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ABSTRACT

Experimental observations of Taylor instability have been made on 

interfaces of fluids under uniform and under impulsive accelerations. The 

theoretical results of Pennington and Bellman and of Birkhoff and Ingraham 

concerning the effects of surface tension and viscosity on the growth of 

Taylor instability were investigated. Inhibition of growth by surface tension 

is found to be in essential agreement with the theory. The growth coefficients, 

a (tj = cosh at), were measured to be less than those predicted by the linear 

theory in cases where growth of a wave was observed. The discrepancy is per­

haps due to effects connected with the necessarily finite amplitude of the wave 

when measurements can be made.

A new mechanism leading to the restraint of growth is proposed, that of 

the existence of a density gradient of finite width at an interface, as opposed 

to a true discontinuity of density. The importance of Helmholtz instability in the 

development of the shape of the interface is demonstrated. Turbulent mixing of 

the fluids at sufficiently great Reynolds number is observed. The mixing, pro­

ducing a region of density gradient, provides a final inhibitory effect on the 
growth.

The wavelength of most rapid growth at an interface has been observed 

in experiments with impulsive acceleration, again in agreement with theory.

Some experimental refinements for future observations of impulsive accelerations 

are suggested.
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Chapter 1

THE THEORY OF TAYLOR INSTABILITY

1.1 Potential Theory as Applied to Hydrodynamics 
The equation of motion of a perfect fluid is*

p — + pv • Vv = pF - Vp + 1/3 pW- v + pV • Vv dt d.i)

where p is the density, v the velocity, F the body force (per unit mass), and p the coefficient 

of viscosity. The equation of continuity is

dp̂ + PV-v = 0

It can also be shown that the vorticity, co, is given by

1
w = — V xv

(1.2)

(1.3)

A very powerful method in hydrodynamics is that of potential theory, which enters when 

the motion is assumed to be irrotational and incompressible. For then

^ = 0 and (1.4)

V' v = 0 (1.5)

Further, since Vxv = 0, v is derivable from a scalar potential </>, owing to the vector identity

VxV0 = 0.
Hence

v = -V0 / (1.6)

where the negative sign is conventional and 0 is called the velocity potential. 0 satisfies 
Laplace's equation

V20 = 0 (1.7)

Under the conditions of incompressible, irrotational flow the equation of motion (1.1) 
becomes

dv
Pj£+ pv • Vv = pF - vp + PV Vv (1.8)

If we neglect viscosity and assume F to be derivable from a potential (usually the 

gravitational potential), we can integrate the equation of motion to obtain Bernoulli's equation
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(1.9)£ = - ft - 1/2 V2 + f(t)
p 3t

We note that if the motion is steady, f(t) is a constant.
Hence the solution for the velocity potential in irrotational, incompressible flow is that 

solution of Laplace's equation which satisfies (1.9) together with the physical boundary condi­

tions.
2

Sir Geoffrey Taylor has used the potential theory to discuss the motion of the interface 

between two incompressible fluids in a gravitational field, neglecting surface tension and vis­

cosity. His result is that an infinitesimal sinusoidal displacement of initial amplitude rjQ 

grows as
r/ = Ty^cosh at

where a = kg
P% ~ P

P2+P

1/2
, provided P2>P1 and the gravitational field is directed from p

2
toward p^.* 2

Taylor's solution neglects the term in Bernoulli's equation in order to linearize the 

theory. This term has likewise been neglected by subsequent workers, although its effect is 

perhaps important in the development of asymmetries in the interface, as we shall presently 

suggest.

1.2 Derivation of Instability Criteria

Rigorous mathematical discussions of the Taylor instability are to be found in the litera­

ture and will not be repeated here. It is possible, however, to give approximate derivations 

which lead to the same results and possibly give more physical insight into the effects of 

various quantities than do the more elegant presentations.

To this end, let us consider the equation of motion of an interface in an acceleration

field of magnitude g, as indicated in the sketch. If 7] is the dis- 

9 placement of the interface, the restoring force will be of the order 

of

f = -I7*g(p2 - Pj)

and the mass which must be moved is, approximately, {p^ + p^)^. , since the circulation in a 

wave is of depth of order

*We may here observe that the effect of a gravitational field is completely equivalent to the 
acceleration of a system in a direction opposite to that of the gravitational force. Hence 
we may say that the interface is unstable if the acceleration is directed from the lighter to 
the denser medium or, equivalently, when the gravitational field is directed from the denser 
to the lighter medium.
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Equating

ma = f

and since •& = k

If we set a = -kg the solutions are

at -at

Hence if the acceleration field is directed upward, a is imaginary and the solutions are 

oscillatory. But if the direction of g is reversed, a is real and the solutions are exponential 
functions.

Since we wish to describe an interface with finite initial displacement and initial velocity

zero, we arrive at C^ = C^=Tj J2, and 77 = T^coshat, as in Taylor's theory.

We have now to consider the effects of surface tension and viscosity on the stability of

the interface. We may again calculate by an approximate method the effect of surface tension
3

and arrive at the same result as that attained independently by Pennington and by Birkhoff 
4

and Ingraham, all of whom used more rigorous methods.

Consider now the increase in gravitational energy resulting from the displacement of a 

flat interface to the form ^ = 170 sin kx- If we take the thickness of the interface as unity, 
the displaced volume of a half-wave is

and the mean displacement is

o

Hence the change in gravitational energy is

- 9 -



V v *'o 'o IT
A£ - <p2 - ?!> f B = 2k {P2 - "l1 ’>0g

The surface area of the interface is, for unit thickness, initially A. With the distortion 

the area becomes

A =
=J* ds (1 + ^q2 k2cos2kx)1/2 dx

o o

Expanding and neglecting higher order terms (since r)ok«l), we obtain

2,

A — A +
^o

AA =

2,irn k 'o

and the change in energy at the surface due to surface tension is 

AEt = TAA

^o kT

It is clear that the surface will be stable if a displacement tends to increase its total 

energy; that is, if the increased energy due to surface tension is greater than the decrease 

of energy in the gravitational field. We may then write the condition for stability

AE_ > AE T g

TTTJ kT 7T / 2
------ >2k (P2 - V^o g

k2 - Px) g 
T

We see that there exists a wave number beyond which instability ceases. We might expect
3

that at all wave numbers the effect of surface tension would be to decrease a. Pennington 

has shown rigorously that this is the case.

