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, Magnetic . . ~nteract lons  , on . the Basis . of . a ~ 6 d i f  led shel l  . . . . - : - 

-._ ; . . 
: , ~ o d e l  of Complex ~ u c l e i  . , . . ,, . 

Uhder the Supervision of Professor ~ o b e r t  (3. ~ a c h s  
. . . .  , 

, . .  

The independent particle shel l  model ' of M.: . Q. . . . , 'Mayer 

and Axel, Jensen and Suess does not;..glve . .  c&antitativ& .. agree- 

ment wi th  the measured ' s ta t ic  magnetic moments . . of most odd- 
. :  

even complex nuclei,. Furthermore, the mddel . . .  . : cpal i t  a -  . - 
. . 

tive disagreement with certain measured, magnetic 'dipole . ' 

, (MI) i s ~ m e r i c  transitions. Recent attempts to  obtain . , . . 
1 .  

bet te r  agreement with t h i s  magnetlo interaction data by the 

use  of exchange moments, 1. e .'-meson . effects,. . ,  has . . proved only 

moderately . . 'successful.  heref fore, an attempt has been . . made . 

to m d d i ~  . . . the . usual shell  model' by, &onsidering more bornill - : 
cated ,wave functions. . .. 

. . 
. , . , 

: . 
Specif ically, the ground . ,. s ta te  . . wave ,function I ,of odd- 

even. nuclei i s  assumed to  be. an admixture of s tates f a i r ly  . ~ 

i iosely related t o .  the she11 modei state.  ' These states' ' 

'share the' to ta l  + , angular momentum of the nucleus among three 

' .  particles, i n  & prescr$bed manner, a s  compared. t o  the shell  
, ,. . .  . 
model s ta te  in' which one' particle . . has t h e ,  to ta l  angular I mo y ,  , . 

. '  
mentum of the nucleus. , . ~ R O  of the pa~ticlea,sharing.  . . ,  the' . '  . :  

'ahgul~r'riomentum are in' equ&alent . s ta tes  . and . a r e  coupled t o  ' 

an angular momentum of; two, and are in  turn coupled to-  a 



. .. . " 

. . . . .  
2 

I ' 

third particle so as to give the correct. angular. momentum 

and .parity of the nuclear wave function. In the Mayer- 
. . . . 

Jensen .shell  model the two particles i n  equivalent s tates 
. . 

eye assumed to have zero angular momentum.  his particular 

coupling scheme is suggested by the observed angular momen- 

tum and parity of most of the first excited states of even- 

even nuclei. 

The possible admlxed states are assumed to  be determined 

by the l a s t  f i l l e d  shells for  protons and neutrons In the 

odd-even nucleus, and these states are assumed to occur wi th  

equal probability in  the nuclear wave function. However, the 

. a contribution of s tates i.n which the two particles in  equiva- 

. l en t  s tates are of the even type. in .  the. odd-even. nucleus $a 

i limited by a r e s t r i c t i o n o n  the coupling to  t h e  third odd 
. .  . 

particle.' This ,  l i p i t a t i o n  on the ,.;harp& of. the t o t a l  angu- 
, . . . , . a .  . . 

lar momentum 'with .the even particles ;is, suggest&d', by: the ,  
. . , . . . .  . . . - experimentally . . observed , ,  . near . equaiity . .. 'of, t h e  mag&tio, . . . .  mometit 

* I  . .: I 

' deviations of . odd . proton :and:odd: . . neutron, , .  . nucleiwith  the . . 
' .. , . . . .  . 

, same number: of odd. 'paitici1e.s .. . ( ., t& : number'. , .  bf . . .perticies 
<. . 3 .  . 

: is different . fop , ..thi.- . .  nuciei j';  hi I modif led +hell  
. . ' 

model represents a .  synthesis of the''usual independent' bar'-' 
. .  . . . , I . . .  I 

t .  

I .  . . 
title , shell  model * and the s t a t i s  t i c a l  , . .  model '. of :Margenau. and'. . . 

Magnetic moments are . . calculated. f o r  the simple : three 
. . .  . . 

. , particle wave functions fbr a l l  , possible couplings. : These 
. . , , . . 

values' are then used to' obtain t h e  magnetic, moments . . of a l l  

measured odd-even nuclei .  In the caiculiti.oti a l l  interfer- . 



. . 

' ence effects a r e  neglected. The magnetic, moments obtained : 

i n  t h i s  manner., represent, a considerable improvement in, , ' . , 

. .  . 

f i t t i n g  the data as compared to  the magnetic moments . cal -  . 
. . 

culated on the basis ,of , the Mayer-Jensen she l l  model. 

Several magnetic dipole ( M l )  isomeric trans i t ions -have 

'been observed which should be fol-bldden aceording to,  the' 

c l a s s~ f l ca t ion  of the nuclear s ta tes  obtained fromthe Mayer- 

Jensen she l l  model, prov'ided the ordinary magnetic moment, 

operator is assumed to  be respons,ible for  the t ransi t ion 

(the transit ion matrix' element is zero because of a selec-.  

t ion rule on the orbi ta l  angular momentum). The , transit ions 

are no longer forbidden i f  the nuclear wave f'unctions are . , 

described by the modif led :shel l  model. The trans i t ion  .,matrix 

elements are calculated fo r  the f ive observed transit ions and , 

they are found t o  be of the keme 'order of magnltud6 as  ' the.  

experimentally observed transi t ion matrix elements, wi th  very, 

good agreement in, three transitions. . 
. - 

. . 
The improved agreement .w i th  ' magnetic . , interac t ion data ' 

obtained by use of the modified shel l  model, indicates .that 
. . . :  

the Mayer-Jensen she l l  modex gives an inadequate .description . 
, . 

of the nuclear ground s t a t e  wave functions." The modified she l l  
, . . . 

model may'iepreseit a ,  cdnsiderable . . improvement . . i n  describing : 
the nuclear wave . functions,' . but it must be emphasized tha t  

: - 

' both interference e f f ec t s  and exchange ef fec ts .  . . have beea ' 
I ,  

~. . . 
' 

neglected i n  the analysis of the date.' . .. , .  
I .  ' 4  . . 
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' 

: ', ,: One o k  t h e  most"ac~curately measured properties of, a s  : .  
- .  . . : 

. ,  . , . .  ' . . 

. '  nucleus i s  the magne t i c  moment.. ' Because of &his  and' the - : :.. . ' '  

. . 
s .  

. . 
re la t ive ly  s imple .nature of the magnetic moment operator, 

. . 
, , it is especially interest ing to'. t r y  t o  in te rpre t  the ob-,:. ,., 

, 

served' vaiues theoretically..  The aim of 'such a theoret ical  . . 
' 

study would be t o  learn more about the nature of the wave. ~ ' , 
( 8 .  . . 

functLons of complex nuclei and from a knowledge*,of .theqe . . .  ,.. , , 

. . 
wave functions t o  increase our understanding o f  t h e  nuclear , 

fo ' rce  probiem. . . ~ . . . 
Unfortunately the 'basic s impl ic i ty  of the theory, is , * . . .  , 

, , . . 
I . 3  . . 

marred by various complications, ' f o r  example, , I.( 'relativistic . 
. . 

1 ' . .  . , .,' ~ , i-. ef fec ts  and exchange e f fec t s  .' These. effects.'modif'y # .  , the form' 
. * ~ of the magnetic moment operator i n  an ,ambiguous -'manner. '. 

I - 
, I 

. * ~ " 

r ~ h u s  the magnetic moment data cannot be expected' to give unr ' ., 

amblguous information concerning the nuclear wave f unc t Sons. 

However, cer ta in  features of the odd-even . (-odds . .  , Z kven N, or 
. , . . 

even Z odd N )  nuclear magnetic mo,ment* appear' toc 'depend 
. . t 

primarily on the nuclear wave functions' rather.  than any , , 

modification of the magnetic moment operator. :These fea-, 

lures' of: the magnetic moments ;and t h e i r  re la t ion,  t o  the nu- 

, c lear  wave functions w i l l  const i tute  the main topic of t h i s  

thesis .  

I n  order t o  make a theoret ical  calculation of the magi 
: .  

netFc moments ' of complex nuclei  it is necessary t o  use some 



., . 
specif ic  model of the nucleus. Ttle s ta r t ing .  point of : t h i s  . .. ' 

study + .  w i l l  be t h e  independent p a r t i c l e  ghell  ,model 8s sug- . . , .- 
. . 2 -  . 

' g6s tkd by ~ o e p p e r t  -Mayerl and . - by Haxel, ~ e n s e ~ , .  and- Suess . 
I This model has -had great success i n  accounting f o r  the- ' . 

I I 1  magic'! numbers '2, 8, 20, 50, 82, and $6 asr  well as  success - 
f u l l y  assigning the correct  spin to  the ground s t a t e  of odd- 

even complex nuclei. An essent ia l  feature of the model Is a 

specif ic  assibmment of the pari ty of the ground s t a t e ,  as . 

well as the spin. 

However, the model does more than just assign a given 

spin t o  the ground s t a t e .  The rnodel, s p e ~ i f i c a l l y  assigns 

t h i s  spin t o  only one nucleon of the odd numbered nucieons 

in  the odd-even nucleus. A l l  other nucleons are  assumed t o  

couple t o  zero angular momentum. In  i t s  simplest form the 
I 

model implies tha t  any two Identical  par t ic les  i n  the same 

s t a t e  of angular momentum j 'knd o rb i t a l  angular momentum 1 
-. couple t o  a t o t a l  angular momentum j' = 0, 

A calculation of the magnetic moment is very simple for  
C 

the typo of coupling j u s t  described. The magnetic moment of 

the nucleus i n  t h i s  case i s  just the magnetic moment of ,a  . 

single par t ic le  w i t h  t o t a l  angular momentum and orbi ta l .  . . . 
angular momentum equal t o  tha t  of the complex nucleus. For 

a given. o rb i t a l  angular momentum. L, the t o t a l  angular momen- 

 fap plot is made of tum J can assume the values J = L 2 2. 

-..I 1 

M. Goeppert-Mayer, Phys. Rev. 28, 16 (1950). 

2 ~ a x e l ,  Jensen, and Suess, Z .  f .  P h p e  m, 295 (1950) 



7 ,: . 3 
the calculated. magnetic moment of a proton. or of a neutron ' , 

fo r ,  various values o f  J, two l i n e s  are, obtained f o r  each 

type of par t ic le ,  one l i n e  f o r  J = L . + . $ and the other' l ine. .  , 

- for  J = L - $. These l ines  are  usually' re fer red  t o  a s  the. 
. . . . 

Schmidt l ines .  These plots, shown i n  Fig. 1 andFig.  2, 

a r e  only meaningful f o r  half integer values of J. 

I f  the s h e l l  model were. s t r i c t l y  valid,  the 'magnetic. 

moments' of a l l  odd-even nuclei would f a l l  on the appropriate 

Schmidt l ines .  A plot  . of . the data, Fig. 1 and Fig: 2, shows 

t h a t '  such cases a re  cer ta inly rare, although most of the 

eoints l i e  decidedly c loser  t o  one or  the other of the Schmidt 
I " ' 

l ines .  It is.  especially in t e res t ing  t o  note t h a t  with t h e  ex-' 

cU, Ill5 and O S ' ~ ~ ,  a31 the  , , ception of f ive  nuclei, H ~ ,  He , 9 

points f a l l .  between .the two Schmidt l ines ,  and . , that .  three of 

t h e  exceptions,, C 
, . 

189 have J : L - f 5 5 and ' '  , N ~ ~ , .  and 0s , , 
have.'only minute deviations from, the appropriate, Schmidt ' ' 

line:. The deviation ,of the two 'quite pronounced ' exceptions, : ' 
. ,  , 

' 3  3 .  H ; and:He , outside of . t h e ~ r  . .  appropriate Schmidt line', is .be-' 
< 3 

I .  9% . , 

l i e v e d  t o  . b e  . . due. . primari ly  t o  exchange moments . . , 

. . . ,  . . . 7 

. . . . . . 
. .,' ~t f irs t '  sight.  . the . magnet.ic',moment .data ..appears9 .tq',,:con- 

. . . . , . , . \ .  . *  , 
, .. 

f 1- ;.the ~ a l i d i t y . ~  of.' the independent, par t ic le .  s h e l l  . . ., model. . 

However,-. an' en t i re ly  * ,  d i f f e r e n t  . . . .. hodel 'of :the: nucleus,, . . . the.,J 
. . .  

~ a i . ~ 6 n a u = W i ~ n + ~ ~  . . 
. . i n  which: , . . , the "angular. . .. a ,  mornenturn L . .  s i s  . & _  

. , 
. .  . . . 

. .  . 
. "3~ . i  ~ l i l a r s  . ~ h y s .  Rev'.',: 2, 

;';Act8'&.476(1947); R.G. Sachs, 
R,'Ave,ry . . and R;,O. Sachs,  Phys.Rev. . , 







dra 
. . 

/ . 4, 

shared among a l l  the p a r t i c l e s  of t h e  nucleus, give? almost 
. . 

I -  , '  

as  good a descr ip t ion-  of the' magnetic moment data.  Thus 

rekat lvely  small deviations of the magnetic moments. from 

the Sct-nmidt 1-ines may indicate  wave functions which a r e  r ad i -  

I ca l ly '  d i f f e r en t  from the s h e l l  .model. wave functions. 

On the other  hand the wave functions may be adequately 

described by the s h e l l  model, and a s  indicated .before, the 

deviat ion would then be due t o  modified magnetic moment 

I * 
operators caused by exchange e f f ec t s ,  i .e .  . the e f f e c t s  of 

I meson currents  i n  the nucleus. This has been the  point of 
5 view adopted i n  severa l  Invest igat ions . M. Ross considered 

t h e  question of magnetic moment deviat ions i n  g rea t  d e t a i l  

. . with spec ia l  emphasis on those exchange moments ' which a r e  
. - .  
i capable of explaining the H 3 - He ,3 magnetic moment anomalies. 

t -  The theo re t i ca l  magne t i c  moment 'deviat ions calculated on the 

I - 
basis  of these exchange momerit operators  were found t o  be 

I small compared t o  the experimentally obsemred deviations, 

and the calculated deviat ions were a l l  found t o  have the  i n -  

correct .  s i g n  (deviations outside the  Schmidt l i n e s ) .  Rpss  

f i n a l l y  concluded tha t ,  although m~gne t i c  moment deviat ions 

due . to  exchange e f f e c t s  may e x i s t  i n  comqlex ,nuciei ,  these 
. . 

deviat ions a r e  masked by much more important deviat iona.due 

t o  'd is tor t ions  of the  nuclear wave function away from the 

pure s h e l l  model wave function.,' ! 
I 

I 
I . . 
! 5 ~ .  Miyazawa, Prog. ~ h e o r e t ,  Phys. 6, 263 (1951);. 
I A. De Shal i t ,  Helv.  Phys. Acta a . 2 9 6  ( i951);  F. Bloch, 

Phys. Rev. 82,. 839 1951); A .  Russek andL .  3 ruch, Phys.' 
Rev. .m, 1111 (1952 ; Marc Ross, Phys . Rev. &, 939 (1952) 



1t:may be argued,that  the exchange magnetic m0men.t 

operatops i n  complex nuclei a r e .  quite d i f fe rent  from those 
3 needed t o  explaln the  H~ - H e  magnetic moment anomalies. , . 

However, i f  the operators a r e '  assumed . . t o  be two body opera- . . 

t o r s  (corresponding t o  the assumption of two body forces 

among nucleons), then' it has been > .  demonstrated. by Ross tha t  

the exchange magnetic moment operator? must b e  of  t h e  same 

form a s  those considered ~ p r e v i o u ~ l Y  t o  explain t h e  ' H ~  -, He 3 
. . . . 

. . . . 
magnetic moment deviations.  Thus s imple two body exchange mag- 

. . . . 

ne t i c  moment operators  seem incapable of ,  &plainin& the data. 
. . . . . . 

It is . . possible tha t  t h e  exchange ma&tic'. .. 
. . moment' opera - 

. . 

t o r s ,  a re  many body operators , . .  ' r a t h e r  than : s i m p l i  . .  - t w o  . ! , .  . body , ' 

operators. ' However, man? body operatorb would. be expected 
. . . . . . 

t o  produce magnetic moment deviation~.':which . vary , only ,' 

. . I .  

s l igh t ly :  from nucleus. t d  . nucieuk:, ! .  . . e s ~ e c i e l l y : .  . in. . heavier, L 

.. . . . .  . 

nuclei. While the observed. , . d e v l a t i b . 4 a o ~  t h e  heavier  nuolei 
2 .. - .  

seem t o  indicate some regulari ty,  the: f luctuations , . of the mag- 

net& moment deviations from nucleus : t o  nucleus, 0,s pekially' i n  

those odd-even nuclei .with 41 t o  65 odd nucleons, seem much 
, .  . . P. 

. too to  b e  conkis t e n t  w i t h :  t h i s  :sor t  .,of explanation of 
. . , . 

, . 
the magnetic moment deviat  ions ; . .  . . I / 

I _: 
. " \  . .~ 

These arguments .against . . many body operators. 
. . .  , .  i ! .  . . .  

a r e  reinforced',by consideration o f  cer ta in  . i s ~ m e r i c  m&netic 
f .  

. . 

6,7 . " dipole t ransi t ions  . These par t icular  t r a n s i t i o n s a r e  
. . . 

1 .  . 

, ,  forbidden on the basis o? s h e l l  model wave ' funetlonb: and the  ' 
. s 

'R. (3.' Sachs and M. Ross, phys. Rev. 8k, 379, (1951); 
Marc ROSS, ~ h y s  8 ~ e v  , @., , 9 3 5  (1951) 

, . . . , .  . 

