REGEIVED i
\,‘; ..S B %

BET (V3. 1998

3778 [] g

&

 ConF- %04167--1ol. 2.

on lterative Methods

April 9-13, 1996
Copper Mountain, Colorado

Proceedings supported by
Cray Research, Inc.

Volume I | o
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Re
Organized by
Front Range Scientific Computations, Tne.
The University of Colorado
Sponsored by

Department of Enen?' : T E R
National Science Foundation

. In cooperation with

SIAM Special Interest Group on
" Numerical Linear Algebra




L
-
"
provees, .~
PR wennn o4

o e, )
LGRS e connms
3533530




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




TUESDAY, APRIL 9TH

SESSION I

Topic: Session Chair: Room A
Nonlinear Homer Walker
8:00 -8:30 M.D. Tocci Method of Lines Solution of Richards' Equation
8:30 - 9:00 C.T. Kelley A Multilevel Method for Conductive-Radiative Heat Transfer
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Topic: Session Chair: Room B
Parallel Loyce Adams
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8:30 - 9:00 C.H. Guo Incomplete Block Factorization Preconditioning for Indefinite Elliptic Problems
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for Elliptic Equations
9:30 - 10:00 S. Parter Preconditioning Chebyshev Spectral Methods by Finite-Element and

Finite-Difference Methods
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11 30 12:00 Fractal ects and Convergence of Newton S Method
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10:30 - 11:00 G.C.Lo Tterative Solution of General Sparse Linear Systems on Clusters of
Workstations

11:00 - 11:30 Q. Yao New Concurrent Iterative Methods with Monotonic Convergence

11:30 - 12:00 R. McLay Improving Matrix-Vector Product Performance and Multi-Level

Preconditioning for the Parallel PCG Package
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10:30 - 11:00 M. Tuma Approximate Inverse Preconditioning of Iterative Methods for
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SESSION I
Topic: Session Chair: Room A
Domain Decomp. Olof Widlund
8:00 -8:30 . X.C. Cai Newton-Krylov-Schwarz Algorithms for the 2D Full Potential Equations
8:30 - 9:00 D. Keyes Newton-Krylov-Schwarz Methods in Unstructured Grid Euler Flow
9:00 - 9:30 U. Trottenberg Adaptive Parallel Multigrid for Euler & Incompressible Navier-Stokes Equations

9.30-1000 0. Widlund Domain D ition Methods for M Finite El

To}nc Session Chair:

EKrylov Methods  Anne Greenbaum

8:00 -8:30 V. Druskin Extended Krylov Subspaces Approximations of Matrix Functions;
Application to Computational Electromagnetics

8:30 - 9:00 D. Sorensen Krylov Subspace Methods for Computation of Matrix Functions

9:00 - 9:30 T. Tamarchenko  Application of Spectral Lanczos Decomposition Method to Large Scale
Problems Arising Geophyics
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..............................................

8:00 -8:30 Multigrid Solution of Incompressible Turbulent Flows by Using Two-Equation
Turbulence Models

8:30 - 9:00 Nonlinear Krylov Acceleration of Reacting Flow Codes

9:00 - 9:30 Schwarz-based Algorithms for Compressible Flows

Multilevel Refi

9 30 - 10:00
Topxc s
Doman Decomp.. Olof Widlund
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10:30-11:00 ~° X. Feng A Mixed Finite Element Domain Decomposition Method for Solving
Nearly Elastic Wave Equations in the Frequency Domain

11:00 - 11:30 A. Jemcov Representation of Discrete Steklov-Poincare Operator Arising in Domain
Decomposition Methods in Wavelet Basis

11: 30 12 00 J. Xu Slm lified A roach to Some Nonoverlappmg Domain Decomp Methods
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Krylov Methods  Anne Greenbaum

10:30 - 11:00 F. Campos The Adaptive CCCG(n) Method for Efficient Solution of Time Dependent
Partial Differential Equations
11:00 - 11:30 T. Barth Conjugate Gradient Algorithms Using Multiple Recursions

11:30 - 12:00 J. Cullum Iterative Methods for Solving Ax=b, GMRES/FOM versus QMR/BiCG
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Domain Decomp: Olof Widlund

4:45 - 5:15 S. Maliassov Domain Decomposition Method for Nonconforming Finite Element
Approximations of Anisotropic Elliptic Problems on Nonmatc‘,hing Grids
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Decomposition :

5:45-6:15 R. Tezaur Substructuring by Lagrange Multipliers for Solids and Plates
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4:45-5:15 E. Bobrovnikova  Iterative Methods for Weighted Least-Squares
5:15-5:45 A. Lumsdaine Krylov Subspace Acceleration of Waveform Relaxation
5:45-6:15 ~ C. Wagner Tangential Frequency Filtering Decompositions
6:15-6:45 J. Zhang Multigrid Solution of Convection-Diffusion Equation with High-Reynolds
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Topic: Session Chair: T Room C
Markov Chains Daniel Szyld

4:45 - 5:15 T. Dayar State Space Orderings for Gauss-Seidel in Markov. Chains Revisited
5:15-5:45 G. Horton On the Multi-Level Solution Algorithm for Markov Chains

5:45-6:15 D. Szyld  Threshold Partitioning of Sparse Matrices and Applications to Markov Chains
6:15-6:45

Room TBA WorkshopChql;r‘ . . L
7:30 p.m. Mike Heroux Sparse and Parallel BLAS
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SESSION I
Topic: Session Chair: ‘ Room A
Multigrid Joel Dendy
8:00 -8:30 R. Alchalabi Multigrid Method Applied to the Solution of an Elliptic, Generalized
Eigenvalue Problem
8:30 - 9:00 J. Dendy Some Multigrid Algorithms for SIMD Machines
9:00 - 9:30 C. Douglas Multigrid on Unstructured Grids Using an Auxiliary Set of Structured Grids
9:30 - 10:00 M. Griebel Multiscale Iterative Methods, Coarse Level Operator Construction and
— mmoiscrete Homogenization T T°°hm G T T T T
Topzc Sesswn Chazr' ] B T Room B
Applications TBA
8:00 -8:30 H.C. Chen Embedding SAS Approach Into Conjugate Gradient Algorithms for
Asymmetric 3D Elasticity Problems
8:30 - 9:00 M. Clemens Iterative Methods for the Solution of Very Large Complex-Symmetric
Linear Systems of Equations in Electrodynamics
9:00 - 9:30 T. Cwik Matrix Equation Decomposition and Parallel Solution of Systems Resulting

from Unstructured Finite Element Problems in Electromagnetics

f the S

Multxple RHS Roland Freund }

8:00 -8:30 W. Boyse Multiple Solutions to Dense Systems in Radar Scattering using a
Preconditioned Block GMRES Solver

8:30-~9:00 R. Freund The BL-QMR Algorithm for Non-Hermitian Linear Systems with Multiple
Right-Hand Sides

9:00 - 9:30 M. Malhotra Iterative Solution of Multiple Radiation and Scattering Problems in

Structural Acoustics Using the BL-QMR Algorithm
9:30 - 10:00

T. Chan

Galerkin Projection Methods for Solvmg Multiple Related Lmear Systems

SESSION I
Topic: Session Chair: Room A
Multigrid Joel Dendy
10;30 - 11:00 R. Hornung Adaptive Mesh Refinement and Multilevel Iteration for Multiphase,
Multicomponenet Flow in Porous Media
11:00 - 11:30 J. Jones Semi-Coarsening Multigrid Methods for Parallel Computing
11:30 - 12:00 P. Vanek An Algebraic Multigrid Algorithm for Symmetric Positive Definite Linear

Systems
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Topic: Session Chair: Room B
Applications TBA

10:30 - 11:00 A. Frommer Lattice QCD Computations: Recent Progress with Modern Krylov
Subspace Methods

11:00-11:30 R. Karamikhova  Numerical Solution of High-Kappa Model of Superconductivity

11:30 - 12:00 M. Heroux The Impact of Improved Sparse Linear Solvers on Industrial Engineering

Sesswn Chau'.
Projection Methods Roland Freund

10:30 - 11:00 A, Popov ‘ Projection Preconditioning for Lanczos-Type Methods

11:00 - 11:30 R. Bramley Partial Row Projection Methods

11:30 - 12:00 Generahzed Sub ace Correction Methods

~ SESSION IIT

Topic: Session Chair: Room A

Multigrid Joel Dendy

4:45-5:15 S. Oliveira A Multigrid Method for Variational Inequalities

5:15-5:45 W. Schmid A Multigrid Solution Method for Mixed Hybrid Finite Elements

5:45-6:15 H.J. Bungartz A Unidirectional Approach for d-Dimensional Finite Element Methods of
Higher Order on Sparse Grids

6:15 - 6:45 M. Brezma Two Level Method with Coarse Space Size Inde endent Conver ence
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Topic: Session Chatr. Room B

Applications Ton Russell

4:45-5:15 C. Yang Numerical Computation of the Linear Stability of the Diffusion Model for
Crystal Growth Simulation

5:15-5:45 L. Borges Highly Indefinite Multigrid for Eigenvalue Problems

5:45 - 6:15 G.S. Lett An Adaptive Nonlinear Solution Scheme for Reservoir Simulation

6. 15 - 6:45 A. Cardona An Iterative Method to Invert the LTSn Matrix ..,.....,

Topic: Session Chair: Room C

Helmholtz Roland Freund

4:45 - 5:15 E. Larsson Iterative Solution of the Holmholtz Equation

5:15-5:45 S. Kim Iterative Procedures for Wave Propagation in the Frequency Domain

5:45-6:15 J. Yoo “Multigrid for the Galerkin Least Squares Method in Linear Elasticity:

The Pure Displacement Problem

6:15 - 6:45
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NEWTON-KRYLOV-SCHWARZ ALGORITHMS
FOR THE 2D FULL POTENTIAL EQUATION

XIAO-CHUAN CAT*, WILLIAM D. GROPP!, DAVID E. KEYES!, ROBIN G. MELVIN® AND
DAVID P. YOUNG'

Abstract. We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite
element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions
with bilinear elements. The main algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-
difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method
as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for
problems with weak shocks, can be made robust for this class of mixed elliptic-hyperbolic nonlinear partial
differential equations, with proper specification of several parameters. We study upwinding parameters,
inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete
factorization, and report favorable choices for numerical convergence rate and overall execution time on a
distributed-memory parallel computer.

1. Introduction. In the past few years domain decomposition methods for linear par-
tial differential equations, including overlapping Schwarz methods [9, 26], have graduated
from theory into practice in many applications [19]. In this paper, we study several aspects
of the parallel implementation of a Krylov-Schwarz domain decomposition algorithm for the
finite element solution of the nonlinear full potential equation of aerodynamics, extending
our model studies of linear convection-diffusion problems in [3] and of linear aerodynamic
design optimization problems in [23]. Newton-Krylov methods [1, 10, 11, 28] are potentially
well suited and increasingly popular for the implicit solution of nonlinear problems when-
ever it is expensive to compute or store a true Jacobian. We employ a combined algorithm,
called Newton-Krylov-Schwarz, and focus on the interplay of the three nested components
of the algorithm, since the amount of work done in each component affects and is affected
by the work done in the others.

Newton-Krylov-Schwarz is a general purpose parallel solver for nonlinear partial differ-
ential equations and has been applied to complex multicomponent systems of compressible
and reacting flows in, e.g. [5, 6, 20]. This paper is concerned with the simpler scalar problem
of the full potential equation, which describes inviscid, irrotational, isentropic compressible
flow. Though the full potential model is highly idealized, it remains the model of choice
of external aerodynamic designers to date, because codes based thereupon offer reasonable
turnaround times and in many cases high accuracy compared to state-of-the-art Navier-
Stokes solvers. Though derived under the condition of isentropy, the full potential model

* Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309.
cai@cs.colorado.edu. This work was supported in part by NSF grants ASC-9457534, ASC-9217394, and
ECS-9527169, by NASA grant NAG5-2218, and by NASA contract NAS1-19480 while the author was in
residence at the Institute for Computer Applications in Science and Engineering.

! Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
gropp@mecs.anl.gov. This work was supported by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

} Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162 and ICASE, NASA
Langley Research Center, Hampton, VA 23681. keyes@icase.edu. This work was supported in part by NSF
grants ECS-8957475 and ECS-9527169, by the State of Connecticut and the United Technologies Research
Center, and by NASA contract NAS1-19480 while the author was in residence at the Institute for Computer
Applications in Science and Engineering.
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remains useful in flows with weak shocks, with pre-shock Mach numbers of about 1.2 or
less. It can also be extended by boundary layer patching to incorporate viscous effects, by
a branch cut to accommodate lift, and by source terms to simulate powered engines. In
engineering practice, accurately modeling such nonideal effects in complex geometries ac-
counts for almost all of the lines of code, but the solution of the resulting discrete equations
accounts for the majority of the execution time. The lower per-cell storage and computa-
tional requirements of the potential model allow the use of grids dense enough to achieve low
truncation error levels for complex geometries. The full potential equation also avoids the
spurious entropy generation near stagnation often associated with Euler and Navier-Stokes
codes for industrial complex geometries of interest. We justify the simply coded examples
in this paper by our focus on a solution algorithm that should not require any changes other
than greater irregularity in its sparse data structures to be useful in more practical settings.

With Newton’s method as the outer iteration, a highly nonsymmetric and/or indefinite
large, sparse Jacobian equation needs to be solved at every iteration to a certain accuracy,
which is often progressively tightened in response to a falling nonlinear residual norm. The
most popular family of preconditioners for large sparse Jacobians on structured or unstruc-
tured grids, incomplete factorization, is difficult to parallelize efficiently flop-for-flop in its
original global form. In our approach, the ILU-preconditioner for the Newton correction
equations is replaced by a multi-level overlapping Schwarz preconditioner. The latter is
not only scalably parallelizable up to available parallel granularities, but also possesses
an asymptotically optimal mesh- and granularity-independent convergence rate for ellipti-
cally dominated problems. Qur two-level overlapping additive Schwarz algorithm uses a
non-nested coarse space. Subdomain granularity, quality of subdomain solves, coarse grid
density, strategy for coarse grid solution, and inner iteration termination criteria are im-
portant factors in overall performance. We report numerical experiments on an IBM SP2
with up to 32 processors.

This report is a short version of [4].

2. The full potential problem. We study the full potential equation of aerodynam-
ics, see [16],

1) , V- (pv) =0,

where v = (v1,v2)7 is the velocity and p is the local density, respectively. We assume that
the flow is irrotational, which implies that there exists a velocity potential @ such that
v = V®. Here

' -1 ‘ Vo2 1/(v-1) -
@ o(8) = o (1+7_2__M3°(1_” gonz)) |

Observe that while the density is positive in regions of validity, (1) may be locally hyperbolic.
We consider only subsonic farfield boundaries. Following Boeing’s TRANAIR code [30], we
employ a finite element formulation of the two-dimensional full potential equation using
bilinear elements. The existence, uniqueness, and regularity of the solution are not central
to this paper, but have been discussed in the papers [22, 24] and references therein. The
finite element problem is formulated in terms of the weak form

o(,v) = /Q p(B)VS - Vo de.
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For subsonic problems, the above mentioned finite element method is sufficient; however,
for transonic cases upwinding has to be introduced in the density calculation in order to
capture the weak shock in the solution. The proper use of an upwinding scheme is essential
both to the success of the overall approach in finding the correct location and strength of
the shock and to the convergence, or the fast convergence, of the inexact Newton’s method.

Density p is assumed to be a constant in each element, and this constant is ordinarily
determined by the four values of ® at the corners of the element, through (2). Following
[17, 30], if an element is determined to be supersonic, or nearly so, its density value is
replaced by g = p — pV - V_p, where V is the normalized element velocity and V_p is an
upwind undivided difference. Here p is the element switching function,

(3) p = vomax{0,1— M2/M?},

where M is the element Mach number, M, is a pre-selected cutoff Mach number chosen to
introduce dissipation just below Mach 1.0, and v is a constant usually set to something
between 1.0 and 3.0 to increase the amount dissipation in the supersonic elements. In our
implementation, we use a technique referred to as iterated maximization of the switching
function. The details can be found in the our paper [4].

3. Newton-Krylov-Schwarz algorithms. NKS is a family of general purpose algo-
rithms for solving nonlinear boundary value problems of partial differential equations. In
terms of software development, NKS has three components that can be handled indepen-
dently. However, to achieve reasonable overall convergence, the three components have to
be tuned simultaneously.

Starting from an initial guess &g, which is sufficiently close to the solution, a solution
of the nonlinear system is sought by using an inexact Newton method: For some % € [0,1)
find s, that satisfies

(4) 1F(2k) + J(Br)skll < me

and set @1 = @f 4+ Apsg, where A € (0,1) is determined by a line search proce-
dure [8]. The vector s is obtained by approximately solving the linear Jacobian system
J(®r)sk = —F(®;) with a Krylov space iterative method. The action of Jacobian J on
an arbitrary Krylov vector w can be approximated by J(®r)w & 1 (F(2x + ew) — F(4)).
Finite-differencing with ¢ makes such matrix-free methods potentially more susceptible to
finite word-length effects than ordinary Krylov methods. The most expensive component
of the algorithm is the solution of the linear system with the Jacobian at each Newton
iteration. As discussed in Eisenstat and Walker [11], when &, is far from the solution, the
local linear model used in deriving the Newton method may disagree considerably with the
nonlinear function itself, and it is unproductive to “over-solve” these linear systems. We
tested several stopping conditions, including those discussed in [11], and found that the
best choice for our problems, based on elapsed execution time for a fixed relative nonlinear
residual norm reduction, is simply to set 7 = 1072||F(3)])..

We use the GMRES method [25], to solve the linear system of algebraic equations:
Pz = b, where P is the preconditioned Jacobian matrix. To fit the available memory, one
is sometimes forced to use the k-step restarted GMRES method [25]. However, in this
case neither an optimal convergence property nor even convergence is guaranteed. In our
experiments, we do not need to solve the linear systems very accurately; i.e., = 1072 in
|6~ Pz ||a < nlrof|2 is sufficient to capture an accurate solution to the nonlinear problem,
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in both. subsonic and transonic cases. We do observe that, for certain maximum Krylov
subspace dimensions (for example 30, in a problem with approximately 10* times as many
discrete: unknowns) and certain Mach numbers (M = 0.8), the restarted GMRES can
never reduce the initial residual below 1075, In other words, there is no linear convergence.
It is further noticed in such cases that the residual norm measured as a by-product in
GMRES is no longer the same as, or even close to, the true residual norm except at the
restarting points, where it is freshly updated.! A loose linear convergence tolerance avoids
this problem by returning to the Newton method with a step that is far from exact. In
the delicate balance between few nearly exact Newton steps with expensive inner linear
solutions and many inexact Newton steps with bounded-cost inner linear solutions, we find
the bottom line of overall execution time best served by bounding the inner linear work.
This approach is also found most effective in the context of inviscid aerodynamics based on
the primitiveé variable Euler equations in-[6]. It deprives Newton’s method of its asymptotic
quadratic convergence, but provides steep linear convergence.

We use a two-level overlapping Schwarz preconditioner with inexact subdomain solvers
and non-nested coarse grid to the linear system at each nonlinear iteration. Details can be
found in [2].

4. Numerical results. In this section, we report some numerical results obtained on
the IBM SP2 with up to 32 processors for both subsonic and transonic flows. € is a unit-
aspect ratio square partitioned into a uniform rectangular meshes up to 512 x 512 in size.
Let goo, the farfield flow speed, be normalized to 1. Let &, = [, godz. On the farfield
boundaries we assume & = ®,,. On the symmetry boundary of 2, the airfoil is located in
[1/3,2/3] and we use the transpiration condition 2 ay = —V®y - (ng, ny), Where n = (ng,ny)
is the unit outward normal, and where y = f(z) describes the shape of airfoil. Once the
function f(z) is given, this condition become: Qg = —¢eo f (:v) On [0,1/3] and [2/3,1], we
impose for symmetry the no penetration condltlon g‘z = 3y =0.

4.1. Observations — subsonic case. The linear systems that arise in this case fall
within the elliptic theory for Schwarz [26]. It takes 6 Newton iterations to reduce the
initial nonlinear residual by a factor of 10~1%. Because of the Krylov dimension cut-off, the
convergence is linear; see the left panel in Fig. 1. Key observations from this example are
as follows: (1) Even a modest coarse grid makes a significant improvement in an additive
Schwarz preconditioner, especially when the number of subdomains is large. As much as
40% of the execution time can be saved when adding a 2 x 3 coarse grid to a no coarse
grid preconditioner, for the 32-subdomain case. (2) A law of diminishing returns sets in at
roughly one point per subdomain. (3) When using 8 processors, the total communication
time is always less than 5% of the total computational time, however, it becomes as much
as 26% when using 32 processors.

We also run results when the subproblems are solved with ILU(k) for various levels
of fill-in. The overlap size is 3k, and the coarse grid is 7 X 8. The conclusion from the
tests is that the larger the k, the faster the method becomes. When using a small number
of processors, like 8, the best execution time is obtained with ILU(5). However, if the
processor number is large, the optimal result can only be obtained by considering several

! We believe, after Saad (personal communication), that this may be due to a lack of floating point
commutativity in the product that expresses zm in GMRES, namely z, = PVn,y, where Vi, is a Gram-
Schmidt basis for K. and y is a coefficient vector of dimension m that satisfies a related least squares
problem (see [25]). The effect seems related to drastic variations in the magnitude of successive elements of
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parameters: ovlp, k, the coarse mesh size, and perhaps others. We have not simultaneously
varied all relevant parameters to get the best results, but have presented controlled slices
through parameter space for insight.

4.2. Observations — transonic case. The first, and probably the most important,
observation is that without a proper upwinding discretization, all three components of NKS
can fail.

Fig. 3 shows the convergence history in terms of the C, curves. We note that it takes
only 4 to 5 iterations for the Newton’s method to establish the neighborhood of the shock,
but another 15 or so iterations to move it to the exact location. Mach contours at the
final solution are given in Fig. 3. While the shock is setting up, the linear convergence of
Newton’s method is stalled; see the left panel of Fig. 2. The inclusion of a small coarse grid
can reduce the total number of the linear iterations, as well as the total execution time,
by a factor of 30%. An optimally chosen coarse grid size can lead to a greater savings. In
Fig. 4, we overlay the convergence histories of all the linear solutions in a complete nonlinear
calculation. The history in the left panel is without a coarse grid, and that in the right
with a 7 x 8 coarse grid. The number of linear iterations and the total execution time can
be reduced even further if a proper overlap size, which is not usually very small, is used.

The best result, in terms of the total execution time, among all the test calculations
is obtained using a ILU(k), with & = 5, as the subproblems solver. It takes less than 2%
minutes on the 32-processor IBM SP2 to set up and solve the Mach 0.8 nonlinear system
with more than a quarter of a million unknowns.

5. Concluding remarks. We have investigated computationally the effectiveness of
Newton-Krylov-Schwarz methods applied to the full potential equation of aerodynamics
in some simplified situations in two space dimensions. Best performance is obtained with
modest overlap, a modest coarse grid (one or two points per processor), modest-to-generous
fill in the subdomain ILU preconditioners, and uniformly loose convergence tolerances on
the Krylov iterations within each Newton step.
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NEWTON-KRYLOV-SCHWARZ METHODS
IN UNSTRUCTURED GRID EULER FLOW

DAVID E. KEYES*

Abstract. Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun
to become established in computational fluid dynamics (CFD) over the past decade. The former employ
a Krylov method inside of Newton’s method in a Jacobian-free manner, through directional differencing.
The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov
accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed
as Newton-Krylov-Schwarz (N KS) methods, which seem particularly well suited for solving nonlinear elliptic
systems in high-latency, distributed-memory environments. We give a brief description of this family of
algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical
simulations with Newton-Krylov-Schwarz methods on an aerodynamic application emphasizing comparisons
with a standard defect-correction approach and subdomain preconditioner consistency.

Key words. Euler equations, domain decomposition, Newton methods, Krylov space

methods, overlapping Schwarz preconditioner, parallel computing.
AMS(MOS) subject classifications. 65H20, 65N55, 65Y05, 76G25.

1. Introduction. Several trends contribute to the importance of parallel implicit al-
gorithms in CFD. Multidisciplinary analysis and optimization put a premium on the ability
of algorithms to achieve low residual solutions rapidly, since analysis codes for individual
components are typically solved iteratively and their results are often differenced for sen-
sitivities. Problems possessing multiple scales provide the classical motivation for implicit
algorithms and arise frequently in locally adaptive contexts or in dynamical contexts with
multiple time scales, such as aero-elasticity. Meanwhile, the never slackening demand for
resolution and prompt turnaround forces consideration of parallelism, and, for cost effec-
tiveness, particularly parallelism of the high-latency, low-bandwidth variety represented by
workstation clusters. NKS methods fill this niche.

A Newton-Krylov-Schwarz (NKS) method combines a Newton-Krylov (NK) method
such as nonlinear GMRES [1], with a Krylov-Schwarz (KS) method, such as additive
Schwarz [3]. The key linkage is provided by the Krylov method, in this case the restarted
form of GMRES. From a computational point of view, the most important characteristic of
a Krylov method for the linear system Au = f is that information about the matrix A needs
to be accessed only in the form of matrix-vector products in a small number (relative to the
dimension of the matrix) of directions. NK methods are suited for nonlinear problems in
which it is unreasonable to compute or store a true Jacobian. However, if the Jacobian A
is ill-conditioned, the Krylov method requires an unacceptably large number of iterations
and must be preconditioned. It is in the choice of preconditioning where the battle for low
computational cost and scalable parallelism is usually won or lost.

