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EEG and MEG Source Localization using Recursively Applied (RAP) MUSIC

John C. Mosher” and Richard M. Leahy™*
*Los Alamos National Laboratory, Group P-21 MS D454, Los Alamos, NM 87545
*Signal & Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564

Abstract

The multiple signal characterization (MUSIC) algorithm
locates multiple asynchronous dipolar sources from elec-
troencephalography (EEG) and magnetoencephalography
(MEG) data. A signal subspace is estimated from the data,
then the algorithm scans a single dipole model through a
three-dimensional head volume and computes projections
onto this subspace. To locate the sources, the user must
search the head volume for local peaks in the projection
metric. Here we describe a novel extension of this approach
which we refer to as RAP (Recursively APplied) MUSIC.
This new procedure automatically extracts the locations of
the sources through a recursive use of subspace projec-
tions, which uses the metric of principal correlations as a
multidimensional form of correlation analysis between the
model subspace and the data subspace. The dipolar orien-
tations, a form of “diverse polarization,” are easily
extracted using the associated principal vectors.

1. Introduction

The problem of localizing the sources of event related
scalp potentials (the electroencephalogram or EEG) and
magnetic fields (the magnetoencephalogram or MEG) can
be formulated in terms of finding a least squares fit of a set
of current dipoles to the observed data. Inverse methods
based on direct minimization of the squared error through
gradient-based optimization or simplex searches often lead
to improper locations of the sources due to trapping in local
minima. In an attempt to overcome this problem, we exam-
ined the use of signal subspace methods that are common
in the array signal processing literature (cf. [3]). The
method that we used, a variant on the MUSIC algorithm
introduced in [9], replaces the multiple dipole directed
search with a procedure in which a single dipole is scanned
through a grid confined to a three dimensional head or
source volume. At each point on this grid, the forward
model for a dipole at this location is projected against a sig-
nal subspace that has been computed from the EEG and/or
MEG (E/MEG) data. The locations on this grid where the

This work was supported in part by the National Institute of Men-
tal Health Grant R0O1-MH53213, by the National Eye Institute
Grant R01-EY08610-04, and by Los Alamos National Labora-
tory, operated by the University of California for the United States
Department of Energy under contract W-7405-ENG-36.

source model gives the best projection onto the signal sub-
space correspond to the dipole locations. We also show in
{7] that at each location we do not need to test all possible
dipole orientations, but instead can solve a generalized
eigenvalue problem whose solution gives us the orientation
of the dipole (the “diverse polarization” [1], [9]) which
gives the best fit to the signal space for a source at that loca-
tion.

One of the major problems with the MUSIC method,
and one that is addressed by the new approach described
here, is how we choose the locations which give the best
projection on to the signal subspace. In the absence of noise
and with perfect head and sensor models, the forward
model for a source at the correct location will project
entirely into the signal subspace. In practice, of course,
there are errors in the estimate of the signal subspace due to
noise, and errors in the forward model due to approxima-
tions in our models of the head and data acquisition system.

An additional problem is that we compute the metric
only at a finite set of grid points. The effect of these practi-
cal limitations is that the user is faced with the problem of
searching the gridded source volume for “peaks” and
deciding which of these peaks correspond to true locations.
It is important to note that a local peak in this metric does
not necessarily indicate the location of a source. Only when
the forward model projects entirely into the signal subspace
— or as close as one would expect given errors due to noise
and model mismatch — can we infer that a source is at that
location. The effect of this limitation is that some degree of
subjective interpretation of the MUSIC “scan” is required
to decide on the locations of the sources. This subjective
interpretation is clearly undesirable and can also lead to the
temptation to incorrectly view the MUSIC scan as an image
whose intensity is proportional to the probability of a
source being present at each location.

2. Background

Quasi-static approximations of Maxwell’s equations
govern the relationship between neural current sources and
the E/MEG data that they produce. The measurements can
be expressed as an explicit function of primary current
activity; the passive volume currents are implicitly embed-
ded in a “lead field” formula. The model should also
account for the sensor characteristics of the measurement
modality, such as gradiometer orientation and configura-
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tion in MEG or differential pairs in EEG. We show in [6]
that these effects can be incorporated into simple transfor-
mations that modify the basic lead field kernels. The result
is that our EEG or MEG measurement f () at sensor
location r may be expressed as

fu®) = [ 8@, ). j@ar’ )

where V is the volume of sources, j(r") represents the pri-
mary current density at any point " in the volume, and
g(r, r") is commonly known as the “lead field vector” (cf.
[12]). If we assume that the primary current exists only at a
discrete point r_, i.e., the primary current is
JaHho@ —r q), where 8@’ —r ) is the Dirac delta func-
tion, then (/) simplifies in E/M%G to f,(r) = gr,r) q
where ¢ is the moment of a current dipole at r pe

