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DEVIATIONS FROM THERMAL EQUILIBRIUM IN SHOCK WAVES 

SUMMARY 

The various terms contributing to the energy content of a gas,̂  viz. 

translation, rotation, vibration, electronic excitation and dissociation, are 

discTxssed (par. 1). Tables are given of the energy content and the specific 

heat of a slaqple harmonic oscillator (Table I), of the energy content and the 

dissociation of nitrogen, oxygen-(Table II) and air (Table III J. The moleciilar 

vibration becomes important for air at about 600°K, the' dissociation at about 

3000"E. 

The theory of shock vaves is generalized to the case when the spe­

cific heat changes with teBg)erature ̂ par, 3). General formulae are obtained for 

the velocity, (3.10), density (3.8a), pressure (3.8b), and temperature (3.9) on 

the high pressure side. It is shown that the asymptotic values of v, p, p and 

T on the high pressure side at sxifficient distance from the front of the shock 

wave are uniquely determined by the values of these quantities on the low pres­

sure side, and are independent of any intervening phenomena connected with the 

approach of statistical equilibrium between the various degrees of freedom of 

the molecule. This we consider the most important result of the present 

investigations. 

A table is given (Table VIII) of the asyntptotlc values of v, p, p 

and T on the high pressure side as a function of the velocity v of the shock 
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wave. The foxor quantities are calculated (a) iising the actual specific heat 

of air as a function of temperature, as given by Table III (quantities are 

subscript in Table VIII), and (b) using a constant specific heat equal to that 

at 300*'K (subscript 2). Large differences are foimd for the temperature in 

the two calculations (T2 = 8000° when T^ = 5000°) and for the density 

(P2 =" 5.8, px • 9.1) but the pressure, which is the most important quantity for 

applications. Is almost Independent of the specific heat (P2 = 155> P3 " 168 

atmospheres in the example quoted). 

The sudden change of the temperature of a gas when passing through 

a shock wave destrojrs temporarily the statistical equilibrium between the various 

forms of energy of the gas molecules. The degrees of freedom of a molecule can 

conveniently be divided into two classes, the active ones and the inert ones 

(par. 2). The "active" degrees of freedom are translation and rotation; they 

come into thermal equilibrium after one or a few collisions (par. 2A). The 

most important "inert" degree of freedom is the vibration (par. 2B). Experiments 

on the absorption of sound show that between 20 and more than 500,000 collisions 

are necessary to establish thermal eq-uilibrium between vibrations and the active 

degrees of freedom at room temperature (Table V). This resvilt agrees with the 

expectation from the theory of Landau and Teller. This theory allows one to 

predict with moderate accuracy the temperature dependence of Z, the ntmiber of 

collisions necessary to de-excite the first vibrational qxiantum state, when a 

measurement of Z at one temperatiire is available (Table IV). Unfortunately no 

accurate measurements have been made for oxygen and none at all for nitrogen, 

which makes quantitative statements almost Inrpossible. Therefore we have only 

listed (Table VI) the values of the mean free path for vibration, \y which 

follow from varioxis assunrption (par, 2D) about the efficiency of the collisions. 

The resulting values of \y for ths cases which have practical importance for 

shock waves lie between 3 and O.OOI6 millimeters, depending on the vibrating 
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molectile (Ng or Op), the assumption made about the efficiency of various 

molecular collisions, emd the humidity of the air. 

The dissociation also requires a considerable time to come into 

equilibrium. The theoiy (par. 2C) is somewhat more definite in this case than 

for the vibrations because it depends on the Boltzmann factor rather than on 

assunrptions about the kinetics of collisions. Very large values (frcmi 1 milli­

meter to 1 meter) are obtained (par. 2D, Table VII) for the mean free path for 

dissociation, ?^, in practical cases. 

The theory of par. 2 is applied to shock wave in par. h. It is shown 

that the shock wave has a sharp front on the low pressure side while on the 

high pressure side It extends over a distance of the order of the mean free 

path for vibration, \y, or for dissociation, \^. Immediately at the wave front, 

but on the high pressure side, the physical qimntities P, p, T, v can be calcu­

lated assimilng that only the active degrees of freedom exist (Table VIII, qxian-

tities with subscripts 2). Going away from the wave front into the high pres­

sure region, the energy E^ of the inert degrees of freedom increases graditally 

and approaches the value corresponding to thermal equilibrium. In simple 

cases, Ejî, p, p, T and v will follow an exponential law (cf. 4.10, 11). If 

the shock wave is violent enough so that dissociation occurs on the high pres­

sure side, there is first a region of extension X^ near the wave front in which 

vibrational equilibrium is established but in ;rtiich the dissociation is hardly 

affected, and then a much more extended region (extension \^) in which 

dissociation taJces place. 

Two special cases of very soft shock waves are discussed in pars. 5 

and 6, these discussions having mostly academic interest. In par. 5^ve consider 

the case where the velocity of the shock wave V]̂  Is between the actual velocity 

of sound â ^ and the sound velocity obtained by considering only the active 

degrees of freedom, i.e.. 
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where c^ is the total specific heat at constant volume and c-^^ the specific 

heat due to the active degrees of freedom only. It is shown that in this nar­

row velocity interval the shock wave is diffuse on the low pressure as well 

as on the high presstire side. These diffixse shock waves go over automatically 

into shock waves with a sharp front when v^ approaches the upper limit given 

in (A). 

In par. 6, slightly faster shock waves are considered, viz. waves 

for which 

For such waves, the temperature on the high pressure side increases with 

increasing distance from the wave front while for waves of higher velocity v-^, 

the teii5)erature has its maximum immediately at the wave front and decreases 

from there. 

r08 



NOTATION 

Throughout this Eeport, the following notations will be used: 

p = density of gas 

p = pressijre (in atmospheres) 

T = tenrperature in degrees Kelvin 

E = energy content of one gram of gas 

of m degree of dissociation, 

1 + o r - p/(p ET) 

p = -4 - +1 
p/p 

Cp = specif ic heat a t constant pressure per greun 

Cy = specific heat a t constant volimie per greua 

7 = °pAv 
R = gas constant per gram 

Eg = gas constant per mol 

k = Boltzmann * s constant (gas constant per molecule) 

h = Planck's constant 

V = velocity of the gas 

m = p V = flow in grams per cm'̂  per sec 

V » V + £ 

m 

c = velocity which the gas would have if streaaning into vacuxan 

a a velocity of sound 

\^ » mean free path for vibrations 

\d. = mean free path for dissociation 

V a frequency of molecular vibrations 

D » dissociation energy of molecules 



SUBSCRIPTS 

a for active degrees of freedom 

1 for inert degrees of freedom 

v for vibration 

d for dissociation 

h for an arbitrary point on the high pressure side of a 
shock wave 

^ for an arbitrary point on the low pressure side 

1 for a point on the low pressure side where thermal equilibriuin 
exists between all degrees of freedom of the molecules 

2 for a point on the high pressure side Immediately at the front 
of the shock wave 

3 for a point on the high pressure side at sufficient distance 
from the wave front so that thermal equilibrium exists 
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Par. 1. The Energy Content of Gases 

Perfect gases obey the equation of state 

p/p - m (1.1) 

where p, p, T are pressure, density and absolute tempeiature euid where the 

gas constant E is a characteristic of the gas considered. If the gas dis­

sociates, (1.1) ceases to be valid; in the particular case of a diatomic gas 

dissociating into atoms, we have instead: 

p/p = ET(1 +oC) (1.2) 

T^ere oT is the degree of dissociation, i.e., the fraction of molecules dis­

sociated. Generally, p/p T is proportional to the nimiber of separate peorticles 

(molecules or atoms) per gram of the substance. 

The energy content of a gas consists of five main parts, viz: 

(1) the kinetic energy of the translation of the molecules 

(2) the energy of molectilar rotation 

(3) the energy of vibration 

(If) the energy of electronic excitation of the molecule 

(5) the energy of dissociation into atoms (or smaller groups of 
atoms). 

We shall write the total energy content per gram in the form 

E « 0 - 1 ) (p/p) (1.3) 

The incluBion of the term -1 is convenient because the quantity occurring in 

the theory of shock waves is E + p/p, where p/p is connected with the work 

done by the pressure. Furthermore, we shall denote by p^, Pj., 3y, Pe* Pd * ^ 

energy of translation, rotation, vibration, excitation, and dissociation, each 

divided by p/p, so that 
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P = ^t "̂  ̂ r + Pv -̂  Pe + Pd "̂  ̂  ^^'^^ 

The various contributions will now be discussed in order: 

1. The translational energy is 3/2 p/p for any gas, independent 

of the number of atoms per molecule, the temperature, etc. 

2. The rotational energy, for all gases except Hg, and at all 

temperatures at which the substance is gaseous, is given by the classical 

kinetic theory of gases without any important qtiantum correction. It is zero 

for atoms, 1 BT per gram for diatomic molecules and all polyatomic ones whose 

atoms lie on a straight line such as CO2, and 3/2 ET for all other polyatomic 

molecules. At high tentperatures, there is a correction because the molectiles 

change their shape due to their vibrations. This correction, commonly called 

the intersction of vibrations and rotations, is usually not very great. 

3. The vibrational energy can be approximated (at not too high 

temperatures) by resolving the vibration into normal modes and treating each 

mode as a harmonic oscillator. 

The number of normal modes is 1 for a diatomic molecules, 3n-5 for 

a molecule containing n atoms on a straight line Eind 3n-6 for a molecule with 

n atoms not on a straight line. The energy contained in one mode is (per gram) 

where 

2 = ^ - > (1.5a) 

V Is the frequency of the vibat lon, h Planck's and k Boltzmann's constant. 

I f v i s given i n wave nutribers (cm"-'-) and T in degrees Kelvin, 

z a l . i | - 38v /T (1.5b) 
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The frequencies of the various normal modes of molecules can be 

obtained from band spectra. A good survey of data can be found in H. Sponer, 

Molekulspektren I (Springer 1935). The frequencies of simple light molecules 

are very h i ^ , e.g. for Ng ̂ ® ^'^® '^ ~ ^3^5 cm"-'-, for O2, 1570 cm"l. For 

more complicated, and especially for polyatomic molecules, the lowest frequen­

cies are much smaller, the highest ones of the same order as for diatomic ones. 

E.g., CO2 has four modes of vibration with frequencies v = 667, 667, 1336 and 

2350 cm"^. 

For low temperatures (z large), the vibrational energy is no .-eligible. 

E.g., for z o 5, it amounts only to 0.03^ ET, i.e. 1 per cent of -the value of 

E + p/p for translation and rotation of a diatomic molecule, z = 5 corresponds 

to 680 °K for N2, ̂ 50" for O2 but only 192° for the low frequency mode of COg. 

Thus the vibrations may be neglected at room teniperature for Ng and Og but 

not for CO2. 

At high temperatures (z small), -fche vibrational energy is ET per 

mode. This value is attained very slowly. 
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TABLE I 

Energy Content of Harmonic Oscillator 

1 „ kT E^ Cy 

z liv ST E" 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

O.k 

0.5 

0.6 

0.8 

1.0 

1.5 

2 

large 

4.1'10-S 

lt.5-10-^ 

0.0085 

0.0339 

o.crr^j 

0.123 

0.223 

0.313 

0.389 

0.502 

0.582 

o.joh 

0.771 

p 
T 1 1 Z 

1—•• z + -̂  

8.2-10"''' 

lt.5-10"5 

0.0566 

O.I7O5 

0.30it 

0.426 

0.609 

0.723 

0.800 

0.880 

0.921 

0.963 

0.979 

1- j . ^ ' 

1.400 

1.3995 

1.391 

1.375 

1.357 

1.342 

I .32I5 

I.31O5 

1.503 

1.296 

1.292^ 

1.289 

1.2875 

1.2857 
2 12 12 
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In Table I, we give the vibrational energy of a harmonic oscillator as a 

function of the teraperattire. We also give the contribution of the vibration 

to the specific heat, viz. 

DE^ 

which is seen to became appreciable at much smaller temperatures than Ey, 

and to approach its asymptotic value much faster. We have also included the 

ratio, y of the specific heats at cons-tant presstire and volume, for a diatomic 

gas with harmonic oscillation, viz. 

7/2 E -I- Cy,v 

'v̂ v ' 5/2 E + c, ^ 

At high tenrperatures, the vibrations can no longer be regarded as 

harmonic. The effect of the anha33nonlcity is to increase the energy content of 

the gas. E.g., for Ng at 5000''K the harmonic oscillator model would give 

Py = 0.699 while the correct value is 0.753> including the Interaction of vi­

bration and rotation, and a small contribution from exci-tation. The Influence 

of the anharmonlcity is greater for molecules which are easily dissociated. 

k. The electronic excitation is usually rather imlmportant compared 

with vibration and dissociation. 

5. The dissociation becomes important at temperatures above 2-3000°K. 

If ©c is the degree of dissociation, p the to-tal pressure, p^ and pj, the partial 

pressures of atoms and (diatomic) molecules, we have 

PM 1-csf'' (1.7)* 

* p in (1.7) is considered a dlmensionless quantity, viz. -the ratio of the 
pressure to one atmosphere. 
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The first equality follows from p^ = -^ ^ ^ P> P M " i + a P' ^ ^̂  '̂̂^ ^̂ '̂ 

sociation constant, E Q -the gas cons-tant per mole * I.987 calories/degree, 

AF = Fjj - F^ the difference of the free energies per mol of the molecular 

and the atomic gas, each taJsen at itnlt pressure. For some gases, like, Np and 

O2, -tables of AF as a function of temperatiire have been published (cf. below). 

Where they are not published, AF can be calculated from the Stem-Tetrode 

formula, which reads for diatomic gases 

(2^kT)^/^ . ̂ 2 - A ., „. 
nh-? Gj^ 

where m^ is the mass of one atom, n -the ntmiber of separate particles per cmr 

of the gas at unit pressure and tempera-ture T, and D the dissociation energy 

in calories per mol. According to spectroscopic evidence (Sponer), D has 

the -value 117,200 cal. for oxygen and 182,000 cal. for nitrogen, so -that 

D/RQ = 59,000 and 91*600 degrees, respectively. 

g^ and Gji are the s-tatistlcal weights of the atom and the molecule. 

In general, ̂  may be put equal to the combined weight of all states of the 

multlplet to which -the ground s-tate belongs, so -that 

4 = (2L + 1) (2S + 1) (1.9) 

where L and S are orbi-tal angular momentum and spin of the atomic ground state. 

N, having a ^S groTind s-bate, has therefore g^ = (1)(4) = 4; oxygen, with a ^P 

state, has a weight g^ = (3)(3) = 9* % consists of three factors referring 

to the electronic s-tate (gĵ ) of the molecule, the vibration (gy) and the 

ro-tatlon {^) respectively, 

Gjl = gy Sv Sr i'^-'^o) 
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gĵ  can be calculated from spin S and orbi-tal momentum /i , -TIZ. 

