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DEVIATIONS FROM THERMAL EQUILIBRIUM IN SHOCK WAVES

. SUMMARY

The various terms contributing to the energy content of a gas, viz.

translation, rotation, vibration, electronic excitation and dissociation, are
. discussed {par.l). Tables are given of the energy content and the specific

heat of a s:h;rple harmonic oscillator {(Table I), of the energy content and the
dissociation of nitrogen, oxygen u(éable II) and air (T»Able III). The molecular
vibration becomes important for air at about 600°K, the dissociation at ebout
3060°K.

The theory of shock waves is generalized to the case when the spe-
cific heat changes with temperature (par, 3). General formulae are obtained for
the velocity, (3.10), density (3.8a), pressure (3.8b), and temperature (3.9) on

the high pressure side. It is shown that the asymptotic values of v, p, p and

T on the high pressure side at sufficient distance from the front of the shock

wave are uniquely determined by the values of these quantities on the low pres-

gure side, and are independent of any intervening phenomens comnected with the

approach of statistical equilibrium between the various degrees of freedom of

the molecule. This we consider the most important result of the present
investigations.
A table is given (Teble VIII) of the asymptotic values of v, p, D

and T on the high pressure side as a function of the velocity v of the shock
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wave. The four quantities are calculated (a) using the actual specific heat
‘of air as a function of temperature, as given by Table III (quantities are
subscript in Table VIII), and (b) using a constant specific heat equal to that
at 300°K (subscript 2). Large differences are found for the temperature in
the two calculations (Tp = 8000° when T3 = 5000°) and for the density
(po = 5.8, Pz = 9.1) but the pressure, which is the most important quantity for
applications, is almost independent of the specific heat (pp = 155, p3 = 168
atmospheres in the example quoted).

The sudden change of the temperature of a gas when passing through
a shock wave destroys temporarily the statistical equilibrium between the various
forms of energy of the gas molecules. The degrees of freedom of a molecule can
conveniently be divided into two classés, the active ones and the inert ones
(par. 2). The "active" degrees of freedom are translation and rotation; they
come into thermal equilibrium after one or a few collisions (par. 2A). The
most important "inert" degree of freedom is the vibration (par. 2B). Experiments
on the absorption of sound show that between 20 and more than 500,000 collisions
are necessary to establish thermal equilibrium between vibrations and the active
degrees of freedom at room temperature (Table V). This result agrees with the
expectation from the theory of Landsu and Teller. This theory allows one to
predict with moderate accuracy the temperature dependence of Z, the number of
collisions necessary to de-excite the first vibrational quantum state, when a
measurement of Z at one temperature is aveileble (Table IV). Unfortunately no
accurate measurements have been made for oxygen and none at all for nitrogen,
which makes quantitative statements almost impossible. Therefore we have only
listed (Table VI) the velues of the mean free path for vibration, A, which
follow from various assumption (par,2D) about the efficiency of the collisionms.
The resulting values of Ay for the cases which have practical importance for
shock waves lie between 3 and 0.0016 millimeters, depending on the vibrating

v '\’\G



molecule (N, or O,), the assumption made about the efficiency of various
molecular collisions, and the humidity of the air.

The dissociation also requires a considerable time to come into
equilibrium. The theory (par.2C) is somewhat more definite in this case than
for the vibrations because it depends on the Boltzmann factor rather than on
assumptions eabout the kinetice of collisions. Very large values (from 1 milli-
meter to 1 meter) are obtained (par.2D, Table VII) for the mean free path for
dissociation, Ag, in practical cases.

The theory of par.2 is applied to shock wave in par. 4. It is shown
that the shock wave has a sharp front on the low pressure side while on the
high pressure side it extends over a distance of the order of the mean free
path for vibration, Ay, or for dissociation, Ay. Immediately at the wave front,
but on the high pressure side, the physical quantities P, p, T, v can be calcu-
lated assuming that only the active degrees of freedom exist (Table VIII, quan-
tities with subscripts 2). Going away from the wave front into the high pres-
sure region, the energy Ei of the inert degrees of freedom increases gradually
and approaches the value corresponding to thermal equilibrium. In simple
cases, E;, Py py T and v will follow an exponential law (ef. 4.10, 11). 1If
the shock wave is violent enough so that dissociation occurs on the high pres-
sure side, there is first a region of extension A, near the wave frogt in which
vibrational equilibrium I1s esteblished but in which the dissociation is hardly
affected, and then a much more extended region (extension Ay) in which
dissociation takes place.

Two special cases of very soft shock waves are discussed in pars. 5
and 6, these discussions having mostly academic interest. In par. 5,we consider
the case where the velocity of the shock wave vy 1s between the actual velocity
of sound aq and the sound velocity obtained by considering only the active

degrees of freedom, i.e.,

J
pe
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where Cy is the total specific heat at constant volume and ¢y, the specific
heat due to the active degrees of freedom only. It is shown that in this nar-
row velocity interval the shock wave is diffuse on the low pressure as well
a8 on the high pressure side. These diffuse shock waves go over automatically
into shock waves with a sharp front when v, approaches the upper limit given
in (A).

In par. 6, slightly faster shock waves are considered, viz. waves

for which

(°v - "va.)R R
a 1 4+ 2l <y <a 1 + B
1 ( 20v Cya ‘ 1 ( oCy + R ) ( )

For such waves, the temperature on the high pressure side increases with
increasing distance from the wave front while for waves of higher velocity Vys
the temperature has its maximum immediately at the wave front and decreases

from there.



NOTATION

Throughout this Report, the following notations will be used:

a 4 48 KD
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[¢]
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[w)

1]

density of gas

pressure (in atmospheres)
temperature in degrees Kelvin
energy content of one gram of gas

degree of dissocisation,
1 +oc= p/(p RT)
5%5 +1
specific heat at constant pressure per gram
specific heat at constant volume per gram
cp/cv
gas constant per gram
gas constant per mol
Boltzmenn's constant (gas constant per molecule)
Planck's constant
velocity of the gas

flow in grams per cm® per 8sec

L]

PV

v +

Bio

velocity which the gas would have if streeming into vacuum
velocity of sound

mean free path for vibrations

mean free path for dissociation

frequency of molecular vibrations

dissociation energy of molecules
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SUBSCRIPTS

active degrees of freedom
inert degrees of freedom
vibration

dissociation

an arbitrary point on the high pressure side of a
shock wave

an arbitrary point on the low pressure side

a point on the low pressure side where thermal equilibrium
exists between all degrees of freedom of the molecules

a point on the high pressure side immediately at the front
of the shock wave

a point on the high pressure side at sufficient distance
from the wave front so that thermal equilibrium exists



Par. 1. The Energy Content of Geses

Perfect gases obey the equation of state
p/p = BRI (1.1)
vwhere p, p, T are pressure, density and absolute temperature and where the
gas constant R is & characteristic of the gas considered. If the gms dis-
sociates, (1.1l) ceases to be valid; in the particular case of a diatomic gas

dissociating into atoms, we have instead:

p/o = RI(L +oX) (1.2)
where o¢ is the degree of dissociation, i.e., the fraction of molecules dis-
sociated. Generally, p/p T is proportional to the number of separate particles
(molecules or atoms) per gram of the substance.

The energy content of a gas consists of five main parts, viz:
(1) the kinetic energy of the translation of the molecules
(2) the energy of molecular rotation

'(3) the energy of vibration

(4) the energy of electronic excitation of the molecule

(5) the energy of dissociation into atoms (6r smeller groups of
atoms).

We shall write the total energy content per gram in the form

E = (B-1) (p/p) (1.3)

The inclusion of the term -1 is convenient because the quantity occurring in
the theory of shock waves is E + p/p, where p/p is connected with the work
done by the pressure. Furthermore, we shall denote by B4, Br, Bys Bes Bg the
energy of translation, rotation, vibration, excitation, and dissociation, each

divided by p/p, so that
SUNARE I |



B = By +Bp+By+By +Bg+1 (1.4)

The various contributions will now be discussed in order:

1. The translational emergy is 3/2 p/p for any gas, independent
of the number of atoms per molecule, the temperature, etc.

2. The rotational energy, for all gases except H,, and at all
temperatures at which the substance is gaseous, is given by the classical
kinetic theory of gases without any important quantum correction. It ie zero
for atoms, 1 RT per gram for diatomic molecules and all polyatomic ones whose
atoms lie on a straight line such as CO,, and 3/2 RT for all other polyatomic
molecules, At high temperatures, there is a correction because the molecules
change their shape due to their vibrations. Thie correction, commonly called
the interaction of vibrations and rotations, is usually not very great.

3. The vibrational emergy cen be approximated (at not too high
temperatures) by resolving the vibration into normal modes and treating each
mode as a harmonic oscillator.

The number of normel modes is 1 for a diatomic molecules, 3n-5 for
a molecule containing n atoms on a straight line and 3n-6 for a molecule with

n atams not on a straight line. The energy contained in one mode is (per gram)

z
E, = RT oz -1 (1.5)
where
_ hv
2 = 'k'ﬁ" » (l.5a)

%/ is the frequency of the vibation, h Planck's and k Boltzmenn's constant.

If 9 is given in wave numbers (cm"l) and T in degrees Kelvin,

z = 1.438 v /r (1.5b)
B | 2
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The frequencies of the various normal modes of molecules can be
obtained from band spectra. A good survey of data can be found in H., Sponer,
Molekulspektren I (Springer 1935). The frequencies of simple light molecules
are very high, e.g. for N, we have ¥ = 2345 en~l, for 0s, 1570 cml, For
more camplicated, and especially for polyatomic molecules, the lowest frequen-
cies are much smaller, the highest ones of the same order as for diatomic ones.
E.g.4 CO, has four modes of vibration with frequencies v = 667, 667, 1336 and
2350 cm~t.

For low temperatures (z large), the vibrational energy is ncrligible.
E.g., for z = 5, 1t amounts only to 0.034% RT, i.e. 1 per cent of the value of
E + p/p for translation and rotation of e diatomic molecule. z = 5 corresponds
to 680°K for Nz, 450° for Op but only 192° for the low frequency mode of COp.
Thus the vibrations mey be neglected at room temperature for N, and Op but
not for CO».

At high temperatures (z small), the vibrational energy is RT per

mode, This value is attained very slowly.

1}}3
4yt
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TABLE I

Energy Content of Harmonic Oscillator

EV’
RT

4,1.10-8
k.5.1o'h
0.0085
0.0339
0.07h47
0.123
0.223
0.313
0.389
0.502
0.582
0.70k
0.771

2

1-1 2z + iLF
2 12

Cy

R

8.2:1077
4,5+1070
0.0566
0.1705
0.304
0.426
0.609
0.723
0.800
0.880
0.921
0.963
0.979

1.400

1.3995
1.391
1.375
1.357
1.342
1.321
1.3105
1.303
1.296
1.292;
1.289
1.2875

1.2857

, 10
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In Teble I, we give the vibrational energy of & harmonic oscillator as a
function of the temperature. We also give the contribution of the vibration

to the specific heat, viz,

-
= d’E—— (1.6)

which is seen to become appreciable at much smeller temperetures than E,
and to approach its asymptotic value much faster. We have also included the
ratio, 7 of the specific heats at constant pressure and volume, for a diatomic

gas with harmonic oscillation, viz.

T7/2 R + cyyy

7" 5/2R + ¢

(1.68)
v

At high temperatures, the vibrations can no longer be regarded as
harmonic. The effect of the anhamonicity is to increase the energy content of
the gas. E.g., for No at 5000°K the harmonic oscillator model would give
By = 0.699 while the correct value is 0.753, including the interaction of vi-
bration and rotation, and a small contribution from excitation. The influence
of the anharmonicity is greater for molecules which are easily dissociated.

L, The electronic excitation is usually rather wnimportant compared
with vibration and dissociation.

5. The dissociation becomes importent at temperatures ebove 2-3000°K.
If oc is the degree of dissoclation, p the total pressure, Py and Py the partiasl

pressures of atoms and (diatomic) molecules, we have

2
M 1=ec (L.7)*

¥ pin (1.7) is considered a dimensionless quantity, viz. the ratio of the
pressure to one atmosphere.