We assume here that our source consists of p current
dipole sources. We assume simultaneous recordings at m
sensors for n time instances. We can express the m X n
spatio-temporal data matrix as

F, =[G, ... G(r,)|Q"- 2)

We refer to the m X 3 matrix G(r qi) as the dipole “gain
matrix” (cf. [7]), that maps a dipole at r ; into a set of mea-
surements. The three columns of the gain matrix, G(r p PR
represents the possible forward fields that may be gener-
ated by the three orthogonal orientations of the ith dipole
at the m sensor locations {rys - rm} . The columns of @
represent the time series associated with each of the three
orthogonal components of each dipole, i.e., with each col-
umn of the gain matrix.

For the “fixed” dipole model, whose moment orientation
is time invariant, we can separate the orientation of each
source from the moments as [7]:

F, = |Gt .. Gt

U, 0 Sql(tl) sql(tn) 3)

0 u,, sqp(tl) sqp(tn)
such that g,(z) = u ) q[-(ti) , where #_; is a unit norm ori-
entation vector. We assume that the set of p dipoles is suf-
ficiently spatially separated such that their gain matrices
are unambiguous. The dipolar time series, however, may be
linearly dependent, such that the rank of time series matrix
is less than p . We therefore express (3) as

F, = A@p,0)S" o

where p={p,,...,p,} represents r clusters of dipoles,
with the ith cluster comprising p; synchronous dipoles
with the location parameter set p; = {’ql’ cees rqpi} . The
set O={u,,...,u,} contains the corresponding unit norm
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vectors found as the extension of (3) to p; dipoles. The i th
column of A(p, ) is therefore found as

atp, u)= G,y . Gr,,)|u; = Gy,

We refer to this column vector as a “ p; -dipolar topogra-
phy.” Each column of A(p, 8) is therefore a p;-dipolar
topography, with a corresponding time series found as the
ith column of §. By regrouping the parameters in this
manner, both A(p, ) and S are of full column rank and
equal to the rank of our noiseless data matrix F m-

3. Subspace Correlations

Under the assumptions of spatially white i.i.d. noise, we
may express the expected outer product of a noise contam-
inated matrix F = F, + N as

n
Rp=E{FF'} = AS"SA" + ¥ Em@t)n" (1)) (6)
i=1
= A +OTA DT %)
where Ap= A+ nclzvl is the X r diagonal matrix com-
bining both the model and noise eigenvalues, and
A,=noyl is the (m—r)x (m—r) diagonal matrix of
noise-only eigenvalues. Therefore an eigendecomposition
of Ry yields r eigenvalues greater than nc)y. The r
dimensional subspace spanned by @ is the same as the »
dimensional subspace spanned by the columns of A(p, 0).
We refer to this space as the signal subspace. The remain-
ing m—r vectors in @ span the orthogonal signal sub-
space, or noise-only subspace,

We may estimate @ from an appropriate eigenanalysis
of the data matrix. We can find the source parameters, and
hence the dipole locations, by comparing the column space
of the matrix A(p, 0) to this estimated signal subspace. We
use the metric of subspace correlations [2] to measure the
fit between these two subspaces. Since the signal subspace
is spanned both by the columns of A(p, 8) and the eigen-
vectors in @ 5 there must exist a full rank (7 X r) transfor-
mation matrix T relating the two spaces. The signal
subspace is estimated from the data, such that we only have
an approximation,

AP, OT = &;. ®)
One approach to source localization using (8) is the
weighted subspace fitting (WSF) method (cf. [3], [10], [13],

[14]) in which the parameters {p, 0, T} are found by min-
imizing the squared error

|&sw - acp, &)1] )

where W is a weighting matrix designed to improve the
estimator performance [14]. Here we propose an alterna-
tive procedure in which, rather than solving directly for the
parameter set {p, 8, T}, we instead examine the angles
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between the subspaces spanned by A(p, 0) and ®; using
subspace correlations.

