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Abstract

The problem of optimal data fusion in multiple detection systems is studied in the
case where training examples are available, but no a prior: information is available
about the probability distributions of errors committed by the individual detectors.
Earlier solutions to this problem require some knowledge of the error distributions of
the detectors, for example, either in a parametric form or in a closed analytical form.
Here we show that, given a sufficiently large training sample, an optimal fusion rule can
be implemented with an arbitrary level of confidence. We first consider the classical
cases of Bayesian rule and Neyman-Pearson test for a system of independent detectors.
Then we show a general result that any test function with a suitable Lipschitz property
can be implemented with arbitrary precision, based on a training sample whose size is
a function of the Lipschitz constant, number of parameters, and empirical measures.
The general case subsumes the cases of non-independent and correlated detectors.

Keywords and Phrases: Distributed decision fusion, empirical estimation, Bayesian rule,
Neyman-Pearson test.
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1 Introduction

The problem of fusing the decisions made by a set of distributed sensors or agents has been
extensively studied in areas such as political economy models (Grofman and Owen [8]),
reliability (von Neumann [21]), forecasting (Granger [7]), pattern recognition (Chow [4]),
neural networks (Hashem et al. [9]), decision fusion (Dasarathy [5]), etc. One of the well-
studied problems in the subarea of decision fusion deals with combining the decisions taken
by the individual detectors or agents (Chair and Varshney (3], Thomopoulos et al. [18],
Drakopoulos and Lee [6]). Typically, in this case the decision rule is in the form of a
Bayesian rule [3] or Neyman-Pearson test {18, 6]. Such rule can be derived both in the
case of independent and correlated individual decisions. In either case, some knowledge of
the underlying probabilities is needed for an accurate implementation of the test; typically,
analytical expressions for the error distributions in a computationally convenient form are
needed. It is generally understood that the knowledge about the system can be utilized by
the designer to obtain the required information about the probability distributions. In turn,
this knowledge, could be based on the experience with the system, possibly in the form of
empirical data generated by the system during experimentation or operation.

In this paper, we study systematic methods to utilize the empirical data to implement a
fusion rule in the case no information about the probability distributions is available (along
the lines of Naim and Kam [11]). Empirical and structural risk minimization have been
used to solve a number of problems using empirical data (Vapnik [20]), and, more recently,
similar formulations have been studied under the topic of machine learning (Blumer e¢ al. [2],
Natarajan [12]). If no constraints are placed on the underlying probabilities, the empirical
data, which is finite, can only result in an approximate implementation of the required fusion
rule (which is typically chosen from a class of functions). The degree of approximation
between a fusion rule that can be obtained if the underlying probabilities are known and
its empirical implementation based on a finite sample, depends on the sample size. We
obtain the required sample sizes in order to arbitrarily bound the probability of disagreement
between a fusion rule its empirical implementation. We wish to emphasize here that the
proposed technique is to be used mainly when accurate estimates of the probabilities are
either not available by other means or computationally difficult. For example, for a system
of independent detectors if the exact analytical form of the probabilities are available, the
methods of Chair and Varshney [3] and Thomopoulos et al. [18] could be used to implement
the required fusion rule 2; these methods, however, cannot be applied if the probabilities
are unknown. In some cases, typically in a system of non-independent detectors, even if the
suitable analytical forms of the distributions are available, the problem of implementing a
Bayesian test could be computationally intractable (NP-Complete) {16, 19]. In such cases,
Monte Carlo simulation can be used to generate the empirical data and the methods proposed
here can still be used to implement the test in some cases (as illustrated in the example of
Section 4). However, in some other situations, such as those employing the correlation
coefficients methods (Drakopoulos and Lee [6]), the proposed empirical estimation method
is not practical since the sizes of the samples to be generated by Monte Carlo methods grow

2Solutions to similar problems in the area of pattern recognition [4], and group decision models [8] yield
almost identical analytical solutions.
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Figure 1: Parallel sensor suite.

exponentially with the number of parameters.