10



12

20 - O
The first equality follows from py = T+ PrPy= %_—-_-'_-—a p. K is the dis-

lsociation constant, R, the gas constant per mole = 1.987 ca.lories/degree )
AF = Fy - Fy the difference of the free energies per mol of the molecular
and the atomic gas, each taken at unit pressure. For some gases, like N2 and
05, tables of AF as a function of temperature have been published (cf. below).
Where they are not published, AF can be calculated from the Stern-Tetrode

formila, which reads for diatomic gases

3/2 2 D
2 - ——
K = _(__“EA_k.?_)_.___ gf_*_. e Rl (1.8)

nh3 Gy

where m, is the mass of one atom, n the number of separate particles per cm3
of the gas at unit pressure and temperature T, and D the dissociation energy
in calories per mol. According to spectroscopic evidence (Sponer), D has
the value 117,200 cal. for oxygen and 182,000 cal. for nitrogen, so that
D/R, = 59,000 and 91,600 degrees, respectively.

gy and Gy are the statistical weights of the atom and the molecule.
In general, gy may be put equal to the combined weight of all states of the
multiplet to which the ground state belongs, so mt

g = (2L +1) (25 +1) (1.9)

where L. and S are orbital angular momentum and spin of the atomic ground state.
N, having a hS ground state, has therefore gy = (1)(4) = 4; oxygen, with a 3p
state, has a weight g = (3)(3) = 9. GM consists of three factors referring
to the electronic state (gy) of the molecule, the vibration (g;) and the

rotation (g,) respectively,

Ceen

.
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gy cen be calculated from spin S and orbital momentunm A sy Viz.

gy =25 +1 for 3 states (/) = 0)
2(2s + 1) for all other states (A #0) (1.11)

The ground state of No is a 12 state (gM = 1), that of O, & 32
state (gM = 3], g, 1s always given with sufficlent approximation by

classical kinetic theory

<]

(1.12)

B

where B, is defined by the fact that the rotation levels of the molecule are
BLJ(J+1) if j is the rotational quantum mumber; B, = 1.44 ent for 0, and
2.00 cm~1 for Ny. If B,. is measured in cm~l and T in degrees Kelvin,

gr = T/1.438 Byp. The vibrational part, g,, is given by

1
l-0-2

&g, = (1.13)

with z defined as in (1.5a). Ordinarily, dissociation is only important at

high temperatures; then g, is sufficiently nearly

g, = kT/hy (1.13a)

If there are several modes of vibration, there is one factor of the type (1.13)
for each mode.
When K has been calculated, and the total pressure p is known, «

can be calculated immediately from (1.7), viz.

e e

[TE
@ =VE+Tp o (1.14)
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In the theory of shock waves, the density p on the high pressure side can be more
readily estimated than the pressure (par,3). Then, inserting (1.2) in (1.7), we

have

LRT p @ (1 + @) = K(1 - ad) (1.1ka)
which gives
a=-1/2k + YK' + 1/k x'2 (1.15)
v - _K
with K mr (1.15a)

If p, is the density of the gas at temperature T, end unit pressure, we have

)

g =K ToPo (1.15b)
I
The dissociation « depends strongly on the temperature (increasing with
increasing T) and slightly on the pressure or density (decreasing with increasing
P or p). The equation of state for a dissociated gas has already been given in

(1.2). The energy content is given by

s=5lL;g BM*‘-:-L-%-E (IT];+2BA) (1.16)
O

where BM and QA are the coefficients of energy content for the molecular and the
atomic gas at the given temperature. Disregarding the term D/ROT, (1.16) is simply
the weighted average of By and By, the weights being given by the partial pressures.
The dissociation itself contributes an energy D per mol of the gas; to obtain B, )
the energy per mol must be divided by Mp/p = (1 + a)RoT (M the molecular weight).
BM can be calculated by adding the contributions 1 to 4 discussed above.
By is essentially due to translational energy only, and has therefore the value
5/2. (The energy of electronic excitation of the atoms is seldom important below

: )
5,000° and has therefore been neglected.) T 018
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At extremely high temperatures (above 5,000°) the ionization of atoms
and molecules must be considered. This can be done using similar calculations as

for dissociation.

Tables

Table II gives the energy constant B of nitrogen and oxygen at temper-
atures from 300 to 5000° Kelvin. The energy constant from 300° down to the lique-
faction temperature remains almost unchanged. The data for nitrogen were taken
from W. F. Giaugque and J. 0. Clayton, Journ. Am. Chem. Soc. 55, 4875 (1933), those
for oxygen from H. J. Johnston and M. K. Walker, ibid. 55, 172 (1933). Both sets
of data were calculated by the respective authors taking into account all correc-
tions such as anharmonicity of the vibrations, interaction between rotation and
vibration, and electronic excitation. The figures given in our table for nitrogen
are less accurate because Glauque and Clayton give only the free energy from which
the energy content had to be obtained by numerical differentiation, involving con-
siderable inaccuracy. A graphical method was used to smooth out the results of
the numerical differentlation. The energy content of O, could be read directly
from the tables of Johnston and Walker as the difference between T times the en-
tropy, and the free energy.

The dissociation was calculated for oxygen and nitrogen in ailr of a
density equal to 8 times the density at 300°K and one atmosphere pressure. These
conditions were chosen because in & shock wave in which the temperature is raised
to 3000-5000°, the density is increased about 8 fold (cf. 3, Table VIII). Ob-
viously, the figures for oxygen would also be valid for pure oxygen of a density
of (8)(0.210)= 1,680 times that at 300° and one atmosphere, and the dissociation of
nitrogen would be the same for pure nitrogen of a density of(8)(0.7805)= 6.24h times‘

the density of nitrogen at 300°K and one atmosphere.

TR



300
400
500
600
700
800
900
1000
1250
1500
1750
2000
2500
3000
3500
4000
4500
5000

Table II.

Bu

3.493
3.499
3.508
3,521
3,541
3,564
3.59h
3.625
3.702
3.780
3.845
3.900
3.992
k,062
4,127
b, 177
4,218
4,253

Nitrogen

K

4,0-10"14
k,9-10710
2,61-1077
2,28.107?
6.95-107%
9.85-10°2

8.22.10°2

1.55-10-8
1.53-1076
3,23:107°
2,86-107™"
1441073
5,12-1077

1,39-10"2

Oxygen

£ Bu X
3.493  3.493
3.499  3.520
3.508 3,548
3.521  3.590
3.541  3.636
3.564 3,684
3.59%  3.731
3.625  3.7Th
3,702 3.871
3.780 3.950
3.845 4,015
3.900 4,068 5.15-1077
3.992 k.57 2.36.107
4,063 L4.,223 0.01h2
h,13h h,278 0.268
L.205 L4.327 2.45
ho3oh  L.37h 13,8
L.h57 4. hl2 55.h

Energy Content and Dissociation of Nitrogen and Oxygen

1.07'10'h

2,05-1077
0.01kk
0.0568
0.1525
0.308

0.500

~20

16

B

3.493
3.520
5.?&8
3.590
3,636
3.68h
3.731
3.77h
3.871
3.950
k,015
4.0
k.199
b, L5k
4.982
5.79
6.58
7.07
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It is seen that for oxygen the increase of the energy content, both due
to vibrations and to dissociation, begins at much lower temperatures than for ni-
trogen. At 5000°, the values of B differ by more than 50 per cent. This is due
mainly to the smaller dissociation energy and vibrational frequency of 02, and to a
small extent also to the smaller concentration of 02 in air (cf. 1.15a).

Table III gives the necessary data for air. We have assumed a compo-

sition of
78.05 per cent Nitrogen
21,00 per cent Oxygen
0.92 per cent Rare gases
0.03 per cent 002

all percentages being by volume, i.e. by number of molecules. The energy content
of the rare gases is B = 5/2 because they are monatomic. The B of COp was only
guessed because of its small concentration.

From the B's and a's of the constituent gases, the dissoclation and the

energy content of a mixture are calculated as follows:

q = chk o (1.17)
B = EJLCk Pr (1 + ax) (1.18)
1+«

vhere c, 1s the concentration (by volume) of the kEE component of the mixture
(Zlk Cy

tively. « is mainly important for the calculation of p/p, Eq (1.2).

=1), o and Bk its degree of dissociation and energy constant, respec-

Specific Heat

The specific heat can be obtained by differentiating the energy content.

As long as there is no dissociation, the specific heat per gram at constant pressure is

21
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¢, = & (RTB) = R(B + T £) (1.19)

The velocity of sound, agein in the absence of dissociation, is given by

a2 = 7 BT (1.20)

where is the ratio of the specific heats at constant pressure and constant

volume, viz.

R (1.21)

If B is independent of temperature; we may write from (1.19) and (1.21):

p=22 = & (1.22)
R 2;-1
as is commonly done in the theory of shock waves and other phenomena involving
gases in rapld motion. While this is approximately Justified for low temperatures,
it is certainly not for air above 600°K.

We have not included the specific heat in our Tables II and III because
another numerical differentiation would have been necessary which would have made
the results very inaccurate. Moreover, we belleved that there was at the moment
no pressing need for a table of the specific heat and of the velocity of sound at
very high temperatures but that the interest was centered around the shock waves.

If there is dissociation, (1.19) is no longer correct because the emergy
is RT B(1 + @) and @ as well as P changes with temperature. Moreover, the deriv-
ative with respect to T must now be calculated at constant pressure. Furthermore,

the difference between °y and c_ is no longer R so that (1.21) is no longer valid.

. [
Y /3?2



300
Loo
500
600
700
800
900

1000

1250

1500

1750

2000

2500

3000

3500

4000

4500

5000

2,726
2.731
2.738
2.7485
2,764
2,785
2.805
2.8295
2.8895
2,950
3.001
3,04k
3.115
3,171
3.2275
3,287
3-3755
3.527

Table III. Energy Content and Dissociation of Air

Ckﬁk
0

0.733
0.739
0.745
0.754
0.764
0.77%
0.7835
0.7925
0.813
0.8295
0.843
0.855

0.8835

0.9%9
1.106
1.k00
1.808

2,226

(1 +oryk)
Rare
gases

0.023

"
"
"
"
"
1"
\i]
"
L
"
"

n

COp

0.001

"

"

n
0.002
"

Lid
"

1"
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3.507
5.527
3.552
3.580
3.613
3,647
3.727
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b, 024
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3.183
3,494
3.507
3.527
3.552
3.580
3.613
3,647
3.727
3.805
3.869
3.92k
4,023
4,133
4.307
k.562
L.875
5.227
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Finally, (1.20) ceases to be correct and is replaced by

2.°% (1+a+ [rail ] RT
® Cy ( dTogp] T ) (1.22)

2, The Approach of Equilibrium between Various Degrees of Freedom of the Molecules.

Suppose the energy content of a mass of gas is suddenly changed, as it
is when the gas passes through a shock wave. Then it will take some time until the
various degrees of freedom adapt themselves to the new conditions, and this "time"
of relaxation" will be different for the different degrees of freedom.

A, Translation and Rotation.

The equilibrium will be attained most rapidly by the translation. For
this degree of freedom, one collision is in general sufficient to come close to
equilibrium. In order to have conditions similar to those in a shock wave we may
consider a gas of a certain temperature T,, into which streams a more dilute gas

of a lower temperature T Then the molecules of the cooler gas will (on the av-

1°
erage) become accelerated as soon as they make their first collision with those of
the hotter gas. The average kinetic energy of e molecule of a cool gas will in-
crease from 3/2 kT1 in one collision to something of the order(3/2 k)l/2(T1+T2).

A shock wave can obviously never be quite discontinuous but the tran-
sition from temperature T; to T, takes place over a distance of at least one gas-
kinetic mean free path Ay (t for translation). For ordinary gases at room tem-
perature and atmospheric pressure; Ay is of the order of 10-5 cm; it is in first
approximation independent of the temperature and inversely proportional to the
density; therefore, even a very violent shock wave in which the density increases
by a factor 6 to 10 (cf.par, 3Table VIII), must have an extension of at least aboﬁ;
10"’6 cm., The classical theory of the physical structure of shock waves as given
by Becker (Zeits. f. Phys. 8, 321, 1922) gives extremely small extensions which
become of the order of 10-7 cm for very violent waves. The theory of Becker which
takes into account the heat conduction but neglects molecular effects can therefore

r
‘e an
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not be correct, at least not for violent shock waves. Becker, himself, pointed
out that the problem requires a treatment based on the kinetic theory of gases.
In practice a spatial extension of the shock wave of the order of one mean free
path is, of course, of no importance at all, even at rather low initial pressures,
The molecular rotation may'approach equilibrium as repidly as the trans-
lation. This would be expected for strongly elongated molecules such as 002. I
the effective boundary of the molecule is nearly spherical (e.g. N, or 82) the
excitation of molecular rotations may be estimated to take roughly 10 to 100
collisions. To show that the rotation approaches equilibrium so quickly, we use
the results of Landau and Teller, Physik. Zeits. d. Sowjetunion 10, 34(1936).
These authors have found that the effectiveness of collisions on a certain degree

of freedom is determined by the ratio

X =Te/To (2.1)

-

where % . is the effective duration of the collision and 15 the natural period of
the degree of freedom concerned. If % is of order unity or smaller; one or a few
collisions will be sufficient to establish equilibrium whereas a large number of
collisions is required if g1 (cf. 2.5).

T . in (2.1) may generally be written

T, =58/v (2.2)

where v is the relative velocity of the two colliding molecules and s the range

of the intermolecular forces, i.e. the distance over vhich the molecules interact
strongly. We may expect s to be of th; order of ons helf to one Bohr radius,

i.e; 2.5 to 5910”9 cm, a range of values vwhich seems confirmed by some experimental
results on the approach of vibrational equilibrium (cf. Table IV). In the case of
rotation‘rb may be taken ag the time required for one revolution; or rather this .
time divided by 2x (cf. 2.4) so that 7, = r/vy where r is the radius of the mol-

ecule (distance of an atom from the center of gravity) and vy 18 the veloc;;x of
' DAY
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the atoms in their revolution around the center of gravity. Now V. is of the same
_order as v, the velocity of molecular translation (equipartition of energy!) and
r:is of the same order as s. Therefore % is of .order unity for rotation, and
equilibrium between rotations and translation will be attained in a few collisions.
We shall find in the following that all other, degrees of freedom behave
quite differently in that many collisions are necessary to establish equilibrium.
Therefore 'it will be convenient to group together translation and rotation on one
side, and all other degrees of freedom on the other., The latter we shall call the
"inert" degrees of freedom while translation and rotation will be denoted as the
"active" degrees of freedom. For all practical purposes we may say that the energy
content of the active degrees of freedom can change almost discontinuously, because
a distance of a few mean free paths may be considered negligible, We can then define
tﬁe temperature of a moving gas at each point by the energy content of the active

degrees of freedomywhich is

E, + p/p = B, p/p = BRI | . (2.3)

a

(the last relation being only velid if there is no dissociation). In (2.3) B, 1s
iﬁdependent of the temperature and equal to 5/2 for monatomic,?/e for diatomic

gases (cf. par,1l). The energy content of the inert degrees of freedom, Ey, on the
other hand, cannat change abruptly and is therefore not alﬁays in equilibrium with
that of the active ones; in other words, E; is not necessarily related to the local .
temperature T in the way discussed. in par, 1.