^ « 2S + 1 for JEi states {/\ » O) 

2(2S + 1) for all other states {/\ ^ 0) (l-H) 

The grotmd state of N2 is a JJ s-tate (g., = 1), that of Og a ̂ X 

state (a, =» 3). gp is always given wi-th sufficient approximation by 

classical kinetic -theory 

Sr »-f~ (1.12) 

where B̂ . is defined by the fact -that the rotation levels of the molecule are 

Byj(j+1) If j is the rotational quantimi number; B^ = 1.44 cm for Og and 

2.00 cm~^ for Ng. If B̂ . is measured in cm"-'- and T in degrees Kelvin, 

gj. « T/1.458 By. The vlbratlanal part, g^, is gl-yen by 

Sy - — — - (1.15) 
l-e z 

with z defined as in (1.5a). Ordinarily, dissociation is only Important at 

high tengieratures; then gy is sufficiently nearly 

g^ » kT/hv (1.13a) 

If there are several modes of vibration, -there is one factor of -the type (I.13) 

for each mode. 

When K has been calculated, and the total pressure p is known, a 

can be calculated immediately from (1.7), viz. 

T'K" 
a - V m i (1,14) 

,;.--; ,'17 
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In the theory of shock waves, the density p on the high pressure side can be more 

readily estimated than the pressure (par, 5)• Then, Inserting (1.2) in (1.7)> we 

have 

4ET P a2 (1 + a) = K(l - a2) (l,l4a) 

which gives 

a = - 1/2 K' + fk' + 1/4 K'2 (1.15) 

with K' = T-I (1.15a) 
4RT p 

If PQ IS the density of the gas at temperature T^ and vinlt pressure, we have 

K' = IL To £o (1.15b) 
4 T p 

The dissociation a depends strongly on the temperat\xre (increasing with 

increasing T) and slightly on the pressxore or density (decreasing with increasing 

p or p). The equation of s-tate for a dissociated gas has already been given in 

(1.2). The energy content is given by 

3 = L J L « PM + _ ^ - ( - 2 + 2PA) (1.16) 
1 + a 1 + a RQT 

where 3jj and p^ are the coefficients of energy content for the molecular and the 

atomic gas at the given temperature. Disregarding the term D/EQT, (l.l6) is simply 

the weighted average of B^ and B^, the weights being given by the partial pressures. 

The dissociation Itself contributes an energy OD per mol of the gas; to obtain p, 

the energy per mol must be divided by Mp/p = (1 + a)R T (M the molecular weight), 

Py can be calculated by adding the contributions 1 to 4 discussed above. 

P^ is essentially due to translational energy only, and has therefore the value 

5/2. (The energy of electronic excitation of the atoms is seldom Important below 

5,000° and has therefore been neglected.) "" v.^O 
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At extremely high temperatures (above 5,000°) the ionization of atoms 

and molectiles must be considered. This can be done using similar calctilations as 

for dissociation. 

Tables 

Table II gives the energy constant p of nitrogen and oxygen at temper­

atures from 500 to 5000° Kelvin, The energy constant from 500° down to the lique­

faction temperature remains almost unchanged. The data for nitrogen were -taken 

from W. F. Giauque and J. 0. Clayton, Journ, Am. Chem, Soc. 55, 4875 (1935)^ those 

for oxygen from H. J. Johnston and M. K. Walker, ibid, 55, 172 (1935). Both sets 

of data were calculated by the respective authors taking into accoxint all correc­

tions such as anharmonlcity of the vibrations, interaction between rotation and 

vibration, and electronic excitation. The figures given in our table for nitrogen 

are less accurate because Giauque and Clayton give only the free energy from which 

the energy content had to be obtained by numerical differentiation, involving con­

siderable inaccuracy. A graphical method was used to smooth out the results of 

the numerical differentiation. The energy content of Og could be read directly 

from the tables of Johnston and Walker as the difference between T times the en­

tropy, and the free energy. 

The dissociation was calculated for oxygen and nitrogen in air of a 

density equal to 8 times the density at 500°K and one atmosphere pressure. These 

conditions were chosen because in a shock wave in which the temperature is raised 

to 5000-5000°, the density is increased about 8 fold (cf. 5> Table VIII), Ob­

viously, the figures for oxygen would also be -mild for pure oxygen of a density 

of (8)(0.210)= 1,680 times that at 500° and one atmosphere, and the dissociation of 

nitrogen would be the same for pure nitrogen of a density of(8)(0.780c)= 6.244 times 

•the density of nitrogen at 500°K and one atmosphere. 
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Table II, Energy Content and Dissociation of Nitrogen and Oxygen 

Nitrogen Oxygen 

T 

500 

4oo 

500 

600 

700 

8oo 

900 

1000 

1250 

1500 

1750 

2000 

2500 

5000 

5500 

4000 

4500 

5000 

^M 

5.495 

5.499 

5.508 

5.521 

5.541 

3.564 

5.594 

5.625 

5.702 

3.780 

5.845 

5.900 

5.992 

4,062 

4,127 

4,177 

4,218 

4,255 

K 

4.0.: LO"' 

4.9'10"-

2,61. 

2,28. 

•10 

'10' 

6,95'10' 

9.85' 

8.22. 

'10" 

'10" 

L4 

LO 

-7 

-5 

-4 

-5 

-2 

or 

1.55-10-

1.55-10' 

5.25-10" 

2,86-10" 

1,44.10" 

5.12.10" 

1.59-10-

-8 

-6 

-5 

•4 

•5 

•5 

•2 

P 

5.495 

5.499 

5.508 

5.521 

5.541 

5.564 

5.594 

5.625 

5.702 

5.780 

5.845 

5.900 

3.992 

4.065 

4,154 

4,205 

4.504 

4,457 

^ M 

5.495 

5.-̂ 20 

3,548 

5.590 

5.656 

5.684 

5.751 

5.774 

5.871 

5.950 

4.015 

4.068 

4.157 

4.225 

4.278 

4,527 

4.574 

4.412 

K 

5.15-10-'̂  

2.56.10"^ 

0,0142 

0,268 

2,45 

15.8 

55.4 

or 

1,07-10"^ 

2,05-10"' 

0,0144 

0.0568 

0.1523 

0.508 

0.500 

^ 

5.495 

5.520 

5.548 

5.590 

5.656 

5.684 

5.751 

5.774 

5.871 

5.950 

4,015 

4,071 

4.199 

4,454 

4.982 

5.79 

6,58 

7.07 

'••20 
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It is seen that for oxygen the increase of the energy content, both due 

to vibrations and to dissociation, begins at much lower temperatures than for ni­

trogen. At 5000°, the values of p differ by more than 50 per cent. This is due 

mainly to the smaller dissociation energy and vibrational frequency of Op, and to a 

small extent also to the smaller concentration of Op in air (cf. 1.15a). 

Table III gives the necessary data for air. We have asstmied a compo­

sition of 

78,05 per cent Nitrogen 
21,00 per cent Oxygen 
0.92 per cent Rare gases 

0,05 per cent COg 

all percentages being by volume, i.e. by number of molecules. The energy content 

of the rare gases is 3 = 5/2 because they are monatomic. The P of COg was only 

guessed because of its small concentration. 

From the P's and a's of the constituent gases, the dissociation and the • 

energy content of a mixture are calculated as follows: 

a = 2 Cĵ  a^ (1.17) 
k 

p = \<^k Pk (1 + Ok) (1,18) 

1 + a 

where c-^ is the concentration (by volume) of the kis component of the mixture 

(2J, C, = 1), QL and p, its degree of dissociation and energy constant, respec­

tively, a is mainly Important for the calculation of p/p, Eq (1,2), 

Specific Heat 

The specific heat can be obtained by differentiating the energy content. 

As long as there is no dissociation, the specific heat per gram at constant pressure is 

•21 
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Cp = d̂  (ETP) = E(P + T H ) (1.19) 

The velocity of sound, again in the absence of dissociation, is given by 

a2 = ^ E T (1.20) 

where Is the ratio of the specific heats at constant pressure and constant 

volume, viz. 

„ _ P _ p 
If - T^ ~ Cp-R (1.21) 

If p is independent of temperature> we may write from (1,19) and (1.21): 

p = fP = _21 (1,22) 
E y-i 

as is commonly done in the theory of shock waves and other phenomena involving 

gases in rapid motion. While this is approximately Justified for low temperatures, 

it is certainly not for air above 600°K, 

We have not included the specific heat in our Tables II and III because 

another numerical differentiation would have been necessary which wo\ild have made 

the results very inaccxirate. Moreover, we believed that there was at the moment 

no pressing need for a table of the specific heat and of the velocity of sound at 

very high temperatvires but that the interest was centered around the shock waves. 

If there is dissociation, (1,19) is no longer correct because the energy 

is ET P(l + a) and a as well as p changes with temperature. Moreover, the deriv­

ative with respect to T must now be calculated at constant pressure. Furthermore, 

the difference between c and c is no longer E so that (1.21) is no longer -valid. 
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T 

500 

400 

500 

6oo 

700 

8oo 

900 

1000 

1250 

1500 

1750 

2000 

2500 

5000 

5500 

4000 

4500 

5000 

N 

2.726 

2.751 

2.758 

2.7485 

2,764 

2.78I5 

2,805 

2.8295 

2.8895 

2.95O5 

5.001 

5.044 

5.115 

5.171 

5.2275 

3.287 

3.5765 

5.527 

<=k^k 

0 

0.755 

0.759 

0.745 

0.754 

0.764 

0.774 

0.7855 

0.7925 

0.815 

0.829 

0.845 

0.855 

0.8855 

0.949 

1.106 

1.400 

1.808 

2.226 

(1 -KX 
Rare 
gases 

0.025 

t? 

ti 

rr 

ti 

11 

II 

II 

II 

It 

II 

1 

II 

II 

n 

II 

II 

II 

II 

/S (1 ^oc) or ^ 

COc 

0.001 

II 

II 

II 

0.0015 

tT 

ft 

ti 

0.002 

11 

II 

II 

0.0025 

It 

ti 

0.005 

0.0055 

0.004 

5.485 

5.494 

5.507 

5.527 

5.552 

5.580 

5.615 

5.647 

5.727 

5.805 

5.869 

5.924 

4.024 

4.145 

4.559 

4.715 

5.211 

5.780 

0.0000 

0,0004 

0.0050 

0,0121 

0.0551 

0.0687 

0.1058 

5.485 

5.494 

5.507 

5.527 

5.552 

5.580 

5.615 

5.647 

5.727 

5.805 

5.869 

5.924 

4.025 

4.153 

4.507 

4.562 

4.875 

5.227 

'23 
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Finally, (1,20) ceases to be correct and is replaced by 

a2 = f£ (1 + a + Tba 1 ET) 
Cy LrFIog pj T (1.22) 

2. The Approach of Equilibrium between Varioiis Degrees of Freedom of the Molecules. 

Suppose the energy content of a mass of gas is suddenly changed, as it 

is when the gas passes throu^ a shock wave. Then it will take some time until the 

various degrees of freedom adapt themselves to the new conditions, and this "time" 

of relaxation" will be different for the different degrees of freedom, 

A, Translation and Botation, 

The equilibrium will be attained most rapidly by the translation. For 

this degree of freedcan, one collision is in general sufficient to come close to 

equilibrium. In order to have conditions similar to those in a shock wave we may 

consider a gas of a certain temperature Tg, into which streams a more dilute gas 

of a lower temperature T., Then the molecules of the cooler gas will (on the av" 

erage) become accelerated as soon as they make their first collision with those of 

the hotter gas. The average kinetic energy of a molecule of a cool gas will in­

crease frcan 5/2 kT^ in one collision to something of the order(5/2 }i)l/2iT^-*^T^), 

A shock wave can obviously never be quite discontinuous but the tran­

sition from temperature Tn to To takes place over a distance of at least one gas-

kinetic mean free path X^ (t for translation). For ordinary gases at room tem­

perature and atmospheric pressure, X^ is of the order of 10=5 cm; it is in first 

approximation independent of the temperature and inversely proportional to the 

density! therefore, even a very violent shock wave in which the density increases 

by a factor 6 to 10 (cf.par, 5rable VIII), must have an extension of at least about 

10°^ cm. The classical theory of the physical structure of shock waves as given 

by Becker (Zeits, f. Phys, 8, 521, 1922) gives extremely small extensions which 

become of the order of 10~7 cm for very violent waves. The theory of Becker irtiich 

takes into accoxmt the heat conduction but neglects molecular effects can therefore 
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not be correct, at least not for violent shock waves, Becker, himself, pointed 

out that the problem requires a treatment based on the kinetic theory of gases. 

In practice a spatial extension of the shock wave of the order of one mean free 

path Is, of course, of no Importance at all, even at rather low initial pressures. 

The molecular rotation may approach equilibrium as rapidly as the trans­

lation. This would be expected for strongly elongated molecules such as CO2. If 

the effective boundary of the molecule is nearly spherical (e.g. Np or So) the 

excitation of molecular rotations may be estimated to -take roughly 10 to 100 

collisions. To show that the rotation approaches equilibrium so quickly, we use 

the results of Landau and Teller, Physik. Zeits. d. Sowjetunion 10, 54(1956). 

These authors have found that the effectiveness of collisions on a certain degree 

of freedom is determined by the ratio 

X -*^c/% (2.1) 

where T,. is the effective duration of the collision and T„ the natural period of ^ o 

the degree of freedom concerned. If % Is of order tanity or smaller, one or a few 

collisions will be sufficient to establish equilibrium whereas a large number of 

collisions is required if %»1 (cf, 2,5). 

Tg In (2,1) may generally be written 

Tc = s/v (2.2) 

where v is the relative velocity of the two eolXidiag molecules and s the range 

of the intermolecular forces, i,e, the diatanc* over lAieh the molecules Interact 

strongly. We may expect s to be of the order of one half to one Bohr radius, 

i,e; 2,5 to J'lO^^ cm, a range of values i^ich seems confirmed by some experimental 

results on the approach of vibrational equilibrium (cf. Table IV), In the case of 

rotation T may be taken as the time required for one revolution, or rather this 

time divided by 2« (cf, 2,4) so that T^ • r/vy where r is the radius of the mol-= 

ecule (distance of an atom from the center of gravity) and Vj, is the velocity of 
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the atoms in their revolution aroxrnd the center of gravity. Now v is of the same 

order as v, the velocity of molecular translation (equipartition of energyl) eind 

r'is of the same order as s. Therefore v is of .order unity for rotation, and 

equilibrium between rotations and translation will be attained in a few collisions. 

We shall find in the following that all other, degrees of freedom behave 

quite differently in that many collisions are necessary to establish equilibrium. 