Consider a distributed detection system consisting of N sensors or detectors and a fusion
center in the form of a parallel suite [5] as shown in Fig. 1. Only the fusion problem is
addressed here in that the local detectors are given (i. e., we do not address the problem
of designing the local detectors). We consider a simple hypothesis testing problem whereby
the hypothesis Hy is to be tested against the alternative hypothesis H;. Each detector
D;, for ¢ = 1,2,...,N makes a decision u; € {Hy, H;}, and the fusion center receives
u = (u3,us,...,uy) and outputs either Hy or Hy by suitably using the information u. Let
7; denote the a prior: probability of H;, for + = 0,1. For example, in one of the general
formulations, the average-cost criterion is optimized by the likelihood ratio test [10] given by

_ P(u|Hy) S To(C10 — Coo)

T(U) - P(U]H()) 71'1(001 — 011) (Tl)

where Cy; denotes the cost of deciding Hy when H; is true, k,7 = 0,1, and P({u|H;}) =
P(u|H;) denotes ? the conditional probability of u given H;, i = 1,2. The decision of fusion
center is H; if the above test evaluates to true and is Hy otherwise. If the underlying
probabilities are available in a convenient form, then T'(u) can be computed at given w.
One of the most studied formulations of this problem deals with the case where u;’s are
independent, in which case T'(u) takes a simple form in terms of products [5].

In this paper, we consider that the probabilities needed to evaluate the tests of the form
(T.1) are unknown, but a sample is available in the form of (u!, H'), (u?, H?),..., (!, HY),
where u' € {Hy, H;}" is the ith example and H* € {Hy, H,} is the corresponding correct hy-
pothesis. In object recognition systems that are required to detect when an object belonging
to a certain object class enters a workspace, each individual detector could base its decision
on possibly different object features. Examples in such system can be obtained by sensing
the objects that belong to the object class and also the objects that do not. This formulation
has been motivated by the sensor fusion problems that arise in robotic applications, where
the individual sensors have been built and mounted on the robot. As an example, consider

3Here P(A) denotes the probability measure of A which is a set belonging to a g-algebra on the underlying
event space ([1]). For a singleton A = {a}, we denote P{A) by P(a) with the usual abuse of notation.




training a mobile robot system equipped with an array of ultrasonic and infrared sensors to
distinguish between the doors that are wide enough to go through from the narrower ones.
An accurate probabilistic model of sensor errors is difficult to obtain, but a training sample
can be easily obtained in a laboratory, for example, by placing boxes to create doors of
required widths. Typically in these applications, obtaining accurate probabilistic models of
the sensors is a more challenging task than performing experiments by sensing objects with
known features and collecting the empirical data (situation in other applications, however,
could be significantly different).

In our formulation only a finite sample is given as opposed to the formulae for the
underlying probabilities required to implement Bayesian rule or Neyman-Pearson test. As a
result only an approximate implementation of the required test is possible. We characterize
the degree of approximation in terms of a confidence parameter which is a function of the
sample size.

The fusion rule for decision problems is often expressed in terms of the probabilities,
p=(p1,P2,...,Pn), and the data, u = (uy, ug,...,uy), in the form

R(p,u) >0, (T.2)

where the decision is H; if the inequality is true and is Hy otherwise. This form of the test
captures many decision rules, for example, the test (T.1) can be easily converted into this
form. In some typical cases, n = 2N or n = 2V, In the case the underlying probabilities are
known, these expression for R(p, u) for given u can be explicitly evaluated. In our case, we use
estimators p; based on the sample (u!, H'), (v, H?),...,(u!, H"), and employ the empirical
implementation R(p,u) of R(p,u), where p = (p1,...,Pn). If some of the probabilities are
known in suitable forms, they can be directly used in the test, and the empirical estimates
are used only for the unknown ones. Now we consider the performance measure

E[|8[R(p, w)] — O[R(p, u)]]] = ZIO u)] = O[R(p, u)]| P(u),

which is the expected error associated with R(p,u), where ©[z] is 1 if z is non-negative and
0 otherwise. We define that R(p, u) implements R(p, u) with confidence 1 — X if

P[O[R(p,u)] # O[R(p,u)] < A

or equivalently
for sufficiently (but finite) large sample of size I < co. Informally, this condition means that
based on a sufficiently large sample, it should be possible to ensure that both R(p,u) and
R(p, u) yield the same result with a probability of at least 1 — A.