B, Vibrations

Theory
The most important Inert degree of freedom are the vibrations. For these,

we set in (2.1)

T, = 1/2 nw (2.4)
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where 3 is the natural frequency of the molecular vibration. (In all formulae
like (ﬁaol) 2n< rather than </ should be used as representing the frequency because
the frequency is generally introduced into physical formulae by taking the time
derivative of experssions like sin 2xwt. If we took v instead of 2x ¥ in (2.4),
the only change would be that the values of s deduced from experimental data would
be multiplied by 2x). Bince the frequencies of molecular vibrations are rather
high, it is plausible that x is rather large; this will be shown by direct cal-
culation and by discussion of experimental results below. For the case X3 1,

Landau and Teller give the formula
Po =CeX (2.5)

Here P10 is the probability that a molecule in the first excited state of vibration
is de-excited by a collision with another molecule. C is a geometrical factor which
gives the probability that the collision of the two molecules will take place in
a direction suitable for excitation or de-excitation of the vibration. There are
no experimental data sufficiently accurate to deduce Cyso that qualitative arguments
must be used for its determination. Obviously, C must be less than unity, and
probably it will lie between 1/3 and 1/50 in most cases, its wvalue being higher for
diatomic and lower for polyatomic molecules because it is less likely that a com-
plicated molecul® is hit at the right place to induce a given mode of vibration.
In our computations below, we shall use arbitrarily Csl/10.

Presumably, a better approximation could be obtained by introducing in
(2.5) another factor, viz. a certain power of 9¢ . Arguments can be given for a
factor x“e . However, these arguments are too uncertain to justify at present the
inclusion of such fine points.

The most important factor in (2.3) is the exponential ¢~ 'K where
(cf. 2.1, 2.2, 2.4)

X =2xws/v (2.6)
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Let us investigate x for the case when the kinetic energy of the relative motion

of the colliding molecules is Just kT, 1l.e.
1/2 Mv® = kT (2.7)

where M is the reduced mass of the two molecules; if they are equal, M is one half

the mass of one molecule. The value of‘)( for the velocity determined by (2.7) is

X1 = 2nws V M/2kT (2.8)

This can be re-written as follows:

y Sl Vh /2KT . 8 thi My (2.9)

For the collision of two equal diatomic molecules, each consisting of two equal

atoms, M is the mass of one atom; then the reciprocal of the last factor is (2.9) viz.

b = Vh/lmeMv (2.10)

represents the amplitude of the molecular vibration in the lowest quantum state.
Generally, the b defined in (2.10) has the value

-8
p = 8:2.207% (2.10a)

W

where o is the molecular weight of the molecule (assuming collision between equal
molecules) and 9 the vibrational frequency in em~l, For Na, v = 2345 and'& = 28
go that b = 3.1.10“locm. Thus we see that b 1s very small compared with the range
8 of the forces, The factor \/3;7526.18 (2.9) is also in general greater than unity,

so that % 1 1s indeed very large compared with unity as we expected above. There-~

fore (cf. 2.5) the probability of transfer of energy between vibration and
I;‘. . \‘)8
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translatlion is very small} the vibration is an inert degree of freedom. It is

seen from the derivation that the reason for this result is not so much that the
engrgy'of one vibrational quantym he is large compared with the average energy
of translation, kT, but rather that the amplitude of the vibrations, b, 1s very
small compared with the range s of the intermolecular forces. This in turn is
due to the large elastic forces which govern the elastic vibrations.

The quantity & (2.6) will be reduced, and therefore the probability of
energy transfer p;n (2.5) considerably increased, if we take higher velocities v.
Therefore & given molecule will lose and galn vibrational energy mostly at the
times when its kinetic energy of translation is high compared with kT, 1l.e. when
it is in the tail of the Maxwell distribution. If we average over all the mol-

ecules In the gas, the probability of energy transfer per collision becomes
.

Pio = 2/Vﬁ—j;""v3t_dx Ce™% (2.12) -

where

3 =My (212a)

(2.12) represents the probability (2.5), averaged over the Maxwell distribution of
the relative velocities of the two colliding molecules.* With (2.6) for  , the
integration of (2.12) can be carried out by the saddle point methods,the integrand

having a steep maxlmum near

# It might be preferable to take into account the different collision probabllity
of fast and slow molecules, i.e. to replace (2.12) by

Plo =fe-x x dx C e.x (a)
which would give instead of (2.13)

Pig = 2/9 |7 63/2 e 7 (v)
The temperature dependence of P%O would not be changed very much by this correction

b)

because the difference between and (2.13) would be largely compensated by a
different value of s deduced from the experiments.

6.1 XS

o N
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x, = 1/2 (2nsw) 2/3 (/1) 1/3 (2.12b)

The integration gives
Plg=C'oge ® (2.13)
where 0 =3x, = 3/2 (8/b) 2/3 (hz//éT) /3 (2.14)
c =?£+3'7 3/2C (2.1ka)

(b as defined in (2.10, 2.10e), s the range of the molecular forces, @ the fre-
quency of vibration). (Egs. (2.13, 14) are similar to the equations determining
the rate of nuclear reactions in stars).

Numerically, (2.14) may be written

o = 0.090 (ws) 2/3 (/1) 1/3 (2.15)

vhere p is measured in cm~l, s in units of 1079 em; T in degrees Kelvin, and.'aig
the molecular wéight per molecule (or twice the reduced molecular weight,
24Ma/ (4 + Hp), if two unequal molecules tollide).

We shall now try to get a more quantitative estimate of s. Experiments
are available (cf. below), among other gases, for pure 002, and for the action of
N, on the vibrations of 0y. For C02, Fricke (Journ. of the Acoust. Soc. of Am. 12,
245(1940)) finds that Z = 86,000 collisions are necessary for de-excitation of the

first excited vibrational state, so that

P 1 1 -1.15°10°
10 "%~ 8,000 2

Taking C' = 1/10, (2.13) gives @ = 11.5. Using this number in (2.15) with 2

= 667 cm”L, ve find,
8 = 5.6:20"7 cm, (COp) (2.168)

30
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For the de-excitation of the vibrations of O, by collisions with Na, Kneser and
Knudsen find Py, = 10-2. Inserting this figure in (2.13, 15) and taking ¥ = 1570

cm."'l

s we obtain
s = 321077 cm (0p/N,) . (2.16b)
Both the results (2.16a) and (2.16b) are of the order of the Bohr radius
as we assumed above. Differences between the values of s for different molecules
are, of course, to be expected. We can therefore not predict the value of s for
a palr of molecules for which it has not been measured experimentelly. This is
very unfortunate because PlO’ or
Z =1/P, , (2.17)
is very sensitive to s. This can be seen directly from (2.13, 14) or from Table IV
in which we have calculated Z from (2.13, 1lk) for O, and N,, in each case for two
different values of s. A more detailed discussion of Table IV will be given in
par. 2D.

Influence of foreign gases, experimental difficulties.

Collisions between two different molecules are often more effective in transfer-
ring energy to and from the vibrations than collisions between like molecules.

This is the case especially (1) if the two colliding molecules have a chemical
affinity and (2) if one molecule is very light so that its velocity is great. In
case (2) which is realized for Hp, He, etc., ptin (2.15)is very small. In case (1)
the interaction between the two molecules is much more intense than usually which
may perhaps result in more sudden changes of Interaction and correspondingly shorter
effective range, or even in a complete failure of the Landau-Teller theory when

the two molecules penetrate so deeply into each other that they can be said to

form a temporary compound. In the latter case, the temperature dependence may

be quite different from that indicated in (2.13).

non o 3l



Table IV. Theoretical Temperature Dependence of the Number of Collision Necessary for

De-excitation of the First Vibrational Stste.

Temperature (°K) 300 500 700 1000 1500 2000 3000 5000
Vibrating
Molecule 8
COs 5.6+1077 11.20 9.45 8.L5 7.50  6.55 5.95 5.20 14,38
Z 65,000 13,500 3500 2400 1080 650 340 180
0o 4.10-9 14,32 12.08 10.80 9.58  8.37 7.60 6.56 5.60
Z 1.1-106 1¢u5-1o5 k6,000 15,000 5100 2600 1150 380
341077 11.82 9.97 8.91 7.91  6.91 6.28 5.49 4.62
z 1.1-10° 21,500 8400 3400 1450 850 440 220
No 3.10"9 14,78 12.48 11.1k 9.89 8.64 7.85 6.75 5.77
z 1.7-10% 2.0.109 62,000 20,000 6600 3200 1400 570
2.5°10°9 13.08  11.05 9.88 8.77 7.66 6.96 6.08 5.11
VA 3.7-10° 57,000 19,500 7500 2700 1500 720 320
Collisions with H50
0o 0.93:1077 2 - 400 210 140 100 75 60 50 Lo
No " Z 1300 650 320 200 130 100 75 50

g8e
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As will be seen from Table V, the foreign gases investigeted are 3 to
LOOO times more effective in de-exciting the vibration of Oy than O, 1itself, the
effect being greatest for complicated molecules such as CoHoOH which has a chemical
affinity to Op, and for water, which can probadbly form a temporary compound with Oo.
The effect of Ny on Op is almost as small as that of O, itself because there is
not much chemical interaction; the collisions between 0o and No will be dis-
cussed in more detail in par. 2D.

The large effect of water vapor on the variation of oxygen makes it
extremely difficult to measure the smell effect of collisions between O2 molecules
themselves, Only a lower limit for Z was therefore obtained in the experiments
on "pure" O,, vig. 500,000.

For the problem of shock waves we must conclude that the establishing of
vibrational equilibrium will depend sensitively on the humidity of the air. Omn hot
humid days, the water vapor content of the air may easily reach 3 per cent (23 mm
vapor pressure) so that only MOO/O°05 = 13,000 collisions would be necessary to
establish vibrational equilibrium for the oxygen. On the other hand, for complete-
ly dry air the necessary number of collisions is about 10° because then only the
collisions with nitrogen will be important. A more accurate discussion of the
humidity effect will be given in Table VI.

Excitation and De-excitation. 1Instead of the probability Pyg of de-

excitation per collision, it is convenient to introduce the probability klo of

de-excitation per second which 1s given by

Kip = P10+ N = N/ (2.18)
where

N = /\/Cb v (2.18a)

is the number of collisions per second,/J the number of molecules per cmB,thhe

gas-kinetic collision cross section and v the average relative velocity of two

: - 33
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colliding molecules, viz. ;; XT . The quantity kyo has two advantages compared
with Pyq, viz. (1) that it is mdge directly related to the extension of the shock

wave and (2) that it is directly comnected with observational data (cf. 2.22, 26)

whereas the connection of P with these data involves the somewhat uncertsin cross

section q.

The probability of excitatiom, k 17 is connected with the probebility of

0
de-excitation, klo, by the statistical principle of detalled balancing according

to which

kgy = ko o7 B (2.19)

The time rate of change of the number Yo of molecules without vibration is then

o =Xk10 71 - ko1 Yo (2.192)
Tt

where y; 1s the number of molecules in the first excited vibrational state. Sim-

iler equations hold for the other y, where, according to quantum theory, k,, n-1 =
= e-hv/ i

nkjo end kn 1 p = K popoy /KT. By adding the equations for the various yp, an

equation for the total energy of vibration,

o0
E;, = h? €=, ny (2.19p)
can be obtained, namely
GEV - IlV/ kT t
i L3Te) (1 -e ) (B'y - Ey) (2.20)

Here E', 1s the vibrational energy in thermal equilibrium, viz.

hz

By = ma (2.208)

[
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Eq. (2.20) is valid no matter how large the deviation from thermal equilibrium.
The factor 1 - e - h /kT takes account of the fact that there occur transitions
away from equilibrium as well as towards equilibrium. The solution of (2.20) is

E'_ - E_ = Ae~®ot (2.21)
v v

where w, 1s the reciprocal of the time of relaxation and is given by (cf. 2.20).
‘.

w =k (1 e ~hv /kT) (2.22)

It has been assumed in (2.21) that T remains constant. This not strictly correct
in 'éhb,qk waves (cf. par,3,4) where wo, being a function of T, will char;ge with
time so that the integral of (2.20) cannot be given in closed form.

In shock waves, we are interested in the spatlal variation of Ev‘ If

the gas flows with a velocity v, we may write

EEY 14 _ _El.._:.}.g_‘_' (2.23)
dx v % Ay
where
A, = v, 0 (2.24)
defines the mean free path for vibration.
Bvaluation of Experiments . 7ne experimental determination of w, is

based upon the absorption and dispersion of sound in gases. The theory of this

phenomenon has been given by H. O. Kneser, Ann. d. Phys. 16, 337 (1933) and Journ.
/4.

Acoust. Soc. Amer. 5, 122 (1933), and others. The absorption coefficientaper wave

W)
length depends on the circular frequency,of the sound wave approximately* as

* In order to obtain (2.25), Cp=Cpa must be assumed to be small in comparison with
cP. Since is the absorption coefficient perz wave length, the absorption coeffi-

cient per centimeter will behave as w and will therefore obtain its
Winx? 2 A7 e

maeximum value for ws =00 ,
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~ had (2.25)
H PR

where wmx is the frequency of meximum absorption per wave length. wmax can be

determined experimentally, and W, may be deduced from it using the relation

% _ % (e -® (2.26)
Opax °y (c::p - R) '

Here cp is the ordinery specific heat at constant pressure and c__ the specific

e
heat counting the "active” degrees of freedom only. In contrast to (2.25), (2.26)
is exact.