In XS methods, the preconditioning is introduced on a subdomain-by-subdomain basis,
which provides good data locality for parallel implementations over a range of granularities,
and allows significant architectural adaptivity. With an emphasis on operation count com-
plexity and parallel efficiency, Schwarz is usually employed with very modest subdomain
overlap and in a two-level form, in which a small global problem is solved together with

* Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162 and ICASE, NASA
Langley Research Center, Hampton, VA 23681. keyes@icase.edy. This work was supported in part by NSF
grant ECS-9527169 and by contract NAS1-19480 while the author was in residence at the Imstitute for
Computer Applications in Science and Engineering.




the local subdomain problems at each iteration. Mathematically, if Au = f arises as the
linearized correction step of a discretized PDE computation, Schwarz operates by:
1. Decomposing the space of the solution u: U = ) ; U;
2. Finding the restriction of A to each Ux: Af = RkARZ, for some restriction operators
Ry : U — Uy and extension operators Rf Uy — U; .
3. Preconditioning with the A7, where the inverse of Ay is well defined within the
k™ subspace. .
In Schwarz-style domain decomposition, the subspace Uy corresponding to subdomain k is
the span of nodal basis or other expansion functions with support over the subdomain. A
practical Schwarz preconditioner is

(1) , B l= Z Rf(fik)_le,
B

where Ay is a convenient approximation to Ax = RkARf,f.'. In this abstract, Ay is usually an
incomplete LU (ILU) factorization of A, with modest fill permitted. For k£ = 1,2,..., the
Ry and R,I; are simply gather and scatter operators, respectively, one for each subdomain
with small overlap between the subdomains. For an optional ¥ = 0 term corresponding to
the coarse space, R represents a full-weighting restriction operator in the sense of multigrid,
and R} is the corresponding prolongation. Neither A nor B~ is assembled globally. Rather,
when their action on a vector is needed, a processor governing each subdomain executes
local operations, after receiving a thin buffer of data required from its neighbors to complete
stencil operations on the boundary of the subdomain. For the assembly and solution of the
coarse-grid component of the preconditioner, data exchanges further than nearest neighbor
must generally occur. :

The NXS technique is compared in this abstract against a defect correction algorithm
common to many implicit codes. The objective of either algorithm is to solve the steady-
state conservation equations f(u) = 0 through the pseudo-transient form &+ f(u) =0,
where the time derivative is approximated by backwards differencing, with a time step that
ultimately approaches infinity. A standard defect correction approach employs an accurate
right-hand side residual discretization, fhign(u), and a convenient left-hand side Jacobian
approximation, Jiw(u), based on a low-accuracy residual Jiow(u), to compute a sequence
of corrections, §u = u™t! — u®. Computational short-cuts are employed in the creation of
the left-hand side matrix, which may, for instance, be stabilized by a degree of first-order
upwinding that would not be acceptable in the discretization of the residual itself. ‘

The so-called “defect” is fhigh(%)— fiow(u), and the nonlinear defect correction scheme to
drive faign(u) to zero is to solve approximately for u** in Frow(u™) = fiow(u™)— frign(u™),
which may be linearized as

(2) . Jlaw(un)‘su = —fhigh(un)'

In the case of pseudo-transient computations, the approximate Jacobian Jiow is based on a
low-accuracy residual: Jipw = % + Qf.;—‘fﬂ, where D is a scaling matrix. It is required either
to solve with Jioy, itself, or with some further algebraic or parallel approximation, J1ow-
Inconsistency between the left- and right-hand sides prevents the use of large time steps,
§t, and prevents (2) from being a true Newton method.

A Newton-Krylov approach employs a (nearly) consistent left-hand side obtained by
directionally differencing the actual residual, frign:

(3) Jhigh(u”) §u = — frign(u™),
2




in which the action of Jp;y, on a vector is obtained through directional differencing, for
instance, Jhign(u™)v = %[ Jrigh(u™ 4+ hv) — frignh(u™)], where h is a small parameter. The
operators on both sides of (3) are based on consistent high-order discretizations; hence time
steps can be advanced to values as large as linear conditioning permits, recovering a true
Newton method in the limit.

Preconditioning (3) by Jjoy, for instance on the left, as in

(4) (jlow)_thigh(un) bu= —(jlow)_lfhigh(un),

shifts the inconsistency from the nonlinear to the linear aspects of the problem. This should
be contrasted with the customary preconditioned form of (2),

(5) (jlow)_lJlow(un) du= "(jlow)_lfhigh(un)-

At this level of abstraction, it is not clear which is better — many nonlinear steps with
cheap subiterations (5), or a few nonlinear steps with expensive subiterations (4). Execution
time comparisons are more practical arbiters than are rates of convergence for the steady-
state residual norm, but running times are senmsitive to parametric tuning as well as to
architectural parameters. We present a comparison of (4) and (5) in Section 3.

A more comprehensive set of comparisons of this type, comparing (4), (5), and

(6) (Jhigh) ™ Tigh(v™) 8 = —(Jaigh) ™ Faion(u™)

may be found in [4]. Of course, (6) relies on possessing the full high-order Jacobian, and is
not a matrix-free method.

2. Parallel Scalability of Krylov-Schwarz. Practical scalable parallelism is one
of the major motivations for research on and implementation of domain decomposition
methods in CFD. We loosely call an algorithm/architecture combination “scalable” if its
parallel efficiency is constant asymptotically, in any of several coordinated limits of discrete
problem size 7 and parallel granularity p.

For an iterative numerical method, in which the total execution time T(n,p) is the
product of an iteration count I(n,p) with an average cost-per-iteration C(n,p), it is useful
to separate the parallel efficiency into two factors: numerical efficiency and implementation
efficiency. Numerical efficiency 7, measures the degradation of the convergence rate as the
problem is scaled, and implementation efficiency 7); measures the degradation in the cost
per iteration as the problem is scaled. For instance, we may take T = I(n,1)/I(n,p) and
i = C(n,1)/[p- C(n,p)]. The numerical efficiency is usually very difficult to predict for a
nonlinear problem, particularly when refining the grid (increasing n) resolves new physics.
However, for certain domain decomposition methods applied to model linear problems with
smooth solutions, the relative numerical efficiency I(ny,p1)/I(ng,ps), with pp > p; and
n1/P1 = n2/p2, can be proved to be 100% asymptotically.

The proof relies on the link between the rate of convergence of Krylov methods and
the condition number of the (preconditioned) operator B~1A4, and on the link between
the condition number and the extremal eigenvalues in the symmetric case, which can be
estimated by Rayleigh quotients. Upper and lower bounds on the condition number of B~1 4
may be constructed that are independent of the mesh cell diameter & and the subdomain
diameter H, or that depend only upon their ratio. In turn, h and H can be inversely
related to n and p in simple problems. The theory, which has evolved over a decade to
cover nonsmooth, nonsymmetric and indefinite problems, as well as nonnested spaces, is
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TABLE 1

A St T A e

Scalabilily results — Poisson problem

Fixed Size Fixed Mem./proc.
# proc. || # cells | its.  sec. sec. /it. # cells | its. sec. sec./it.
1] 262,144 | 1* 1835  183.5 16,384 | 1* 8.8 8.8
4| 262,144 | 8 325.7 40.7 65,536 7 58.4 8.3
16 || 262,144 | 12 96.7 8.1 262,144 | 12 96.7 8.1
64 || 262,144 | 12 17.6 1.5 || 1,048,576 | 11 91.2 8.3

digested among other places in [2] and [8]. Before presenting parallel CFD results, we
illustrate the performance achievable by such methods on contemporary parallel systems.

A message-passing code for the Poisson problem on a unit square was ported to several
machines using MPI. With convergence defined as five orders of magnitude reduction in
(unpreconditioned) residual, we tested both fixed-size scalability and fixed-memory-per-
node scalability on an Intel Paragon with 1, 4, 16, or 64 subdomains, with one subdomain
per processor. The results for a fixed-size 512 x 512 grid are shown in the left side of Table 1.
The right side.of Table 1 is based on a problem size that grows from 16K to 1M unknowns,
with a 128 x 128 subdomain problem on every processor. The results coincide in the third
Tow.

On each subdomain, a direct FFT-based method is employed, so that only one itera-
tion is required in the uni-processor case. Asymptotically, approximately 12 iterations are
required, independent of the granularity. As seen in the column “sec./it.” on the right. the
implementation efficiency is near perfect in this granularity range. Problems can be solved
in constant time as resolution and processing power are increased in proportion. Consulting
the fixed size “sec./it.” column, we note a super-unitary implementation efficiency — as p
increases be a factor of 4, runtime decreases by more than a factor of 4. This is attributable
to the cacheing or paging advantages of domain-based array blocking, which are clearly
more important than communication effects in this range of n and p.

In general CFD applications, finding a cost-effective coarse-grid operator is not straight-
forward, and one is often resigned to a Schwarz-preconditioned operator that deteriorates
in numerical efficiency as the granularity of the decomposition increases. In such cases,
optimizing execution time as a function of granularity is difficult, apart from numerical
experimentation.

3. Aerodynamics Application. In this section, we present parallel numerical results
for inviscid, subsonic compressible external flow over a two-dimensional multiple-element
airfoil using Newton-Krylov-Schwarz modeled by the Euler equations:

(7) V.(pv) =
(8) V-(pvv+pl) = 0
9) V-((pe+p)v) = 0

where p is the fluid density, v the velocity, p the pressure, and e the specific total energy,
together with the ideal gas law, p = p(y — 1)(e — |v|2/2), where 7 is the ratio of specific
heats. .

The problem of inviscid incompressible flow around a two-dimensional four-element
airfoil in landing configuration was studied in terms of convergence rate and parallel per-
formance in [9], and the same code was converted to NKS3 form for the present study. The
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F16. 1. Zoom of the unstructured grig cells in the near field.

details of the discretization are left to the original reference. From [9] we consider the
vertex-based discretization with a first-order Roe scheme on the left (out of which we form
f,;&,), and a second-order Roe scheme on the right (which defines frigrn). The flow is sub-
sonic (Ma = 0.2), with an angle of attack of 5°. Adaptively placed unstructured grids of
approximately 6,000 and 16,000 vertices were decomposed into from 1 to 128 load-balanced
subdomains, including all power-of-two granularities in between. We report below on the
problem of 6,019 vertices, with four degrees of freedom per vertex (giving 24,076 as the alge-
braic dimension of the discrete problem). This is certainly small by parallel computational
standards, though it is probably reasonably adequate in two dimensions from a physical
modeling point of view, since the unstructured grid is not restricted to quasi-uniformity,
and mesh cells are concentrated into small regions between the airfoils requiring the greatest
refinement. The clustering can be seen in Fig. 1, which shows Jjust a near field subset of the
grid. (The grid recedes into the far field with smoothly increasing cell sizes. If the entire
grid is is scaled to the page size, the flaps are too small to be visible.)

Figure 2 compares the convergence histories of the defect correction and NKS solvers,
over a range of time sufficient to that permit the reduction of the residual of the NKS method
to drop to within an order of magnitude of Emach- Both solvers utilize a residual-adaptive
setting of the CFL number (related to the size of the time step 6t in the pseudo-transient
code), known as “switched evolution/relaxation” (SER) [6]. Starting from some small initial
CFL number, CFL is adaptively advanced according to:

I4+1 — FLI . ”f(u)l—l“.
CEL™ = CFL S

As ||f(@|| — 0, 6 — co. Since convergence is not generally monotonic in || f(x)||, CFL
may also adaptively decrease, and it should be ratcheted away from too large a relative
decrease, as well. ,

Both solvers use the same Schwarz preconditioner, namely one-cell overlap and point-
block ILU(0) in each subdomain. NKS is clearly superior to defect correction in convergence
rate, though the cost per iteration is sufficiently high that defect correction is faster in exe-
cution time up to a modest residual reduction. (The cross-over point in the right plot is at
about a reduction of 10* of the initial residual. A polyalgorithm, initially defect correction
then switched to NKS when defect correction prohibits fast growth in CFL, may ultimately
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be much faster than either pure algorithm exclusively, as demonstrated for a related problem
in [7], and as found in preliminary experiments for the present problem.) The asymptotic
convergence rate is shown to be linear, since the Newton correction iterations were trun-
cated well above the tolerances necessary to guarantee superlinear or quadratic convergence.
Improving the constant in linear convergence is reason enough to use the matrix-free split
discretization method (3). Table 2 compares the performance of the NKS version of the
solver across three doublings of the processor force of the Intel Paragon for this fixed-size
problem. The second-order evaluation of fluxes in frign(u) requires that first conserved vari-
ables, and later their fluxes, be communicated across subdomain boundaries each time the
routine to evaluate the nonlinear residual is called. This imposes an extra communication
burden per iteration on the matrix-free NKS solver, relative to a method that explicitly
stores the elements of the Jacobian. Nevertheless, for residual norm reductions of more
than a few orders of magnitude, the parallelized NKS solver is faster than the parallelized
defect correction solver. The number of subdomains matches the number of processors, so
convergence rate of the preconditioned system degrades slowly with increasing granularity, .
as coupling is lost in the preconditioner. However, the number of Krylov vectors per New-
ton iteration is bounded (at 2 restart cycles of 25 each), so the data translates directly to
parallelization efficiency of the truncated Newton method.

In this example, no coarse grid is used, but [9] compares the defect correction form
of the algorithm with and without a coarse grid. The coarse grid appears multiplicatively
rather than additively, as in (1). The restriction operator consists of summing subdomain
boundary fluxes and the prolongation operator is essentially piecewise constant subdomain
extension followed by a boundary relaxation process. On the original platform of the Intel
iPSC/2, the convergence rate advantage of the coarse grid is nearly completely cancelled
by the sequential bottleneck. The coarse grid aspect of the precondltloner demands further
attention.

4. Conclusions and Related Extensions. A variety of CFD applications are (or
have inner) nonlinear elliptically-dominated problems amenable to solution by NKS al-
gorithms, which are characterized by low storage requirements (for an implicit method)
and locally concentrated data dependencies with small overlaps between the preconditioner
blocks. The addition of a global coarse grid in the Schwarz preconditioner is often effective,
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TABLE 2
Wall-clock performance and relative parallel efficiency for unstructured Euler code on an Intel Paragon.

# proc. | sec./iter. rel. eff.
4] 36.09 (L00)

8 19.21 0.94

16 10.65 0.85

32 6.25 0.72

where architecturally convenient. A deterrent to the widespread adoption of NKS algo-
rithms is the large number of parameters that require tuning. Each component (Newton,
Krylov, and Schwarz) has its own set of parameters, the most important of which, in our
experience, is the convergence criterion for the inner Krylov subiterations. In large-scale,
poorly preconditioned problems, including the test problems of this abstract, tunings that
guarantee quadratic convergence lead to unacceptable inner iteration counts and/or mem-
ory consumption. However, the plethora of parameters can be exploited, in principle, to
produce optimal tradeoffs in space and time for a given problem class. Though parametric
tuning is important to performance, conservative robust choices are not difficult.

The NK technique has been compared with V-cycle multigrid on Euler and Navier-
Stokes problems without parallelizing the preconditioning in [5, 7]. For a subsonic unstruc-
tured grid example, NK trails multigrid in execution time by a factor of only about 1.5.
This penalty can be accepted when it is realized that the NK method has the advantage
of doing all of its computation without generation of a family of coarse unstructured grids
(which is difficult for three-dimensional unstructured grids). This work has been extended
to three-dimensional problems in [7].
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Adaptive Parallel Multigrid for Euler and incompressible Navier-Stokes equations
Ulrich Trottenberg

(Joint work with: K. Oosterlee, H. Ritzdorf, A, Schacller, H.
Schwichtenberg, B. Steckel, K. Stacben, G. Umlauf, J. Wu)

The combination of
- very efficient solution methods (Multigrid)

- adaptivity
and

- parallelism (distributed memory)

clearly is absolutely necessary for future oriented numerics but still regarded as extremely
difficult or even unsolved.

We show that very nice results can be obtained for real life problems. Our approach is
straightforward (based on "MLAT"). But, of course, reasonable refinement and load-
balancing strategies have to be used. Our examples are 2D, but 3D is on the way.




Domain Decomposition Methods for Mortar Finite Elements

Olof Widlund
widlund@WIDLUND.CS.NYU. EDU

In the last few years, domain decomposition methods, previously
developed and tested for standard finite element methods and
elliptic problems, have been extended and modified to work for
mortar and other nonconforming finite element methods. A survey
will be given of work carried out jointly with Yves Achdou, Mario
Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and
h-p-version finite elements will also be discussed.
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Extended Krylov subspaces approximations of matrix functions.
Application to computational electromagnetics.

Vladimir Druskin,* Leonid Knizhnerman + and Ping Lee*.

There is now a growing interest in the area of using Krylov subspace approximations to
compute the actions of matrix functions. The main application of this approach is the
solution of ODE systems, obtained after discretization of partial differential equations by
method of lines. In the event that the cost of computing the matrix inverse is relatively
inexpensive, it is sometimes attractive to solve the ODE using the extended Krylov
subspaces, originated by actions of both positive and negative matrix powers. Examples of
such problems can be found frequently in computational electromagnetics.

In this presentation, we introduce an economical Gram-Schmidt orthogonalization on the
extended Krylov subspaces of a symmetric matrix. An error bound for a family of
problems arising from the elliptic method of lines (i.e. the matrix square root and its stable
exponentials) is derived. The bound shows that, for the same approximation quality, the
diagonal variant of the extended subspace requires about the square root of the dimension
of the standard Krylov subspaces using only positive or negative matrix powers.

Two applications arising from geophysical electromagnetics, one to the solution of a 2.5-
D elliptic problem for direct current potential and another for 3-D eddy-current problem in
conductive media attest to a computational efficiency of the method.

* Schlumberger-Doll Research, Old Quarry Road,
Ridgefield, CT 06877-4108,

+ Central Geophysical Expedition, Narodnogo Opolcheniya St.,
House 40, Bldg. 3, Moscow 123298, Russia




Applications of Implicit Restarting in Optimization and Control Dan Sorensen

Dan Sorensen
Dept. Computational and Applied Mathematics
Rice University
Houston, TX 77251-1892

Implicit restarting is a technique for combining the implicitly shifted QR mechanism with a
k-step Arnoldi or Lanczos factorization to obtain a truncated form of the implicitly shifted
QR-iteration suitable for large scale eigenvalue problems. The software package
ARPACK based upon this technique has been successfully used to solve large scale
symmetric and nonsymmetric (generalized) eigenvalue problems arising from a variety of
applications.

Recently, the implicit restarting technique has been applied to problems in control and
optimization. The technique has been generalized to provide an implicit restarting
technique for the nonsymmetric two sided Lanczos process. This mechanism is used to
obtain stable reduced models for state space control systems. Implicit restarting has also
found application in the numerical solution of large scale trust region subproblem:
Minimize a quadratic function subject to an ellipsoidal constraint.

This talk will survey the applications in control and optimization.




APPLICATION OF SPECTRAL LANCZOS DECOMPOSITION METHOD TO
LARGE SCALE PROBLEMS ARISING GEOPHYSICS

T. Tamarchenko
Western Atlas Logging Services
10201 Westheimer
Houston, TX 77042, USA
E-mail: tanya.tamarchenko@waii.com

This paper presents an application of Spectral Lanczos Decomposition Method
(SLDM) to numerical modeling of electromagnetic diffusion and elastic waves
propagation in inhomogeneous media. SLDM approximates an action of a matrix function
as a linear combination of basis vectors in Krylov subspace.

I applied the method to model electromagnetic fields in three-dimensions and elastic
waves in two dimensions. The finite-difference approximation of the spatial part of
differential operator reduces the initial boundary-value problem to a system of ordinary
differential equations with respect to time. The solution to this system requires calculating
exponential and sine/cosine functions of the stiffness matrices.

Large scale numerical examples are in a good agreement with the theoretical
error bounds and stability estimates given by Druskin, Knizhnerman, 1987.




Some Uses of the Symmetric Lanczos Algorithm
— and Why it Works!

V.L. Druskin* A. Greenbaumf L.A. Knizhnerman?
January 1, 1996

Abstract

The Lanczos algorithm uses a three-term recurrence to construct
an orthonormal basis for the Krylov space corresponding to a sym-
metric matrix A and a starting vector ¢;. The vectors and recurrence
coefficients produced by this algorithm can be used for a number of
purposes, including solving linear systems Au = ¢ and computing the
matrix exponential e~*4 ¢, Although the vectors produced in finite pre-
cision arithmetic are not orthogonal, we show why they can still be used
effectively for these purposes.

The reason is that the 2-norm of the residual is essentially deter-
mined by the iridiagonal matriz and the next recurrence coefficient
produced by the finite precision Lanczos computation. It follows that
if the same tridiagonal matrix and recurrence coefficient are produced
by the exact Lanczos algorithm applied to some other problem, then
exact arithmetic bounds on the residual for that problem will hold for
the finite precision computation. In order to establish exact arithmetic
bounds for the different problem, it is necessary to have some infor-
mation about the eigenvalues of the new coefficient matrix. Here we
make use of information already established in the literature, and we
also prove a new result for indefinite matrices.

*Schlumberger-Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108

tCourant Institute of Mathematical Sciences, 251 Mercer St., New York, NY 10012.
This work was supported by NSF grant 25968-5375.

Central Geophysical Expedition, Narodnogo Opolcheniya St., House 40, Bldg. 3,
Moscow 123298, Russia
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Multigrid Solution of Incompressible Turbulent Flows By using
Two-Equation Turbulence Models

X. Zheng, C. Liu
Front Range Scientific Computations, INC., Denver, Colorado
C. H. Sung
David Taylor Model Basin, Bethesda, Maryland

Most of practical flows are turbulent. From the interest of engineering applications, simu-
lation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes
equations and turbulence model equations. It has been widely accepted that turbulence
modeling plays a very important role in numerical simulation of practical flow problem, par-
ticularly when the accuracy is of great concern. Among the most used turbulence models
today, two-equation models appear to be favored for the reason that they are more general
than algebraic models and affordable with current available computer resources. However,
investigators using two-equation models seem to have been more concerned with the solution
of N-S equations. Less attention is paid to the solution method for the turbulence model
equations. In most cases, the turbulence model equations are loosely coupled with N-S equa-
tions, multigrid acceleration is only applied to the solution of N-S equations due to perhaps
the fact the turbulence model equations are source-term dominant and very stiff in sublayer
region.

In this paper, a multigrid method is developed to solve the two-equation turbulence
models as well as the N-S equations. These two sets of equations are solved by using a
strongly-coupled time marching method. Two popular two-equation models, k-w and k-e,
are discussed in this work. A point-implicit technique is developed to improve the efficiency
of the solution, and more importantly to alleviate the stiffness of the governing equations
exhibited in near wall region. Treatments of important source terms of turbulence model
through the multigrid process is tested and analyzed.

The method is first tested by applying to the classic flat plate boundary layer low. The
efficiency, robustness and accuracy of the method are demonstrated by the calculation of
incompressible flow around a underwater vehicle model at a Renolds number more that ten
million.




Nonlinear Krylov Acceleration of Reacting Flow Codes

S. Kumar, R. Rawat, P. Smith
Department of Chemical and Fuels Engineering
University of Utah
Salt Lake City, Utah 84112

M. Pernice
Utah Supercomputing Institute
University of Utah
Salt Lake City, Utah 84112

We are working on computational simulations of three-dimensional reactive flows
in applications encompassing a broad range of chemical engineering problems. Ex-
amples of such processes are coal (pulverized and fluidized bed) and gas combustion,
petroleum processing (cracking), and metallurgical operations such as smelting. These
simulations involve an interplay of various physical and chemical factors such as fluid
dynamics with turbulence, convective and radiative heat transfer, multiphase effects
such as fluid-particle and particle-particle interactions, and chemical reaction.

'The governing equations resulting from modeling these processes are highly non-
linear and strongly coupled, thereby rendering their solution by traditional iterative
methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes
impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as
GMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strat-
egy allows us to take advantage of the problem-definition capabilities of the existing
solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations) method and its variants as nonlinear preconditioners
for the nonlinear Krylov method. We have also adapted a backtracking approach for
inexact Newton methods to damp the Newton step in the nonlinear Krylov method.

This will be a report on work in progress. Preliminary results with nonlinear
GMRES have been very encouraging: in many cases the number of line Gauss-Seidel
sweeps has been reduced by about a factor of 5, and increased robustness of the
underlying solver has also been observed.




Schwarz-based algorithms for compressible flows

M. D. Tidriri *

ICASE
MS 132C, NASA-LaRC, Hampton, VA 23681-0001

1 Methodology

To compute steady compressible flows one often uses an implicit discretization ap-
proach which leads to a large sparse linear system that must be solved at each time
step. In the derivation of this system one often uses a defect-correction procedure, in
which the left-hand side of the system is discretized with a lower order approxima-
tion than that used for the right-hand side. This is due to storage considerations and
computational complexity, and also to the fact that the resulting lower order matrix
is better conditioned than the higher order matrix. The resulting schemes are only
moderately implicit. In the case of structured, body-fitted grids, the linear system can
easily be solved using approximate factorization (AF), which is among the most widely
used methods for such grids. However, for unstructured grids, such techniques are no
longer valid, and the system is solved using direct or iterative techniques. Because of
the prohibitive computational costs and large memory requirements for the solution of
compressible flows, iterative methods are preferred. In these defect-correction methods,
which are implemented in most CFD computer codes, the mismatch in the right and
left hand side operators, together with explicit treatment of the boundary conditions,
lead to a severely limited CFL number, which results in a slow convergence to steady
state aerodynamic solutions. Many authors have tried to replace explicit boundary
conditions with implicit ones (see for instance [11], [7], and [6]). Although they clearly
demonstrate that high CFL numbers are possible, the reduction in CPU time is not
clear cut.

The investigation of defect-correction procedures based on Krylov methods, to-
gether with implicit treatment of the boundary conditions has been done by the au-
thor in [10]. In [10] the author has also studied Newton-Krylov matrix-free (see also
(11, [8], [9], [2], and [3]) methods combined with mixed discretization in the implicitly
defined Jacobian-Preconditioner. The preconditioner based on incomplete factoriza-
tions studied in [10], is difficult to parallelize efficiently. The focus in this work is on

* email:tidriri@icase.edu. This work was supported by the National Aeronautics and Space Ad-
ministration under NASA contract NAS1-19480 while the author was in residence at the Institute for
Computer Applications in Science and Engineering.
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the developement of algorithms that are suitable for parallel computing environment.
In this case, domain decomposition methods that allow the reduction of the global
solution of a given problem to the solutions of local subproblems are preferred. We
propose, therefore, to combine these methods with the preconditioned Newton-Krylov
matrix-free methods developed in [10].

One of the domain decomposition algorithms that has potential applications on
parallel computers is the additive Schwarz algorithm [4]. The other Schwarz-based
method; the multiplicative Schwarz method [4] can also be used in parallel environment
computing by using a coloring process. The proposed algorithm is, therefore, to com-
bine the Newton-Krylov matrix-free methods with the Schwarz-based methods. The
combination of Newton-Krylov matrix-free with domain decomposition methods was
first introduced by the author in [8] and [9]. More precisely the author has combined
Newton-Krylov matrix-free method with the Domain Decomposition Time Marching
Algorithm that was introduced by Le Tallec and Tidriri in [5] (see also [8] and [9]).

2 Results

To test the proposed algorithm we consider a NACA0012 steady transonic airfoil at
an angle of attack of 1.25 degrees and a freestream Mach number of 0.8. The mesh we
use is composed of 4096 cells. To illustrate the overall benefit of the combination of
the Schwarz-based algorithms with the Newton-Krylov matrix-free methods as com-
pared to their combination with the more standard defect-correction procedures, using
implicit boundary conditions, we present in figure 1 the curv presenting the logarithm
of the nonlinear steady-state residual versus the CPU time. This curv corresponds to
the particular Schwarz-based method: the additive Schwarz algorithm using the mesh
described above. This corresponds also, to the particular 8 x 8 subdomain decom-
position. In all computations performed herein the solution obtained agrees with the
standard one. All Those calculations are performed on the same Sparcl0 machine.
The relative tolerance in the solution of the linear system is 10™2 for the precondi-
tioned Krylov methods (ILU/GMRES). The steady state regime is declared when the
nonlinear residual norm reaches a value of (or less than) 10~°.
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Figure 1: Steady-state residual versus CPU time (in seconds) for steady transonic flow
at convergence for the 8 X 8 decompositions, employing the additive Schwarz algorithm
combined with defect-correction procedures with explicit (DC-explicit) and implicit
(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-
free) methods.