7 ~ . ,  L. Oraham and: R; E. Bell, Can. ~ . 6 f  Phys ., % 377 
. 8 

,,- (1953)*: ' , , . 



, .  

. . 
' 6 

. . .=. . , . . 

ordinary. magnetic moment. operator. . A typical  - isomeric' t rans - 
i t i o n  'of this type is found i n  ~ e ~ ~ ~ '  (or  Te I'~.) where . . the  

. exci ted  s t a t e  (according to. the s h e l l  modei) is believed t o  

be. a d 3/2 s t a t e  and the ground s t a t e  is (a l so  according t o  

.the s h e l l  model) an s 1/2 s t a t e .  This.  t r ans i t ion .  has angu- ' 

. . 

l a r  monientum changes of h L = -2 and A J = .-I, where L 

indicates  the change of o r b i t a l  angular momentum and J 

Indicates t h e  change of t o t a l  angular momentum. .  he' -ordin-. , 

ary ,  magnetic dipole operator only .connects, s t a t e s  In  which 
. . 
. . 

, A L  t 0. . . 
. . 

. . ,. The .exchange magnetic dbpole 'operators do not have 
. . 

t h i s  l imita t iod on L and the occurrence o f  t h e  ''forbidden1' 
' < . ,  . , . 

' [ s u ~  jedt t o  . . G . the: purity of the ~~states,)'~~.transitio~ can b e  
* explained by the,  presence of t h e s e  6per&to~s' i n  the .  t o t a l  

. . 
. . .  , , 

. < . , 

magnetic moment operator.' ~ o s s  used t h e  same .operatois, , .  . .  , .  as  ' 
' ; . ,  ' . < : 

, . .( i n  h i s  magnetic . moment . ' deviat ion 'calculations ' bnd:':he found ' ' :  

t ha t  the measured l i fe t imes  of the forbidden . , t ransit ions:  are  
, , .  . . 

. .  ' . . , .. . . 
$ .  . ' 

consistent  with . the exchange moment operators needed. t b  ' 'I,. - . 
, . .. . 

3 _ . .  ' .  
bocount f o r  the H~ - He magnetic;moment . .  anomaiies. . . ? :  I. ' .. .: 

, 
. . .  . . 

. . . , . .  . . :. . . . I .. 
. . ~hese:~results; : a t  f i r s  t, 'seek ;.to conf i r k  :th&'ex'istbnce .. . . 

' ' 

,' ' 
of. exchange moments i n  complex n u c l e i .  However, ' 'forbidden" . 

, : , .. . .. 

t ransi t ions  o f .  the above type can a l so  'occur if : ' the ,  wave ' ,, 

. . . *  

functions of ' the two ievels  a r e  not pure she l l a  model fuhc - . ' .  

' , " 

t ions  but a re  a s u i t i b l e  admixture of s t a t e s .  '. . ' r - ~ u c h  a&. possi-. 
. ,, . .  , .  

b i l i t y  i s  especially in te res t ing  since* the nuclei  ,'concorned . ,. 
. . . . . . 

i n  these .forbidden t ransi t ions  have considerable magnetic . .  ' 
% .  

moment deviations. ' ~ o t h  the magnetic moment deviations and 



the forbidden t ransi t ions  may be expla'nablo i n  terms of a 

sut table  admixture of s t a t e s  ra ther  than any exo,hange mag- 

ne t ic  moment operator. This P s  the point of view taken i n  

this thes is .  so  forbidden transi t ions  w i l l  be stu,died 1.n '.' 

conjunction w i t h  the magnetic ,moment deviations. 

The r e s u l L ~  of' the exohsnge magnettc moment analysis 

of the forbidden magnetic moment t ransi t ions  a re  s t i l l  of 

considerable in te res t .  Although it is not possible ' t o  e s -  

tab l i sh  the absolute existence of the exchange magnetic 

moment operators on the basis of the forbidden transit ions,  

interaction ef f eo ts ( including many body operators ) capable 

,- o f '  explaining the magnetic moment deviations do .appear t o  , 

be excluded since these would be expected to,produce shorter  . - 
I l i fet imes than measured. Thus the forbidden transit ions,  may , ' . . 

be used t o  set an.upper bound on the contribution of exchange 
t 

8 9 eff&c.ts i n  heavier nuclet  . , . . .  . 

The question, of.  the nature of the nuclear wave . functions 

is seen t o  be one of the primary importance i n  -dealin&:wlthc 

. . . . 

8 ~ h i s  statement i s  only par t ia l ly  t rue since .onlJi two',of 
four possible exchange interactions considered by'Roqs give 
any sfgnif icant .  contribution t o  the t rans i t ion  probabi l i t ies ,  

. - Thus an upper bound is  not ' .especially meaningful f o r  the . . . . 

other ; two exchange interactions,  which could increase s ignl -  . , 

f lcant ly  i n  heavy nuclei. without any contradictlon . t o  the ': 
- .  above analysis.  . , 

''The . pkev-ious discuss ion indicates the ra ther  tenuous '' 
nature of . the evidence f o r  the existence of exchange, effects ,  .. 

i n  complex nuclei, although there is every reaeon. t o  belteve',  .'. 

, . t h a t  hese  xchange e f fec t s  do e x i s t  on the basts of both , . 4 -  3 the H He magnetic moment anomalies and meson theory, 
Any fur ther  t e s t  f o r  the existence' of exchange ef fec ts  i n  
complex nuclei would be very .valuable. Such a t e s t ,  could 
.possibly be offered' by an. appropriate analysis of angular .' 

corre&ation data, . 
. . 



magnetic dipole moment data. T h i s  t t iesis  ' w i l l  disregard a l l  
~ 
I 

.exchange ef fec ts  and concentrate on the study of s t a t i c  
I 

.magnetic moment deviations i n  re la t ion  t o  the.nuclear.wave 

functions. The independent par t ic le  s h e l l  model of  ense en' 
and Mayer is taken as a s t a r t ing  point. However, as  pre- . '  

viously mentioned, a small deviation of the magnetic moment 

from the Schmidt limits may indicate a nuclear 'wave function 

which' d i f f e r s '  considerably from tha t  prescribed by the s h e l l  

model. 

. I n  order t o  t r e a t  the problem of magnetic moment devis- 

t ions systematically, it is necessary. t o  consider a system- 

a t i c  modification of the nuclear wave functions. ~ecauke  

of the. nature of the 'ordinary magnetic moment operator,, It 

is only necessary t o  consider. the angular part  of the wave 

functions i n  a l l  t ha t  follows. 

-The arrangement of levels  i n  the s h e l l  model i n  .terms 

of a s i n g l e  par t ic le  wave funct.ion can b e  . . considered v a l i d  

as f a r  a s  the symmetry properties of the nucleus a re  con- 

. cerned. , Any modif icat ion of  the s h e l l  model wave function 

must be consistent w i t h  the symmetry properties of tha t  

fiunction. Only wave functions w i t h  the same.tota1 angular 

momentum and pari ty can be admixed t o  form t h e  nuclear- ,, 

s t a t e .  However, it is en t i re ly  possible t h a t  the amplitude 

of the, s h e l l  ,model s t a t e  i s  quite small i n  the  admixture of 

a t a t e s  which presumab3y const i tute  the nuclear wave function, 

A d m p l e  modification of the Mayer-Jensen s h e l l  model 

s t a t e  is obtained by d is t r ibut ing  the angular momentum among, 



three. particles instead 'of' concentrating it 6n"one. ' It i s  
. . 

generally as~sumed in '  the shel l  model that  two identical, 

par t i i les  w i t h  the same j  and- i couple to gi&'.angular mo-, 
'. 

mentum jt = 0. . This  coupling rule seems to  be verif  led by . . . , . . 

the fac t  that  a l l  ,even-even nuclei appear' to have to t a l  

angular . mo,mentum . J = 0. '''while the she l l  model prekoription' 

for  coupling i s  very a t t rac t ive  in i ts  s i m ~ l i c l t y ,  : there is 

no reason to believe that  the addition of another particle 

t o  an even-even nucleus.wil1 not rearrange the coupling i n  
. . .  

a more complicated fashion. 
f' 

. . 
' ' .Any recoupling' would require the rea,rrangement of a t .  
I . .  . 

l e a s t  two, particles in  the even-even core of the odd-even 
: ! 

nucleus. .Thus a simple modification of the she l l  model 
. . 

scheme would be t o  uncouple two identical :particles' which ' , 

. . . . .  
3 ,  

had . . 
'been, coupled to .give jt '; 0, and r e c o u p l ~ t h e m  tosome 

. . . . 
9 .  

, . 

Gtigular .'momentum j  f 0, without changing the j and. 1. values ,, 
. . . . . . . . .  

of the. nucleons.  heb be two particles would ,'then 'have t o  b e  .. 
a .. 

;coupledto  the 's ingle pa.rticle.of the shel l  model, i.e. the 
. . . . . .  . 

angular momentum j would have t o  be coupled t o  the "angular 
" . ' I  .. . ., . 

. .  . 

momentum J of the single part.icle so .as t o  give .the samcee 
. . 

angular' momentum J for  .the 'complex nucleus. ,Th is  ' modifi - 
c t i t i o d  of t h e s h e l l  model coupling scheme would of necessity" , 

. . 

have. the same parity,  as the original s tate .  , , 

In .'a j - j representation the Pauli principle allows two ' , 

. . identical  particles in  the same j and, 3 s ta tes  to  'couple , '  ' .  . '  
. , 

. '  into only even. t o t a l  angular momentum, i.e. j1 : 0, 2, 4, etc.  

A reasonable modification. of 'the she l l  model is,  to  consider. 



1 s t a t e s  where twd 'identical par t ic les  are  recoupled t o  give,  
I * 

I an angular momentum jt = 2. This  choice seems to ,  be j u s t i -  . 

f i e d  on the basis of t h e  experimental f a c t  tha t  the 'first . 

excited s t a t e s  of even-even n u c l e i  nearly always have t o t a l  
I 10 ' angular momentum J = 2 and positive pari ty . . 

The modification of the she l l  model s t a tu  which is used 

. in t h i s  thesis  i s  more general than tha t  just described, a l -  

though the basic features a r e  the same. A s  before, "the 

angular.momentum of the nucleus Ls shared among three par- 

t i c l e s ,  of which two a re  ident ical  par t ic les  coupied t o '  

5 1  : 2 (both par t ic les  having ' the same j and I). . However, 

. ,  t h e  th i rd  par t ic le  is no longer ' res t r ic ted  t o  the t o t a l  ,, 

angular momentum J and o rb i t a l  angular momentum L o f . t h e  
, * 

s h e l l  model s t a t e .  The th i rd  par t ic le ,  which now has t o t a l  
I angular momentum j" . and o r b i t a l  angular momentum f ", is 

. 'coupledwith j1 . : . 2 t o  give a t o t a l a n g u l a r  momentum .J ( the  ' 

, same J as  fo r  the s h e l l  model s t a t e )  f o r  t he  three par t ic le  

. sgstdm. Wave functions of ' t h i s  type w i l l  b e  used to  calcu- 

l a t e  magnetic moments 'and these calculated moments w i l l  be 

compared w i t h  the observed deviations from the Schmidt l i n e s  
11 

of the magnetic moments of odd-even nuclei  , 
- - The.rtctua1 wave function of the nucleus w i l l  be assumed 

10 Gertrude ~ c h a r f  f -~oldhaber,  Phys . ~ e v .  587 (1953). 
11 Magnetic moment deviations have been studied w i t h  ; 

. , similar  but more r e s t r i c t ed  modifications o f . t h e  s h e l l  model. 
A. DeShalLt, Ph s. Rev. 9e, 83 (1953); Minoru Umezawa, Prog. ' 
.Theoreto :phys. 5, 509 (1952 ) . 



t o  be a l i n e a r  combination of the uvlial byer- ense en s h e l l  

model s t a t e  and s t a t e s  , o f .  the type j u s t  described i n  which ' 

the angular motr~cnturn i s  shared . . amon& three  par t i c les .  ' Ilk- 

' tensive sharing of the angular momentum among the nucleons " 

of the nucleus (Margonau -Wignor model) would be - sxpec ted  on 

the bas is  of the  usually aqsumed sho r t  range, two body nu- 

c l ea r  forces.  However, the s h e l l  model, with i t s  success i n  

explaining much of the da ta  concerning con~plex . . n u c l e i ,  is a t  , 

the .other  extreme. The model .in t h i s  t he s i s  therefore repre-  

sen t s  a synthesis  of t h e  Margenau -lriigner . model and the Mayer - 
Jensen s h e l l  model of the nucleus .. The extent  of the  sharing 

of the angular momentum among d i f f e r en t -  nucleons w i l l  depend, 
Y 

on the assumed ad.mixture of s t a t e s  and on the  allowed v.alues 

of j, f and j", f" used i n  construct ing modified s h e l l  model 
. i 

s t a t e s  of three .  par t i c les .  

The 'two iden t i ca l  p a r t i c l e s  In  equivalent s . t a t e s  may be 

e i t h e r  odd (of the odd number type of pa r t i c l e s  i n  the odd- 

even nucleus) pa r t i c l e s  o r  even (of the. even number type of 

pa r t i c l e s  ' i n  t he .  odd -even nucleus ) pa r t i c l e s .  Since these 

two pa r t i c l e s  a r e  assumed t o  be caupled t o  j' = 2, then ' j" ; 

could i n  pr inciple  assune any one o f .  the poss ib le~va lues  

( J -P 2,, J + 1, -----  \J - 21 ) allowed by the vector  r u l e  

w i th ' t he  appropriate value of I" being determined by consi-  

derat ions of par i ty .  - .  

, However,' the MRyer-Jensen s h e l l  model is s t i l l  assumed 

t o  determine a s y s t e m  of l eve l s  which w i l l  l i m i t  the ailowable 
. . values of j, 1 a n d  j", 3.". Specif ica l ly ,  each s h e l l  i n  the . ,  



s h e l l  model is cotnposed .of a t~un~ber of s t a t e s  of roughly the .  

same energy separated from other  such' groupings of s t a t e s  by 

a not'iceable energy difference.  1n any given,  nucleus the 

'allowable values of j ,  ? and j", 3" are  those which occur 

within the unclosed s h e l l s  of the nucleus, i . e .  sharing of 

the  angular morne~,turn is assumed t o  only occur i n  the l a s t  , s h e l l  

of odd pa r t i c l e s  and,  even pa r t i c l e s .  

I When the .  two identica.1 pa r t i c l e s  coupled t o  j l .  = '2 a re  

I -  even par t i c les ,  the value, f o r  j" is  a r b i t r a r i l y  r e s t r i c t e d  

t o  the one value j" = J, the  angular momentum of t h e  nucleus. 

The r e s t r i c t i o n  Ls assumed t o  hold f o r  the sake of sLrnpllcity 

and on the  bas is .  of , the  following evidence which seerris t o  

indicate  t h a t  the  amount of angular momentum shared w i t h  the 
*. - 

even p a r t i c l e s  is smel ler  than tho t  shared among the  odd par- 

I 

Schawlow and ~ o w n e s ~  hove obsenred d e f i n i t e  cor re la t ions  
. . 

n (near equal i ty  i n  magnitude) of the deviat ions from the 

Schmidt l ines ,  of the magnetic moments of pa i r s  of odd-even 

n u c l e i ,  with the same t o t a l  angular momentum J, where one 
, . 

nucieus has n odd . . protons and t h e  other  has the same number 

n . o f  odd neutrons. If  the angular .momentum J Is shared only 

among 'the n 0d.d pa r t i c l e s  and If the  wave function represent-  

ing the n odd protons is the  same a s  t ho t  representing the  

12 I n  the  f i n a l m o d e l  of the  nucleus c o n s i d e r e d i n  t h i s  
thes i s ,  t h i s  p a r t i c u l a , ~  ' r e s t r i c t i o n  on the possible values 
of j automatically decreases any sharing of the angular 
momentum with the ever1 par t , ic les .  

13 . , 

.A. I,. Schnwlow and C.  H. Townes, Phys. Rev. 82, 268 
( 1 9 n ) .  



n odd neutrons ' (mir ror  property), then the calculated mag- 

. net ic  moment deviations (appropriately defined) are equal 

for  the two nuclei regardless of the admixture' of  s ta tes  

contributing t o  the odd particle wave function. The ex- 

perimentally observed correlations can therefore be under- .. 

'stood . . qualitivelg by assuming that  the even '  particles do not 

share the angular momentum and that  odd proton .s tates  are 

the same as odd 'neutron states.. 

The explanation just given for  the experimentally ob- 

' semred correlations i s  undoubtedly an oversimplif ication, 

especially since none of the experimental deviations for  

the nuclear' pairs a r e  exactly equal. . I t  i s  also hard t o  

understand. how there can be any significant sharing of .the' 

angular momentum among the odd particles without some. shar - 
ing among the even particles,  ' However, the observed corre- 

lations . seems to  suggest that  there must be a significant , .  

mirroring of the odd' particle s t a t e s ,  regardless of the , 

,speclfio role played by the even particles.  

The question, of the role played by the even part icles ,  . 

in  ;haring t h e  angular momentum i s  cornplicatod and w i l l  be , , 

discussed in  greater detai.1. i n  the main body, of the thesis., 

However, the great difference i n  the number of'even particles 

i n  ' the twonuclei of the pair ' ( the odd proton nucleus would 

generally have a much larger atomlo number #A than the cor- 

responding odd neutron nucleus) would seem to  indicate that  
. . 

any mirroring of s ta tes  , (odd partiole s ta tes  included) would 

be improbable' i f  the even, part icles  had a great share of the 
. . 



t o t a l  angular  momentum. . I f  the  even p a r t i c l e s  do no t  play 

a ' too d i s t u r b i n g  r o l e ,  then the  m i r r o r  property of t h e  odd 

p a r t i c l e  s t a t e s  is f a i r l y  reasonable on the  bas i s  of t h e  

assumed charge independence of nuclear  fo rces .  