The subspace correlation function subcorr{A, é)s} =
{51 59, ..., 5, } defined in the Appendix yields a set of r
ordered scalars 125, 2 ... 25, 20; additional details can
be found in [2], [5]. These scalars are equal to the cosines
of the principal angles between pairs of principal vectors
chosen from the two subspaces A and @, , where r is the
minimum of the ranks of the two subspaces. The set of r
principal vectors for each of the two subspaces are
orthonormal. The first pair of principal vectors are chosen
using one vector from each of the two subspaces so as to
minimize the angle between the two vectors. The second
pair are again chosen to minimize the angle between the
vectors from the two spaces, but under the constraint that
the second principal vector from A must be orthogonal to
the first principal vector from A , and similarly for the first
two principal vectors from ®,. The process is repeated
until a set of r pairs of principal vectors have been found,
along with the associated ordered correlations correspond-
ing to the cosines of the angles between each pair.

The computation of the subspace correlation between
the signal subspace @ and the matrix A(p, 6) provides
the fundamental basis for the RAP MUSIC algorithm. The
significance of the subspace correlation function is that if
one subspace is entirely contained within another, then the
cosines of all the principal angles will equal unity. Con-
versely, if the two spaces are orthogonal, the cosines of all
the principal angles will equal zero. For cases between
these extremes, the set of cosine values provide a measure
of the similarity between the two subspaces. The MUSIC
metric corresponds to computing a subspace correlation
between a single topography (the “manifold”) and the esti-
mated signal subspace.

The subspace correlations lead to a natural extension of
MUSIC. We can recursively build up our source estimate
by appending putative sources to the model matrix and
using the minimum of the subspace correlations as a metric
for adding a new source. We define the function
distance { A, fi)s} [2] as a function of the minimum sub-
space correlation,

distance{A, &} = /1 -s°. (10)

Assuming that the rank of A(p, 6) is less than or equal to
that of the signal subspace estimate @, the distance as
defined in (10) will approach zero as the column space of
A(p, 6) matches that of &, . Consequently we can deter-
mine the parameters {p, 0} of the sources that produced
the estimated signal subspace as the set that jointly mini-
mize the distance between our topographies matrix
A(p, ) and our estimated signal subspace b, .

For multiple dipoles, the key concept that makes sub-
space distance easier to use than least-squares fitting is that
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if A(p, ) is parallel to ®,, then so is each column (each
topography) Aof A(p,8). Since 5, =
min{ subcorr{A, ®;}} corresponds to the linear combi-
nation of the columns of A that minimizes the subspace
correlation between the two spaces, it follows that the i th
column of A, i.e., the i th independent topography, must
have a correlation greater than or equal to this minimum
subspace correlation,

subcorr{a(p,, uy), @s} 2 min subcorr{ A(p, 8), ®,}.(11)

In our model, each column of A represents an indepen-
dent topography, where each topography may comprise
multiple synchronous dipoles. For exemplary purposes, let
us assume that each topography represents a single current
dipole. Let us further assume that we have a perfect signal
subspace estimate @ o in which case the minimum sub-
space correlation will be unity for the true parameters
{p, 0} . From (11), each of the independent topographies
formed by each dipole must also have a correlation of unity
with the subspace. We can therefore find the dipole param-
eters by searching for the p dipole locations that each have
unity correlation.

Thus a search strategy for minimizing the distance
between the topographies matrix and the rank 7 signal sub-
space estimate is to search for a single dipole model whose
subspace correlation is maximized with respect to &, . We
should find » such dipole locations in our dipolar space,
each yielding a correlation value of unity. This search strat-
egy is the basis of the MUSIC algorithm that we described
in [7].

Before proceeding to a brief description of MUSIC and
RAP-MUSIC, we first address the problem of finding the
orientation vector ;. The dipole parameters are chosen to
maximize

subcorr{a(p; u), Cbs} (12)

However, u; simply represents a linear combination of the
columns of the gain matrix G(p,) . We can avoid searching
for the optimal orientation vector by noting that the maxi-
mum of the subspace correlation vector
subcorr{ G(p,), @s} gives us the best way of combining
the columns of G(p,) so that they are as close as possible
to the signal subspace. We can therefore find the optimal
orientation vector u; for each candidate location p; as that
which maximizes the subspace correlation at that location,
ie.

max{ subcorr{G(p,), ®;}} (13)

Therefore we can find the dipole locations by solving
(13) at each candidate dipole location, and then searching
for the true locations at which this maximum correlation
equals, or is sufficiently close to, unity. Once we find these
locations, we can then explicitly form the corresponding
best orientation (from the Appendix, set u; to “x;” and
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scale to unity norm), to determine the independerit topog-
raphy vector a(p; u,) .