Multilevel Local Refinement and Multigrid Methods for 3-D Turbulent
Flow

C. Liao and C. Liu
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C.H. Sung and T. T. Huang
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Bethesda, Maryland

Abstract

A numerical approach based on multigrid, multilevel local refinement, and precondi-
tioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is
presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels
and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch
is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are
used for numerical stability. The conservative artificial compressibility method are used for
further improvement of convergence. To improve the accuracy of coarse/fine grid interface of
local refinement, flux interpolation method for refined grid boundary is used. The numerical
results are in good agreement with experimental data. The local refinement can improve
the prediction accuracy significantly. The flux interpolation method for local refinement can

keep conservation for a composite grid, therefore further modify the prediction accuracy.
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A MIXED FINITE ELEMENT DOMAIN DECOMPOSITION METHOD FOR.
NEARLY ELASTIC WAVE EQUATIONS IN THE FREQUENCY DOMAIN

XiaoBiNG FENGT

ABSTRACT. A non-overlapping domain decomposition iterative method is proposed and analyzed for
mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary
conditions. These differential systems describe the motion of a nearly elastic solid in the frequency
domain. The convergence of the iterative procedure is demonstrated and the rate of convergence
is derived for the case when the domain is decomposed into subdomains in which each subdomain
consists of an individual element associated with the mixed finite elements. The hybridization of
mixed finite element methods plays a important role in the construction of the discrete procedure.

§1. Introduction. Domain decomposition (DD) methods have been studied extensively and
become very attractive for their parallelism and flexibility (cf. [3], [5], [14], [16], [17] and the
references therein). In domain decomposition methods, a domain over which the problem is
defined is partioned into subdomains, then the original problem is decomposed into a number
of subdomain problems which could be solve in parallel. Another advantage of dividing the
whole domain problem into subdomain problems is that even on sequential computers one can
approximate the parts of the solution with greater independence. The major difficulties with
such domain decomposition procedures are to transfer information between subdomains and to
piece the subdomain solutions together into a reasonable approximation of the true solution to
the given problem.

The objective of this paper is to develop a non-overlapping domain decomposition method
based on mixed finite element methods for the nearly elastic wave equations in the frequency
domain. The systems considered are elliptic but noncoercive, which have the similar character-
istics to the Helmhotz equation. One motivation for developing domain decomposition iterative
method for the problem is that the classical relaxation methods such as Jocobi and SOR methods
are not convergent for the problem, the other motivation is that the method can be very naturally
implemented on a parallel computer by assigning each subdomain to its own processor. The main
point is to use Robin type boundary conditions to pass information between subdomains, on the
other hand, to realize this idea to the mixed finite element equations poses the main difficulty
for the analysis and implementation.

The iterative procedures given in this paper is closely related to one developed by Després
[7] for the Helmhotz equation, and to the procedure developed by Douglas, Paes Leme, Roberts
and Wang [8]. The hybridization of mixed finite element methods is strongly used in our iterative
procedure. A related procedure for nearly elastic wave equations based on the nonconforming
Wilson finite element was developed in [2]. )

We remark that this paper is a much condensed version of [11], which may be regarded as a
long abstract of [11]. The domain decomposition method for the continuous differential problem
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is presented in Section 2, its application for solving the mixed finite element approximations to
the systems using the the Johnson—Mercier element [13] and Arnold-Douglas—Gupta elements
[1] are illustrated briefly in Section 3. Almost all the proofs are omitted, interested readers are
referred to [11] for the details. :

§2. The DD method for the differential problem. In this paper we consider the following

sequence of elliptic systems:

(2.149) —w?u—dive(u)=f, inQ,
(2.1.1) o(u)v +iwhAu=g, onl=20Q,

v
i

.for each w > 0. Where Q is a convex polygonal domain in R¥ for N = 2,3, in particular, we

are interested in the case that = (0,1). v denotes the outward normal vector on T', u is the

displacement vector in the frequency domain. The stress—strain relation in the frequency domain
is described as follows: '

(2.2.) o= Atr(e(u))I + 2pe(u), in,
(2.2.ii) (W) =5(VutVat), g,
(2.2.1i) A=A+, p=pe i,

where I denotes the N x N identity matrix. The coefficients A, and p, are known as the Lamé

consta.nts for the material. Also, it is assumed that A; and p; are strictly posmve and that
XA << Ar and p; << py. The coeficients ); and p; are not measurable directly but are related
to other parameters measuring attenuation (cf. [15]). Finally, f denotes the source vector and A

is a given N x N positive definite constant matrix. The bounda.ry condition (2.1.ii) with g = 0

is a standard first order absorbing boundary condition which allows waves striking normally to
the boundary T to be completely annihilated ([11], [15}).

We remark that when p; = ); = 0, the material becomes an elastic material and (2.1) is
nothing but the Fourier—transformed (m time) equations of the classical elastic wave equations.
So the frequency domain formulations for elastic waves are also included in (2.1) and they can
be regarded as limiting forms of nearly elastic waves as ); and p; go to zero. ,

For any space X, let X [respectively, X ] denote the space of N—vectors [N x N-tensors] with

components in X. If X is normed, associated norms are defined by

N 3 N 3
lollx = [ Do loslk ]+ lzlle=| D dmellk )
' i=1 F.k=1

and the subspace X of X consisting of N x N—tensors which are symmetric. We also introduce
the following spec1a.1 notations:

V=IL*Q), H=Hdiv;),={reL*Q),: dvreV}.

Notice that in ths paper all functions are complex—valued.
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Theorem 2.1 (cf. [2]). For any given f € H"I(Q) and g€ H'T(I‘), problem (2.1) admzts a
unigue solution u € H"l(Q) Moreover, sz € LZ(Q) and g € LZ(I‘), then u € Hz(Q)

Applying the trace operator tr to both sides of (2.1.i) and solving for the tr(e (w)), we see that

m{‘m, for N =2,

(2.3) tr(g(u)) = vtr(u), where v= {
=~ ~ mk-m, for N =3.

Substituting (2.3) into (2.2) we get
ia —qtr(a)] —g(u) =0
2u= T TR T

So the mixed formulation of (2.1) is defined by seeking (0, ) € H X V such that

. (24d)  a(o,Da+(wdivr)e —w AT gy, TY)r = —w AT g, T, TEE,

~ ~

(24ii) (divg, v)a +w2(g, v)g = —(f,v)a, vEV,

where

a(o,T)a = / [-l—a?—'ytr(a') tr(7)] de.
~ & Q PR 5 ~

The unique solvability of (2.4) is ensured by the following theorem (cf. [11]).

Theorem 2.2. Let u € HI(Q) be the solution of (2.1), then (a(u) u) € H x V is the unique
solution of (2.4). Conversely, if (a' u) € HxV is a solution of (2 4), then © u€ HI(Q) and it is
the unique weak solution of (2.1).

Let {Qj}:,-’=1 be a non-overlapping partition of Q with Lipschitz boundaries {89;}. Introduce
the notations
Tr =Tro =T N, and Ty; = % N 69_7'.

Let u; denote the restriction of the solution v on Q;. It is well-known that u; must satisfy the

consistency conditions
(2.5) U = Uj, gkVE =~V on Tg;.

It is more convenient ([14], [7] and [8]) to replace (2.5) by the following Robin type boundary
condition on the interface T'k;:

(2.6.1) Tkvk +au = =gjv;j + oy,  on Tkj,
(2.6.i1) Vi + ouj = —TkVk + aug, on Tk,
where a is a nonzero complex number. In this paper we choose a = —a + io; with o, > 0 and

a; > 0. The reason for the restriction will be clear later in Theorem 2.3.
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Let Hx = H |o, 20d Vi =V |, Based on the consistency condition (2.6), we define the
followin% iterative algorithm for (24) with g = 0:

Choose (09, ul) € Hi x Vi with ofv E L%(Tx;); k,j = 1,---J, arbitrarily, then compute
(g%, up) € IE 2 x Ve for n > 1 recursiw;:el; by sglving

. J
(2.74)  a(gh, D + (uf, divr)a, —w (A 0wk, Tuk)n, — D (uk, T8I = 0YT € Hy,
j=1
(2.7.1) (div gz: z)ﬂk + w2(2;:’ E)ﬂk =—(f, z)nk: . ‘ 4V2 € zk:
(2.7.i) oxvi+auf = —g;-‘_lzj + ag;-‘_l, on T'x;.

Remark. Clearly, from Theorems 2.1 and 2.2 we know that the iterate sequence {(o%,u%)} is
well-defined. I

The usefulness of this domain decomposition iterative algorithm is demonstrated by the fol-
lowing convergence theorem.

Theorem 2.3. The solution (o%,uy) of (2.7) converges to the solution (o, u) of (2.4) strongly
in Hp x Vi provided that o, > 0 and o > 0 in the parameler @ = —ap + 10y.

To sketch the idea of the proof, we need to introduce the “pseudo energy”

J J
(2.8) Bi{me) =33 / Im vk + crex[2ds.

k=1j=1
Let e} = uf — tlo,, 7% =0k — olq,, and B = E({r7, e}}). Then we have

Lemma 2.1 (cf. [11}). There kolds the following identity:

7
(2.9) Bl =E" - E {4a;[lma(1rz,1r},‘)gk +w (A mRve, 7R ve)r]
k=1 T T

+o[w?llef |13 o, ~ Rea(z?, 2P)a] } -

Lemma 2.1 says that the “pseudo energy” of the error function sequence {(:’5?' E;‘)} is strictly
decreasing as the iteration number n increases. Using this fact we can show that (77, f;) con-
verges to zero in Hi X V.

§3. . The DD method for mixed finite element approximations. To discretize the al-
gorithm (2.7), we are interested in treating the case in which one subdomain equals one finite
element of small diameter though larger subdomains are permissible, that is, {2;} is a partition
of Q into individual elements (simplices, rectangles, prisms, tetrahedrons).

Due to the difficulty in constructing the finite element space for the symmetric stress ten-
sor space H, the construction of effective and stable mixed finite element spaces for elasticity

problems has proven to be very difficult and has not yet been accomplished in a completely sat-
isfactory manner for plane, especially for three-dimensional elasticity problems (see [1] and [4]
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for a discussion on this point). In this section we will focus on the presentation of the application
of the domain decomposition algorithm by confining us only to consider the problem in the two
spatial dimension.

Let H h V" denote a mixed finite element subspace of Hx V Several choices of H h x V" are

a.ccepta.ble (cf [4]). Here we only consider the subspace of Jc ohnson—-Merc1er [13] and the fa.mlly of
subspaces of Arnold-Douglas-Gupta [1], which were constructed by using the composite elements.

The global mixed finite element approximation to (2.4) is defined by restricting (2.4) on the finite
dimensional subspace H Y V" We remark that the mixed finite element subspaces H h % V"

cited above were orlgmally mtroduced for stationary elasticity problems which are coerc1ve, 1t is
necessary to show that we still can use these subspaces to approximate the noncoercive problem
(2.4). We show this by using the duality argument due to Douglas and Roberts [9].

Since in each space V* in the family of mixed finite element spaces referenced above the vector
functions v Uh € Vh are allowed to be discontinuous across I'jz. As a consequence, attempting

to impose the transmission condition (2.6) would include a flux conservation error; i.e., (2.5.ii)
would not be satisfied unless the approximate solution Yn € V" to the discrete analogue of

(2.4) is a constant, a uninteresting case. Similar as in [8] thls d1fﬁculty can be overcome by the
hybridization; i.e., by introducing Lagrange multipliers ([4], [8]) {)\;x} on the interface {T';z}.

Let H h % V" be either the Johnson-Mercier space or Arnold-Douglas-Gupta spaces. Let
Py, (I‘_,g) denote the space of polynomials of degree less than or equal to k on T'j,. Set

~
~

H}=Ha;,  VI=VPla;, Mk =Pu(Ty) forTi#0.

The (global) mixed finite element approximation to (2.4) is defined as follows: Seek (o-h, up) €
H " x V* such that !

(8.1.) a(gn, Ta)a + (ur divTsa)a — w™ (A oy, Tav)r =0 T, € H?,

(8.1.ii) (divan, va)a +w’(un, va)a = =(f, vs)a, vp €V

Theorem 3.1 (cf. [11]). There ezists an ho > 0 such that, for all h € (0, ko), Problem (3. 1) has
a unigue solution (a';,, uh) € H" X V" Moreover, suppose that u€ HZ(Q), then

(3.2.0) llg = anllo.q < Cllull20k,

(3.2.) [lw — ullo,a < Cllul|z,ah™>C),

for some positive constant C, which depends only on Lamé constants Ar, X;, pr, pi, Q and the
frequency w.

To define the discrete iterative algorithm analogous to (2.7), we notice that (3.1) has the
following equivalent hybrid formulation: Seek (o4;, unj, Anjx) € HE x V% x M% such that for
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ik=1,2,...,J,
(3.34) a(gns ) + (Uhj, div Th)a; — (A gnvs, ThY )T
J .
. — > {Anjk, Tirvs)rn =0, Th € HE,
k=1
(3.3.i1) (div ans, va)a; +wP(unj, vada; = ~(F, va)a;, vn € VY,
(3.3.iii) ‘ThjVj + eAnjk = ~TnkVk + @hkj,  on Tjk.

Base on the hybrid formulation (3.3), we define the domain decomposition iterative proc;edure
analogous to (2.7) as follows: For all j and k, choose a‘ﬁj € H’-‘ , uh; € V3 » Mk € M

arbitrarily, then compute {07, This 'u.h_,’, A7 Abs 1 € H h X V" k recursnrely by solvmg the followmg
equations:
(3.4.1) a(g%sr Tw)as + (uf;,div Th)a; — w™ (A7 a5, Thvs)r;
J
- Z(égjklghz:i)rik =0, ;h € 12?:
N k=1 '
(3.4.ii) (div o35, vn)a; +w2(u;:j: Vh)a; = —(f,Zh)nj, vh € K;',
(3.4.iii) o-,,J vi+adi = —a’hk Vk + aAth , on T

The main result of this section is the following two theorems, see [11] for the detailed exposition.

Theorem 3.2. Choose a such that ;s — o Ap > 0 a5 — oo i > 0, then for b < hg the iterates
{a'hj,uhj, )\hgk} defined above converges to the solution {ah_.,,uh,,)\;,_.,k} of the (global) hybridized

mized finite element procedure (4.3) in the following sense:

@) ghs — gri =gala;  in LA(Qy),
@) ufy — un; =wale;  in L3(Qy),

(i) Xpje and Xje — Anje in L*(Tjr).

Define
n . . n b ¢ J— . 7 n —_ . n
Thi = Thj = This - €hj = Unj — Upj, fhjk = Anjk — Ak
Ehri = Anki — ARk E ) E ,/ lthVk +a§hk,| .

k=1j=1
Then we have
Theorem 3.3. Choose a such that a;); > 2a,. A, a;p; > 2a,py, then there holds
(3.5) . Bt <(-chE,

for some positive constant C which is independent of h.

It follows from Theorem 3.3 that the iterative algorithm (3.4) converges at a rate which has
an upper bound of the form 1 — Ch. Similar to the differential case, the proofs of the above
theorems are based on a lemma which is an analogue of Lemma 2.1.
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Lemma 3.1 (cf. [11]). There holds the following identity:

J
(2'10) E;:+1 = B} - E {4a‘i[1ma(ggk:g,gk)ﬂh +w—1(A-lgngk;g,}:ka)I‘;.]

1.

2.

3.

4.
5.

6.
7.

8.

10.
11.

12.

13.

14,

15.

16.

17,

k=1

e 2| Rl B 0, — Rea(zhe, The)aul } -
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Representation of Discrete Steklov-Poincare Operator Arising in
Domain Decomposition Methods in Wavelet Basis
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Abstract

This paper examines the sparse representation and preconditioning of a discrete Steklov-
Poincare operator which arises in domain decomposition methods. A non-overlapping do-
main decomposition method is applied to a second order self-adjoint elliptic operator (Poisson
equation), with homogeneous boundary conditions, as a model problem. It is shown that
the discrete Steklov-Poincare operator allows sparse representation with a bounded condi-
tion number in wavelet basis if the transformation is followed by thresholding and rescaling.
These two steps combined enable the effective use of Krylov subspace methods as an iterative
solution procedure for the system of linear equations.

Finding the solution of an interface problem in domain decomposition methods, known
as a Schur complement problem, has been shown to be equivalent to the discrete form of
Steklov-Poincare operator. A common way to obtain Schur complement matrix is by ordering
the matrix of discrete differential operator in subdomain node groups then block eliminating
interface nodes. The result is a dense matrix which corresponds to the interface problem.
This is equivalent to reducing the original problem to several smaller differential problems
and one boundary integral equation problem for the subdomain interface.

From the pseudodifferential point of view Steklov-Poincare operator could be regarded as
an elliptic pseudodifferential operator of order one. More precisely, if we consider Calderon-
Seeley projector for Poisson equation the Steklov-Poincare operator transforms Dirichlet into
Neumann data acting as a Fredholm operator between Sobolev spaces S : H(I') —+ H:1(T).
Therefore, Steklov-Poincare operator is an integral operator with non-local support of its
Schwartz kernel. ‘

One major characteristics of the non-local operators is that their finite dimensional
representations result in dense matrices whose condition number is of the order 1/A for
elliptic pseudodifferential operators. This is better than the condition number of matrices
produced by the discretization of differential operators, which is of the order 1 /R? for the
same class of differential operators. However, the advantage of better matrix conditioning is
offset by the matrix fill-in rendering the use of iterative procedures ineffective.

The remedy proposed in this paper is to apply a discrete wavelet transform on the
Schur complement matrix. The transformed matrix is almost sparse in a sense that the
vast majority of entries are close to zero for large N (fine mesh). The thresholding pro-
cedure is applied to initially dense matrix reducing the number of non-zero entries to an
order of O(N log N). Moreover, if the initial differential operator is strongly elliptic, diag-
onal rescaling in conjunction with thresholding efficiently bounds the transformed matrix




condition number. Therefore, the discrete Steklov-Poincare operator can be made sparse in
wavelet space and its condition number significantly reduced by rescaling and thresholding
combined. The condition number is mesh size and problem independent, i.e. thresholding
and rescaling together make a nearly optimal preconditioner. One obvious advantage is
that the preconditioner is determined a priori and its coefficients are problem independent.
Another advantage is in easy parallelization of the algorithm since only matrix-matrix and
matrix-vector multiplications are involved.

One restriction on this method is that the linear dimension of the matrix must be a power
of two. Although this analysis is strictly true only for elliptic pseudodifferential operators it
is expected that good results can be obtained in other cases involving the interface problem
for differential operators due to their non-local nature.




Simplified Approaches to Some Nonoverlapping Domain Decomposition Methods

Jinchao Xu
Penn State University
(xu@math.psu.edu)

An attemp will be made in this talk to present various domain decomposition methods in a
way that is intuitively clear and technically coherent and concise. The basic framework
used for analysis is the "parallel subspace correction” or "additive Schwarz" method, and
other simple technical tools include "local-global" and "global-local” techniques, the
formal one is for constructing subspace preconditioner based on a preconditioner on the
whole space whereas the later one for constructing preconditioner on the whole space
based on a subspace preconditioner.

The domain decomposition methods discussed in this talk fall into two major categories:
one, based on local Dirichlet problems, is related to the "substructuring method" and the
other, based on local Neumann problems, is related to the "Neumann-Neumann method"
and "balancing method". All these methods will be presented in a systematic and
coherent manner and the analysis for both two and three dimensional cases are carried out
simultaneously. In particular, some intimate relationship between these algorithms are
observed and some new variants of the algorithms are obtained.

This talk is based on a joint paper with Jun Zou.
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Summary

The Controlled Cholesky factorisation has been shown to be a robust preconditioner for
the Conjugate Gradient method. In this scheme the amount of fill-in is defined in terms of
a parameter 7, the number of extra elements allowed per column. It is demonstrated how
an optimum value of 9 can be automatically determined when solving time dependent
p.d.e.’s using an implicit time step method. A comparison between CCCG(n) and the
standard ICCG solving parabolic problems on general grids shows CCCG(n) to be an
efficient general purpose solver.




1 Introduction

A common problem in solving time dependent partial differential equations, using an
implicit time-stepping method, is finding an efficient linear solver, given that a large
number of algebraic systems have to be solved. If the algebraic systems are symmetric,
real, and positive definite, then one popular choice of solver is the Incomplete Cholesky
Conjugate Gradient method (ICCG) due to Meijerink and van der Vorst [7]. However, for
general problems, particularly on unstructured meshes, this method may not be robust.
Attempts to improve on the Incomplete Cholesky preconditioner have led to incomplete
Cholesky with levels of fill-in and the use of drop tolerances schemes [8] to improve the
approximation of the system by the preconditioner. However, both of these latter methods
lead to preconditioners with unpredictable storage requirements.

Recently a new method of forming an approximate factorisation has been given by Campos
and Rollett [3]. This new factorisation is both robust, in that it leads to good precon-
ditioners, and predictable in its storage requirements. Furthermore, for a given amount
of storage, the method can be coupled to a cheap optimisation process in order to find
the best preconditioner. In a time-stepping procedure, where the number of timesteps
to be taken is relatively large, the first few timesteps may be used to set up an optimal
preconditioner. It is shown that for a range of test problems the increase in efficiency of
using this approach can be quite dramatic.

2 The CCF preconditioner

The controlled Cholesky factorisation ( CCF ) [3, 2] is based on the minimisation of the
Frobenius norm of E' = L — L, where L is the factor obtained when the factorisation of a
maftrix A of order n is complete and L when it is incomplete :

n n
minimise "E”%- = Z C; with Cj = Z Ilij -— lijlz.
=1 i=1

If ¢; is split in two summations

mji-tn

n
= > l;i—bLP+ > ;P
k=1 k=m;+n+1

where m; is the number of non-zero elements below the diagonal in the jth column of
matrix A and 7 is the number of extra elements allowed per column. The first summation
contains all m; +7 non-zero elements of the jth column of Z, and the second summation
has only those remaining elements of the complete factor L which do not have correspond-
ing elements in L. Considering that l;; = l;; and [;; is not computed, || E||r is minimised




based on a heuristic, which consists of modifying the first summation. By increasing 7,
allowing more fill-in, ¢; will decrease simply because the first summation contains more
terms and the second less. This is the same non-selective minimisation that occurs when
levels of fill-in are used. Moreover, ||E||r is further minimised by choosing the m; + 7
largest of L to almost annihilate the corresponding largest elements in L leaving only
the smallest ;; in the second summation. This is a selective minimisation similar to a
drop tolerance scheme [8].

The CCF algorithm also employs the modified Cholesky factorisation ( MCF ) of Gill and
Murray (5, 6] to avoid loss of positive definiteness and increase robustness. In incomplete
Cholesky decomposition ( ICD ) fill-in is determined by adding levels resulting in uncon-
trolled storage demand; the storage required by CCF, in comparison, is predictable as
shown in Table 1. A comparison of CCCG(n), n = 5, 10, 20 with the MA31 subroutine

| matrices | maximum bytes required for /=4 and r=8 ||
A (G+rym+in+1 12m+4n+4
A+ ?IC(O) ((+2r)m+in+1 20m+4-4n+4
A+ Loom | Bi+2rym+ (204 r)n+2i)n+ 2 | 28m + (169 +8)n + 8

Table 1: Comparison between storage demands of ICD(0) and CCF(n).
n : order of A, m : number of non-zero elements of A ( excluding those above
diagonal ), 7 : number of extra elements per column, i, r : number of bytes for integer
and real variables, respectively.

using drop tolerance C = 1071, 1072, 10~ solving ten systems from the Release I of the
Harwell-Boeing sparse matrix collection [4] was made by Campos [2]. MA31 is from the
Harwell Subroutine Library and is an Incomplete Cholesky Conjugate Gradient method
with a drop tolerance scheme proposed by Munksgaard [8]. A selection of results are
presented in Table 2.

These results reveal that for all test cases where the drop tolerance scheme failed, CCCG(n)
succeeded using less storage.

3 An adaptive preconditioner for CG

When solving systems of equations with multiple right hand sides it is possible to estimate
the optimum 1),,; for which the total time ¢ is minimum, where

t = mp + si, (1)

m is the number of systems required to be solved to find 7oy, s is the total number of
systems to be solved and p and 7 are the preconditioning and iteration time, respectively.




iterations || number of non-zeros || total time ( seconds ) |
System C for MA31(C) " C for MA31(C) " C for MA31(C) "
besstk [ 101 | 10-2 ] 10-% | 10-X ] 102 | 10 | 10X [102] 10-* |

08 8| 26 8| 13026 13953| 20795 3.27| 1.46 1.76.
.10 nc| mnc| 10| 22477 ] 26141| 35650 — — 2.81
14 nc{ 93 8| 65324 | 69347 | 102615 —16.23| 11.09
16 |- ow| 62| 13| 295081 |307333 | 678790 —|56.56 | 195.76
iterations || number of non-zeros || total time ( seconds ) |
system | 7 for CCCG(n) || 1 for CCCG(n) n for CCCG(n) |
besstk| 5 [ 10 [ 20 ] 5 | 10 | 20 5 | 10 | 20 |

08 14| 12| 11| 12143 | 17316| 27533 || 2.34| 3.14 5.07
10 32| 10 1| 16914| 20350 20771 2.62| 1.36 0.76
14 25| 19| 12| 41311 49922 66688 | 6.67| 6.96 8.17
16 21| 18| 14| 171615195569 | 243317 || 33.12 | 35.40 ( 41.99

Table 2: Comparison among MA31(C) and CCCG(n).

nc : process does not converge with tolerance ||r«]|/||ro]| < 10~ or min(Order,1000)
‘ iterations and ow : overflow during factorisation.

Typically, m =~ 10 and if s & m in (1) then ¢ = s(p + ¢) needs to be minimised. On
the other hand, if s >> m then it is ¢ = s¢ that has to be minimised. Then a crude
approximation to 7,p: may be found using, for instance, the Brent method [1] and some
system calls to the elapsed cpu time.

This technique has been successfully applied to the solution of parabolic problems using
implicit timestepping methods.

4 Numerical example

In order to demonstrate the efficacy of the CCCG algorithm, consider the model problem

% — V.DVu = f(z,y,t), for (z,9) € 2 CR2, and t€ (0,T]. (2)

Here D(z, y) is a 2x2 symmetric positive definite diffusion matrix, and f(z,y, ) is a known
forcing function. For simplicity zero boundary conditions were imposed on all boundaries.
Since the only coefficient in the problem which varies with ¢ is f, the differential operator
is time independent.

This problem is discretized in space using standard Galerkin Finite Elements on linear
triangles [11], and discretized in time using the backward Euler method for the differential
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part, and Trapezoidal quadrature for the coefficient f, leading to the implicit time stepping
formula :

At «
(M + ME)U™ = MU™ + Z=(F" + F™), (3)

where M is the positive definite mass matrix and K the positive semi-definite stiffness
matrix, and F™™ load vectors. This discrete problem is for illustrative purposes and other
discretizations may be considered which lead to an implicit time-stepping scheme.