In this paper, we show that the above criterion can indeed be guaranteed under the
assumption that the function R(p,u) is Lipschitz with respect to p, i. e. these exists a
positive constant L such that

|R(p+ Ap,u) — R(p,u)| < L||Ap]|




for all Ap, u, where ||Ap]|| denotes the Euclidean norm of Ap in R". The sample size required
to ensure a confidence of 1 — A is given by (see Section 3.2 for details)

r’nL?

for any r > 1, where [z], for real z, denotes the smallest integer larger than or equal to
z. We show that several existing fusion rules satisfy the required Lipschitz condition. In
particular, in the case of independent detectors this condition is satisfied for the Bayesian
case [3] and also for Neyman-Pearson test [18]. Also this condition is satisfied in the case of
non-independent detectors formulated in terms of correlation coefficients [6].

In several simple cases, the required test may not satisfy Lipschitz condition. For example,
consider a decision rule Rj(u,p) that returns 1 if p > 1/2 and 0 otherwise. This function
has a discontinuity at p = 1/2 which violates the Lipshitz condition since L is unbounded.
In several cases, a practical solution could be obtained by using a smoothing function. For
instance, here R;(u, p) can be replaced by Ra(u,p) = 3 +e_cl(p_1 sy, for a suitably large C > 1,
which yields the Lipschitz constant L = C/4; this solution is useful if the likely values of p
are away from 1/2. 4

Our sample size estimate may not be tight in specific cases. Tighter bounds on the
sample sizes than that indicated above can be obtained by exploiting the specific structure
of R(p,u) rather than using the general formula (as illustrated in Section 3.1).

The present formulation is very similar in spirit to that of Naim and Kam [11]. Our
results are applicable to any test that satisfies the Lipschitz condition, including cases where
the statistical independence is not satisfied, whereas the formulation of [11] is based on
independence. In terms of the nature of the results, we provide finite sample estimates for
guaranteeing specified confidence levels, and no small sample analysis is presented for the
method of [11] (asymptotic convergence of their method can be asserted using the law of
large numbers).

The organization of this paper is as follows. Some preliminaries are presented in Section
2. The solution to the decision fusion problem is presented in Section 3. In section 3.1, we
consider the well-studied cases of independent detectors; although these cases can be derived
as corollaries to the general result, we illustrate how the special nature of this formulation can
be used to get sharper bounds on the sample size. In Section 3.2, the sample size estimates
are derived for the empirical implementation of any test with the Lipschitz property. In
Section 4, an example is illustrated to compare the proposed fusion rule with the existing
rules based on Bayesian rule.

2 Preliminaries

We now present two lower bounds for the probability of simultaneous occurrence of a set
of events in terms of the bounds for the occurrence of the individual events; one bound is
tighter for small number of events and the other for large.




Lemma 2.1 Consider events A;, i = 1,2,..., N such that P(A;) > 1 — 6, where A; is a set
belonging to a suitable o-algebra. Then we have ¢

(i) P(A1NAsN...NAy)>1- N6
(ii) P(A1NAxN...NAyN)>1/28 —§(1 —1/2%)

(1ii) The estimate in (i) is increasingly better than (i) for large values of N, in particular
for any N such that

(1—1/2")
CZN -1y

Proof: We have P({L) <6, fori=1,2,...,N, where A, is the complement of the event A;.
Then P(A; U...U Ayx) < N§ which shows Part (i).
We show Part (ii) by induction on N. As a base case, N = 1, we have

P(A)21-62>1/2—6/2

which is true since § < 1. For N = 2 we have 2P(A; N A2) + P(A1AAz) = P(A;) + P(Ap)
which yields
1
P(A1 0 Ag) 2 S[P(A1) + P(A2) — 1] = 1/2 6.
Now we have 1/2 — 6 > 1/4 — §3/4 which shows that the claim is true for N = 2. For the

inductive step assume that the claim is true for N = k. We now show that the calim is true
for N =k + 1 as follows.