4. RAP-MUSIC

In [7] we adapted a “diversely polarized” form of
Schmidt’s original multiple signal characterization
(MUSIC) algorithm ([1], [9]) to the problem of multiple
point dipoles. In terms of the subspace correlations dis-
cussed here, let 5; be the principal correlation,
max{ subcorr{G(r i)’ O, 1} . The MUSIC metric in [7] is
therefore 1 — 51s ef?ectively the square of the max correla-
tion of a dipole gain matrix with the noise-only subspace,
the original proposal by Schmidt. As we discussed in [7],
plotting the inverse of this measure makes graphical loca-
tion of the peaks easier; however, since that publication we
have found it more informative to plot the principal corre-
lation, since correlation is a direct measure of how well the
model fits the data

Problems with the use of MUSIC arise when there are
errors in the estimate of the signal subspace and the sub-
space correlation is computed at only a finite set of grid
points. The largest peak is usually easily located by search-
ing over the grid for the largest correlation; however, the
second and subsequent peaks must be located by means of
a three-dimensional “peak-picking” routine. While locat-
ing multiple peaks in a single parameter case (as is com-
mon in much of the MUSIC array signal processing
literature) is possible, we found the problem confounding

“in even the simplest case of single dipolar topographies,
where we must search for peaks in a three-dimensional
space. Graphically searching for multiple peaks in two-
dipolar topographies (a six-dimensional space) is generally
not practical.

The RAP-MUSIC methods overcomes this problem by
recursively building up the model. We assume that our
independent topographies each comprise one or more
dipoles. We search first for the single dipolar topographies,
then the two-dipolar topographies, and so forth. As we dis-
cover each topography model, we add it to our existing
model and continue the search. We build the source model
by recursively applying the subspace correlation measure,
the key metric of MUSIC, to successive subspace correla-
tions.

For exemplary purposes, we assume that the r indepen-
dent topographies each comprise a single dipole. Concep-
tually, RAP-MUSIC begins by finding the first dipole
location to maximize (13). Single dipole locations are
readily found by scanning the head volume. At each point
in the volume, we calculate

{5185, ...} = subcorr{G(r ), &) (14)

where {51 595 ...} 1s the set of subspace correlations. We
find the dipole location #,, which maximizes the primary
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correlation 5y, then refine this location using a directed
search algorithm. As discussed in the Appendix, the corre-
sponding dipole orientation #, is easily obtained from the
subcorr{G(fql), &} routine, and we designate our
topography model comprising this first dipole as

= a(f,;, &y). (15)

To search for the second dipole, we again search the
head volume; however, at each P&i}’t in the head, we first
form the model matrix M = [A" ', G(? q)] . We then cal-
culate

A(l)

{51,585 ...} = subcorr{M, &} (16)

but now we find the dipole point that maximizes the second
subspace correlation, $, ; the first subspace correlation
should already account for a(# g @) in the model. Again,
an unconstrained directed search may be used to refine this
second location, since the metric does not peak at the first
solution. The corresponding dipole orientation #, may be
readily obtained by projecting this second topography
against the subspace, subcorr{G(r"qz), &}, and we
append this to our model to form

= [a(f'ql, ay), a(ﬁqz, ay]. a7n

We repeat the process 7 times, maximizing the kth sub-
space correlation at the kth pass, k = 1, ..., 7. The final
iteration is effectively attempting to minimize the subspace
distance between the full r topographies matrix and the
signal subspace estimate.

If the r topographies comprise r; single-dipolar topog-
raphies and r, 2-dipolar topographies, then RAP-MUSIC
will first extract the 7 single dipolar models. Atthe r; + 1
iteration, we will find no single dipole location that corre-
lates well with the subspace. We then increase the number
of dipole elements per topography to two. We must now
search simultaneously for two dipole locations, such that

~(2
A()

A(r1) ~
{51895 -} = subcorr{[A ,G(p)], CDS} (18)

is maximized for the subspace correlation sr1 + 1+ where
p={r qrr " qz} comprises two dipoles. If the combinato-
rics are not impractical, we can exhaustively form all pairs
on our grid and compute maximum subspace correlations
for each pair. The alternative is to begin a two-dipole non-
linear search with random initialization points to maximize
this correlation. This low-order dipole model can be easily
performed using standard minimization methods.

