

Subject Category: CHEMISTRY-GENERAL

Approved for Issue by: Frank W. Hurd
Frank W. Hurd

Date of Issue: March 23, 1950

Report Number: K-555
File Number: _____

CARBIDE AND CARBON CHEMICALS DIVISION
UNION CARBIDE AND CARBON CORPORATION
K-25 Laboratory Division

DETERMINATION OF PURITY BY FREEZING POINT DEPRESSION.
PURITY AND FREEZING POINT OF HEXADECAFLUOROHEPTANE.

V. E. Anderson and G. D. Oliver

DISTRIBUTION

(Internal)

1. Anderson, V. E.
2. Bahler, K. W.
3. Bahner, C. T.
4. Barber, E. J.
5. Bernhardt, H. A.
6. Callihan, A. D.
7. Cameron, A. E.
8. Center, C. E.
9. Cromer, S.
10. Gabbard, J. L.
11. Gibson, J. D.
- 12-16. Harwell, W. L.
17. Huber, A. P.
18. Humes, W. B.
19. Hurd, F. W.
20. Jordan, R. G.
21. Korsmeyer, R. B.
22. Lafferty, R. H., Jr.
23. Lang, D. M.
24. Levin, R. W.
25. Lind, S. C.
26. Mahoney, C. H.
27. Marshall, J. A.
28. Meservey, A. B.
29. Murray, J. P.
30. Oliver, G. D.
- 31-34. Plant Records
Attn: J. B. Sykes
35. Rapp, K. E.
36. Schiffman, S. D.
37. Schwenn, M. F.
38. Smiley, S. H.
39. Trauger, D. B.
40. Vanstrum, P. R.
41. Plant Records
Attn: J. B. Sykes K25RC

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

STANDARD DISTRIBUTION

1

No. of Copies

Argonne National Laboratory	8
Armed Forces Special Weapons Project	1
Atomic Energy Commission, Washington	2
Battelle Memorial Institute	1
Brookhaven National Laboratory	8
Bureau of Medicine and Surgery	1
Bureau of Ships	1
Carbide and Carbon Chemicals Division (Y-12)	4
Chicago Operations Office	1
Cleveland Area	1
Columbia University (Dunning)	1
Columbia University (Failla)	1
Cornell University (W. T. Miller)	1
Dow Chemical Company	1
General Electric Company, Richland	6
Idaho Operations Office	1
Iowa State College	2
Johnson, W. M., Kansas City Area, P. O. Box 6069, U. S. A. E. C., Kansas City, Mo.	1
Knolls Atomic Power Laboratory	4
Los Alamos	3
Mallinckrodt	1
Massachusetts Institute of Technology (Gaudin)	1
Massachusetts Institute of Technology (Kaufmann)	1
Mound Laboratory	3
National Advisory Committee for Aeronautics	2
National Bureau of Standards	2
Naval Radiological Defense Laboratory	2
NEPA Project	2
New Brunswick Laboratory	1
New York Operations Office	5
North American Aviation, Inc.	1
Office of Naval Research, Chemistry Branch (L. W. Butz)	1
Oak Ridge National Laboratory	8
Patent Advisor, Washington	1
Public Health Service	1
Rand	1
Sandia Base	1
Sylvania Electric Products, Inc.	1
Technical Information Branch, ORE	200
UCLA Medical Research Laboratory (Warren)	1
University of California Radiation Laboratory	5
University of Rochester	2
University of Washington	1
Western Reserve University (Friedell)	2
Westinghouse	4

Subject Category: CHEMISTRY-GENERAL

Report Number: K-555
File Number:
Date of Issue: March 23, 1950

Title: DETERMINATION OF PURITY BY
FREEZING POINT DEPRESSION.
PURITY AND FREEZING POINT
OF HEXADECAFLUOROHEPTANE.

Authors: V. E. Anderson and
G. D. Oliver

CARBIDE AND CARBON CHEMICALS DIVISION
UNION CARBIDE AND CARBON CORPORATION
K-25 Laboratory Division

A B S T R A C T

The theory, apparatus, and experimental procedure for the determination of purity by the freezing point depression method are described. The accuracy, precision, and limitations of the method are discussed.

The purities and freezing points of hexadecafluoroheptane samples are given.

DETERMINATION OF PURITY BY FREEZING POINT DEPRESSION.
PURITY AND FREEZING POINT OF HEXADECAFLUOROHEPTANE.