I n  Sect ion  I1 of t h i s  t h e s i s ,  the '  .magnetic moments a r e  ' .  

ca lcu la ted  f o r  th ree  pa r t i c ' l e  wave funct ions,  of the  type 

previously described, f o r  a l l  poss ib le  values of j, f and 

j", I". The main q u a l i t a t i v e  f e a t u r e  of t h e  r e s u l t s  is t he  

f a c t  t h a t  the  . g r e a t  ma jop l ty  of the  ca ' lculated moments ,fall, 

between the two Schmidt limits. It then follows t h a t  many 

s u i t a b l e  admixtures of s t a t e s  can be. formed t o  f i t  t h e  .ex- 

p e r i m c n t d  ma{:;iatic liloments, the  g r e a t  majori ty  of  which 

. a l so  fall bl2twcen the  Schrnidt limi'ts. 

A spccif'lc n~cc.:iel of comp'lex n u c l e i  is proposed i n  Sec - 
t iorl  I11 In whlch  a l l  poss ib le  th ree  p a r t i c l e  s t a t e s  (and t h e  

she.11 model s t a t e ) ,  ns nlpeady prescribed, a r e  assumed t o  

have equal  p robab i l i ty  i n  the nuclear  vmve funct ion.  T ~ S S  

r c  presents  a re tkcP thorough s hn r  ing of the angular  momentum 

among the  p a r t i c l e s  of tho unclosed nhel'l  of the  odd p a r t i c l e s  

and .a .less cotnplote Sharing of  the  angular  momentum wi th  t h e  

p a r t i c l e s  I n  tho even unclosed s h e l l .  Tho magnetic moments 

ctl.lculated from t h i s  model, ,using ~ p p r o p r i a t e  ~ s s u m p t l o n s  

f'or s implif  l c a  t ion ,  r ep resen t  a dramatic improvement i n  

f'ei;.l;Ing the d a t a  a s  compared t o  t h e  usual  MayergJensen s h e l l  

model. 

l.'.l.rial'ly, i n '  3ec t iori  IV, t h e  " s t a t i s t i c a l  s h e l l  model" 

use;? iil the previous s e c t i o n  t o  c a l c u l a t e  the  s t a t i c  mag- 



net ic  moments, . is. used t o  calculate the t rans i t ion  matrix 

elements of the "forbidden" magnetic dipole transit. ions. 

The t ransi t ion.  matrix elements. are. a'lso found . to  be i n  gen- 

e r a l l y  good agreement w i t h '  experimental resu l t s .  

The s t a t i s t i c a l  s h e l l  model represents a ra ther  exten- 

s ive modlf IcaLLut~ ~f tho Mayer-.-Tensen s h e l l  mcdel. The i m -  

proved agreement w i t h  the experimental data of s t a t i c  mag-' 

ne t i c  moments. and f orbidden magnetic d i  pole trans i t lons  

therefore indicates tha t  the Maysr-Jonsen s h e l l  model may 
. . 

give a poor desc r lp t ion ,o f , the  ground s t a t 6  wave'functions 

'f complex nuclei. The s t a t i s t i c a l  s h e l l  model i s  closely 
. . 

re la ted t o  the .Mayer-Jensen s h e l l  mo,del by the way the .three 

par t ic le  s t a t e s  a re  chosen f o r  admixt'ure and by the. chqice 
. - 

of spin .and par i ty  which. is tha t  'prescribed by the. Mayer- 

- .  Jensen s h e l l  model, but the , s t a t i s t i ca l  s h e l l  model seems 

t o  be rn@e compat'ible with the assumed. two body, short  range 

nature of . the nuclear forces. . 



A. i % l a u # - & t h o m e t j & b m .  

The ordinary magnetic moment operetor Is given by 

. C 

where 4 p ( k p  : 2.791 n.m.) and fli( : . i - 1.913 n,m.) are  

respectively the mabetic moments of a proton and a. neutron, 
.A 

j . is the single proton to ta l  angular momentum operator, and 
' P a 

? p and G, are respectively the usual Paul1 spin operators 
. .  for  a proton and a neutron. The magnetic moment' of a nuclear 

'system is def ined as the expectation value of. t h e  t -compon- 

ent, .pc ; of the magnetic moment operator: 

M 
whereyJ is  the ' wave function of the nuclear sys tem (only 

the angular pert of the wave function i s  considered in  a l l  

ordinary magnet i c  moment calculations ) hev ing a to t a l  angu - 
- .v ( . l a r  momentum J and a :Z component of angular momentum M. 

In  the Mayer-Jensen independent part icle  she l l  madel, 

~ a single odd part icle  assumes the t o t a l  angular momentum J. 
I 

The magnetic moments calculated on the  basis of t h i s  model 1 .  
are the Schmidt values of the. magnetic moment 

~. 



M ' 
where# J = L f 1s the s ing le  pa r t i c l e  wave function having 

a t o t a l  angular momentum J = L 2 5, a 3 component of the  

angular momentum M, and a n , o r b i t a l  angular mornenturn L. These 

f unc t ions a r e  
. . 

Y '  t 
where Y, a r e  the  usual surface spher ica l  and . X  
a r e  the 'usual Paul i  spin  functions . The s ing le  pa r t i c l e  

functions can now be used t o  evaluate the Schmidt magnetic 

.moments RS defined by 11-3. The e s s e n t i a l  expectation 

14 Condon and Shortley, The Theorv 
Chapt. 111, Carnbrldge University Press 



value f o r  the ca lcula t ion is  

where E ( J )  is  defined as + (p lus )  when J = +- and 

- (minus) when J = L - $. The Schmidt values f o r  the mag- 

ne t i c  moment a r e  then 

a) As P :  J + V ( p - 1 / 2 1  for  J : L+1/2 

. . 

J ( - 1 )  J ' for 3 : L  -l/2 
J +  1 

(11-6) 

fo r  J -  : L + 1/2 

for .  J = L - 1/2 

. These values of the ma,gnetic momenta y i e ld  the  Schmidt 
. . 

1 i n e s p l o t t e d . i n  F i g . . l  and Fig. 2. 

The wave function of the,nucleus Is assumed t o  be an ad- 

~ mixture bf the usual s h e l l  model s t a t e  with a number of 

s t a t e s  i n  which the angular momentum J i s  shared.among three  



. . particles,  i. e . 

where as is  the probability amplitude of the she l l  model 

(s ingle  par t ic le )  s t a t e  and a .  . I I  is the probabi l i ty  ampli- 
J J  

t ude  of the three per t lc le  s tn te  ,"I, 
The types of three par t ic le  s t a t e s  considered are, by 

assumption, quite limited. Two of the. par t ic les  a re  assumed 

t o  be ident ical  ( e i the r  two odd par t ic les  or two even par- 

t i c l e s  of the odd-even nucleus).  Furthermore, the . two part icles. .  

are  each assumed t o  have the same t o t a l  angular momentum j 

and .orbi ta l '  angular momentum %, and. are  assumed t o  be coupled 

to  j' = 2 (compared t o  j4 E 0 as is  assumed i n  the she l l  

model). These two par t ic les  a re  then coupled w i t h  the t h i r d  

par t ic le  (of necessity an odd par t ic le) ,  ,which has a t o t a l  

angular momentum j" and o rb i t a l  angular momentum f" ,  so  as to  

give a f i n a l  angular momentum 3 fo r  the system of three 

par t ic les .  The vector addition ru le  of angular momentum 

allows J to  have the values j" t 2, j" + 1, ---  0" - 21 

fo r  every value . . of j" . The value of k t '  i s  determined for  a 

given jN by par i ty  considerations. 

In  an independent par t ic le  model, a  system of n par t ic les  

i s  represented by a product of n single par t ic le  wave func- 

tions, or  by a l inear  combination of such product functions. 
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' rx'' . ; ' .  
! T h e  pa.?l+of. a product functiorl ,is defined a s  . ( -1) 4 , 1 
1 -  

where' f i .  i s .  the o r b i t a i  angular mornenturn o f  t h e  i t h  product 
I o f .  the product flinction. When. the s t a t e  of a system is . 

represented by 'a l i n e a r  combination of product . func t i i n s ,  

, Invariance cond,itions ( invariance und.er .coordinate inver - 
s ions)  require t h a t  every product 'function i n  the l i nea r  

~ 
. combina.tton have the same parity. 

The par i ty  of a s ing le  pa r t i c l e  s h e l l  model s t a t e  is 
L 

given by (-1)  where L is  the o r b i t a l  angular momentum of 

the s h e l l  model s t a t e .  The par i ty  of two pa r t i c l e s  i n  the 

same j and P s , ta te  ( regardless  of how they a r e  coupled to -  
I 

I 
!3ether) is  ( - 1 1 ~ '  : + 1. Thus f o r  the s t a t e s  y-:(2jj1') 

I u 

described above, the pa(rity is  (-1) 3 + I" (-1) 3 I '  
, 

1 ' - Since the  par i ty  must be the same f o r  a l l  s ta . tes  of a l i n e a r  
1 - 
I *  combination of s t a t e s ,  the  o r b i t a l  angular momentum I", which 

is uniquely determined f o r  a given J, L and j", can be seen 
I 

t o  be r e s t r i c t e d  t o  one ,of the  va'lues f I' = L ; L 2 2 .  

The three  pa r t i c l e  wave functions can be represented. a s  - 

 he c o e f f i c i e n t s < j " ,  2 ,  m", m l  j", 2, J, J) a r e  the  

transformation ,ampl'itudes f o r  vec.tor addi t ion ( ~ l e b s c h -  
14 Gordon coe f f i c i en t s )  of angular momentum . $ is the  

i angular momentum function w i t h  t o t a l  angulnr momkntum j : 2 
. . 



and 2.component of angular momentum m formed by coupling 
' two particles having the same j and 1. 

The correct wave function of the nucleus must be pro- 

I . . perly antisymmetrlzed to  take into account the Pauli exclusion 

principle. In isotopic. spin notation the. wave function must 

be antisymmetric with respect t o  the interchange of any two 
I 

nucUons. I n  more usual notation, where neutrons and protons 

a re '  treated as different  particles, it, is only necessary t o  . ' 

. . 
antisymrnetriee with respect tb an interchange among protons 

, 'And among neutrons separately. Since the magnetic moment 

operator is a sum of single part icle  operators, the expec- 

tation value of the magnetic moment - operator reduces t o  the 
15 corres ponding sum ' of s ingla part icle  expectation I . valuess l 

Thus the antisymmetriration of the wave function does not 

need to  be considered when calculating the magnetic moment 

expectation value. However, 'the Pauli principle must '8 till' 

1 be considered when determining possible values for  j, P, 
. I 

j", f I' and J, L .  1n' certain' cases the  values of j" ' arq more 

restr icted than previously indicated. ' It is especially i m -  
' 

I .  .. portant to  exercise care when a l l  three . particles .have #the 

'. same angular momentum and parity, i .e . j : j" and P . : . f 'I. 

The Psuli  principle forbids . . . the formation of -angular momentum " 

. . 0 .  . # 

' . J : 5 for  th ree  identicai particles i n  identical '  s t a tes  of 

. - 
1 ' . .  

, .. : l53ee reference i n  ~ o o t h b t e  14,  p. 1710,,. ' 

. :I : '!gee reference i n  Footnote 14, p,, 263. 



. . _ .  

The magnetic moments can now be ctilculated using t h e  . , 
. . 

wave functions . j u s t  described. F i r s t ,  a l l t h r e e  p a r t i c l e s  

a r e  assumed t o  be of t h e  same kind (odd par t i c les . ) .  Also, 

only expectation values involving the modified wave functions 

a r e  considered, even though cross terms ( in terference terms) . 

a r e  i n  general .pass i b l e  f o r  c e r t a i n  admixtures of' modif led 

s h e l l  model s t a t e s  . The magnetic moments become, using.11-1, . '  

17 11-2, 11-8, and 11'5 

' 3he  magnetic moment cs lcu le t ion  is  qu i te  s i m p l e  f o r  the 
s t a t e  2 ( 2  j )  s ince  the  two pa r t i c l e s  a r e  i n  equivalent s t a t e s  
( s t a t e s  w i t h  the same ' and 1 ) .  The Clebsch-Gordon c o e f f i -  
c i en t s  f o r  the s t a t e  38(2 j) do not  have t o  be known e x p l i c i t 1  
(most of the coef f ic ien t s  of i n t e r e s t  have not  been tabulated7. 
Thus dl I' m-*" 

&M = E  < j, j, AVI 1 j j I ml', momfi1> ( 1 )  f*  (2) 

4l " 
J 



w(2 j") represents a function of three protons i n  11-9;' 
I 

I 

and a futkt ion of three neutrons i n  II-9b. The sum 

tm I(j", 2, J - m, m I j ,  2, J, J depends on the I 

m 
values of - j" and J: 

- I 

(11-10) fo r  j" : J - t l  

f o r  j" : J ' . 

fo r  j" : J - 1 

: 2 f o r  j" e J - 2 '  

A large number of possible magnetic,moments a re  repre- 

sented by the re la t ions  11-98 and II-9b. Different values a re  I 

obtained f o r  j : f + b and j = 1 - 5 f o r  the  same choice of j, 

j", and J. The smallest allowed value f o r  j is j . 3/2 since 

I . two j = 5 .  par t ic les  .cannot be combined t o  give an angular mo- 

' mentum j1 = 2 .  as  required i n  the modified s h e l l  model wave 

function. 

For a given choice bf j and J there a re  i n  general five 

possible values fo r  j", a l l  giving ,dif ferent  values f o r  the 

magnetic moment. In  specifjring J, it is a l so  necessary t o  

specify whether J E L t . 2  or  J : L - & i n  order t o  be able 

I t o  speciPy 3'' and whether j" : f "  + & or  j" : 1'' - 8. Thus 

fo r  example,-if j" : J t.1 end J-:.L + & ,  then i n  order t o  

I have th'i) same pari ty f o r  the three par t iole  s t a t e  as fo r  the 

shall '  model s t a t e  j" = J , +  1 ' L  f- 3/2 : (L + 2 )  - 1/2 : 

' - 1 2  . Then the required value f o r  f "  is 3" s L + 2 and 
3'' = 3l' - 112. The poss ib i l i ty  j" = f I' 3- 1/2 i s  excluded 



s ince  this,would require t h a t  1" = L t 1 'which i s a  s t a t e  
- .  

having, a d i f f e r en t  par i ty  from t h a t  o f  the  s h e l l  model ' . 

s t a t e .  A s imi la r  analysis  must be undertaken for. a l l  values 

of j, j l ' a n d  J, when 11-ga and 11-9b a re  used t o  ca lcu la te  

magnetic moments. , 

. When the angular momentum J of the s h e l l  model stete 

I has small values. (r = 1/2 and r : 2 the possible values 

o f .  j" a r e  more. l imi ted than previously indicated. When 

J = 1/2, t h e ,  p o s s i b i l i t i e s  j" : J - 1 and j" c J - 2 are, 

I obviously excluded s ince  a negative value f o r  j" is  meaning- 

l e s s .  The value j" = J . i s  a l s o  excluded s ince  j" c 1/2 

cannot be combined with J = 2 t o  give the required angular 

momentum J = 1/2. ~ h u s  f o r  J = 1/2 only two v a l u e s  of . 
j" ( j "  = J + 1 a n d j "  r J + 2) a r e  possible. When, J = 3 / 2 ,  . . .  

1 
I 

I 
then only j" = J - 2 is excluded. When J 5 Tb, a l l  ' 

v ~ l u e s  of j" allowed by the  vector  addi t ion rule a r e  possible 

' ( j "  = J + 2, j" = J + 1, --I)- j" J - ) A l l  the  ex- 

cluded p o s s i b i l i t i e s  jus t  discussed a r e  impl ic l te ly  . contained 

-, i n  the vector  addit ion ru l e  ( J  = j" + 2, J = j" + 1, . -. - .  
. . 

D L - - - -  - 2 1 ): J :  I j"  

The magnetic moments A '(2 j j ' l :  J) and h n ( 2  j j l ' :  J) given 

by 11-9a and 11-9b a r e  p lot ted  a s  a function of J i n  Figures 

'3p t o  1 2 p  and Figures 3m t o  12m respectively.  A separate  

p lot  is made f o r  the  poss ib i l i t y  J : L + 1/2 o r  J E L - 1/2 

f o r  each p o s s ~ b l e  j" . Since j" i n  general may assume f ive  

values t h i s  r e s u l t s  i n  t en  plots  f o r  f i  P(2 j j": J) and ten  







J'(2;;tt:;) J= L t f  (i!**=J+$ fi& 5.P 
c.r ,  - -  i 

















plots f o r  4 "(2 j j"': J )  . Each possible value of j (of the ' two 
. . 

3 .  

' pa r t ic les  combined t o  4 : 2 )  gives a l i n e  on every p lo t .  3 
In  order to  obtain. a l l  .magnetic moment values tha t  a re  of 

in t e res t  s i x  values of j = 1 .r. 1/2 must be plotted 

( j  : 3/2, 512 ---- 13'/2), and f ive  values  of j : 1 - 1 / 2  

(j ~ . 3 / 2 ,  111111 1 )  . . Thuo each  plot  oontairia ' clcvvon 

lines each giving a '  magnetic moment value . .. . . a t  the, half integar 
. . values of , j l .  . . . . 