We proceed in this manner to build the remaining r, 2-
dipolar topographies. As each pair of two dipoles is found
to maximize the appropriate subspace correlation, the cor-
responding pair of dipole orientations may be readily
obtained from subcorr{G(p), @s} , as described in the
Appendix. Extensions to more dipoles per independent
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Time index

Fig. 1: Simulated MEG data, for 229 sensors by 50
time slices. True sources are three asynchronous
fixed dipoles. Gaussian white noise was added
such that the squared Frobenius norm of the
noiseless data matrix was 3.16 times that of the
noise-only matrix, i.e. 10 dB SNR

topography are straightforward, although the complexity of
the search obviously increases. In any event, the complex-
ity of the search will always remain less than the least-
squares search required for finding all dipoles simulta-
neously.

Once we find the optimal {p, 01, we may find the
remaining linear temporal parameters as

s" = A'p.OF (19)
i.e., we use the pseudoinverse of A(p, 8), as discussed in
[7] and its references.

5. Example

We illustrate the ability of RAP-MUSIC to extract mul-
tiple correlation peaks using simulated MEG data for
dipoles in a spherical head; see [6], [7] for forward model
specifics. We arranged 229 radially-oriented sensors about
2 cm apart on the upper hemisphere of a 12 cm virtual
sphere. Each sensor was modeled as a first-order gradiom-
eter with a baseline separation of 5 cm. For exemplary pur-
poses, we arranged three sources in the same z-plane,
z = 7 cm. We fixed the orientation of each source and
assigned each an independent time series. We then added
white Gaussian i.i.d. noise on each sensor channel. The
noiseless and noisy data are displayed in Fig. 1.

An SVD of the noisy spatio-temporal data matrix
clearly showed the signal subspace to be rank three; how-
ever, to illustrate insensitivity to rank overselection, we
chose a signal subspace of rank five. We created a 1.5 mm
spaced grid in the correct z -plane and computed the three-
dimensional gain matrix G{r,,) for each location on the
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22 5 ~05 0 0.5 1 15

Fig. 2: MUSIC scan of dipolar models, imaging
the principal correlation between model and sig-
nal subspace. The arrows indicate the true loca-
tions. The noise and partial ambiguities of
dipolar models makes discerning each peak diffi-
cult. The maximum correlation was located in the
grid, then used to initiate a directed search for a
refined maximum of 99.1% correlation at the cor-
rect solution of [1.0,0.5,7.0] cm (rounded to
1 mm).

grid. We then computed the standard MUSIC metric (14) of
the correlations between each gain matrix and the rank five
signal subspace. As discussed in [5], our preference is to
view the maximum correlations {s{ } directly as an image;
however, for publication purposes here we resort %o the
conventional MUSIC display of plotting 1/(1~s7), as
displayed in Fig. 2. Note that in this figure there are three
peaks corresponding to the correct dipole locations and a
fourth peak which represents an incorrect location. This
fourth peak corresponds approximately to a dipole location
that would give a local minianum in a least squares search.
Since the intensity 1/(1 —s7) corresponding to this incor-
rect source location exceeds that of the third true source
location, a MUSIC scan which picks out the three largest
peaks would mislocate one of the dipoles. As we will see
below, RAP MUSIC avoids this problem. We located the
maximum correlation using a directed search and obtained
the dipolar orientation at this point to form the first spatial
topography (15). We then concatenated this topography
with each grid point and reran the subspace correlation of
the combined model (16). In Fig. 3 we see the MUSIC scan
of the second subspace correlation, and we observe that the
first source is now suppressed in the metric.

Since this first peak is suppressed, we readily perform
an unconstrained directed-search for the maximum of the
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I 0 05 1 15

Fig. 3: MUSIC scan of second principal correla-
tion, holding constant the first source from Fig. 2.
The MUSIC peak from the first source is sup-
pressed, and we readily performed a directed-
search for the maximum of this second correla-
tion, 99.1% at the correct solution of
[0.0,0.0,7.0].

second subspace correlation. With the second source
located, we again extracted its orientation and formed the
two source topography (7). We then repeated the correla-
tion analysis to yield the MUSIC image of the third sub-
space correlation, displayed in Fig. 4. Again, a directed-
search algorithm readily locates the peak of this metric.
The other smaller peak in this image is spurious; after fix-
ing the third source, a search for a fourth source yielded a
maximum correlation of 26% and the algorithm was prop-
erly terminated.