Therefore it will be convenient to group together translation and rotation on one 

side I, and all other degrees of freedom on the other. The latter we shall call the 

"inert" degrees of freedom while translation and rotation will be denoted as the 

"active" degrees of freedom. For all practical purposes we may say that the energy 

content of the active degrees of freedom can change almost discontinuously, because 

a distance of a few mean free paths may be considered negligible. We can then define 

the temperature of a moving gas at each point by the energy content of the active 

degrees of freedom^which is 

Ea + p/p = P^ p/p = P^ET . (2.3) 

(the last relation being only valid if there is no dissociation). In (2.3) P„ is 

independent of the temperature and eqiial to 5/2 for monatomiCj7/2 for diatomic 

gases (cf, par, 1), The energy content of the inert degrees of freedom, E^, on the 

other hand, cann.jt change abruptly and is therefore not always in equilibrivun with 

that of the active ones; in other words, E. is not necessarily related to the local . 

temperature T in the way discussed- in par, 1, 

B. Vibrations 

Theory 

The most important inert degree of freedom are the vibrations. For these, 

we set in (2.1) 

7-̂  - 1/2 n v (2,4) 

2i; 
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where v is the natural frequency of the molecular vibration. (In all formulae 

like (2.1) 2nv rather than v should t)e use^ as representing the frequency because 

the frequency is generally Introduced into physical formulae by taking the time 

derivative of ezperssions like sin 2Kift. If ve took *v Instead of Sir v in (2.^), 

the only change would be thftt the values of s deduced froKi experimental data would 

be multiplied by 2it). Since the frequencies of molecular vibrations are rather 

high; it is plausible that ̂  Is rather largei this vlll be shown by direct oal-

culatlon and by discussion of experimental results below. For the case p^» 1, 

Landau and Teller give the forncttla 

PlO =Ce-X (2.5) 

Here py^ is the probability that a molecule in the first excited state of vibration 

is de-excited by a collision with another molecule. C is a geometrical factor idiich 

gives the probability that the collision of the two molecules will take place in 

a direction suitable for excitation or de-excitation of the vibration. There are 

no experimental data sufficiently accurate to deduce Cyso that qualitative arguments 

must be used for its determination. Obviously^ C must be less than unlty^ emd 

probably it will lie between l/3 and l/30 in most cases^ its value being higher for 

diatomic and lover for polyatomic molecules because It is less likely that a com<° 

plicated molectil9 is hit at the right place to Induce a given mode of vibration. 

In our computations belov^ we shall use arbitrarily Cad/lO. 

Presumably^ a better approiclmatlon could be obtained by introducing in 

(2.^) another factor^ viz. a certain power of y^. Arguaeats can be given for a 

factor ^^' Howeverj these arguments are too uncertain to Justify at present the 

inclusion of such fine points. 

The most important factor In (2,3) Is the exponential e'X where 

\Ci* CoJ-^ So£-^ Co*r^ 

% « Su V s/v (2.6) 

• 2 7 
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Let us investigate y for the case when the kinetic energy of the relative motion 

of the colliding molecules is just kT, i.e. 

1/2 Mv^ = kT (2.7) 

where M is the reduced mass of the two molecules; if they are equal, M is one half 

the mass of one molecule. The value o f v for the velocity determined by (2.7) is 

5̂ 3̂  = 2«vs \/ M/2kT (2.8) 

This can be re-written as follows: 

^ = l/h /2kT . s UkK^ M y (2.9) 

For the collision of two equal diatomic molecules, each coxisisting of two equal 

atoms, M is the mass of one atom; then the reciprocal of the last factor is (2.9) viz. 

b = \/h/itJt%v (2.10) 

represents the amplitude of the molecular vibration in the lowest quantum state. 

Generally, the b defined in (2.10) has the value 

where u. is the molecular weight of the molecule (assuming collision between equal 

molecules) and v the vibrational frequency in cm"-'-. For Np, v = 23^5 andLL = 28 

so that b = 3.1.10"-'-*̂ cm. Thus we see that b is very small compared with the range 

s of the forces. The factor yict^2k1 is (2.9) is also in general greater than unity, 

so that X 1 -̂^ indeed very large compared with unity as we expected above. There­

fore (cf. 2.5) the probability of transfer of energy between vibration and 
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translation is very smalls the vibration is an inert degree of freedom. It is 

seen from the derivation that the reason for this result is not so much that the 

energy of one vibrational quantî m hv is large compared with the average energy 

of translation, kT, but rather that the amplitude of the vibrations, b, is very 

small compared with the range s of the intermolecular forces. This in txim is 

due to the large elastic forces which govern the elastic vibrations. 

The quantity ^ (2.6) will be reduced, and therefore the probability of 

energy transfer p̂ jj (2.5) considerably increased, if we take higher velocities v. 

Therefore a given molecule will lose and gain vibrational energy mostly at the 

times when its, kinetic energy of translation is high compared with kT, i.e. when 

it is in the tail of ̂ t̂he Maxwell distribution. If we average over all the mol­

ecules in the gas, the probability of energy transfer per collision becomes 

P̂ Q = 2/\/7 fe-^)nrdLX Ce"^ (2.12) 

where 

V _ M v2 

2kT 
(212a) 

(2.12) represents the probability (2.5), averaged over the Maxwell distribution of 

the relative velocities of the two colliding molecules.* With (2.6) fo^ g(̂  , the 

integration of (2.12) can be carried out by the saddle point methods,the integrand 

having a steep maxlm-um near 

* It might be preferable to take into account the different collision probability 
of fast and slow molecules, i.e. to replace (2.12) by 

P-ĵQ =Je"^ X dx C e'X (a) 

which would give instead of (2.13) 

PlO = 2/9 1^0-5/2 e-<** (b) 
The temperature dependence of PIQ would not be changed very much by this correction 
because the difference between (b) and (2.13) would be largely compensated by a 
different value of s deduced from the experiments. 
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The integration gives 

where 

(ID as defined in (2,10, 2.10a), s the range of the molecular forces, T/ the fre­

quency of vibration), (Eqs. (2,13^ 1^) are similar to the equations determining 

the rate of nuclear reactions in stars), 

Hvaierically, (2.14) may be written 

<r= 0,090 (vs) 2/3 (^/T) 1/3 (2,15) 

where v is measxired in cm"!, s in units of 10"9 cm, T in degrees Kelvin, emd u is 

the molectilar weight per molecule (or twice the reduced molecular weight, 

2/^'^('^ '*' '^f^i ^^ two unequal molAcules eoHideJ. 

We shall now try to get a more quantitative estimate of s. Experiments 

are available (cf. below), among other gases, for pure COp, and for the action of 

N2 on the vibrations of Og. For COp, Fricke (Journ. of the Acoust. Soc. of Am. 12, 

245(19^0)) finds that Z = 86,000 collisions are necessary for de=excitatlon of the 

first excited vibrational state, eo that 

Pio - i « ft>^ - = 1,15'>-10"°5 
•••" Z 86,000 

Taking C * l/lO, (2,13) git»fl C = 11,5= Using this lumber in (2.15) vith v 

^ 667 01°^, we find, 

s ^ 5o6°10~^ cm, (COg) (2 .16a) 

XQ = 1/2 (2ns2/ ) ^ / 5 (M/kT) V 3 (2.12b) 

P l O - C ' o - e - < ^ (2 .13) 

<r= 3x^ * 3/2 (s/b) 2/5 (ny/kT) ^/5 (2,14) 

C = . 4 T 5/2 C (2.14a) 

30 
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For the de-excitation of the vibrations of Og by collisions with Np, Kheser and 

Knudsen find P^Q = 10-5. Inserting this figure in (2.13, 15) and taking Y = 1570 

cm"-'-, we obtain 

S = 3°10"9 cm (Og/Ng) . (2.l6b) 

Both the results (2.l6a) and (2.l6b) are of the order of the Bohr radius 

as we assumed above. Differences between the values of s for different molecules 

are, of course, to be expected. We can therefore not predict the value of s for 

a pair of molecules for which it has not been measured experimentally. This is 

very unfortunate because P,Q, or 

Z = l/Pio , (2.17) 

is very sensitive to s. This can be seen directly from (2.13, l4) or from Table IV 

in which we have calcixLated Z from (2.13, l4) for Op and No, in each case for two 

different values of s. A more detailed discussion of Table IV will be given in 

par, 2D, 

Influence of foreign gases, experimental difficulties. 

Collisions between two different molecules are often more effective in transfer­

ring energy to and from the vibrations than collisions between like molecules. 

This is the case especially (l) if the two colliding molecules have a chemical 

affinity and (2) if one molecule is very light so that its velocity is great. In 

case (2) which is realized for E^, He, etc.,jAin (2.15)is very small. In case (1) 

the interaction between the two molecules is much more intense thetn usually which 

may perhaps result in more sudden changes of interaction and correspondingly shorter 

effective range, or even in a complete failure of the Landau-Teller theory when 

the two molecules penetrate so deeply into each other that they can be said to 

form a temporary compound. In the latter case, the temperature dependence may 

be quite different from that indicated in (2.15), 



Table IV. Theoretical Temperature Dependence of the Number of Collision Necessary for 

De-excitation of the First Vibrational State. 

Temperature ("K) 300 500 700 1000 1500 2000 3000 5000 

Vibrating 
Molecule s 

CO2 5.6'10"9 

Z 

O2 4-10-9 

z 

5-10-9 

z 

N2 5-10-9 

Z 

2.5-10-9 

z 

Collisions with H2O 

02 0.95'10"9 Z 

N2 " z 

11.20 9.45 8.45 7.50 6.55 5.95 5.20 4.38 

65,000 15,500 3500 2400 1080 650 340 180 

14.32 12.08 10.80 9.58 8.37 7-60 6.56 5.60 

1.1-10^ 1.45-105 46,000 15,000 5100 2600 1150 380 

11.82 9.97 8.91 7.91 6.91 6.28 5.49 4.62 

1.1-105 21,500 8400 3400 14̂ 50 850 44o 220 

14.78 12.48 11.14 9.89 8.64 7.85 6.75 5.77 

1.7-10^ 2.0-105 62,000 20,000 6600 3200 1400 570 

13.08 11.05 9.88 8.77 7.66 6.96 6.08 5.11 

3.7-105 57,000 19,500 7500 2700 1500 720 320 

400 210 140 100 75 60 50 4o 

1300 650 320 200 130 100 75 50 

^c 
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As will be seen from Table V, the foreign gases investigated are 3 to 

4000 times more effective in de-exciting the vibration of O2 than O2 itself, the 

effect being greatest for complicated molecules such as C2H2OH which has a chemical 

affinity to O2, and for water, which caji probably form a temporary compound with O2. 

The effect of N2 on O2 is almost as small as that of Og itself because there is 

not much chemical interaction; the collisions between O2 and N2 will be dis­

cussed in more detail in par. 2D. 

The large effect of water vapor on the variation of oxygen makes it 

extremely difficult to measure the small effect of collisions between O2 molecules 

themselves. Only a lower limit for Z was therefore obtained in the experiments 

on "pure" Og, •»*?. 500,000. 

For the problem of shock waves we must conclude that the establishing of 

vibrational equilibrium will depend sensitively on the humidity of the air. On hot 

humid days, the water vapor content of the air may easily reach 3 per cent (23 mm 

vapor pressure) so that only 4oo/o,05 = 15,000 collisions would be necessary to 

establish vibrational equilibri-um for the oxygen. On the other hand, for complete­

ly dry air the necessary number of collisions is about lo5 because then only the 

collisions with nitrogen will be important. A more accurate discussion of the 

humidity effect will be given in Table VI. 

Excitation and De-excitation. Instead of the probability P]_o of ̂ e-

excltation per collision^ it is convenient to Introduce the probability k-ĵQ of 

de-excitation per second which is given by 

Kio = PlO • ̂  = ̂ /2 (2.18) 

where 

N = y O- V (2.18a) 

i s the number of co l l i s ions per second,yv the number of molecules per cm5,9'the 

gas-kinetic co l l i s ion cross section and v the average r e l a t i ve veloci ty of two 
• 33 
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colliding molecules, viz^ 8 ^ . The quantity k^Q has two advantages compared 
TT M 

with Pxo* viz. (1) that it is more directly related to the extension of the shock 

wave and (2) that it is directly connected with observatlo3ml data (cf. 2.22, 26) 

whereas the coimection of P with these data involves the somewhat uncertain cross 

section q. 

The probabi l i ty of exci ta t ion , k.^^, i s connected with the probabi l i ty of 

de-exci ta t ion, k,Q, by the s t a t i s t i c a l pr inciple of deta i led balancing according 

t o which 

^01 = ̂ 0 ®" ̂  (2.19) 

The time rate of change of the number y of molecules without vibration is then 

£Zo = kio y^ - koi lo (2.19a) 

dt 

where j-^ i s the number of molecules in the f i r s t excited v ibra t iona l s t a t e . Sim­

i l a r equations hold for the other y^ where, according t o qiiantum theory, kjĵ , n-1 = 

nkio ^"^ ^ - 1 n ~ •'̂  n n-1 ^'^'^• By adding the equations for the various y^ ,̂ an 

equation for the t o t a l energy of v ibra t ion . 

^ = ^ ^ ^ o ^^n (^-^^^^ 

can be obtained, namely 

- ^ = kio (1 - e- W k T ) (EV - E^) (2.20) 

Here E'^ is the vibrational energy in thermal equilibrium, viz. 

E 'v Qh>'/Kr_-L (2.20a) 

.V± 
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Eq. (2.20) is valid no matter how large the deviation from thermal equilibrium. 

The factor 1 - e - h /kT takes accoxmt of the fact that there occur transitions 

away from equilibrium as well as towards equilibrivim. The solution of (2.20) is 

E' - E = Ae-«»ot (2.21) 
V V ^ 

where a>Q is the reciprocal of the time of relaxation and is given by (cf. 2.20). 

'• 

W = k ( 1 -e -h"*̂  /^T. (2.22) 
o 10 ' 

It has been assumed in (2.21) that T remains constant. This not strictly correct 

in shock waves (cf. par.3,4) where co , being a function of T, will change with 
o 

time so that the integral of (2.20) cannot be given in closed form. 

In shock waves, we are Interested in the spatial variation of E . If 

the gas flows with a velocity v, we may write 

^ v 1 dE ^v' -^v 
-7^ = - V = - \ (2.23 
dx v-Tf^ X^ 

where 

V = ̂/'% (2.24) 

defines the mean free path for vibration. 

Evaluation of Experiments . Trie experimental determination of COQ is 

based upon the absorption and dispersion of sound in gases. The theory of this 

phenomenon has been given by H. 0. Kheser, Ann. d. Phys. l6, 357 (1933) and Jotirn. 

Acoust. Soc. Amer. ̂ , 122 (1933), and others. The absorption coefficlentAper wave 

length depends on the circular frequency/̂ of the sound wave approximately* as 

* In order to obtain (2.25), Cp-Cpĝ  must be assumed to be small in comparison with 
Cp. Since u. is the absorption coefficient per wave length, the absorption coeffi­
cient per centimeter will behave as o*^ and will therefore obtain its 

'**max2 4U>2 r, '̂  -, :̂ 35 
maximum value for u> =oo . 
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„ « tL _ (2.25) 
/ 6J 2 , ,.2 ^max + W 

where (J is the frequency of maximum absorption per wave length. W_„„ can be 
max ™ax 

determined experimentally, and (O may be deduced from it using the relation 

J±_ _ cpa (Cpa - ̂ ) 
^max °p (°p - «) 

(2.26) 

Here c is the ordinary specific heat at constant pressure and c the specific 

heat counting the "active" degrees of freedom only. In contrast to (2.25), (2.26) 

is exact. 