INTRODUCTION

The success of a purification program depends upon a knowledge of the purity at successive stages of the process. Also, information pertaining to purity is desirable prior to the determination of the physical properties of a compound. Since purity data were essential for the purification of hexadecafluoroheptane, this work was an integral part of that program¹.

Although the refractive index and ebulliometric data may serve as an indication of purity, a quantitative purity result may be obtained from the freezing point method.

In this report the freezing point method, including both the theory and apparatus, is described and the results obtained on hexadecafluoroheptane are presented.

THEORETICAL BASIS FOR THE METHOD

The well known equation,

$$\Delta T = \frac{1000 K_f g}{MG} \quad (1)$$

where K_f is the cryoscopic constant
 g is the weight of the solute
 M is the molecular weight of the solute
 G is the weight of the solvent.

expresses the relationship between freezing point depression and concentration. Provided a solution obeys the ideal solution laws, only the main component will crystallize unless the temperature is at or below the eutectic temperature; therefore, the solution becomes increasingly more concentrated as freezing progresses. If the rate of crystallization is assumed to be constant, the rate of decrease of solvent as liquid is also constant. Consequently, the lowering of the freezing point at any given time during crystallization may be expressed by the equation,

$$\Delta T = \frac{1000 K_f g}{M (G - AX)} \quad (2)$$

1. Blumkin, S., N. C. Orrick, J. W. Grisard, and J. D. Gibson, "Purification of Hexadecafluoroheptane", Carbide and Carbon Chemicals Division, K-25 Plant, K-557, February 22, 1950.
2. Glasgow, Streiff, and Rossini, "Determination of the Purity of Hydrocarbons by Measurement of Freezing Points", J. Research Natl. Bur. Standards, 35, 355 (1945), RP 1676.

where A is the rate of crystallization in grams per minute and X is the freezing time in minutes. The difference ($\Delta T'$) between the temperature at the onset of crystallization and the temperature at any subsequent time during freezing is given by the equation

$$\Delta T' = \frac{1000 K_f g}{M (G - AX)} - \frac{1000 K_f g}{GM} \quad (3)$$

For any given sample A , K_f , g , M , and G are constants. By rearrangement of terms, equation (3) may be expressed in the form:

$$\frac{\Delta T'}{X} = \frac{A}{G} \Delta T' + \frac{1000 K_f g A}{G^2 M} \quad (4)$$

This equation shows that $\Delta T'/X$ is a linear function of $\Delta T'$. The rate of crystallization and number of moles of impurity are computed from the slope and intercept, respectively.

Because of supercooling, the system does not reach equilibrium immediately. Hence, some material is frozen before equilibrium is attained, the amount of unfrozen material being equal to $G - AX_1$, where X_1 is the number of minutes required to attain equilibrium. X_1 can be determined accurately by visual inspection as the slope of the liquid cooling curve is very steep in comparison to the slope of the freezing curve at the onset of crystallization. In this case the slope of the line represented by equation (4) will be equal to $\frac{A}{G - AX_1}$ and the intercept $\frac{1000 K_f g A}{(G - AX_1)^2 M}$.

The above derivation assumes the rate of crystallization to be constant. This assumption is usually valid; but the rate of crystallization will change with time if the material has a large K_f , a relatively high impurity, and a small temperature head.

Correction for a Variable Crystallization Rate

This laboratory has found that by treating the rate of crystallization as a variable instead of a constant, equation (4) will still be applicable.

$$\frac{\Delta T'}{X} = \frac{1000 K_f g R}{M G^2} + \frac{R \Delta T'}{G} \quad (5)$$

where R is the rate of crystallization.

If the rate of crystallization is assumed to be directly proportional to the temperature head, then

$$\frac{A}{H} = \frac{R}{Z} \quad (6)$$

where A is the rate of crystallization at the onset of crystallization.

R is the rate of crystallization at X time.

H is the head of temperature at the onset of crystallization.

Z is the head of temperature at X time.