6. Conclusions

RAP-MUSIC is an extension of the MUSIC algorithm
for E/MEG source localization that overcomes some of the
problems encountered using the basic MUSIC method
described in [7]. Problems with the use of MUSIC arise
when there are errors in the estimate of the signal subspace
and the subspace correlation is computed at only a finite set
of grid points. Locating sources requires a three-dimen-
sional “peak-picking” routine. Suppose that an incorrect set
of locations are picked. While individually each of the
dipoles may have good correlations with the signal sub-
space, there is no guarantee that their combined source
model has a small distance from the signal subspace, since
we test only one dimension at a time. The RAP-MUSIC
methods overcomes this problem by recursively building
up the source estimate and comparing this full model to the
signal subspace. By modifying our definition of the source

2 s 4 -0.5 0 0.5 1 15

Fig. 4: MUSIC scan of third principal correlation,
holding constant the first two sources. The
MUSIC peaks from the first two sources are sup-
pressed, and we readily performed a directed-
search for the maximum of this third correlation,
99.1% at the correct solution of [-1.0,-1.0,7.0].

matrix we are also able to locate synchronous sources using
the RAP-MUSIC algorithm. In [5], we describe this new E/
MEG spatio-temporal model, which we refer to as spatially
independent topographies (SPITs), that allows direct appli-
cation of RAP-MUSIC to fixed, “rotating” and synchro-
nous dipolar sources.

By maximizing each successive subspace correlation,
the RAP-MUSIC approach solves the multiple peak search
problem, since each peak corresponds to a separate corre-
lation value. We also solved a second, more subtle issue
regarding this search. In a subsequent review of the signal
processing literature for similar approaches, we found two
comparable MUSIC algorithms, S-MUSIC [8] and IES-
MUSIC [11], with the latter introduced as an extension of
the former. These “successive” MUSIC algorithms were
detailed for two single-parameter independent sources. The
possibility of extending the successive approach to more
sources in a manner similar to RAP-MUSIC is mentioned,
but specifically not pursued ({11], Remark 2). Both meth-
ods, however, implement the successive search in a projec-
tion matrix approach different from the subspace
correlations approach of RAP-MUSIC. As pointed out in
[11], both techniques require that the search for the second
source algorithmically avoid the first location. By recur-
sively shifting to the next subspace correlation, the RAP-
MUSIC algorithm bypasses this problem of previous solu-
tion points and simply maximizes each subsequent correla-
tion.
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Appendix: Subspace Correlation

Given two matrices, A and B, where A is m X p, and
B is m % g, let r be the minimum of the ranks of the two
matrices. The steps to compute the subspace correlations
are as follows [2] (p. 585),

1. Perform a singular value]z~ decomposition (SVD) of A,
such that A = U,X,V, . Similarly decompose B.
Retain only those components that correspond to non-
zero singular values.

2. Form C = UiUB. Compute the singular value
decomposition, C = U XV . Form the sets princi-
palvectors U, = U U, and Uy = UpV - forsets A
and B respectively.

The matrices U, and U, are each orthogonal, and the
columns comprise the ordered set of principal vectors for
matrices A and B respectively. The » ordered singular
values 1 25, 2... 25,20 are extracted from the diagonal
of .. The angles cos®, = s, are the principal angles,
representing the geometric angle between the principle
vectors, or analogously, s, is the correlation between these
two vectors. If both matri re of the same subspace
dimension, the measure ,/1 -5, = sin@, is called the dis-
tance between spaces A and B [2].

We may also readily compute the specific linear combi-
nations of A and B that yielded these principal vectors and
angles. By construction, we know that AX = U for some
X,and X is sunply found as using the pseudomverse of A:
X=Vv, z, A U ¢ - Similarly, we compute ¥ = V ZB Ve

In E/MEG MUSIC processing, we may compute the
subspace correlations between a dipole model and the sig-
nal subspace, e.g., subcorr{ G(r ), @} . In this case, the
orientations in X represent the dlpole onentatlons By scal-
ing the first orientation to unity, u; =x,/ "x1|| , we obtain
the unit dipole orientation that best correlates the dipolar
source at r, with the signal subspace. For a two-dipolar
topography, subcorr{[G(r s G(rqz)] @}, then u, rep-
re}sﬂents tl%we cc%ncatenatlon of the two dlpole orientations,
u, = [q],4,], such that the two-dipolar topography

[Grg), Glrg)luy = Gry)q, +Gryr)q, (20
best correlates with the signal subspace. See [4], [5] for fur-

ther discussions on subspace correlations and examples of
applying them to the problem of E/MEG head modeling.
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