Experimental Besults. Experiments were made by H, 0. Kheser and V. 0. 

Knudsen, Ann. d. Physik 21, 682 (1935) on the vibrations of 0-, by Fricke and by 

Knudsen and Fricke, Journ, Acoust. Soc. Amer. 12, 245 and 255 (1940) on COg and a 

few other gases, and by Kuchler, Zeits. f. phys. Chemie B 4l, 199 (1958), on the 

temperatture dependence of the time of relaxation. The latter experiments were prob-

n 

ably carried out with somewhat impure gases becaxose Ktichler finds for COg at 

room temperattire Z = 50,000 whereas Fricke gives 86,000 (impurities reduce Z, cf. 

above and Table V), and a similar discrepancy exists for NgO (7>500 vs. 11,800). 

The experiments of Kneser and Knudsen were the first systematic ones carried out 

and were therefore less accurate than the later work of Knudsen and Fricke, but 

the results of Kheser and Knudsen are most important for us because they were done 

with oxygen. For Up there are no experiments but only sin estimate by P. S. H. 

Henry, Nature 129, 200 (1952) based on the failure to detect the inflxience of the 

vibrational specific heat on the velocity of sound in certain experiments. Henry 
k -1 ^ P 

estimates ^Q « 10 sec" , i.e. ZfWlO" for N which seems not implausible. 
Table V gives some of the experimental results. They bear out the features 

'-, '̂ G 
discussed above and expected theoretically, viz. 



a'able V. Exper imenta l E e s u l t s on t h e E x c i t a t i o n of Molecular V i b r a t i o n s . Number of C o l l i s i o n s Eequired 
fo r D e - e x c i t a t i o n , Z, and Rec ip roca l Time of E e l a x a t i o n , oJ ( i n sec"-*-), fo r Various Molecules C o l l i d i n g 
wi th o the r Molecules , 

C o l l i s i o n w i th Nc He CO. H2O H2S CH,QH 
5 ^2^5' OH 

V i b r a t i o n a£ 0 , 

TKnudPftn and Kheser) c j 

500,000 100,000 20,000 25,000 400 4,200 

*£ 3-10^ 5"10 5-10^ 1.7*10^ l . l ' i o ' ' ' 1 .5 '10^ 

120 

6*inT 

V i b r a t i o n of CO. 

(Kneser eoid F r i c k e ) cu 

215 86,000 17 1,200 

8 .0 ' lo ' ' ' 9.8*10^ 1.02-10^ l . l 4* lo ' ^ ^ - . . ^ . . 8 

56 

3.1*10^ 

The same q u a n t i t i e s fo r some pxire gsses (Fr icke) 

Gas 0 . CO. N2O COS cs. so. 

z > 500,000 

( i n 10^ sec -^ ) < -^.08 

86,000 

0 .98 

11,800 

e.9 

9,600 

11 .5 

8,70c 

14 .5 

1,900 

55 

Z fo r COp a t va r ious t empera tu res (Kuchler) 

T(degrees Kelvin) 

Z 

295 

50,000 

575 

51,000 

475 

19,000 

575 

12,000 

675 

9,000 

r E a t i o of Z2Q-5<»/Z6Y50 fo r v a r i o u s gases (Kuchler) 

C o l l i d i n g gases 

295" 

CÔ  

• S I ̂ Z293/Z6Y5 

'2 - ^^^2 

50,000 

5.6 

II2O - NgO 

7,500 

5.6 

COg - H2 

500 

1.0 

C02 - H20 

105 

0 .4 
VJ4 
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1. All the pure gases Investigated have rather hlghZ (small OJ , long 

relaxation times), the smallest being SOp with Z 2» 2,000, the largest O2 with 

Z> 500,000, The large value for Op is probably due mostly to its high vibration 

frequency. The decrease of Z from CO2 to COS to CSp is also in the direction 

of decreasing v ', on the other hand, the small value for SO2 is presiimably due to 

the greater chemical activity of that molecule. 

2. The impurities investigated gave smaller Z than piire gases. It can­

not be decided at present whether this is due to the selection of gases used in 

the experiments, or to a general riile. Among diatomic molecules, Hp is most 

effective in de-exciting Op and 00^; this is to be expected theoretically from 

its small mass (large velocity). Triatomic gases are on the whole more effective 

than diatomic ones; this may be due to the fact that there will always be some 

"corner" of a triatomic molecule which has a chemical affinity or at least a strong 

interaction with a given molecule. Among the triatomic gases, there is again a 

decrease of Z with increasing chemical activity (CO2 to H2S and H2O), Polyatomic 

molecules are even more effective than triatomic ones, for the same reason. 

By collisions with the same molecule, the vibrations of CO2 are in general 

more affected than those of O2, because of the smaller frequency of vibration. 

3. The temperature dependence of Z for CO2 is about as expected (cf. 

Table IV). Gen'̂ rally, the decrease of Z with increasing temperature is most 

pronounced if Z is large, in agreement with theoretical expectation. Whether the 

ir 

increase of Z with the temperature as found by Kuchler for collisions between 

CO2 and H2O, is real cannot be decided at present; however, Z is very small in this 

instance so that the Landau-Teller theory can probably not be applied. 

Several Degrees of Freedom. At first sight, it might be expected that 

each mode of vibration has its own relaxation time, this time being greater for 

the modes with higher frequency. Experiments show, however, that this is not the 

:m 
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case because all the experimental curves show only one absorption maximum with the 

absorption coefficient falling off on both sides according to (2.25). This be­

havior can easily be understood if we remember that the resolution of the vibra­

tion into normal modes is only an approximation which is correct only for exactly 

harmonic forces. The anharmonicity will mix the various normal modes in each 

vibrational quantum state. An extreme case of mixing is known in COp where the 

second excited state (vibrational quantum number* n, = 2) of the first mode of 

vibration {V-, = 667 "1) is degenerate with the first quantum state of the second 

mode {z/^ = 1536 cm"-̂ ) (n2 = 1) (cf., e.g., Sponer, loc. cit.). The anharmonicity 

causes an "interaction" of the two resonating quantum states with the result that 

a splitting occurs into two states of considerably different frequency (1286 and 

1388 cm"^). The form of vibration in each of these states is a combination of 

modes 1 and 2 with about equal amplitudes. 

In other molecules, the mixing of different modes is usually less strong 

but it must always exist to some extent. Let us assume, e.g.,that there is a mode 

of vibration with a high frequency-2/2 which is between 3 and 4 times the fre­

quency Vi of another mode. Then the first excited state of mode 2 (n^ = 1) will 

contain some admixture of the foxirth state of mode 1 (n, = 4 ) . In this case, the 

excitation of the state np = 1 will not take place by direct transfer of energy 

from the translation, but the tremslation will excite in successive collisions the 

states ni = 1, 2 and 3, and finally, in a fourth collision, the state np = 1. 

This mechanism avoids large energy transfers in one collision which are very im­

probable according to the Landau-Teller theory (cf. 2.15). The transition from 

n = 5 to np = 1 is somewhat less probable them a collision in which n, is raised 

by one \mit because the mixing between ng = 1 and n, = 4 is assumed small; on 

the other hand, it is more probable because the energy difference t>etween np = 1 

* In order to avoid confusion with the velocity v, we denote the vibrational 
quantian number by n rather than the customary v. 

;.• • • 'u\ 
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and n, = 3 is smaller than vl. The Z for the transition n-ĵ  = 3 to n2 = 1 is there­

fore probably of the same order or smaller than for the excitation of the first node, 

and it can therefore be Tinderstood that only the successive excitation of qTiantian 

states of the lowest mode of vibration gives rise to an observable absorption of 

sound. 

C. Dissociation 

The dissociation differs from other degrees of freedom in that it becomes 

appreciable at temperatures at which KT is still very small compared with the dis-

D 59 000 
sociation energy D per molecxile. We have mentioned in par. 1 that ̂  » <?— ^°^ 

oxygen and 91,600/T for nitrogen. On tfie other hand, we have shown in Table II 

that the degree of dissociation is as mvich as 1.4 per cent for O2 at 3000° K and 

for N2 at 5000" K. At these temperatures, D/kT is about 20 in both cases, and the 

Boltzmaim factor - ^^e~'^^ ^10''^, The fact that an appreciable dissociation is 

possible for such a small Boltzmann factor is due to the large a priori probability 

of the dissociated states. 

In order to produce dissociation, two molecxiles must collide which have 

a relative kinetic energy at least equal to D. Such molecules are very rare because 

of the small Boltzmann factor _- •^' Dissociation will therefore take a considerable 

time at 3000-5000° E even if every collision between molecules of sufficient energy 

is effective. 

The same conclusion can be reached by considering the inverse process, 

viz. recombination. In order that two atoms recombine into a molecule, there must 

be a triple collision between the two atoms and another molectile which takes up 

the excess energy and momentum. Triple collisions, however, are rare events espe­

cially if two of the colliding particles must be atoms which are relatively rare 

as long as the degree of dissociation remains low. 

We must now examine the efficiency of collisions between two molecules 

of sufficient relative velocity in causing dissociation of one of the molecules. 
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If two molecules have relative kinetic energy equal to D, i.e. several electron-

volts, they will penetrate very deeply into each other. In this case, we can no 

longer distinguish between fast motions (of the electrons) and slow motions (of 

the molecxiles as a whole), and we can therefore no longer conclude that the trans­

fer of energy from the slow molecular translation to the fast electronic motion is 

improbable. It is very difficult to make any quantitative estimates but we believe 

that the efficiency of collisions between molecules of energy greater than D will 

not be reduced by a factor of the type of (2.5) but will be determined mainly by a 

geometrical factor which may perhaps be somewhat smaller than for the excitation 

of vibrations. In numerical calculations, we shall assume an efficiency C^ • l/lOO 

which may be wrong by a factor of 10 or more either way. 

The probability that the relative kinetic energy of a pair of molecules 

is between kTx and kT (x + dx) is given by the Maxwell distribution 

v/x" dx e"^ 

The velocity of the molecules in question is ^L^ ^ times the average relative 

velocity v of two moleciiles. Therefore, the fraction of all molecular collisions 

for which the relative kinetic energy of the colliding molecules lies in the inter­

val mentioned is approximately 

f(x) dx = e"^ X dx (2.27) 

The fraction of collisions for which 

X > xo = ^ (2,27a) 
kT 

is then 

(xo) = J f(x) dx = e-'̂ o (xo + 1) « Xoe-^° = ^ e'̂ /̂̂ T (2.2>rb) 

X, 
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Therefore, the nimber of ordinary molecular collisions required per dissociation, 

is 
I 

Z. =, 1 = 1 ê o 
<̂i - Cd F(xo) = CT ~o '̂-'̂ ^ 

where C, is the efficiency of the collisions between molecxiles of s\ifficient 

energy in producing dissociation. The reciprocal relaxation time for dissociation 

is 

"^ *- Ira . (2-29) 

where N is the number of collisions per second (cf. 2,l8, 2.l8a). The mean free 

path for dissociation is (cf, 2,24), 

'̂d = y/cL», (2.29a) 
a 

Because of the large factor e ̂ , the number of collisions required for 

dissociation is very large at temperatures of 3000-5000° K^at which the dissociation 

of air becomes important (Tables II and III), In Table VII (cf. p, 52a) we give 

the values of Z,, u> -, andX, for oxygen and nitrogen; it Is seen that Z^ lies 

between 10 and lol2 and is thus much higher than for the vibration. It is obvious 

that impurities cannot greatly affect Z-|̂  because the decisive factor is the Boltz­

mann factor rather than the efficiency of the collisions, 

D, Conclusions on the Excitation of Air. 

Vibrations 

Neither the theory nor the available experimental results are sufficiently 

accurate to permit any qiiantitative predictions on the mean free path for the 

vibrations of the most important gases, O2 and N2. It is certain that these mean 

free paths are rather long, and under certain circumstances they may become com­

parable with the dimensions of a projectile. 
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Experimental information is available (Table V) only on the effect of 

Np and of water vapor on the vibration of Op; in addition an upper limit is known 

for the effect of Og on the O2 vibration. The effect of Np on Op is described by 

an effective range s = 3"10-9cm as computed in (2.l8a). In Table IV, we have cal­

culated Z as a function of temperatvire with this value of s. These calcxilated 

values should represent the temperature dependence of the effect of Ng on the 

vibrations of Op fairly acciirately, i.e., within a factor of perhaps 3» 

For the collisions between two Op molecules, the experiments give 

Z3k500,000 at room temperature. Assuming Z = 10°, we obtain s = 4°10"9 cm from 

(2.13, 15). The values of Z for Op at various temperatures with s = 4°10~9 are 

also given in Table IV; the actual Z for Op - Op collisions may be smaller than 

the values given in the table by about a factor of 2, but greater by any eunount. 

In any case, in air the vibrations of 0 will be excited much more easily by col­

lisions with Ng than by collisions with other Og molecules, both because of the 

greater abimdance of Ng and of the smaller Z. 

In Table VI we give the estimated times and distemces required to es­

tablish equilibrium of the molecular vibrations in air. In particular. Table VI A 

gives the reciprocal time of relaxation, ui^, as a function of temperature for 

various assumptions. OIQ has been calculated from (2,18, l8a and 22), considering 

q as independent of the temperature. The values of q were obtained by comparing 

the values of Z andcOg given by Kheser and Kunze for room temperature; these q's 

seem somewhat low but the errors are not important compared with the uncertainties 

in the theory. The density of the air was assumed to be l.l8''10~3, corresponding 

to atmospheric pressure at 300*K. In the first row of Table VI A, CAJ is given 

for the vibrations of Op, taking into account only the collisions with N molecules. 

The neglected collisions with Og can increase^ by 10 per cent at most. 

Collisions with water molecules are very effective in exciting the vib­

rations of Og (Table V). Fo\ir hundred collisions with HgO are sufficient for de- • 

excitation of Og at room temperature; therefore, as little as one per cent of water 
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vapor will be three times as effective as all the nitrogen in the air. In the 

second row of Table VI A we have listed the value of U> for collisions of Oo 
O cL 

molecules with HpO, assuming a concentration of 1 per cent water vapor by vol\ane. 