P(A1 N Ag N ... N AN Agya)

I\

1
-2-[P(A1 NAsN...NAL) + P(Agy1) — 1]

v

% [1/28 - 8(1 —1/2%) +1 -6 +1]
1/2F+1 _ §(1 — 1/2F+1),

I

Hence part (i) is true. Part (iii) follows by direct algebraic manipulation. O
Notice that the condition in (iii) above becomes § > 0 as N — oo; some values for the
lower bound on ¢ are shown in Table 1.

3 Empirical Implementation of Fusion Rules

We obtain the sample sizes needed to ensure that a fusion rule can be implemented based
on a sample with a given value of confidence. We first consider the cases of independent
detectors and then discuss the general case applicable to any fusion rule that satisfies the
Lipschitz condition.

*One can also derive the bound P(4;NA4,N...NAx) > 1/2¥~1 - § in an identical fashion as suggested
by an anonymous reviewer; the present formulae are chosen for their convenient form in the present context.




N | lower bound | N | lower bound
1 { 1.000000 80 | 0.012658
2 | 0.600000 90 | 0.011236
310.411765 100 | 0.010101
41 0.306122 200 | 0.005025
51 0.240310 300 | 0.003344

10 | 0.110991 400 | 0.002506

20 | 0.052632 500 | 0.002004
30 | 0.034483 600 | 0.001669
40 | 0.025641 700 | 0.001431
50 | 0.020408 800 | 0.001252
60 | 0.016949 900 | 0.001112
70 | 0.014493

Table 1: Some values for the lower bound of 6.

3.1 Independent Hypotheses

We consider the formulation of Chair and Varshney [3] for a system of independent learners.
In the case the a priori distributions of the hypotheses are known, the fusion rule can be
expressed in the form, forn > 1

H q; — H 5 >0 (T31)
i=1 i=1
where ¢; and s; are the probabilities of suitable events (defined precisely in [3]), say denoted
by Q; and S; respectively. An empirical implementation of (T.3.1) is given by

n n
Ié-1]&>0
=1 =1

where §; and §; are empirical estimates of ¢; and s; respectively based on the I-sample (i. e. ,
G; is the fraction of the times the event @}; took place in the sample). For this rule the sample
size to ensure the required confidence is given in the following theorem.

Theorem 3.1 For any r > 2, consider a sample of size

| = [—— ln(2/6)}

where

no noo 1/n
I‘Hl%' - ,H13i|

=11 = = — 1.
€7, + T+2

Then the test H g — H s; > 0 can be implemented by the empirical measures of ¢; and s;
i=1

computed based on the sample with the confidence 1 — 2né or 1/2% — §(1 — 1/22").

6




Proof: The proof is separated 1nto two parts. First, we compute sufficiency conditions on
lg; — d;| and |s; — §;| such that H g — 1'[ s; > 0 and H gi — H §; > 0 yield the same result.

Second we compute the sample 51ze requlre to ensure the requlred sufficiency conditions.
The test (T.3.1) and its empirical implementation yield the same result under the con-

ditions . . .
| TT ¢ — IT &l -4H% 15l (3.1.1)
=1 =1 =1 =1
and . .
NES Ib4<ﬁH% I1sil (3.1.2)
=1 i=] i=1

for any » > 2. Consider the constraint |¢; — §;| < € for all ¢ = 1,2,...,n which implies
(Theorem 3.1 of [17])

Tla—-]al <@+ -1
i=1

i=1
Thus the condition |¢; — §;] < € and |s; — §;] < ¢, forallt=1,2,...,n, and

1/n
IQQ IIM

T

e= |1+ ~1 (3.1.3)

ensures that conditions (3.1.1) and (3.1.2) are satisfied.
For the second part, by Hoeffding’s inequality (for example, we use the form given in
Appendix B of Pollard {13]) we have

