dimensionless factor in expression of jth natural mode of vibration of a uniform beam,; listed
in Table 10.1

material damping factor for retained material

Kronecker delta

material damping factor for wall

dimensionless factor [= (2n—1)r/2]

dimensionless vertical position coordinate [= y/H]

dimensionless factor in expressions for jth mode and associated frequency of a uniform flex-
ural beam; listed in Table 10.1

mass per unit area of retaining wall

Poisson’s ratio for retained material

mass density for retained material

dynamic normal wall pressure

component of ¢ due to wall flexibility

component of ¢ for a non-deflecting rigid wall

vertical normal stress

horizontal shearing stress in x-y plane

jth natural mode of vibration of a uniform flexural beam

nth natural mode of vibration of retained medium when assumed to act as an unconstrained,
cantilever shear-beam

circular frequency of excitation and of resulting steady-state response

nth circular natural frequency of retained material when considered to respond as an uncon-
strained, cantilever shear-beam

Jjth circular natural frequency of uniform flexural beam
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