On hot humid days, the water concentration may be easily 3 per cent. It Is seen 

that, at 1 per cent, the collisions with HpO are more effective than those with Ng 

at 500* K, but less effective at 700" and higher temperatures. This behavior Is 

due to the fact that u> rises very rapidly with temperature for collisions with 

N , but rather slowly for collisions with HgO, (Table IV) 

While the information obtainable on 0 is fairly satisfactory, very little 

can be said about the excitation of the vibrations of Ng. It is reasonable to 

expect that the effect of Og on the N vibrations can be described by the seune 

effective range, s = 3'10"9 cm, as the effect of N on 0 , although this is by 

no meems certain. In Table IV we have given the corresponding Z for Np; it is 

much higher than the Z for 0 with the same S because the vibration frequency of 

Ng is about 50 per cent higher than for 0 . The third row of Table VI gives ca 

for the excitation of the vibration of N in air, assuming that only collisions w 
2 

with 0 are effective. These values for co can therefore be regarded as lower 
2 o 

limits. 

No experimental results are available concerning the effect of collision 

with the N molecules on the vibration of N , To obtain any theoretical estimate, 
2 2 

we must find an interpretation of the difference between the effective range s for 

0 - 0 and 0 - N collisions, viz, safi+»10~9 and s = 3»iO-9 cm, respectively. 

There are two possible interpretations: The first alternative is to assume that 

generally collisions between different molecoiles are more effective than between 

equal ones. Such a tendency seems to exist in the experimental result (Table V) 

but there appears to be no theoretical justification. Moreover, it is to be re­

membered that the experiments were mostly done with polyatomic molecules, for 

. /. n 
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which there are other reasons for a stronger interaction (cf, point 2 in the sec­

tion on Experimental Results of par. 28), Thus we do not get an explanation foj? 

the effectiveness of the collisions between Og and Np, and we are led to the sec­

ond alternative. This is based on the fact that N is a more compact molecule 

than 0 , having a greater binding energy and smaller distance between the atoms. 

From this difference in structure we may expect a shorter range of the forces for 

Np which would explain the smaller value of s for Og - Ng collisions as compared 

with Og - Ogo 

If this second alternative is accepted, we shoiild expect an even smaller 

s for the interaction between two Np molecules than for the Np - Op interaction. 

We have therefore included in Table IV the values of Z for Np obtained with 

s = 2.5° 1-0 cm. These values are, of course^ considerably smaller than for Ng 

and s = 3°iO-9 cm, and not much larger than for Op and s = 5?iO-9 cm. In the 

fifth row of Table VI A we have given co for Np in air, assuming s = 2o5°10~9 cm 

for the interaction Np - Np; the values thus obtained are only slightly less than 

those for Op (first row). 

On the other hand, if the first alternative explanation above is assumed, 

the interaction between two Np molecules would have a large s, just as the inter­

action between two 0., molecules. In this case, the N„ - N_ collisions wovild not 
d ' d d 

contribute appreciably to the excitation of Np vibrations, and 00^ for Ng would 

be given by the third line in Table VI A in which the Np - Op collisions alone 

are taken into account. 

Finally, as a compromise, we have also given the results when s = 5'°l-0"9 

cm is assumed to be valid for collisions between two Ng molecules as well as be­

tween Np and Op (fourth row of Table VI A), 

The effect of water vapor on Np is also unknown, HpO is extremely ef­

fective in exciting the vibrations of Op and COp (cf. Table V) as well as of NgQ, 

CS^ and COS (Knudsen and Fricke, loc, cit,). By pure analogy we might therefore 

':5 
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conclude that it would also be effective on N2, and we have therefore included in 

Taljle IV a calculation of Z for collisions between N2 and H2O, assuming the same s 

as for collisions between O2 and H2O but taking into account the higher ẑ  of Ng. 

However, it must be remembered that Og has a chemical affinity to H2O while Ng has 

very little; therefore, collisions with water may be much less effective on Ng 

^ higher) than is indicated by the last line of Table IV. 

In Table VI A, last row, we have computedo^^^ for collisions between 

Ng and HgO, assuming 1 per cent water vapor in air of density l.l8*10"5, and 

assuming the Z as given in Table IV. Presumably, these values of6JQ are on the 

high side. Whether or not the humidity has an appreciable influence on the vibra­

tions of Ng, depends not only on the temperatiire a M on the correctness of over 

ass-omption about the interaction between Ng and HgO, but also on the assumed in­

teraction between Ng and Ng. If the latter is strong (s = 2.5*10-9), the humidity 

is rather unimportant even at low T; if it is weak (collisions with Og only), the 

humidity is the decisive factor. This again indicates the extreme Tincertainty of 

the data on the excitaticoi of the vibration of N2. 

In Table VI B, we have calculated the mean free path for vibration, X^, 

on the high pressure side of a shock wave produced in "standard air", i.e., when 

the temperature and pressure on the low presstire side are 500" and 1 atmosphere 

respectively. X^ is given in Table VI as a function of the temperature T^ which 

is obtained on the high pressure side at large distance from the front of the 

shock wave (par.5); T2 again is a known function of the velocity v̂ ^ of the shock 

wave (Ta*le VIII). Velocity and density on the h i ^ pressure side were also taken 

from Table VIII (par.5), the asymptotic values vj, pj being used. The so defined 

Xy is related to the CJQ given in Table VI A by 

>̂v = "̂3 Pi 
^ ^ (2.30) ^o P5 , ' C 
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Vibra­
tion 
of 

Table VJ. Relaxation Time and Mean Free Path of Vibration for 

Og and Ng in Air. 

8 Temperature 
Collisions Abun- (10-9cm) 500 500 700 1000 1500 2000 5000 5000 

with dance 

A. Reciprocal Relaxation Tlmeoj (in lo5 sec"^) 

02 

N2 

N2 

HgO 

°2 
N2 

N2 

H2O 

78 

1 

21 

78 

.78 

1 

3 

0.93 

3 

5 

2.5 

0.93 

0.35 2.5 7 

1.1 2.8 5 

0.006 0.07 0.26 

0.024 0.25 0.95 

0.10 0.9 3.0 

0.35 0.9 2.2 

19 

7.5 

0.9 

3.5 

9 

4 

50 

11 

5.2 

12 

30 

7 

80 

13 

7 

26 

55 

10 

l4o 260 

14 17 

16 57 

60 140 

115 240 

15 18 

B. Mean Free Path of Vibration X^ (in millimeters) 

"̂ 3*fl/*?3 (meters/sec) 550 98 7I 61 56 56 58 48 

Collisions with Vibra­
tion of 

Oo Ng only 

N2 and HpO(l^) 

10 0.4, 0.10 0,052 0.011 o;oo7 o.oo4 0.0018 

2.4 0.19 0.06 0.025 0.009 0.006 o.oo3YaoaL7 

N2 O2 only 550 

Og and Ng(8=5*10~9cm) 110 

Og and N2(8=2.5*10"9cm) 55 

Og and 1^ HgO 10 

Og, N2(8=3-10-9) and HgO 9-5 

Og, N2(s=2.5'10'9) and H2O 8 

14 2.7 0.7 0.18 0.08 0.056 0.013 

5.00.6 0.14 0.05^ 0.0170.00'^ 0,0027 

1.0 0.22 0,06 0.017 0.009 0.OO4=Q0O17 

1.0 0.20 0.12 0.055 °*°53 0.020 0»009 

0.8 0.21 0.07 0.025 0.015 0.0065 0.0025 

0.5 0.15 0.0^ 0.014 0.008 0.004 0.0016 

/7 
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The quantity '^xi^i/Ox is given in the first row of Table VI B, in meters 

per second. Then Xy is given-for various assumptions. 

The value of Xy for Og in dry air decreases from 10 millimeters at 500* 

to 1/150 millimeter at 2000° and I/50O at 5000°. If the initial pressure is low-

let us say, 1/100 atmosphere—Xy is proportionally greater (100 times) and may 

there fore easily reach considerable values. In wet air containing 1 per cent of 

water vapor by voltmie, Xy for Og is reduced to 2 mm at 300' but is almost the 

same as for dry air when T 1500° K. 

For the vibrations of nitrogen, the value of Xy is extremely uncertain. 

If the collisions with Ng are unimportant (cf. above) and if the air is dry, only 

collisions with Og need to be considered; then X^ is as large as half a meter at 

300° K. Since the vibrational energy of Ng becomes important only for T 600° 

(Table II), X^ is importsuat only at higher temperatxires; but even at T = 700° we 

obtain X^~ 3 mm if only collisions with Og are effective. On the other hand, if 

collisions with Ng are very effective (s = 2.5*10"9 cm), Xy is reduced by about a 

factor of 12 at 700', and a factor of 8 at 5000°. If collisions with HgO are as 

effective as assraned in Table IV and VI A, a water vapor content of 1 per cent 

reduces Xy by factors varying from 9 to 1.05 when only temperattires > 700' are 

considered. 

Apart from the uncertainties in the assumptions, there is also an un­

certainty in the Landau-Teller theory itself which makes the temperature depend­

ence of Xy tmcertain by a factor of about 5 even if ou^ at rocan temperature is 

accurately known. 

The unsatisfactory state of our knowledge about the mean free path for 

molecular vibrations in air could be improved by experiments on the dispersion 

and absorption of sound in mixtures of Og and Ng of varying composition and free 

from impurities. Such experiments should be done at T =« 700° K or higher in order 

to ensure sufficient excitation of the molecular vibrations of Ng. With such 

experiments available, the dependence of Xy on the temperature at higher tempertures 
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could probably be calculated from the Landau-Teller theory with fair accuracy. 

The influence of humidity should also be investigated experimentally. 

Nitrogen and oxygen are probably almost unique in their large values of 

Z, and therefore of Xy. Other molecules have much lower frequencies or much greater 

chemical activity (cf. above). Therefore for most other gases, and especially 

for complicated polyatomic ones (explosivesI), Xy will in general be too small to 

be of any practical importance. 

Dissociation. In Table VII, we give the number of molecular collisions 

Z^ required for one dissociation process, the reciprocal time of relaxation<*Jj, 

and the mean free path X^ for dissociation. These quantities were calculated from 

Eqn8.(2.28, 29 and 29a). The constants N and v were assimed as in Table VI, 

namely N = 5*lo9 sec"'̂  at 500° K. and one atmosphere, smd proportional to fHT other­

wise; V equal to the velocity v, of air on the ,high preseui-e side of a shock wave 

product in "standard air";oCwas taken from Table II, C^ was arbitrarily put eqtial 

to 1/100. Z^ is, of coui!'se, independent of the presstirejCAĴ ĵ  is calculated for a 

density* of l.l8'10"5 as in Table VI, and X^ for the actual conditions on the high 

pressure side of a shock wave. It can be seen that the mean free paths obtained 

are -very long indeed, decreasing for Og from a little under one meter at 2500° to 

a little over one millimeter at 5000°. Therefore we should expect large effects 

from lack of dissociation equilibrium in shqck waves which are sufficiently violent 

to produce dissociation. We must emphasize again the great imcertainty of the 

figures in Table VII which is caused by the lack of knowledge of Ĉ .̂ Here again 

experiments would be desirable but they seem considerably more difficult than in 

the case of vibrations. Possibly studies of the dissociation equilibrium of other 

gases (e.g.. Kg Oî.) would help. 

* This is not quite consistent since <?<, which occurs in (2.29), "was calculated 
for an 8 times larger density, but p = 1.18*10-3 was chosen for ccmpariscm with 
ths ,<A/Q in Table VI. 

4y 
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Table VII. Relaxation Time and Mean Free Path for the Dissociation of Air 

T « 2500 5000 5500 4000 4500 5000 

0. 

Kc 

:̂ o 

^d 1 °2 
(sec-l|̂ Ng 

O.OO2O5 0.0144 0.0568 0.152 0.508 0.500 

0.0005 0.0014 0.0051 0.0159 

3 23.60 19.67 16.86 14.76 13.12 11.81 

Ng 26.17 22.90 20.36 18.32 

2 7.5.10-'-° 1.85'lo9 1.27.108 i.76-lo'75.8.1o6 1.16*10^ 

^[^2 9.2.10II 4.0'ia'-0 5.5*lo9 5.1.10^ 

85 600 2400 6800 16,600 55,200 

65 520 1080 2900 

^5-ei/e3 

^d[°2 
mm.) Ng 

57 

670 

58 

98 

,57 

24 

880 

55 

8.1 

170 

52 

5.1 

48 

48 

1.4 

16 

50 
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Par. 3. Theory of Shock Waves in the Case of Variable Bpeclfie Isat. 

Botatiqp; 

Ve shall denote by letters vithoat subscripts the physical quantities 

at any point in the shock vaye, by letters vith the subscript 1 the quantities on 

the loir pressure side of the vaye, by the subscript 2 those on the h i ^ pressure 

side Imediately at the front on the trnvê  and by the subscript 3 those on the h i ^ 

pressure side at large distance t r c a the vave fronts i.e., iriiere equilibrita has 

been established for ribrations and dissociation. Ve shall also use h and 1 for 

arbitrary points on the high and lov pressure side, respeetiToly. We consider the 

one-diBensieiial case throoghout. For further notations, see the end of the intro-

duetimi. 

Fundaaental Iquations; 

1. Iquaiiion of continui^ 

f r m constant > • (3.1) 

2o Conservation of acsMntua: The gain of noawntua of the wmn a of 

gas, aSk, is equal to the deez«ase in pressure, -|p. Therefore* 

p + BT • constant • aT (3<>2) 

(definition of •) 

3° Conservation of energy 

1 ^̂  £ + i v^ + constant«i c^ (3.3) 
p 2 2 ^ ' 

VlMn the gas flovs adiabatieally into vacuua,tl/p anA therefore also I go to sero 

80 that y approaches c. Introducing(Idefined in (1.3)i (3.3) beeones 

has been extensively discussed in par«l and 2. It has been shovn in pan 2 that (9> 

depends on the existence or nen°>existenee of equilibriua between the various degrees 

* It is interesting that in our ease p •!• pv^ is constant vhile in the iacoapress-
ible fluid it is p •«• (1/2) vS. In both conservation lavs, the eleaentary lav is 
dp + pvdv * 0, but for the integration ve aost assuae p « cMistant in the in-
ccapressible fluid, pv « constant in our case., < 3 j[ 



of freedoa of the aolecules o If there is equilibriua, yB is a foneticn of the tea-

perature (or p/(>) alone; tables of/Bfor this case are given in par.l for nitrogen, 

oxygen and air (Tables II and III). Bquilibriim vill exist everyirtiere on the lov 

pressure side of the shock vave (̂  ^ f^jj and asyaptotically at large distance fron 

the vave front on the high pressure side (̂  « A . ) . The value of^ on the high pres­

sure side inmediately at the vave ffont ifL) can be calculated easily from the 

fact thait the energy content of the inert degrees of freedoa (vibration, excitation 

axid dissociation) is the sane as on the lov pressure side (ef. beginning of pflur»'i<). 

In the particular case vhen the temperature on the lov pressure side is lov enoui^ 

so that thez>e is no appireciable energy in the inert degrees of freedoa (fulfilled 

for air belov li-OO* K)» ve have sioplyjBg "jB^ ( - 7/2 for diatoaie gases). In 'Oie 

intexnediate region on the high pressure side,^aust be coasideired as varying trcm 

P to^_ in a vay idiich vill be discussed in pax^ k. For the aoaent, ve shall con­

sider^ as given and deteraine tihe other physical quantities froa it. 