The effect of viscosity in the linear theory is a degree more subtle. To understand the 

effect of viscosity we need only observe that the presence of viscosity in a liquid gives rise

10 -



to dissipation of energy as the laminae of fluid move in shear. If the wave number is infinite

we will have infinite dissipation of energy as the interface begins its growth. Hence we may

expect that at all wave numbers the effective a will be reduced by viscous effects and that

for infinite wave number a becomes zero and no growth occurs.
3

Pennington has shown that in the linear theory a is a root of

g(P2 - Pj)k + Tk + (p3 P2)a x

Pxk +
rxi 

y p2k + m2p2« + Vi“
+ 4 a k = 0

where p's are the coefficients of viscosity and other quantities are as previously defined. He 

has likewise shown that there is one or no positive root according as k is less or greater 

than

(-g)(P2 
T

Pi)
1/2

1.3 Effects Initiating Departure from the Linear Theory * * * * 5 * 7

A case of considerable interest arises when we consider the insertion of a layer of fluid

of intermediate density at the interface between our two initial fluids. Intuitively one would

expect that a would be reduced at the two interfaces which now result, due to the lessening

of the density differences at the interfaces. Of even greater interest is the case in which

one has a gradually varying density across the interface, as opposed to a true discontinuity.

In his Lagrangian treatment of the linear theory of Taylor instability, neglecting surface ten-
5

sion and viscosity, Carter has described the variation of a with thickness of the gradient

region, both for a uniform intermediate layer and for a region in which the density variation

is exponential in form. In both cases a decreases as the thickness increases. The explicit

results for interfaces with which this work is concerned are given in Chapter 4.
0

It was observed in the experiments of Lewis that the initial sinusoidal disturbance on

an air-water interface became asymmetric in its final stages. The form is that of spikes of

heavy fluid extending into the light fluid, and rounded regions which may be thought of as

bubbles consisting of the lighter fluid rising into the heavier fluid.
7

Some previous experiments of Davies and Taylor may be invoked to give an a priori 

estimate of the rate of growth which is to be expected in the asymptotic form. The work of 

Davies and Taylor showed that large bubbles of air in a liquid have a spherical upper surface 

and rise at constant velocity V where
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(see Chapter 3). r is the radius of the surface, and g is the acceleration of gravity. 

Pennington has shown that for a two-dimensional bubble the rate of rise is also constant, but 

the constant 2/3 becomes more nearly unity, about 1.1.

The spike of heavy fluid, on the other hand, can be thought of as being in free fall in 

the acceleration field. The spike will be essentially isolated from the bubbles around it. It 

will experience a force due to the buoyancy of the lighter fluid and may be acted upon by 

other hydrodynamic forces. However, in no case will we expect the acceleration of the spike 

to be larger than g times an Atwood factor, i.e.,

where Pg is the density of the heavier fluid.

We see then that the amplitude, A, of the spike should increase as

A = A + Vt + 4 at2 
o 2

2and that after sufficient time has elapsed the growth may be proportional to t , provided we 

ignore the effect of viscosity of the fluids.

Another effect which, it appears, assumes importance in the growth of the Taylor in-
g

stability is the so-called Helmholtz instability. This instability arises at an interface when 

there is relative motion of two fluids in a direction parallel to the interface. It is responsible 

for the formation of ocean waves, for example.

The condition for Helmholtz instability may be written as

V2 > O'"' 
pp'

If the only forces tending to stabilize the interface are those of surface tension, i.e., g = 0, 
we have, for instability,

V2 >P-L£L kT
PP'

Finally, it is expected that in a viscous fluid turbulence will arise when the Reynolds number

R .BlA

g(p -D')* K2T
k
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g
becomes of the order of 2000. p is the density, v the velocity, and p. the viscosity of the 

fluid. ^ is a characteristic length associated with a form moving through the fluid, i.e., the 

thickness of the boundary layer. We will show later that this effect enters into the experi­

mental observations.
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GENERAL EXPERIMENTAL TECHNIQUES

In order not to interrupt the description of the principal experimental work, it seems prop­

er here to describe briefly the photographic methods used in observing the various phases of 

the Taylor instability and the means of analysis of the data.

2.1 Photographic Method
The nature of the phenomena being observed usually necessitated the use of photographic 

equipment capable of time resolution of the order of milliseconds. We used a Kodak high-speed 

camera, made by Eastman Kodak Co. of Rochester. This camera is a 16 mm framing camera, 

in which the film runs continuously while the image is tracked on the film by means of a ro­

tating flat-sided prism. The maximum framing rate is nominally 3, 000 frames/second, and 

this framing rate was used for all of our observations. A synchronizing cam is provided on 

the camera by which arrangement action is begun when a suitable framing rate has been reached. 

The actual exposure time of the camera is about one-fifth the framing time. Hence at a 

framing rate of 3,000 frames/second, the exposure time is 1/15,000 second.

To establish an absolute time scale by means of which the velocities and accelerations 

can be measured, a small argon lamp is provided in the camera near the film gate. This lamp 

is mounted so as to produce timing marks on the edge of the film. To provide accurate timing 

marks, a circuit was devised which consisted of a 100 kc crystal oscillator. The frequency of 

this oscillator was sub-divided by three blocking oscillators to 1 kc. The 1 kc pulses thus pro­

duced were used to drive a univibrator which produced output pulses approximately 100 micro­
seconds long, and spaced at 1 millisecond intervals. This circuit was developed by P. W. 

Byington and is available from the Electronics Group, P-1, of the Los Alamos Scientific Lab­
oratory as Model 110, 1 kc timing pulser.

2.2 Data Analysis

The analysis of the data was necessarily accomplished in several ways. For example, 

observation of the various pictures as slow motion movies proved useful in aiding qualitative 

notions of the behavior of the interfacial instability. Enlargement of the photographic negatives 

to 8-1/2" x 11" size was also of interest in that it permitted detailed study of various phases 

of the formation of the growth. However, the great bulk of data analysis was done with Leitz 

Ortholux microscopes at low magnifications (of the order of 20 diameters). By means of the 

precision stages developed for use in the analysis of nuclear emulsions, measurements could 

be made of the positions and amplitudes of the various interfaces with reference to certain

Chapter 2
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fiducial points on the apparatus. The radii of large bubbles and their velocities were simi­
larly measured on the Vickers projection microscope.