Pllgi — gl > ] < 2¢72¢

and
Pl|s; — | > €] < 27!

for any 7 € {1,2,...,n}. Then 2¢~2¢! = § yields the sample size of

I = [ "ziei 1n(2/5)] . (3.1.4)

Hence by Part (i) and (ii) of Lemma 2.1, with confidence 1 — 2né or 1/2%" — §(1 — 1/22") we
have |g; — 4;| < € and |s; — §;] < € simultaneously for all : = 1,2,...,n.

Now to obtain the sample size stated in the theorem, we employ € < € in (3.1.4) which
guarantees the required condition. Notice that from (3.1.1) and (3.1.2) we have

n . n . 2 n
ITIa-TI4l < Iqu Hsz|+;Iqu I1 s
i=1 1= i=1

i=

r+2 °

= IH% Hsz

=1

Now ¢/, is obtained by replacing | IT ¢; — ﬁ s;| in the expression for € by HL2| ﬁ g; — ﬁ 5. O
=1 i=1 i=1 i=1




Remark 3.1 The sample size given by the expression (3.1.4) based on € yields smaller sam-
ple size compared to the one based on ¢; given in Theorem 3.1. But the latter has more
practical utility in that it can be used to estimate the precision with which the test is imple-
mented with a given sample of size . Notice that the expression for { based on ¢, involves
only the estimated quantities; thus, using ¢; and §; one can compute ¢; which can be used
in the expression for ! to compute the confidence achieved at a given sample size. Such
computation is not possible based on (3.1.4) since it involves the unknown e.

Remark 3.2 By denoting the confidence 1 — 2né or 1/2%* — §(1 —1/2?") by 1 — X one can
obtain following expressions for the sample sizes

= H—% ln(4n/)\)}

= ()

respectively where the sample sizes are expressed directly in terms of A.

or

We now consider the formulation of Thomopoulos et al. [18] which does not require the
a prori probabilities. In this case the fusion rule can be expressed as the Neyman-Pearson
test in the form

f_[ G—T H 5;>0 (T.3.2)
=1 i=]1

where the positive real 7 is fixed by the type I and II errors. The empirical implementation
of this test can be obtained as in the above case.

Corollary 3.1 Consider a sample of size

1
where
n 1/n
| ].:[ q; — T‘].:[ 52|
€ = 14 1+ 7 -1

n n .
Then the test I1 ¢i — 7 I1 s; > 0 can be implemented by using the empirical measures g; and
i=1 i=1

§; based on the sample with confidence 1 — 2né or 1/22" — §(1 — 1/2%7).

Proof: The outline of the proof is identical to that in Theorem 3.1. The condition |¢;—¢| < €
and |s; — §;| <eforalli=1,2,...,n yields

n n

Hq—Hq—(H”H)

<@+ +e" -1,

=1 i=1




Under this condition the test (T.3.2) and its empirical implementation yield the same result
n n

if(1+7)(1+€e)™—-1] <|II ¢ — 7 II s This yields an expression for € as in Theorem 3.1.
i=1 i=1

n

IMg—7]Ils. 0

t=1 =1

Then, the value of ¢ is obtained by noting that 2 ﬁ G —T ﬁ Si| >
=1 i=1

Remark 3.3 A slightly different execution of Corollary 3.1 can be obtained by using r > 2
which yields

n n l/n

| TT G — 7 I1 &l

i=1 i=1

(r+2)(1+47)

€ = 1+

Compared to the quantity in the Corollary 3.1, this yields a smaller value and hence requires
a larger sample to ensure the same confidence.

3.2 General Case

In this section, we consider an empirical implementation of a general test
R(p,u) >0, (T.3.3)

where p = (p1,P2,...,Dn) is the vector of probabilities with respect to which R(p,u) is
Lipschitz with constant L. Let p; correspond to an event P; and let the empirical estimate
D; of p; be the fraction of the time the event P; takes place in the sample.