The 'appropriate Schmidt. l ings  a re  included on each graph 

of I( p ( 2 j j " : ~ )  and ~ ~ ( . i j . j ' ~ : J ) .  The systematic features of 

these graphs w i l l  now be indicated. . . There is  a symmetrg 
. . 

between the deviations from the '~chmidt  l i n e s  o f ,  a given , 

f i  P(2 j'j": J) plot and the equivalent ,b( '(2 j j": J ) .  Later  it 

w i l l  be shown tha t  the ,appr;opriately defined devkations a re  

ac tua l ly  equal t o  each other. These equivalent plots have 

the same figure number and ai.e only different ia ted by l e t t e r ,  

e.g. Fig, 3 p  and, Fig. 3n. Therefore, in. the. follow,ing d i s  - ,  

cussion it is decessary to. consider only t h e  systematics 

of the '(2 j"': J) plots.  The dev'iations . f r o m  the schmtdt 
n 

l ines  of equivalent ,4( ( 2  J j": J) have near ly  the same gross 
. . . . : .  .features. . . . I :  

In  Fig. 3 p  the p lo t ind ioa tes  the deviation from the 
. . . . 

J E L f l /2  Schmidt l i n e  of.  an odd protori :nucleus . . f o r .  the 

coupling case,. j " '  = J. These cha rac te r l s t i cq  are  . indicated . 

a t  the t o p  of the f igure where the  notation , . . ~ ( 2 j ~ " :  J), 
. . 

J = L t I/' and ( j "  : J) appear.  he, sch;nidt ll-nes . are  
. . .  

indicated by extra  heavy line$. , . The . j : = : l ' + . l / 2 ; i ~ n e s  ape 
. . .. . . .  



given b y  f i n e  . . s o l i d  l i ne s ,  while  the  j : 1 - .  1/2* . l ines  ,a& 

given by f i n e  broken l i n e s . .  Theie above notat ion w i l l  be 

used i n  a l l  the fol lowin& plots .  The j .: 1 =+ 1/2 lities 

always tend t o  f a l l  i n  a group which is ordered by ascending 

or  descending values .of j. 'The gap between l ines  of given j 

decreases a s  j increases.  The j : f - 1/2 l i n e s  display the  

same properties.  

. . 
Tho most apparent f ea tu re ' o f  Fig. 3 p  i s : t h a t  most 

velues. of A ' ( 2 j j " : ~ )  f e l l  the  J = L +  1/2 Schmidt 
. . 

l i n e .  , For J : 3/12 no , & p ( 2 j j " : ~ )  f a l l s  outsLde the  

J ,; L + l/2 'bchmid,t l i n e  (one value falls exact ly  on t h e ,  
I 

. 3cbrnidt l i n e ) .  , For each increase Ln J, one addi t ional  value 
I 

o f  p(2 j j" : J) f a l l s  outside t h e  Schmidt value, but even f o r  . . 
J : 9/2 the cen te r .  of gravi ty  of a l l  the  l p ( 2 j j " :  J) 'values 

f a l ' l s  Inside the Schmidt"1ine. The samekqual i ta t ive  features 

hold f o r  Fig. 4p where J = L - 1/2 and j" : J. A s '  previously 

mentioned it is not possible t o  construct  a *wave func t ion  

G r ( 2 j j " )  f o r  J : '1/2 when j" i J. . 

. I n  an t ic ipa t ion  of a de ta i l ed  discuss ion,of  the experi-  

mentally observed magnetic moment, deviat ions from the ' Sdhmidt 
, . . . 

' l ines ,  it shou ld  be mentioned here t h a t  the .observed devia- 
. * . . t i o n s f o r  J .+ 7/2 cannot be explained by the magnetic' mom,ents 

, . 
plotted i n  Fig. 3p ,  ~ i ~ .  3n, Fig. 4 p  and Fig. 4n. The ob- 

served deviat ions are.  usually greater  than the g rea t e s t  de- 

v i a t i on  of any $ '(2 jj": J) o r  / t n ( 2  j j": J) f o r  a J 3 7 ~ .  Thus 
.- . 

the coupling j" = J gives values o f , 4  '('2 j j": J) and 

, 
A "(2 j j" : J) which' have the cor rec t  qua l i t a t i ve  *features  t o  



. . 

c' expla in  'the pbsemred deviations but which qre n o t  ,adequate' 
. .  . 

t o  explain a number of:.obseryed megnetic moinent deviations. 

The . e f f ec t  on. f lp(2  j j " : '~) of the.coupling j" : J , + l  
. . . .  

i s  i l l k s t r a t e d  i n  Fig. 5 p  and Fig. 6p f o r  J : L + 1/2 and 

J = L - 1/2 respectively.  In  Fig. 5 p  ( J  = L +  1/2) a l l  the  

) ( P ( 2 j j i ' : ~ )  f a l l  U s j d e  the J = L + 1/2 Sctaoidt l i n e .  The 

deviations of these A p('2 j j l l :  J) a r e  large,  especia l ly  f o r  

J >/ 3 / ' .  , The same general cha rac t e r i s t i c s  a r e  t rue  fop . '  

the  P(2 j j " : ~ )  i n  Fig. 6p ( J  : L - 1/2) with the exception 

of those ,4( p(2 j j" : J), f o r  J : 1/2 and j = 3 - 1/2. These 

values of k p ( 2  jj",: J )  f a l l  putside the J = L - 1fi Schmidt 
. . 

, . ' l ine .  However, the center  of gravi ty  of the values, of . 

H P(2 j j".: J) s t i l l  f a l l s  s l i g h t l y  i n s i d e ,  the Schmidt l t ne .  

This beh'bvior of A P ( 2 j j " : ~ )  f o r  J = L - 1/2 = 1/2 and 
. 8 .  

j f : - 1/2 gives a  possible explanation f o r  the experi-  

mentally observed magnetic moment deviat ions of those odd- 

even nucle i  w i t h  J = L ' . -  17' = 1/2. The experimentally ob- 

served magnetic moment deviat lons f o r  these  nuc le i .  a re ,  a l l  
, I  

a much smaller then 'average and i n  three  Instances have de- 
, . . . 

' v ia t ions  which aotual ly  . . f a l l  s l i g h t l y .  outside the  Schmidt. 

l i n e .  This behavior is  c l e a r l y  cons i s t en t  with.  the  

" f i  p'(2 j j" : ~9 Values p lot ted  , in  : ~ l g ;  6p. . 
. . ' 

 hev values 0 f* ) (~ (2 , j j l , ~ : J , )  p lo t ted  i n  Fig. ~ Q . ( J : =  L*+ 1/2) 
. . . . 

and -Fig. 8p (J  e L -. 1/2) f o r  the  c ~ u ~ l i ~ ~  j" , = ,  J - 1 have the 
I .  I .  

same :general propert ies  a s  i n  the previous coupling ( j" = 
3 .  

I .  

J + 1 ) .  ~owevki-, the J ' = ,114 s t a t e  is no t  po;sible f o r  . 

, j" c J - '1 and the:valu&s of ~ ' ~ ( ' 2  jj": J which f a l l  outside 
- .  i ' 



. . , . .  . . .  
. . . . . . 

. . 
28 

the J = L - l / 2  Schmidt' l i n e  i n  Fig. 8 p  occur fob J = .L - 1/2 

: These r e s u l t s  a re  a l so  compatible with the  observed, ' 

magnetic moment deviations of odd-even nuclei  with J = .L - 
1/2 = 3/2. 

. . 
Fig. 9p and Fig. 10 p show the  values of I( ,p(2jj":  J) 

f o r  the coupling j" s J + 2 for J = L '+: 1/2 end J e L - 112 
respectively.  The. general tendency of these values I s  for  
the j = .f + 1/2 values t o  f a l l  Jns1d.e t h e  J = L - 1/2 Schmidt 

l i n e  i n  Fig. gp and t o  f a l l  gutsi.de the J : L - 1/2 Schmidt 

l i n e  i n  Fig. lop.  The j = P - 1/2 values tend t o  f a l l  

putsi.de the J = L + 1/2 Schmidt l i n e  . .  . i n  Fig. gp (except a t  

J. : 1/2 and J = 3 / 2 )  and t o  f a l l  i n s ide  t h e  J = L '  - 1/2 

Schmidt l i n e . . i n  Fig. . lop.  . The center  of g r a v i t y ' o f  the 

/Y p(2 j j": J) values is inside the  appropriate Schmidt. l i n e  . . 
i n  ~ i ~ .  9 p  and s l i g h t l y  outside the . . appropr ia te  Schmidt l i n e .  

i n  Fig. lop: Fig. 10 represents the  only possible , . values ,of 

'/U p ( 2 j j " ' : ~ )  f o r  J = 1/2 besides .. . those  a l r e ~ d y d i s c u s s e d  i n .  

.c'onnection w i t h  Fig. 6p. These two sets . of values ' have a 

. cen te r  I .  of g r av i ty  .very c lose  t o  t h e  Schmidt l i n e  which: ,. . dKiy 

explain the ' small experimkntai magnetic moment deviat ions ' 
' .  . . 

f o r  J = L - 1/2 = ,1/2 81ready noted i n  'connection . 
. 

w i t h  Fig. 

6p. . . . ! . 
. . . , 

. . 
, ' Fig. l l p  and Fig. 126 . . show t h e  values of , /?(2. j  j".: J) , 

. .. 

for the coupling j" = J - 2 ' f o r  J :'L +,I/;! and S J ' :  L - 1R 
. . 

respectiv&ly.  ' For, t h i s  cbupling' J is - r e s t r i c t e d  t o  the 

values J >/ 5/2 .  . . I n  Fig., l l p  t h e  j t f .+ 1 4 ,  values o f  
, c . . 

~P( -J  j ~ l : , ~ )  &.I A-utsic~e the  J = L +. I/:! . Schmidt . l i n e  while 
. I 

the j : 'f - 1/12 values OE / 1 ~  d(i j l i :~ )  f a l l  '- the . ; 
. 9 , . 



J :,' L. + 1/2 Schmmidt l ine .  ' The 'center of gravity of these 

l ines  f a l l s  s l igh t ly  'outside thee.8chmidt l i n e .  1 n  Fig. 12p 

the general picture is  simi&ar t o  t h a t ,  of Fig. l l p  w i t h  the 

roles  of j = f t 1/2 and j f - 11' reversed. :lowever, the 

center of gravity of the ,4( p ( 2 j  j": J) values i n  t h i s  case 

s l igh t ly  'the J = , L  - 112 l ine .  

The overall  tendency of a l l  the couplings considered is  

t o  give magnetic moment values which f a l l  inside the Schmidt 
$ 

l ines .  I f  only a s ingle  type of coupling is considerwd 

(such as j" = J), many of the observed magnetic moment de- 

viat ions cannot be explained. However, a l l  experimental 

magnetic moment deviations can be explained by using appro- 

pr ia te  comblnatlons. of ; a l l  the couplings cons idered abave . 
The correlat ion of the calculated ,& p(2  j j": J) and kn(2 j,jll: J) 

values w i t h  the experimentally observed magnetic moment de- 

viat ions w i l l  be considered i n  greater  d e t a i l  i n  the s6ction 

on experimental magnetic moment deviations which follows. 

Before discussing the experimental magnetic moment de - 
vlations,  there is s t i l l  one type of wave 'function modifica- 

tion, mentioned i n  the introduction, t o  be considered. Two 

of the three par t ic les  sharing the angular momentum J may 

be even, par t ic les  (both par t ic les  are  assumed t o  have the 

same' j and f )  while the th i rd  is an odd par t ic le .  The two 

even par t ic les  a re  coupled t o  give an angular momentum 

j' = 2, .and the th i rd  par t ic le  w i t h  an angular momentum 
, 

, j" = 'J is coupled t o  the two even par t ic les  so as t o  give a . . 

t o t a l  angular momentum 3 f o r  the system of three pa&tlcles. 
. . 



A s  mentibned i n  t h e  introduction, t h e .  only, j" :that will be' . . , . . . . . .. . - 

considered when even par t ic les  share the angular momentum is . , . . 

. When two even neutrons combine w i t h  an odd proton, the 
, . . 

magnetic moment is 
. . 

When two even protons combine w i t h  an odd neutron,, the 

magnetic moment is 

(ir -12) 

.. , 

The magnktic momenta' calculated from 11-11 and 11-12 

a re  ' plotted i n  Fig. U p ,  Fig. l4p and Fig. Um, Fig. 14m 

respec t ively.  . Again the general characteris  t i c s  of the 

equivalent (same j, 1,. J rind L) k p ( ' 2 ~ ( n ) ~ ( p ) : ~ )  and 

,4tn(2 j(p) ~ ( n ) :  J) values are  similar .  However, the devia- 

t i o n s  p f  11-11 and 11-12 are  not t ru ly  symmetric wi th respec t  

t o  the Schmidt l ines  as are  the.magnetic moment deviations 







- given. by 11-9a and 11-9b. The question of s e e t r y  w i t h  , '. 

respect '  'to the Schmidt l ines  of the odd proton and': odd neutron 
. . 

. . mdgnetic . moments calculated from modified s h e l l  model wave , 

functions w i l l  be discussed i n  some d e t a i l  i n  the next sec-. : 
. . . . 

t ion. . . 

' ~ n  ~ i g .  1 3 p  and ~ i g .  l 3n  ( J = L + 1/2).) the magnetic 

moments a l l  f a l l  inside the J = L + 112 ~chmid t  . l ine .  The 

deviations, inside the J = L + 112 Schmidt l i n e  are  quite 

large for '  J = 3/2 and become considerably smaller as J in-  

creases. In  Fig. 14p and Fig. 14n ( J  = L - 112)  most of the 
. ,  

m~gne.ti.c moment values f a l l  outside the J = L - 1/2 Schmidt 
I 

l i ne .  When the j E f t 1/2 even par t ic les  share the angular 
I 

momentum wi th  a J = L - 1/2 odd par t ic le , .  the resul t ing 

magnetic moment is  considerably outside the J = L - 1/2 
Schmidt l ine .  When the even par t ic les  have j = 3 - 1/2, . the 

magnetic moment deviations (some of which a re  outside and 

some .of which are  inside the J = L - 1/2 Schmidt l i n e )  a re  

considerably smaller than when j = f + 1/2. 

Thus, for  odd-even nuclei which are  assigned. J e L + 1/2 

by the s h e l l  model, the sharing of the angular momentum J . wi th  . 

even par t ic les  i s  consistent with the observed deviations of 

the rnaglietic moments from the J = L +. 1/2 Schmidt l ine .  For 

ocld-even nuclei which are  assigned J : L - 1/2, the sharing 

of the ankular ~nornentum among the 'even par t ic les  would tend 
, . .  

, tomake. the magnetic moments f a l l  outside the J = L  - 1 / 2  

Schmidt l ine .  



When comparing the experimentally observed magmtic 

moments of odd-even nucle i  t o  the Schmidt l i n t s ,  it is  i m -  

portant t o  provide a sca le  i n  terms of which deviat ions can 

be measured. The following. quant i t ies  prov1d.e an especia l ly  

oonvenient measure of the deviations from the. Schmidt l i n e s :  

P P' AP Us - Y e %  
a) .. , 

' @( .- L). 
P 2 .  , '  

where A @ and bn r e f e r  t o  odd proton nucle i  and odd neutron 

nuc le i  respectively,  ,& Is the Schmidt value f o r  t h e .  mag- 

n e t i c  moment of t h e  odd proton nucleus, /( :: i s  the Schmidt 
I .  

value f o r .  the ' magnetic moment of the  0d.d .neutron nucleus ,' 
n 

and )( ix and f i  a r e  the  experimental magnetic moments of 

the  'corresponding nuclei .  The quant i t i es  A P .  and A w i l l  
1 ,  

1 I be re fe r red  t o  sikply a s  . devia t ions"  i n  the. following. d i s  - 
CUSSIO~. . I 

. . 

The experimental magnetic moment deviations, a s  :determ I .  

. I 8  . ' .  
mined by, 111-1s and 111-lb, a r e ,  p lo t ted  i n  ,Fig. 15 a s  o . .  . . . 

18 
. The experimental :. magnetic 'moments used t o  obtain ' t h i s  . '  

plo t  a r e .  from a n  unpublished, compilation of nuclear, moment - 
da ta .by  Harold E.,lWalchli.. : . , .  . . 

i 





. . 
f uric t Lon . of ' the number of odd pa r t i c l e s  i n  

. . * .  
3 .  

the odd-even . : 
. .  - 

nucleus. odd protpn magnetic moment . i . deviations a re  . indi-  
. . . . 

. cated by dots while odd neutron magnetic moments are  indi -  

. cated by'crosses. The t o t a l  angular momentum J i s  wri t ten 

besid.e the indicated deviation. The Schmidt values are  such 

tha t  deviations inside the J = L t 1/2 Schmidt l i n e  a re  

pos i t iva  ( for  both odd proton and odd neutron nuclei),  while 

deviations. inside the J = L - 1/2 Schmidt l ines  a re  ' pewativg. 

&cept f o r  those nuclei w i t h  n = 1,7, and 1U odd nucleons, 

a l l  the deviations plotted i n  Fig. 15 represent deviations 

Inside the appropriate Schmidt l ine .  . , . . 

A number of systematic features of the magnetic moments * 

. a re  suggested by Fig: 15.  he negat ive  deviations ( inside . 

the J : L - 1/2 Schmidt l i n e )  are, on the: whole, much smaller ' 

8 .  t h a n  the  positive deviations ( inside the J = L + 1/2 ~chmid t  , '  

. . 