Assuming that At remains fixed, then it is required to solve (3) at each timestep, and it
is to this sequence of linear algebraic systems that the CCCG algorithm will be applied.
In the following problem, the solution times and best value 7oy of 77, the number of extra
elements per row of the preconditioner, are given, together with a comparison with the
standard ICCG method. In each case the linear solver was required to reduce the initial
residual by a factor of 10°.

For the following problem the times indicated are the total times in seconds, on an IBM
RS6000 model 550, to integrate the discrete system from ¢ = 0 to £ = T, including the
calculation of the right hand sides, setting up the preconditioner and solution of all the
linear systems. The maximum allowable value for 1 was set e, = 40.

Anisotropic diffusion on a highly stretched mesh.

In this problem the solution region €2 and a coarse Navier-Stokes aerofoil mesh illustarted
in Figure 1. A sequence of discretizations was obtained by uniform refinement of the grid
shown. These grids have a maximum cell aspect ratio of 289, and therefore the condition
of the resulting systems is likely to be very large [10]. The following data were used :

uo(z,y) = 50sin(rz) sin(my)

D = (1.000 0.000 )

0.000 1.000E + 04
f(z,y,t) = (—50msin(mrt) + 1007 cos(mt)) sin(mz) sin(7y),

T = 20,
T
At - 'ﬁ)'.

Convergence results are shown in Table 3.

Table 3 shows a dramatic difference between the performance of ICCG and CCCG, where
the performance of the ICCG iteration degrades significantly as the mesh is refined. For




1CCG

Number of CCCG
' unknowns [ 77,,: | cpu time | Iters/solve | cpu time | Tters/solve
4236 | 15 166.2 9 352.8 64
16664 | 40 805.1 6 11350.2 639
66096 | 40 5596.9 16 failed to converge

Table 3: cpu seconds and iterations per solve for Problem 4.1. .

(a) (b)
Figure 1: (a) Coarse grid (b) Detail.

. other numerical test problems, not shown here, such as isotropic diffusion on uniform
and and non-uniform meshes, and diffusion with discontinuous coefficients, the CCCG
iteration proved significantly more robust and efficient than ICCG.

5 Conclusions

We have shown that, for implicit timestepping methods, a procedure based on the Con-
trolled Cholesky Factorisation leads to a good preconditioner for the Conjugate Gradient
method. Furthermore the method has predictable storage requirements, unlike techniques
based on levels of fill-in or drop tolerances. Because the storage requirements of the Con-
trolled Cholesky Factorisation are predictable, it is always possible to select an 7., within
the limits of any machine. -

The most attractive feature of this method is that the required preconditioner is arrived
at automatically, removing, to a great extent, user intervention and thus making it of
practical use as a general purpose iterative solver when coupled to CG.
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Conjugate Gradient Algorithms
Using Multiple Recursions

Teri Barth and Tom Manteuffel!
University of Colorado

Much is already known about when a conjugate gradient method can be
implemented with short recursions for the direction vectors. The work done
in 1984 by Faber and Manteuflel [1] gave necessary and sufficient conditions
on the iteration matrix A, in order for a conjugate gradient method to be
implemented with a single recursion of a certain form. However, this form
does not take into account all possible recursions. This became evident when
Jagels and Reichel [3, 4] used an algorithm of Gragg for unitary matrices [2]
to demonstrate that the class of matrices for which a practical conjugate
gradient algorithm exists can be extended to include unitary and shifted
unitary matrices. The implementation uses short double recursions for the
direction vectors. This motivates the study of multiple recursion algorithms.

In this talk, we show that the conjugate gradient method for unitary
and shifted unitary matrices can be implemented using a single short term
recursion of a special type called an (£, m) recursion with £,m < 1. We then
examine the class of matrices for which a conjugate gradient method can be
carried out using a general (£, m) recursion. This class includes the class of
normal matrices with rational degree (£, m) as well as low rank perturbations
of these matrices.

Under some circumstances, an (¢, m) recursion can break down. We also
show that any (¢, m) recursion can be reformulated as as m short recursions
that will not break down.
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Iterative methods for solving Ax=b, GMRES/FOM versus QMR/BiCG

Jane Cullum
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We study the convergence of GMRES/FOM and QMR/BiCG methods for solving
nonsymmetric Ax=b. We prove that given the results of a BiCG computation on Ax=b,
we can obtain a matrix B with the same eigenvalues as A and a vector ¢ such that the
residual norms generated by a FOM computation on Bx=c are identical to those generated
by the BiCG computations. Using a unitary equivalence for each of these methods,

we obtain test problems where we can easily vary certain spectral properties of the
matrices. We use these test problems to study the effects of nonnormality on the
convergence of GMRES and QMR, to study the effects of eigenvalue outliers on the
convergence of QMR, and to compare the convergence of restarted GMRES, QMR,

and BiCGSTAB across a family of normal and nonnormal problems. Our GMRES tests
on nonnormal test matrices indicate that nonnormality can have unexpected effects upon
the residual norm convergence, giving misleading indications of superior convergence over
QMR when the error norms for GMRES are not significantly different from those for
QMR. Our QMR tests indicate that the convergence of the QMR residual and error
norms is influenced predominantly by small and large eigenvalue outliers and by the
character, real, complex, or nearly real, of the outliers and the other eigenvalues.

In our comparison tests QMR outperformed GMRES(10) and GMRES(20)

on both the normal and nonnormal test matrices.
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DOMAIN DECOMPOSITION METHOD FOR
NONCONFORMING FINITE ELEMENT APPROXIMATIONS
OF ANISOTROPIC ELLIPTIC PROBLEMS
ON NONMATCHING GRIDS

S5.Y. MALIASSOV*

Abstract

An approach to the construction of an iterative method for solving systems of lin-
ear algebraic equations arising from nonconforming finite element discretizations with
nonmatching grids for second order elliptic boundary value problems with anisotropic
coefficients is considered. The technique suggested is based on decomposition of the
original domain into nonoverlapping subdomains. The elliptic problem is presented
in the macro-hybrid form with Lagrange multipliers at the interfaces between subdo-
mains. A block diagonal preconditioner is proposed which is spectrally equivalent to
the original saddle point matrix and has the optimal order of arithmetical complexity.
The preconditioner includes blocks for preconditioning subdomain and interface prob-
lems. It is shown that constants of spectral equivalence are independent of values of
coefficients and mesh step size.

* 5.Yu. Maliassov, Institute for Scientific Computation and Department of Mathematics, Texas
A&M University, 505 Blocker Bldg., College Station, TX 77843-3404, U.S.A.




ANALYSIS OF GENERALIZED SCHWARZ ALTERNATING
PROCEDURE FOR DOMAIN DECOMPOSITION

BJORN ENGQUIST * AND HONGKAI ZHAO 1

Abstract.

The Schwartz alternating method(SAM) is the theoretical basis for domain decomposition which
itself is a powerful tool both for parallel computation and for computing in complicated domains.
The convergence rate of the classical SAM is very sensitive to the overlapping size between each
subdomain, which is not desirable for most applications. We propose a generalized SAM procedure
which is an extension of the modified SAM proposed by P.-L. Lions in [4]. Instead of using only
Dirichlet data at the artificial boundary between subdomains, we take a convex combinaton of ¢ and
g—:“-, i.e.-g—;“ + Au, where A is some "positive” operator. Convergence of the modified SAM without
overlapping in a quite general setting has been proven by P.-L.Lions using delicate energy estimates.
The important questions remain for the generalized SAM. (1)What is the most essential mechanism
for convergence without overlapping? (2)Given the partial differential equation, what is the best
choice for the positive operator A ? (3)In the overlapping case, is the generalized SAM superior to
the classical SAM? (4)What is the convergence rate and what does it depend on? (5)Numerically
can we obtain an easy to implement operator A such that the convergence is independent of the mesh
size. All these questions are addressed in this paper.

To analyze the convergence of the generalized SAM we focus, for simplicity, on the Possion
equation for two typical geometry in two subdomain case. From the analysis we can see clearly that
the generalized SAM converges for the following two reasons

(1) Maximum principle or variational interpretation(iterated projections) if there is overlap, which
is also true for the classical SAM. ([2], [3])

(ii) "Positivity” of the Dirichlet to Neuman operator which gives convergence even with no
overlap. This makes the generalized SAM better than the classical SAM.

In the most interesting case where the two subdomains are of a comparable size which is much
larger than the overlapping size, the convergence rate rg is asympototically

(1) re % |(D1+ A1) (D2 — M1 )(Dz + A2) (D1 = Az)| 5, ¢~°

Each D; is the Dirichlet to Neuman operator in ; and § is the size of overlap.

For more general elliptic operators in more complicated geometries with two subdomains, we can
use the equivalence of elliptic operators and a transformation which reduces them to the two previous
cases, We can also extend this generalized SAM method to the multidomain case by reducing it to the
two subdomain case. Motivated by [1] we use some local operators which might involve the tangential
information to approximate the Dirichlet to Neuman operator. These numerical schemes can be easily
incooperated into the existing code for domain decomposition to improve the performance since they
do not change the data structure in the interior of the domain or subdomain.

* Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095-
1555, <engquist@math.ucla.edu>

t Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095-
1555, <hzhao@math.ucla.edu>




Substructuring by Lagrange multipliers for solids and plates

Jan Mandel and Radek Tezaur
Center for Computational Mathematics

University of Colorado at Denver
Denver CO 80217-3364

Charbel Farhat
Center for Aerospace Structures
University of Colorado at Boulder
Boulder, CO 80309-0429

We present principles and theoreretical foundation of a substructuring method for large
structural problems. The algorithm is preconditioned conjugate gradients on a subspace
for the dual problem. The preconditioning is proved asymptotically optimal and the
method is shown to be parallel scalable, i.e., the condition number is bounded
independently of the number of substructures.

For plate problems, a special modification is needed that retains continuity of the
displacement solution at substructure crosspoints, resulting in an asymptically optimal
method.

The results are confirmed by numerical experiments.




SOME NONLINEAR SPACE DECOMPOSITION ALGORITHMS

Xue—Cheng Tai and Magne Espedal

Department of Mathematics,
University of Bergen,
Alleg. 55, 5007,

Bergen, Norway.

ABSTRACT. Convergence of a space decomposition method is proved for a general convex programming
problem. The space decomposition refers to methods that decompose a space into sums of subspaces,
which could be a domain decomposition or a multigrid method for partial differential equations. Two
algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they
reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two
"hybrid” algorithms are also presented. They converge faster than the additive one and have better .
parallelism than the multiplicative method. Numerical tests with a two level domain decomposition
for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

CONTENTS
1. Introduction 1
2. Statement of the problem and the algorithms 2
3. The convergence of the algorithms 5

1. INTRODUCTION

This work presents a general space decomposition method for convex programming problems and
gives an estimation of the rate of convergence of the method. One intension is to use the method
to solve linear and nonlinear elliptic partial differential equations by domain decomposition or
multilevel methods. In the applications given in [24], a two level overlapping domain decomposition
method is considered.

The essence of the proposed method is to decompose the minimization space into a sum of
subspaces and then solve the original minimization problem sequentially or in parallel over each
of the subspaces. Due to the fact that the decomposed spaces can be arbitrary, especially since
they are not orthogonal to each other, the usual convergence proofs for block relaxation methods
cannot be used here to predict the convergence. However, using the experiences from domain
decomposition and multigrid methods, we assume that the decomposed spaces satisfy a certain
"spectral” bound, see constants C; and C: in (2.8) and (2.9), and then use these constants to
estimate the convergence rate of the proposed methods.

The proposed algorithms are given for a convex programming problem. We expect that they
could also be used to get efficient algorithms for some optimal control problems related to partial
differential equations, see Kunisch and Tai [18] and [19] for applications.

The two level domain decomposition method can be viewed a space decomposition is inspired
by the work of Xu [29], where it was observed that domain decomposition methods, multilevel
methods and multigrid methods can be viewed in some way as space decomposition techniques
and many of the methods proposed in literature for the above mention techniques are in essence
similar to the Gauss-Seidel or Jacobi method. In Smith, Bjorstad and Gropp [28], by following
the works of [13], [14], [32] and [10], etc. an abstract convergence was given for linear self-adjoint

1991 Mathematics Subject Classification. 65J10, 65M55, 65Y05.

Key words and phrases. Parallel, domain decomposition, nonlinear, elliptic equation, space decomposition.

The work was supported by by VISTA, a research cooperation between the Norwegian Academy of Science and
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and also indefinite and nonsymmetric problems. Two schemes are proposed in this work. They
could be msed both for linear and nonlinear elliptic problems. In the linear case, they reduce to
the standard additive and multiplicative Schwarz methods. Therefore, the algorithms generalise
the known additive and multiplicative methods to certain nonlinear cases. Due to appearance of
the nonlinearity, a modified abstract convergence theory is given.

The well-known substructuring BPS (see [5], [6], [7]) and BEPS (see [4]) preconditioners use
. nonoverlapping subdomaius, see also [3], [21]. For a nonoverlapping domain decomposition, a
finite element function w can be decomposed as w = wp + wy, here wy, has zero trace on the
interfaces and equals to w in the interior nodes of the substructures and wg equals to w on the
interfaces and is extended to the interior by harmonic extension. If we use Gauss-Seidel iteration,
we get the exact solution in one iteration. However, to get the harmonic extension wg is equivalent
to solving the original problem. The construction of the preconditioners in [6]-[7] and [4] can be
regarded as Jacobi iteration with approximate solvers for the harmonic extensions. The methods
of [5] and [21] is a Gauss-Seidel iteration with a further suitable decomposition for wg. By using
a slightly different decomposition, in Espedal and Ewing [16, p. 125], a parallel nonoverlapping
method was derived for solving a linearised two-phase immiscible low. We hope that by viewing
the construction of nonoverlapping preconditioners as an iterative approximate solving of a space
decomposition, an abstract convergence analysis can also be obtained for them for some nonlinear
problems. :

In the literature, domain decomposition methods, multigrid methods and multilevel methods
have been successfully used for different kinds of linear partial differential equations, see [17] and
[22], [28], [29]. However, the results for using them for nonlinear problems are not as rich as
for linear problems. In Cai and Dryja [9], a semilinear elliptic equation is first linearised by the
Newton’s method and then solved by the additive Schwarz scheme. In papers by Xu [30], [31],
a two level method without doing domain decomposition is used for nonlinear elliptic problems.
In Axellsson and Kaporin [1], 2 minimum residual adaptive multilevel method is given for some
nonlinear problems. In Dawson and Wheeler [12], a two level method is used for a nonlinear
parabolic equation; The work of Lions [20] seems to be the pioneering work for using domain
decomposition methods for nonlinear partial differential equations. In Rannacher [23], a Newton
type algorithm is studied for nonlinear elliptic problems. Multigrid methods for nonlinear problems
are studied by Bank [2], Brandt [8], etc. For some earlier works of the authors related to this one,
consult [24] and [25]-[27].

When we apply the methods here for a nonlinear problem, we need to solve many smaller size
problems in an iterative way and this iterative procedure convergence as ”quickly” as for linear
problems. For some nonlinear problems, by reducing the large size problem into many smaller size
problems and then linearising the smaller size problems, substantial computational efforts can be
saved compared to first linearising and then decomposing the problem.

2. STATEMENT OF THE PROBLEM AND THE ALGORITHMS
Consider the nonlinear problem
min F(v) . ‘ 2.1
min F'(v) 2.1)

Above, the function F is differentiable and convex, the space V is a reflexive Banach space. One
knows that partial differential equations of the type

—EDi(a;iju) +du=finQ2,

and

—V - (p(|Vu))Ve) = fin @,

with a suitably given p, can be solved by (2.1) by defining the function F a.nd space V properly.
We shall use space decomposition methods to solve (2.1). A space decomposmon method
refers to a method that decomposes the space V' into a sum of subspaces, i.e. there are spaces
Vi, i=1,2,---,msuch that
V=W+Vo+---+Vn. (2.2)

The meaning of the above decomposition is that Vv, there exists v; € V; such that v = Z:’;l v;
and on the other hand, if v; € V4, then 32, v; € V. If the space can be decomposed as in (2.2),
then the followings algorithms can be used to solve (2.1).
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Algorithm 2.1. (An additive space decomposition method).

Step 1. Choose initial values u} = u® € V and relazation parameters a; > 0 such that Y <1
1

Step 2. Forn >0, find u?+’ € V; in parallel fori =1,2,---,m such that

m m
F( > u;;+u?+5) gF( > ug+v,~) , Vo eVi. (2.3)

k=1,k#i k=1,k#i

Step 3. Set \
uft = uf ol - ), (24)

and go to the next fteration.

Algorithm 2.2. (A multiplicative space decomposition method).

Step 1. Choose initial values u? =u® € V.
Step 2. Forn >0, find u?+! € V; sequentially for i = 1,2,...,m such that

! ( > wtatie Y “g)

1<k<i i<k<

sk Feksm (2.5)
SFLY wptdu+ > af], Wmeli.

1<k<i i<k<m

Step 3. Go to the next iteration.

In the following, the notation (:,-) is used to denote the duality pairing between V and V.
Function F is assumed to be Gateaux differentiable (see [11]) and there are constants K > 0,

L < oo such that
(Fl(w) = F'(v),w—2) 2 K[lw—1[}, , Vw,veV,

2.6
IF'(w) ~ F'@)llv: < Llw—slly , Yw,veV, (26)

and from which, it is easy to deduce that
Kllw— |} < (F'(w) = F'(v),w—v) <Lljw—olf} , Vw,veV. (2.7)

Under assumption (2.6), problem (2.1) and subproblems (2.5) and (2.3) have unique solutions, see
[15, p. 35].

For the decomposed spaces, we assume that there is a constant C; > 0 such that Vv € V, we
can find v; € V; to satisfy:

v=) v,and Y |l < Gl . (2.8)

i=1 i=1

Moreover, assume that there is a C; > 0 such that there holds

5% 3ot ot ) < o (Soll) > Il g 9

i=1j=1 i=1

Vw.-,- € V,Vu; EVi,ij EVj .

Domain decomposition methods, multilevel methods and multigrid methods can be viewed as
different ways of decomposing finite element spaces into sums of subspaces. For the estimation of
the constants C; and C, for different type of decomposition of finite element methods for linear
problems, one can find the proofs or references in Xu [29].

Later, the error reduction factor for the above two algorithms shall be estimated. In the follow-
ing, we shall use ¢”,n=0,1,2,.--, which is defined as:

& = |(F(u") - F'(w),u — )]},
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as a measure of the error between u™ and u. Here and later, u stands for the unique solution of
(2.1). For convenience, constants min and amas are defined as amin = minici<m &) Umaz =

- maxigi<m O, and @; is the relaxation parameters in Algorithm 2.1. Constants C, and C,, which

are
Cp = (0,2, L + aZ4:C2)C4, C, = (L +C)Ch, (2.10)
will play an important rule in analysing the error reduction factor.
Remark 2.1.
(1) When F is differentiable and if we define
m
Witz Y w4t (2.11)
E=1,ki :
then (2.3) is equivalent to solving
(Fi*®),u) =0, VeV (2.12)
(2) Let
m
wt =3 "t 2=0,1,2,- ©(2.13)
i=1

and w?+% be defined as in (2.11), then
‘w?+% =u"+ u?+% —u?
and the value of 4% corresponding to (2.4) can be obtained by
m m 1 ‘
uttl = }:u? + Z ai(uft? — uP)
i=1 i=1

m
1
= w3 e )

i=1
m ’ 1 m
= E ai(u® +ufts —uP)+(1— Z o;)u®
i=1 i=1
m m
=Y ot (1= ). (2.14)
i=1 §=1

In the applications of [24], with a two level domain decomposition method, only the values
of u™*! and the coarse mesh problem are needed for the next iteration, and u™*! is updated
by the above formula after the computations of each of subdomain problems.

(3) For Algorithm 2.2, if we define

wftt =Y gt bt ) up, (2.15)
k<i E>i
then it satisfies '
(F'(wpt),u) =0, Vo €V;. (2.16)

and after the solving of wf*? from (2.16) for each %, we only need to set u™*+! = witL.
(4) Intuitively, one may think that the algorithms need rather large amount of memory. How-
ever, in the implementation later for a two level domain decomposition, we only need to

1
store the value of 4"+! and one of the w; 3 (the coarse mesh solution) in the memory.

Remark 2.2. Algorithm 2.2 solves the minimization problems sequentially over each subspace.
Algorithm 2.1 solves the minimizations in parallel over each of the subspaces. In applications, by
suitably decomposing the minimization space, the minimization problem over each subspace can
be done by many parallel processors, and so both algorithms are suitable for parallel machines, see
[24]. Moreover, with a suitable decomposition, the constant C; can be made to be independent of
the size of the problem, and so the convergence of the above two algorithms also does not depend
on the size of the problem.




3. THE CONVERGENCE OF THE ALGORITHMS
We first give the rate of convergence for Algorithm 2.1.

Theorem 3.1. If the space decomposition satisfies (2.8),(2.9) and the function satisfies (2.6),
then for Algorithm 2.1 we have:

(a). If F is quadratic with respect to v, there holds

2
[P < e
i+C?

"2 ,Vn>0. (3.1)
(b). If F is third order continuously differentiable, then

[e"* -0 asn—> 00, and ["H2 < Bule*2, ¥n>0.

For n sufficiently large, we have 0 < B, < 1. In fact

. C
nli.r&ﬂ"—1+0<1 and C—T{T° (3.2)

The convergence of Algorithm 2.2 is similar as Algorithm 2.1.

Theorem 3.2. Let the space decomposition satisfies (2.8) and the function satisfies (2.7), then
for Algorithm 2.2 we have:

(3). If F is quadratic with respect to v, there holds

2
e+ 2 < E%leﬂz Vn>0. (3.3)

(b). If F is third order continuously differentiable, then
"t >0 asn— 00, and [e"P < Bule®Z, Vn>0.
For n sufficiently large, we have 0 < B, < 1. In fact

032
K2 -

C
1mﬂ,,—1+c,<1 and C= (3.4)

n—oo
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Iterative Methods for Weighted Least-squares®

Elena Y. Bobrovnikovaf Stephen A. Vavasist

January 15, 1996

Abstract. A weighted least-squares problem with a very ill-conditioned weight matrix arises in
many applications. Because of round-off errors, the standard conjugate gradient method for solving
this system does not give the correct answer even after n iterations. In this paper we propose an
iterative algorithm based on a new type of reorthogonalization that converges to the solution.

Consider the linear least-squares system
min ||D2(b — Ax)}, (1)

where D € R™*™ A ¢ R™*",b € R™.

We make the following assumptions: D is a symmetric, positive definite matrix;
rank A = n. These assumptions imply that (1) is a nonsingular linear system with a
unique solution.

This problem arises in many applications, including interior point methods, electri-
cal networks, finite element methods and structures. Matrix D is, respectively, objective
function Hessian, electrical resistances (their reciprocals), thermal conductivity and el-
ement flexibility.

Our paper is focused on the case when matrix D is severely ill-conditioned. This
happens in certain classes of finite element problems [6], electrical networks and always
occurs in optimization involving a barrier function. In interior-point methods, matrix
D becomes very ill-conditioned as iterates approach the boundary of the feasible region
[8]. In linear programming, since the solution is always on the boundary of the region,
ill-conditioning always occurs during the algorithm. In many settings D is diagonal

*This work has been supported by an NSF Presidental Young Investigator grant, with matching
funds received from AT&T and Xerox Corp.

tCenter for Applied Mathematics, Cornell University, Ithaca, New York 14853.

{Center for Applied Mathematics and Department of Computer Science, Cornell University, Ithaca,
New York 14853.




or can be made diagonal by some transformation. Hence we also assume that D is a
diagonal matrix.

Normal equations for (1) have the form

A*DAx = A'Db. 2)

Because of ill-conditioning of the system, standard methods such as QR factor-
ization, Cholesky factorization, symmetric indefinite factorization, range-space method
and null-space method are unstable. Here stability of an algorithm, as defined by Vava-
sis [7], means that the computed solution % satisfies the error bound

[l —%|| < e- f(4) - b, 3)

where € is machine precision and f(A) is some function of A not depending on D.
Recently Vavasis [7] and Hough and Vavasis [3] proposed stable direct methods for
(1). We would like to have iterative methods for this problem because they are much
more efficient than direct for large sparse problems, which is the common setting in
applications.

It is well known that the standard unpreconditioned conjugate-gradient (CG) method
converges in no more than n iterations in exact arithmetic. In the presence of finite
precision arithmetic, however, it may converge slowly or not at all. Consider a four-
node electrical network composed of resistors and batteries (see Figure 1). Ohm’s and
Kirchhoff’s laws can be applied to formulate a 3 x 3 linear system of the form (2). After
3 iterations of standard CG, only two correct significant digits are obtained (measured
in a forward error sense ||x — %|[), and further iterations do not improve the solution.
In contrast, the circuit is sufficiently simple that it is possible by visual inspection to
determine the correct solution to 15 digits of accuracy.

In this paper we propose an iterative method based on the conjugate gradient
method with a new type of reorthogonalization and give some numerical evidence of its
stability. For the background on reorthogonalization see [2], [4], [5]-

The main ideas of the new method are as follows. First, we introduce new sequences
of vectors v(), v®, ... and w), w®, ... lying in R™. They are related to search direc-
tions and residuals of CG method according to equations below. From these vectors we
can determine whether there is a catastrophic cancellation in CG procedure. We can
also restore CG convergence by correcting the entries of these vectors that are affected
by cancellation. Correcting requires solving linear systems. We show below, however,
that we can efficiently solve these systems using information already computed by CG.

Let the search directions of CG applied to (2) be denoted p(*), p(?), ... and the resid-
uals ¥, r®@, ... Let C denote A*DA. In exact arithmetic the CG procedure implies
orthogonality of residuals r**r(® = 0 and conjugacy of search directions p®:Cp® = 0.
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0 1 0 1015 1
0 0 1 1 0
1 0 0 1 0
A= -11 0 P D= 10% b= 0
1 0 -1 1 0
0 1 -1 1 0

(b)

Figure 1: The circuit depicted in (a) yields an weighted least-squares system of the
form (2) with D, A, b as in (b). The correct values of voltages of the three nodes are
(1.00,1.00,0.67) accurate to two digits. The standard CG algorithm, however, yields
(1.00, .00, 0.00).

