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EFFECTS OF HEAVY-ION IRRADIATION ON MICROSTRUCTURE OF
V-4Cr-4Ti ALLOY AT MODERATE TEMPERATURES®
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' Northwestern University, Dept. of M.S.&E., Evanston, IL
* Argonne National Laboratory, Energy Tech Div., Argonne, IL

ABSTRACT

V-4 wt.% Cr-4 wt.% Ti alloy is a promising candidate material for first-wall and structural
applications in magnetic fusion reactors. In the past, fast neutron sources were used to evaluate
postirradiation properties of fusion candidate materials. The recent shutdowns of the Fast Flux
Test Facility (FFTF) and the Experimental Breeder Reactor (EBR-II) left U.S. researchers without
local experimental facilities for such tests. Under such circumstances, ease of experimental
control, availability, and relatively low cost make heavy-ion irradiation an attractive alternative,
provided its limitations are appreciated. We selected 3-MeV V* and 4.5-MeV Ni** ions to
investigate the effects of irradiation on the microstructure of V-4Cr-4Ti alloy in the temperature
range of 200 - 420°C. The main interest is in the evaluation of this alloy’s dimensional stability
and susceptibility to irradiation embrittlement. In this paper, we report results of ion irradiation
experiments and compare them with available data on fast-neutron irradiation. From transmission
electron microscopy (TEM) analysis of ion-irradiated specimens, we found that the dominant
feature of the postirradiation microstructure was a high density of dislocation loops and point-
defect clusters. Density and defect size depended on irradiation dose and temperature. Precipitates
and voids/bubbles were not observed, even in specimens that were simultaneously injected with
He and exposed to heavy-ion irradiation. Increased transport of point defects to internal interfaces
was observed, as manifested by defect denuded zones along grain boundaries, Defect denuded
zones along grain boundaries could lead to segregation of impurities and solutes and formation of
precipitates on grain boundaries.

INTRODUCTION

Vanadium-base alloys are promising candidate materials for application in fusion reactors.
Their advantage over other candidate alloys stems from their low intrinsic neutron activation,
compatibility with Li reactor coolant, and refractory nature."> Results from past neutron irradiation
experiments show that V-base alloys can be tailored to sustain higher operating temperature, stress,
and neutron fluence than stainless steels, without suffering embrittlement or significant dimen-
sional changes (swelling).® These experiments were performed at temperatures above 420°C.
Recent consideration of V-base alloys for applications as first-wall and structural material in the
International Thermonuclear Experimental Reactor ( ITER ) prompted evaluation of the irradiation
performance of these alloys in the temperature range from 200 to 420°C, which is also relevant to
transient situations in other fusion reactors.

Because operational fusion reactors are not available, the standard procedure to evaluate
irradiation performance of materials that are relevant to a fusion environment is to perform
irradiation experiments in fast-neutron spectra (E >0.1 MeV). In the past, the widely used devices
were the 14-MeV Rotating Target Neutron Source RTNS and fast-fission reactors: i.e., the Fast
Flux Test Facility FFTF and the Experimental Breeder Reactor EBR-II. However, these facilities
are no longer available. The recent shutdown of EBR-II (September 1994) left U.S. experimenters
without access to a local fast reactor. At this time, evaluation of the irradiation behavior of
materials is limited to irradiation in mixed-neutron-spectrum reactors*® (with their inherited
excessive transmutations due to thermal neutrons), or to conducting experiments in foreign
facilities® (which extend costs and experimental time). In such a predicament, the ease of experi-

*Work supported by the Office of Fusion Energy, U.S. Department of Energy, under Contract W-31-109-Eng-38.
""Deceased in 1996.




mental control, availability, and relatively low cost make heavy-ion irradiation an attractive
alternative or supplement, provided its limitations are appreciated. The limitations include in-
homogeneous profile of damage, small volume of irradiated material, different recoil spectrum than
that of neutrons, and changes in target composition that are a result of atom injection. The main
advantages of ion irradiation arise from the ease of experimental control (temperature, fluence, and
dose rate), wide availability of irradiation facilities, relatively low cost, and, in some facilities,
possibility of in situ studies.’

From the family of V-base alloys, the V-4 wt.% Cr-4 wt.% Ti (V4Cr4Ti) composition gives
superior irradiation performance.® We selected 3-MeV V* and 4.5-MeV Ni* ions to investigate the
effects of irradiation on the microstructure of V4Cr4Ti alloy in the temperature range of 200-
420°C. Microstructure was observed by transmission electron microscopy (TEM). The main
interest is to evaluate this alloy’s dimensional stability and susceptibility to irradiation embrittle-
ment. In this article, we report on the progress of ion irradiation experiments and present limited,
preliminary, TEM data that is available from the EBR-II X530 fast-neutron irradiation experiment
conducted at =370°C.