Equation (5) can now be written

$$\frac{\Delta T'}{X} = \frac{1000 K_f g A}{M G^2} \frac{Z}{H} + \frac{A}{G} \frac{Z}{H} \Delta T' \quad (7)$$

Plots of $\frac{\Delta T'}{X}$ vs. $\frac{Z}{H}$ and $\frac{Z}{H}$ vs. $\frac{Z}{H} \Delta T'$ give two straight lines. The constants $\frac{1000 K_f g A}{M G^2}$ and $\frac{A}{G}$ are obtained by picking two values of $\frac{\Delta T'}{X}$

and $\frac{Z}{H} \Delta T'$ corresponding to any two values of $\frac{Z}{H}$ from the above straight lines and substituting in equation (7).

The accuracy is a direct function of the purity since dilute solutions obey Raoult's law more closely than concentrated ones; however, the precision decreases as the purity increases which is partially due to larger percentage errors in temperature measurements. Thus, there will be a region (dependent upon the K_f) where the purity can be obtained with optimum accuracy and precision.

Accuracy and Precision

The precision and accuracy can be evaluated from a plot (see figure 3) of the impurity vs. freezing point. Equation (1) can be written in the following form:

$$\Delta T = - \frac{K_f}{M_1} \frac{1000 g M_1}{M_2 G} + T_0 \quad (8)$$

where T is the freezing point of the solution

T_0 is the freezing point of the main component

M_1 is the molecular weight of the main component

M_2 is the molecular weight of the impurity.

A plot of T vs. $\frac{1000 g M_1}{M_2 G}$ will give a straight line with a slope equal to $-\frac{K_f}{M_1}$. Observing the deviations of a given set of data points from a

line drawn through the points with slope $-\frac{K_f}{M_1}$ will give information con-

cerning the accuracy and precision. The randomness of distribution of the points about the line will be a test of the precision, while any trend of the points to deviate from linearity will be an indication of the inaccuracy.

Although this method enables one to make a quantitative estimate of the impurity in mole percent, no information pertaining to the kind, number, or relative proportions present can be gathered. Also, the impurity

must be liquid-soluble, solid-insoluble or the results will be erroneous. If the freezing point of the pure material is known, it is necessary to measure only the freezing point of the sample to determine the purity. However, since the freezing point of a solution often cannot be determined accurately without the aid of a freezing curve, especially with much supercooling, this method is of value even though the freezing point of the pure material is known.

APPARATUS AND PROCEDURE

The apparatus consists of a double-walled freezing tube, ring stirrer and motor, high vacuum pump, platinum resistance thermometer, Mueller Bridge, and electric timer.

The freezing tube was surrounded by a silvered jacket which could be evacuated and maintained at any desired pressure. The rate of freezing was controlled by the pressure in the jacket. A high vacuum pump, connected to the tube by a ball and socket joint, was used for evacuating the system. Stirring was effected by means of a ring stirrer which operated with a reciprocating vertical stroke. Temperature measurements were made with a platinum resistance thermometer in conjunction with a Mueller Bridge. In most cases the refrigerant was a slush of trichloroethylene and solid carbon dioxide; liquid nitrogen was used for lower freezing points.

At the beginning of a run, 50 cc. of sample was weighed into the tube, the thermometer clamped into position, and a slow steady stream of nitrogen passed over the material to prevent condensation of water in the tube. After immersing the tube in the refrigerating bath, the sample cooled to approximately 10° above the freezing point, then the desired cooling rate was obtained by evacuation of the jacket. Temperature readings were recorded at one minute intervals until the stirrer showed signs of laboring; at that time the frozen material usually constituted 1/3 to 1/2 of the total. After stirring ceased, the liquid and solid were no longer in equilibrium; therefore, further temperature measurements were not read. The data were plotted and the impurity calculated by the procedure given previously. If the plots showed the data to be unsatisfactory, i.e., non-attainment of equilibrium for a sufficient period of time, the experiment was repeated using a different cooling rate and/or a different stirring rate.