Experimental Results. Experiments were made by H, O, Kneser and V. O,

Knudsen, Ann. 4. Physik 21, 682 (1935) on the vibrations of 02, by Fricke and by
Knudsen and Fricke, Journ. Acoust. Soc., Amer. 12, 245 and 255 (1940) on CO, and a
few other gases, and by Kachler, Zeits. f. phys, Chemie B 41, 199 (1938), on the
temperature dependence of the time of relaxation. The latter experiments were prob-
ably carried out with somewhat impure gases because Kl';.chler finds for 002 at
room temperature Z = 50,000 whereas Fricke gives 86,000 (impurities reduce Z, cf.
above and Teble V), and a similar discrepency exists for N 0 (7,500 vs. 11,800).
The experiments of Kneser and Knudsen were the first systematic ones carried out
and were therefore less accurate than the later work of Knudsen and Fricke, but
the results of Kneser and Knudsen are most important for us because they were done
with oxygen. For N2 there are no experiments but only an estimate by P, S, H.
Henry, Nature 129, 200 (1932) based on the failure to detect the influence of the
vibrational specific heat on the velocity of sound in certain experiments. Henry
estimates W, ¥ 1oh sec'l, i.e. 2 v106 for N2 which seems not implausible,

Table V gives some of the experimental results. They bear out the features

P S X
discussed above and expected theoretically, viz. ‘ 1o



Yable V. Experimental Results on the Excitation of Molecular Vibrations° Number of Collisions Required

for De-excitation; Z, and Reciprocal Time of Relaxation, w  (in sec” ), Tor Various Molecules Colliding

with other Molecules.

Collision with 0, Np H, co, Hp0 HyS CH5OH CH0H
Vibration of 0, Z = 300,000 100,000 20,000 25,000 400 4,200 - 120
(Knudeen and Kneser) w < 8-10° 5'1ou 5+10” 1.7'105 1.1°107 1.5'106 - 6107
re O [
Vibration of CO, Z ———— meee- 215 86,000 17 1,200 36 0 eeeee-
(Kneser and Fricke) W, meom o mmee- 8.0"10" 9.8'10LL 1.0210% 1.14°207 5.1‘108 ......
The same quantities for some pure geses (Fricke)
Gas O2 CO2 N20 cos 082 802
7 > 500,000 86,000 11,800 9,600 _ 8,70¢C 1,900
o(in 10° sec™l) < N.08 0.98 6.9 11.5 14.3 55
Z for CO2 at various temperatures (Kichler)
T(degrees Kelvin) 293 373 k73 573 673
z 50, 000 31,000 19,000 12,000 9,000
. Ratio of Z2930/Z675° for various gases (Kﬁchler)
» Colliding gases COp - COp N0 - N0 Co, - Ho COp - HxO
50,000 75500 300 105

| Zogse
33 Zogs/Zg7s 5.6 5.6 1.0 0.k

14



3k

1. All the pure gases investigated have rather highZ (small w o, long
relaxation times), the smallest being SO, with 2 & 2,000, the largest 0, with
2% 500,000, The large value for 02 is probably due mostly to its high vibration
frequency. The decrease of Z from CO2 to COS to CS2 is also in the direction
of decreasing ¥ ; on the other hand, the small value for SO, is presumably due to
the greater chemical activity of that molecule.

2. The Impurities investigated gave smaller Z than pure gases. It can~
not be decided at present whether this is due to the selection of gases used in
the experiments, or to a general rule. Among diatomic molecules, Hé is most
effective in de-exciting 02 and COE; this is to be expected theoretically from
its small mass (large velocity). Triatomic gases are on the whole more effective
than diatomic ones; this may be due to the fact that there will always be some
"corner" of a triatomic molecule which has a chemical affinity or at least a strong
Interaction with a given molecule. Among the triatomic gases, there is again a
decrease of Z with increasing chemical activity (COQ to HoS and H20)° Polyatomic
molecules are even more effective than triatomic ones, for the same reason.

By collisions with the same molecule, the vibrations of COp, are in general
more affected than those of 02, because of the smaller frequency of vibration.

3. The temperature dependence of Z for COo, is about as expected (cf.
Table IV). Generally, the decrease of Z with increasing temperature is most
pronounced if Z is large, in agreement with theoretical expectation. Whether the
increase of Z with the temperature as found by Kﬁchler for collisions between
COo, and Hy0, 1s real cannot be decided at present; however, Z 1is very small in this
instance so that the Landau-Teller theory can probably not be applied.

Several Degrees of Freedom. At first sight, it might be expected that

each mode of vibration has its own relaxation time, this time being greater for

the modes with higher frequency. Experiments show, however, that this is not the

o \ ’ (‘8
R
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case because all the experimental curves show only one absorption maximum with the
absorption coefficient falling off on both sides according to (2.25). This be-
havior can easily be understood if we remember that the resolution of the vibra-
tion into normael modes 1s only an approximation which is correct only for exactly
harmonic forces. The anharmonicity will mix the various normal modes in each
vibrational gquantum state. An extreme case of mixing is known in 002 where the
second excited state (vibrational quantum number* n, = 2) of the first mode of
vibration 041 = 667cmf1) is degenerate with the first quantum state of the second
mode (Lé = 1336 cm~1) (n2 = 1) (cf., e.g., Sponer, loc. cit.). The anharmonicity
causes an "interaction" of the two resonating quantum states with the result that
a splitting occurs into two states of considerably different frequency (1286 and
1388 cm~1). The form of vibration in each of these states is a combination of
modes 1 and 2 with about equal amplitudes.

In other molecules, the mixing of different modes is usually less strong
but it must always exist to some extent. Let us assume, e.g.,that there is a mode
of vibration with a high frequencyy/, which is between 3 and 4 times the fre-
quency)/i of another mode. Then the first excited state of mode 2 (n2 = 1) will
contain some admixture of the fourth state of mode 1 (n; = 4). In this case, the
excitation of the state n, = 1 will not take place by direct transfer of energy
from the translation, but the translation will excite in successive collisions the
states n; = l, 2 and 3, and finally, in a fourth collision, the state n, = 1.
This mechanism avoids large energy transfers in one collision which are very im-
probable according to the Landau-Teller theory (cf. 2.15). The transition from
nl =3 to n, = )l is somewhat less probable than a collision in which n, is raised
by one unit because the mixing between n, = 1 and n, = 4 1s assumed small; on

the other hand, it is more probable because the energy difference between n, = 1

* In order to avoid confusion with the velocity v, we denote the vibrational

quantum number by n rather than the customary v.
N SRRY!
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and n; = 3 is smaller than >i. The Z for the transition n; = 3 to np = 1 is there-
fore probably of the same order or smaller than for the excitation of the first node,
and it can therefore be understood that only the successive excitation of qugntum
states of the lowest mode of vibration gives rise to an observable ebsorption of

sound.

C. Dissociation

The dissociation differs from other degrees of freedom in that it becomes
appreciable at temperatures at which kT is still very small compared with the dis-
soclation energy D per molecule. We have mentioned in par. 1 that %% = 22*%99 for
oxygen and 91,600/T for nitrogen...On ;ﬁe other hand, we have shown in Table II
that the degree of dissociation is as much as 1.4 per cent for O, at 3000° K and

for No at 5000° K. At these temperatures, D/KT is about 20 in both cases, and the

Boltzmann factor .- %TQJG-QO¢:510‘9. The fact that an appreciable dissociation is
possible for such & small Boltzmann fac?or 18 due to the large a priori probability
of the dissoclated states.

In order to produce dissociation, two molecules must collide which have

a relative kinetic energy at least equal to D. Such molecules are very rare because
of the small Boltzmann factor e" %%. Dissociation will therefore take a considerable
time at 3000-5000° K even if every collision between molecules of sufficient energy
is effective.

The same conclusion can be reached by considering the inverse process,
viz., recombination, In order that two atoms recombine into a molecule, there must
be a triple collision between the two atoms and another molecule which takes up
the excess energy and momentum., Triple collisions, however, are rare events espe-
cially if two of the colliding particles must be atoms which are relatively rare
as long as the degree of dissociation remains low.

We must now examine the efficiency of collisions between two molecules

of sufficient relative velocity in causing dissociation of one of the molecules.

¥ r
+{
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If two molecules have relative kinetic energy equal to D, i.e. several electron-
volts, they will penetrate very deeply into each other. In this case, we can no
longer distinguish between fast motions (of the electrons) and slow motions (of
the molecules as & whole), and we can therefore no longer conclude that the trans-
fer of energy from the slow molecular translation to the fast electronic motion is
improbable. It is very difficult to make any quantitative estimates but we believe
that the efficiency of collisions between molecules of energy greater than D will
not be reduced by a factor of the type of (2.5) but will be determined mainly by a
geometrical factor which may perhaps be somewhat smaller than for the excitation
of vibrations. In numerical calculations, we shall assume an efficlency Cy = 1/100
which may be wrong by a factor of 10 or more either way.

The probability that the relative kinetic energy of a pair of molecules

is between kTx and kT (x + dx) 1s given by the Maxwell distribution
2 Jx ax e %
7

The velocity of the molecules in question is Jéi V; times the average relative
velocity v of two molecules. Therefore, the fraction of all molecular collisions
for which the relative kinetic energj of the colliding molecules lies in the inter-

val mentioned is approximately
f(x) dx = e ¥ x ax (2.27)
The fraction of collisions for which

X > x = 2 (2.27a)

is then
o0
Flx,) = f £(x) dx = e 0 (x5 +1) ™ x,e %0 = %,e-D/kT (2.27b)

X5
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Therefore, the number of ordinary molecular collisions required per dissociation,

is
- 1 = 1 &%
Z. = = _1 e
d 7TCy Fxo Ca X, (2.28)

where Cd is the efficiency of the collisions between molecules of sufficient
energy in producing dissociation. The reciprocal relaxation time for dissociation
is

w N
T8 7T (2.29)
where N is the number of collisions per second (cf, 2.18, 2.18a). The mean free

path for dissociation is (cf. 2.24).

Ay = v/, (2.29a)

Because of the large factor e %o, the number of collisions required for
dissociation is very large at temperatures of 3000-5000° K.at which the aissociation
of air becomes important (Tables II and III). In Table VII (cf. p. 52a) we give
the values of Z-i’ W, and "‘d for oxygen and nitrogen; it is seen that Zy lies
between 106 and 1012 and is thus much higher than for the vibration. It is obvious
that impurities cannot greatly affect 44 becatise the decisive factor 1s the Boltz-
menn factor rather than the efficlency of the collisions.

D. Conclusions on the Excitation of Air.

Vibrations
Neither the theory nor the available experimental results are sufficiently
accurate to permit any quantitative predictions on the mean free path for the
vibrations of the most important gases, O, and Np. It is certain that these mean
free paths are rather long, and under certaein circumstances they may become com-

parable with the dimensions of a projectile.
')
s e
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Experimental information is available (Table V) only on the effect of
Ne and of water vapor on the vibration of 02; in addition an upper limit is known
for the effect of 0, on the O, vibration. The effect of N2 on O2 is describgd by
an effective range s = 3°10-9%m as computed in (2.18a). In Teble IV, we have cal-
culated Z as a function of temperature with this value of s. These calculated
values should represent the temperature dependence of the effect of N, on the
vibrations of O2 fairly accurately, i.e., within a factor of perhaps 3.

For the collisions between two 02 molecules, the experiments give
Z> 500,000 at room temperature, Assuming Z = 106, we obtain s = 4°10"9 em from

(2.13, 15). The values of Z for O, at various temperatures with s = 4:20"9 are

2

also given in Table IV; the actual Z for O2 - 0, collisions may be smaller than

2
the values given in the table by about a factor of 2, but greater by any amount.

In any case, in air the vibrations of 02 will be excited much more easily by col-
lisions with No than by collisions with other 02 molecules, both becemuse of the
greater abundance of N2 and of the smaller Z.

In Table VI we give the estimated times and distances required to es-
tablish equilibrium of the molecular vibrations in air. 1In particular, Table VIIA
gives the reciprocal time of £elaxation,tuo, as a function of temperature for
various assumptions. wj, has been calculated from (2.18, 18a and 22), considering
q as independent of the temperature. The values of q were obtained by comparing
the values of 2 anda)o given by Kneser and Kunze for room temperature; these q's
seem somewhat low but the errors are not important compared with the uncertainties
in the theory. The density of the air was assumed to be 1.18°10'3, corresponding
to atmospheric pressure at 300°K. In the first row of Table VI A,cx)o is given
for the vibrations of 02, taking into account only the collisions with N2 molecules.
The neglected collisions with O2 can increaseCcé by 10 per cent at most.

Collisions with water molecules are very effective in exciting the vib-

rations of 02 (Table V). Four hundred collisions with H;O0 are sufficient for de- .

excitation of 0, at room temperature; therefore, as little as one per cent of water

43
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vapor will be three times as effective as all the nitrogen in the air. 1In the
second row of Table VI A we have listed the value of W for collisions of 0O,
molecules with H20, assuming a concentration of 1 per cent water vapor by volume.
On hot humid days, the water concentration may be easily 3 per cent. It is seen
that, at 1 per cent, the collisions with HQO are more effective than those with N2
at 500° K, but less effective at T00° and higher temperatures. This behavior is
due to the fact that uao rises very rapidly with temperature for collisions with
N2, but rather slowly for collisions with H20° (Table IV)

While the information obtainable on 02 is fairly satisfactory, very little
can be said about the excitation of the vibrations of Nzo It is reasonable to
expect that the effect of 02 on the N2 vibrations can be described by the same
effective range, s = 310”9 cm, as the effect of N2 on 02, although this is by
no means certain. In Table IV we have given the corresponding Z for NQ; it is
muchhigher than the Z for O2 with the same S because the vibration frequency of

K, is about 50 per cent higher than for 02. The third row of Table VI gives w,

2
for the excitation of the vibration of N2 in air, assuming that only collisions w
with O2 are effective. These values for c»o can therefore be regarded as lower
limits.