, l i n e ) .  ' The deviations , f o r  n smaller, .than 53 seem to  var$ . ' . 
. . .  

i n  a' systematic manner which may be re la ted t o  the, s h e l l  

model19, since 'they assume de f in i t e  minimum values ,'in the  
' 

+region of ' the closed ; she l l s  ' a t  n : 2, 8 and  20 ( the system- 

. . a t i c  var ia t ions  would' become mdre apparent if only the magni- . 

tudes of the deviations were plotted).  A f a i r l y  de f in i t e  

minimum a lso  occurs i n  the,: region of the closed s u b ~ h e l l . ~  a t  , 

. . 

n = 40.. A l e s s  de f in i t e  minimum occurs a t  the closed , n  : 50 . 

s h e l l .  A t  the n q 28 subshell the *deviations show no minimum 
. 

, , . . 
, ! . '   his ' behavibr o f ,  the &gne t i c  mdment deviations was ' . 

noted by, J. P .', Davidson, PhyY : Rev. & 432 (.1952). 



. . ' '_ . . .3 + .  . . . , , .  . . . . . I  . . .  
bl i t  ins tead  a 'general r i s i n g  trend , ' to  a '  coax'~mum~ a t '  h,' .- 33. . . . .  . . . 

, . ,  . . ' * ;  ' ,  
. ; TL i t ive '  deviat ions seem t o  : c l u s t e r  around 'tin . . .  

average v&lue d p .  and . A "  N 0.58 which doe? not,  dependin . , 

,, 

any s ign i f i can t  way on ,:the value of J (except a l l  J = 9/2 
. , 

deviat ions a r e  below this average). The f luc tua t ions  'from 

t h i s  average a r e  g rea t e s t  f o r , n  < 53. The posi t ive  deviat ions 

i n  the region of closed s h e l l s  o r  subshel ls  on the  whole & 

nc;>t become appreciably smaller  than the average except: f o r  

n = 9. 

The negative deviat ions a r e  not  only smaller than the  
I 

posi t ive  deviations, but the  magnitudes of the negative de- 

v i a t i ons  appear t o  depend on , the  value of J. The average 

. ( f o r  a spec i f i c  J) of the negative deviat ions i s  smal les t  
. . 

f o r  J = 1/2. and increases wi th  J rqeaching a maximum value 

with the  highest  experimentally observed value J = 9 / ' .  The , 
' 

magnitude of the  negative deviat ions f o r  J = 7 / 2  and J = 9/2 

is  near ly  the same as the average f o r  the  posi t ive  devia- 

t ions .  The behavior of the  negative deviat ions i n  the, r e -  

gion of the  closed s h e l l s  a t  n = 50 and n = 82 is qui t6  i n -  

teres t ing.  The deviat ions a r e  small when J i s  small and 

l a rge  when J is  large ,  which suggests t h a t  the  small nega- 

t i v e  deviation8 a r e  prinlarily a'consequence of a small 

J = L - l /2 r a the r  than any closed s h e l l  property. 

The deviat ions of' the magnetic moments o f '  isotopes, 

which a r e  indicated by tho dots  with t h e  same h (odd proton 

isotopes)  o r  by two o r  more crosses with ~ d j a c e n t  n values 

(even pro ton  isotopes) ,  are usually c lose  t o  each o ther . '  
I 

There are f i f t e e n  values of 11 (excludfng n : 1 which is  

. . 



. . . . .  . . . .  . '  . . 
, anornalous,').. f dr wh$ch * . .  &ierim&ntal-. .- . dev ia t ibns  ; are. . .  "recprd$d . . . .. 

. for  'both odd proton a,nd 'odd *eutron,'nucl& having the .same 
. ,  . . ' .  

n arid the ., same ahguhr  momentum J (bdn , . jugate pairs . ) . ; . , The 

. . p g i r s  (or  i n  some cases, triplet's ') are  boxes' off, .in' Fig. . ' 

15*', It. i s  seen tha t  t h e  deviations , f o r  the ,oag &o,ton and 

'odd neutron nuclei wi th  the same n and. J a re  geniraily'  close 

to: each other. The importance of t h i s  fact ,  which was f irst  
. ':; 

< ' : 

noted by Schawlow and Townes, has already .beeri discussed i n  
. . * .  

. 3 . the Introduction'. ' 

The close correlat ion of the majority o f  the. conjugate 
' 

pairs (or  t r i p l e t s )  seems t o  indicate some mirror property. 

w i t h  respect t o  odd proton and odd neutron s t a t e s ,  Other, 

but l e s s  direct ,  evidence f o r  such a mirror property i s  

given by the near equali ty of the magnetic moment . . deviations 

fo r  odd proton and odd neutron nuclei w i t h  t h e  same 3 whose 

n values d i f f e r  by two, four, or s ix .  'Many such cases a re  

found.d.istributed throughout Fig. 15. The addition of two, 

four, or  s i x  odd par t ic les  does not appear, i n  these cases, 

t o  a f fec t  seriously the  magnetic moment deviations, 21 These 

addit ional  par t ic les  can be considered as f i l l i n g  subshells 

'O~he measured odd ngytron magnetic moments f o r  n : 31 
( ~ e 5 7 )  and n : 33 ( N i  ) are quoted as  A940 (P.F.A. 
~Zgnkenber~ ,  Rev. of a d .  Phys., 63 (1952). ) with a 
f a i r l y  large e r ror  possible. The conjugate pair  w i t h  n = 33 
i s  boxed off because of the good correla t ion of the devia- 
tions, while the conjugate t r i p l e t  w i t h  n = 31 is not indi-  
cated because of the poor correlation. This  procedure is 
highly arbi t rary.  

"1n maw instances there is  a l so  an addit ional  increase 
i n  the number of even par t ic les ,  



, . 
i n  such a way as  not to: .change the admixture .of odd pai?ticle. 

s t a t e s .  . The odd pro ton ,  s t a t e s  may. thus be  .essential ly thb' " ' , 

same as: theodd  neu t rons ta t e s  even though the  number . . of 'odd 
. , 

protons is . different . from the number of. odd neutrons. This , .  

is not inconceivable; since four par t ic les  ( i n  general any 

pass ib le  even number of par t ic les)  i n  equivalent a t s t e s  

(same j and 1) coupled t o  J : 2 cannot be distinguished, 

w i t h  respect t o  any e f fec t  on the magnetic moments, from two 

p ~ r t i c l e s  i n  equivalent s t a t e s  coupled t o  J c 2. 

The exper~mentally observed correlat ions of the 
. . 

conjugate pairs can be understood Ln terms of. two conditions 
. .  . '  

which a re  consistent with ,  but much more general than, ' , :  , the .  . 
. 

. . . .  . 

s h e l l  ,model. One .of these is tha t  Q- a . . , 

c a r q  the t o t a l  angular momentum of ttde: nucleons, the, other,, 
' .' . . , . . .  

t ha t  t h e  odd nucleon wave function s a t i s f i e s  a mirror .  con- 
, .. , . ,  :. 

di t ion.  When the angular tnotnentud' J, is 'assumed t o  be ' d i s  trim 
I . . :  , / ' 

buted only among the odd par t ic le i .  , the , mebet ic  I I +  'moment . de - 
' I .  .I 

, , 
' I  . . . , I ,  .. . 

' vis t ions  ' as  defined by 111-la: and 111- lb :  a re  . '." , : ' . 

. . . . 
$ .  

bhere JJ(p) and y i ( n )  a re  the w,ave *iunctlona f . .  ,_  .of . the.odd . .  
. I : *  , 

protons ,of  the 'odd proton nucleus and,of t h e  odd 'neutrons of 
. . 

. . 
the odd neutron nucleus respectively. If the wave functions 



is  equal t o  the number of neutrons, ' then . , 

I This leads t o  the r e s u l t  . . 

Therefore, the experimentally observed correlations of the 

magnetic moment deviations can be understood by assuming 

. thbt .  the even par t ic les  do not share the angular momentum 
I .  
I J and t h a t .  the odd par t ic le  s t a t e s .  a re  described. by the ., 

same wave function. 

. . However,. the experimental . . deviations o f .  the con jugate 

&ir< are  not real>y equai, especially2' ,for . l a r g e r  . n. ,  if - 
ferences i n  t h e  deyiatidni of conjugate pairs may a r i s e .  ..' 

. . 

either.  frbm a lack of perfect mirroring of the odd par t ic le  , 

I '  . . 
wave functions o r  t o  a sharing of the angular hornentum d i t h ,  . ' 

, t he  even 'par t ic les .  . 
. : 

The interpretat ion of the conjugate pairs is fur ther  
, 

complicated by the f a c t  tha t  the nature of the admixtures ' 
' I 

(number of admixed s t a t e s  and their '  r e l a t ive  importance) . . 

' 
contributing 'to the magnetic moment deviations, is  a l so  i m -  ' 

: 

I , , .  . 
5 .  

: 2 2 ~ h e '  poor correla t ion fo r  the conjugate pair  k i t h  
associafq4 ' n : 53 and i n  part .  w i th  the anomalous behaviar ' 

of the 5 I isotopes i n  having d erent  t o t a l  
5?f27 has J :,, 5/2 while 531fB5 has J, = 7/2). angular Zomenta (53 . . 



. . 

portant when trying t o  determine what properties of the  wave 
. . 

function' a re  responsible. for  the correlat ion (or lack .  of 
, . 

corre la t ion)  o f  con jugate pairs.  I f  only, a few s t a t e s  con- 
. . 

t r ibu te  t o  the nuclear wave function (the probability, ampll- 

tudes. of thege s t a t e s a r e  not necessarily small),: then the 
. . .  

experimental correlat ions a re  a good indication tha t  the 

admixtu~es involve only odd par t ic le  s t a t e s ,  which are,  very 

ne,arly the same . fo r  the .  paired nuclei. For,. i f  t h e  :number , , 

, . 

of s t a t e s  i n  the  'admixture is amall, the magnetic moment 

deviation would depend qu i t e  sensi t ively on the probability 

ampli'tudes of these s t a t e s  and an. possible interference ; 
.r) 

, effectsL3. , Under these circumstances even part icle.  contri- '  

. -  butions would . tend t o  destroy the correlat ion i n  con jugate 

.pa i rs  .in two ways, both due t o  the large difference.  . i n  . the 

number of even part icles i n  the odd proton nucleus ns com- - ~ 

pared t o  the odd neu'tron nucleus. F i r s t ,  the even par t ic le  

contributions .would come from di f fe rent  she l l s  i n  

the two nuclei, so equal. contributions t o  the.  magnetic 
. . 

moment deviations f o r  the two nuclei.  would be unlikely. 

Second, the admixtures of the even par t ic le  s t a t e s  from d i f -  

ferent  she l l s  would be expected t o  occur wi th ,  d i f fe rent '  proba- 
. . . . 

." 
b.Plity amplitudes. , This would, of necessity, ' destroy any 

. . .  

mirroring of the odd pa r t i c l e  s t a t e s  since the probability . . . . 
, . 

amplitudes . . of .the,odd par t ic le  admixtures .could no longer be 
. . 

.23 . . Interference ef fec ts  can only occ with t h e .  at3tes .' 
being considered, between two s t a t e s  vJqhjjil) and (2JJ1') 
where j 0 j., f 2, and 3" = k". The Mayer Jensen she1 f model 
s t a t e '  pn give ,no interference contributions. 

. '  . . 



. . 
the '(because . of ' n o r m a 1 i z a t ~ ~ r i ~ ~ c o n d ~ i o n s )  for '  both.nu0. , . . , . 

. 1 .  . . . . . . .  .. .'. 

I . calei ,  Thus if, ,the. N-agnetic moment .deviatibns a re  due to  ad- 
. , . . . . . .  , . .  

*,mixtures df only a few s ta tes ;  experimkntai : $ v i d k c e  lndi  - - 
' 

, . 
I .  . , 

. . c a t e s  that:only odd par t ic les  ark respbnsible Tor most of-the 
. . .  . .  . .  . . 

' ang'ular' momentum. and the odd . . part ic le  , s t a t e s  display a mirror .. 
, . . . 

8 .  . . 
' property between neutrons and, protons. ,' , . 

If many s t a t e s  contribute t o  the adrnixture describing 
1 '  

an odd-even nucleus, then the experimental - evidence does' not 
. . 

cl'early exclude sharing of the angular momentum among the 
. . 

even par t ic les .  The devia.tlons would .not  be expected to  . , . . 

1 . -  depend, . sensi t ively . on' the probabil i ty.  amplitude' of any single 
' I  ,. I ' s t a t e  ( the probability of any single s t a t e  being comparatively 

. -  small). Interference ef fec ts  would a l so  tend t o  be of * less  
I 

Importance i n  the deviations since interference terms would , I 1. 
I occur w i t h  a rb i t ra ry  s igns  and would b e  expected to  average 

. . 
* t o  zero if the number of admixed s t a t e s  were very large. 

, ' The experimental correlat ions would require tha t  t h e  

general admixtuye. of s t a t e s  be mora o r  1ess . the  same for  ' the 

two nuclei. The correlat ions would a l so  require tha t  the. 
. . 

average contribution'  t o  the magnetic* moment deviations: due 

t o  the admixture.of even par t ic le  s t a t e s , b e  nearly the same 
. n 

. , 

' ,  . fo r  t h e  two nuclei.,' I n  sec t ion  I1 it was noted: t h &  the . 

a magnetic hoient deviations fo r  two even par t ic les  coupl$d' ; . . 

1 t o  a th i rd  odd par t ic le  (,j" = J) were roughly symmetric' f o r  
q ; . .  

' odd .' @rotbn9even neutron and odd' neutron-even proton nuclei ,. ' 

' .  

(see I ~ i g .  , 13p. Fig. 13n and . Fig.. , -1Qp, t 8 Fig. 14n), i. . ,  9 ,  the - ' 

4 

I dev.lations from t h e  Schmidt l ines  a re  alrnost.the. sam6 fo r  , 



. . 

. s o .  ,; . 
. ,  .. , . 

the two cases, though not.exactly equal., ' as  they a r e  wtien 

a l l  the par t i c& a r e  odd., Thus, i f  the even pa r t i c l e s  . . . . 
share the angular momentum i n  the manner described i n  t h e  

previous sect ion,  then a l a rge  number of con t r ibu t ing  s t a t e s  

could ea s i l y  tend t o  give about the same contr ibution t o  the 

magnetic moment deviat ion even though the,  contr ibuting s t a t e s  

come from d i f f e r en t  s h e l l s .  . . 

. A ,  

The in te rpre ta t ion  of the correlations~.obsemred . . by 
, .  . .  

Schawlow and Townes i s  thus seen t o  be 'qui te . :diff icul t .  ' .For  
. ~ 

the l i g h t e r  nucle i  (n  4 29) where s h e l l  E . .  e f f e c t s  . , .  seem :impor- 
. . .  . 

. ~ 
t .  .' 1 .  ., .. . 

t a n t  and where t h e  number of possible admixtures ,' i s  .,cornpara - . . . C .  . I 7 . . ,  
t i v e l y  small, . the corre la t ions  ' a re  probably 'due ' t o  mirroring 

. I 

of the .odd pa r t i c l e  s t a t e s  with, l i t t l e .  o r  no' sharing of the 
. . 

I .  

angular momentum among the  even pa r t i c l e s  ; ~ d r ,  . . heav1e.r 

nucle i  it i s  not  possible t o  exclude a shar ing b f  t h e  engu- 

l a r  momentum b y  the  even pa r t i c l e s .  Such a '  sharing may ' in- 

deed account f o r  the  poorer correlati 'ons 'of the  conjugate 

pai rs  'found f o r  l a rge r  n. I _ .  
. . 

' ' On the  bas is  of t h e  experimental . cbrre ia t ion of cdnju- 
. , 

gate p a i r s , .  odd p a r t i c l e  ,admixtures: w i l l  be; assumed, t o  be' 

, primari ly r e s  pons i b l e  f o r ,  msgne t i c  moment deviat ions even , 

. ' .  
when the number of admixed s t a t e s  is assumed t o  be large.  

~owevei., even. pa r t i c l e  contr ibutions w i l l  a l so  be 'considered, 

but  with the value -o f  j" r e s t r i c t e d  ' t o  j" r J. Such a r e s  - 
t r i c t i o n  on the value of j" limits the number o f  possible ' 

even pa r t i c l e  s t a t e s  ava i lab le  f o r  admixture a s  compared t o  
. a 

the number 'of possible odd. pa r t i c l e  s t a t e s  . . Thus, even if a l l  
. . 

, . 



possible s t a t e s  were admixed with equal probability,  the odd 

pa r t i c l e  contributions would be of most importance i n  de t e r -  

mining the rnagndtic moment devia.tions i n  agreement wlth the 

evidence of thk conjugate pairs .  

An attempt w i l l  now be made t o  understand the magnetic 

moment deviat ions i n  terms of' admtxtures o f '  thooe s t a t e s  

considered i n  Section 11. The Mayer-Jensen s h e l l  model ts 

used as a guide t o  determine which s t a t e s  a re  t o  be admixed 

t o  form the nuclear ground s t a t e  wave function. O f  primary 

importance is the  energy l e v e l  system proposed by Mayerl and; 

 ense en^ t o  apcount f o r  the magic s h e l l s  a t .  2, 8, 20, 50, 82, and 

126 protons o r  neutrons. 

.. - The l e i e l  used i n  t h i s  thes i s  is shown i n  Fig. 

16, The l e v e l  order ing.of  protons and neutrons a r e  very . , 

s imi la r  with the  s l i g h t  (differences being a t tq ibuted t o  

coulomb e f f ec t s  among the protons. Every s t a t e  shownsin 

~ i g .  16 has  q . a 2 J + 1 f o l d  degeneracy o f  the  magnetic 

number M (M = J, J -1, . . . -J). 'Klinkenberg.'indicates 28 a s  

a closed s h e l l  but  t h i s  is  ~ s u a l l y  considered a s  a subshell  

and s h a l l  be so t rea ted  i n  t h i s  work. 