The three constants a, 7, and c defined in (3.1; 2, 3) Are given by the 

pressure, density, tuod velocity of the incoaing gas on the lov pressure side: 

V - ^ + ^1 (3.W) 

Pi 1 

Pi 

It is often convenient to introduce the velocity of sound by putting 

(Valid only in the absence of dissociation) 

In aost practical applications, the tenperature on the lov pressure side is suf­

ficiently lov so that dP/dT « 0 and (cf. 1.19; 1.21) 

r-ji^ (3.6) 

^2 
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If this is true, ve nay revrite (3°'*̂ ): 

• - ̂ 1 * ^ i y - -i- (3.7») 

1̂ n 

c2 - v^S + 2(fi^ - 1) a^2 (3^^, 

Solution of Fundamental Equations; 

(3.1) and (3°2) may be used to eliminate p and p , viz. 

p » m/v (3.8a) 

p - m(V «v) (3.8b) 

£ - (V - v) V (3.9) 

These equations are Ijqportant to calculate p, p, and T once v has been deterained. 

Inserting nov (3.9) into (3.3a), ve finds 

r9(y-.)v.i^.lc2 (3.9.) 

and therefore 

(3olO) 
2 ^ - 1 

If V and c are given, there are, for any val\ie of^, tvo solutions 

for V. In general, these tvo solutions are real (for exception, cf. par. 3; 

p. 71); if real, they are both positiveo It can easily be shovn that the larger 

value of V Iplus sign in (3.10)1 in general is greater than the cozrespcoding 

velocity of sound, the smaller v smaller than the corresponding a. 

To shov this, ve calculate from (3°9) 

e ' ifr-T l ^ P - 1 ) ^ * y ^ 2 ^ - (2^- D c ^ l (3.11) 

7^3 
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vhere the upper and Immr sign correspond to the upper and lover sign in (3.10). 

lov if ve assume that p does not depend much on the teiqperature, ve may use (3»5j 

6) and have 

''• ^e'w^ f^^^P^n^?"^ a 12) 

This gives 

^ - * p r r \ i b V » (2^«.l)o2 (3.3^) 

i.e. v > a for the tQper, v^ta for the lover, si^. 

In reality, fi does depend oa T and therefore (3.6) is not CMT9et'but 

should be replaced by (ef° 1°19) 

y • B * SM/d log T 
(3.13) 

/B » 1 4- d^/d log T 

(assuming no dissociation). 

Da all practical cases fi inczvases vith teaperature so that j ^ (ahd therefore a ) 

is slightly less than it vould be if (3°6) vere valid. TfaftreJM^ it rttaains tirae 

that for the upper sign in (3°10 ° 12) v is greater than a, but Ipr the lover s|ga 

V is not necessarily less than a. lovever, the difference betveeik (3.6) .̂ iad (3.13) 

is only very slight; therefore the exceptional ease that the saaUior • is greittM' 

than the corresponding a vill be of ainor iaportanee. A aore detailed diaeussion 

vill be given in par. % p. 8o, 8l. 

Oiscussions 

On the lov pressure side of the shock vave, the velocity vill Vi given 

by (3.10) vith the plus sign (in the foUoving denoted by the subscriptlA, for 

lov), on the high ̂ essure side by the soluti<« vith the ainus sign (subseiript h 

for high). We have pointed out above thatp vill have the equilibriua values. 
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^.axi^B-x, hoth on the lov pressure side and on the high, presstire side at large 

distance from the vave front. The equilibrium value of /S is a unique function of 

the temperature so t h a t ^ a n d ^ ^ are completely determined by T j and T,. Let 

us denote by Tg {^) the temperature which belongs to a given /& in thermal equi­

librium; it is the fimction tabulated in Tables II and III and it increases mono-

tonically vith/3. On the other hand, the theory of shock vaves (Eq.3.10) gives 

vj imiquely in terms o f ^ , since V and c are given by the initial conditions 

(cf. "^.ha-f b) and the sign of the square root is also determined (negative). 

From V, in turn T is determined through (3.9)* so that T is, by the shock wave 

theory, a given function of yC3 vhich ve shall denote by Tg US). The temperature T,, 

and the energy content/6 5, are determined by solving the equation 

Tg {f>) = T^ (̂ ) (5.11^) 

I t can eas i ly be shovn tha t t h i s equation has only one solut ion for which the 

veloci ty V i s smaller than the corresponding veloci ty of sound, i . e . , only one 

"high presstire" so lu t ion . In most cases , t h i s follows from the fact t ha t Tg {&) 

decreases with increasingyfi over almost the whole range of^ (cf. 3.l6c and 

especia l ly par .6) whereas Tg {&) increases monotonically. In the small range of 

^ in which Tg(|2>) increases (cf. pa r . 6 ) , t h i s increase is slower than tha t of T^; 

in f ac t , the condition vC a is equivalent with dTg ^Q* 

If Ij& 

We may conclude, then, t h a t ^ z , 1-z and of course also the other physical 

quantities (p,, ̂ 5 , v^) are uniquely determined by the initial conditions Vif^x 

vjL- In other words, all the physical quantities (v, p, ̂  , T, etc.) on the high 

pressure side at sufficient distance from the shock wave are independent of all 

intervening processes connected with the establishment of equilibrium between 

*If there is dissociation, (1.2) must be used together with (5.9) • -.n, 
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"inert" and "active" degrees of freedomo Therefore, if the dimensions of the ob­

stacle causing the shock vave are large compared.vith the mean free path for vi-

bration^ etc- (par.2)i, the pressurej, resistancea etc. vill be the same as if all 

degrees of freedom vere in equilibrium all the tlae. 

We couid revrite Sq.<3olO) Inserting the values (3°'^^ b) or (3°7a; 1>) 

for V and c. This vould in general lead to complicated expressions if p ^ fi^o 

Eovever, siarple results are obtained in the tvo cases (a) B'B-, ^nd (b) V2^» â .̂ 

a) For fi "Bx ^ ^ (̂ /d log T)^^ « 0 our theory reduces to the usual theory 

of shock vaves, emd (3°10) bec<mies (\ise 3<>7ai ̂ ') 

vhich gives 

a, 2 
^ V, . (P " 1) 4 I t 0 1) (v , - ! i ! ) 

2p» 1 

V » V 
je 1 

h 2p-= 1 
v^ + 2(p - 1) ]̂ (3ol5) 

(3.15) is the fundamental equation of the usual theory in an especially convenient 

foxm. 

b) Slnqple expressions can also be obtained if v ^ » a-ĵ  no matter vhether 

fi »fi, or not. In this case (cf. 3o^aj b) ve have Va: tsxY-^ and (3<.10) gives 

.̂ h sp- 1 (5.16) 

Prom (308, 9) we find then 

(3.16a) 

(3.16b) 

30 



53 

(BTh=) ^ » v 2 m ^ . , 2 (3.l6e)» 

The relative error of these formulae is about 2(5,â ^ /v^ (for p. only a.^/v-^). 

In the approximation used here, the quantities on the high pressure side are in­

dependent of^ I, and depend only on the local value ofp on the high pressure side. 

It is seen that the value of p^^ increaseis linearly vlth^; in the special case 

P s 7/2 (diatomic gases vith translation and rotation only), (3.l6a) gives the , 

vell°knovn restilt that the density in a shock vave can only increase six-fold. 

Since^ increases considerably at high teiiQieratures, the actual increase ofp can 

be much greater than six-fold, p̂ ^ depends only slightly onP (for large^) be-

eause, in our limit v . » a., ve have v « V and therefore pĵ  is approximately 

mV (cf. 3°8b) vhich is a constant. 

Finally, T. decreases** strongly vith increasing p because the total 

energy E + £ = RT is almost independent qffi when Vj^« c. (cf, 3.3) (Only a very 

small amoiint of kinetic energy is lefts). As an example, ve compare the asymp­

totic values of the pliys^^^l-^lucmtities for air at ordinary temperatures (B " 7/2) 
•••'•»,•.••' 

and for hot air vith the vibrations fully excited but no dissociation (p « 9/2). 

, ̂  - 7/2 fi' 9/2 

* In case of dissociation, (3.l6c) holds for BTj^ (l ^OCvJ rather than for BTj^. 

** This statement holds also in case of dissociation because T is a monotonic 
function of p/p. 
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Table; 

Table VIII giv6s the physical characteristics on the high pressure side 

of a shock wave produced in air of 300' Kelvin (27* Centigrade) by incident streaas 

of various velocities. For the construction of such a table, it is convenient to 

consider the tes««ratures T^ and T^ as given and to calculate v^ and v,, rather 

than to start froa T^ and v^ and ealoulaf Tj, v^ t r m them, fi^ is a tabulated 

function of T, (ef. T&ble III). Sqs (3.3) and (3.9) n>a>y be revritten 

|2,-l4T, • £k.Js4v, (3.17a) 
P3 ^̂3 ^ Pi ""l ^ 

2^, f2 + V 2 . sp, ̂  • V 2 (3,17b) 

Solving for v., v_ ve obtain 
•*• 3 

i . b * - . U * ' . ^ 
3̂ I s ^ 

(3.18) 

» m 

and 
v 2 2b + l - V p / p p 

^ - , .^;g y^ (3.18a) 

vhere 
b • p . • ^ <° < 
""^J'l'^^F" ^^'^^ "•^' 

These formulae are suitable .for conpution. 

Table VIII gives the important x>hysical quantities as functions of ^./a^ 

the ratio of the velocity of the incoaing stream to the corresponding velocity of 

sound, for values of Vĵ /a, ffom 1,5 to II060 Velocity, density, temperature and 

pressure on the high pressure side are given both at large distance from the vave 

front (subscript 3) wal Immediately at the vave front (subscript 2). The latter 

"S 



Table VIII. Characteristics of Shock Waves in Air 

vi/a-L v j / a i vg/a^ 

1.525 

1.981+ 

2.577 

2.725 

5.01+1 

5.551 

5.611 

1+.255 

1+.797 

5.507 

5.778 

6.61+5 

1^3 

8.515 

9.297 

10.1+10 

11.595 

0.798 

O.7I+6 

0.737 

0.7I+I+ 

0.7575 

0.77^5 

0.7955 

0.8555 

0.880 

0.9255 

0.9665 

I.0I+5 

1.115 

1.1675 

1.208 

I.2I+I5 

1.269 

0.800 

0.71^95 

0.1+7 

0.759 

0.779 

0.8055 

0.851 

0.900 

0.970 

l.Ol+l 

1.1035 

1.2285 

1.350 

1.1+81 

1.6555 

1.809 

1.997 

e5/pi P2/ei ^3 

1.907 

2.659 

3.225 

5.665 

1+.015 

1+.511+ 

1+.51+0 

5.069 

5.1+51+ 

5.7i^6 

5.978 

6.559 

6.685 

7.122 

7.697 

8.585 

9.136 

I.90I+ 

2.61+7 

3.189 

5.591 

5.901+ 

I+.1I+6 

I+.5I+6 

I+.706 

I+.9I+5 

5.098 

5.256 

5.1+09 

5.521 

5.615 

5.691 

5.751+ 

5.801+ 

1+00 

500 

600 

700 

800 

900 

1000 

1250 

1500 

175c 

2000 

2500 

5000 

5500 

1+000 

1+500 

5000 

Tg P5/P1 P2/P1 

1+00 

501 

6oi+ 

709 

816 

9 ^ 

1056 

1520 

1616 

1925 

2222 

281+^ 

3510 

1+500 

5500 

6570 

8050 

2.5I+5 

I+.I+52 

6.1+50 

8.51+7 

10.707 

12.91+ 

15.25 

21.12 

27.27 

55.52 

59.85 

5 .01 

67.05 

81+.09 

106.02 

15l+;l+0 

168.58 

2.558 

I+.I+25 

6.I+I5 

8.1+9 

10.62 

12.77 

15 .01 

20.72 

26.66 

52 .7 

58.75 

51.1+ 

61+.6 

80 .5 

100.6 

126.2 

155.6 
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quantities vere calculated assuming that the inert degrees of freedom retain the 

same energy as on the lov presstire side. Since this energy is practically zero^ 

ve can putPp " fii ^ 3.^83 (cf. Table III), and can therefore calculate v from 

(3.15) (and the remaining quantities from (5.8, 9) ) • 

Comparing the quantities vith subscripts 2 and 3f ve find approximate 

agreement up to about v /a • 3 . At higher •,/a 1 ve find thatp is considerably 

greater than p^ (cf. 3.l6a) and, correspondingly (because of the continuity equation) 

VT < Vp. Thus the shock vave consists of a discontinuous compression folloved by 

a gradual fvarther compression vhich extends over a distance determined by the con­

siderations of par. 2 and.l+. .-Along ̂ th>the strong increase of the density there 

is a small increase of the pressure from p to p (last tvo columns, cf. also 
2 5 

3.16b), but even if the discontinuous change of the pressiire is by as much as a 

factor of 100, the folloving continuous one is only 5 ^ P̂ z* cent. Therefore, as 

far 818 the presstire is concerned, the change of ̂  vith temperature is rather un-

ImpcMTtant. The temperatxire increases dlscontinuously at the vave front from 

T. « 300* to T- and then decreases* gradually to T-, due to a transfer of energy 

from the "active" degrees of freedpa by viioae excitation the temperature is de~' 

tiredf to the "inert" degrees. The temperature decrease is greatest for the \ 

highest v-i/a ^eire it is from over 8OOO to 5000 degrees. 

Of some Interest are perhaps the columns v /a, and v_/a . It is seen 
C JL. 3 ^ 

that for relatively small v , the velocities v_ and v_ are smaller than the veloc.» 
1 25 

. Ity of sound on the lov pressure side, a , and that they decrease with increasing 

v̂ .̂ Then a minimum is reached and at still larger values of v., the high pressure 

velocities v^ and v, become greater than a^. For v^i the existence of a minimum 

can be seen directly from (•3.15); the minimum is obtained for 

* For very "soft" shock vaves (v. only slightly greater than a ) there can be a 
slight increase from T. to T-, cf. par.6. 

',>0 



p : = ^ 2 0 ^ - 1) = 2.23 (for p = 3.^85) 
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(5.19) 

and has the value 

""2 mln ^ 2 V2O1 - 1) ^ 0.71+7 (for p = 3.1^83) (3.19a) 
a i 2P-, - 1 

For very high v, we obtain 

'2 

^^ 

3 

= 

2 P i -

^1 
2 P 5 -

1 

1 

H—- (3.19b) 

(5.19c) 

Par, 1+. The Approach of Equilibrium. 