Let us introduce new variables v(*) and w(¥),

v® = DAp® k=1,92,.. (4)
wh = w1 _ g Ap® k=12 .. ()
w® = b. |

It is easy to see that r(®) = A*Dw(*)

To simplify discussion, we start with the case when the entries of D have two
distinct scales. Suppose that k entries of D are large, of the same order and correspond
to submatrix of A of row rank k. The remaining entries of D are much smaller and
approximately equal. Finally, assume b is ‘generic’. Qur algorithm is based on the
following observations. For the first k iterations conjugate directions have components
corresponding to large entries of D much larger than the rest (i.e. p’s ‘almost lie’ in
the subspace corresponding to large components of D). After k iterations of the CG
method, the corresponding k entries of w are close to zero. Multiplied by large entries
of D they cause cancellation in the computation of the residual. In other words, after
k steps standard CG does not accurately determine the component of r*) parallel to
these directions. Hence the next search direction is not computed correctly. Direction
p after k iterations is almost orthogonal to the subspace of large directions. The small
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components of p, multiplied by large components of D, cause miscalculation of v{¥),
hence of ai. To solve this problem we correct components of v and w corresponding to
large entries of D using orthogonality and conjugacy relations.

Orthogonality relations on step j against the first k residual vectors have the form
Rir() = 0, where Ry = (r(l),r(2), ...,r(k)) ,or REA*Dw() =0

Let us denote W) € R* the entries of w corresponding to the large entries of D,
w¥) € R™* the remaining entries of w, A € R¥"*, A € R(*#*» and D € RF¥*F¥,
D € R™—Rx(m=k) the corresponding submatrices of A and D. With this notation the
orthogonality relation becomes

RLADwY) = —RLA*DwY) = d,

where we assume that d is accurately computed. Assume W) = AR,y for some .
Then the last equation takes the form

RLA'DAR.y = d. (6)

In exact arithmetic (6) holds at each step of CG. Our correction step involves solving (6)
for ¥ to yield W), thus accurately computing the entries of w{) that were contarmnated
by cancellation.

Similarly, the conjugacy relationship on step 7 has the form
P,:Atv(j) = 0, Pk = (p(l)’p(z)’ ".,p(k))

or
QiAtv(J) =0, Qk = (q(l), q(z), ooy q(k)) ’

where g = r/||r®||. The last relationship holds because q’s and p’s span the same
Krylov space. Denoting ¥%) the entries of v corresponding to large components of D
and ¥ the remaining entries of v(?) and assuming ¥\ = DAQ;Z for some Z we get

QLADAQuz =1 2 (1)

Recall that the CG method essentially computes a tridiagonal factorization of
A*DA: A'DA = QiTrQ%, and Ty = LiSkL}, where Sy is diagonal and Ly is unit lower
bidiagonal. Since matrices of systems (6) and (7) are close to tridiagonal matrices
‘Rt A*DAR;, and Q% A*D AQx, respectively, whose factorization we already computed by
step j, we can solve these systems by iterative refinement. The reason these systems
are close is precisely because the large entries of D are in'D

Recall that iterative refinement can be used to solve a linear system Kx = ¢ pro-
vided there exists a matrix K close to K such that hnea.r systems involving K are easy
to solve (see [1]).




The first correction occurs on step when norm of the residual drops by several orders
of magnitude (for a generic b). This happens on the step equal to rank of rows of A
corresponding to large entries of D.

Suppose now that matrix D has entries of three different scales and b is generic.
Then norm of the residual drops dramatically twice during the computations. After the
first drop of the residual on step k we correct entries of w and v corresponding to ‘large’
entries of D by solving equations (6) and (7). After the second drop of the residual on
step | we correct entries of w and v corresponding to ‘large’ and ‘medium’ entries of D.

Let Ry and R; denote matrices of the residuals (r(l), ..., r(")) and (r("'*'l), r*+2)

respectively. Let w(9) € R denote the entries of w corresponding to the large entries of
D on step 7, W) € R the entries corresponding to the medium entries of D on step
j and W\ € R™ the remaining entries of w, A € R**" A ¢ R(-Fx*n  J ¢ Rm-l)xn
and D € R¥** D ¢ RU-\x(-F) ) ¢ ROm=F)x(m—F) tpe corresponding submatrices of
A and D. Then the orthogonality relationship becomes

R} (A'Dw + AD%W) = —RL D := g, -
Rj (A*'Dw + A'D%W) = —R{A'DW := q,

Assume W) = ARy and W) = AR, for some ¥ and §. Then (8) becomes a system
with block matrix o .

RLA'DAR, RLADAR,

RIA'DAR, RIADAR |-

Similarly, the conjugacy relationship on step j leads to a system of equations

Q) (ADVD) + A DY) = —QLAtDVD .= 1, o)
Qt (A*Dv) + AtDvD) = —QiADYD .= 1,

which, assuming ¥\ = AQ;z and vV = AQi% for some Z and Z, has block structure

1A'DAQ: QLA'DAQ,
QIA'DAQ: QIA'DAQ; /-

The norms of low-triangular blocks R{A*DARy, and Q¢A*DAQ; are much smaller
than the norms of diagonal blocks. Hence instead of solving (8) and (9) we solve systems
with upper block-triangular matrices. Similarly to the case of entries of D of two scales,
matrices RLA*DARy, RIA*DAR, and QLA'DAQ; QiA*DAQ; are close to tridiagonal
matrices RLA*'DARy, RIA'DAR; and QLA*DAQy, QiA*DAQ; whose factorization we
already computed by the CG method. Hence we can approximately solve systems (8)
and (9) using iterative refinement.

" r(’)) ,
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Figure 2: Modified (solid line) and standard (dashed line) CG method for a boundary-
value problem with matriz D with three different scales. Relatzve accuracy of the modified
CG method is 7.2 - 10716

In order to generalize the proposed method to the case when b is not generic we
consider instead of system (2) the system with right-hand side b, = b 4 Ax,, where
X, is a random perturbation of the size ||b||/||A|l. After finding the solution to this
modified system we subtract the random component x, from it.

Our ultimate goal is to establish (3) theoretically, but currently our results are of an
experimental nature. We tested this method on a boundary-value problem with matrix
A of dimension 136 X 23 and compared our results with solution by the direct method
given by [3]. The matrix A in question has many rank-deficient submatrices. For all
considered matrices D and right-hand sides b we got relative accuracy of order 1074 to
106 after n iterations (see Figure 2). In contrast, plain CG gave very poor answers. It

would be interesting to try to improve the rate of convergence by using an appropriate
preconditioner.
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KRYLOV SUBSPACE ACCELERATION OF WAVEFORM RELAXATION*
ANDREW LUMSDAINE! AND DEYUN WU?

1. Introduction. Standard solution methods for numerically solving time-dependent problems typically begin by
discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial
time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available
from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform
methods in which multiple time-points of the different components of the solution are computed independently.

With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a
parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest
using previous iterates from other processors as inputs. Synchronization and communication between processors take
place infrequently, and communication consists of large packets of information — discretized functions of time Ge.,
waveforms),

Unfortunately, the convergence rate of standard waveform relaxation can be prohibitively slow for many problems
of interest. Previous approaches for accelerating the convergence of waveform relaxation include the shifted Picard
iteration [14], multigrid[1, 15], SOR [9], convolution SOR [11], L2 Krylov subspace methods [8], and adaptive window
size selection [7].

Many of these approaches are similar to acceleration methods for iteratively solving linear systems of equations.
However, in most cases, the generalizations of those approaches to waveform relaxation do not accelerate convergence
to the same degree as their linearalgebra counterparts [9]. An analysis of why acceleration of waveform relaxation can,
in general, be expected to be small is given in [10]. An exception to the pessimistic result of [10] is the convolution
SOR method developed in [12].

In this paper, we describe and analyze Krylov-subspace methods for accelerating the convergence of waveform
relaxation for solving time dependent problems. We first review the L2 Krylov subspace techniques presented in [8]
and then present the Convolution CG and the Convolution GMRES algorithms for linear operators on a Hilbert space.
For a model case, we compare the CCG algorithm for linear differential equations with the CG algorithm for linear
algebraic equations, and we prove that they have the same convergence rate bound.

2. Waveform Relaxation. A mathematical description of waveform methods can be developed easily through
the use of a model initial value problem (IVP):

L2(t) + Ax(t)
z(0)

where A € R™*", f(¢) € R”, and =(t) € R" is the unknown vector to be computed over an interval of interest,
t € [0,T]. The traditional approach for numerically solving the IVP begins by discretizing (2.1) in time with an im-
plicit integration rule (since large dynamical systems are typically stiff) and then solving the resulting matrix problem
at each time step [3, 4]. This pointwise approach can be disadvantageous for a parallel implementation, especially for
distributed memory parallel computers having a high communication latency, since the processors will have to syn-
chronize repeatedly for each timestep.

A more suitable approach to solving the IVP with a parallel computer is to decompose the problem at the differ-
ential equation level. That is, the large system is decomposed into smaller subsystems, each of which is assigned to
a single processor. The IVP is solved iteratively by solving the smaller IVPs for each subsystem, using fixed values
from previous iterations for the variables from other subsystems. This dynamic iteration process is variously known
as waveform relaxation (WR), dynamic iteration, or as the Picard-Lindelof iteration [9, 16].

In (2.1), let A = M — N be a splitting of A. The waveform relaxation algorithm based on this splitting is
expressed in matrix form as

ALGORITHM 2.1. [Waveform Relaxation for Linear Systems]

1. Initialize: Pick =°
2, Iterate: For waveform iteration k = 0, 1,...

F(®)

Zo,

2.1

* This work was supported in part by National Science Foundation grant CCR92-09815.
t Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, Andrew.Lumsdaine.1@nd.edu
} Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, deyun.wu.2@nd.edu

1




2 A. Lumsdaine and D. Wu

. Solve La*tl(t)+ MaFtl(t) = Na*(t)+ F(2)
:B(O) = 0 .
for z*+1(¢) on [0, 7).
We can solve for «*+1(t) explicitly [6], that is,
t ,
2.2) 2Ft1(1) = e~ Miz(0) +/ e~MC=2) (N (s)zF(s) + £(s)) ds.
0

Instead of using this formulation, it is useful to abstract (2.2) and consider = as an element of a function space (of n-
dimensional functions) and the integral as an operator on n-dimensional functions. Using operator notation, we can
write (2.2) as

23) , . el =Kk 4.

Here the variables are defined on the space of n-dimensional square integrable functions, which we will denote as
L2([0, T, R"). The operator K (mapping from L%([0, T, R*) to IL%([0, T, R™)) is defined by

z)(t) = te‘M("’) s)z(s)ds
()t = [ N(s)a(s)ds,
and ¢ € L([0, T)],R") is given by
P(t) = e Mix(0) + /t e~ MC=2) £ (5)ds.
0

Roughly, application of the operator K means: “take one step of waveform relaxation.”
Now, we also know (based on the splitting) that the solution « to (2.1) will satisfy

#2()+M=(t) = Nz()+F()
z(0) = 0.
Or, using operator notation, we can see that = will satisfy
2.4) I-Kzx=1v

where the operator I is the identity operator.

3. Hilbert Space Methods. Ithasbeenknown since‘the early development of Krylov-subspace iterative methods
for linear algebra that the methods are easily extended to Hilbert space [5]. A natural Hilbert space for this problem is
L2([0, 7], R™).

Since K is not self-adjoint in L%([0, 7], R™), we can apply waveform GMRES (WGMRES), which is an extension
of GMRES to the space 1.%([0, T, R™). The WGMRES algorithm is given as follows:

ALGORITHM 3.1. [Waveform GMRES]

1. Start: Set 0 = 2p — (I — K)a, v* = »%/||r%}, B = [|*%]].
2. Iterate: For k = 1,2, . . ., until satisfied do:
o hip={I—-K)k ), i=1,2,..,k
o 35 = (I - K)ok — T, by’
o hppip =554
o oFF =¥ IRy b
3. Form approximate solution:
o z* = 2% + V*y*, where y* minimizes [|Be; — ﬂkykll.

4, Convolution Methods. Corresponding to the IVP (2.1), there is a linear algebraic equation

“4.1) Az =b.

1t is well-known that SOR for linear algebraic equation (4.1) converges very well. But waveform SOR for linear
differential equations (2.1) does not converge as well as SOR does except for some special cases [10]. Recently, [12]
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gave an optimal convolution SOR (CSOR) to accelerate the convergence of WSOR such that the CSOR converges as
well as SOR does.

A similar approach can be used to develop a convolution conjugate gradient method (CCG). Before we give CCG
algorithm, let’s give some definitions about convolution and deconvolution.

Definition. Assume f € IL%(—o0, +00) is a function, u, v € L2((—o0, +-00), R™) are L2 vectors. Define

(F*u)(t) = ((f*w)®)T € L}((—o0,+00),R™),
(w*v)(t) = Z?___,l(u,- *;)(t) € L2(—00,+00),

where u = (uy,us, ..., un)T, v = (v1,v2,...,9,)T.
Definition. A 1L? function A is called a deconvolution of 7 and g, if f = h * g, and g # 0. Denoted it by
h= f

9

Notice that if g is compactly supported, then a deconvolution of f and g is unique. In fact, assume
Ff=hixg=hyx*g.
By taking Fourier transform, we get
F=hig="hs3,

which implies that (ﬁ; - 7;;)2;‘ = 0. Now, since supp(g) is compact, 7 is holomorphic and non-zero, we conclude that
hy = hq, a.e. Therefore,

hi = hy = f/§

in L2 sense.

Remark. If f € IL%(—co0, +00) is not the zero function, then f % f # 0.

The CCG algorithm is given as follows when an operator A4 is convolution self-adjoint from L%([0, T],R"™) to
LL*([0, T], R™). Here “convolution self-adjoint” means the following: for any u, » € L2([0, T], R™),

(Au *v) = (u * Av).

ALGORITHM 4.1, [Convolution CG Algorithm]
1. Start: Compute 7o = f — Axg, pg = 70

2. Iterate: For j = 0,1, ... until converged,
TixT;

( p,"“pj)

® Tjr =Tj+aj*p;

® Tip1 =T — *.Apj

o (T 54157 541
o p =

® Diy1 =Ti41 +ﬂJ *DP;-

.aj.:

Remark.
1. In the above algorithm, “division” means deconvolution.
2. If A is a linear elliptic operator, then it is convolution self-adjoint so CCG can be applied.
3. If matrix A is symmetric and M = dI, d > 0, then the operator X is convolution self-adjoint.

5. Convergence of CCG Algorithm. It is well known that the convergence rate of CG applied to (4.1) is con-
trolled by

VKe(A) -1
VEA) +1’
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where k(A) = Apax/Amin is the condition number of A (cf. [13]).

By using Fourier transform techniques and results from [2], we can prove the following main theorem of this paper.
THEOREM 5.1. If M = dI, d > 0, A is positive definite Hermitian, then in 1.2 norm, the CCG algorithm for

operator (I — K) in(2.4) has a convergence rate controlled by

\/K(A)—l‘
Vr(4) +1
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Frequency filtering decompositions for unsymmetric matrices
and matrices with strongly varying coefficients

Christian Wagner

In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method
for the iterative solution of large systems of linear equations. Based on this method, the tangential
frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and
efficient treatment of matrices with strongly varying coefficients. The existence and the convergence
of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices,
it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the
number of unknowns.

For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric
matrices have been developed. Since, in contrast to Wittums’s FFD, the TFFD needs only one test
vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be
combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of
these methods. The frequency filtering decompositions have been successfully applied to the problem
of the decontamination of a heterogeneous porous medium by flushing.




Multigrid Solution of the Convection-Diffusion Equation
with High-Reynolds Number*
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Abstract

A fourth-order compact finite difference scheme is employed with the multigrid technique to
solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled
inter-grid transfer operators and potential on vectorization and parallelization are discussed.
The high-order multigrid method is unconditionally stable and produces solution of 4th-order
accuracy. Numerical experiments are included.

Key words: Multigrid method, high-order discretization, scaled residual transfer operator, convection-
diffusion equation. '

1 Introduction

Numerical simulation of the convection-diffusion equation plays a very important role in mod-
ern large scale scientific computation, especially in computational fluid dynamics. The general
convection-diffusion equation with Dirichlet boundary conditions is of the form

Uzz(2,Y) + Uyy(2,9) + 2(2,9)ua(2, ¥) + a(, ¥)uy(2,9) = fz,9), (z,9) € Q, (1)
u(x’y) = g(:z:,y), (:v,y)eaﬂ,

where p(z,y) and g(z,y) are functions of = and y, and simulate the Reynolds number in the case
of the viscous flow problems. Q is a convex domain.
When (1) is discretized by some difference formula, it results a system of linear equations

Ahuh = fh, . (2)

where the superscript  indicates the uniform mesh-size and the coefficient matrix Ah is nonsym-
metric and not positive definite in general. To facilitate discussion, we define the cell Reynolds
number associated with the mesh-size h as

Re = max( sup |p(z,y)|, sup |q(z,¥)|)-h/2.
(zv)€Q (@y)eR

zY)€

For Re < 1, we say that equation (1) is diffusion-dominated. Otherwise it is convection-dominated.
In this paper, we are primarily interested in the case when Re — co.

*Submitted for the Proceedings of the 1996 Copper Mountain Conference on Iterative Methods.
'Emeail address: zhang@math.gwu.edu.




If . the discretization is the central differences, the resulting scheme is a five-point formula
(FPF) and has a truncation error of order k% and iterative methods for solving the resulting
system of linear equations do not converge when Re is greater than a certain constant. Although
the upwind scheme is unconditionally stable it has a truncation error of order h.

Since A" is in general nonsymmetric, finding a stable numerical solution of (2) for large Re is
one of the hardest and hottest problems in multigrid. de Zeeuw [12] developed a black-box multigrid
solver with some matrix-dependent prolongations and restrictions. Acceleration ‘techniques based
on over-weighted residual transferring and defect correction were proposed by Brandt and Yavneh
[2]. A cyclic reduction preconditioner was used with multigrid by Golub and Tuminaro [3]. A
multigrid method based on Schur complement of the coefficient matrix and the matrix-dependent
prolongation operator was recently published by Reusken [9]. Most of these multigrid methods
are based on some kinds of FPFs, but their preconditioned systems are usually some kinds of
nine-point formulas (MPFs).

Multigrid applications of N'PF schemes have been proposed for special form of (1), i.e. the
Poisson equation [10] and the constant coefficient case [6]. In this paper we employ a compact
NPF with multigrid techniques to solve equation (1) with variable coefficients for large Re and
mvestlga,te the potential on the parallelization and vectorization of the multigrid with N'PF.

This paper is organized as follows: In § 2, we present the high-order multigrid method and
compare some existing approaches. In § 3, we discuss the issue of scaling the inter-grid operators.
In § 4, several test problems are solved by the proposed method to show the stability and the
effectiveness of the N'’PF multigrid solver for large Re. Conclusions and remarks are given in § 5.

2 High-Order Multigrid Method

The approximate value of a function u(z,y) at a mesh point (z,y) is denoted by up. Those at
its eight immediate neighboring points are denoted by u;,7 = 1,2,...,8. The discretized values
of p;,q; and f;,¢ = 0,1,...,4, have their obvious meanings. The finite difference formula for the
mesh point (z,y) involves the nearest eight neighboring mesh points with mesh-size h and has the
following computational stencil (the Southwell notation):

Ug U2 Us -

Uz U U1 ' (3)
Ur U4 US

The high order finite difference formula for equation (1) is given by (see [4] for details):
8 . h2 . h3
> aju; = ?[Sfo + i+ fot+ fa+ o]+ Z[Po(ﬁ — f3) + ao(f2 — f4)l, (4)
=0 .
where b is the uniform mesh-size. The coefficients o;,72 =0,1...,8, are
ag = —[20+ R*(B5 + 63) + h(p1 — p3) + B(g2 — au)],

h Y
ar = 4+ 7[4po+3p1—pstprtpd+ ——[4193 + po(p1 — p3) + qo(p2 — p4)],

h
4+ [4qo +3¢—qu+q1 +a3]+ [4qo + po(q1 — g3) + go(g2 — 44},

(25]




h h2

a3 = 4- Z[4Po ~p1+3p3+p2+ 4+ §[4p§ — po(p1 — p3) — go(p2 — p4)],
h h?

ay = 4- ;1-[440 - @+3u+a+glt —8-[4Q§ —po(@1 — 43) — 90(q2 — q4)],

h h h?

@ = 1+ o(po+a)+g(a—g+p—p)+ - Poto;
h h K2

ag .= 1-— '2‘(110 - Q) — §(41 —q3+p2—pg)— ZPD‘IO,
h h h?

ar = 1-— —2-(po +q0) + §(QI —g3+p2—ps)+ 7 Podo,
h h : h?

as = 1+ §(p° —q) — g(QI — g3+ p2—pg)— 4 Podo-

Numerical experiments reported in [4] show that this scheme converges for any values of p(z,y)
and ¢(z,y) with SOR method.

When Re = 0, equation (1) reduces to the Poisson equation, scheme (4) reduces to the well-
known Mehrstellen formula. Multigrid applications of Mehrstellen formula have been investigated
by Schaffer [10], Gupta, Kouatchou and Zhang [5]. When p(z,y) and ¢(z,y) are constants we [6]
have shown that A"PF with multigrid converges for any Re and demonstrates 4th-order accuracy
while FPF diverges for some Re > 1 and demonstrates 2nd-order accuracy for small Re.

Formula (4) is compact in the sense that updating value at one point uses values at its eight
nearest neighboring points. No special formula is needed for points near the boundary.

Algorithm 2.1 describes a standard recursive multigrid cycling scheme, where R and P are the
restriction and interpolation operators respectively. In practice, p is chosen to be 1 or 2 and the
resulting multigrid cycling schemes are called the V-cycle and the W-cycle.schemes respectively.

Algorithm 2.1 Multigrid Cycling Scheme
ot — MG(v*, f*)

Step 0: If QF = the coarsest grid, solve v® = (v*)~1 %, otherwise,
Step 1: Relaz vy times on Ahv* = f* with a given initial guess v*.
Step 2(a): rh o fh— ARk, ‘

Step 2(b): r2h  Rrk,

Step 2(c): 2 — 2k,

Step 2(d): v2h — 0,

Step 2(e): v?h — MG(v?*, f2b) p times.

Step 3: Correct vP — vk 4 Py?h,

Step 4: Relaz v, times on AMv* = P with the initial guess vh.

The discretized grid space is naturally (lexicographically) ordered. For N’PF we may re-order the
grid space by systematically coloring all grid points with four colors so that relaxation on grid
points with different colors can be carried out simultaneously and independently [1]. In this paper,
we investigate the four-color ordering of the grid space with Gauss-Seidel relaxation method. The
bi-linear interpolation will be used in our algorithm to interpolate the coarse-grid-correction (CGO)
to the fine grid. The scaled residual-injection operator discussed below will be used to transfer the
residuals from the fine grid to the coarse grid (see [8]).




The compact N'PF scheme (4) in conjunction with the four-color Gauss-Seidel relaxation is
used with multigrid technique and the resulting method is referred to as NPF-MG. The same
NPF is used on all grids which greatly simplifies the coding.

We close this section by comparing our N'PF-MG with some existing multigrid methods
mentioned in § 1. Golub and Tuminaro’s cyclically preconditioned method [3] produces a non-
compact nine-point stencil. Special treatments are needed for unknowns near the boundary. For
coarse grid operators, techniques are employed to avoid the increase of the number of unknowns
in the stencil. Also, artificial dissipation terms are added when the coarse grid operator is not
diagonally dominated. The same difficulty was experienced by Reusken [9], who had to use the
“lumping method” to approximate NPF by FPF on the coarse grid. Also, Reusken assumed
that the matrix with N'PF is weakly diagonally dominated so that the approximating matrix with
FPF is an M-matrix to guarantee convergence. The diagonal dominance is usually guaranteed
by the upwind discretization, as used by Reusken in [9], the upwind scheme renders the resulting
method 1st-order accuracy. Although it has not been proved, our numerical experiments showed
that weakly diagonal dominance is not necessary to guarantee convergence for N'PF-MG. These
existing methods suggest that A"PF be beneficial for stability. Our NPF- MG uses N'PF directly
without any precond1t1oner or added artificial dissipation terms.

3 Scaling Residual Transfer Operators

The efficiency of a multigrid algorithm depends on the quality of the relaxation method (the
smoother) and on the quality of CGC, which is to correct the current approximation by solving
a sub-problem on a coarser grid. In this paper, we are interested in optimizing CGC process, the
issue of how to find a good smoother will not be discussed here.

Let Q" be the grid space associated with mesh-size  and Q2* with 2h. Let there be a regular
splitting of A®, M and N be nonsingular square matrices satisfying the consistency condition

M+NA* =T.

Given v* € Q", denote the error e* = u® — v*, where u* = (4*)~1f% is the exact solution. The
nature of CGC is to look for a v?* € Q% to fulﬁ]l the minimization condition (see [11])

h ohy . o h_
le* — Pz = min [le* - Pullz, (5)

where || - ||z is the energy norm with respect to some symmetric, positive definite matrix Z on Q.

As Brandt and Yavneh [2] remarked that, when solving the convection-diffusion equations with
large Re, the.error is dominated by smooth components. Hence, instead of increasing smoothing
sweeps on the fine grid, they concentrated their efforts on improving the CGC process because in
many cases, the coarse grid solution fails to approximate that of the fine grid.

In many practical applications, especially when A" is not symmetric positive definite (NSPD),
satisfying (5) is not enough to guarantee fast convergence. Modifications of standard multigrid
CGC have been proposed (see [2, 7, 9, 11, 13, 15]). At the beginning of each multigrid cycle (see
Algorithm 2.1), suppose eg is the error after Step 1, and e; is the error after Step 3, in this paper,
we concentrate on fulfilling the following minimization problem

llexllz/lleollz = ggglluh — (v" + aPv®)(| z/|leol|z- (6)




Unfortunately, (6) is not directly solvable, because the error ey and the exact solution u* are not
known. Hence, we need some way to estimate the optimal c.
Suppose a can be estimated by some suitable method we modify Algorithm 2.1 by

The 1st approach: Step 3: vh = vh 4 a P2k,
which will be referred to as the post-scaling technique, or by
The 2nd approach: Step (2b): r2h = BRr*,

which will be referred to as the pre-scaling technique. We have unified these (and other) approaches
as the residual scaling technigues in [14]. The following theorem was proved in [14]:

Theorem 3.1 The pre-scaling and the post-scaling technigues are mathematically equivalent if and
only if the scaling parameters are equal, i.e. if and only if a = f.

Due to Theorem 3.1 we will no longer distinguish the scaling parameters o and 3, but just use o
to denote both the pre-scaling and the post-scaling parameters.

Now, we discuss how to compute or estimate the scaling parameter & in (6). In [11], Vangk
showed that, if we choose Z = A", (6) is equivalent to the following minimization problem

137" — aPo® || 4n = min [|M2[e" — &Pv™]|| gn. (7)

This approach (termed as over-correction by Vanék in [11]) computes e in the process of CGC and
requires that A* be symmetric and positive definite (SPD), which is not the case for equation (1)
with large Re. The SPD requirement puts a severe limit on the application of many post-scaling
acceleration techniques. In addition, one step of the over-correction usually costs more than one
multigrid cycle and a large number of pre-smoothing sweeps is needed. In Van&k’s test problem for
solving an anisotropic Poisson equation [11], he used 7 pre-smoothing and 2 post-smoothing sweeps
(see [11]). The cost is prohibitive.