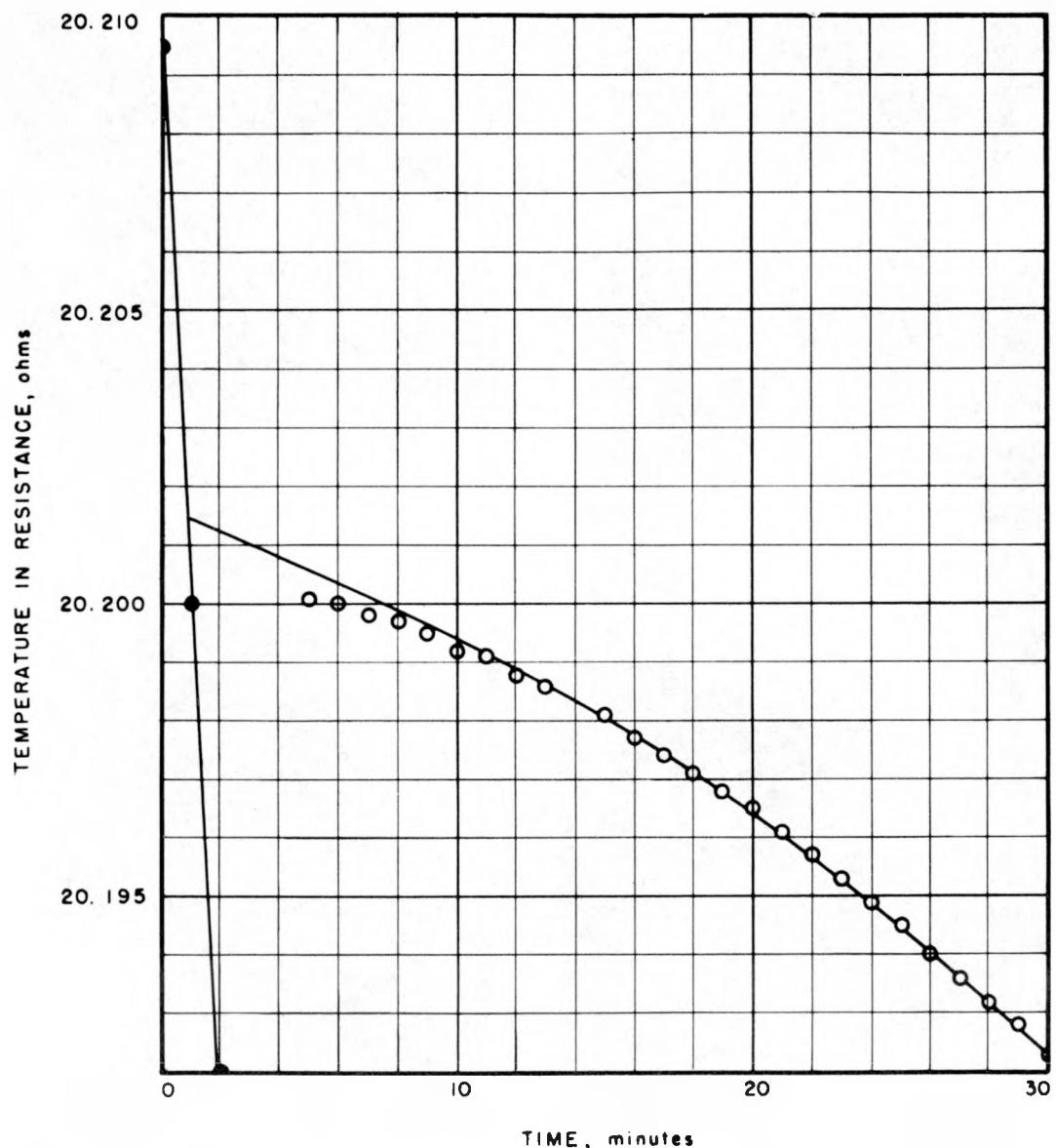
PURITY RESULTS ON HEXADECAFLUOROHEPTANE

Measurements were made on a series of samples throughout the purification of hexadecafluoroheptane. The K_f was determined by measuring the freezing point depression and by the addition of Freon-113 or chlorotrifluoroethylene polymer of known molecular weight to a sample of hexadecafluoroheptane whose freezing point was known.

Plots of the temperature, expressed in resistance, vs. time, in minutes, and of the temperature difference divided by time vs. temperature difference are shown in figures 1 and 2, respectively, for a sample of hexadecafluoroheptane. By using these plots and equation (4), the purity was calculated to be 99.47 mole percent and the freezing point -51.90°C .

The bias of the experimental method of measuring the purity of hexadeca-fluoroheptane samples ranges from approximately -40% at 0.25 mole percent to + 4% at 7 mole percent as shown in figure 3. An estimation of the precision of the method may be obtained from the work of Glasgow, Strieff, and Rossini².