We may assTsne that the energy of the inert degrees of freedom (vibration, 

etc.) does not change discontinuoTisly at the front of the shock wave while that 

of the active degrees of freedom does. It will therefore be convenient to split 

the total energy E into the part due to translation and rotation, Ê ^ (a= active) 

and the part due to vibrations, electronic excitation and dissociation, E^ 

(i = inert). We put 

E + £ « p £ (l+.l) 

a p a p 

where ^^ is pareictically constant and equal to 7/2 for diatomic gases (5/2 for 

monatomic ones). Further, we must have 

Eii = Ei2 (̂ .2) 

i.e., the energy of the Inert degrees of freedom is the same on both sides of the 

Shockwave front. Then (3.5a) becomes: 

P^E + Ei + I v2 « lc2 (4.5) 
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Instead of (5.9a) ve have 

0 (V - v>v + i v2 - 1 c2 - F {k,k) 
a 2 2 * 

and instead of (5.10): 

V - M l Vfti^-(2pa-l) (cg-2Bj ^̂  ̂j 
2<»a-l 

liquation (5.'̂ a) is unchanged; 

V - ^ + v^ (l*.6a) 
f̂ l 1 

vhile (5.6b) is replaced by 

,2 _ . 2 c*̂  - v^^ + 2fi^^ + 2E^^ (1^.6b) 

It can be seen easily that the x^byslcal quantities Po^ p^t v., T on 

the high pressure side imaediateiy at the fr6nt of the shock wave are exactly as 

if the molecular vibration vere absent entirely. We may use Sq. (5.15) vith/S 

instead of ̂  to calctilate y , and then obtalk the other quantities from (5.8, 9). 

This has actually been done in Table VIII. 

Farther in the high pressure region, the inert degrees of freedom vill 

gradually ccme into equlli'^rium. ^f ve likve only one such degree, e.g., the 

vibration (subscript v), ve may vrite (par. 2) 

as B '(T) - « 
. ^ « ^ 1^ (̂ .̂7) 
dx ^v(T,p) 

vhere T is the local temperature (defined ^s p/j»B), B-'(T) >^ (T)p^ the equi­

librium value of the vibrai^onal energy edrresponding to T, X the actual local 

vcdue of the vibrational energy, x the coordinate perpendicular to the vave front 

counted from Uie lov pressure to the high pressure side, and K^ the aean free 
a'? 



path for vibrations (par. 2) vhich vill depend on the local density and teoperature. 

Siailar equations, but vith a different X, vill hold for dissociation and exeita* 

tien. 

To integrate ('̂ .7); It is more convenient to calculate x as a funetion 

of the physical variables than to do the reverse. The integration aust is In 

general be done nuserically because X and X ° are given only by nuaerieal tables 

(Tables n to VII) and depend in a complicated vay on the variable T. A depend­

ence of B^' andX^ on the density does not present any additional difficulty be­

cause p is, by (3o8a) and (3.9)i a uniqxie function of p/p « BT. Assui&ing again 

that vibration is the only inert degree of freedoa* (true for air belov 2500* K), 

X^ can be calculated in terms of T from (^.3); eliminating v by use of (3.8b): 

E^ - I c^ » J V2 - (̂^ - |)Bt + ̂  yv2 - 1»BT (1».8) 

This is a fairly complicated dependence. It seems hardly vorth vhile to carry out 

numerical integrations of(l»^.7); (̂ .8) for special cases. 

* Eovever, it is easy to estimate the distance required to establish 

equilibrium. It must be of the order of X^^ more precisely of the largest value 

ofXy occurring, ioe., the one corresponding to the lovest teoperature (petr. 2) 

existing on the high pressure side of the shock vavso Ordinarily (i.e., vith 

the exception of the case discussed in par. 6), this lovest temperature is reached 

* If there are seyeral inert degrees of freedom (vibration, excitation, dissoci­
ation, possibly of several gases), there is one equation of the typ* (̂ .7) for 
each of them. The unknowns are the energies E^(^), E (2), etc., in the various 
iziert degrees of freedoa, and T, the teaperature as defined by the energy in the 
active degrees of freedom. From the temperature, v,p and p ean be determined, 
and also the equilibrium values of the B.'s, viz. Xj^(^)', HA )^» ote., and|w(^), 
X(^)j etc. The number of differential equations' C^.f) 1* obviously one less than 
the number of \uiknovns. The system is cooipleted by Eq (U.8), vith By. replaced by 
Ej " Ei(^) + Ei(2) + „„„„ 

•63 
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in the equilibrium state (highest^, cf. 5.l6c). Therefore it is only necessary 

to .read from Tables VI, YIII the \ for the temperature T^ and pressure p... 

The integration is simple if Tg, pg ^^® sufficiently close to the values 

T5, Oa. Then we may consider \ as constant and T laccording to (1̂ .3)J smd there­

fore E^' (according to par.l) as depending linearly on E^, viz. 

dE 
V 

=-yU = constant (̂ .9) 

^ is positive because T, and therefore E^', deci^ases with increasing E^ (cf. 1+.8). 

Using (I+.9), (k J) integrates immediately to 

Iremembering (l+.2)lj . Thus the deviation from equilibrium decreases exponen­

tially as we go away from the wave front. Since all physical quantities are ex­

pected to change very little (T2'='T5, etc.), T, p , p, v, etc. are sufficiently 

nearly linear functicms of E^' -E^, so that 

T(X) - T3 = (T2 - T5) e-^(l +A) /^ (̂ -11) 

and similarly for the remaining quantities. 

It need hardly be pointed out that the gradual change of the physical 

quantities occxirs only on the high pressure side because the gas streams from the 

low pressure to the high pressure side if we consider the wave front as fixed. 

Increasing x means therefore a later time. On the low pressure side, the wave 

front is sharp (except in the case of par.5) because any molectiles which may 

cross the wave front against the stream, i.e., from high pressure to low pres­

sure side, will soon revert to the high pressure side because of collisions. 

There will therefore be no perturbation of the state on the low pressure side 

outside of a distance of a few times the ordinary mean free path from the wave front, 
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The stability of the shock wave against diffusion is insvured by the 

fact that the gas velocity relative to the shock wave is greater than the velocity 

of sound on the low pressure side, less on the high pressure side. If there 

should at any time be a splitting of the shock wave into two parts (due to a 

small obstacle or so), these two parts will soon reimite: suppose a small dis­

turbance runs before the main shock wave; then its velocity will be the velocity 

of sound, a,, and it will be overtaken by the shock wave of velocity v.. If the 

small disturbance runs behind, its velocity (relative to the gas) will be a, and 

it will therefore catch up with the main shbck wave which moves only vith the 

velocity v^ relative to the high pressure gas-

Par. 5. Diffuse Shock Waves. 

In this and the following section, we shall discuss some peculiar 

phenomena which occur only for very "soft" shock waves, i.eo, when the velocity 

V]̂  of the shock wave is only slightly greater than the velocity of sound, a,o 

These two sections are in no way important for the general problem of shock waves 

in a medium of variable specific heat which has been solved in par,3 and ko 

Especially for a substance like air, whose inert degrees of freedom are very 

little excited at room temperature, the effects discussed in par. 5 and 6 have 

no practical significance but only academic interesto In the two sections, we 

solve same mathematical difficulties which might occur If the formulae of par# 5 

and k were applied indiscriminately, and complete some proofs which vere left 

Incomplete in par. 3 and k. The most important of these is the proof (end of 

par,5) that for any initial conditions p, Pi^T,, v^ there is always exactly one 

solution of the shock wave equations in thermal equilibrium for which v is less 

than the velocity of sound a (high pressure solution) and one for which v > a, 

the latter being identical with the initial conditions» 

• \ j 
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In particular, in par. 5 we shall discuss the case when the velocity 

v, of the shock wave is less than that velocity of sound, a ,, which is obtained 

when only the specific heat of the active degrees of freedom is considered. Such 

shock waves are possible because the "active velocity of soimd", a •,, is greater 

than the ordinary velocity of soundj we have 

2 ^ 1 c 1 4. ^ X 

a 2 = Pi (1 +_E_ ) (5.1a) 

where Cy]̂  i s the t o t a l specif ic heat a t constant volume on the low pressure 

side of the shock wave while Cya,i is the specif ic heat of the act ive degrees of 

freedom alone. Since Cy> c ĝ , we have aĝ 2̂ > a- ,̂ ajid therefore there are 

values of V'j_ such tha t 

\<\< \l (5.2) . 

These values of v, shall be the subject of the investigations of this section. 

The difficulty is the following: according to the general theory, a 

shock wave must exist if v, > a,. On the other hand, the front of the shock 

wave behaves as if only the active degrees of freedom existed (par.l+), there­

fore the wave front cannot exist if v-i < ^Q,±' Mathematically, this difficulty 

appears in the form that the square root in (1+.5) becomes imaginary if the con­

stants c, V and E., are inserted which correspond to the initial conditions. 

Practically, the region determined by (5.2) is very narrow. If ĉ .̂  

and Cyĝ ]̂  are not too different, we have 

a«i , ^ ^°vl - °val) 
-Si = 1 + 

\ 2cyal (cyi + E) (5.5) 
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Taking c.̂ ,̂  » ̂  B (diatomic molecule) and even assuming ĉ ^̂  to be as large as 

5B^ this gives only 1.025. For air at 500*K, c , - c.^, i.e., the specific 

heat of the vibration, is about O.OOTB; then ajĵ /â ^ = 1.0001+ so that the in­

terval (5.2)" is exceedingly narrowo 

The solution of the difficulty which we found above for the velocity 

interval (5.2) is as follows: there exists a shock wave which is propagated 

without change of shape, but in which the velocity goes continuously through the 

velocity of sound. The extension of this shock wave in space is again of the 

order of the mean free path for vibration,X ^ (cf, par. h); euad the variation of 

the physical quantities with x is again determined by (U.7) in conjtinctlon with 

(^.5), (5.8), (5.9). However, instead of having a continuous variation only on 

the high pressure side (lower sign in (1+.5)), ve now have it also on the low pres­

sure side. Ccxning from the latter, we have a gradual increase of temperature, 

density and pressure together with a gradual increase of the vibrational energy 

E^. The connection between v and 1^ is given by the positive sign in (1+.5). The 

change of the temperature is such that the vibrational energy falls more and more 

short of its equilibrium value, or mathematically, the difference E'(T) - E 

(orp' -p) increases (cf. 5.21). Thereby the square root in (4,5) is reduced 

Tintil it vanishes. From then on, the negative sign must be taken with the 

square root; there is a further gradual increase of T,p emd p but now the 

vibrational energy "catches up" again vith its equilibrium value E '(T) vhich 

it reaches at large distance from the shock wave. 

For the quantitative treatment, ve introduce that value ^̂  of ^ at 

vhich the square root in (5.10) vanishes vhen V and c are kept constant. jf3 is 

thus a function of the initial conditions of the shock vave. The tesiperature, 

pressTure, etc., vhich are obtained by setting Q *^ in (5.10), vill be denoted 

by To, PQ, etc. 

Obviously, ̂ o is defined by 

(3 . V - (2?^ - 1) c2 (%k) 
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vhich has the solution* 

^ ^ . ^ ( c . ^TT^) (5.»Mi) 

/9 is thus uniquely determined by the initial conditions v., p., p. and fi . 

(cf, 3.*»a, b). 

The square root in (3.10), divided by V, may nov be vritten 

Heglectlng all higher terms tnfi -0 , this gives 

(5.5a) 

Inserting this into (5.10) and neglecting again all higher povers of 

than the square root (for more accurate foxmula, see (6.9a)) , ve get 

Denoting the velocity for fi 'B by v , this gives 

(5.6) 

^o y^o ̂ o I ' 
(5.6a) 

Similarly, ve get froa (5.11) for the teiq>erature (assuming no dissociation): 

(5.7) T 
i.r£^ 

18.V0 - s) t̂ o - 1) 

* The negative sign before ^ ^ - v^ vould lead to a valuO otfi saaller than 
unity irtiieh caxmot be attained by the physical quantity^(A> 5/2, cf. par.l) . 

flS 
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where TQ is the temperature corresponding to/S , which is given by (cf. 5.9, 5.6) 

?o - ̂  T„ ̂  (5.7a) 
'^^- P. 

Introducing the abbreviation 

y = _I . 1 (5.7b) 
-̂ o 

we have from (5-7) 

/3 -^^ =^ J p , - \) (̂ o - 1) ̂  (5.8) 

and from (5.6a) 

^ _ 1 = - (̂ o - 1) y (5.8a) 
V 

o 
We consider three velocities of sound, viz. 

(1) the veloci ty of so\md with the act ive degrees of freedom alone 

(2) the true velocity of sound 

-^-f^-{jiz;, (5.5, 

a = / ^ (5.9a) 

where (cf. 1.19) 

- r - ^ + d/S/d log T ,,- , „^ 
^ = ^ - 1 V ^ / d logT (5-^°) 

If>Q changes not too rapidly with T, t h i s may be wr i t t en : 

O /3 - 1 i/S - 1)^ (5.10a) 

-1^ 
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(3) the expression 

a' = W r T T B T (5,11) 

which would result if d̂ /d log T were neglected in (5,10a). Ordinarl%, theo 

three velocities of sound are quite close to each other so that we may write, 

neglecting higher powers of d̂ /d log T and of 6 -fi % 

a § ~Pa. 
a = 1 + (5ol2a) 
^' 23(^-1) 

From,(5.7a) and (5.11) we see that 

(5.15) 

Since a' varies as ^T", we have therefore from (5o8a) 

1 = - (|3 - I y) (5.ll») rr - - - - ̂ fo 2 

Therefore the value of y at which v is equal to the actual velocity of sound, 

is (cf. 5.12b) 

dft/d lofi T , 3 (5,5, 

The value of y at which v is equal to a„, is (cf, 5,12a) 

B ^6 
y , „ ^° ^^ ! -A (5.16) 'a 1 

^Po^^o - |) (̂ . " 1) o ro 2' ̂''̂o 

70 
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For ŷ  < y„, there will be an ordinary shock wave with wave front. Only for 
' X a 

^a < ^1"^ ̂ m *^®^® will be a diffuse shock wave (y = initial value of y on 

low pressure side). From (5,ll+) and (5.15), we have * 

f - 1 = Oo - i^ (B - y) (5.l6a) 

It is convenient to introduce the abbreviation 

(5.17) 

Diffuse shock waves will be obtained for z between 0 and 1, 

Since the local value of^ is given by (5,8) for all y, we may write 

^ " P i = ^J^^o" \) (Po - 1 ) (y^ - yi^) (5»i8) 

On the other hand, the equilibrium value of ̂  which we denote by/5 •', as in (1+.7), 

may be regarded as a linear function of y in the small temperattire interval 

considered,and since^.' =/^i, we have: 

0' -yfil = djfl/d log T»(y - y^) (5.19) 

Asjrmptotically on the high pressxire side we must have equilibrî um again so that 

^3' =^5, Comparing (5.18) and (5,19), we find 

/So^^o " \) ifio - 1) (y3^ - y/) = (̂ /<i 1°S T) (yj - yi) (5.19a) 

Therefore (cf, 5,15) 

y^ = 2B - ŷ^ (5.20) 

* Eq»(5,16a) contains the solution of the problem discussed after Eq (5.15), The 

vanishing of the square root (8 ̂  T , v ) actvially does not represent the point 
f o o o 

where v = a, but this point lies at slightly higher temperature and lower velo­
city (i.e. in the region described by the lower sign of the square root in (3.10)) 

I 1 . 
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This means that the temperature at which v is equal to the velocity of soTind 

(cf, 5.15) is the average of the initial and final temperature. For the final 

temperature, we have always v < a as we might expect. 