The odd-even nucle i  a r e  assumed t o  have t h e i r  nucleons 
, . . 

In  those configurations specif  led  by. the s h e l l  scheme given 
. 

i n  Fig. 16. I n  thosk cases where the l eve l s  a r e . f a i r l y  
. I  9 . 

close t o  each .other  ' s o  t h a t  there  i3 competition .between the 
4 .  

s t a t e s ,  t h e  s h e l l  mode configuration of a given odd-even : 1 .  
241?rorn the 

Klinkenberg, Rev. Mod. Phys . , 
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FIG. 16. ~ u c l e o r  shell schemes .' 



nucleus bust. be, deduced :from the experimental data, ' as has 
.24 be& done, fo r  example, by .=inkenberg .. . . 

Although the point of view here is tha t  the l ~ a v &  func - 
t ion may 'd i f fer  quite appreciably from the s h e l l  model func - . . 

t lon, it w i l l  be assumed tha t  the energy levels and the nu- 

c lear  configuz*atfons given by KlLnkenharg may be used t o  

, . determine the "most probable" s t a t e s  which a r e  admixed in  

the9,nuclear wave functions . Considerable freedom h i l l  be 

assumed . i n  mixing conf'iguratlons ss well as i n  ,mixing. wave 

functions of a given configuration. However, it seems 

reasonable ( for  the sake of simplici ty i f  nothing e l s e )  t o  
. I  l i y i t  any mlxing of configurations, 1.e. any new dis t r ibu-  . , 

. 
t ion of ' the par t ic les  among the energy levels., t o  those 

. . 
, . 

levels  wi th in  a given s h e l l .  Of course the d i f fe rent  con- 

f iguratlons . must  form wave functions with the correct  angu- 
.I 

l a r  momentum and pari ty i n  order t o  be  part  of the nuhleai . 

wave function. . , 

Thus, f o r  a given odd-even nucleus the three pa r t i c l e ,  

' s ts tesa5 . . considered f o r ,  any *admixture a re  constructed' from ' . ' 

t h e  varlous possible configurations having two par t ic les  i n  : 
, .  . . ' . 2 

, equivalent . s ta tes  within a given she l l .  When the three"par-, 

' " t i c l e a  a re  a l l  odd, a l l  possible odd ,par t ic le  configurations 
' #  

, w i t h  two par t ic les  i n  equivalent s t a t e s  within the u n f i l l e d  ' . 
. . 

2 5 ~ t  should be emphasized k a in  tha t  i n  a l l  .consideration8 
of the three par t ic le  s t a t e s  tha f actual ly  many mme than ' . . 
three par t ic les  may be sharing the angular momentum i n  the 

,wave functions specified i n  Seotion 11. The wave function of 
,any even number of par t ic les  i n  equivalent s t a t e s  combined t o  
give 3 1  = 2, w i l l  give the same magnetic moment as  two par- 
t i c l e s  Ln equivalent s t a t e s  combined to  give j' q 2. 



odd she l l  are  considered.' .The even she l l  is as'sumed'to be' ' , s  

6 . 

coupled to  angular momentum j r  = 0. When two par t ic les* of 

the three par t ic le  s t a t e  a re  even, .the odd par t ic le  confi- . . / 

1 .  guration is assumed to  be the same as i n  the s h e l l  model,' 

' while  a l l  possible even par t ic le  configurations h i th in  the 
1 .  unfil led even s h e l l  (with the two particles i r t  equivalent 

s t a t e s )  are  considered. 26 A typical  nucleus w i l l  be d i s -  

cussed here fn  order to  i l l u s t r a t e  the method f o r  obtaining 

possible s t a t e s  f o r  admixture. 

Rb85 is an odd proton nucleus wi th  a measured .magne'- 37 
t i c  moment equal t o  + 1.353 n.m. (nuclear magneions). ' It has 

the following s h e l l  model'configuration f o r  the odd part icles,  
- 4 

(20)(4f 7/218(3p 3 / 2 )  (4f 5/215, where the (20)  indicabes' 

t ha t  the 20 s h e l l  is f i l l e d  and where ( n ~ ~ ) ~  indicates ' tha t  

x particle$ are  i n  the s t a t e  specifiedaby the r ad ia l  quantum 

'I! nu e r  n, the o rb i t a l  angular'mom6ntum L, and the t o t a l  angu9 
. . 

l a r  momentum J. For the nucleus' being considered,':the she l l  . .  
model specif ies  tha t  the 4f 7 /2  and 3 p  3/2 subshells a re  

I ,  

'completely f i l l e d  (and of necessity coupled to ,  angular rdo- 
. - I 

> . g  

mentum j1 : 0) while there a r e  f ive  out '  of .a ' possible , , s i x  

par t ic les  i n  the 4f 5/2 subskell. F O U ~  o f .  these ;f ive par- 
. .  . 

t i c l e s  are, according to  the s h e l l  model,' coupled t6 j l . . :  0. 

' ,  

26When the ' shel l  is closed or  one less b;r one ino'ie than ' 
closed, there is some ambiguity as t o  which conf igurationa ' 

should be used i n  admixtures. In  t h i s  work two par t ic les  
are  assumed t o  be promoted out of the closed or  near closed . ' 

s h e l l  ( in to  equivalent s t a t e s  and usually coupled t o  jV e 0), 
and the configurations of the now opened s h e l l  a re  usually 
used for  admixture. I n  some cases, when there is one parc 
t i c l e  more than a closed she l l ,  the closed s h e l l  is t reated 
as s t i l l  closed even though two par t ic les  have been promoted 
t o  what is then t reated as the unfi l led she l l .  Again t h i s  
procedure is completely a rb i t ra ry ,  . 

I 



. . 
The f i f t h  par t ic le  has the t o t a l  crigular , momentum J : 5/:! 

and determines the p j r i t y  (odd) of the nuole&. The s ta tes ,  

s f  5/2, 3 p  1/2, and, 5g 9/2 of the  (20)  -(50) s h e l l  hove ener- 

gies close t o  those tha t  are  f i l l e d  and the nucleons may 

I find it advantageous t o  distribute.themse1ves among these 

I s t a t e s  ra ther  Ltian those indioatea by the s t r i c t  s h e l l  model. 

The conf igurations of three odd par t ic les .  (having the coorect 

I -  parity and capable of giving the correct  angular momentum), : 

I allowed by the prescription of the previous paragraph are  

I - indicated i n  Table 1 along with the appropriate' magnetic 

moment as calculated i n  Secti.on.11. 
. . . . 

In  Table 1 the rad ia l  quantum numbers have been omitted ~ :- - for  convenience and only the three par t ic les  sharing the , . -  

~ 
~. 
! .. angular momentum i n  the configuration.are indtcated, where 
I 

v\rJJ(2 j j") is defined by ' 11-8. Some of these configurations ' 

represent considerable mod.ifications of the she l l  model, 

Thus the three par t ic le  configuration f : fTI2 and 

kl' 11 : f can only be formed by taking two par t ic les  out 
5/2 

of the f filled fTfi subshell; and:placing them, coupled t o  

jt : 0, i n  an unfi l led subshell. Four of the -remaining f 
7/2 - 9  

part ic les  a re  coupled t o  , . j1 : 0. while the other  two f7j2 'par-  
, $ 

t i c l e s  are  'coupled t o  jl r 2.which i n  turn is  coupled to' the , '  : 

f . partic16 t o  give the Tina1  t o t a l  angular momentum ' ' ' 
5 /2  
J :. 5/2. Other three.  par t ic le  configurations represent , ' .  . 

9 ' 

siniilar sh i f  t in&'  of par t ic les ,  appropriately c o u p l d  to  . . give . 
, . 

I 

I the. f i n a l  angular momentum corbeb tly . . ; 
9 .  

. . 
% .  

4 * . ,  . . I .  . . 





The even neutrons of the , , ~ b ~ ~  nucleus have theAshe l l  
/ I  

model configuration (20)(4f 7/2)8(3P 3/2)4(4f 5 /2)6(3~ 1/2)2 

(5g 9/2 18, 80 just 58 9/2 particles are  needed to  'close 

the ' 50 shell .  The three nucleon configurations. which . w i l l  

lead to  possible admlxed s ta tes  i n  t h i s  case are given in' 

Table 2. The two particles i n  equivalent s ta tes  are neutrons 

and the third particle is a proton. Only the one proton s t a t e  

5/2 is considered fo r  the reasons s tated earl ier .  

Altogether there are eighteen possible configurations, 

corresponding to-eighteen'wave functions. The magnetic 

moments of these s ta tes  vary considerably with the great 

ma jority ' fa l l ing  . 
. 

inside the J = L -. 112 Schmidt, l i ne  fo r  
. .  . . . . . 

protons, 1.e. the great majority of magnetic moments, are 
, . ' I  

greater than 0.862. n.m., the Schmidt yalue fo r  ak fa'5j2. 'odd ' . .  
I (. . . . , . ,  

, . prdton nubleua I . .  ,, 1.: . !t'hu$the , .  experimeritil magnetic~moment' o f  . 
. . 

I I ( .  ,. .a .  . %  .' . , +  ',. 
.i .353 n;m.< I . .  can . *  .,b6..;obti$ned . . by a s~mble :admixtilri"b~ the she i l  , 

, . , .  . . . , , I  , .; #$, - ', , . 4 .. . . a  

, . A ,  ' -  - , 

model a.tate:withr'thmdit ' ,  -'any' , , &' , : the  . , .  a el'ihteen ). . . I' states'  . .. ., belrig :" ,: ' *  

+ , , ,  8 .  7 _ , .  * 
.I. . '  ' , $  , .  . ,  I 

. '.' '+ , . * .  , + , I  . .  t , !. '.$':: , , . 
. considered.: .. t . ' :  t . i t  . . +, 1 :, . .. I 

, . - < ,  : .  # ,,. . I , '  ., I . 
I I I' 

, , s n  ! - - - ,. , , t  , ' . '  ' ".;,', ' 8  . 
I '  . .! l V  . . ! ; i * .  * ,  

6 4 4 , '. .. 0 t , * .  
' ' I ~ ' i t h i n  :. ther 'scope:: of :'th6 mo&l- being :used .tiere, the . 

. . .' I . . ,. . .' ' *  - ,  I )  
. . 

I ..,I L '  , ' , I :. , ? :  ! ,- 
, a m a x i m u m  .$robability . - * I  I . , ,;. fof the , . :shell . . .  model~ . s ta te :  1 .  tha t  I isg . .  &on;?' 

. . .  , -1.. ,, 
s is tea t fwi th  . , *,the ,obs6,rvqd magnetic: + .  .moh;ent t ,  '1; 87.2;%; , .  , I  . l n l  t h i s  

. ', ' ' , I .  . , I , '  I .  1 

case the only admixed. conf iguratibn is f . : f and :f " j , t :  :. .. 
1 , .  

p .-j/2! (18 ;2$). 'FOP most nuclei :the : maximum shel l ; .  . model-'pro- ., . $ 

. . 

babil i ty  would be considerably ' less,  since the magnettc moment * 

' #  

' deviation of ' 3 j~b85 , , i~ '  smaller than average , .  "( - &2). 

-: In  g&ne$al, i f  the admixed !eve' fuictions , are ?h .'the ,type 

considered in  ~ e c t i o i  111 and res t r ic ted  by. the ,pre'scription 
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for  ' the admixed wave functions given i n  t h i s  Sectton, then, 

the magnetic moment deviations indicate tha t  a t  best  t h e  

s h e l l  model s t a t e s  a re  not much more probable than the ad- 

mixed s ta tcs .  If interference ef fec ts  are considered, then 

the admixed s t a t e s  can possibly. become even more' important .. 

I re la t ive  t o  the s h e l l  model s t a t e .  

In  many nuclei  the magneti c moment, deviation can be . 

1 .  explained by assuming tha t  t h e  s h e l l  model s t a t e  has. l i t t l k  

or  no probability amplitude' compare'd t o ,  a s i n g l e  pos'sible 

I admixed s t a t e .    ow ever, t h i s  is ,not a general r u l e '  and there 

is no .peason t o  bel ieve t h a t  such' agreement . , between ,:the ob- 

served magnetic moment and t h e  magnetic , moment,, given by,, a ' ' 

. . .  . . . . . *  . 1 .. - single 'admixed s t a t e  is  not fortuStous.. .:I , ' , I  . s 

I 1 . . . .. , . . 
I 

If more than one of the possible* s t a t e s  . i s  admlxed ;with 
I 

I . . ' *  . 
the s h e l l  model s ta te , '  t h e  pbkrelation',?f t h e ,  magnetic moment ' 

I I , 3 ,  

deviations with the' wave iunctioks . . beco&s i m p o ~ ~ i b l e '  , .  ,with.- - ' 

, 4 ,? , . . . ., 
out fur ther  assumptions. .The 'obs&&edmagnetic.mothent can ! 

* . '. -. ' . '. . 
, . only a func t i o a a l  - r e l a t ion  among the  ' p r b b a b i l ~ t ~  ' ampli- 

, . 
I # '  ' .  4 .  

tud6s of the various admixed , s t a tes ,  . + i f .  there a~e .more  than, - ' 
1 . . . < 

I .  , ., . , I .  

two s t a t e s .  Furthemiore interference ts Ca6. occur;oine . . .: :.. 
I .  I . a  ' . . :  ' ' . ' .  . I  

many cases ,when more than' one addl ied s t a t e  1s' :conbideyed,' . ,  e .'g. 
+ , n d r , , ,  '- 

s t a t e s 1  formed from the configurations 3 . = . f, 5p9 f, ~ 1 1  - 
. * ,  - 

3/2 and 3j : , f 5/2, 1'' 1 " ' w i l l  g i v e  a honvanis  hin& 
I ,  - 1  . I '  

matrix element fo r  the 'magnetic ., . tibment operator,: , . .  ;. The 9 c o i t r i i  
' I  ' . .  , , ,  . . 

,' butions of interference ef fec ts  occur with 'an unknown . :sign . 

since the probability amp1;tudes o f .  the: I * q  a&iieh"b I f e t e s  arb 
' t . * .  

undetermined w i t h '  respect: t o  sign. In  {many poss'ible admix- 
1 

' I  * 14 , I  
, 

9 



tures involving several states, the interference contribu- ' . 

tions t o  !the calculated magnetic moment may be of consider- . 

.able 'import&nce. Thus any specific assignment of emore than 

one admixed s ta te  on the basis of magnetic 'moment deviations . 
. * . . 

. b 

' i s .  highly .arbitrary. . ." 

. Since there is  l i t t l e  basis for  an 1% DrLori. selection 

of one adniixed s ta te  over another in constructing a ,nuclear 

model, it seems reasonable to consider a s t a t i s t i ca l  model, 

l.e., to  assume that, within the classes of the admixed 

wave functions being cons idered, a l l  possible a tates ( includ- 

lng the shell  model s ta te)  are. squally probabie. This  repre- 
I 

s&ts; i n  effect, a sharing of the angular momentum &nong 

most of the "unfilled" ' shell  s tates of both the. odd and even ' .  

particles. However, the angular momentum is not &hared uni- 

formly among the states,  b u t  instead is subject to a decided 
. I 

influence -of t h e  shell  . modei' energy levels b s  entailed in  

the particular specification of the admixed>states being used. 
. . 

. Such a model of  complex ,nuclei is f a i r l y  . ,  reasonable on 

the basis of the rather contradictory evidence . of . t h e  twd 
body problem and complex nuclei. The nuclear forbis deduced . * , ': 

from two body data, e.g. 'the deuteron, .proton-proton scatter - 
ing and proton-neutron scat tering .ere'.s trong and short ranged. . ' 

, 

Data on complex nuclei' e. g. .nucleart . .  spins, mametic moments, 
? 

'isomeric states, etc. , indicate, that a given- nucleon moves 
8 + I 

i n  an average central potential, . i .,e ;' the independent par - ,  . 

t i c l e  shell  model. ~ t r o & . s h o r t  ringe nuclear' forces would .: ' . 
\ .  

appear to  be inconsis tent wi th  ,the: idea. 04' 'an average poten- 



. . . : 

t i a l ,  necessary fo r  the independent, p a r t i c l e  model. The i n -  

teractions be tween nucleons due to the ' short  range forces 
, : . . 

would be expected to  cause continual  interchanges of energy 
. 

'and momenta between par t ic les .  Such . interchanges would a l so  

involve the angular momentum of the nucleus, and on the  

average f o r  very strong and short  range lntersct ions  L t  F s  

reasonable t o  assume tha t  the t o t a l  angular momentum of the 

I nucleus, which of course is a constant of the motion, is 
. .  

, 
equally shared among a l l  the nucleons of the nucleus. ' This 

asaumgtion carr ied t o  the  extreme leads t o  the Margen~u- 

Wigner valubs f o r  the magnetia moments of complex nuclei. 
. . 

The MargenauWlgner model takes no account of the shell ' .  

. . . model. but the s t a t i s t i c a l  model suggested here takes account 

o f  ' ' that  model by introducing it as  a b a s i s  f o r  the select ion 

of s t a t e s .  I n  tha t  sense the present model Is a synthesis 

.of the basic principles of the s h e l l  model and those o f '  the 
' 

Margehau . . Wigner scheme. 