In view of the extremely short exposure times of the camera, bright lighting is required 

to give adequate image density on the film. We used Super-XX film, which has a Weston 

tungsten rating of 100. Illumination was most satisfactory when the objects being photographed 

were lighted from the back. Ordinarily, six reflector flood lamps (RFL 2) were used to il­

luminate a diffusing screen immediately behind the object being photographed. The lens aperture 
was usually f/5.6. Development of the film in D-76 developer for 12 minutes in a tank or at 

the rate of 9 feet/min in a developing machine gave adequate image densities.
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TAYLOR INSTABILITY ON THE SURFACES OF LARGE BUBBLES

At the beginning of this work, it was suggested10 that the upper surface of a bubble of air 

in water provided the necessary conditions for the Taylor instability. In this system there 

exists an interface between the light and the heavy fluid.in which the equivalent acceleration is 

directed upward, that is, from the light to the heavy fluid. Under these conditions, and in the 

absence of appreciable surface tension effects, we should expect to see the development of the 

Taylor instability on the upper surface of the bubble.

3.1 Apparatus

To observe this phenomenon and to gain experience in high-speed photography, we con­

structed a tank with Lucite walls. The base of the tank was square, 18 inches on a side, and 

the height of the tank was 3 feet. As indicated in Fig. 3.1 a rod was mounted horizontally 

near the bottom of the tank. At the center of the rod was mounted a spun copper hemisphere. 

A centrally located nozzle at the bottom of the tank enabled the hemisphere to be filled with 

air. A small motor was attached to the rod so that the hemisphere could be rotated rapidly.

In addition, a microswitch was mounted on the shaft of the motor in such a way that the power 

to the motor was shut off at about the time of release of the bubble.

3.2 Experimental Results

It was our initial intention to produce a bubble by the means described above, and then to 

perturb the upper air-water interface by means of rods extending across the tank. We found, 

however, that as the bubble was released from the hemisphere a small spray broke off at the 

point of contact of the lip of the hemisphere and flew upward inside the bubble, striking the 

front and upper surfaces. The perturbations thus achieved proved sufficient both in size and 

interest to cause us to abandon the original plan. The growth of the Taylor instability on a 

typical bubble is shown in Figs. 3.2 through 3.10.

Subsequent to the initial growth of the instability on the upper surface of the bubble, we 

observed that the protuberances thus generated tended to wash down and under the bubble, the 

upper interface finally becoming stable. Apparently the flow pattern established on the upper 
surface stabilizes that surface.

7
In their previous work Davies and Taylor had established that bubbles of air rising in

1/2nitrobenzene in steady state attained a velocity v = 2/3 (rg) ' . This relation is derivable on 

the assumption of potential flow of the fluid about a sphere when one writes Bernoulli's 

equation for the fluid which is near the tip of the bubble. In the same paper Davies and Taylor

Chapter 3
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describe their measurements of the pressure distribution about a sphere in a wind tunnel. They 

found that the pressure distribution was remarkably close to that predicted by the potential 

theory.

We have been able to extend the measurements of Davies and Taylor to bubbles of larger 

radii in the present experiment. The radii were measured by recording coordinates of 20 

points on the silhouette of the pictures, the observations being made by means of the Vickers 

projection microscope. A least squares fit was made to two sets of ten points each and the 

radius taken to be the mean radius derived from these two sets of measurements. The velocity 

of the bubble was measured at its tip by use of fiducial marks in the picture (Figs. 3.2 through 
3.10). Appropriate corrections were made for the parallax resulting from the fact that the 

bubble and the fiducial marks were not at the same distance from the camera. The measured 

velocities as a function of radius for several bubbles are shown in Fig. 3.11 along with the 

previous results of Davies and Taylor. The rms deviation of our points from the line repre- 

senting v = (2/3) (rg) 1 is 3 percent. Our estimated experimental errors were as follows: 

determination of bubble radius, ± 2 percent; determination of bubble position, ± 2 percent; 

timing measurements, ± 1 percent. It may be noted that the timing measurements in this series 

of photographs are considerably less accurate than those in the subsequent series. The reason 

is that the timing extended over a considerable footage of film and that the crystal-controlled 

timing marker generator was not available at the time these bubble pictures were made. The 

timing was therefore based on the 60 cycle line frequency, which drove the argon bulb in the 

camera. Hence the timing marks were more widely spaced by a factor of about 10 and their 

beginnings were not as clearly evident as were those produced by the crystal generator.
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Chapter 4

THE INSTABILITY OF INTERFACES UNDER UNIFORM ACCELERATION

4.1 Apparatus
After the publication of Sir Geoffrey Taylor's theoretical paper in which Taylor instability

0
was first described, D. L. Lewis0 observed by experimental means the growth of the instability 

on interfaces of air-water, as well as on air-benzene and air-glycerin interfaces. We have 

constructed a machine essentially identical to that of Lewis. Our machine is shown in sche­

matic form in Fig. 4.1.

The Lewis machine consists of a large air reservoir (A), beneath which is fixed a rec­

tangular tube (B) made of Lucite. At the center of the tube is a flange (C), in which is mounted 

a thin diaphragm. Lewis found it convenient to use shellac diaphragms, but we have had suc­

cess with glass sheets having thicknesses of the order of 3 to 4 mils. At the bottom of the 

tube is a foil (D). This foil has sufficient strength to withstand moderate pressures in the 

pressure vessel.
Air lines are provided both to the upper pressure vessel and to the lower half of the 

rectangular acceleration tube. Supported on the thin glass diaphragm is a liquid, for example, 

water; or, more frequently in our experiments, a pair of liquids.

In order to produce an initial disturbance on the surface of the liquid or on the liquid- 

liquid interface, we have used a cylindrical bob driven by a solenoid. Electrical power to the 

solenoid is furnished by means of two spark plugs which enter the top lid of the pressure ves­

sel. The driving circuit for the solenoid is described in detail in Appendix A.

In the operation of the Lewis apparatus, the upper and lower pressure chambers are 

filled. The two pressure chambers are then isolated from each other by the closing of valves 

on the air lines. When the foil at the bottom of the acceleration tube is ruptured, the un­

balanced pressure drives the liquid down the accelerating tube and the instability is observed 

on the upper interface.