Theorem 3.2 Consider a decision rule R(p,u) with Lipschitz constant L. For any r > 2,
given a training sample of size

r2nL?

| = [W ln(2/6)]

the empirical implementation R(p,u) > 0 implements the test R(p,u) > 0 with confidence
1—mnéorl/2™—6(1—1/27).

Proof: The outline of the proof follows that of Theorem 3.1. First, we show that the

conditions sup |[p; — ps| < € and |R(p)| > L+/n¢, ensure that R(p,u) > 0 and R(p,u) > 0

vield the same result. Notice that sup|p; — ;| < € implies ||p — p|| < Ly/ne. Then by the
i

Lipschitz property
|R(p,u) — R(p,w)| < |lp — pl| < Lv/ne.
Thus if |R(p,u)| > L+/ne, both R(p,u) and R(p,u) yield the same result.

Then for € = JEL%)', given a sample of size

= [—2-% 1n(2n/5)] (3.2.1)

R(p,u) implements R(p, u) with the required precision. Now we obtain a lower bound for €
by noting that 2|R(p,u)| > |R(p,v)| which implies |R(p, u)| > L|R(p,u)| for any r > 2. The

9




sample size in the hypothesis is obtained by using the lower bound J%%_t;_lll fore. O

Remark 3.4 The test (T.3.1) can be shown to be Lipschitz and the Theorem 3.2 can be
applied. For a scalar €, let p + € denote the vector obtained by adding € to each component
of p. For example, we can show that |R(p + €,u) — R(p,u)| < 2[(1 + €)*/2 — 1], where n/2
nf2 .
refers to the quantity in test (T.3.4). By noting that (1 +¢)*/2 -1 = 3 (“2/2) ¢ which is
i=1
n/2
upper-bounded by € ("{2) < 2M2%¢, we can obtain L = 2™/2 which can be used to obtain
i=1
the sample size based on Theorem 3.2. The result of Theorem 3.1 based on the special
structure of (T.3.1) yielded us a sharper result on the sample size.

Now consider the following particular form of the test, for a positive real T,
P(u|Hy) — 7P(u|Hp) > 0 (T.3.4)

which is the Neyman-Pearson test from which several specific tests (including the ones in
the last two sections) can be derived.

Corollary 3.2 Consider a decision rule P(u|Hy) — 7P(u|Hy) > 0, where T is a positive real
number. Let the empirical estimate P(A) of P(A) be the fraction of times the event A took
place based on the sample.

(i) Given a training sample of size

_ 4(1 + 7)? N
l [[mml) =P *)]

the empirical rule P(u|Hy)—1P(u|Hy) > 0 implements the test P(u|Hy) — 7P (u|Hp) >
0 with confidence 1 — A.

(i) Given a training sample of size

[ = { 72(1 + 7)?

- < - < 111(8/)\)]
[P(un Hy)P(Hy) — 7P(u N Hy)P(H1))?

the empirical test P(u 0 Hy)P(Hy) — 7P(u N Ho)P(Hy) > 0 implements the test

P(u|Hy) — 7P(u|Hy) > 0 with confidence 1 — A.

Proof: For Part (i), the sample size is estimated based on the two probabilities py = P(u|H:)
and py = P(u|Hp) (hence n = 2), and noting that for |p; —p1| < € and |p2 — pa| < €, we have

11— 7P2 — (p1 — Tp2)| = |1 — ;1 — T(P2 — p2)] = (1 + T)e.

Now 1 + T is used in the place of the Lipschitz constant in the Theorem 3.2 (with r = 2)
to show Part (i) (in a strict sense, we have not established that 1 + 7 is a suitable Lipschitz
constant, but the derivation is valid under slightly weaker condition).

10




For Part (ii), we use the following form of the given test
P(U n Hl)P(H()) - TP(U, N H())P(Hl) >0

where we estimate the probabilities py = P(u N H;), p2 = P(Hy), ps = P(u N Hy), and
pa = P(H) (hence n =4). Now we have

|P1B2 — Thaps — (P1p2 — TP3pa)| < (1 + 7)(€% +2€) < 3(1 + 71)e

and sample size is obtained by using 3(1 + 7) in place of the Lipschitz constant. O.