EXPERIMENTS

Procedures used to prepare the V4Cr4Ti alloy (Heat 832665, ANL ID BL71) have been
described in detail elsewhere.” Composition of the alloy is given in Table I. The plate used to
prepare TEM specimens for irradiation experiments was warm rolled (at 400°C) to a thickness of 1
mm and then cold rolled at room temperature to 250 um. Standard 3-mm-diameter discs were
punched from the 250-pum-thick sheet. Discs used for ion irradiation were ground to a thickness of
=125 mm thickness before polishing and annealing. All discs were mechanically polished to a
0.050-pum surface finish and annealed in a UHV ion pumped furnace (< 10° Pa) for 1 h at 1050°C
(for ion irradiations) or 1125°C (for neutron irradiations). The result was a fully recrystallized
material with an average grain size of 20-40 pm.

Table I. Composition (impurities in wppm) of V-4Cr-4Ti alloy (Heat 832665, BL71)

ANL ID Cr Ti Cu Si 0] N C S P Ca Cl B
BL-71 38wt% 39wt <50 783 310 85 80 <10 <30 <10 <2 <5

Ion irradiations were performed at the Argonne Tandem Accelerator facility operated by the
Materials Science Division. Beams of 4.5-MeV Ni™ and 3-MeV V* ions were produced by a 2-
MV NEC ion accelerator. During some irradiation runs, He was simultaneously injected into
specimens at the rate of 5 appm/dpa by means of 0.35-MeV He" ion beams from the 0.65-MV
NEC ion implanter. Vacuum in the irradiation chamber was maintained at 1 -10® Pa. Separate ion
irradiation runs were performed with specimens kept within £2°C at 200, 350, and 420°C. TEM
foils were prepared by removing an 800-nm-thick section from the irradiated surface and back-
thinning specimens to electron transparency. The 800-nm depth was selected on the basis of
TRIM Code (version 95)'° simulations of ion deposition ranges and damage profiles. TEM foils
allowed observation of regions with highest He and V atom deposition rate, sufficient irradiation
damage rates, and insignificant Ni deposition. :

Neutron irradiations were completed during the last run of the EBR-II reactor in
August/September 1994. The details of this irradiation experiment and the specimen matrix are
given in an earlier report.!’ Specimens were irradiated in Li-filled capsules for 35 full-power days
at =370-390°C in core position (flux of 2.4-10"” n-cm*s™, E>0.11 MeV), and attained a damage
dose of =4 dpa. TEM discs used for the present work were randomly selected from a batch
annealed at 1125°C. Discs were electropolished from both sides to electron transparency to avoid
near-surface regions. Electropolishing of all irradiated TEM discs was accomplished with a South
Bay Technology Single Jet Electropolisher 550B and electrolyte consisting of, by volume, 70%
H,SO,, 15% CH,OH, and 15% C/H,,0, Butyl Cellosolve that was maintained near -10°C. ,

TEM observations were performed with two transmission electron microscopes. The
microstructure of ion-irradiated specimens were evaluated with a Phillips CM30 analytical TEM.
Neutron-irradiated specimens were examined using a JEOL 100CX TEM equipped with thick
window X-ray energy dispersive spectrometer X-EDS, in which work with radioactive materials is
allowed. The size and number density of radiation-produced defects were measured with a Zeiss
particle size analyzer/counter from prints of electron-micrographs that were obtained from foils of




known thickness. Foil thickness was measured by electron energy loss analysis, calibrated by
stereomicroscopy and foil tilting experiments.

RESULTS

The typical microstructure of ion-irradiated V4Cr4Ti at all temperatures consisted of a high
density of “black dot” defect clusters and dislocation loops, on the order of 2-10”2 m3. Short
dislocation segments were occasionally observed at 420°C and 10 dpa. Two types of dislocation
Burgers vectors, a,<100> and a/2<111>, were observed, with the latter one predominating. The
typical microstructural evolution with increasing damage dose (0.5 to 5 dpa) at constant
temperature (200°C) is shown in Fig 1. The effects of temperature (200-420°C) on the size of the
dislocation loops and their number density is shown in Fig. 2 for specimens irradiated to 0.5 dpa.
Examples of microstructure after irradiation at 350°C to 5 dpa with/without He are shown in Fig.
3. The effects of simultaneous He injection during ion irradiation were insignificant.