No experimentel results are available concerning the effect of collision
with the N2 molecules on the vibration of N2° To obtain any theoretical estimate,
we must find an interpretation of the difference between the effective range s for
02 - 02 and O2 - N2 collisions, viz. sz1w10'9 and s = 3olO’9 cm, respectively.
There are two possible interpretations: The first alternative is to assume that
generally collisions between different molecules are more effective than between
equal ones. Such a tendency seems to exist in the experimental result (Table V)

but there appears to be no theoretical Jjustification. Moreover, it is to be re-

membered that the experiments were mostly done with polyatomic molecules; for
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which there are other reasons for a stronger interaction (cf. point 2 in the sec-
tion on Experimental Results of par,28). Thus we do not get an explanation fop
the effectiveness of the collisions between 02 and N2, and we are led to the sec-
ond alternative, This is based on the fact that N2 is a more compact molecule

than O_, having a greater binding energy and smaller distance between the atoms.

2)
From this difference in structure we may expect a shorter range of the forces for
N2 which would explain the smaller value of s for Op - Ny collisions as compared
with 05 = Oo.

If this second alternative is accepted, we should expect an even smaller
s for the interaction between two N2 molecules than for the N2 - O2 interaction.
We have therefore included in Table IV the values of Z for N2 obtained with
5 = 2,5°LO”9 cm. These values are, of course,considerably smaller than for N,
and s = 3“10'9 cm, and not much larger than for O2 and s = 3:10"9 cm. In the

fifth row of Table VI A we have given.o)o for N, in air, assuming s = 2°5°10”9 cm

2

for the interaction N, - N2; the values thus obtained are only slightly less than

2
those for 0, (first row).

On the other hand, if the first alternative explanation above is assumed,
the interaction between two N2 molecules would have a large s, Jjust as the inter-
action between two O2 molecules. In this case, the N2 - NE collisions would not
contribute appreciably to the excitation of N2 vibrations, and W, for N2 would
be given by the third line in Table VI A in which the N2 - 92 collisions alone
are taken into account,

Finally, as a compromise, we have also given the results when s = 30LO"9
cm is assumed to be valid for collisions between two Npo molecules as well as be~
tween N, and 0, (fourth row of Table VI A).

The effect of water vapor on N2 is also unknown. HQO is extremely ef-

fective in exciting the vibrations of O, and 002 (cf. Table V) as well as of NEO’

2
Cs5, and CCS (Knudsen and Fricke, loc. cit.). By pure analogy we might therefore

'S

3T ~
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conclude that it would also be effective on N,, and we have therefore included in
Teble IV a calculation of Z for collisions between N, and Hp0, assuming the same s
as for collisions between Op and Ho0 but taking into account the higher 2/ of No.
However, it must be remembered that 0, has a chemical affinity to Hy0 while No has
very little; therefore, collisions with water may be much less effective on N2

(Z higher) then is indicated by the last line of Table IV.

In Table VI A, last row, we hawe computed W,  for collisions between
N, end H;0, assuming 1 per cent water vapor in air of density 1.18°1072, and
assuming the Z as given in Table IV. Presumably, these values of&w  are on the
high side. Whether or not the humidity has an appreciable influence on the vibra-
tions of Ng, depends not only on the temperature and on the correctness of our
assumption about the interaction between N, and HpO, but also on the assumed in-
teraction between Ne and N,. If the latter is strong (s = 2.5'10'9), the humidity
is rather unimportant even at low T; if it is weak (collisions with O, only), the
humidity is the decisive factor. This agaln indicates the extreme uncertainty of
the data on the excitation of the vibration of Ny.

In Table VI B, we have calculated the mean free path for vibratiom, Ay,
on the high pressure side of & shock wave produced in "standard air", i.e., when
the temperature and pressure on the low pressure side are 300° and 1 atmosphere
respectively. A, is given in Table VI as a function of the temperature T3 which
is obtained on the high pressure side at large distance from the front of the
shock wave (par.3); T5 again is a known function of the velocity vy of the shock
wave (Table VIII). Veloclty and density on the high pressure side were also taken
from Teble VIII (par.3), the asymptotic values vz, p3 being used. The so defined

Ay 1is related to the W, given in Table VI A by

Ay =

—3

£

" (2.30)

O
N
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Table VI. Relaxation Time and Mean Free Path of Vibration for

02 and NE in Air.

8 Temperature
Vibra- Collisions Abun- (10"%ecm) 300 500 700 1000 1500 2000 3000 5000
tion with dance
of %
A. Reciprocal Relaxation Time W (in 10° sec"l)
0y N, 78 3 0.35 2.3 7 19 50 8o 140 260
H,0 1 0.93 1.1 2.8 5 7.5 11 13 1% 17
No 0, 21 3 0.006 0.07 0.26 0.9 5.2 7 16 37
N, 78 3 0.024 0.25 0.95 3.5 12 26 60 140
N, .78 2.5 0.10 0.9 3.0 9 30 55 115 2ho
H,0 1 0.95 0,35 0.9 2.2 L 7 10 13 18
B. Mean Free Path of Vibration A, (in millimeters)
v5+01/03 (meters/sec) 3% 98 71 6L 56 56 58 48
Vibra- Collisions with
tion of
0, N, only 10 0.k5 0.10 0.032 0.011 0.007 0.004 0.0018
Np end H,0(1%) 2.5 0.19 0.06 0.023 0.009 0.006 0.003; GOOLT
No O only 550 1 2.7 0.7 0.18 0.08 0.03g 0.013

0, and Np(s=3-1Q %cm) 110 3.0 0.6 0.1k
0, and N,(s=2.5°10"%cm) 33 1.0 0.22 0.06
0, and 1% HpO 10 1.0 0.20 0.12
0py N,y(8=3-1079) and Hz0 9.5 0.8 0.21 0.07

0y, Np(s=2.5°1077) and Hp0 8 0.5 0.13 0.0!

0.037 0.017 0.0075 0.0027
0.017 0.009 0.001%5 Qo017
0.055 0.033 0.020 0.009
0.025 0.013 0.0065 0.0025

©.01k 0.008 0.00% 0.0016
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The quantity v3?pl/F5 is given in the first row of Table VI B, in meters
per second. Then A, is givem for various assumptions.

The value of Ay for O, in dry air decreases from 10 millimeters at 300°
to 1/150 millimeter at 2000° and 1/500 at 5000°, If the initial pressure is low--
let us say, 1/100 atmosphere--Ay is proportionally greater (100 times) and may
there fore easily reach considerable values. In wet air containing 1 per cent of
water vapor by volume, Ay for Oo is reduced to 2 mm at 300° but is almost the
same as for dry air when T 1500° K.

For the vibrations of nitrogen, the value of A, is extremely uncertain.
If the collisions with N, are unimportant (cf. above) and if the air is dry, only
collisions with Oy need to be considered; then Ay is as large as half a meter at
300° K. Since the vibrational emergy of N, becomes important onmly for T  600°
(Table II), Ay 18 important only at higher temperatures; but even at T = 700° we
obtain Ay = 3 mm if only collisions with Op are effective. On the other hand, if
collisions with N2 are very effective (s = 2.5:1079 cm), Ay is reduced by about a
factor of 12 at 700°, and a factor of 8 at 5000°. If collisions with H20 are as
effective as assumed in Table IV and VI A, a water vapor content of 1 per cent
reduces A, by factors varying from 9 to 1.05 when only temperatures > 700° are
considered.

Apart from the uncertainties in the assumptions, there is also an un-
certainty in the Landau-Teller theory itself which makes the temperature depend-
ence of Ay uncertain by a factor of about 3 even if(uo at room temperature is
accurately known,

The unsatisfactory state of our knowledge about the mean free path for
molecular vibrations in air could be improved by experiments on the dispersion
and absorption of sound in mixtures of 0, and Ny of varying composition and free
from impurities. Such experiments should be done at T == 700° K or higher in order
to ensure sufficient excitation of the molecular vibrations of N,. With such

experiments available, the dependence of A, on the temperature at higher tempertures
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'coruld probably be calculated from the Landau-Teller theory with fair accuracy.
The influence of humidity should also be investigated experimentally.

Nitrogen and oxygen are probably almost unique in their large values of
Z, and therefore of Ay. Other molecules have much lower frequencies or much grester
chemical activity (cf. above). Therefore for most other gases, and especially
for complicated polyatomic ones (explosives!), Ay will in general be too small to
be of any practical importance,

Dissociatlion. In Table VII, we give the number of molecular collisioms

Zg required for one dissociation process, the reciprocal time of relaxationW )

and the mean free path \g for dissociation, These quantities were calculated from
Eqns. (2.28, 29 and 29a). The constants N and v were éssumed as in Table VI,

namely N = 5-109 sec~l at 300° K. and one atmosphere, and proportional to efa.other-
wise; v equal to the velocity A of air on the high pressure side of a shock wave
produced in "standard alr";Xwas taken from Table II, Cq4 wes arbitrarily put equal
to 1/100. Zg is, of course, independent of the pressure;Wy is calculated for a
density* of 1.18°1077 as in Table VI, and \g for the actual conditions on the high
pressure side of a shock wave. It canjbe seen that the mean free paths obtained
are very long indeed, decreasing for Op from a little under one meter at 2500° to
a8 little over one millimeter at 5000°. Therefore we should expect large effects
from lack of dissociation equilibrium in shack waves which are sufficiently violent
to produce dissociation. We must emphasize again the great uncertainty of the
figures in Table VII which is caused by the lack of knowledge of Cyq. Here again
experiments would be desirable but they seem considerably more difficult than in
the case of vibrations. Possibly studies of the dissociation equilibrium of other

gases (e.g.; Np 0)) would help.

* This is not quite consistent since o4 which occurs in (2.29), was calculated
for an 8 times larger demsity, but p = 1 18+10~3 wag chosen for comparison with
the .w/y in Table VI.

r
28



Teble VII.

L6

Relaxation Time and Mean Free Path for the Dissociation of Air

T = 2500 3000 3500 4000 4500 5000
05 0.00205  0.0lkk  0.0568 0.152  0.308  0.500
=4
Ny -—-- ----  0.0003 0.00l% 0.0051 0.0139
0 23.60 19.67 16.86  1k.76  13.12  11.81
Ao Nop  eeme- -—-- 26,17 22,90 20.36  18.32
05 7.5.2010  1.85.109 1.27.108 1.76:1073.8.106 1.16-106
z
U, 9.2:1011 %,0.10%0 3.5-109 5.1-108
w, {02 85 600 2k0o 6800 16,600 35,200
(sec1)N, 65 320 1080 2900
v3-01/03 57 58 .57 55 52 48
A4 02 670 98 2l 8.1 3.1 1.k
(m. ) N, 880 170 48 16

,»
Sy
gor)
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We shall denote by letters without subscripts the physical quantities
at any point in the shock wave, by letters with the subscript 1 the quantities on
the low pressure side of the wave, by the subscript 2 those on the high pressure
side immediately at the front on the wave, and dy the subscript 3 those on the high
pressure side at large distance from the wave front, i.e., where equilibrium has
been established for vibrations and dissociation. We -shall also use h and 1 for
arbitrary points on the high and low pressure side, respectively. We comsider the
one-dimensional case throughout. PFor further notations, see the end of the intro-
duction.

Fundemental Bquations:
1. Bquation of continuity
PV = constant = m (3.1)

2. Conservation of momentum: The gain of momentum of the mass m of
gas;, mdv, is equal to the decrease in pressure, -3p. Therefore*

P + mv = constant = aV (3.2)
(derinition of V)

5 o cmemtiﬁn Of Onﬁrg
I = 1 2 °

When the gas flows adiadatically into vacuum,?) /P and therefore also E go to zero
so that v approaches c. Introducing@defined in (1.3), (3.3) decomes

v2 =

o2 (5.30)

o=

R
.pp*

N

has been extensively discussed in par,l and 2. It has been shown in par.2 that §
depends on the existence or nen-existence of equilibrium between the various dogx"u

# It is interesting that in our case p + Pv2 is constant while in the imcompress-
ible fluild it 4s p + (1/2) v2. 1In both conservation laws, the elementary lawv is
dp + @vdv = 0, but for the integration we must assume (e constant in the in-
compressible fluid, Pv = constant in our case. (o 31
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of freedom of the molecules. If there is equilibrium, B is a function of the tem-
perature (or pfe) alons; tables of Sfor this case are given in par,1 for nitrogen,
oxygen and air (Tables II and III). Equilibrium will exist everywhere on the low
pressure side of the shock wvave (8= ;) and asymptotically at large distance from
the wvave front on the high pressure side (8 -pB) . The value offSon the high pres-

sure side immediately at the wave fromt @2) can be calculated easily from the
fact that the energy content of the inert degrees of freedom (vibration, excitation
and dissociation) is the same as on the low pressure side (cf. beginning of par. k).
In the particular case when the temperature on the low pressure side is low enough
so that there is no appreciable energy in the inert degrees of freedom (fulfilled
for air below 400° K), we have simplyS, =8, ( = 7/2 for distomic gases). In the
intermediate region on the high pressure sida,Pn\ut be considered as varying froa
’2 to p5 in & wvay which will de discussed in par, 4. For the moment, we sbhall com-
aiderpu given and determine the other physical quantities from 1it.

The three constants m, V, and ¢ defined in (3.1, 2, 3) are given by the

pressure, density, and velocity of the incoming gas on the low pressure side:

V= .12._ + vy (3.ha)
P1"y
" 2 = 'v12 + 2p n (3.40)
f1

It is often convenient to introduce the velocity of sound dy putting

vp =¥/ (3.5)
(Valid only in the absence of dissociation)
In most practical applications, the temperature on the low pressure side is suf-
ficiently low so that 4B/4T = O and (cf. 1.19, 1.21)

[4 'Ié‘i \ (3.6)

vy ~
32
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If this is true, we may rewrite (3.%):

2
fr-1 a
Vv, + & (3.72)
S PR
@ avy? 4+ 2@1 - 1) a.]_2 (3.70)

Solution of Fundamental Equations:
(3.1) and (3.2) may be used to eliminate p and P , viz.

p =n/v (3.8a)
p=n(Vav) (3.8b)
g s (Vev)v (3"9)

These equations are important to calculatep; p, and T once v has been determined.