Reusken’s approach [9] also belongs to the 1st approach, but no specific method is proposed
to estimate a. Although Reusken included some impressive numerical results show that the con-
traction numbers are very small for his algorithm, his method was derived from the upwind scheme
and thus suffers from the same drawback as being of 1st-order accuracy.

In [2], Brandt and Yavneh took the 2nd approach and used a heuristic analysis to estimate
o for solving high-Re flows. An over-weighted residual method (@ = /2) and defect correction
technique were proposed. It was shown that the convergence of the multigrid solver based on the
first differential approximation is considerably improved.

In [7], We also took the 2nd approach and used a heuristic residual analysis based on the ge-
ometry of the grid points to find an optimal & (= 0.5424) for NPF-MG with red-black ordering for
the diffusion-dominated problems. It has been shown [7] that this o improves the cost-effectiveness
of N'PF-MG when diffusion dominates. It also guarantees convergence when convection dominates,
while full-weighting is divergent.

Except for the cost of estimating or computing «, the implementation of the 2nd approach is
cost-free, but the implementation of the 1st approach is one multiplication on the fine grid.

Clearly, if the residuals need to be scaled before they are restricted to the coarse grid, there
may be no big difference to scale the residuals from full-weighting or from injection (with different
scaling factor). Hackbusch [8] remarked that injection is computationally optimal and we may save
3/4 of the residual restriction cost by scaling residuals from injection,




In parallel implementation, injection is clearly advantageous over full-weighting because injec-
tion is a local process and requires no communication with neighboring processors. Full-weighting
requires communication with eight neighboring grid point which may be in different processors.

Moreover, when p(z,y) and ¢(z,y) are oscillatory on Q, the direction of the convection changes
rapidly. In particular, when § contains turning-points, the convection changes direction at the
turning-points and equation (1) represents a recirculating flow. The full-weighting operator usually
mis-represents the characteristics of the flow around the turning-points. By projecting residuals
with mis-represented characteristics to the coarse-grid, the coarse-grid sub-problem fails to approx-
imate that of the fine-grid at all and causes divergence on the find-grid for high-Re recirculating
flow. On the other hand, injection may maintain the characteristics in this case.

Although the order of the injection operator is 0 (see [8]) and the combination of injection
with bi-linear interpolation (order 2) violates the order rule set up by Brandt and Hackbusch [8] for
small Re (2nd-order equation), our numerical experiments showed that the CPU cost is almost the
same by using scaled injection and by using full-weighting (the convergence deteriorates slightly).
For large Re, equation (1) approaches a 1st-order equation and the combination of our inter-grid
transfer operators satisfies the order rule.

Hence, we choose the 2nd approach and use the scaled injection operator with a scaling
parameter « in our N'PF-MG solver. For the four-color Gauss-Seidel relaxation and for solving
equation (1) with large Re, we have found that oo = § yields very good numerical results. Note
that our N'PF-MG gives same results (convergence and computed a,ccura,(':y) for all Re > 103. For
small Re, o changes as Re increases or decreases in some range, we recommend that full-weighting
be used as the restriction operator. However, since NPF-MG with full-weighting diverges for
‘problems with turning pojnts and large Re, the scaled injection operator should be used if the
magnitude of the convection coefficients is not known a priori. Like the development of general
numerical softwares, there is a trade-off between the robustness and the efficiency.

4 Numerical Experiments

For numerical experiments, we solve equation (1) with the convection coefficients as follows:

Test Problem 1:  p(z,y) = K, q(z,y) = K;

Test Problem 2:  p(z,y) = Kz(2y — 1), ¢(z,y) = Ky?(5 — 3z);
Test Problem 3: p(z,y) = Kzcos(z +y), g(z,y)= Kysin(z +9);
Test Problem 4:  p(z,y)= Kexp(z+y), 4q(z,y)=Kexp(—2z—1y).

We choose Q = (0,1) x (0,1). Note that Problems 2 and 3 have turning-points in @ and NPF-MG
with full-weighting diverges for large Re. All problems were solved for the same conditions and
by using a uniform mesh-size k. The boundary values were given so that the exact solutions were
u(z,y) = z2+y2%. The initial guesses were u(z,y) = 0 for all problems. Since it has been established
(see [6, 7]) that our NPF-MG yields numerical solution of 4th order accuracy for equation (1), we
do not report the computed accuracy here.

The computations were done on a vector machine Cray-90 at the Pittsburgh Supercomputing
Center. The program was coded in Fortran 77 language and compiled by Cray Fortran 77 compiler
in single precision (roughly 16 digits of accuracy).

In Algorithm 2.1, u = 2 was chosen (W-cycle). On the finest grid, the mesh-sizes were chosen
as h=1/32,1/64,1/128,and 1/256. Standard coarsening technique was used and the coarsest grid
has a mesh size h = 1/2.




We solved equation (1) for large Re by choosing K so that Re € [103,103%]. Re can really
approach infinity, the limit is on computer’s hardware. a = 5 was chosen and two pre-smoothing
and two post-smoothing sweeps (v; = v, = 2) were applied on all grids.

The convergence histories of the four test problems with different finest mesh-sizes are depicted
in Figure 1. The data reported were obtained by choosing K = 10190, We point out that exactly
the same picture may be obtained for all Re € [10%,10%%°]. We conclude that the convergence rate
of N'PF-MG is not affected by Re for large Re. Judging from Figure 1, we can find that NPF-MG
converges satisfactorily. We point out, except for Test Problem 1, the computed solutions almost
reach the limit of the algorithm.

5 Conclusions and Remarks

A compact nine-point discretization formula has been used with the multigrid technique to develop
a stable and high accuracy multigrid solver (VPF-MG) for the variable coefficient convection-
diffusion equation with large Re. Techniques for improving CGC by scaling the residual transfer
operators are discussed. Vectorization and parallelization potentials of NPF-MG are investigated
and the solver was tested on a vector machine with the four-color Gauss-Seidel relaxation. Four test
problems were solved to demonstrate the efficiency of our solver. Numerical experiments show that
the convergence rate of NPF-MG is not affected by the magnitude of Re beyond some constant.

The beauty of NPF-MG is that it requires no preconditioner nor added dissipation terms for
high-Re problems. The coding of the program is simple. Our NPF-MG solver was developed by
modifying a standard FPF Poisson solver. With four-color Gauss-Seidel relaxation method and
the properly scaled residual injection operator, N'PF-MG can be fully vectorized and parallelized.

We remark that the convergence rate of NPF-MG can be accelerated if we replace the four-
color Gauss-Seidel relaxation by the four-color SOR relaxation [1]. The suitability of vectorization
and parallelization will not change. If one is interested in solving problems on serial computers
we recommend the red-black A’/PF-MG in (7] which has better convergence. However, for parallel
computation the current implementation seems better. Other multigrid acceleration schemes such
as the optimal residual scaling techniques and the minimal residual smoothing techniques have
been investigated intensively by us and are reported in [14, 15, 16] (up to 88% acceleration in
convergence).
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STATE SPACE ORDERINGS FOR,
GAUSS-SEIDEL IN MARKOV CHAINS REVISITED
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Abstract. Symmetric state space orderings of a Markov chain may be used to reduce
the magnitude of the subdominant eigenvalue of the (Gauss—Seidel) iteration matrix. Order-
ings that maximize the elemental mass or the number of nonzero elements in the dominant
term of the Gauss—Seidel splitting (that is, the term approximating the coefficient matrix)
do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R
is semi-convergent. On the other hand, there are semi—convergent symmetric state space or-
derings that do not satisfy Property-R. For a given ordering, a simple approach for checking
Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase
the likelihood of sa.tlsfyl,ng Property-R is presented. The computational complexity of the
ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices).
In doing all this, the aim is to gain an insight for faster converging orderings. Results from
a variety of applications improve the confidence in the algorithm.

Key words. State space ordering, Markov chains, Gauss—Seidel, Property-R
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Abstract

We discuss the recently introduced multi-level algorithm for the steady-
state solution of Markov chains. The method is based on the aggre-
gation principle, which is well established in the literature. Recursive
application of the aggregation yields a multi-level method which has
been shown experimentally to give results significantly faster than the
methods currently in use. The algorithm can be reformulated as an
algebraic multigrid scheme of Galerkin-full approximation type. The
uniqueness of the scheme stems from its solution-dependent prolonga-
tion operator which permits significant computational savings in the
evaluation of certain terms.

1 Introduction

Markov chains describe discrete-state stochastic processes in which the probabilities of
transitions between states are a function solely of the current state of the chain - the
so-called memoryless property. Since this property is approximately satisfied by many
physical systems, Markov chains are used widely in stochastic modeling. We will draw our
examples in this paper from the field of computer performance modeling. It is common
to distinguish between continuous time Markov chains (CTMCs), in which transition
coefficients between states are interpreted as exponentially distributed rates or delays,
and discrete time Markov chains (DTMCs), where they are treated as probabilities. In
the latter case, the Markov chain is described by a stochastic matrix. Since, however,
for the steady-state case, CTMC problems can be converted via a simple transformation
into problems described by a DTMC, we will henceforth restrict ourselves to the latter.
Ultimately, the Markov chain represents a linear system of equations which is usually very
sparse and often extremely large.

'Email: graham@informatik.uni-erlangen.de. This work was carried out while the author was a guest
at ICASE, NASA Langley Research Center, Hampton, VA. and a visitor at the Mathematics and Com-
puter Science Department of the University of Denver.




One goal of modeling computer systems is to derive information on performance, mea-
sured typically as job throughput or component utilization, and availability, defined as
the proportion of time a system is able to perform a certain function in the presence of
component failures and possibly also repairs. Various abstract modeling tools for com-
puter systems are in widespread use today, the most important of which are generalized
stochastic Petri nets (GSPNs) [1] and queueing networks [6]. When the memoryless con-
dition is satisfied, such models are equivalent to Markov chains, and it is required to solve
the Markov chain in order to derive useful information about the abstract model.

Unfortunately, the number of states of the Markov chain (and thus the dimension of the
linear system) grows extremely quickly as the complexity of the model is increased. There
is one unknown for each state that the model may be in - a number that is subject to a
combinatorial explosion. Thus the Markov chains that have to be solved even for relatively
coarse computer models may have tens or hundreds of thousands of states. Apart from
their size, one further drawback of typical Markov chains is the presence of coeflicients on
a wide range of scales. Consider, for example, a reliability model of a computer, in which
the rate of component failure may be only once in every few months, whereas the rates
associated with the normal behaviour of the system are measured in kHz and MHz.

The resulting large systems of equations must be solved numerically using an iterative
scheme. Typical iterative methods in use in the computer modelling community are the
Power, Gauss-Seidel (GS), and successive over-relaxation (SOR) algorithms. Surveys of
currently used methods may be found in [12, 8]. All of these methods have the drawback
that they may require many iterations to reach an accurate solution, particularly if the
system is large or if coefficients of strongly varying magnitude are present. This can lead
to unacceptably long computation times.

In this paper we will consider the multi-level (ML) solution algorithm for Markov chains,
which was introduced in [4]. The method is based on the principle of iterative aggregation
and disaggregation, a well-established numerical solution technique for Markov chains
[7, 15, 14]. Tt is shown that the method is equivalent to a algebraic multigrid scheme which
uses the Galerkin method for the coarse level operator and is of Full Approximation scheme
(FAS) type. The novelty of the method stems from the definition of the prolongation
operator, which is solution-dependent and commutes from the left and from the right
with the restriction operator. This has two interesting effects: the right hand side of the
coarse level equations degenerates into a simple restriction of the fine-level right hand side,
and the coarse level operator is solution-dependent and therefore changes from iteration
to iteration, even though the original problem is linear.

In the following section we describe the problem and the aggregation equations. Then
the multi-level method is described. In section 4 the multi-level method is rewritten as
a multigrid scheme. In section 5 experimental results for Markov chains arising from
a well-known multiprocessor reliability model and from a simple queueing network are
presented, showing the superiority of the method over the standard iterations. In the
final section we summarize the paper. *




THRESHOLD PARTITIONING OF SPARSE MATRICES AND
APPLICATIONS TO MARKOV CHAINS

HWAJEONG CHOI* aND DANIEL B. SZYLD*

Abstract. It is well known that the order of the variables and equations of a large, sparse linear
system influences the performance of classical iterative methods. In particular if, after a symmetric
permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster
asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse
matrices are presented. They are modifications of PABLO [SIAM J. Sci. Stat. Computing 11 (1990)
811-823]. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are
taken into account. The matrix resulting after the symmetric permutation has dense blocks along the
diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for
example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices
represent Markov chains, the permuted matrices are well suited for block iterative methods that find the
corresponding probability distribution. Applications to three types of methods are explored: (1) Clas-
sical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal
preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where
the partition obtained from the ordering algorithm with certain parameters is used as an aggregation
scheme. In all three cases, experiments are presented which illustrate the performance of the methods
with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and
the order of of the matrix, and thus adding little computational effort to the overall solution.

1. Introduction. O’Neil and Szyld [10] present an algorithm called PABLO that
produces a symmetric permutation of a sparse matrix with the goal of obtaining dense
diagonal blocks. They show that their algorithm is linear in the number of nonzeros
and the order of the corresponding matrix. Their algorithm is combinatorial in nature,
i.e., it takes into account the zero-nonzero structure or graph of the matrix, but not
the values of its entries. Dutto et. al. [6] use a modified version of PABLO, where the
number of blocks in the diagonal is prescribed and where they are of roughly the same
size, to produce effective block parallel preconditioners for the solution of Navier-Stokes
equations. Recently, similar ideas have been used for the parallel solution of nonlinear
systems [11], {22].

In this contribution, we present some modified versions of PABLO, where, in addi-
tion to the combinatorial aspects, the values of the entries are taken into account. Thus,
a threshold is introduced, and at the same time that a node in the graph of the matrix
is tested for inclusion in the component corresponding to a diagonal block, the value of

* Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122-2585, USA
(choi@math.temple.edu, szyld@math.temple.edu). This work was supported by the National Science
Foundation grant DMS-9201728.
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its entry (or of other entries) is compared with the given threshold; see Section 2. The
ordering and partitions produced by the new algorithms depend on the threshold and
other connectivity parameters. By changing the parameters, different blocks can be ob-
tained, e.g., with entries within the diagonal blocks that are larger in magnitude. Since
the new algorithms have an additional search through several nodes, their complexity is
higher than that of PABLO, but it is still linear in the number of nonzeros and the order
of the matrix, as shown in [3]. This is also illustrated in the experiments in Section 3.

The new algorithms can be applied to any square matrix, and more specifically to
singular matrices. The applications we have in mind include finding the stationary prob-
ability distribution of a Markov Chain; see e.g., [17]. In the survey [12], several iterative
methods for the solution of such systems are discussed. We have chosen three types of
iterative methods, and applied the partitions obtained with the original PABLO and the
new threshold algorithms. The methods considered are classical block iterative meth-
ods such as Block Gauss Seidel [21], preconditioned GMRES [13] with block diagonal
preconditioning, and aggregation/disaggregation methods; see, e.g., [2], [9], [14], [19]-

We have found first, that the ordering generated by the original PABLO is a good
partition for the matrices corresponding to these problems. Furthermore, the orderings
produced by the new algorithms, are obtained in similar time, and generally give rise to
even faster convergence; see Section 3.

2. Threshold Orderings. In this section we briefly review the algorithm PABLO
(PArametrized BLock Ordering) and describe the threshold variants. Given an n x n
matrix A = (a;;), let G = (V, E) be its associated graph, i.e., V = {v1,...,v,} is the set
of n vertices and F is the set of edges, where (v;,v;) € F if and only if a;; # 0; see, e.g.,
[5], [7]. Given this graph, PABLO constructs ¢ subgraphs Gy = (Vi, Ex), k =1,...,q.
The number of subgraphs, ¢, i.e., the number of the corresponding diagonal blocks, is not
known a priori, but is determined by the algorithm and it depends on the structure of the
graph G and the input parameters. In the algorithm PABLO (as well as in the threshold
algorithms described in this section), a first node is taken from the queue of unmarked
nodes and this node starts a new current set of vertices P, then additional nodes are
taken from the queue and added to the set P if they satisfy certain criteria, or sent back
to the queue if not. Two criteria are used in PABLO to determine if a node v should be
added to a current set P C V, corresponding to a diagonal block, by measuring how full
vU P is, and to what degree the vertices in v U P are connected to each other. The first
criterion is measured by the ratio of the total number of edges corresponding to vU P to
the number of edges that subgraph would have if it were complete (corresponding to a
full submatrix). If it is satisfied then the new node is added. The second test is that the
new node v must be adjacent to at least a certain proportion of nodes in the subgraph
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corresponding to P and more than outside the subgraph. The two parameters which
govern these criteria, referred as o and 3, are recommended in [10] to have default values
o =1, B = 0.5, or to be reset by the user. The linearity of the algorithm is obtained
by selecting a set of eligible nodes, thus restricting the search to a relatively small set of
nodes. For further details, see [10].

In the two variants of threshold PABLO (TPABLO) described here, a third addi-
tional criterion is used to decide if a new vertex v is added to the current subgraph being
formed. Let 7 be the given threshold, let P be the set of nodes of the current subgraph,
and v; be the vertex being tested for addition to P (corresponding to the jth row and
column of the matrix). In each of the TPABLO versions, v; is added to P if, in addition
to either of the two criteria in PABLO, the following holds.

Criterion 1. |aij| > 7 or |aji| > for at least one i € P.
Criterion 2. |a;;| > v and |aji| >y forall ¢ € P.

The use of criterion 1 produces a permuted matrix in which every entry in the off-
diagonal blocks is smaller than the threshold in absolute value. This criterion is also
useful to find NCD matrices; see, e.g., [1], [8], [L8]. The use of criterion 2 produces a
permuted matrix in which every entry in the diagonal block is larger than the threshold
in absolute value, with the possibility that some entries in the off-diagonal blocks are
also larger than the threshold in absolute value.

The following pseudo-code summarizes a portion of the algorithm TPABLO, cf. [10].
In it, the set C' C V is the set of vertices which have yet not been assigned to a block,
the set P C V is the current set, i.e., the one corresponding to a diagonal block being
constructed, and the set Q C V is the set of nodes in C which are adjacent to nodes in
P. Thus, at the beginning of the algorithm, we have C =V, P=Q =0.

Given a set C,set ¢=10
repeat until C = §
let P=Q=0
choose from C' a node ¢, mark it, and place it on P
move to @ all nodes in C adjacent to ¢
repeat until @ =0
chose the node p from the head of &
calculate connectivity information
if either the fullness or the connectivity criteria of PABLO is satisfied
and the threshold criterion holds (1 or 2, depending of the algorithm)
then
mark p and move it to P
add to the rear of @ all nodes in C adjacent to p
update connectivity information
else
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move node p from @ to C
endif
designate those nodes in P to be in a block (and set ¢ = ¢+ 1)

The flexibility of PABLO and its threshold variants is increased by the introduction
of an additional parameter minbs which guarantees a minimum size for each block along
the diagonal. A value of minbs = 0 has no effect on the algorithm, while a very large
value is obviously not recommended.

3. Numerical experiments. We present numerical experiments illustrating how
the permutations generated by the two versions of TPABLO are useful to find stationary
probability vectors of Markov. chains. We begin by comparing the ordering and permu-
tations obtained with these, to those generated by the algorithm provided in the package
MARCA due to W. Stewart [16], [18]. We will call the latter algorithm MARCA for
short. In it, given a threshold, all elements of magnitude below it are discarded, and the
strongly connected components of the remaining graph are determined. We point out
that the partition algorithm of MARCA, is essentially the same as the epsilon decom-
position of Sezer and Siljak [15] (using symmetric permutations). The matrices used in
these experiments correspond to an interactive computer system, described as Example
1 in [12] or in [18]. The resulting NCD matrices corresponding to 20, 30 and 50 users
have 1771, 5456 and 23426 states (number of variables) and 11,011, 35,216, and 156,026
nonzeros, respectively. -

order 7| ngr| w]|it Tp Ta Tb Tt | rnorm -

TPABLO1 | 1771 ( 0.01 21 (15| 4| 0.27| 0.00 2.36 9.45 | 1.38e-09
MARCA 0.01 21 (15| 5| 0.02]| 0.00 2.34 11.80 | 2.80e-09
TPABLO1 | 5456 | 0.05 | 496 | 1.3 | 4| 0.55| 2.32 0.28 10.82 | 5.07e-09
| 0.01 31 (15|°4} 1.75| 0.00 | 17.06 68.41 | 5.06e-10

TPABLO2 0.05| 496 (1.3 { 4| 0.57| 2.36 0.27 10.97 | 5.07e-09
0.01 31|15 4| 175( 0.00| 17.06 68.41 | 5.06e-10

MARCA 005 496 |1.3| 5| 0.056] 2.39 0.28 13.88 | 2.53e-10
0.01 31|15 5| 012 0.00| 17.43 87.40 | 8.57e-10

TPABLO1 | 23426 | 0.05 | 1326 { 1.3 | 7| 3.25 | 18.03 2.37 | 147.06 | 2.31e-11
0.01 51 (14| 5]20.45| 0.03| 206.25 | 1032.39 | 8.64e-11

MARCA 0.05 (1326 | 1.3 | 6 | 0.37|17.93 | 2.32| 125.53 | 2.17e-10
0.01 51114 61 0.55 | 0.03 | 213.84 | 1284.43 | 8.24e-11

TABLE 1
Aggregation/Disaggregation for NCD matrices, o = f = 0.5, minbs =0

In Table 1 and in the tables that follow it, the parameter v is the threshold used
in the MARCA algorithm and in the two versions of TPABLO, “ngr” is the number of
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preconditioner | size of mno. of k& no. of rnorm

blocks blocks cycles
None 10 20 1.17e-01
15 20 1.77e-02
Natural order 10 171 10 20 4.90e-01

50 36 10 20 6.59e+-00
100 18 10 20 6.98e-01
TPABLO1 21 10 20 1.19e-07
15 3 1.52e-09

TABLE 2
GMRES(k) on an NCD matriz, n = 1771, a = 8= 0.5, v = 0.01, minbs =0

aggregation groups, i.e., the number of blocks along the diagonal after the permutation, w
is the relaxation parameter used in the SOR method for the solution of the linear system
corresponding to each block if its order is larger than 50 (Gaussian elimination is used
for the smaller blocks), and “it” is the number of aggregation and disaggregation steps
needed for convergence. The times reported are CPU seconds of a SUN Microsystems
Sparc 20 at the Department of Mathematics at Temple University. “Tp” is the time
for the ordering algorithm, either MARCA or one of the versions of TPABLO, “Ta”
is the average solution time for the aggregated matrix, “Tb” is the average solution
time for the diagonal blocks, while “Tt” is the total CPU time for convergence. In. the
last column we present the Euclidean norm of the residual of the computed probability
vector.

We observe that with the parameters & = f = 0.5, minbs = 0, TPABLO1 and
TPABLO2 obtain the same groups of states as MARCA does, but the order of the
variables (states) within each block is different. This accounts for the difference in
performance of the methods with the different partitions. In other words, the SOR
method converges faster for the blocks in the diagonal (of order larger than 50) with the
ordering produced by the TPABLOs. As it can be observed, for these NCD matrices, the
times obtained with the TPABLOs are of the same order of magnitude, and in general
better than those obtained with the MARCA partition. Different PABLO connectivity
parameters give rise to different partitions which can produce better convergence time

[3].

In Table 2 we present some preliminary results on experiments using GMRES(k)
[13], i.e., with restarts every ¥ GMRES iterations, using block diagonal preconditioners.
We use the same NCD matrix as in Table 1 with 1771 states. For k£ = 10 restarts and
20 sets of restarted cycles (200 total GMRES iterations), runs with no preconditioning,
as well as those with block diagonal preconditioning with blocks taken in the natural
ordering, do not reduce the norm of the residual below 1072, while the blocks produced
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by TPABLO give a very satisfactory answer. With k = 15 restarts, only 45 total GMRES
iterations are needed for convergence. ‘

no. of | no. of | total no. of 6 Tp| Tec Tnorm
blocks | iter | operations |
Point GS 1771 467 27927365 | .9677 13.35 | 9.87e-09
2 by 2 886 467 29577664 | .9567 13.24 | 9.87e-09
4 by 4 443 467 32878821 | .9460 13.14 | 9.87e-09
PABLO ‘ 539 268 17350803 | .9445 | .09 | 7.30 | 9.79e-09

TPABLO1(0.05) 599 226 14150797 | .9320 | .11 | 5.96 | 9.86e-09
TPABLO1(0.01) 541 | . 266 17268875 | .9438 | .11 | 7.24 | 9.61e-09
TPABLO1(0.001) | 539 268 17350803 | .9445 | .09 | 7.08 } 9.79e-09

TPABLO2(0.05) 624 208 12847129 | .9255 | .13 | 5.88 | 9.53e-09
TABLE 3
Ezample ‘CentralServer20’, a=1.0, f=0.5

We turn now to numerical experiments using Block Gauss Seidel. We compare
the results obtained with PABLO and its threshold variants with the standard (point)
Gauss Seidel, and to block versions obtained by takmg 2 by 2 and 4 by 4 blocks along
the diagonal. In addition to CPU time, we report the total number of operations, as
well as §(T'), the second largest eigenvalue of the corresponding iteration matrix. “Tc” is
the total computing tlme, excluding the time for the partition algorithm. The minimum
block size parameter was set.to 2. The example in Table 3 is a matrix representing
a standard queuing network systems described, e.g., in [20], with 1771 states and 9240
nonzeros. It was produced with the package SPNP [4]. It can be readily appreciated that
the partitions generated by PABLO and the two versions of TPABLO provide better
performance, combined with a block method, than point Gauss Seidel, as well as better
than the 2 by 2 and 4 by 4 blocks.

Acknowledgements. We wish to thank Gianfranco Ciardo and William Stewart for generously pro-

viding us with the data used for our experiments.
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Abstract

The work presented in this paper is concerned with the development of an efficient MG
algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is
specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing
the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method,
also known as the ( Outer-Inner Method ). The inner iterations are completed using Multi-color
Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method.
Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the
restriction operator, and a form function as a prolongation operator. The MG algorithm was
integrated into the reactor neutronic analysis code NESTLE, and numerical results were
obtained from solving production type benchmark problems.

Problem Description

In this work we consider the solution of the 3-dimensional, multigroup, eigenvalue
neutron diffusion equation. The general form of this equation can be written as an elliptic partial
differential equation as follows

G G
~V-D VO, +2, D, = ZIZS&‘;'(DE' +x_kg(z; Ve 2 q)g’)
g'= g'=
forg=1.2,.G @))
where the dependence of each quantity on the spatial coordinate r has been suppressed,. All the
nuclear property related coefficient parameters,(i.e. Dy X;’s , %z and v,) have non-negative
values and are spatially piece-wise constant; and, k, ®, and g denote the multiplication factor
( eigenvalue), flux (eigenfunction) and energy group, respectively. For 3-dimensional Cartesian
geometry, Neumann boundary conditions are applied on two surfaces (x=0, y=0), and Dirichlet
boundary conditions are applied on the other four surfaces ( X=Xpa, Y=Ymax> Z=0, Z=Zimax)-




Numerical Solution Method

Eqn.(1) is discretized by utilizing the Nodal Expansion Method (NEM) [1,2]. NEM can
be thought of as a refinement to the finite-difference method (FDM), utilizing an improved
approximation to the Laplacian operator. By applying NEM to Eqn.(1) we obtain the discretized
matrix equation.