4.2 Experimental Procedure

With Lewis' results as our starting point, we wished to investigate the effects of surface 

tension and viscosity on the rate of growth of Taylor instability. To be able to observe the 

instability in more detail, we decided to make use of the density factor to reduce the rate of 

growth. It was therefore decided to study interfaces of two liquids of densities much more 

nearly the same than those of water and air. By this choice we were also able to study a 

greater variation of surface tension than would be possible in the observation of a water-air
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interface. Water, n-heptane, isoamyl alcohol, and n-octyl alcohol were the liquids chosen for 

our observations. The physical properties of these liquids are given in Fig. 4.2. In addition, 

we lowered the interfacial tension at a water-n-heptane interface by adding a surface active 

agent (aerosol) to the water. Thus a variation in surface tension of a factor of 20 was ob­

tained while the other properties of the fluids were essentially unchanged. The acceleration, 

a, of the interface, expressed in units of g, is

a 13.6p 
L ’ where p is the pressure in centimeters of mercury

and h is the equivalent water height of the column in centimeters. The range of accelerations 

which we studied with the Lewis apparatus was from 20 to 100 g. To cover the region of 
interest, wavelengths of 2, 4, 7, and 10 mm were chosen. The frequencies necessary to give 

these wavelengths were calculated from the equation

1 X2 g(p-p') + 47t2T

27T
X (p + p')

which is that for waves in a fluid with a depth that is large compared to the wavelengths. An 

effort was made to measure the wavelengths as observed in the initial stages of growth, but 

in all cases we have used the calculated wavelengths. These calculated wavelengths have been 
found to be in agreement with the observed values and are considered to be somewhat better 

values for the wavelengths because of the accurately known frequencies of the oscillator used 

to drive the transducer.
The densities of the various liquids used in our experimental work were measured with a 

Westphal balance. With the exception of the isoamyl alcohol, all liquids were Eastman Kodak 
white label grade. The isoamyl alcohol was Eastman Kodak yellow label, hence of somewhat 

lesser purity.

All interfacial tensions of interest were measured with a duNoiiy tensiometer. This de­

vice measures surface tension by the ring method, the force associated with moving the ring 

through the interface being furnished by a torsion wire. Some of the values for interfacial 

tensions obtained by this means were not in good agreement with those given in literature. A 

notable example is that of a water-heptane interface, for which our measured value of the 

interfacial tension was 39 dynes/cm, whereas the accepted value is 50 dynes/cm. In all cases 

we have accepted our measured values, acting on the assumption that the liquids used by us 

probably had various degrees of impurity. It should be pointed out, however, that the ring 
method for the measurement of interfacial tension has never been proved entirely reliable^ It 

may also be noted that, as Pennington has pointed out, the numerical value of the interfacial 

tension is felt only in the one-fourth power in the rate of growth equation. For this reason 

discrepancies in our measurements with those of the literature may be discounted to some extent.
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4.3 Experimental Results
■ 3

As discussed in Chapter 1, one of the most important theoretical results of Pennington
4

and of Birkhoff was the prediction of the stabilization of an interface against Taylor instability 

by the forces of surface tension. In Fig. 4.3 we have plotted the critical wavelength as a 

function of acceleration for the various interfaces with which we were concerned. In this plot, 

for a given interface, the region to the right of the curve represents the region of instability, 

and that to the left represents the region which is stabilized by surface tension. On this same 
graph we have shown the observed experimental results, differentiating between observations 

in which the instability was seen and those in which it was not. We observe that in case of a 

water-n-heptane interface the regions of stability and instability are in quite good agreement 

with the theory. When the interfacial tension is lowered, through the addition of aerosol to the 

water, the region of instability is extended to smaller wavelengths for a given acceleration.

One observes, however, that an interface of water-isoamyl alcohol appears to be practically 

uniformly stable, in disagreement with the theory. Our efforts to resolve this andmaly have 

led to the following explanation.

It is intuitively apparent that the existence of a density gradient at an interface, as op­

posed to a true density discontinuity, might well lead to inhibition of the Taylor instability. The
5

suggestion of this possibility led to theoretical work by D. S. Carter which showed that this 

is indeed the case. The effect can be described as a diminution in the exponential coefficient, 

a, as the region in which the density gradient exists becomes of greater and greater thickness. 

Carter has calculated the variation in a for various systems of .interest. The results of these 

calculations are shown in Figs. 4.4, 4.5, and 4.6.

To determine whether or not a density gradient existed in the experimental interface of 

water-isoamyl alcohol, we made use of a schlieren technique. A schematic diagram of the 

equipment is shown in Fig. 4.7. In a schlieren system a line source of light is placed in the 

focal plane of a paraboloidal mirror (the mirrors are shown as lenses for greater clarity).

The resulting beam of collimated light is directed at a second mirror which brings the beam 

to a focus. A knife-edge is interposed at the focus of the second mirror, parallel to the 

image of the line source. Adjacent to the knife-edge is a camera, the focal system of which, 

together with that of the second mirror, is used to observe an object placed between the two 

mirrors. The existence of an optical density gradient in the sample being studied will result 

in the refraction of that portion of the beam passing through the region in which the density 

gradient exists. Depending on the position of the knife-edge, more or less of the light passing 

through the refracting region will be admitted to the camera; hence a region of density gradient 

will appear to have a level of illumination differing from that of the surrounding field. In the 

diagram an optical wedge which will produce this effect is indicated.
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For the purpose of determining the physical existence of a density gradient at a water- 

isoamyl alcohol interface, we observed by the schlieren technique a cell containing water and 

isoamyl alcohol. This cell was one of the halves of the acceleration tube used in our Lewis 

apparatus. The schlieren photographs which resulted are shown as Figs. 4.8, 4.9, and 4.10; 

these show the progressive thickening in time of the region of optical density gradient. Simi­

lar observations on interfaces of water-n-heptane showed only a line at the interface, due to 

the curvature of the meniscus. An effect similar to that observed with water-isoamyl alcohol 

was seen to occur at a water-n-octyl alcohol interface. However, the effect was much less 

pronounced.