SUMMARY

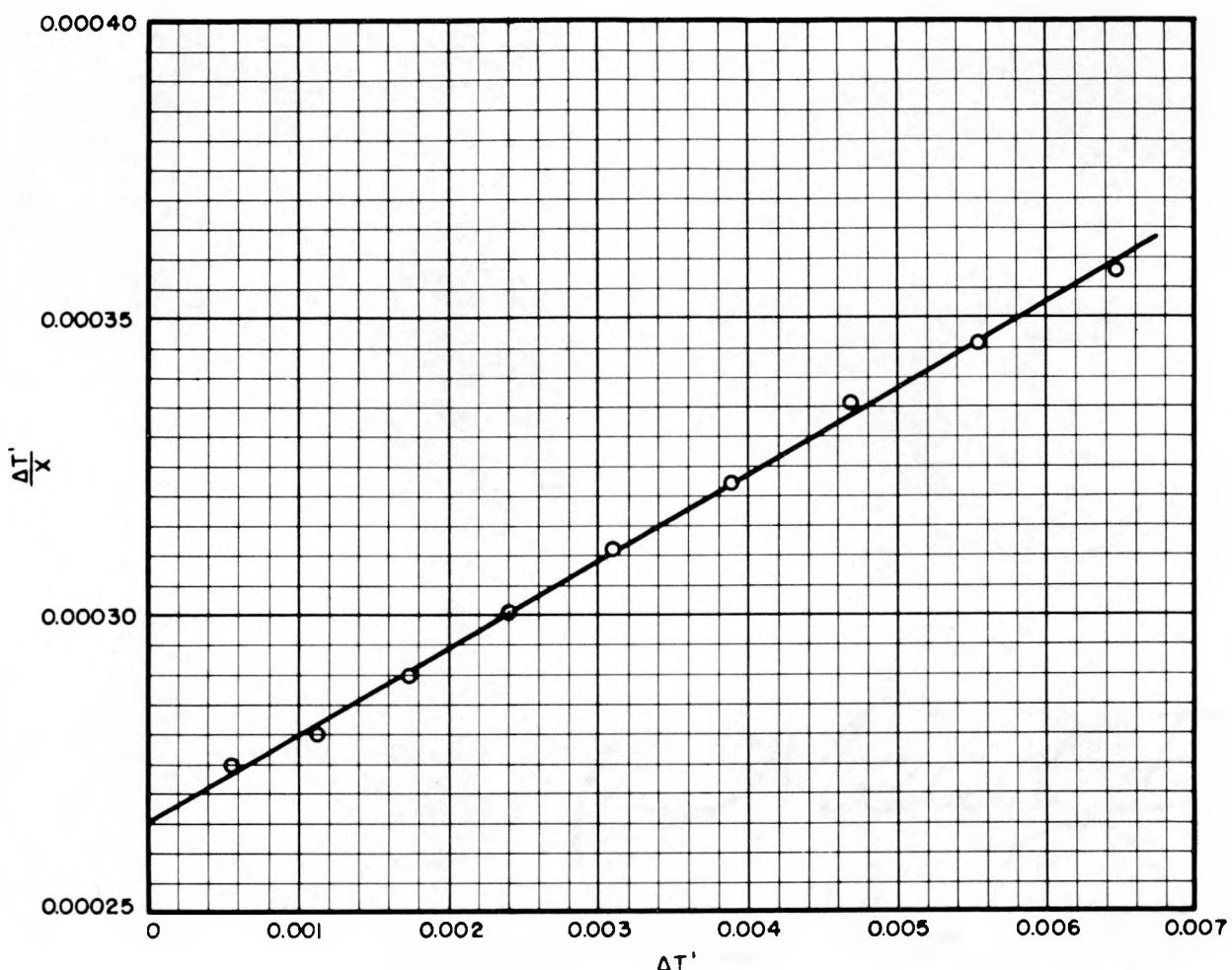

A procedure has been described for determining the purity of compounds in mole percent. A method correcting for the change in the rate of crystallization caused by a variable temperature head has been outlined. The results are presented on a series of hexadecafluoroheptane samples obtained during the process of purification and an estimate of the precision is made.

ACKNOWLEDGEMENT

The authors wish to express their appreciation to J. W. Grisard for his help and suggestions in the construction of part of the apparatus.