A<I>=-l—1(-xF<I) )]

where energy group and spatial node dependence have been mapped to a single index. As
normal, the matrix A has seven point spatial coupling; however, it is weakly nonsymmetric due
to the NEM approximation of the Laplacian operator. Our objective is to solve Eqn.(2) for the
dominant eigenvalue pair. This is accomplished using an Outer-Inner nested iterative
strategy [3]. The Power Method is employed for the outer iteration, denoted for outer
iteration count ‘1’ by

Q¥ =" wo 3)
where
Y=FO
Q=FA™y

and k is updated using the Raleigh Quotient. Iterative matrix Q, which is positive definite, has a
significant role in determining the convergence rate of the power iterations [3]. Furthermore, the
outer iteration is accelerated with the Chebyshev Semi-iterative method [2].

Eqn.(3), a fixed source matrix problem is solved iteratively, these iterations denoting the
inner iteration process. The Multi-color Line SOR Method is employed with optimum relaxation
parameter determined a priori via Gauss-Seidel iterations. Clearly some liberty has been taken in
the selection of the iterative methods, since matrix A is not strictly symmetric.

Returning to the NEM discretization approximation, an improved Laplacian operator
approximation is obtained as follows. Integrate Eqn.(1) in the two directions (e.g. (¥,2))
transverse to a specific direction (e.g. x) over the span of a node. Now assume that the resulting
terms involving Laplacian operator in the two transverse directions are known. This results in a
one-dimensional ( e.g. X) equation. NEM solves this equation for the transverse integrated flux
(e.g. node-wise (y,z) flux average as a function of x) using polynomial trial functions. Operating
upon this solution by the Laplacian operator, which requires no further approximation, provides
an accurate estimate of this operation which is employed to correct the spatial coupling
coefficients that originate from the FDM approximation used to obtain Eqn.(2). This can be
implemented in a nested iterative manner (i.e. NEM-(Outer-Inner) iterations), which is a
nonlinear iterative technique since the Outer-Inner 1terat10ns utilize matrix A, which is iteratively
updated by the NEM iterations.




Multigrid Implementation

Several algorithms incorporating MG have been proposed for the solution of the few-
group neutron diffusion equation. Alcouffe [4] implemented a MG method that is imbedded
inside the outer iteration. Finnemann, at al. [5] implemented several multi-level techniques for
the solution of the nodal diffusion equation. The most sophisticated method he employed was to
imbed the NEM-(Outer-Inner) nested iterations inside the MG cycle; however, this method
lacked the robustness and suffered from solution divergence for realistic benchmarks. Zaslavsky
[6] proposed an adaptive algebraic MG for reactor criticality calculations. Similar to Alcouffe’s
method, the MG algorithm were imbedded inside the outer iteration. However, the outer iteration
was solved via the inverse iteration method, and the interpolation operator was a variant of the
form function.

In our MG implementation, it is used to accelerate the Power Method ( i.e. the outer
iteration ) since iterative matrix Q’s dominance ratio is close to 1.0. Thus NEM iterations are
performed only on the finest grid level. The MG schedule controls the onset of each MG
(i.e. what NEM iterations to complete MG at). Note that the coefficient matrix within any given
MG cycle is constant since no NEM correction updates are applied. The advantage of this
approach is the high computational efficiency, and the relative simplicity in both implementation
and analysis.

Due to the inherent recursion of the employed MG algorithm, the two-grid algorithm
will be sufﬁc1ent to describe the algorithm. The MG algorithm proceeds first at the fine-grid
level GM for a few NEM iterations until a specified tolerance on a relative L, norm is satisfied.

()
Thus an approximate solution, @M, is obtained at NEM 1terat10n count (n). This step is
followed by descending to the next coarser-grid level GM!. The coarse-grid operators are
constructed in such a way that they preserve the current, approximate fine-grid solution

(INDM( )on the coarse-grid level GM! (ie. consistent homogenization). The initial solution
estimate on the coarse- grld level, GM! is obtained by simply volume weighting the approximate

fine-grid solution, CDM , denoted as

(nf) M1 ~
M-1 M
= Y for 1=0 (©)]

This is consistent with using a nodal method, where volume average versus point values enter the
formulation. At this coarse-grid level several outer iterations are performed to satisfy a specified
error tolerance on an L, relative norm. The approximate solution to the above coarse-grid

~Mmp (M)
problem, @™! "is used along with the approximate fine-gird solution during ascending to
construct the updated fine-grid solution estimate for fine-grid level G™ as follows

M(nlo) M(“) ~ M_l(n)

o =1, & )

(n)
. M . « TS
where the prolongation operator, X, , , is defined based on the “form function” concept,

borrowed from the pin power reconstruction methodology commonly used in reactor physics
computations. Mathematically the prolongation operator can be expressed as
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for “ i* ” denoting a fine-node contained within a coarse-node i ”, and zero otherwise.

Substituting Eqns.(4) and (6) into Eqn.(5); and performing mathematical manipulation, the
following is obtairied:

M0

M ). (n)
M MY (<M
! ( &

=3 +h,

(n,0)
o™ ) o

It is clear from Eqn.(7) that the prolongation operator operates on the solution correction rather
than the past solution. Thus the newly introduced interpolation errors are limited to the solution
correction only. The advantage in using the “form function” is that it assures the non-smooth
comporients of the error it introduces can be attenuated rapidly with a few relaxation sweeps,
since these factors represent a local (fine-grid) correction. Thus these factors do not amplify the
smooth error components. The choice of the prolongation operator, in conjunction with the
formerly described restrictive operator, makes tlie current algorithm behave in a similar fashion
to the efficient FAS MG method.

As noted above, the coarse-grid operator is generated employing consistent
homogenization. Mathematically this can be stated as

]

() (n,0) (n) ~pm(n) (n) (M
BM—I q)M-l = BM—] n I:—-] q)M = I:—l BM (I)M : (8)

where B denotes any of the matrices in Eqn.(2). For multiplier operators of Eqn.(1)
(e-g. Z,; @, ), that produce diagonal components of B,

(]I:—l BM‘“’ &‘)M("))
M-1 zmM®
(IM o );,r

which physically equates to preserving coarse-grid neutron interaction rates as determined by
fine-grid results. For the Laplacian operator of Eqn.(1), that produces the off-diagonal
components of B ( specifically A), these spatial coupling coefficients are determined in the same
manner as for the NEM. Physically, this corresponds to preserving neutron leakage out of the
coarse-grid node as determined by fine-grid résults. Clearly the eigenvalue is preserved on the
coarse-grid. The advantage of using a consistent homogenization is that no residual due to
coarse-grid operator error is introduced, retaining the original eigenvalue problem structure.

= ©)

()]
BM—I ) =
t ( Ay

During the course of descending in the MG Cycle (coarsening the grids), the matrices are

saved for each level so they may be reused when that level is revisited during ascending (refining
the grid).




Numerical Results and Discussion

In this section several numerical results are presented and analyzed. The emphasis of this
section is to present a comparison of the computational efficiency for different iterative solution
strategies. The test problem presented corresponds to a typical production type problem
associated with analyzing a light water power reactor core. Due to the complexity of this
problem, only the basic problem attributes are described in Table 1, with the full problem
description available in Ref. [3]. The MG algorithm employed utilizes a fixed scheduling. The
convergence criteria used to control the number of Outer iterations (number of relaxation
sweeps) at any grid level is

0+,0) 0
L

2
~ (M 1/2
M )

s
<gs,
2

(n+,0)
("

for s at M (10)
and

IILPM'1(n’I+” _ \PM‘I("")” '
2

<&}
_1(nA+1) 412 — %Y
<\PM 1 , LPM 1 > 7
for s atM-1 (1)
where €}, is the L, norm stage termination criteria for stage number “s” in the MG schedule.

Figure 1 presents the true L2 error norm versus CPU time for four different iterative
cases. Based upon tightly converged numerical solutions, denoted (I):' , the true L, error norm

of grid level GM is given by

M'(nf) M’
I LA

L - : g
2 [/,

2 (12)

for M'=M or M-1
Note when interpreting Figure 1, the grid level M" changes with the CPU time. The MG method
utilizes a two-level grid, four V-cycles to accelerate the solution. Since the function of the Outer-
Inner iteration inside the MG cycle is to dampen the high frequency error components rather than
to solve the problem accurately, the number of inner iterations inside each outer iteration is
restricted to two iterations [7]. Furthermore, when the Chebyshev method is used to accelerate
the outer iterations, the iterative matrix dominance ratio estimate is reduced by 2% to accelerate
high frequency error damping and to insure that the estimate stays below the true dominance
ratio estimate. The termination criteria for the different MG stages are illustrated in Figure 2.
Table 2 presents a summary of the result for the four basic iterative cases. The total number of
iterations reported for cases with MG on are for the sum of the fine and coarse mesh iterations.
Table 2 shows that the total code CPU time is reduced by a factor of 2.15 and 1.60, respectively,
for the case with Chebyshev acceleration off and on. Note the computational platform used is a
Sun SPARCstation 20, equipped with HyperSparc processor. Numerical experiments revealed
that the optimum number of NEM iterations is 8. Since the MG cycles operate inside the NEM
iteration, it follows that the total NEM CPU time should not be effected by the MG acceleration.
Thus a better measure for the MG computational efficiency is the reduction in CPU time for the
Outer-Inner iterative portion of the calculation. Table 2 shows a CPU time reduction for Outer-




Inner iterations of 3.52 and 2.70, respectively, for the cases with Chebyshev acceleration off and
on. To evaluate the numerical effectiveness of both the usage of consistent homogenization for
the Laplacian operator as a restriction operator and the form factor as a prolongation operator,
these two operators were disabled separately, and the L, norm of the exact error versus CPU time
for both cases, with Chebyshev acceleration on, are plotted in Figure 3. Note in Figure 3,
disabling the restriction operator is equivalent to disabling the improved approximation in the
Laplacian operator, hence not preserving the solution on the coarse-grid problem. This case is
labeled in Figure 3, © Withoqt Full Homogenization”.
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Description Test Case
Fine- Grid 18X18X 18
=5832
Coarse-Grid 10X10X 10
=1000
Fine-Grid Outer Iterative Matrix
Dominance Ratio 0.980

’Table 1. Basic Problem Attributes
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Figure 1 Computational Time for the Four Iterative Cases
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Figure 2 MG Stage Termination Criteria

MG OFF MG OFF MG ON MG ON

Description Cheby OFF | Cheby ON | Cheby OFF | Cheby ON
No. Of NEM Iterations 8 8 10 8
No. Of Outer Its 401 134 350 105
No. Of Inner Its. 3208 1072 1400 420
NEM CPU Time [Sec’s} 14.25 14.37 17.77 14.20
Quter CPU Time [Sec’s] 13.09 535 7.21 4.18
Inner CPU Time [Sec’s] 52.15 17.16 11.32 417
Total Code CPU Time [Sec’s] | 81.40 38.78 37.92 24.17
Total OQuter-Inner Iterations
CPU Time { Sec’s] 65.24 22.51 18.53 8.35

* Table 2. Numerical Results for the Four Iterative Cases
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SOME MULTIGRID ALGORITHMS
FOR SIMD MACHINES

J. E. Dendy, Jr.
Thoretical Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract. Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was
investigated. Through the use of new software tools, the performance of this algorithm has been considerably
improved. The method has also been extended to three space dimensions. The method performs well for
strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across
internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the
CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is
also considered, and we compare its performance on these two platforms as well.




Multigrid on Unstructured Grids Using an Auxiliary Set of Structured Grids

Craig C. Douglas*
Sachit Malhotra
Martin H. Schultz

Yale University
Department of Computer Science
P.O. Box 208285
New Haven, CT 06520-8285
USA

Unstructured grids do not have a convenient and natural multigrid framework for actually
computing and maintaining a high floating point rate on standard computers. In fact, just
the coarsening process is expensive for many applications. Since unstrucutured grids play
a vital role in many scientific computing applications, many modifications have been
proposed to solve this problem. One suggested solution is to map the original
unstructured grid onto a structured grid. This can be used as a fine grid in a standard
multigrid algorithm to precondition the original problem on the unstructured grid. We
show that unless extreme care is taken, this mapping can lead to a system with a high
condition number which eliminates the usefulness of the multigrid method.

Theorems with lower and upper bounds are provided. Simple examples show that
the upper bounds are sharp.




MULTISCALE ITERATIVE METHODS, COARSE LEVEL OPERATOR.
CONSTRUCTION AND DISCRETE HOMOGENIZATION
TECHNIQUES
MICHAEL GRIEBEL

INSTITUT FUR INFORMATIK, TECHNISCHE UNIVERSITAT MUNCHEN,
ARCISSTRASSE 21, D-80290 MUNCHEN, GERMANY

E-MAIL: GRIEBEL@INFORMATIK.TU-MUENCHEN.DE

For problems which model locally strong varying phenomena on a micro-scale level,
the grid for numerical simulation can not be chosen sufficiently fine enough due to
reasons of storage requirements and numerical complexity. A typical example for such
kind of a problem is the diffusion equation with strongly varying diffusion coefficients
as it arises as Darcy law in reservoir simulation and related problems for flow in porous
media.

Therefore, on the macro-scale level, it is necessary to work with averaged equations
which describe directly the large-scale behavior of the problem under consideration.
In the numerical simulation of reservoir performance this is achieved e.g. by renor-
malization or homogenization, as simpler approaches like the arithmetic, geometric or
harmonic mean turn out to be invalid for systems with strong permeability variations.

We apply the Galerkin approximation, used in multi grid methods for determining
coarse grid equations, as a discrete method for calculating such averaged equations. The
discretization of an elliptic differential equation can be interpreted as a certain kind of
averaging or filtering, where smaller scales than the respective grid size are eliminated.
Analogously, the Galerkin coarse grid equations resemble discrete averaged equations,
modelling the influence of the scales smaller than the grid size of the actual level.
Methods known from multi grid context as operator- or matrix-dependent prolongations
and Schur complement approximations lead to energy-dependent averaging procedures
and to averaged equations which describe the large-scale behavior of the problem in
discrete form.

We explain our coarse level operator construction (which involves some sort of in-
complete factorization approach) and our discrete homogenization technique, discuss
its properties and compare it with the established averaging, renormalization and ho-
mogenization methods. Additionally we consider the convergence behaviour of the cor-
responding multilevel iterative methods. We give results from numerical experiments
for the diffusion equation with various types of diffusion fields.
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EMBEDDING SAS APPROACH INTO CONJUGATE GRADIENT
ALGORITHMS FOR ASYMMETRIC 3D ELASTICITY PROBLEMS *

HSIN-CHU CHEN !, AHMED SAMEH ¢ AND NAZIR A. WARSI!

ABSTRACT

In this paper, we present two strategies to embed the SAS (symmetric-and-antisymmetric)
scheme into conjugate gradient (CG) algorithms to make solving 3D elasticity problems,
with or without global reflexive symmetry, more efficient. The SAS approach is physically
a domain decomposition scheme that takes advantage of reflexive symmetry of discretized
physical problems, and algebraically a matrix transformation method that exploits special
reflexivity properties of the matrix resulting from discretization. In addition to offering
large-grain parallelism, which is valuable in a multiprocessing environment, the SAS scheme
also has the potential for reducing arithmetic operations in the numerical solution of a
reasonably wide class of scientific and engineering problems. This approach can be applied
directly to problems that have global reflexive symmetry, yielding smaller and independent
subproblems to solve, or indirectly to problems with partial symmetry, resulting in loosely
coupled subproblems. The decomposition is achieved by separating the reflexive subspace
from the antireflexive one, possessed by a special class of matrices A, A € C**", that satisfy
the relation A = PAP where P is a reflection matrix (symmetric signed permutation matrix).

Although there are a great number of problems with global reflexive symmetry, many
other problems are asymmetric. For such asymmetric problems, direct application of this
approach to the whole problem to yield entirely independent subproblems does not seem
possible. Therefore, we resort to indirect applications so that the advantage of this approach
can be carried over. This is well situated when it is employed in conjunction with iterative
schemes such as the (preconditioned) CG algorithms. There are two different approaches
to achieving this goal. One is to construct a preconditioner for the CG algorithm in such
a way that the preconditioner, as close to the original matrix as possible, has the desired
reflexivity property and then apply SAS to the preconditioning linear system. The other
is to split the matrix into as many matrices as desired so that most of them possess some

form of reflexivity property, and then apply SAS only to those with the reflexivity property

* This work was partially supported by the U.S. Department of Energy under Grant No. DOE-DE-FG02-
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in performing matrix-vector multiplications, with or without a preconditioner. The first
approach is very useful when the physical problem to be solved is only slightly perturbed
from symmetry since, in such a case, a good preconditioner can easily be constructed. The
advantage of the second approach lies in its flexibility, in the sense that it can be adapted to
problems with very complex domains and properties due to the freedom it offers to split the
matrix. It is especially suitable for the element-by-element computations, often employed
in the CG algorithm for finite element analysis, because it has the ability to exploit local
symmetry either at the subdomain level or at the element level. The application of the
second approach to a 3D elasticity problem using (preconditioned) CG algorithms will be

presented to demonstrate its effectiveness.

1. SAS Approach. The main idea of the SAS approach is the exploitation: of the spe-
cial properties of reflexive matrices, which arise naturally from discretized physical problems
with reflexive symmetry [ChSa89a). This is a domain reduction approach using symmetry
[DoSm89, DoMa92] and a special application of group-theoretic methods [FaSt92]. In this
paper, we extend this idea to handle problems without physical symmetry by embedding
SAS into the CG/PCG algorithm.

Before présenting our extension, we first state three basic lemimas involved in the SAS
approach as shown below, where the matrix P is assumed to be some nontrivial (P # +1I)
reflection matrix of dimension n.

e Lemma 1: Given a nonsingular linear system Az = f, A € C"*" and f € C*,if A is
reflexive with respect to P, then = Pz (or z = —Pz) if and only if f = Pf (or
f==Pf).

o Lemma 2: Any vector b € C" can be decomposed into two parts, « and v, u+v = b,
such that u = Pu (reflexive) and v = —Pv (antireflexive).

¢ Lemma 3: Any matrix A € C**® can be decomposed into two parts, U and V,
U+V = A, such that U = PUP and V = —PVP.

There are three steps involved in this approach. The first step is to decompose f into its re-
flexive part u and antireflexive part v (Lemma 2). This can be done by taking u = (f+Pf)/2
and v = (f — Pf)/2. We then reduce Ay = u and Az = v to smaller systems by dropping re-
dundant unknowns in y and z (Lemma 1) from them and solve the reduced systems, instead
of solving Az = f directly. In the last step, we retrieve the solution z from y and z. This
decomposition in essence leads to a transformation that block-diagonalizes the matrix A.
Note that P is symmetric and has only two distinct eigenvalues. Therefore, corresponding
to each P there exists an orthogonal transformation matrix @ that can block-diagonalize A

[HoJo85, pp.50-52] (via the transformation QT AQ) into two independent submatrices since

A and P commute. The explicit form of @ certainly depends on P. One of the frequently
2




encountered forms of the matrix pair for P and @ is

05 0 11150
P=|S 0 0| and Q=—=|-S L 0
| V2

0 0 I 0 0 2L

where S is a diagonal matrix whose diagonal elements are either 1 or —1, I; and I, are
identity matrices.

To employ this approach for efficient computations, however, we need to know the re-
flection matrix P beforehand. Although it is not trivial in most cases to see directly from the
matrix entries whether a matrix is reflexive or not, the reflexivity of a matrix and its asso-
ciated reflection matrix P (given it is reflexive) can usually be determined from the original
physical problem and its discretization; see [ChSa89a] for examples. Once P is identified,
the decoupling of the original system Az = f to two smaller independent subsystems follows
immediately from the orthogonal transformation of A to A = QT AQ or from using Lemmas
1 and 2 directly.

2. SAS-embedded CG/PCG Algorithm. To take advantage of SAS for solving
3D elasticity problems without reflexive symmetry, we proposed to embed SAS into the
CG/PCG algorithm for solving the preconditioning system and/or for performing the matrix-
vector multiplication using either the element-by-element or the subdomain-by-subdomain
approach. Let Kz = f, K € R™™ and f € R", be the algebraic linear system resulting
from the finite element discretization, where K is assumed to be symmetric positive definite
(SPD). Other than being SPD, the matrix K need not have any reflexivity property. Shown
below is a PCG algorithm [JoMP83] where A is a nonsingular preconditioner for K, zo is
the initial approximation to z, and the symbol (u, v) denotes the inner product of vectors
u and v.

PCG Algorithm:
e Compute the residual ro = b — K.
e Solve Ady = 1o for dy and set pg = do.
e For:=0, 1, ..., k-1, do the following
a; = (ri, di)/(pi, Kpi)
Tip1 = Ty + osp;
riy1 = i + o Kp;
Solve Ad;yq = riy1 for dipa
pi = (Ti+1a di+1)/(ri7 di)
Pit1 = diy1 + Bipi
until convergence is achieved.
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The classical conjugate gradient (CQG) algorithm [HeSt52] without pre’conditioning cor-
responds to the case when A = I. One of the main advantages of using CG over direct solvers
to solve linear systems resulting from finite element discretizations is that, in addition to
its simplicity, CG allows for its matrix-vector multiplications ¢; = Kp; to be performed on
an element-by-element basis, thus eliminating the need to assemble the global stiffness ma-
trix K. When PCG is employed, the main computational issue involved in the algorithm
is the effectiveness of the preconditioner A. Without a good preconditioner, PCG may not
converge fast enough to overcome the extra computational overhead required in solving the
preconditioning systems. Therefore, a good candidate for an effective preconditioner should
be one that not only can reduce the humber of iterations but also allows the preconditioning
linear system Ad; = r; to be solved as efficiently as possible so that the total solution time
can be substantially reduced. In addition, when the algorithm is to be implemented on a
multiprocessor, the matrix A should also be chosen in such a way that the preconditioning
linear system can be solved in parallel. Such a good preconditioner is difficult to derive
without knowledge of the physical problem and/or its associated matrix.

As mentioned earlier, there are two approaches to embedding SAS into the PCG algo-
rithm. In the first approach, we choose the preconditioner A to be reflexive on one hand
(using Lemma 3 for example) and to be as close to the original matrix K as possible on the
other. This of course involves a,.proper choice of P. Physically, this corresponds to using a
slightly perturbed problem with reflexive symmetry to precondition the original asymmetric
problem. Let @ be the transformation matrix associated with P. Then, instead of solving
the preconditioning system Ad; =r;, 1 =0, 1, 2, ---, we solve the SAS-transformed system
Ad; = 7; where

A=QTAQ, d;=Q%d;, 7 = QTr:.

The resulting algorithm can be obtained simply by replacing the step of solviné Ad; = r;
with the following three steps:

1. Decomposing r; into #;: 7; = QTr;.

2. Solving Ad; = #; for d;.

3. Retrieving d; from d;: d; = QJ,-.
Note that the decomposition of A into A is performed once and for all, regardless of the num-
ber of iterations. The decomposition of r; into 7; and the retrieval of d; from c?,-, however, need
be performed in each iteration. This results in an overhead in each iteration. Fortunately,
this overhead is usually negligible due to the simplicity and sparsity of the transformation
matrix ¢). The effectiveness of this approach, thus, depends mainly on two factors. The first

is the computational savings that can be gained from solving the decomposed subsystems




instead of from the undecomposed preconditioning system. The second is the closeness of the
preconditioner to the original problem. In practice, this approach can be very useful when
the problem to be solved is only slightly perturbed from some other problem that allows for
a direct application of the SAS approach [ChSa89b].

When such a preconditio’ner cannot be found, we resort to our second approach by em-
bedding SAS into the algorithm for performing the matrix-vector multiplication involved
in each iteration. This can be done either at the subdomain or at the elment level. Alge-
braically, we split the original matrix K into, say, s + 1 matrices: Ky, Kj, ---, K, such that
K; is reflexive with respect to some nontrivial reflection matrices P; forz =1, 2, ---, s. In

other words

S
K =Ko+ )Y K; with K;=PK;P, i#0.
i=1
The matrix Ky, which may or may not have any special property, can be considered as the
remainder of the splitting since K; for 1 <7 < s are all reflexive.
As previously explained, corresponding to each P; there exists a transformation matrix
@; that can block-diagonalize K; into one that consists of two diagonal blocks, say K;,

K; = QTK;Q;. The matrix-vector multiplication Kp can, therefore, be expressed as
Kp=Kop+) Kip=Kop+), Qif(iQ;'TP-
i=1 =1

In other words, we replace ¢; = K;p, ¢ # 0, with the following three-step multiplication:
ui=Qip, vi= Kiui, ¢ = Qv

It should be mentioned that for this replacement to be effective, the three-step multiplication
for q; = K;p must be more efficient than its single-step multiplication, which is usually the

case when the transformation can be accomplished by the SAS approach.

8. Applications to Asymmetric 3D Elasticity Problems. In this section, we
present our application of SAS using the second approach discussed in the previous sec-
tion to an asymmetric 3D orthotropic elasticity problem whose differential equations are
described by

LIDLo+b=0

where o, b, £, and D are the stress vector, body force vector, differential operator matrix,

and the material property matrix, respectively:

g = [ Ozzy Oyyy Ozzy Ozy; Ozzy; Oyz ]a b= [ bz, by, b; ]a
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TABLE 1
., CPU time in seconds on the Alliant FX/8

Approach No. of processors

1 2 | 4 8
CG alone | 510.8 | 306.1 | 160.8 | 110.1
CG + SAS |[398.0 [ 219.7 | 117.6 | 77.8
PCG alone | 356.2 | 216.1 | 112.4 | 79.7

PCG + SAS | 285.2 [ 160.2 | 85.2 | 54.5

[ 8/0c 0 0 | dy dip diz 0 0 0
0 /8y 0 | dip day dis 0 0 0
L=| O 0 0=) o | s dm 000
d/oy d/0z 0O 0 0 0 dy 0 O
9/0z 0 8/dz 0 0 0 0 dss 0
0 8/9z 8/dy | L0 0 0 0 0 des|

The physical problem used for our experiments is a cantilevel beam with additional support
from two springs of different stiffness K; and Kj, as shown in Figure 1. A concentrated load
P and a uniformly distributed bending moment M are applied to the beam at the right end.
The beam is modeled as a 3D elasticity problem and discretized with a 15 (spacings) x 7
x 7 grid. The actual numerical values for the dimensions/parameters/constants related to
this beam [ChSa89b] are not essential in this paper and, thus, omitted. The element type
employed for our discretization is the eight-node rectangular hexahedral element which is
shown in Figure 2. This type of elements have three planes of symmetry and their element
stiffness matrices have been shown to possess a three-level reflexivity property [ChSa89a]. In
our experiments, we group the elements into 15 subdomains as shown in Figuré 1,and embed
SAS into the CG/PCG algorithm at the subdomain level, using the fact that subdomains 1
through 14 all have three planes of symmetry and subdomain 15 has two planes of symmetry
due to the boundary conditions at the fixed end. The two springs are considered as the
16** subdomain, which does not have any symmetry. The performance of the CG/PCG
algorithm with and without embedding the SAS approach is presented in Table 1, where the
CG algorithm does not employ any preconditioner while the PCG algorithm uses the main
diagonal as the preconditioner. As seen from this table, it is clear that the embedding of SAS
into the algorithms makes them more efficient. This is due to the reduction in arithmetic
operations induced by SAS in performing the matrix-vector multiplications of the GG /PCG
algorithm.
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Abstract

In the field of computational electrodynamics the discretization of Maxwell’s equations using the Finite
Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For
this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered.
The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole
class of methods for complex-symmetric algorithms SCBiCG(T', »), which only require one matrix vector
multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient
(COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n =1 yields the
BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These
methods in combination with a2 minimal residual smoothing process are applied separately to practical

3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the
SCBiCG methods is compared with other methods such as QMR and TFQMR.