According to the theory of the Taylor instability one expects that initially the amplitude

of a disturbance grows as cosh at, where a is a reproduction factor and t is the time. Cosh
Q! tat is approximately represented by e /2, an approximation which becomes increasingly more

valid as at increases. In the later stages of the growth the theory predicts that the lighter

fluid will penetrate the heavy fluid at constant velocity, in analogy with the constant rate of

rise of bubbles, while the heavier fluid will be in free fall under an acceleration which is con-
12stant, but may be diluted by an Atwood factor. Hence one would expect the amplitude to in-

2 2crease according to a form such as a = a + vt + 1/2 at . In very late stages the term t
° 2 

should predominate and one would expect that the amplitude would be simply proportional to t

To check these predictions, we have measured the amplitude of disturbances of various wave­

lengths as a function of the time. These measurements were made primarily from the 16-mm 

negatives by means of Leitz Ortholux microscopes at low magnifications. At the same time the 

estimated mean position of the interface was measured so that the acceleration could be deter­

mined. The results of a typical set of such measurements are shown in Figs. 4.11, 4.12, and 

4.13. In Fig. 4.11 we have plotted the square root of the observed mean displacement of the 

interface against the time. The result is a straight line, the slope of which measures the ac­

celeration. The intercept on the time axis indicates the time at which the acceleration began 

on the arbitrary time scale. Taking the time zero thus obtained as the true zero in time, we 

have plotted in Fig. 4.12 InA vs true time. We observe that, while the scatter of the points 

is considerable, a straight line can be drawn reasonably well through the first portion of the 

curve. The slope of this line is a measure of the a which is observed experimentally.

In Fig. 4.13 A / vs t is plotted for a typical observation. It is seen that in the latter 
stages of the growth a linear relation applies between these two variables. The slope of the 

line in this region is a measure of the acceleration of the heavier fluid into the light. Table 

4.2b gives a comparison of the observed values of a with those predicted by the linear theory 

of Taylor and that of Pennington, which has taken into account the effects of surface tension
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and viscosity. It is noteworthy that in all cases that a's that are observed experimentally are 

smaller than those predicted by either of the theories. The probable explanation of this fact lies 

in the neglect of the mass motion in the theories, since the effect of the term in Bernoulli’s 
equation containing v^ is assumed to be negligible. Figs. 4.14 through 4.19 show the pro­

gressive growth of a disturbance on a water-n-heptane interface.

4.4 Theoretical Implications
Qualitatively one can divide the growth of a disturbance in Taylor instability into four 

categories. The first of these is to a considerable extent described by the theories of Taylor, 

Pennington, and Birkhoff. The increase in amplitude is essentially exponential, though with a 

somewhat smaller a value than that predicted by the theories. If the initial disturbance is 

sinusoidal, the interface retains its symmetric character about the main displacement axis.

The second phase of the growth may be described as the development of an asymmetry

in the interface in which the heavy fluid begins to be constricted, tending toward the formation

of spikes, while the lighter fluid tends to bulge in the direction of bubble formation. It seems

reasonable that the development of the asymmetry is caused by the dynamic pressure change

resulting from the mass motion. For if the fluid particles were constrained to move as pre-
2dieted by the theories which have so far been offered, the term in v in Bernoulli's equation 

would set up a pressure gradient across the interface in a direction to cause bulging of light 

fluid into the heavy. It is clear also that the extent to which this asymmetry develops will 

depend on the difference in density of the two fluids. If the difference is very great, as for 

example in an air-water interface, one would expect the constriction of the heavy fluid to be 

comparatively severe. For liquid-liquid interfaces such as those which have been studied 

here, in which the density difference is comparatively slight, the degree of asymmetry should 

be less, and this is experimentally observed to be the case.

In the third phase one observes a mushrooming of the interface. It seems reasonable to 

ascribe this effect to the Helmholtz instability, in view of the fact that the necessary velocities 

for the production of Helmholtz instability are present. Experimentally one also observes a 

distinct variation in the mushrooming effect between interfaces of high and low interfacial tens­

ion. The fourth and final phase of the growth may be described as turbulent mixing. Experi-
9

mental evidence is available to support the notion that turbulence will arise, in general, when 

the Reynolds number is of the order of 2000. Once again the velocities required to give this 

Reynolds number are of the proper order of magnitude to make this a reasonable conclusion.

After turbulent mixing has begun, the situation may be described roughly as that which ap­

plies in the case of an extensive density gradient. Hence one might say that the effect of Taylor 

instability is in a sense self-limiting, since the normal course of events leads to a situation in 

which a is reduced by the formation of a region of density gradient.
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Chapter 5

INSTABILITY OF INTERFACES UNDER IMPULSIVE ACCELERATION

5.1 Introduction

A third group of experiments was performed to investigate the effect of impulsive accel­

erations upon an interface. Three phenomena seem to be of interest; the total growth of an 

initial interfacial wave due to impulse, the generation of spontaneous waves from minute per­

turbations, and the change caused by altering the impulse time for a given total impulse. 

Quantitative results have been obtained for the first two phenomena.

5.2 Apparatus
A sketch of the apparatus is shown in Fig. 5.1. The operational sequence is begun by 

turning on the high speed viewing camera (not shown). When the camera reaches an appropri­

ate speed the upper mass is released from its solenoid support and then, guided by the vertical 

guides, it falls freely. Just before the upper mass strikes the lower cell, which contains the 

fluids under study, it shutters a photocell system which releases the lower frame. Impact of 

the upper mass upon the lower provides the impulse. The surfaces of impact are made of 

hardened steel for the purpose of obtaining a short impulse. Average accelerations of the order 

of 200-300 g over a millisecond interval are obtained.

During the experiments several limitations of the apparatus became apparent. The trans­

parent faces of the cell containing the fluids were made of Plexiglas and even with plates as 

thick as 3/4 in., it was found that the hydrostatic pressure developed caused distortion of the 
sides. This has the effect of making the acceleration and pressure oscillatory.

A second limitation is imposed by the camera. It would be desirable to have a time re­

solution from 5 to 10 times as fast as with our Eastman camera. The Eastman camera frames 

about 3,000 pictures per second, which means that 2 to 3 frames are obtained for each im­

pulse; hardly enough for detailed wave growth studies. A faster camera, besides allowing a 

more detailed investigation, might reduce the significance of fluid oscillations. In spite of 

these difficulties, it is possible to study the total change in the amplitude of an initial wave and 

it is also possible to observe the appearance of spontaneous waves generated by the impulse.