Remark 3.5 In the two cases of the Corollary 3.2 it can be shown that the quantities (1+7)
and 3(1 + 7) respectively yield the required Lipschitz constants.

Remark 3.6 In Corollary 3.2, n = 2 for (i) and n = 4 for (ii), for which the bound in Part
(i) of Lemma 2.1 is better than the bound in Part (ii).

We now consider the fusion rule of Drakopoulos and Lee [6] which makes use of the
correlation coefficients to obtain the fusion rule. The set of correlation coefficients are given
by

C = {Plugy...wi | Hill{#1, .- - i} € {1,...,N},j =0,1}.

The fusion test is given by
P(u|Hy) — 7P(u|Hp) > 0 (T.3.5)

for suitable 7 such that for j = 0,1

P(ulH;) = Y (-1M1P

ICAp

IT u,.lg,}

1€ AUl

where Ay = {i: u; = k} (see [6] for details), and I, of cardinality |I|, varies over all subsets
of Ag. In our method, we estimate the correlation coeflicients based on empirical data and
use them to implement the test.

Corollary 3.3 Consider a decision rule P(u|H;) — 7P(u|Hp) > 0 implemented in terms of
the correlation coefficients. Let empirical estimate P(A) of P(A) be the fraction of times the
event A took place based on the empirical sample, and for 3 = 0,1

PulH;) = 3 (-1)"P

I wlH;

€A UT

Given a training sample of size

r223N-1(1 4+ 7)?
l=|— - In(2/6
[P(u|H) — TP(u|Hy)|? 2/ ))-’

the empirical rule implements P(u|H,) — 7P (u|Hy) > 7 with confidence 1/2Y —§(1 —1/2V).
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Proof: Here the critical point is that the Lipschitz constant is given by (14 7)2% as shown
below. First we have for |P(.) — P(.)| < ¢

|P(ulH;) — P(uHj)| = 3 (-1 (P( I1 uilHj) —P( I1 uin)} < ) e<2

ICAp i€ AUl

This condition yields
P(u|H;) — 7P(u|Hy) — [P(u|Hy) — TP(u|Hp)] < 2¥(1 + 7)e.

The rest of the proof follows by the application of Theorem 3.2 with n =2V, O

Remark 3.7 In Corollary 3.3, n = 2¥ for which the bound in Part (ii) of Lemma 2.1 is
better than that in Part (i).

4 Example

We consider a system with 5 detectors, Di,...,Ds. All simulations are carried out using
pseudo random number generators. The hypotheses H; and Hj are generated with equal
probabilities. This behavior is simulated by generating a uniformly distributed random
variable over the interval [0,1] and checking to see if it lies in the interval [0,0.5]. Each
detector is given the hypothesis as input and it produces an output that disagrees with the
input according to a probabilistic strategy. The detectors D;, 1 = 1,2,...,5 introduces an
error as follows: with probability of 1 — ¢/10 it passes on the input to output, and with
probability ¢/10 it passes on the opposite of the input. The individual detector behavior is
implemented by generating a uniform random variable in the range [0, D] and checking if it
falls in the interval [0,7D/10]. It is assumed that the pseudo random number generator yields
independent outputs and the error processes of the individual detectors are probabilistically
independent.

A sequence of examples has been generated and given as input to both the Bayesian
fuser and the proposed empirical fuser. The Bayesian fuser is implemented by using the
analytical formulae for the distribution of errors under the assumption of independence
between the various detectors. The Bayesian test is given by P(Hplu) > P(H;|u) where
u = (u1,usg,...,us) and u; is the output of D;. Due to the independence and the property
P(Hy) = P(H;) = 1/2, this test is equivalent to the test:

5 5
1 Pi(uilHo) > ] Piusl Hy)
=1 i=1
where the P;(.) corresponds to D;, i = 1,2,...5, such that, for j,k € {Hy, H1},
10 i #k
P’mk)‘{ 1-4/10 ifj=F.