Inserting now (3.9) into (3.3a), we find:

. 1v2.1c2
B(V-vvez v2 5 c (3.98)

and therefore

L. 872 Vea2 - (8- 1)c2

(3.10)
2B8- 1

If V and c are given, there are, for any value off8, two solutions
for v. In general, these two solutions are real (for exceptiom, ¢f. par. 5,
p- T1); if real, they are both positive. It can easily be shown that the larger
value of v [plus sign in (LlO)] in general is greater than the corresponding
velocity of sound; the smaller v smaller than the corresponding a.

To show this, we calculate from (3.9)

§ = «é—P!;——f [(P- v ¥ Vp2v2 - (28- 1)c2] (3.11)
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where the upper and lower sign correspond to the upper and lower sign in (3.10).

Now if we assume that 8 does not depend much on the temperature, we may use (3.5,

6) and have

2
Ll 7«3 = _2,..’%.,]? [ﬁ? %ig.r,, W (28 - 1){‘3] (3.12)

This gives

v -2 a5 g\ - (2 1)e? (3.120)

v =

i,6. v>a for the upper, vea for the lower sign.
In reality, 8 does depend on T and therefore (3.6) is not correct but
should be replaced by (cf. 1.19)

- Bt a8/d log T '
4 B-1+af/aleg? (3.22)

(assuming no dissociation).

In all practical cases § increases with temperature so that j (and therefore &)

is slightly less than it would be if (3.6) were valid. Thirefidre it remains true
that for the upper sign in (3.10 - 12) v is greater than a, but ¥or the lower sign
v is not necessarily less than a. However, the difference betwedn (5.6) .and (3.13)
is only very slight; therefore the exceptional case that the smallér ¥ is grester
than the corresponding a will be of minor importance. A more detailed discussion

will be given in par,5, p. 80, 81.

Discussion:

On the low pressure side of the shock wave, the velocity will %e given
by (3.10) with the plus sign (in the following denoted by the sudscriptf , for
low), on the high pressure side by the solution with the minus sign (subdscript h
for high). We have pointed out above that § will have the equilidbrium values,

o
".‘:' /_‘£
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ﬁl‘and/BB, both on the low pressure side and on the high pressure side at large
distance from the wave front. The equilibrium value of 8 is a unique function of
the temperature so that(sl an::l,B_,5 are completely determined by T, and T3' let

us denote by Te (,6) the temperature which belongs to a given 8 in thermal equi-
librium; it is the function tabulated in Tables II and IIT and it; increases mono-
tonically with p On the other hand, the theory of shock waves (Eq.3.10) gives
V3 uniquely in terms of ,83 since V and ¢ are given by the initial conditions
(cf. 3.4a, b) and the sign of the square root is also determined (negative).

From V3 in turn T, is determined through (3.9)* so that T is, by the shock wave

3
theory, a given function ofp which we shall denote by Tg (/6). The temperature T3 R

and the energy contentﬁ 35 8Tre determined by solving the equation

Ty (@) =T, (B) (3.14)

It can easily be shown that this equation has only one solution for which the
velocity v is smaller than the corresponding velocity of sound, i.e., only one
"high pressure"” solution. In most cases, this follows from the fact that Tg (/3)
decreases with increasing@ over almost the whole range of(@ (¢£. 3.16c and
especially par.6) whereas Te ({8) increases monotonically. In the small range of
ﬁ in which Ts(p) increases (cf. par.6), this increase is slower than that of T.;

in fact, the condition v{ a is equivalent with dTg < T, .

TNV

We may conclude, then, that,@ 39 T5 and of course also the other physical
quantities (p3 s ()3, v3) are uniquely determined by the initial conditioms Pl’el,

vi. In other words, all the physical quantities (v, p, @, T, etc.) on the high

pressure side at sufficient distance from the shock wave are independent of all

intervening processes connected with the establishment of equilibrium between

(o

*If there is dissociation, (1.2) must be used together with (3.9). ~-
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_ "inert" and "active" degrees of freedom. Therefore , if the dimensions of the ab-

stacle causing the shock wave are large compared.with the mean free path for vi-
R4

~

pressure, resistance; etc, will be the same as if all

degrees of freedom were in equilibrium all the time.
h We could rewrite Eq.{3.10) inserting the values (3.ka, d) or (3.Ta, b)
for V and c¢c. This would in general lead to complicated expressions if 8 # B;-
However, simple results are obtained in the two cases (a) B -Pl and (b) vy 8y,
a) Yor 8 =g, and (dp/d log T); = O our theory reduces to the usual t.!neory

of shock waves, and (3.10) becomes (use 3.Ta, b*)

( 1) a12 o
- - a
veT1 B 5 ey (v - 22
V1
2P =1
vhich gives
"N

(3.15) is the fundamental equation of the usual theory in an especially convenient

~

form.

b) Simple expressions can also be obtained if v;>> @, no matter whether

ﬂ g-ﬂl or not. In this case (cf. 3.ka, b) we have V= ¢ = v, and (3.10) gives

"1
n 58 - 1 (3.16)
From (3.8, 9) we £ind then
Pn =Py (2B-1) (5.16a)
= 2 2(8-1
Pn Plvl o8- 1 (5°l6b)

w
<
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(R1y=) % -v,2 Bl 2 (3.16¢c)®

The relative error of these f;oz‘ululae\is about 2&&12/v12 (for p, only ala/vla) o
In the approximation used here, thg quani:ities on the high pressure side are in-
dependent ofﬂ j and depend only on the 'iocal value of 8 on the high pressure side.
It is seen that the value of Pn increases linearly with ﬁ; in the special case
f-= 7/2 (diatomic gases with translation and rotation only), (3.16a) gives the
well-known result that the density:in & shock wave can only increase six-fold.
8ince B increases considerably at high temperatures, the actual increase of o can
be much greater than six-fold. p, ﬁepends only slightly onf (for largef8) be-
cause; in our limit v,>> a,, we have v, << V and therefore p, is approximtei’y
nV (cf. 3.8b) which is a constant. 4

Finally, Tt; decreases** strongly with increasingp because the total
energy E +§ = RT is almost independent qf 8 when v, << c. (cf. 3.3) (Only a very
small amount of kinetic energy is leftl). As an example, we compare the asymp-

totic values of the physiggl Juantitieg for air at ordinary temperatures (ﬁ - 7’/2)
’ .'-t.-.o" .

and for hot air with the vibrations fully excited but no dissociation (8 = 9/2) .

\

N PX 7 B -9/
v./v, 1/6 1/8
e,/P1 6 8
Ph/f’;,.vl2 5/6 = 0.833 7/8 = 0.875
RT, /v,2 - 5/36 = 0.139 7/64 = 0.109

* In case of dissociation, (3.16¢c) holds for RT, (1 4arh) rather than for RT .

%% This statement holds also in case of q,iasociation because T is a monotonic
function of p/p.

o .oy
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. Table:
Table VIII givés the physical characteristice on the high pressure side
of a shock wvave produced in air ér 300° Kelvin (27° Centigrade) by incident streams
of various 1rel¢.><:1‘t~::les° Por the comstruction of such a table, it is convenient to
consider the WmMs T and T_ as given and to calculate vy and v,, rather

1 3

than to start from T, and v, and calsulate !'3, v, from them. p3 is a tabulated

function of Ty (cf. Table IIT). Be (3.3) and (3.9) may be revritten

b3 1 - 1
. é o;;"’ éﬂi . ;;:‘.' Vl (30170)
2p £2+.v2-2p= 1,2 (3.17v)
375 3 A 2 )

S8olving for vl, v, we obtain

3 .
v v N
L ad 4+ | +p1 1 (3.18)
V3 » ’3395

\ . -

and '
v.2 2+1-%.0/p
= . 1P/P50 (3.160)
. p3 PS (v1/'5)2 =1
wvhere P /P
- 1.7V -1
] p, 3 ;;7;;- (pl 5) (5.,181',

These formulae are suitable .for compution.

Table VIII gives the important physical quantities as functions of vl/al,
the ratio of the v;locit? of the incoming stream to the corresponding velocity of
sound, for values of vl/al rran'loﬁ to 11.6. Velocity, density, temperature and
pressure on the high pressure side are given both at large distance from the wave
front (subscript 3) and immediately at the wave front (subscript 2). The latter

- B ERs!



Table VIIT.

Characteristics of Shock Waves in Air

vife;  vsfey  vofer @sfor pofer T3 Te p3/m pe/my
1.523 0.798 0.800 1.907 1.904 LoO koo 2.543 2.538
1.984  0.746 o.7h95 2.659 2.6k7 500 501 4. h32 h.h25
2.377 0.737 0.h47 3.225 3.189 600 604 6.450 6.kl
2.725 0.7k 0.759 3.663 3.591 700 709 8.5u47 8.49
3.041  0.7575 0.779 L.015 3.904 800 816 10.707 10.62
3,331 0.7725 0.8035 L4.31k L.1k6 900 $35  12.94  12.77
3.611 0.7955 0.831 L5400 L.346 1000 1036 15.23 15.01
L.235 0.8355 0.900  5.069 L.706 1250 1320 21.12  20.72
L.797 0.880 0.970 5.454 k.9k5 1500 1616 27.27 26.66
5.307 0.9235 1,041 5.746  5.098  175C 1925  33.52 32.7
5.778  0.9665 1.1035 5.978 5.236 2000 2222 39.85  38.75
6.643 1.045 1.2285 6.359 5,409 2500 284€  3.01  5l.b
7.453  1.115 1.350 6.685 5,521 3000 3510 67.05  6k.6
8.315 1.1675 1.481 7.122 5.615 3500 4300 84.09 80.5
9.297 1.208 1.6335 7.697 %.691 L4000 5300 106.02 100.6
10.k10 1.2k1s 1.809  8.385 5.75h k500 6570 13k:k0  126.2
11.595 1.269 1.997 9.136 5.80k 5000 8030 168.38 155.6
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_'épantities vere calculated assuming that the inert degrees of freedom retain the
same energy as on the low pressure side. Since this energy is practiceally zero,
we can putf, =B, = 3. l&83 (ef. Té.ble.III), and can therefore calculate v, from
(3.15) (and the remaining quantities from (3.8, 9) ).

Comparing the quantities with subscripts 2 and 3, we find a.pproximate
agreement up to about vl/a.l = 3, At higher vl/a.l, we find thatp, 1s considerably

greater than p, (cf. 3.16a) and, correspondingly (because of the continuity equation)

vz < V,. Thus the shock wave consists of a discontinuous compression followed by

& _gradual further compression which extends over a distance determined by the con-

siderations of par, 2 and. k. :Aiong yitp.othg strong increase of the density there
18 a small increase of the pressure from P, to Py (last two columns, cf. also
3.16b), but even if the discontinuous change of the pressure is by as much as a
factor of 100, the following continuous one is only 5.Jt per cent. Therefore, as
far as the pressure is concerned, the change of with temperature is rather un-
important. The temperature increases discontinuously at the wave front from

= 300° to '1'2 and then decreasel* gradually to '.l'3
from the "active" degrees of freed;n by whose excitation the temperature is de-

s due to a transfer of energy

fined, to the "inert" degrees. The temperature decrease is greatest for the
highest \vl/al where it is from over 8000 to 5000 degrees.

Of some interest are perhaps the columns 172/al and v3/a.1. It is seen
that for relatively emall v., the velocities 6; and v, are smaller than the velocs.
. ity of sound on the low pressure side, a.l, and that fhey decrease with increasing
vy Then a minimum is reached and at still larger values of AT the high pressure
velocities Vo and v3 become gre;ter than a,. For \LY, the existence of a minimum

can be seen directly from (3.15); the minimum is obtained for

# For very "soft" shock waves (v, only slightly greater than a ) there can be a

slight increase from T, to TB’ ct. par.6.

H0
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-
By " Ve(sl -1) = 2,23 (for B = 3..483) (3.19)

and has the value

= 0. ll» for = .ll-8 5v198)
% T 747 (for B = 3.483) (
For very high v, ve obtain
Vi
V2 = ?*;].__:—i (3-191’)
v
1
v3 = Eg—j (50190)

Par, 4, The Approach of Equilibrium,

We may assume that the energy of the inert degrees of freedom (vibration,
etc.) does not change discontinuously at the front of the shock wave while that
of the active degrees of freedom does. It will therefore be convenient to split
the total energy E into the part due to translation and rotatiom, Ea (a= active)
and the part due to vibrations, electronic excitation and dissociation, Ej

(1 = inert). We put
E + B = ﬁ B (h.l)

where B, 1s practically constant and equal to 7/2 for diatomic gases (5/2 for

monetomic ones). Further, we must have

B = Bio (k.2)
i.e., the energy of the inert degrees of freedom is the same on both sides of the

shock wave front. Then (3.3a) becomes:

pa§+Ei+%v2= 2 (k.3)

0o | o
o
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Instead of (3.9a) we have

B(v-wivezFalPog (4.4)

and instead of (3.10):

Py -1

h J

Equation (3.ha) is unchanged:

Ve Pi’il ‘v (b.6a)

while (3.6b) 1s replaced by

2 2
¢ = v+ 2B, RT) + 2K, (4.6b)

It can be seen easily that the physical quantities Pps Por Vps ‘1'2 on
the high pressure side :lmmdia.teiy at the f;ént of the shock wave are exactly as
1f the molecular vibration were absent entirely. We may use Eq.(3.15) vith B,
instead of @ to calculate v, and “then obtain the other quantities from (3.8, 9).
This has actually been done in Table VIII.