5.3 Initial Wave Studies

If the impulse were of the form of a constant acceleration over the impulse interval it 

would be expected that the growth of initial waves would obey the cosh at law as long as 
7?«X; that is, if A t is the time interval and a the growth constant associated with the partic­
ular acceleration, then
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rl/'qQ = cosh a At, where 77

is wave amplitude and 77q is the initial amplitude.
The average acceleration can be obtained from the change in velocity of the cell and from 

a knowledge of the impulse time. Measurement of change of velocity presents no particular dif­

ficulty. However, the impulse time is not easy to measure exactly.

The time was estimated by utilizing two different observations. First, the time of con­

tact of the two frames was determined by an electrical method. The electrical signal was dis­

played upon a dual beam oscilloscope along with a calibrating signal and was photographed. The 

contact time was measured to be 1.1 millisecond, with a standard error of the order of 0.05 

millisecond. Next, the position in laboratory coordinates of both the cell and the liquid interface

was determined for each film frame. It was found that the cell changes velocity abruptly (re­

lative to our time resolution), but the change in interface velocity takes place within about 1.1

milliseconds, when 3/4 in. plastic plates are used as cell walls.
Both of these measurements give upper limits on the impulse time, but the actual time is 

probably not more than 20 percent smaller. Therefore, for cells with 3/4 in. plates, 1 ± 0.1 

millisecond was somewhat arbitrarily taken as impulse time. The impulse time for cells with 

1/4 in. plates used in some early experiments appears to be 1.7 ± 0.15 milliseconds.

From a knowledge of the acceleration, a may be calculated according to the Pennington 

theory, and the expected ratio of the wave amplitude after impulse to that before impulse can 

be determined. These ratios, together with measured ratios, are given in Fig. 5.3. The 

formula used for the calculation of a included surface tension but not viscosity. This method 

of analysis assumes that it is permissible to average linearly over oscillatory effects. Because 

of the nonlinear nature of the phenomenon, this assumption cannot be correct.

Measurements of the natural frequency of the main parts of the cell indicate that the actual 

impulse resembles the peaked form shown in Fig. 5.4A. The effect of peaks is to lower the 

growth below that expected from an equivalent rectangular impulse. Viscosity influences the 

growth in the same direction and it is therefore reasonable to expect smaller wave growths than 

predicted from theory which is based on an average acceleration and which neglects viscosity. 

That this does not appear to be the case in our experiments remains an unresolved, but not 

surprising, problem. As a whole, our results are consistent with expectations and the devia­

tions may well be due to spurious effects associated with the apparatus.

That a peaked impulse gives rise to smaller growth than an equivalent rectangular impulse 
can be explained as follows:

Consider a peaked impulse of the form shown in Fig. 5.4B as an approximation to the 

actual case. It may be assumed that the integrated effect (momentum change or area in the 

figure) and the outer limits of the impulse (At,,) are fairly accurately known, but that the
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relative heights of the two rectangular portions are not known. Therefore, it is desired to 

discover the effect of altering the relative heights of the rectangular portions.

First, in a qualitative manner, consider the effect of the two rectangular portions sepa­

rately as indicated by the shading. If the two portions are considered as separable and the 

larger portion is assumed fixed, then only the growth resulting from one portion need be dis­

cussed, the other being entirely comparable. Now a~vrg7 approximately, where g is accelera­
tion. And for a given impulsive momentum change, i.e., a given shaded area in the figure, 

g~l/t.

Thus Q!~^/ 1/t and at ~ t.

Using these last proportionalities, the expression for 77 2> growth associated with the small 

portion, may be written as
r]2= rjo cosh a1 ^At^ + ^ / JL sinh a^A^

where a^ is the a required by the given momentum change when At2 = At^. Evidently for 

a fixed a^*At^, rj ^ will contribute most when A t2 is as large as possible, that is, when 
At =At . Thus there will be the greatest growth when the total impulse is in the form of

Z i.
a single rectangle.

The above argument must be accepted only in a loose qualitative way since it depends 

implicitly upon the principle of superposition which is not at all valid for hyperbolic phenomena. 

An appreciation of magnitudes may be obtained through use of a specific example.

Consider an impulse composed of three joining rectangular portions as shown in Fig.
5.7C. Let the first and last portions have an a of 200 sec * and a duration of 3/8 milli­
second each. Let the central portion have an a of 600 sec * and a duration of 1/4 millisecond. 

These values are of the same order of magnitude as those in our experiments.

By successively applying the formulas

17 = 77 q cosh at + {rj^/a) sinh at 

77 = rj ^ a sinh at + 77 q coqh at

to the three sections, the final 77 may be obtained. It turns out to be (1.057)77 o. However, 

if the a values are averaged and the average applied for the whole impulse time, 77 =(1.081)

r)Q. Also if an RMS value of a is taken for the whole impulse, 77 = (1.10)77^ (Taking

an RMS value for a corresponds to averaging the accelerations associated with the various a 

values and closely resembles what was actually done in our experimental analysis.) The dis­

crepancy from 77 of 77av and 77 is about 2.3 and 4 percent, respectively.
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5.4 Spontaneous Waves
It is found that impulsive accelerations of the order of 200 g for 1 millisecond do indeed 

give rise with our apparatus to waves or spikes regardless of the presence of an initial wave. 

The spikes observed were of heavy liquid protruding into the light; no definite wave crests of 

the light fluid into the heavy were seen, though it is not certain that they could be resolved 

with our system even if present. The spikes seem to be randomly placed on the two dimensional 

interface. An effective "wavelength" could, however, be measured whenever a number of spikes 

were grouped together. The results of these measurements are given in Fig. 5.3 together with 

the wavelength of the "most dangerous frequency" of Pennington. This wavelength is that which 

corresponds to the maximum of the a vs wave number curve. The wave number of the wave­

length is given by Pennington as (aA/>/3T) where a is the acceleration,A the difference in 

the densities of the two liquids, and T the interfacial tension.

Figure 5.5 shows a plot of the growth of these spikes for an experiment in impulsive ac­

celeration in which spontaneous spikes are observed.

The details of growth are hard to discover because of the poor time resolution of our 

camera, but some idea of the maximum velocity attained can be acquired.

It was immediately apparent from the pictures of the interface that some sort of oscillation 

took place, for after the initial impact and the spike formation, cavitation bubbles occurred 

within the aqueous fluid and within the spikes themselves. To investigate the nature of these 

vibrations the filled cell was caused to resonate by tapping it at various places, and the audible 

vibration was recorded by means of a microphone and an oscilloscope. The cell has a dominant 
vibration at about 1.1 kc/s which appears to be associated with a transverse vibration of the 

side plates. A cycle of such a wave is shown in the spike growth curve. Evidently, if this 

wave represents hydrostatic pressure, the observed cavitation would not be surprising.