A .  fur ther  assumption must be made before.  magnetic moments . 

can be calculated on the basis of what may now be cal led the' 

! . ? s t a t i s t i c a l  s h e l l  model". ~amely,  interference effects a r e  . 
, '  . 

assumed t o  average t o  zero. If the  number of'admixed s t a t e s  ' 

l a  very large, t h i s  assumption. is probably just i f ied.  How- 
'. 

ever, the number &F s t a t e s  usually considered i n  the s t a t i s t i c a l  

s h e l l  model is not very l a rge  and the' . . number of interference .' 

I 

terms . . is a t i l l  smaller, In .these, cases the In te r fe rence .  . . '  

r ' .  

. terms -are assumed t o  be. equal t o  zero j u s t  f o r  ',the sake  of . . 
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49 
. . 0 ' When using the s t a t i s  t i c a l  shel l  model ' to .   calculate^ . .  , 

. . 
. . 

theore t i c a l  k g n e  t i c  mo,menta, every ' odd-even nucieus , 'i* 
- .  . . . . ,  . 

. elassif led by t h ~  usual she l l  model s t a t e  (by to t a l  angular 
. . .  . ' 

26 momentum atid parity), .the, unfilled odd pa r t i c l e  -shell .  , . , and 
,26" ..: ' .  ,, . ,.. , , 

' by the unfilled even p a r t i c l e  she l l  ' . The . alloweti' bonf igqra - 
. . .  . .  . .I . . . . . .  , / . ' I .  

t i6ns  of three particles, a r e  determined by the unfil led k"hd1ls. 
. . a , .  . ., .. 

of theodd particles and o f  the:,evsn particles. The allowed '' 
admixed a tates, (constructed from these . configurations ) are 

.: then:determined, by the ~, : uiually ass igned , she l l  ' model s t a t e  . 
. . 

A l l  s t a t e s  are assumed. t o  occur', w i t h  equal . probability. 
. . 

:: 9-e the interference terms are assumed t o  b e  . .  : . , .  equal t o  : , 
, 

, . ... 

zero,. the theore t Lcal magnetic moment 1s' ob.tained ,by taking . . 

s simple average bf the magnetic moments6btained $n Section . . 

I1 foy each of  the admixed s ta tes  (the "usual shel1,model 
. . 

atate,.  being included as one o f ,  the s ta tes) .  It then f'ollows 

that  a l l  odd-even nuclei i n  the same clasa, i..,e.' having 'the 

, same she l l  model state.  and the aame unfil led shel ls ,  would. ' ' 

have the same magnetic moment according . . t o  the s t a t i s t ~ c a l  

ahel l  model. Such a behavior 18 noted experimentally . . . .as' . can 
1 .  . . 

be seen i n  Fig. 15 which shows that  t h e  magnetlc jtnbment , -. den . '  

viations fo r  nuc le i  -wi th  the same J, - parity, and unfil led . . . 
' ahells are nearly ' the same. A s t r ik ing example of * th i*be - ,  , 

, ,.. 

havior is offered b y  ' the -negative deviations f d r  J =.; 7/2 .. 

' between n = 51 and n - 57 ( t h e  J :, 7/2 negative' deviations a t  
. . 

n : 71 and n 8 73 are i n  a diffe'rent .c lass  s i n c e  \ .  the even " 

. .  ~ 
. - 

she l l  is different). 'I 
' t  I . .  

. . . .  . , . . I  

, . . . 

Eighty -f ive odd-even nuclei wi th  ,meadured:magnetic . . 

, . . .  
. I  . . . , ' . I  , .  , .  . . . . . . . .  



moments have been combined into 15 odd:! proton-even neutron 

classes and 15 odd neutron-even proton classes. .These 

classes a re  's.hown.in Table 3 and Table 4 respective.ly. The 

t o t a l  angular momentum J is  indicated i n  the  f t r s t  column 

.while the usually assigned s h e l l  model s t a t e  is givers in the 

second column. The th i rd  and fourth columns indicate the 

unfi l led neutron s h e l l  and proton s h e l l  respectively ( the 
, unfil led s h e l l  is indicated by the two: closed s h e l l  numbers 

. . 

which const i tute  i ts  upper  and lower bounds). The f i f t h  ' , . , 

column gives the number of nuclei  i n  the part icular.  c lass  

being considered. The s ix th  column gives the average experi - 
mental magnetic moment, ,bt :x(ave) o r  A &(ave), of the nuclei  

.,. - i n  the,. class.  The seventh column gives the magnetic'moment, 

'A ok I?, obtained from considering admixtures .of,  only odd 

par t ic le  configurations in the s t a t i s  t i c a l  s h e l l  model, while 

t h e  eighth column gives the magnetic moment, A or  A 5, ob- 
. , 

tained from. considering a l l  possible admixtures i n  the s t a t i s  - 
t i c a l  s h e l l  model. The ninth column 'gives the average of the 

. O  absolute value of the magnetic moment deviations b, or  A n 
fo r  the nuclei  i n  a given c lass  which a re  t o  be compared t o  

the deviations f r i m  the s t a t i s t i c a l  s h e l l  model magnetic moments. 

The next two columns' give the absolute' deviations of the aver - 
. . 

age experimental magnetic moment,/& Ex(ave) o r  M &(ave), 
. . 

from f ,  ,&? and , where these absolute deviations 

a re  defined a s  P 
- ( a t e )  / 

s,P = / 

a )  (111-5) 
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. s m  . . . . 

- Mom " NO. OF AVERAGE 
J .  n . n .  STATE N SHEZL P SHEXL NUCLEI A ~ ( A V E ~  h1 

' 

A n .  
- 

2 0 1 / 2  ' 2-8 . - 2-8..' 1 0.637 0.637' 0.034 . . 0.034 0.034 
- 

1/2 s 1/2 I 8-20 I . 8-20 1 1 f -0.555 I -1.212 -1.212 I 0.710 0.343 I 0.343 
8 .  1/2 I s 1/2 1 50-82 f 50-82 I -0.700 1 -1.0 0.634 I 0. 0.183 

3/2 1 D 1/2 82-61 0.421 I 0.1B3 0.185 

3/2 D 312 2 -8 . -1.177' 0.385 0.130 . . 0.286 
3/2- 1 d 3/2 I 8 -20 8-20 1 - 1 - 0.643 1 .  0.626 1 0.856 1 0.264 0.009 0.111 

131 , 

J/2 1 .D 3/2 1 20-53 1 20-50 1 1 1 -0.5 1 -0.621 / -0.437 i 0.739 1 0.063 1 0.033 
3/? - f - d 3/2. _ 50-82 1 50-82 1 3 I .  0.825 1 0.39a 0.593 1 0.169 1 0.226 1 0.131 
2 1 3/2 82 -126 1 50-82 - I  1 . 1 -0.613 I -0.424 1 -0.171 1 0.099 1 0.231 

. . . . 
5/2 f 5/2 I 28 -50% 20 -50 . ,  1 I -0.1701 '0.669 0.257 I 0.547 0.108 
5/2 1 d. 5/2 1 50-82 1 . 20-50 3 1 -0.828 1 --0.5321 -0.399 0.567 1 0.155 0.224 
/ - i f 5/2  1 82 -126 1 ' 50 -82 1 1 -0.66 ! -.-0.54 91 -0.169 1.060 0.058 1 0-257 

7/2 f' 7/2 1 -  20-50 1 20-50 2 -1.104 1 '  -1.076 -0.901 : 0.423. 0.035 0.106 
1 82-1'26 ' 50 -82 4 -0.713 -L -0.266 -0.377 AlL6Z5L 0.234 

20 -50 .2 . 0.459 0.056 0.069 



The two deviations s l, and ,g2 a r e  considered separ- 

ately, since, as has already been noted, the correlations 

of oonjugate pairs of nuclei seem to indicate that only odd, 

particles share the angular momentum in  i ighter  nuclei, . . .  . ' . . 

while for  heavier nuclei the' ev idence of conjugate pairs 
.. - 

does not exclude even 'particle contr~butions. . A s  . w i l l  'be 

indicated in the following discuss ion,. the conclusions ob- 

tained from the conjugate pair data seem to  be verified. by 

. the results tabulated in Table 3 and Table 4. 
. . 

In Table 5 the.weighted averages of the l a s t  three 

columnsof Table . 3  and Table 4 are given. I n  the averaging . , 

process the weight for each class is given by t h e  number of 

' . nuclei in  the class. This procedure seems called for by the 

s t a t i s t i ca l  nature of the theory. Thus the average m~gnetlc 
- .  

moment of a class which contains a large number of nuclei 

would be expectgd to agree wi th  the theoretical magnetic moment 
I 

' . .  . 

. on the s t a t i s t i ca l  model better than a class composed ok one . . ' '  

5 .  

or two nuclei. Individual differences in  the ground atate8 . 
of nuclei . ... within a class would be expected to average to  zero 

i f  there i a  a sufficiently large number of nuclei i n  the 
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class. A weighted average emphasizes t h i s  expec tatlon. 
. . 

~esidek . the simple weighted avekaies,  able 5 also 
. , 

. . 

gives the weighted averages oA the J = L +. 1/2 .and '3  = L - 
. . 

1/2 classes separately. . - When, the average 6 f ,  S 8, and . 

$ ;, 6 are 'compared t o  the appropriate averaged devia- 

tions from the Schmidt l ines and A ", it is seen that 

the s t a t i s t i ca l  shell  model gives a much better f i t  to -the 
i 

' rnagne t i c  moment data than the Mayer - Jensen shell .  model. 

Thus in  the be8 t case, involving, 29 nuclei, the J = L + 3./2 

odd proton nuclei have an average $ e. : 0.020, i.e. a n  

average deviation of the  heor ore tical magnetic moments from 
I 

the experimental magnetic moments . . of . .  approximately 0.04 . : ' 

. . 
nuclear magnetons. This is to be compared. to  the average 

deviation from, the Schmidt l ines of ' A r .  0.555, 1.e. over ' . . . .  

1 nuclear magnet,on. . The surprisingly good agreement in  , , . . 
.,. < . . 

t h i s  case is probably fortuitous to some extent.' 

The J = L -f- 1/2 nuclei are seen to  be in generally 'good 

. agreement wi th .  the. s t a t i s t i ca l  shell  model, where the i m -  . 

provement over the deviations from the Schmidt value A P 

and ,An is by a t  leas t  a factor o f  4.  he improve.ment for  ' 
, . 

J : L - 112 nuclei is seen to. be negligible i n  comparison . 

w i t h  t h a t f o r  the J = L f 1/2 nuclei. The comparatively 

poor agreement fo r .  the J = L - 1/2 nuclei may be attributed..  
. . 

i n  part to the fact  that most J = L - 112 odd-even nuclei 

occur near the. closing of a shell. This may lead to  either 

the ambiguous prescription for mixing disc,ussed ' i n .  footnote 
. . 

26, or mag actually result  in a much more restricted form o f  .,. 
I .  



.. . I ,  . .  . . .  

mixing. ' ~ n '  any event; there' is s.tLll. sohi impr6vembnt for. . 
' ,  , 

' I ,  . . . . 

the J = L .- 3. nuclei; . especially for .s .w.here', both even and . 
, . 

odd particle .admixtures a r e  considered. The average devia- . . . , . '  , 

t ions  for the -S21s are equivalent to a difference of .  ap- . . 

' proximately, 0.33 nuclear magnetons between .. . the experi.mental, . . :. 
.. 

magnetic moments, . . and the magnetic moments predicted by the 

s t a t i s t i ca l  shell  mbdel. The average Schmidt value deviatibns . . , , 

are not much larger than t h i s  as can be seen in  Table 5. 

In connection w i t h  t h i s  discussion of the J = L .- & 
b 

nuclei, it i s  interesting to note that most of the deviations 

* .  
Predicted by the statistical shell  model f o r  the J ='L -; ) 

. . 
classes are too f a r  Usj de the corresponding Schmidt l i m i t , .  

compa'red to the experimental 'magnetic nioments . , Agreement 

can be immediately imeroved by assumLng that for J = L - 6 . .  

nuclei the shell.mode1 s ta te  has a somewhat greater weight. 

'than any other single admixed state. 

These ,averages, while quite significant, obscure some 

tnteresting features found in  the body of Table 3 and . 

Table 4, . First,  , there is the fac t  that the variation of .  
. . '. 

the average magnetic moments for classes wi th  the same J 

and parity, b u t  different unfilled shells, is in  large 

measure predicted by the s t a t i s t i ca l  shell  model magnetic 

moments, e .g . the p iI2 and d 5 / ~  , blasses , i n  Table, 3 and the 

p 3/2 classes in Table 4. Furthermore the S 1 s generally "., 

represent a better f i t  for the smaller unfilled shells 

( l ighter  nuclei), while the . 6 represent a better f i t  for 

the larger unfilled shells ( heavier nucle,i ) ; . 1. e., odd par - ' - 



I '  _ .  - .  _ 
t i c l e  admhtur6s  aione . . give better '.agreement ;for :lighter 

. . . .  .: , , , . . 

, 
nuclei,. while both odd . particle . . admixt~irgs ,,and . . even . . .  particle . . 

. . . .  . . 

admixtures . give better bgreement for tieivler nuclei .' . . 
I .  

Agreement for nuclei i n  mang classes c'ould be .improved 
. . . . 

' by eliminating a few admixed states o r  by a ,  judicious 'weight- 
. . 

. . i n g  of the: .admixed stat&, a weighting baseds:on considerations 

of the .shell model. However, .such detailed treatment does 

n o t  seem warranted, since the theory' is alrea&rath& arb1 - 
trary. The improved agreement by use.:of t h e  s t a t i s t i ca l  . ., 

. , 

shell  mogel*with the experimental magnetic moments seems to , . 

. . . . 

indicate that a fa i r ly  large number, of admixed states ' is: . .  . 
I . . , ' .  . 

: '.necesssry and that the' usual s h e l l  model may be a. rather. ' 

' 

. .. . .  . 
. ._ .. : : . . inad&uate' description, of complex nuclei.: :, . . ,.,, ' 

1 " .  ' . . , .  . . . . . , -.. 
. . . . . I . . . . .  



s . . . 

. 7  Graham .'and . . Bell have measured ' the lifetimes of several .  . 

. . 

: isomeric~magnetic dipole ( M l )  radiative transitions which ' , 

. . 

I 'should be forbidden on the basis of the ~a~er- ense en shell  

model assignment f o r t h e  excited s ta te  and the ground state.  

The measured lifetimes of these "forbidden" transitions were 

1 .  found' to be comparable t o  :the lifetimes of 'allowed M I  trane - 
i I itions. . The experimental llfetlmes . of . the forbidden" 

transstions indicate that '  either the ground s ta te  'and excited 

s ta te  are  not adequately described by the Mayer - Jensen shel l '  

.. . . model or the magnetic moment ope*rator has terms, in  addition 

to the ordinary . magnetic . moment operator, e.g. exchange mag- 

netic . moment operators, .which have different selection rules 

than the ordinary magnetic moment operator. The l a t t e r  point 
. . 

6 of view was that considered by Sachs and Ross . 
, The investigation in .  Sectfon 111. of the magnetic moment 

. . 

deviations indicated that the, MayerD~ensen shell  model may be 

quite inadequate in  describing the 'ground states bf complex 
a - .  

. nuclei. If t h i s  is the case, then the excited states are, , 

I . :  probably also composed of admixtures somewhat similar to 
. those of the states.  The s t a t i s t i ca l  shell  model, 

. . 

used in  the l a s t  section to account for the s t a t i c  ,'magnetic 

I moment deviations, w i l l  be investigated in  t h i s  section as a 

. possible explanation f o r  the, "forbidden" M1 radiative trans - 
. . .  . , 



. . . , 
it ions' a s  opposed t o  the use :of addit ional  .m&&netic moment: 

2 . " ' 1  

, .., .. 
operators,,. Howevep,, the actual  cause of the  "forbidden" M1 

. . . . . , . , " .  , . 
I 

1 -. . 
t rans i t lona is  probably a ra ther  complicated . . combination of 

' . .  . . 

exchan& momenta ,and admixtures . . of s t a t e s  I .. . ra ther  than a 
. . .  . . . . .  . 

s ingle  one of the t y o .  f .  . , . . 
. . .  . . 

. .  
.' The ML radiat ive .trans i t i o n  piobabii i ty Is . giv?.n -by the ' 

. . , '  . ,. express ion : . . .  
,,,I' , 

a a 2 ' .  
I ' (e2)~ir~~)E3r'l<s;,-aA yh7')l 

, . ,  fit, i ~ ,  F ~ , ~ ,  ; J. . . 
. . 

. , ' . , (Iv-1) 

where E 'y is the photon energy of the radiat ive,  t rans i t ion  i n  
'2 . :units o f  mc , Jl and MI a re  the'  t o t a l ,  angular mometitum and z 

. ,  

component of the t o t a l  . . angular momentum of , the  i n i t i a l  (ex- 

c i t e d )  s t a t e  bf the'nucleus i n  the transit ion,  , if and M a re  the 
. . 

' t o t a l  angular momentum and z component of the. t o t a l  angular 
' A  

momentum of the f i n a l  (ground) ,s ta te ,  I I ,  of the nucleha, , , n is an 

: arb i t ra ry  un i t  vector which. ' w i l l  be %akin a s  the . , . ;  z a x i s .  , i n  
I I  . 

fur ther  calculati'ons, 2 is the . appropr ia te . rpgnet i~ '  , moment . ,  

. - 
' (  I 

. ' operator which. w i l l  be assumed t o  be the ordlnarjl- magnetic . . ' 
. .  , I 

- .  . moment operator 11-1 i n  a l l  fur ther  work i n  t h i s  .section, 

The. symm6te properties of the  emitted,'Ml radiation r e  -. 

quires tha t  the  following select ion rules  hold , f o r  the. . i n i t i a l  
' L 

. ,  
' . 

a n d f  inal s t a t e s  o f  the nucle,us 
. . . . . . 