We can now discuss the actual eqiiation (l+,7) describing the change of 

the physical quantities in the shock wave , ' Eq 01+,7) .may be re-written 

d_ 
dx [T(^"/Sa)] = i (|5' -fi)1! (5.21) 

Using (5.8), (5,18), (5.19) and neglecting higher powers ot fi -^ , this gives 

With (5.15, 16, 20) this becomes 

(y - yi) (75 " y) 

6x 
2A 

(5.22) 

Elementary integration gives 

A + y, A + y, 
log (y - y,) " •> log (y - y) = * 

yj " ŷ  -̂  y3 = y i 5 

Using again (5.20) and (5.17), this may be written 

(1 - z) log (y = y-̂ ) - (1 + z) log (y^ - y) = ~ 

27\ (5.22a) 

(5.25) 

The temperature approaches T asymptotically for large negative x, Ti 

for large positive x. The approach in each case is exponential, viz. 

T - T-L exp, 
V ( 1 = ^)) for x.> - 00 

(5.2l+a) 

T3 = T exp (- /^% )) for X * +00 ,. i%M 
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Thus, for z ji 0, the approach of the asymptotic value is more rapid on the lov 

temperature side (T^) than on the high temperature one (T,). In the limit z-^ 1, 

i.e. when v approaches the "active" velocity of soimd, a , the diffuse shock 

vave automatically goes over into a vave with a discontinuous front as ve mi^t 

expect. 

In the other limiting case z> 0, i.e., ''''-i "^ a , the shock vave becomes 

symmetrical and more extended; (5.25) Is then equivalent to 

T.|(T, + T3)*|(T3-Ti)£!|«l 
(5.25) 

i.e., the extension of the shock wave is of the order 7(/z. 

The fozmulae of this section can also be applied to the approach of irota* 

tional equilibrium If v, is smaller than the velocity of sotind, a.^, idiich vould be 

obtained if the translation alone is considered in the si)eclflc heat. In this case, 

(5.25) gives the distribution of temperature (defined by the translational energy) > 

vhere ̂  is the mean free path for rotation ̂ Ich, of course, is very small (pazw 2A). 

Aside from giving the solution for shock vave velocities betveen a , and 

^al' ^^° section completes tvo proofs \dilch vere left Incomplete in par. 5: 

1. On the high pressure side of a shock vave, the wis velocity v» is al' 

vays smaller than the velocity of sound a». To shov this, ve calculate, instead of 

(5.12), the value of a2/v vith the correct value (5.15) of y. If ve use (5.10a) 

(in vhich higher povers of d^/d log T have been neglected), ve obtain for the lov­

er sign 

£ « - ^ r ^ v - dp/dlofiT,Y ŷL^ ^^V- i2/9-l)c2l (5.26) 

Subtracting this from (5.10) (again vith the lower sign), ve find 

a 2 . V 
V 0 

_ ^mj^. ^̂ -̂(.̂ -x) f \ i,.m 
73 
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In order that this be negative (i.e. v, < a_), ve must have (cf, 5.5a, 5.'*) 

B 'B^ > (d^/d log T)g (5^28) 

^̂ o(/»o - I) (̂ o - 1) 

The value of ̂  - ̂  ^ on the right hand side Is sufficiently small so that (5.6a), 

(5.7) and all subsequent formulae are valid (cf, 6.18). If ̂  '^o ^^ aqual to the 

right hatd side of (5.28), it follovs from (5.7), (5,15) that y is Jiist equal to B. 

This result coincides vith (5.15) vhere ve have shovn that v is Just equal 

to the velocity of sound a for F » B. Thus, as ve have already pointed out, there 

is a certain Interval, viz. 0 < y < B, in vhich the lover sign in (3.10), etc., 

corresponds to V9» a. In this Interval, the lover sign solution corresponds to 

the lov pressure side rather than the high pressure side of the shock vave, the 

velocity V, being betveen a-ĵ  and a,' (cf, 5-11 )« For any v,, y, in this 

Interval, the high pressure solution v,, y, can be found Immediately from (5.20), 

and for this high pressure solution we have (cf, 5°20, y'i<B!) y_> B and therefore 
•̂  5 

v-< a_. This proves the Tonderscored statement above, 

2, In par, 5 ve have shovn that there is, for any initial conditions, 

one and only one solution of the shock vave equations (3.10), (5.11) provided 

dT^ dT 

on the high pressure side. Here T is the temperature vhich belongs to a certain B 

according to the shock vave theory, T^ that vhich corresponds to the same 0 in 

thermal equilibrium. In the notation of the present section, (5.29) Is equivalent 

to ' 

M.' < d# (5.30) 
dT ^ dT * 
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Comparing (5*18) vith (5.19)^ It can easily be seen that (5.50) Is fulfilled vhen 

y > B, i.e. always on the high pressure side of a shock vave, q.e.d. 

Pan6. The Temperature on the High Pressure Side. 

In par, 5 ve have found that the temperature increases continuously trom 

the lov pressure to the high pressure side if v is only slightly gz>eater than a., 

and this iremains true if v, becomes eqtial to a . so that sharp shock vave front is 

formed. In the case v^ * â ^̂ , ve have T^ " T., and a gradual increase from T^ to 

T on the high pressure side of the vave front. On the other hand, for violent shock 
5 

vaves (v2^>>a|j^), ve have proved in (5.l6c) that the tenqperattare decreases from 

the vave front into the high pressure region as the inert degrees of freedom be­

come excited. In this section ve vant to investigate vhez« the limit betveen these 

tvo types of behavior is to be expected. 

For this purpose ve have to examine the dependence of T on ̂  on the high 

pressure side. We knov that 0 incz>eases from the vave front into the high pressure 

region; therefore dT/d/8 vill be the quantity determining vhether T increases or 

decreases. This derivative must, of course, be taken vith the initial conditions 

(i.e. V and c) kept fixed. The value of fi at ̂ ich XC/dfi is to be C6J.eulated, 

must be chosen in the z'ange of values occurring on the high pressure side. The lov­

est value of /B in that region, ̂ -, can be calculated from ('t̂.2) and is given by 

''2-<»a-|(Cl-^.' (6.1) 

The highest value, £_, is in sufficient approximation 

B ,B +T-T^ %-^ <^-2) 

r 3 "l d log T Tĵ  

(6.2) is Justified because, in the vhole region in vhich dT/d^> 0, the teaperature 

change T. - T.| is small coapeured vith T. itself , (cf. 6.11a, b). Therefore ve ean 
5 J- 1 

also revrite (6.1): ^^\ 
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^ 2 - ^ - (/̂l -".) ^ - ^ (6.1.) 

Both (6.2) and (6.1a) are rather close to^^ becaxise ̂ . -^ and d^/d log T are 

small in practical cases; therefore it vill be sufficient to calculate dT/d^ fori 

^ «5i on the hi£^ pressure side. 

More convenient that the explicit calculation of the derivative cEC/d̂  

vill be an investigation of the behavior of T itself as a function of for given 

initial conditions V, c. It vill turn out that for given V and e^ the temperature 

Tĵ  Increases vith ^ for 'valuê v ̂ u i ^ close to ̂  as defined In {^M)) reaches a 

Buuclnum torP^ »fi + L/A -S ̂ ^— (cf. 6,8) and then decreases for lArBPr fi . If, 

"° 2 
then,/8 2, l̂ B̂ betveen^ and B > the temperatuire vill increase from T to T.;' if 

P is greater than ̂  , the temperature vill decrease on the hig^ pressxire sl-de. 

A is uniquely determined by 7 and ĉ, therefore the condition ̂ 2. <$ ^^ equivalent 

to a condition for Vj./*! '^^^'^^ Mrlll be given in (6.ll|-c). 

For the calculation, ve insert v from (3.10) into (5°11) and obtain 

^ ^ 2 ^ [72^= l)c2.|$|2+T^^V -(2^»l)c2j (6,5) 

Here ve express c in terms of ̂  by (^.^), and introduce instead of ̂  and jfi 

2 o •^o 2 

Then ve obtain 

^•h 1^0*1^ % « 4 ^f" - "o) (* - 1 ^ ) ^ (6.5) 

As iisual, the lover sign is for the high pressTire side of the shock vave. Putting 

P)|B - "BIS, and neglecting all povers of b - b^ higher than the square root, ve obtain 

(5oT). 
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For our present purpose, ve ̂ tdiall carry povers of b = b^up to the ^/2Va.f but ve 

shall simplify the calculation by neglecting lAb^ compared vith b . Since the 

interesting values of b are at least 3, we have 1Ab^ ̂  l/36. 

Then (6.^) simplifies for the high pressure side to 

kv .\F^c 
,3/2 

{6,6) 

(high pressure side). The maximum of the right hand side is obtaî ied for 

F^r'^ 
3(b^=j^ ^ 

b b 
(6.6a) 

In sufficient approximation, this equation is solved by 

b = b 

l|-b + 5_ 
o b^ 

I 

(6.6b) 

If the small terms of order l/b^ in (6.5) are taken into account, (6.6b) is re= 

placed by 

^ 
b •= b o 2 

l̂ b̂  = J. il^oOo - 1) 
° ^o 

(6.7) 

For b- = 5- this gives b •= b * ̂  -
° o 35 

at a value of i3 vhich is only slightly greater than $ « lot larger^, the factor 

l/b in (6.^) has a stronger influence than the increase of the square root, so tlmt 

the temperature (6.^) decreases again. 

Thus ve find that the temperature can increase on the high pressure side 

only if 

fi.<P ^P 
'̂ l rm r'o 

(6.8) 
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Since ̂  is determined by V and c (cf, 5«*«-), (6.8) is equived.ent to a condition 

for Vi/a,. To derive this condition, we determine the dependence of v on ̂  for 

fixed V and c. We have (cf, 3«10) 

7 2 ̂  [ 7 . ^ _ 2 G '̂-̂  
Introducing b, this gives 

r=^^fe*^ ^ p ^ ^ " ( ^ (6,9a) 

For the negative sign (high pressure side), (6,9a) gives a monotonlc decrease of v 

with increasing b. Inserting in (6.9a) the valiiejS (cf. 6.8) for ^= b + ̂ , ve 

find on the high pressure side 

^mh = 1 V (6.10a) 

on the lov pressure side 

S "I^^I^TS:) 
^ 

(6.10b) 

Similarly, inserting |3 into the expression (6.3) for the temperature, ve 

obtain on the high pressure side 

BT 
vbL ^ 

^ 1 Y2 
mh " ¥ (6.11a) 

on the lov pressure side 

RT jSL=¥^ (^-fe)«f^(i==i) (fi.ub 
0' 

7H 
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Thus, at the value^ ~fim ^^ ^ i c h T̂  reaches i t s mEucimum for given 7 and c, ve 
•i m n 

have the simple relation (cf. 6.10a, 11a) 

^ m h ^ - I ^ C6.12) 

8uad from (3.8b) 

Pmh • I '"̂  - 1 Pmax (6'12a) 

i^re fi^y is the pressure corresponding to v « 0. 

The velocity of sound a' as defined in (3°11) 1B then tat fi "^^ (cf. 

6.11a, b) 

»'mh'2V y /" 1 (̂ .13ft) 

It can easily be seen (cf. 3°12b) that in all practical cases a' > â ^ is small 

compared vith v ° a" on both sides of the shock vave. Therefore ve can identj m m 
(6.13tt 9 b) vith the actual velocity of sound a and obtain: 

^mh 

mh f^^^'Trw"'" ^̂•'**̂  
— ^ - 1 + i- + -^ + ... (6.U») 
am^ 2^ 8 ^ 

Therefore ve find that the temperature vill increase on the high pre*fure|^iii» If 

^1 ^mi 2^ 8 ^ 
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Tor B " 7/2, the right hand side is 1.173° This shovs that a tenqperature increase 

from T to T Is restricted to very soft shock waves. 

The teaqperature change T, - Tg itself can be calculated from (6.2), (6.1a); 

dT dT T, - T r- —1 

Here ve have denoted, as in par* 3, by T the temperature corresponding to a given fi 

aecordUig to the shock vave theory, and by T that corresponding to the same fi In 

thermal equilibrium. T. > T. in (6.1a) has been replaced by T, - T because it 

win be shown (cf. 6.I7) that T - T is small of a higher order. From {6,6) we 
3 2 

have in sufficient approximation 

^ ••'- r-?= - ̂ 1 ''•' 

Likewise from {6,6)g we can calculate the difference between the high pressure and 

the low pressure value of T for the same value of ̂ , viz, 0.; this is 

! L - - ^ - 2 ^ I " ^ O (6.16a) 

^1 2 

inserting in (6.I6), (6.l6a) into (6.13) and \ising the abbreviations A and B 

(cf. 5.15* 16) we obtain 

T, - T 

h 
2 .2(A + B) [1-/^^bo(b^ - b^)J (6.17) 

which may also be written (cf. I.I9) 

file:///ising
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^-^ - °'̂  H- /MPI -1) Oi - fij] (6.17a) 

where e^ is the specific heat of the inert degrees of freedom. From (6.17) it 

follovs that the tempez^ture change T, - Tg is greatest vbenB^ *B » loe., for 

the softest shock waves; of co\irse, this holds only when an actual wave front 

exists (i.e., for v > a ) because otherwise T^ cannot be defined. For "harder" 
1 al. ^ 

shock waves, i.e., greater v./a and/9. ~ p » the square bracket decreases emd reaches 

zero for/) "B (cf. 6.8) as must be expected. For air of initial temperatiire 

Tĵ  B 300*, we have c - O.OO7B; then from (6.17a) the maximum possible value of 

T. - Tg is 0.00023 T, • 0,08*. The tenrperature increase T - T., if it occurs at 

CLLI, is therefore extremely small in air at normal temperatuire. The teniperature 

difference T ^ =• Tĵ  , on the other hand, is appreciable, viz. (cf. 6,11) I/9 T^ • 35*J 

Finally, the developments of this section can be used to justify those 

of par«3° In that section, we have neglected in (6.3) and eiailar equations all 

powers of b °° b higher than the square root. This is justified as long as ̂  - |S 

is small compared withji -/| as given by (6.8). Vow the largest value of || > A 

which we have used in par«3 is obtained for y s 2B •«- A (cf. 3<>13; I6). Using 

(3°8)j> (6.8) and neglecting quantities of relative order l/p^ we have. 

/ 

( ^ - ^ o W . 2bo2(2B * A) - 2d^/d log T ^ 0 - ̂ ^ ^^^^ 

*m " ̂ o ^ 1 

^° "2 

For air at 300*, this is about 0.003. 

<% 
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