In runs K-5 and K-6 the camera happened to be so timed with the impact that growth be­

fore cavitation was observed. In run L-2 the timing of the camera was slightly different and 

no growth before cavitation was recorded; however, the initial part of the growth after cavita­

tion was recorded. The first measurable velocity following cavitation for L-2 is actually greater 

than the cell velocity, but it soon drops off to a lower value. Pictures of an interface under 

impulse are shown in Figs. 5.6 and 5.7.

It is possible to express the initial amplitude of a wave in terms of its velocity and 

amplitude at a given time, beginning with the fundamental relations r/ = r] cosh at and77= urj
op <2 2 ^ ^

sinh at. Thus, 7] ^ = rj - (rj /a ). It was thought an idea of the initial amplitude 

could be obtained by using the a calculated from the formula involving surface tension, but not 

viscosity, and choosing the first value of 77 where 77 can be measured with reasonable cer­

tainty. However, in each of the cases where spikes possible of measurement are formed, this
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procedure gives an imaginary initial amplitude. This result indicates that either the initial 

velocity is not zero—as indeed it might not be because of cavitation and oscillation effects—or 

else that for the spikes the Taylor growth law is not valid over the whole of the impulse. Ir­

relevance of the Taylor theory is quite reasonable since the theory is derived on the assumption 

that 17« X . This assumption is no longer valid almost as soon as the spikes become per­

ceptible. It appears then, that Taylor instability is responsible for the initiation of the spike, 

but in our experiments it is not in control of their subsequent development.

5.5 Effect of Impulse Time for a Constant Impulse

Although we have no quantitative experimental results, it seems worth while to point out 

what is involved in variable impulse time. Consider again the basic growth equation, 77 = 77q 

cosh at. The quantity a is presumably roughly proportional to the square root of acceleration. 
On the other hand the acceleration for a given impulse (i.e., given momentum change) is pro­

portional to 1/t, thus, at is approximately proportional to ■/t_and for two different impulse 

times (but the same momentum change),
a2t2 ^ al viV' Thus> V2 ^ X cosh Vt1t2 = ^ o COSh (const ^ t2).

This gives an idea of what might be expected as the impulse time is shortened; in the limit, 

as t^ approaches zero, no growth would be expected of an initial wave and, consequently, spikes 
arising from small perturbations should not appear.

In an attempt to shorten the impulse time through the use of explosives, a cell similar to 

the one used in the previous apparatus was accelerated by a rocket jet obtained from high ex­

plosives. However, the cell was not sufficiently rigid and spread the duration of the impulse 

to more than a millisecond. It might be possible to eliminate this difficulty through increased 
cell rigidity and careful design.

5.6 Conclusions

Because of the complicated and unknown mixing of various phenomena (e.g., vibration, 

cavitations, shock waves) and because of the limited extent of the experiments, our results for 

impulsive accelerations should be taken only as indicative. The results of our observations 

follow. During impulse, initial waves grow as predicted by the theories of Taylor, Pennington, 

Birkhoff; spikes which often arise correspond to the most dangerous wavelength of Pennington; 

and the rate of growth of spontaneous spikes does not appear to correspond to the Taylor theory.

In future experiments in impulsive acceleration, particular care should be exercised in the 

design of the cell to eliminate low-frequency, high-amplitude vibration. In addition, the camera 

framing speed should be increased to about 30, 000 frames per second for viewing millisecond 
impulses.
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Fig. 1.1. a vs wave number. Calculated from Pennington's results.
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Fig. 1.2. a vs wave number. Calculated from Pennington's results.



Fig. 3.1. Bubble tank.
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Figs. 3.2 through 3.10

Development of Taylor instability on the upper surface 

of an air bubble in water. With an arbitrary time zero, the 

pictures are taken at the following times (milliseconds): t = 0, 

16.7, 25.0, 33.3, 50.0, 58.3, 66.7, 83.3, 125.0. The hori­

zontal grid in the background has a spacing of 2 inches.
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Fig. 3.2
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Fig. 3.3
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Fig. 3.6
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Fig. 3.8
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Fig. 3.10
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Fig. 4.1. Lewis machine.
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Wave
Length Pi

Density
P2 kV P^APs+P,) Surface Tension

Viscosity
Pi P2 Acceleration + Limiting

Film No. cm cgs dyne/cm 10"3 dyne sec/cm3 in g's Theor. a in g's

89 1.0 .684 1. .188 39. 4.1 10. 24.9 146 .33
88 0.7 .684 1. .188 39. 4.1 10. 27.8 161 1.6

D-8 1.0 .827 1. .095 8.5 89. 10. 62.3 178 2.8
E-l 0.4 .827 1. .095 8.5 89. 10. 42.7 193 —
E-6 1.0 .684 1. .188 1. 4.1 — 42.6 211 7.5
D-5 0.7 .813 1. .103 5. 40. 10. 58.5 215 .7
G-4 0.7 .684 1. .188 39. 4.1 10. 55.1 233 45.
D-l 1.0 .684 1. .188 39. 4.1 10. 67.4 267 1.2
D-2 0.7 .684 1. .188 39. 4.1 10. 60.1 281 4.8
G-5 1.0 .684 1. .188 39. 4.1 10. 132. ~350 27.
E-5 1.2 ~.002 .684 .995 20. .4 4.1 58.7 374 58.

+ Acceleration after initial growth obeys parabolic law 

0 Amplitude at which mushrooming begins

Fig. 4.2A. Properties of interfaces and results of measurements under uniform acceleration.
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4L6

Density

Film No. Interface
Wave Length 

in cm
Factor

(p2"pl)/(p2+pl)
Acceleration 

in g's Exp.
a

Theor. % Difference

89 Water-n Heptane 1.0 .188 24.9 0 195 146 + 34

88 Water-n Heptane 0.7 .188 27.8 + ("232 
(_113 161 +441 

-30 J
D-8 Water-Octyl Ale. 1.0 .095 62.3 110 178 -38
E-l Water-Octyl Ale. 0.4 .095 42.7 0 106 193 -45
E-6 Aerosol-n Heptane 1.0 .188 42.6 124 211 -41
D-5 Water-Iso Amyl Ale. 0.7 .103 58.5 0 82 215 -62
G-4 Water-n Heptane 0.7 .188 55.1 143 233 -39

D-l Water-n Heptane 1.0 .188 67.4 + f245 
1_185 267

/ 
\

O
O 

TH
 

CO
1 

1

D-2 Water-n Heptane 0.7 .188 60.1 194 281 -31
G-5 Water-n Heptane 1.0 .188 132. 209 -v 348 -40
E-5 n Heptane-Air 1.2 1.0 58.7 270 374 -28

Data poor : + Values for different waves, lower figure thought to be more reliable.