I ' 1 
. . . . . 2 . . 

. ' 1 A J 1 :: 1 ; no change of par i ty  ' ,: (rn-2) 



. . ' . - .  . . . . . .  , . , , . 

 he assumption that i s  an ' ordinery .moment operator '(sum . 

of the nucleon moments) results 'in the further stilectlon 

rule 
. . 

' 

'More complicated magnetic moment operators would in  general 

not, have .such a stringent sei8ction rule on L. 

The "forbidden" b@. trans itions investigated ' by Graham . . a  . . ,  

and Bell were interpreted, :on the basis of the usual shell. 

model, as slngle.particle transitions: between either d 3/2 

and 8. ~2 states or d 512 and g ,m states. These trans - 
. .  , 

itions Involve , (A L,I c 2 :and are therefore incompatible 

. -  with  the selection rules of .the ordinarg magnetic.moment. 

operator as given by IV-3, hence the term "forbidden" 

transition. . . 
I . . 

The s t a t i s t i ca l  shell  model w i l l  be used to  calculate 
M t  3 a x. ( , M - H  v7I nhere only t h e  ordlna~y = fl,,,,ti a ! 

magnetic operator. I1 -1 w i l l  be 'considered. These,' calculated 
, .  - .  + 

' values must thewbe compared with the values.obtained $rom 

the experimental lifetimes determined by Graham and Bell 

using the relation IV-1. 'The experimental data and the ex- 

perimental values for  /,do ,&e &en in  Table. . . 6 .  In ' : . 

. , ' de termlning the experimental values of. :),&I . . 2  f rotu measured 
c , ' 

half l ives ( T i , ,  in  the third column of Table 6 ) ,  the following 

relation between the transition probability and . . h a l f , l i f e '  

must  be used ' 





where 6(. is the t o t a l  conversion coefficient .  

A l i  . the nuclei l i s t e d  i n  Table 6,. with the  exception of 

~1~ and ~ e ~ ~ ,  provide examples of the "forbidden" t ransi t ions  . 
. The value of [ A  I v a r i e s  from F 0.22 t o  A 0.03 fo r  t h e  I 

I forbidden t ransi t ions .  These values a re  smaller than the 

I 2 
'predicted value f o r  1 . f o r  allowed trans'itions by a fac-  

1 ' 

t o r  of approximately 50 t o  150 ( ' ),&I d i f f e r s  by e fac tor  of 

7: t o  U) . The experimental values o f  1A (. fo r  t h e  allowed 
57 I - t ransi t ions  ' i n  ~i~ and Fe a re  la rger  t h a n  predicted i n  ' the , . ; 

f trst instance and smaller . in the second. It is  -interest ing - 

2 57 
t o  note tha t  the experimental \ A )  f o r  Fe , a supposedly 

' ,  

I . -  

. . 
allowed t ransi t ion,  is equal t o  t he  smallest experimental ' 

. . 

value of' 1 141 f o r  the "forbidden" . It should : 
. . 

57 ' a lso  b e  noted tha t  the magnetic' moment deviation o f  Fe , . 
.. ~ 

. . 
: ( A C * ~  0) is very large on the bas i s  of the assumed p 3/2 . . . . 

I 'ground'state. , - 
. . 

' 2  . ' 

I n  calculating , the value of bl . a s l i g h t  generallza- ' 

I * 

t ion  of the s t a t i s t i & a l  s h e l l  model~.will be used in- order t o  

1 obtain . . a"more theoret ical  expression f o r  ) ~ 1 . ' ~ .  The 
- .  . 

. '  , f o r  choosihg s t a t e s '  f o r  admixture 1s' the same, . . " '  

* . - 
' but fo r  , the present i t  w i l l  no longer. be assumed tha t  t he  

. . probability of each admixed s t a t e  is the same. The ground 

s t a t e  v.F,will be writ ten as  
. 8  

. . 

2 7 ~ t  is qui te  ossible tha t  the assignment f o r  Fe 57 fiven 
by Graham and Bel l  re$ p ,312) is incorrect.  On the bas a of . 

' 

the Mayer-Jensen s h e l l  model and the  observed tnagnetiC; moments 
the, trans i t i o n  may actual ly  be f 5/2 p 3/2, I. e. a . f o r - ,  .-. 
bidden'' MI t rans i t ion .  



. . 
I - 
I .  M 
I where 4; is th6 s h e l i  model~wave~functi,on~and . . y J ( 2 j j 1 ' ) ,  is I . . 

: the s t a t e  of t w o  equivalent p a ~ t i c l e i  cbbpled. t o  jl' : 2 which. 
I . . .  

I a r e  i n  turn coupled t o  a tkird p a r t i c l e  of angular momentum j" 

t o  give a t o t a l  angular momentum J, lee .  

I -  h he second term i n  IV-6 r e fe r s  t o  s t a t e s  of three ~ d d  nucleons 

and t h e  th i rd  term t o  states-' of two even' nucleons ( j )  and -one 
. . 

odd' one. The summation indices ' j and j" include . . 

state& pes- & & i s t i c i  & as 

.m z. The probability amplitudes a re  subject  t b  . 
. . 

the usual normalization condition - .  
. . .  , . . . .  

- , - . . 
. '  It can be shown tha t  the probability amplitudes a s ,  a-jjll,, and . . 

\ ' . b .  a r e  a l l  real ,  b u t  they a r e  s t i l l  a rb i t ra ry  with respect t o  
3 

. . 
, . . .  t h e i r  sign. 

' 
I n  a s imilar  manner the wave function of the excited . 

,.' . s t a t e  . ts wri t ten as  . . 

The probability amplitudes a&, a j j l , ,  b' a re  assumed t o  have 3 
no simple correla t ion w i t h  the ground s t a t e  ampli'tudes. 
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60 : 
.. . _ '  . . - , 1t . is now possible ' to  calculate'. . . . .  . . . the matrix 6lement . ' .  ' 

. . 

, ' , } ;  . .  , . .; . -  ' ~ e v e r i 1  :impo&ant sitnp~iflcattoris ' 

are. possible i n  th i s  calculation. ' .  ~ i r s  t ,  because . . . .  . of the , 

. . 
selection riile IV-3. z t r  follows t h a t  . . ., 

. . 

since I Lt - L [ = 2 according to  the she l l  model assign- 

. ments . for  the transit ions under considerati,on. Now, because, 

the functions'are orthogonal, 

and because )A JI r 2 is forbidden fo r  magnetic dipole 

' 

Here J: 'is the usual she l l  model function of two particles'  

. - (labbled 1 and 2) in  equivalent s ta tes  coupled to  t o t a l  

angular momentum jl : O,$ , i s  the function for  thesame 
. . 

two particles coupled to  t o t a l  angular momentum j1 : 2, 'and . 

A f and , /  5 are the z components of the single part icle  ' I  

. 

ema@;natic moment operatora for  the two particles.  It follows 

that  



With these resul ts  i n  mind' the calculation of the 

matpix <T~,~', ha YJ"? is reduced to  . ' 

In  IV-12 the value of j must be the same in  M'(2j j")  and 
M J ' 

(\r (2  j j") because A*, being a one part icle  operator, can 
lead t o  a change i n  the. s t a t e  of only one nucleon. The 

M '  
values of j" can be different i n  3(/;,M' (2  jjl') and, y ( 2  j j"), ' 

but5 the ~ ' 'v i lues muste be the sameln order to sa t i s fy  the , 

selection mleIV-3.  Hence' A j" : 0, z . 1  and the matrix - 
elament may f ina l ly '  be written as  

< = &,,,I f~ ijt: a;j. a;,' <Y$(ajjlt) . .  J x4(2jjIlp 



I n  the l a s t  two sums the s t a t e s  specified by j!' and j" - 1 

must have the same f I' value, 1. e. j" : f I' t l/2 and 
' ' 

. . .. 
j" - 1 i 3 '  - 1/2. . . . , 

By using the same techniques as  i n  Section I1 the . 

. matrix elements' on the' r i g h t  s ide of IV-13 a r e  found t o  be . .  . . - ' 

 he matrix elements given by IV-14 are  eas i ly  evaluated 

and ' thus the theoretical ,  determination of the t rans i t ion  

~ ~ o b a b i l i t y  depends on the values assumed f o r  a! j~~ and a 
jjl" 

The.lndeterminateness of the sign of these . . probability amplFG 

tudes requires some simplifying as sump tion,  when evaluating 

, the absolute square of the  matrix element given by IV-13. 



I The assumption is made tha t  the cross termsaverage t o  zero 

(or' more. s t r i c t l y  t o  a number .small compared t o  the  sum of . . . 

the squared terms). This is a r e a s ~ n a b l ~ a s s u m p t i o n  as  long 
- 

as  there are  . a  f a i r ly .  large number o f .  terms b. contributing 

t o  t h e  sums i n  ~ ~ 1 3 '  

With the use of this,assumption 

. . 

, 

. . ' 
The 'nuclei  involved i n  the measured ' "forbidden" , 

.. 
magnetic ' ' 

dipole radiat ive t ransi t ions  a re  of two 'types. The odd neu- 
123 125 131 

tron nuclei  52Te , 52Te , and $0 Involve t rans  i t ions  

between s t a t e s  having t o t a l  angular momentum 3/2 and 1/2 , , . ' 

. . 
I 
I (d 3/2 and s 1/2 a t a t e s  according t o  the Mayer-Jensen s h e l l  

model) while the  odd proton nuclei  
28 133 135 

55cs 
and C s  . i n -  

55. 
I volve t ransi t ions  between s t a t e s  having t o t a l  angular momentum 

. . 
7 -  

< .  

' 5/2 and 7/2 (d'5/2 and g 7/2 s t a t e s  according t o  the Mayer- , 

. ' ~ k s e n  s h e l l  model). A l l  ,the nuclei  a re  i n  the s t a t i s t i c a l  

s h e l l  model classes of 50-82 even par t ic les  and , . . 50-82 . odd 
. . 

part ic les .  

. . 2861~~147~ill not be' considered i n  d e t a i l  because there' . , . , 

has been no de f in i t e  assignment of Mayer-Jensen s h e l l  model 
s t a t e s  for  t h i s  nucleus. However, the r e su l t s  fo r  th f s  case 
a re  probably very similar  t o  those.obtained f o r  the C s  isotopes, 



. 1 

, )b \ ?  w i l l  now -be on the basis of the .. . . ,  . .  

s t a t i s t i c a l  s h e l l  model' used in .  Section 111. Thus . . 

~ . * 

* f o r  a l l  values of ' j and ,f". allowed by the  s t a t i s t i c a l  s h e l l  

' model, where N .  is the t o t i 1  number of ' s t a t e s  (as  g.iven by 
. . 

IV-7) .admixed t o  give the ground state, and Nt is the t o t a l  

number of states (as  given by IV-9) admixed t o  give the' ex- 

c i t ed  s t a t e ,  Thus every s t a t e  i n  t he  admixture 1s assumed to .  

occur with equal probability. 

The value f o r  1~ 1 becomes . . 

. - . 

. , J 

Since the operator /K is hermitlan, and the wave functions 

. ' w i t h  the same J' of the Te isotopes and Xe isotope are  the 

I same according t o  the s t a t i s t i c a l  s h e l l  model, the  vaiue of 
' 

/I/ w i l l  be the .  same f o r  a l l  these isotopes even though . ' 

1 ,.;: the ro le  'of the ground s t a t e  and excited s t a t e  is  interchanged 



I between the Te isotopes and the Xe isotope. , '  

2 
Table, 7 gives Ure value of ]h/ calculated on the 

2 
bas'is of  the statLstFca1 shell model ( ) as well as  

the experimental value of ( 9 Also indicated 

I i n  the table i s  /Ys  the Schmidt value of the magnetic 

moment, A e x  the experimental value of the magnetic moment, 

A ssm the s t a t i s t i c a l  she l l  model magnetic moment, and N 

and Nt the t o t a l  number of s t a tes  (including the shel l ,  model 

s t a tes )  admixed in  the ground s t a t e  and excited s t a t e  re-  

spec tively. 

It i s  seen that  the values of 4. represent a bet ter  ssm 
fit  to  the experimental magnetic moments 4 ex than do the 

. - Schmidt magnetic moments , . The theoretical values . . of 

I,,&/ Esm are larger than, the corresponding experimental 

values .(,&I zx. The agreement is quite good for  the odd 

neutron isotopes while the agreement is poor for  the odd 

proton is'otopes .  he poorest agreement (for  C S ' ~ ~ )  gives 

However, the f ac t  that  the theoretical values of 
. . 

are larger than 
2 

1 

I ex is satisfying since almost 
. . 

any reasonable modif ication of' the  s t a t i s t i c a l  s h e l l  model 
8 

,- - 1' 1 smaller. Thus any additional - would tend t'o make 

. mlx.ini of even particle s ta tes  would make N and Nt iarger 

while not increasing ( IV-lob) the square of the trans i t ion  

matrtx element N-15. Also Sf the she l l  model a ta te  ;scours 

w i t h  a larger probability amplitude than assumed by the 
, , 

s t a t i s t i c a l  she l l  model, then ajjll and at , ,  must .  become 
, jj. - 

. . 





93, . . .  - 

. . ,  . . .. 66.:. 
0 ., 

" ,  

smal'ler (assuming a l l  s t a t e s  other than.  .the usual ' :  sheli .  ,l 
. . . . . . .  

model s t a t e  t o  have equal probability)- because' of t h e  : '; . 
, .  . . . 

: normalization conditidn IV-8. Since the ' she l l  model s t a t e s  

' cannot contribute t o  the t rans i t ion  matrix' element ( I V - l ~ a ) ,  . . . 

/A I Eim would decrease as as increases. 

I n  lilitr with these c o n b i d e ~ a t ~ o n s  it in.n.ntad that the, 

s t a t i s  t i c a l  she l l  model magnetic moment A ,,, represents too 

great  a deviation of the magnetic moment inside of the ,  Schmidt 

l i n e  when compared t o  the' experimental moment of the two Cs 

isotopes.. If the s h e l l  model probability amplitude is in -  
. . 

, creased .surf i c i en t ly  "to give. the  correct  rna.gnetic moment. 
, . 

fo r  these isotopes, the* I// Esm is decreased by approximately 

a factor  of two (assuming the s h e l l  model s t a t e  i n  the ,ex- 

c i t ed  s t a t e  has the same increase i n  i ts  probebility ampll- 

tude ) . 
It is seen tha t  t h e  value of 1 ~ 1  can vary as the'  

s t a t i s t i c a l  s h e l l  model is modified. However, i f  the ad- 
, . 

mixture of s ta tes ,  necessary t o  f i t  the observed magnetic 

moment, involves several  'different  wave functions and the ex- 

c i t ed  s t a t e  wave functions . .are formed from the same configura- ' 

I ,  

%ions a s  the ground s t a t e  wave functions, then there is no 
2 violent  f luctuat ion i n  the value of 1 1  . Thus, a very 

considerable modif icat ion ,of the s t a t i s  t i c a l  s h e l l  model, ,, 

such as  eliminating a l l  the wave functions formed from an 

a rb i t r a ry  configuration of the unfi l led she l l ,  does not 

r e s u l t  i n  too great  a. change i n  /h1 2.  his seems t o  
. I  

indicate t h a t  'the calculated values of 1k( are  not j u s t  
. d . , 
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fortuitous, and tha t  the occurrence of the, "forb.iddenl'. M1 , 

' 

transitlions may be due in part  t o  ground.state and excited 

s t a t e  admixtures of the type congid;red i n  . the , l a i t  two . , ' 

. 

. . 
sections. 

~t i s .  interest ing t o  note tha t  on the basis of the  

:.s t a t i s  t i c e l  s h e l l  model t h e  value of 1 A ( * f o r  ,supposedly 

allowed magnetic dipole t ransi t ions  would be expected t o  Be 

of the same order of magnitude as f o r  . the  . "forbidden" 

t ransi t ions .  This would explain the ra ther  small% experimen- 
2 ' 57 to1  valuee8 of' I I found f o r  Fe . The large value of 

I 

7 \A 1 found f o r  Li can probably be a i t r lbu ted ,  t o  the 

f a c t  tha t  the s t a t i s t i c a l  she l l '  model would not be expected 

t o  apply t o  so l i g h t  a nucleus. 

Thus the s t a t i s t i c a l  s h e l l  model appears, t o  of fer  a t  
, . 

l e a s t  a par.tia1 explanation o f .  two anomlous features of 

magnetic dipole phenomena as  interpreted by the Mayer -~edsen  ' 

s h e l l  model. F i r s t ,  the deviations of the s t a t i d  magnetic 

moments of odd-even nuclei a re  i n  large measure predicted I 
by means of the s t a t i s t i c a l  s h e l l  model. Then, the supposedly 

forbidden magnetic dipole radiat ive t ransi t ions  a re  Pound t o  
~ 

. . 
be allowed by the s t a t i s t i c a l  shell 'model and the theoret ical  I 
values of the t rans i t ion  probability a re  of the . . same order 

of .magnitude as  the experimentally determined values. The 

s t a t i s t i c a l  s h e l l  model is undoubtedly an 'oversimplification 

of theA true physical s i tuat ion,  but the success of t h i s  com- 

paratively simple model tndicates tha t  the Mayer-Jensen.shel1 

model probably gives a ra ther  poor description of t h e  ground 



state  wave function of' complex nuclei. 'Pke great success .. 

of the M8yermJensen model in-prediating spins end pslrlttes 

does not juati.fy the assumption that it also gtves aa-de; 

'guate ~epreaentation of' the dynamic81 featurqs o f  complex 

nuole.1. 