For comparison with irradiated specimens, Fig. 4 shows the typical microstructure of V4Cr4Ti
alloy after aging in the irradiation chamber during a typical ion irradiation run, i.e., 8 h at 420°C in
10° Pa vacuum. The microstructure is identical to that of the as-annealed material.

Most of the ion irradiations were performed with Ni*™ ions. To determine the effects of Ni, if
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Figure 1. Microstructure of ion-irradiated V4Cr4Ti alloy. Effec
200°C; (a) 0.5, (b) 2, and (c) 5 dpa. Defects imaged in dynamical two-beam condition with g =
(01-1) near [011] foil orientation.
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igur 2. Effects of teertur on in-irradlatlo-produéed defect size and density at 0.5 dpa,”
(a) 200°C, foil thickness =50nm, and (b) 420°C, foil thickness ~60 nm.




Figure 3. Effects of He on microstructure of on- Fige 4. V4CraTi al after aging in
irradiated V4Cr4Ti, 5 dpa at 350°C; (a) without - irradiation chamber for 8 h at 420°C, in
He, (b) 25 appm of He injected. 10°Pa UHV vacuum.

F-Flgure 5. Lack o effects of Ni on rmcxostructule Figure 6 Defect—denudd Zones near
produced by ion irradiation at 200°C to 0.5 dpa; grain boundary of V4Crd4Ti alloy
(a) Ni**, and (b) V* irradiated at 420°C to 0.5 dpa.

any, a limited number of irradiations were carried out with 3-MeV V' ions. Figure 5 shows
microstructures produced by both types of ions at 200°C and 0.5 dpa. No difference in defect
structure was observed.

Increased transport of point defects to preexisting dislocations, grain boundaries and
precipitate/matrix interfaces was documented in ion-irradiated specimens. Defect-denuded zones,
=100 nm wide, were most pronounced along grain boundaries and precipitate/matrix interfaces at
420°C, but were also present in specimens irradiated at 350°C (width ~40 nm). An example is

Grain boundary region in

PPN o
Figure 7. V4Cr4T1 alloy, fast- neutron 1rrad1ated Figure 8.

to 4 dpa at =385°C. g = (01-1) near [011]. V4Cr4Ti alloy; fast-neutron irradiated to
4 dpa at =385°C.




given in Fig. 6. Formation of denuded zones was accompanied by an increase in size, number of
grain boundary precipitates, and in some cases formation of a nearly continuous film on the grain
boundaries. High Ti content was detected in the grain boundary phase by X-EDS analysis, but
phase identification of precipitates has not yet been completed. Increased counts in the Ti/V/Cr L-
line energy range, which coincide with O and N K-line energies, were observed. Lack of evidence
for the presence of any other elements in the grain boundary film leads us to suspect that the phase
may be a combination of Ti and scavenged interstitial impurities (C,N,O).

For comparison purposes, a typical microstructure of V4Cr4Ti alloy, neutron-irradiated to 4
dpa at =385°C, is shown in Fig. 7. In preliminary work, we observed a high density of black dots
and dislocation loops in sizes and number density comparable to those that are a result of ion
irradiation (on the order of 10”> m™). Similarly to the ion-irradiated material, neutron-irradiated
V4CrdTi formed a grain boundary phase; however, the number density of grain boundary
precipitates was lower and defect-denuded zones were not observed. Figure 8 shows a typical
grain boundary region in neutron-irradiated V4Cr4Ti.

DISCUSSION

During irradiation at moderate temperatures, the microstructure of V4Cr4Ti alloy evolves with
increasing fluence. This process is exemplified in Fig. 1 for specimens that were irradiated at
200°C. In the earlzg stages (<0.5 dpa), defect clusters-'black dots' form with the number density
reaching =2.5X 10" m™. The total number density of defects remains constant with increasing
fluence (<5 dpa); however, the character and size of the defects changes. The microstructure at 0.5
dpa is characterized by nearly uniform distribution of point defect clusters with diameters near 4
nm. At 2 dpa, dislocation loops with diameters ranging from 6 to 20 nm are resolvable and the
black dots, with size remaining near 5 nm, are still present. At 5 dpa, dislocation loops with
diameters reaching up to 25 nm are prevailing, but the most commonly found diameter is 9 nm. A
still higher irradiation dose, 10 dpa, resulted in formation of short dislocation segments, loops with
maximum diameters of 30 nm, and point defect clusters with a mean diameter of 5 nm. Increase of
irradiation temperature accelerates the loop growth process, as illustrated in fig. 2. At 420°C, a
0.5-dpa damage dose is sufficient to produce well developed dislocation loops the size of which
increases at higher doses. The dislocation segments observed at 420°C and 10 dpa appear to be
formed by large dislocation loops that cut foil surfaces. The length of the segments was =50 nm,
comparable to the foil thickness and larger than the most of the loops observed in these specimens
(diam. <25 nm), which suggests that the large loops were formed by absorption of smaller
dislocation loops.