Fig. 4.2B. Properties of interfaces and results of measurements under uniform acceleration
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Fig. 4.3. Critical wavelength vs acceleration.



J

Fig. 4.4. The variation of a caused by density changes near the interface (results of
calculations by D. S. Carter). The nature of the density variations are shown
in the sketches, where g indicates the direction of the acceleration and L the
extent of the density variation.



Fig. 4.5. The variation of a caused by density changes near the interface (results of
calculations by D. S. Carter). The nature of the density variations are shown
in the sketches, where g indicates the direction of the acceleration and L the
extent of the density variation.
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Fig. 4.6. The variation of a caused by density changes near the interface (results of
calculations by D. S. Carter). The nature of the density variations are shown
in the sketches, where g indicates the direction of the acceleration and L the
extent of the density variation.
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Fig. 4.7. Schlieren system.



Fig. 4.8. Schlieren photograph showing water-isoamyl alcohol interface. Picture is taken 
before addition of the alcohol to the water.
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Fig. 4.9. Schlieren photograph showing water-isoamyl alcohol interface. Picture is taken 
just as alcohol is added to water.
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Fig. 4.10. Schlieren photograph showing water-isoamyl alcohol interface. Picture is taken 
1 minute after addition of the alcohol to the water.
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Fig. 4.11. Interface displacement vs frame number.
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Fig. 4.12. Log amplitude vs frame number.
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Fig. 4.13. Square root amplitude vs frame number.
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Fig. 4.14. The progression of Taylor instability on a water-n-heptane interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 0. One frame
corresponds to a time interval of 0.355 msec (see also Fig. 4.2).
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Fig. 4.15. The progression of Taylor instability on a water-n-heptane interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 5. One frame
corresponds to a time interval of 0.355 msec (see also Fig. 4.2).
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Fig. 4.16. The progression of Taylor instability on a water-n-heptane interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 10. One frame
corresponds to a time interval of 0.355 msec (see also Fig. 4.2).
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Fig. 4.17. The progression of Taylor instability on a water-n-heptane interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 15. One frame
corresponds to a time interval of 0.355 msec (see also Fig. 4.2).
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Fig. 4.18. The progression of Taylor instability on a water-n-heptane interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 30. One frame
corresponds to a time interval of 0.355 msec (see also Fig. 4.2).
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Fig. 4.19. The progression of Taylor instability on a water-n-heptane interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 40. One frame
corresponds to a time interval of 0.355 msec (see also Fig. 4.2).
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Fig. 5.1. Impulse apparatus.
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Fig. 5.2. Interface and cell positions vs frame number. 1 cm = 0.975 scale cm and 2.71 
frames correspond to 1 millisecond.



Expected
Growth

Actual
Growth

Max Speed of 
Spike Growth*

Initial \ Acceleration Initial Amp Initial Amp cm \i anger 
cm

^spikes
cm

cm
Film Liquids cm g Final Amp Final Amp cm sec

1-2 Aerosol-n Heptane none 119 — — ~.08 This 
would appear 
as fuzz

Fuzz —

K-5 V’ater-n Heptane 2.2 240 1.06 J.50/.46 = 1.08 
\.19/.16 = 1.18 .247 ,2< X <.25 150

K-6 W ater-n Heptane 2.6 252 1.06 J.28/.26 = 1.07 
1.17/.16 = 1.06 .243 .25 187

L-2 Water-n Heptane none 190 — — .278 .28 316

* These values determined for growth after initial cavitation, 
view earlier in the growth than in K-5 and K-6.

In L-2 the camera was timed with the impulse to

Fig. 5.3. Summary of impulse data
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Fig. 5.4. Typical impulse forms.
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Fig. 5.5. Spike amplitude vs frame number. Growth of three separate spikes is shown.

- 67 -



80

81
82

83

84

85

tfH

■fad

86

98

Fig. 5.6. Impulse L-2. A water-n-heptane interface under impulse. Number refer to film 
frame numbers (1 frame ~ 3-10-4 sec). Grid in background is standard millimeter 
graph paper.
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Fig. 5.7. Impulse K-6. A water-n-heptane interface photographed about 4.5 milliseconds after 
the impulse. Grid in background is standard millimeter graph paper.
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APPENDIX A

In the experiments in uniform acceleration (Lewis apparatus) and 

impulsive acceleration, an initial wave was required on the interface being 

observed. Because of the wide range of frequencies and amplitudes desired, 

it seemed advisable to use electronic means to provide the driving force for 

the vibrating bob.

A block diagram of the circuit used is shown in Fig. Al. The dif­

ficulty of amplification of the very low frequencies desired was overcome 

by the use of a 2300 cps carrier, amplitude modulated at the desired low fre­

quency. The carrier frequency, supplied by a Hewlett-Packard Model 200D 

oscillator, and the low frequency, supplied by a Hewlett-Packard Model 202A 

oscillator, were mixed in a nonlinear pentode circuit. The resulting signal 
was filtered so that it contained only the high frequency components. After 

amplification to a high power level, the signal was demodulated by a copper 

sulphide rectifier, filtered, and use to drive the bob.

The mixer circuit is shown in Fig. A2.

The bob itself was a solenoid, modified by the insertion of a spring 

into the solenoid core. This arrangement provided satisfactory action over 

the frequency range from zero to about 40 cps, a resonance being observed 

at 8 cps.

- 70



CARRIER
OSCILLATOR

2300 cps

MODULATOR
OSCILLATOR

5-40 c.p.s.

SOLENOID

dMiUiuMHi

MIXER- POWER RECTIFIER
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Fig. Al. Block diagram of transducer system
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Fig. A2. Schematic diagram of mixer circuit.