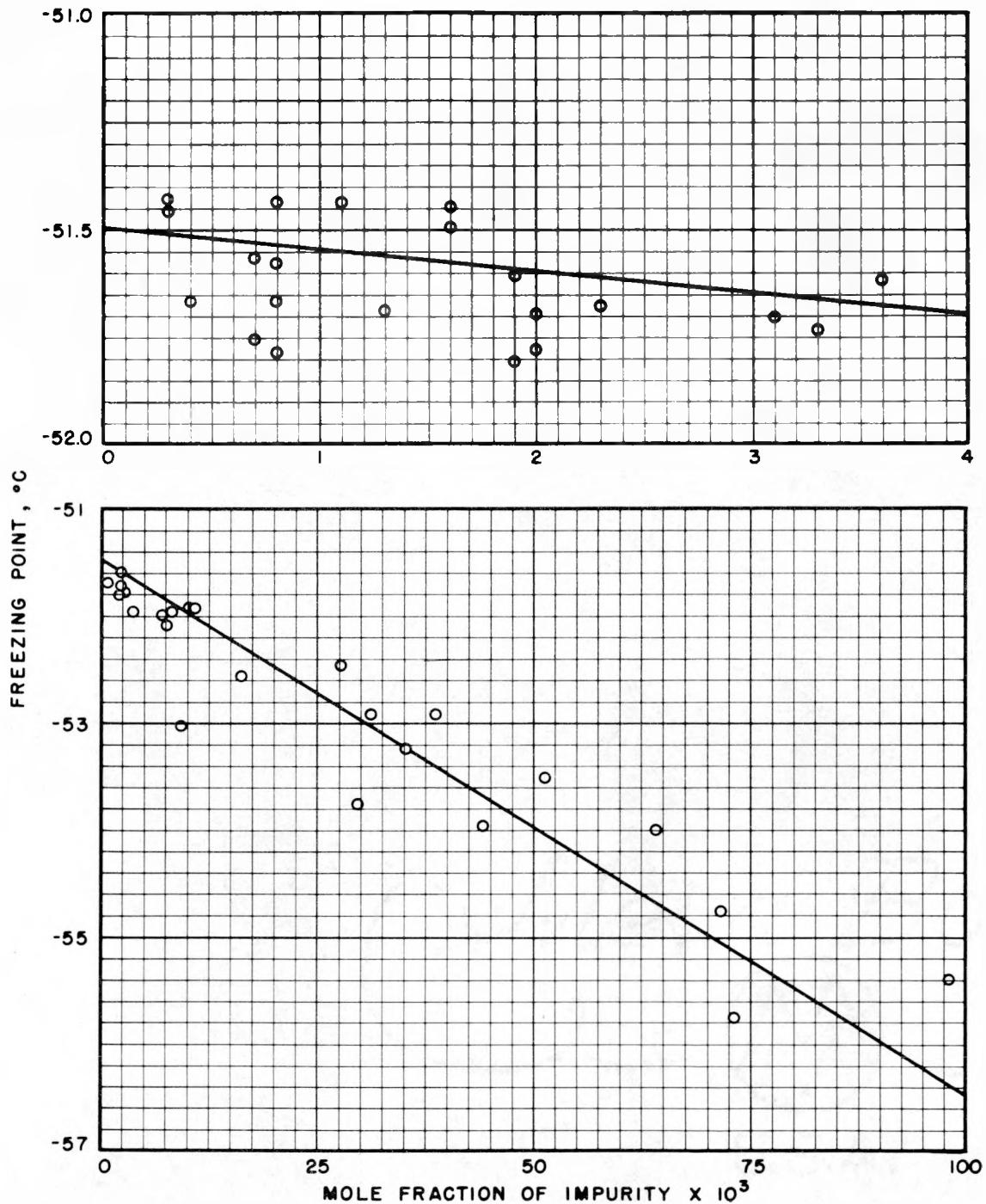
NOTEBOOK REFERENCES

<u>Number</u>	<u>Issued to</u>
1085	V. E. Anderson
1361	V. E. Anderson
1492	V. E. Anderson



HEXADECAFLUOROHEPTANE FREEZING CURVE

FIGURE 1


Ryder	VEA
LDC-B-1050	

10

TEMPERATURE DIFFERENCE DIVIDED BY TIME
AS A FUNCTION OF TEMPERATURE DIFFERENCE

FIGURE 2

IMPURITY AS A FUNCTION OF FREEZING POINT
ON SAMPLES OF HEXADECAFLUOROHEPTANE

FIGURE 3