For the empirical fuser, the probabilities are estimated based on the sample seen so far. Each
example is given as input to both the fusers and their outputs are computed. An average
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Figure 2: Relative performance of the Bayesian fuser and empirical fuser with training.




percentage of correctly classified examples (among the sample seen so far) is computed and
shown in Fig. 2. The plots in Fig. 2 (a), (b) and (c) as shown for 1,000, 10,000, and 100,000
examples respectively. The performance of the empirical fuser has shown an improving trend
as the training progressed. After 1,000 examples, the empirical fuser achieved the perfor-
mance within 10% of that of the Bayesian fuser as shown in Fig. 2(a). After 10,000 examples
the performance of the empirical user is approximately within 1% of that of Bayesian fuser
(Fig. 2(b)). After 100,000 examples, the performance of the empirical fuser is within 0.1% of
that of the Bayesian fuser. This simulation has been repeated with different starting seeds
for the pseudo random number generator with almost identical qualitative behavior.

The estimates for the sample sizes needed to ensure a confidence of 90% is of the order
of few millions for this system. Thus the performance of the method is better than that
indicated by the samples estimates; it is, however, unclear if it an artifact of this specific
example.

The training program has been implemented on SPARC workstation IPX. The execution
time for the training with 100,000 examples, including the time required to generate the
samples, is of the order of 20 seconds.

We wish to note here that in some cases, the problem of implementing a Bayesian fuser
could be computationally expensive (since the problem could be NP-complete). In such
cases, the information about the a priori probabilities and error distributions can be used to
generate examples by using Monte Carlo methods, and the empirical fuser can be trained with
the generated examples (as shown in the above example). The performance of such methods
depends on the ease with which the examples can be generated and the characteristics of
the programs that generate the pseudo random variables.

5 Conclusions

We have studied the problem of optimal data fusion in multiple detection systems in the case
when training examples are available, but no information is available about the probability
of errors committed by the individual detectors. Most existing solutions to this problem
require some knowledge (for example, either a parametric or an analytical form) of the error
distributions of the detectors. We showed that given sufficiently large training sample, an
optimal fusion rule can be implemented with an arbitrarily high level of confidence. Since
no information about the underlying probabilities is available, an ezact implementation of
the optimal rule which is chosen from a set of functions is not possible based on a finite set
of examples. We showed a general result that any test function with a suitable Lipschitz
property can be implemented based on a training sample with an arbitrarily high precision,
where the sample is a function of the Lipschitz constant and the number of parameters. The
general case subsumes the cases of non-independent and correlated detectors, but specific
properties of the tests can be used to obtain sharper results than those yielded by the general
result. Two other approaches based on empirical risk minimization and nearest neighbor rule
for solving the present problem have been recently studied by Rao and Iyengar [15].

The proposed method is useful in systems where either the underlying probabilities are
not known or the Bayesian test is too difficult to implement. As illustrated in Section 4, the
proposed method can only approach the Bayesian method in performance after a significant
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amount of training.

There are two generalizations of the formulation studied here. Rao [14] discusses the
estimation of fusion rules in multiple sensor systems, and Rao and Oblow [17] discuss empir-
ical implementation of optimal fusion rules for a system of probably approximately correct
learners. These results are more general in that the finiteness properties (of the o-algebra on
the event space in formulation studied here) are not satisfied and consequently the sample
size estimates are presented in terms of the Vapnik and Chervonenkis dimension [20].

There are several directions for future investigations. Extension of the proposed method
for non-Lipschitz cases will be interesting. Also, although the Lipschitz property is sufficient
for implementing an empirical fuser, it is clearly not necessary. We suspect that some “local”
properties can replace the Lipschitz property (which is a global property). When the decision
amounts to choosing one hypothesis from a continuum (instead of choosing one of the two
alternatives), we are faced with more difficult problems. It would be of interest to investigate
the multiple detectors systems to handle such formulations.
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