Diffusion of point defects is responsible for cluster/loop distribution, as exemplified by
formation of defect-denuded zones near grain boundaries. In pure V, self-interstitial atoms are free
to migrate at temperatures above 8 K, whereas vacancies start to migrate near 200 K and are quick
to bind with interstitial impurities (C, N, O), to become stationary clusters until temperature is
increased to ~450K, when these clusters dissociate.'* In V-base alloys, oversized Ti provides
additional sinks for vacancies and increases the dissociation temperature of vacancy-Ti-impurity
clusters. '>!* At the same time, the threshold temperature for free interstitial diffusion of O in pure
V is 480 K, and it is slightly higher for C and N."*> The current ion irradiation experiments show
uniform defect cluster distribution after irradiation at 473 K (200°C) and formation of 100 nm wide
defect-denuded zones near preexisting sinks, combined with increase of Ti concentration on the
grain boundaries at higher temperatures. The width of defect-free zones increases from ~40 nm at
623 K (350°C) to =100 nm at 693 K. (420°C). Radiation-enhanced diffusion of complexes that
contain interstitial impurities and Ti atoms to vacancy sinks could explain the formation of the
secondary phase on grain boundaries, a phenomenon that is not observed in the material aged at the
same temperature. ,

Lack of the defect-free zones near grain boundaries of neutron-irradiated specimens is
puzzling. If radiation-enhanced diffusion is responsible for defect-free zone formation, then the
neutron-irradiated specimens should have wider defect-denuded zones than the ion-irradiated
specimens; because their damage rate was lower, by three orders of magnitude, and the total
irradiation time longer than these of the ion-irradiated specimens. Our observations were limited to
three TEM foils prepared out of the neutron-irradiated material, therefore it is possible that we do
not have a statistically reliable data, especially since the ion irradiations were performed in a UHV
vacuum and neutron irradiations in Li filled capsules. This issue needs further investigation.




Finally, the focus of this study was to determine the swelling and embrittlement potential of V-
base alloys that were irradiated at moderate temperatures. Voids were not observed in any of the
irradiated specimens; therefore, swelling should not be considered a critical issue for irradiation at
200-420°C, at least up to 10 dpa fluence. However, embrittlement could become a limiting.
Transmission electron microscopy observations can only provide microstructural data; they cannot
directly measure mechanical properties. The observed formation of the grain boundary phase in
irradiated specimens could lead to intergranular fracture, especially because recent work on crack
propagation in V-base alloys, after fast-neutron irradiation at 600-800°C to 6.1 dpa, !* indicates
that intergranular fracture could result from He and/or impurities (C, N, O) accumulated on grain
boundaries. Moreover, a high density of dislocation loops and defect clusters was observed in
grain matrices. Presence of defect clusters usually does not lead to severe embrittlement, although
it can increase the hardness of a material. However, if the clusters interact with impurities and/or
alloying elements (T1), such formed complexes could increase the yield strength of a material above
the fracture stress and lead to cleavage/transgranular fracture. Ion-irradiated material does not allow
direct measurement of fracture properties; therefore, tensile and impact tests on neutron-irradiated
material will be conducted to resolve the question of irradiation embrittlement of V4Cr4Ti alloy at
moderate temperatures.

CONCLUSIONS

1. Heavy-ion irradiation of bulk V-base alloys provide reasonable simulation of fast-neutron
damage at moderate temperatures. Radiation-induced defect structures produced with Ni*™* and
V* ions resembles those of fast-neutron-irradiated material at similar dose and temperature. The
prevalent defects are point defect clusters and dislocation loops, which are clearly seen at 0.5
dpa and increase in size with further irradiation.

2. Fast neutron, single ion, and dual ion (Ni™* and He") irradiations did not cause formation of
voids and/or gas bubbles at temperatures of 200-420°C hinting that the V4Cr4Ti alloy is resis-
tant to swelling at least up to 10 dpa fluence in this temperatures range.

3. It cannot be concluded at this time if the irradiation-induced structural changes, i.e., significantly
higher density of defect clusters and dislocation loops, should facilitate brittle fracture. It
should be noted that defect-denuded zones have developed and grain boundary precipitation
have been promoted. These structural changes should make material more susceptible to
intergranular fracture. Further work is in progress to investigate the susceptibility of V-base
alloys to brittle fracture after irradiation in this temperature range.
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