Parther in the high p,res'sure region, the inert degrees of freedom will
gradually come into equilibrium. JIf we Have only one such degree, e.g., the

vidbration (subscript v), we may write (par.2)

dE_ i Ev'(’!) -k,

rra T (R

vhere T 1s the local temperature- (defined as ppR), K '(T) =@ (T)pfp the equi-
}briun value of the vibraticnal energy corresponding to T, E_ the actual local
value of the vibratiomal energy, x the coordinate perpendicular to the wave front
counted from the low pressure to the high pressure side, and A, the mean free

no
N LY
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path for vibrations (par.2) which will depend on the local density and temperature.
8imilar equations, but with a different A, will hold for dissociation and excita~
tion.

To integrate (4.7), it is more convenient to calculate x as a function
of the physical variables than to 4o the reverse. The integration must Im in
general be done numerically decause A' and lv" are given on;y by numerical tables
(Tables II to VII) and depend in a complicated way on the variable T. A depend-
ence of Ev' and ?w on the density does not present any additional difficulty be-
cause p is; by (3.8a) and (3.9), a unique function of p/p = RT. Assuming again
that vibration is the only inert degree of freedom* (true for air below 2500° X),

E, can be calculated in terms of T from (4.3), eliminating v by use of (3.8b):

E, =32 -F V- (8, - 2Rt + §V Vveum (4.8)

This is a fairly complicated dependence. It seems hardly worth while to carry out
numerical integrations of (4.7), (4.8) for special cases.

' However, it is easy to estimate the distance required to establish
equilibrium. It must be of the order of A, more precisely of the largest value
of Ay occurring, i.e., the one corresponding to the lowest temperature (par. 2)
existing on the high pressure side of the shock wave. Ordinarily (i.e., with

the exception of the case discussed in par.6), this lowest temperature is reached

. # If there are several inert degrees of freedom (vibration, excitation, dissoci-
ation, possibly of several gases), there is one iquntion of the type (4.7) for
each of them. The unknowns are the energies Ei( s E (2) s etc., in the various
inert degrees of freedom, and T, the temperature as d8fined by the energy im the.
active degrees of freedom. From the temperature, v, and p gan “be deteminedi
and also the equilibrium values of the E_ ‘s, viz. 11(1)', E,(<)', ete., andA(1),
A(2), etc, The number of differential e&uationa‘ (4.7) is obviously one less than
the number of unknowns. The system is completed by Eq (4.8), with E, replaced by
By = B (1) + B4(3) + ... '

(RSN ‘*:3
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in the equilibrium state (highestf3, cf. 3.16c). Therefore it is only necessary
to read from Tables VI, VIII the A\ for the temperature T5 and pressure pB.

The integration is simple if Te,(ag are sufficiently close to the values
T3, Q3. Then we may consider \ as constant and T |according to (h.B)] and there-
fore E,' (according to par.l) as depending linearly on Ey, viz.

dEv'

dE
v

=-M = constant (%.9)

M is positive because T, and therefore E,', decreases with increasing E, (cf. L4.8).

Using (4.9), (4 7) integrates immediately to

E,'(T) - E, = [Ev'('l‘g) - Ev]J o~ X(1 +/*)/7~('l‘3) (4.10)

[?emembering (h.e)i] + Thus the deviation from equilibrium decreases exponen-
tially as we go away from the wave front. Since all physical quantities are ex-
pected to change very little (Tp=T3, etc.), T,P, p, Vv, etc. are sufficiently

nearly linear functions of E,' -E;, so that

T(X) - Ty = (T - T3) e-X(1 +M) /2 (h.11)

and similarly for the remaining quantities,

It need hardly be pointed out that the gradual change of the physical
quantities occurs only on the high pressure side because the gas streams from the
low pressure Lo the high pressure side if we consider the wave front as fixed.
Increasing x means therefore a later time. On the low pressure side, the wave
front is sharp (except in the case of par.5) because any molecules which may
cross the wave front against the stream, i.e., from high pressure to low pres-
sure side, will soon revert to the high pressure side because of collisions.
There will therefore be no perturbation of the state on the low pressure side

outside of a distance of a few times the ordinary mean free path from the wave front.

- ~
v - ENY

2N

}
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The stability of the shock wave against diffusion is insured by the
fad§ that the gas velocity relative to the shock wave is greater than the velocity
' éf ;ound‘on the low pressure side, less on the high pressure side. If there
should at any time be a splitting of the shock wave into two parts (due to a
small obétacle or so), these two parts will soon reunite: suppose a small dis-
turbance runs before the main shock wave; then its velocity will be the velocity
of sound, 85 and it will be overtaken by the shock wave of jelocity UE - If the
small disturbance runs behind, its velocity (relative to the gas) will be az and
it will therefore catch up with the main shock wave which moves only with the
velocity AL relative to the high pressure gas.

Par., 5., Diffuse Shock Waves.

In this and the following seqtion, we shall discuss some peculiar
phenomena which occur only for very "soft" shock waves, i.e.; when the velocity
vy of the shock wave is only slightly greater than the velocity of sound, a,.
These two sections are in no way important for the general problem of shock Qaves
in a medium of variable specific heat which has been solved in par, 3 and k4.
Especially for a substance like air, whose inert degrees of freedom are very
little excited at room ;emperature, the effects discussed in par.5 and 6 have
no practical significance but only academic interest. In the two sections, we
solve some mathematical difficulties which might occur if the formulae of par, 3
and 4 were applied indiscriminately, and complete some proofs which were left
incomplete in par.3 and 4. The most important of these is the proof (end of
par.5) that for any initial conditions Pl,Pl’Tl ;s vy there is always ;xactlz one

.sblution of the shock wave equations in thermal equilibrium for which v is less

than the velocity of sound a (high pressure solution) and one for which v> &8,

the latter beihg identical with the initial conditions.
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In particular, in par. 5 we shall discuss the case when the velocity
vy of the shock wave is less than that velocity of sound, 8,17 which is obtained
vhen only the specific heat of the active degrees of freedom is considered. Such

shock waves are possible because the "active velocity of sound", 8,1, is greater

than the ordinary velocity of sound; we have

Py R

a1 =@ (Pt ear ) (5.1)
2 _ PN 1+R ) 5.1
a ot ( = (5.1a)

vhere cyj is the total specific heat at constant volume on the low pressure
side of the shock wave while cygyy 1s the specific heat of the active degrees of
freedom alone. Since c.)> Cygs W€ have ag1> a1, and therefore there are

values of vy such that

a) & vy LBy, (5.2)

These values of vy shall be the subject of the investigations of this section.
The difficulty is the following: according to the general theory, a

shock wave must exist if vy > 8. On the other hand, the front of the shock

wave behaves as if only the active degrees of freedom existed (par.h), there-

fore the wave front cannot exist if Vi‘ﬁ-aal' Mathematically, this difficulty

appears in the form that the square root in (4.5) becomes imaginary if the con-
stants c, V and E11 are inserted which correspond to the initial conditioms.
Practically, the region determined by (5.2) is very marrow. If c,y

and c.oq are not too different, we have

81 _ 1 .4 R (Cy1 - Cya1)

1 2°val (cyy 4 R) (5.3)
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Teking cyeiy =.g R (diatomic molecule) and even assuming cy1 to be as large as

3R; this gives only 1.025. PFor air at 300°K, Cy1 = Cyay’ 1-@-s the specific
heat of the vibration, is about 0.00TR; then ‘al/‘l = 1,0004 so that the in~-
terval (5.2 is exceedingly narrow.

The solution of the difficulty which we found above for the velocity
interval (5.2) is as follows: there exists a shock wave which is propagated
without change of shape, but in which the velocity goes continuously through the
velocity of sound. The extension of this shock wave in spéce is again of the
order of the mean free path for vibra.tion.,?«.v (cf. par. 4); and the variation of
the physical quantities with x is again determined by (4.7) in conjunction with
(4.5), (3.8), (3.9). However, instead of having a continuous variation only on
the high pressure side (lower sign in (4.5)), we now have it also on the low pres-
sure side. Coming from the latter, we have a gradual increase of temperature,
density and pressure together with a gradual increase of the vibrational energy
E,. The connection between v and E  is given by the positive sign in (L.5). The
change of the temperature is such that the vibrational energy falls more and more
short of its equilibrium value, or mathematically, the difference Eg(T) - Ev
(orﬁ?; -}?) increases (cf. 5.21). Thereby the square root in (4.5) is reduced
until it vanishes. From then on, the negative sign must be taken with the
square root; there is a further gradual increase of T,p and p but now the
vibrational energy "catches up" again with its equilibrium value Evﬁ(T) which
it reaches'at large distance from the shock wave.

Por the quantitative treatment, we introduce that value 60 of B at
which the square root in (3.10) vanishes when V and c are kept constant. (5 o is:
thus a function of the initial conditions of the shock wave. The temperature,
pressure, etc., which are obtained by setting (3 s@o in (3.10), will be denoted
by To» Pys etec.

Obviously, B, is defined by

B, 22 = (26 - 1) c? _ (5.4)



which has the solution¥*

A =;—2°— (c+ |2 -73 (5.4a)

B o 1s thus uniquely determined by the initial conditions vy, Py, p, amd 8
(cf. 3.ha, b).

The square root in (3.10), divided by V, may now be written

\/ns2 - ;:2_ , (2B-1) - \/(p -Bo) - (8- af‘_’ o (5.5)

Neglecting all higher terms inf -po, this gives

. ([
O po - 1 (5053-)

Inserting this into (3.10) and neglecting again all higher powers of -

than the square root (for more accurate formula, see (6.9a)) , we get

1 IyB- B, - 1)
V1 8o * P-4, o (5.6)

po -1

Denoting the velocity for B .po by A this gives

-1 1" - JP B, (5.6a)

Similarly, we get from (3.11) for the temperature (assuming no dissociation):

ﬁ"ﬁn
(5.7)
\/ﬁ,,(po -3 B, - 1)

* The negative sign before \L v would lead to a valus of 8 _smaller then
unity which cannot be attained by the physical Quantityp (ﬁ 5/2, cf. par.l).

; &':8



65

where T, is the temperature corresponding to,eo, which is given by (cf. 3.9, 5.6)

pp o Lol v P (5.72)
e} !80
Introducing the abbreviation
_ T (5.70)
y==-1
To
we have from (5.7)
B o =Lolfo - B) (Bo - 1) ¥° (5-8)
and from (5.6a)
V___1=—§30-1)y (5.8a)
P
o

We consider three velocities of sound, viz.

(1) the velocity of sound with the active degrees of freedom alone.

% = V7rafT =\/Eé'—&-ll_m (5.9)

(2) the true velocity of sound

a = /7ﬁ (5.9a)
where (cf. 1.19)
x - B + dp/d log T (5.10)

(5-l+d,B7dlogT

Ifle changes not too rapidly with T, this may be written:

A d log T
7=p-l B dlgj(ﬁ -0%)‘ (5.10a)

P4
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(3) the expression

at = | —L— gy (5.11)

which would result if dﬁ/d log T were neglected in (5.10a). Ordinarilly, thec
three velocities of sound are quite close to each other so that we may write,

neglecting higher powers of dB/d log T and of B —ﬁa:

/ &, -1 5 'ﬂa
~ + meﬁ(ﬁa 5 (5.12a)

& -1- _E%._H ‘;}°l I (5.12p)

From.(5.7a) and (5.11) we see that
v, =8’ (5.13)

Since a' varies as \JE‘_, we have therefore from (5.8a)

L-1--(8, -3 (5.14)

aﬂ

Therefore the value of y at which v is equal to the actual velocity of sound,

is (cf. 5.12b)

y =81l : B (5.15)
" 2B B, -3 B,-1)

The value of y at which v is equal to a,, is (cf. 5.12a)

B, - B, -

Yy = - : -A (5.16)
28,(8, - 3) (B, - 1)

. Ve
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For yl < Voo there will be an ordinary shock wave with wave front. Only for
Ya< V1< ¥y there will be a diffuse shock wave (yl = initial value of y on

low pressure side). From (5.14) and (5.15), we have *
v - 1 - .
~-1=(8, -3 (B-v) (5.16e)

It is convenient to introduce the abbreviation

Vi-8 _B-y

Ol
aal = aj B+ A (5 7)

Z:

Diffuse shock waves will be obtained for z between O and 1.

Since the local value of B is given by (5.8) for all y, we may write

B-B, = BB -3) B, -1 (52 -3 (5.18)

On the other hand, the equilibrium value ofﬁ vhich we denote byﬁ Y, as in (4.7),

may be regarded as a linear function of y in the small temperature interval

considered,and sinceﬂl' =ﬁl, we have:

B' -By =3df/d log T+(y -'yy) (5.19)

Asymptotically on the high pressure side we must have equilibrium agein so that

B3’ =pB5. Comparing (5.18) and (5.19), we find
BoBs - %) (Bo - 1) (:>'32 - yla) = (ap/a 1og T) (y3 - ¥7) (5.19a)
Therefore (cf. 5.15)

y3 =2B - yl (5020)

* Eq, (5.16a) contains the solution of the problem discussed after Eq (3.13), The
vanishing of the square root (Bo, To’ vo) actually does not represent the point

where v = a, but this point lies at slightly higher temperature and lower velo-
city (i.e. in the region described by the lower sign of the square root in (3.10)).

ya
T4
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This means that the temperature at which v is equal to the velocity of sound
(cf. 5.15) is the average of the initial and final temperature. For the final
temperature, we have always v< a as we might expect.

We can now dis-cuss the actual equation (4.7) describing the change of

the physical quantities in the shock wave ., “ Bq (4.7) may be re-written

d _1,., '
Se-8a)] =% -pir (5.21)
Using (5.8), (5.18), (5.19) and neglecting higher powers of 8 _Po’ this gives

6,10 88 - Dip, 1 e

7% a iog T (y - yl) -Bo (po - %) By - 1) (y% - Y]_e) (5°2la)|

With (5.15, 16, 20) this becomes

(A +y) ay = ax (5.22)
(v - v1) (y3-5) 2A

Elementary integration gives

A+yl A

log (3 = ¥;) = ——3 log (y, - 3) = &
y3 - y]. € y 1 YE = yl 3 E_A (5022&)
Using again (5.20) and (5.17), this may be written
xz- (5.23)

(1 -2) log (y - yy) - (1+32) log(y3=y)=-7-\-

The temperature approaches T. asymptotically for large negative x, T3

1
for large positive x. The approach in each case is exponential, viz.

T - T, exp —-(-——-Hza ~ ) for x¥ - (5.2ka)

T3=T'e1?(— -T%—-z-)) for x+ +00 - - (5.¢2}+§)
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Thus, for z ;‘ 0, the approach of the asymptotic value is more rapid on the low
temperature side (Tl) than on the high temperature one (T ). In the limit z-» 1,
i.e. when v approaches the "active" velocity of sound, a a1’ the diffuse shock
wvave automatically goes over into a wave with a discontinuous front as we might
expect.

In the other limiting case z3» 0, i.e., v, a_, the shock wave becomes

1 1
symmetrical and more extended; (5.23) is then equivalent to

oXz/A _ 2

"2 (7 + )+ 3 3 (13- 1) et L XE (5.25)

i.e., the extension of the shock wave is of the order A/z.

The formulae of this section can also be applied to the approach of rota-
tional equilibrium if vy 1s smaller than the velocity of sound, a,, vhich would be
obtained if the translation alone is considered in the specific heat. 1In this case,
(5.23) gives the distribution of temperature (defined by the translational energy)
where A is the mean free path for rotation which, of course, is very small (paxr, 24).

Aside from giving the solution for shock wave velocities between a.l, and
ag1, this section completes two proofs which were left incomplete in par. 3:

l. On the high pressure side of a shock wave, the gas velocity V3 is al-

ways smaller than the velocity of sound az. To show this, we calculate, instead of

(3.12), the value of a2/v with the correct value (3.13) of Y- If we use (5.10a)

(in which higher powers of d/d log T have been neglected), we obtain for the low-

er sign
2 ag/a log T 2.2 _ -
9; 20_1 l:pv .ELp.:_gE_h_p.P:_T Jé v (2B- 1)c ] (5.26)
Subtracting this from (3.10) (again with the lower sign), we find
- - dp/d log T 2 _ - c2
v 9.v_ [2# 2 \/p (2p- 1) ;2 (5.27)

- ‘
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In order that this be negative (i.e. 3 < 83)’ we must bave (cf. 5.5a, 5.4)

P -Bo > __.(Qﬂiii%_i'.ﬁ_ (5.28)

48, - 3) (B, - 1)

The value ofp - P o On the right hand side is sufficiently small so that (5.6a),
(5.7) and all subsequent formulae are valid (cf. 6.18). If p ‘Po is equal to the
right hand side of (5.28), it follows from (5.7), (5.15) that y is just equal to B.

This result coincides with (5.15) where we have shown that v is just equal
to the velocity of sound & for ¥ = B. Thus, as we have already pointed out, there
is a certain interval, viz. 0 € y< B, in which the lower sign in (3.10), etc.,
corresponds to v> a. In this interval; the lower sign solution corresponds to
the low pressure side rather than the high pressure side of the shock wave, the
velocity v, being between a; and e, (cf. 5.11 ). For any vy, ¥y, in this
intervel; the 'high pressure solution V35 Y3 can be found immediately from (5.20),
and for this high pressure solution we have (cf. 5.20, y; <B!) y5> B and therefore
v3< 83“ ) This proves the underscored statement above.

2. In par, 3 we have shown that there is, for any initial conditioms,

one and only one solution of the shock wave equations (3.10), (3.11) provided

a7 4aT
e 8
i > _dp ‘5»29)

on the high pressure side. Here !l‘s is the temperature which belongs to a certain p
according to the shock wave theory, T, that which corresponds to the same p in
thermal equilibrium. In the notation of the present section, (5.29) is equivalent

v

to

(5.30)

~3
m
e %
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Comparing (5.18) with (5.19), it can easily be seen that (5.30) is fulfilled when
y» B, i.e. always on the high pressure side of a shock wave, q.e.d.

Par, 6. The Temperature on the High Pressure Side.

In par, 5 we have found that the temperature increases continucusly from
the low pressure to the high pressure side if vl is only slightly greater than ay,

and this remains true if vy becomes equal to a 80 that sharp shock wave front is

al
formed. In the case V] = 8g1, We have T2 = Tl’ and a gradual increase from '1.‘2 to

'.I.‘5 on the high pressure side of the wave front. On the other hand, for violent shock
vaves (v; >> al) , we have proved in (3.16¢c) that the temperature decreases from

the wave front into the high pressure region as the inert degrees of freedom be-

come excited. In this section we want to investigate where the limit between these
two types of behavior is to be expected.

For this purpose we have to examine the dependence of T on & on the high
pressure side. We know that p increases from the wave front into the high pressure
region; therefore d!'/dp will be the quantity determining whether T increases or
decreases. This derivative must, of course, be taken with the initial conditions
(1.e. V and c¢) kept fixed. The value of B at vhich 4T/d8 1s to be calculated,
must be chosen in the range of values occurring on the high pressure side. The low-

est value of § in that region, Bo» cen be calculated from (4.2) and is given by
- =11 -
’2 pa -i,-é (’1 pa) (6.1)

The highest value, p3, is in sufficient approximation

ag T3-T
B, P +3 1o£—m = (6.2)

(6.2) 1s justified because, in the whole region in which dT/4# > O, the temperature
change '.l‘3 - T, 1s small compered with Tl itself. (cf. 6.11a, D). Therefore we can
also rewrite (6.1): o~ 2

3 )



72"’2

=P - -p) 2 "N (6.1a)

Both (6.2) and (6.1a) are rather close tof, because B, -F, and 4B/4 log T are
small in practical cases; therefore it will be sufficient to calculate d’.l'/dﬂ for
é -pl on the high pressure side.

More convenient that the explicit calculation of the derivative dT/af
will be an investigation of the behavior of T itself as a function of for given
initial conditions V, ¢. It will turn out that for given V and ¢, the temperature
Ty, increases with 4 for ‘valuwes: of i/ close to o 88 defined in (5.1), reaches a
maximum forf zﬁo + ‘*(F—% }_) (cf. 6.8) and then decreases for largerf . If,

then,pl lies betweenp and ﬁ , the temperature will increase from '.l' to TB’
pl is greater than 8 , the temperature will d‘écreaae on the high pressure side.
ﬁm is uniquely determined by V and c, therefore the conditionp 1 <ﬂn is equivalent
to a condition for vl/al which will be given in (6.1kc).

For the calculation, we insert v from (3.10) into (3.11) and obtain

3-wpipe— | (28-S -pYiy VB3 - (8- 1)cf] (6.3)

Here we express c? in terms of Bo by (5.4%), and introduce instead of § and ﬁo
= = l‘, = @ ,1_ .
b= B 2 bo po 2 (6.%)
Then we obtain

P.:ga% E+ %%h. \/(b-b)(b ,;—)] (6.5)

As usual, the lower sign is for the high pressure side of the shock wave. Putting

pb = RT, and neglecting all powers of b - bo higher than the square root, we obtain

el ¥
(5.7). g *
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For our present purpose, we vhall carry powers of b - boup to the 3/2th, but we
ghall simplify the calculation by neglecting l/hbo compared with 'boo Since the
interesting values of b_ are at least 3, we have 1/4v2 € 1/36.

7

Then (6.5) simplifies for the high pressure side to

Pv2=-%+_;3752 : (6.6)

(high pressure side). The maximum of the right hand side is obtained for

3(b - b,)

FAT-(1=~—=_4432 (6.6a)
had (o) b b
In sufficient approximation, this equation is solved by
b-b, == (6.6v)
o + 2o
K o bo
If the small terms of order 1/'b‘_.,2 in (6.5) are taken into account, (6.6b) is re-
placed by
g -1
b-b =f- By =— = °o_ 2 (6.7)
° W - L U4B,(B, - 1) |
o "%, o\Po

For b, = 3, this gives b - b, = %—5' = 0.086. The maximum temperature is thus obtained

at a value of B which is only slightly greater than 8 . For larger B; the factor

1/b in (6.5) has a stronger influence than the increase of the square root, so that

the temperature (6.5) decreases again.

Thus we find that the temperature can increase on the high pressure side

only if !
- 3
pl< Pm = po + (6.8)
B(B - 1)

e pas o
.
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Since § o 18 determined by V and c (cf. 5.4), (6.8) is equivalent to a condition
for vl/a,l° To derive this condition; we determine the dependence of v on 8 for

fixed V and c. We have (cf. 3.10)

—.s 5 J—' E—-—) (b=-" ) (6.9a)

Introducing b, this gives

<

For the negative sign (high pressure side), (6.9a) gives a monotonic decrease of v
with increasing b. Inserting in (6.9a) the valueﬁ (cf. 6.8) for B=1b + = 2

find on the high pressure side

Yoh =5V (6.10a)
on the low pressure side
1 1
my =3 VI(l+ . ;) (6.10b)
2

P

Similarly, inserting ﬁm into the expression (6.5) for the temperature, we

obtain on the high pressure side

RTy 3[§]mh - % Ve (6.11a)

on the low pressure side

Fny ‘[ﬁ]ml =3V (- Bm 0 BE%) (6.110

TN
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Thus, at the value ﬂ =pm at which 'I'h reaches its maximum for given V and c, we
-

have the simple relation (cf. 6.10a, lla)
v B, =37V (6.12)
mh mh 2 ¢
and from (3.8b)

(6.12a)

vhere Ppay i8 the pressure corresponding to v = 0.

The velocity of sound a' as defined in (5.11) is them for ﬂ 'pm (c2.

e.'mh = % v ‘/7%—1? (6.13a)

v ESN (6.13v)

6.11a, b)

It can easily be seen (cf. 5.12b) that in all practieal cases a'y - 8y is emall
compared with Vi ” a"m on both sides of the shock wave. Therefore we can identify

(6.13a , b) with the actual velocity of sound a and obtain:

Y;nfh'_s vps 1 ~1 "l’—" '1 a0 o0 61“.
2 (GG (e-e)
!
[Pt =l+;"+-2-+ 500 (60“‘,
o | 2P g

Therefore we find that the temperature will increase on the high preum*i“ ir

_}.<_1_1_-1+%-+-2-+sao (6.1h¢)
m
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.For ﬁ = 7/2, the right hand side is 1.173. This shows that a temperature increase

from T2 to T3 is restricted to very soft shock waves.

The temperature change Ty = T, itself can be calculated from (6.2), (6.1a):

aT ar T, - T
8 8
d

TBBTQ‘EF"(BBOPQ).T" :Z_illoElgéLﬂ-l-Plnpa (6.15)

Here we have denoted; as in par,3, by E['B the temperature corresponding to a given ﬁ
according to the shock wave theory, and by Te that corresponding to the same 8 in
thermal equilibrium. T2 - '.l'1 in (6.1a) has been replaced by '.l'3 - Tl because it
will be shown (cf. 6.17) that '.l'3 - T2 is small of a higher order. From (6.6) we

have in sufficient approximation

dlogTg 1 1 - m (6.16)

Y
b2 2[5, - b

o

Likewise from (6.6), we can calculate the difference between the high pressure and

the low pressure value of T for the same value ofﬁ y viz, 31; this 1is -

!3 ) Tl.g by - by
T 2
1l
bc 2

(6.16a)

Inserting in (6.16), (6.16a) into (6.15) and using the abbreviations A and B

(cf. 5.15, 16) we obtain

2, -1
—Zi;—g = 2(A + B) E-‘hbo(bl - bo)] (6.17)

which may also be written (cf. 1.19)


file:///ising

. ¥ P}

n

IS
\.

i

. Cn E. ue, -3 (8, -8) | (6.70)

where ¢, is the specific heat of the inert degrees of freedom. From (6.17) it
follows that the temperature change '1'3 = T, is greatest when pl = p o lee., for

the séftest shock waves; of course, this holds only when an actual wave front

exists (i.e., for vl > aal). because otherwise T, cannot be defined. For "hand.ez;”
shock waves, i.e.;, greater vl/ea,1 andﬁl - po, the sqQuare bracket decreases and reaches
zero for pl = Pm (cf. 6.8) as must be expected. For air of initial temperature

T, = 300°, we have c 1" 0.007TR; then from (6.17a) the maximum possible value of

i

T3 - 'I'2 is 0.00025 T5 = 0.08°, The temperature increase T_ - 0’ if it occurs at

3
all, is therefore extremely small in air at normal temperature. The temperature

difference T, - T, , on the other hand, is appreciable, viz. (ef. 6.11) 1/9 Ty = 33*)

Finally, the developments of thi‘s section can be used to Justify those
of par,5. In that section, we have neglected in (6.5) and similar equations all
powers of b - b higher than the square root. This s justified as long as 8 - po
is small compared with pm =p° as given by (6.8). Now the largest value of § - ’o
which we have used in par,5 is obtained for y = 2B + A (cf. 5.15, 16). Using
(5.8), (6.8) and neglecting quantities of relative order 1/82 we have.

J(" ﬁo)m - 21,02(23 +A) = 23f/d 1log T + B -‘9‘ (6.18)

B, 6
o 30_%

Por air at 300°, this is about 0.005.