1. Introduction. In the field of computational electrodynamics the discretization of Maxwell’s Equa-
tions using the Finite Integration Theory (FIT) yields very large, sparse linear systems of equations Az = b.
The rank of these systems ranges from 10% up to 10 unknows. The focus of interest in this paper is the
efficient solution of a special class of non-Hermitian systems as they occur in time-harmonic eddy current
problems including materials with finite electric conductivity and in the so-called electro-quasistatic approach
where a complex scalar potential equation has to be solved. The linear systems resulting from the discretiza-
tion process have in common that they are usually very large, sparse and complex symmetric. For such
sparse non-Hermitian linear systems efficient iteration algorithms have been developed over the past years.
Some of them, e.g. the GMRES method [12], have very desirable global residual minimization properties,
but these are usually connected with the requirement to store a vast number of subspace basis vectors. Since
the truncated versions of these algorithms usually have much less competitive convergence properties, the
class of Krylov subspace methods based on the Lanczos biorthogonalization process becomes attractive due
to its short vector recurrences. For the solution of the given problem types several biconjugate gradient-type
methods for non-Hermitian systems are applicable. Their memory efficiency and their convergence properties
allow for the solution of realistic, large scale problems as part of a general electromagnetic solver package as
MAFIA [10] on modern desktop workstations.

2. Iterative Algorithms for Complex Symmetric Systems. To the solution of the complex linear
system of equations

Az =b 2)

where A is non-Hermitian, but symmetric (4 = AT # AF), quite often modern Krylov subspace methods
such as the well-known CGS method [15] and its stabilized descendants TFQMR [5] and BiCGstab(l) [14],
or the GMRES method [12], which are designed for more general non-Hermitian systems, are shown to be
applicable (cf. [11], [19]). Most of these methods require more than one matrix vector multiplication per
iteration step and do not exploit the given symmetry of the system matrix.

Methods which especially exploit the special structure of such matrices are usually of some minimal
residual type as presented by Freund in [4], where methods for matrices of the type A = €®(T + iwI) with
Hermitian matrix T are derived, or are based on the complex version of the biorthogonal conjugate gradient
(BiCG) method by Jacobs [9] on which the focus of this paper is set. With the complex inner product
(z,9) := y7 = its vectorial formulation reads as:




BiCG algorithm

Choose zg; 70 = b— Azo; po = ro;
Choose g, such that (ro, 7o) # 0; Do = Fo;
For k=10,1,...do:

Tkt = Tk + kP
TRyl = TR — arApr; Frp1 = e — APy
Prtr = Tepi+BePe; | Prt1 = Trar+ Bbrs
where

o - (rka rf)

(Apr, Dr)

_ {rE41, Tr)

ﬂk -_ - =\

Ak, Tx)

When the complex linear system to be solved is also symmetric, it simplifies to a version where only one
matrix vector multiplication per iteration step is needed. Since it has been republished by Melissen and van
der Vorst [17] it is known as Conjugate Orthogonal Conjugate Gradient algorithm (COCG) and it coincides
with the standard conjugate gradient (CG) algorithm for real-valued systems. The Quasi-Minimal Residual
(QMR) method by Freund [6], which was derived for complex-symmetric linear systems, is closely connected
to the COCG method (cf. [6], [22]).

With an extension of the approach used for the COCG method a whole class of BiCG-related algorithms
for complex-symmetric systems can be derived which also require in the given formulation only one matrix
vector multiplication per iteration step. ' .

Let r €I, := {7 | 7(2) = Y rgciz’, 2 €C, c; ERVi,cn #0},T:={c; | i =0,...,n} and define

o 1= m(A)o, (2)

where A and i correspond to the conjugate-complex of the matrix A and the vector 7, respectively. Insert-
ing this into the complex BiCG algorithm as given above it can be shown by induction that the following
expressions '

Fk = 7!'(1-4‘.)7_'];, (3)
ﬁk = W(A)ﬁk’ Vi= 07 11 ... ‘ ‘ (4)

hold in the complex BiCG algorithm. Thus one achieves a class of BiCG-type algorithms for symmetric-
complex linear systems of equations, SCBiCG(T', n), where each method of this class is specified by its set of
polynomial coefficients T, and the number of the highest occuring matrix multiplicity n+1, which is implicitly
already given in .

To show that this class of algorithms requires only one matrix vector multiplication per iteration one
defines the notation v(i); := A*vx such that its formulation reads as

SCBiCG(T, n) algorithm
Choose zo; 7(0)o = b — Azo;
For i =0,...n-1 do:

(i + 1)o = Ar(d)o; with ' .
Fori=0,...,ndo: > e - r(DF (i)
p())o = r(i)o; ap = 0gI=i+jgn, jSi<i+l
i ? —_ ) . n
p(n+ 1)o = Ap(n)o; > e -p()Fp(1)s
For k=0,1,...do: =0
Tr1 = zp+ arp(0)x; ‘ NT s
Fori=0,...n do: oclmigi < i<i<iqt ¢ - r(z)k+1"'(J)k+1
(k41 = re—ap(i+ e B = — === e
For i = 0,...n do: N CRL O OF
el ) : Si=itign, j<i<
P(Dr+1 = r(Dr41 + Bro(dr; !

pP(n+ ey = Ap(n)esa;




The iteration process of these methods is governed by the typical Petrov-Galerkin condition of the underlying
BiCG algorithm. With the Krylov subspaces defined by Ki = Ki(A,ro) := span{ro, Aro, .. .AF=1r0} with
ro = b— Azg and L = Lr(A¥, 7o), this condition reads as

b— Azy L Ly with o € ¢ + Ki. (5)
For the iteration vectors zx of an SCBiCG(T', n) method holds
(ri,n(A)75) = ria(Ari=0 VO<ij<k, i#j (6)
and with x(t) :=1t-7(t) € lny
(Ap,m(Dp;) = Px(Api=0V0<4j<k i#]. )

In the practical implementations for this paper only polynomial degrees n € {0,1} are considered. The choice
of n = 0 directly yields the aforementioned COCG algorithm for complex symmetric systems [17], which
coincides with the standard CG algorithm for real valued systems. The case n = 1 with ¢g = 0 results in
a method which coincides for real-valued systems with the Conjugate Residual method (CR) of Stiefel [16]
and to which will be referred to as BICGCR method in the following. The CR method is mathematically
equivalent to the GMRES method [12] for Hermitian systems A = AH and has a residual minimization
property in the complex Euclidean norm. In [3] it was shown that for complex symmetnc linear systems it
is more natural to consider the complex bilinear form (z,y) := yTz as the governing ’inner product’ (also cf.
{6]). For BIiCGCR the identity

_7'%’+1A2Pk _ 7‘%‘+1A7'k+1

P pEAZp,  rrAng ®)

holds and from this a residual minimization property with respect to the complex bilinear form (., .) can easily
be shown to hold for the BICGCR algorithm:

B = arg ming . (rx — BApk, Tk — BApr)3. 9)

Unless the linear system has not just vanishing imaginary parts, i.e., the system has simplified to the real-
symmetric case, this special type of minimal’ residual projection does not transfer to the complex Euclidean
residual norm, with which the convergence of the iteration process is usually monitored. Here the usual
oscillations which are typical for the BiCG iteration process are to be expected and could be observed in all
the numerical examples.

Especially for the complex symmetric matrices of the type A = A; +wD, where the non-Hermitian part
is introduced by a complex diagonal matrix D multiplied by a real scalar w and where A, is real symmetric
and indefinite, the aforementioned residual minimization with respect to the complex bilinear form (., .) seems
to have a favourable effect in practice, since the oscillations of the BICGCR method seem to be less extreme
than in the COCG method.. This property depends on the magnitude of w, i.e., the difference of magnitudes
in the real and imaginary parts of the matrix entries of A. To avoid strong oscillations in the residual norm
is desirable with respect to the result on the loss of accuracy of BiCG-type iteration processes given in [14]

—1Ib - C ~-1 .
| lirell = 1o = Aaill | < Ckna ll AL A7 mas livl (10)
where || - || is the Euclidean norm, { is the machine precision and n4 is the maximum number of non-zero

entries per row of A.

All the presented methods try to solve the complete complex-valued problem A different a.pproach is
applied by [1] using a special decomposition of the matrix into real and imaginary part, where the resulting
real-valued linear system is solved iteratively.

Smoothing of the residuals. In [22] the minimal residual smoothing (MRS) technique for iterative
methods developed by Schénauer [13] is presented for real systems, its extension to complex linear system
solvers is straightforward: Given an iteration method producing the vector iterates z; of approximate solutions




to the linear system and r;a sequence of the related residuals, two auxiliary vector sequences y; and s can
be introduced as follows:

Yo = Zo, So = 7o, (11)
e = (Q—=m)yk—1+mzr, s = (L—mp)sp—1+mre fork=1,2,... (12)

and 7 € R chosen such that ||b— Ayg||2 is minimized in each iteration step k. The choice of

_SkH_l(Tk — sk—1) + (e — sk—1)T sp_1
2 |lrk — sk-1ll3

g = (13)
for the complex systems yields the desired residual minimization property. The connection between smoothing
and the quasi-minimal residual smoothing introduced by Freund and Nachtigal [7] was extensively analysed
in [22] and [21]. Numerical errors causing b — Ayi and s to differ too much from each other can be avoided
by a mathematically equivalent.reformulation of the underlying iteration schemes given in [22] .

3. The Finite Integration Theory for Maxwell’s Equations and Numerical Results. The Finite
Integration Theory is a representation of Maxwell’s Equations in their integral form on a doublet of staggered
otthogonal grids G — G and may be considered as a finite-volume discretization approach especially suited
for Maxwell’s Equations. The resulting Maxwell Grid Equations preserve analytical and algebraic properties
that ensure accurate numerical results and enable an algebraically exact self-testing of numerical results. The
Finite Integration Theory and its notation is described in [20]. For the calculations here electro-quasistatic
and driven frequency domain problems are of special interest. The background of electro-quasistatics is the
modeling of arc-overs on contaminated insulators in high-voltage power plants. A thorough description of the
numerical modeling is given in [19]. The electro-quasistatic fields can be determined by solving the complex
potential problem,

div ((iwe + o) grad p) = div (Jp), (14)
where the application of FIT yields a linear system
(Ao +iwA) B = P, (15)

In the matrix A = A, + iwA, the matrix A, is related to the stationary currents and A, is the matrix of
electrostatics, scaled with frequency w. Both are symmetric positive definite, sparse and banded, such that
A is a sparse matrix connecting neighbouring potentials. One typical small example calculation for this type
of system is a simple contaminated square plate capacitor model with side length of 5 cm and a thickness
of 4 cm. Its dielectric material is assumed to have a relative permittivity of ¢, = 4 and a conductivity of
o = 10712 S/m. The contamination is a layer of water on one side of the capacitor with a relative permittivity
& = 81 and a conductivity of & = 1071 S/m. A voltage gradient of 15 kV/cm is assumed at a frequency of
50 Hz. The rank of the resulting complex symmetric linear system to be solved is 41616. The convergence
curves in Fig. 1 show the convergence history of the non-preconditioned solvers. Note that the convergence
behaviour of QMR, the minimal residual smoothing curve of COCG and of BiCGCR are in this case almost
identical with slight advantages for BICGCR. A more realistic example of an application was is the simulation
of a cylindrical resonator of epoxy resin which is modelled in a 57 x 57 x 73 grid yielding a system of 237177
complex variables. Some results were already published in [18].

The frequency domain solver W3 [8], in which the COCG method has been successfully used for several
years now, has been enhanced for test purposes with a minimal residual smoothing (MRS), with the BiCGCR
* method with MR smoothing and the symmetric-complex QMR method. Their results could be compared with
the performance of the TFQMR method which was earlier implemented for non-symmetric complex linear
systems, as they occur, when special waveguide boundariés are applied to the computational region [2]. In
the TFQMR algorithm as given in [5] only an upper norm bound is generated for the residuals. Additionally
for comparison the true residuals are evaluated in the present implementation every 100 iteration steps. The
calculations of driven problems are based on the so-called curl-curk-equation [8] for the electric field

curl ;1; curl B — w?E = —iwjy (16)
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Figure 1: Example 1: Convergence history of an example calculation in electro-quasistatics with 41616
unknowns. No preconditioning is used. Note the wild oscillations of COCG in comparison to the almost
monotone convergence of BICGCR which is the fastest method.

which results via FIT in a system matrix
A=A -w?D, Qa7

where A; is an indefinite, real (for real-valued p), symmetric matrix. D is a diagonal matrix, which has
complex entries in the general lossy case, such that A is complex symmetric. Note that frequencies w close
to the eigenfrequencies of A; result in an almost singular system matrix A. The following example shows
the convergence curves from a simulation of a short antenna near a lossy cube. The cube has a conductivity
o = 0.5 S/m and a relative permittivity &, = 3. The antenna is driven with 150 MHz close to the cube. The
example in Fig. 2 is discretized with 60000 unknowns.
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Figure 2: Convergence history of an example of a driven frequency domain problem with 60000 complex
unknowns. SSOR preconditioning is used. The TFQMR method for general non-Hermitian problems here
is not competitive in its speed of convergence. The MRS iteration vectors of the BICGCR process show the
fastest convergence.

A quarter of a transmitter structure, where the lossy material is modelled with values & = 0.25 S/m and
& = 1, is excited by a surrounding antenna at a frequency of 1 Mhz. It is discretized with 10625 complex
unknowns. Calculation shows that a shift in the SCBiCG(T' = {co, 1}, 1) methods from the COCG method




to the BICGCR method introduced by the condition ¢p +¢; = 1 on the related sets of polynomial coefficients
T' is also represented in the correspondent convergence processes (cf. Fig. 3).
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Figure 3: Convergence history for several SCBiCG(T, 1) methods with MRS, where the coefficients ¢o, ¢y € T
fulfill cg + ¢y = 1. Note that the BICGCR method exhibits the fastest convergence of all methods.

All the numerical tests of the algorithms presented above were performed on practical 3D examples from
electro-quasistatics in the static solver module S and driven frequency domain computations with the fre-
quency domain solver module W3 [8] of MAFIA [10]. They were carried out with both non-preconditioned and
with memory efficient SSOR-preconditioned systems. For all but the quasi-minimal residual methods a min-
imal residual smoothing was applied. The computations have been performed on a SUN Sparc20 workstation.

4. Concluding Remarks. The SCBICG class of algorithms is a direct extension of the idea of the
derivation of the COCG method from the complex BiCG algorithm. For this paper the COCG and the
BiCGCR method which correspond to SCBiCG({1},0) and SCBiCG({0,1},1) were implemented and used
in test calculations. In connection with Schénauer’s minimal residual smoothing for the complex case both
methods work properly on practical problems arising from two special problem types in electromagnetic field
calculation. Of course, theoretically BiCG-related breakdown or near-breakdown of the algorithms due to
the failing or inaccurate calculation of the BiCG-coefficients is always possible in these methods. However, a
catastrophic breakdown has never been encountered in all our practical calculations.

5. Acknowledgements. The authors would like to thank Peter Hahne and Rolf Schuhmann for their
helpful suggestions on this paper and for the friendly discussions on its content. ‘
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Finite element modeling has proven useful for accurately simulating scattered or
radiated electromagnetic fields from complex three-dimensional objects whose geometry
varies on the scale of a fraction of an electrical wavelength. An unstructured finite
element model of realistic objects leads to a large, sparse, system of equations that needs
to be solved efficiently with regard to machine memory and execution time. Both
factorization and iterative solvers can be used to produce solutions to these systems of
equations. Factorization leads to high memory requirements that limit the electrical
problem size of three-dimensional objects that can be modeled. An iterative solver can be
used to efficiently solve the system without excessive memory use and in a minimal
amount of time if the convergence rate is controlled.

This paper will discuss a number of topics related to the parallel creation and solution
of matrices resulting from large unstructured problems, in the context of an
electromagnetic finite element code running on the Cray T3D located at the Jet Propulsion
Laboratory. The JPL code, named PHOEBUS, has been used to obtain solutions for
systems with nearly three-quarters of a million unknowns.

One of these topics is mesh vs. matrix partitioning. The code running at JPL
decomposes the finite element matrix in row slabs, as compared with the usual strategy of
decomposing the mesh. Another topic is the iterative solver, in this case a quasi minimum
residual method. An examination of the computational kernel, a sparse matrix dense
vector multiply, is given, and the issue of solving for a single right hand side vs. multiple
right hand sides (possibly a block of right hand sides) is discussed. Another question
related to the iterative solver is parallel methods of preconditioning, such as using an
incomplete Cholesky factorization or a sparse approximate inverse.
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Abstract

Most semiconductor device models can be described by a nonlinear
Poisson equation for the electrostatic potential coupled to a system of
convection-reaction-diffusion equations for the transport of charge and
energy. These equations are typically solved in a decoupled fashion
and e.g. Newton’s method is used to obtain the resulting sequences
of linear systems. The Poisson problem leads to a symmetric, pos-
itive definite system which we solve iteratively using conjugate gra-
dient. The transport equations lead to nonsymmetric, indefinite sys-
tems, thereby complicating the selection of an appropriate iterative
method. Moreover, their solutions exibit steep layers and are subject
to numerical oscillations and instabilities if standard Galerkin-type dis-
cretization strategies are used. In the present study, we use an upwind
finite element technique for the transport equations. We also evalu-
ate the performance of different iterative methods for the transport
equations and investigate various preconditioners for a few generalized
gradient methods. Numerical examples are given for a representative
two-dimensional depletion MOSFET.

Most semiconductor device models can be described by a nonlinear Pois-
son equation for the electrostatic potential, %, coupled with a system of
convection-diffusion-reaction equations for the transport of charge and en-
ergy [1]. More specifically, 1 satifies an equation of the form

Vi =2(n-p-C), (1)




where ¢ is the electron charge, ¢ is the permittivity of the semiconductor,
n and p are the electron and hole concentrations, and C denotes the given
impurity distribution. '

The remaining conservation relations lead to a coupled set of transport
equations for n, p, and energy. These deterministic transport models can
be broadly classified as drift-diffusion (DD) or hydrodynamic (HD). Drift-
diffusion models can be derived from HD ones by making certain assump-
tions, such as neglécting changes in the charge carrier energies. Hydrody-
namic_models treat the carrier energy as an unknown and so contain ad-
ditional convection—diffusion-reaction equations. In the present study, we
consider only the DD equations in order to obtain representative nonsym-
metric matrix problems in the fully discrete model.

The charge concentrations satisfy

-V -3, = —qR(,n,p) 2)
V'Jp = —-qR(Zb,n,P) (3)

where J,, and J, denote the electron and hole current densities, and R(,n,p)
is the net recombination/generation rate. The most widely used constitu-
tive relations for current densities are modeled as a combination of a drift
(convection) term and a diffusion term, and so may be written as

Jn = ~qunVipn + qD,Vn (41
Jp = —qupyVp—gD,Vp (5)

where pp, and ppdenote the electron and hole mobilities, and Dy, D, are the
corresponding diffusivities.

For certain classes of devices such as silicon MOSFETS, it is often as-
sumed that one current density, e.g. J, is ‘pegligible. "Then we may express
p in terms of the Fermi potential, ®,, namely

D = n;exp [ggT-(q)p - ¢)] | (6)

‘where n; is the known intrinsic concentration of the semiconductor, kp is

Boltzmann’s constant, and T is temperature of the semiconductor lattice.
Upon substitution of (4) into (2), we obtain the convection—diffusion—
reaction equation for transport of electrons

V- (uVyn) - V- (DVr) = —R($,7,5), (7)




where we have dropped the subscript (),. In a typical model, p is speci-
fied using empirical functions of %, C, and J, and D is given by Einstein’s
relation, D = pkpT/q. To complete the model, we assume that only one re-
combination/generation mechanism is present, namely Shockley—Read—Hall,
so that

B np — n}

where 7, and 7, are the hole and electron recombination lifetimes.

Equations (1) and (7) consititute a pair of coupled, nonlinear partial
differential equations for ¢ and n. Gummel’s method [2] is the most com-
mon approach to solving this system. This decoupled strategy begins by
linearizing (1). Then starting iterates $(© and n(® are used to obtain a new
estimate, (1), In turn, this improved estimate is used in (7) to generate
n(1), Bach equation is alternately satisfied until the procedure converges.

Let us first consider the initial linearization step. This is accomplished
by introducing an iteration level k into (1):

v2pkH1) = _g_ (n(E+D) P — ), (9)

Now, linearize n*+1) according to n{F+1) = n®) + 6n, where én = g—:;&b
and g—z is computed from the quasi-Fermi potential relation

n = mgexp [}%w—m)}, (10)

where ¢, is the electron quasi-Fermi potential. A similar manipulation for
(k+1) leads to the decoupled, linearized potential equation
p

V2 - () 4 pPy+D = 2(n—p— C o+ P . (1)

We discretize (11) using Galerkin’s method on linear triangles and are led
to the sparse, symmetric, positive definite system

Ayt = b, (12)

which we solve using conjugate gradients (CG) as described later.

Using the solution (1) of (12), in the Gummel strategy we next update
the carrier concentration using the transport equation. Introducing a Picard
iteration, (7) becomes

V. (p,V¢(’°+1)nz+1) -V (DIV'IZ1+1) = “R(nl: '%b(k-*_l))) (13)
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where ny; is the new carrier concentration iterate to be completed.

As is well known, Galerkin’s method often fails when used to discretize
convection-diffusion equations. Hence we use an SUPG type Petrov-Galerkin
strategy (e.g. see [3]) to discretize (13). We are accordingly led to a sequence
of nonsymmetric, linear systems which may be written as

Annl+1 = bn . i (14)

Summarizing, Gummel’s method for the semigonductor device problem
with generalized gradient iterative solution of the linear algebraic subsystems
is:

Obtain %©), »(0)
k=0
do while(not finished)
solve (12) for 9(F+1) via preconditioned CG
ng=n®1=0
do while(not finished)
solve (14) for my41 via preconditioned bi-CG, etc.
I=1+1
end do
n(k+1) =mn
k=k+1
end do

In the present work, we study the use of several of the iterative strate-
gies in the package NSPCG [4] to solve the systems (12) and (14). More
specifically, for the SPD system (12), we use conjugate gradient and evaluate
the performance of Richardson, Jacobi, incomplete Cholesky, and the poly-
nomial preconditioners Neumann and least-squares. For the nonsymmetric
system (14), we consider Richardson, Jacobi, incomplete LU factorization
and Neumann polynomial preconditioners in conjunction with three meth-
ods: biconjugate gradient (BCG), conjugate gradient squared (CGS), and
stabilized conjugate gradients (CGSTAB). The purpose of this study is to
investigate the behavior of these iterative methods and to obtain experi-
mental evidence as to which, if any, of the these iterative strategies is most
effective for this class of problems.

First, we consider the solution of the potential equation. For a sili-
con MOSFET under applied biases in the subthreshold region, the elec-
tron Fermi potential can also be specifed and the concentration equation

4




is thereby eliminated. We are then left with a single equation which may
be solved for an approximation to 9. Let us consider the MOSFET config-
uration described in [5, 6] with gate and drain voltages of V; = 0.1V and
Vy =0.4V, respectively. The starting iterate is the most recent approxima-
tion to v obtained for V; =0.1V and V4 =0.35V. Our mesh has 3,046 nodes
and 5,953 triangles. All computations which we report were performed in
double precision on a DEC Alpha workstation. We observed in this experi-
ment that the L2 norm of the nonlinear residual was reduced by 12 orders
of magnitude after 11 nonlinear iteration steps. We also noted that the
Richardson and modified incomplete Cholesky preconditioners failed. Even
though it requires more CG iterations, Jacobi preconditioning was the least
expensive in terms of CPU time expended because it is computationally
an inexpensive preconditioner to evaluate. The next two best—perfoming
preconditioners were first-order Neumann and first-order least—squares, re-
spectively.

Next, we use the DD model to simulate the same MOSFET at bias
conditions of V; =3V and V, = 2V. The finite element mesh used in this
study has 5,593 nodes. In this case, we found CGS to be less robust, in the
sense that it failed when combined with the Richardson and first and third—
order Neumann preconditioners. In contrast, BCG and CGSTAB converged
with these preconditioners, as well as with Jacobi, incomplete LU factoriza-
tion, and first and fourth-order Neumann. As with the potential equation,
all three nonsymmetric iterative methods converged in the least amount of
CPU time when used in conjunction with Jacobi preconditioning. Finally,
we note that CGSTAB was observed to usually require less than half the
time of the other two nonsymmetric solvers. In the talk, we discuss these
issues and others, such as iteration counts and nonlinear convergence rates.
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Multiple Solutions to Dense Systems in Radar Scattering using a Preconditioned Block
GMRES Solver

William E. Boyse
Advanced Software Resources, Inc.
3375 Scott Boulevard, Suite 420
Santa Clara, CA 95054
Boyse@netcom.com

Multiple right-hand sides occur in radar scattering calculations in the computation of the
simulated radar return from a body at a large number of angles. Each desired angle
requires a right-hand side vector to be computed and the solution generated. These right-
hand sides are naturally smooth functions of the angle parameters and this property is
utilized in a novel way to compute solutions an order of magnitude faster than LINPACK.

The modeling technique addressed is the Method of Moments (MOM), i.e a boundary
element method for time harmonic Maxwell's equations. Discretization by this method
produces general complex dense systems of rank 100's to 100,000's. The usual way to
produce the required multiple solutions is via LU factorization and solution routines such
as found in LINPACK.

Our method uses the block GMRES iterative method to directly iterate a subset of the
desired solutions to convergence. The computed Krylov sub-space is then used to
approximate solutions to the remaining right-hand sides. We use the property that the
right-hand sides are smooth functions of angle to select the subset of right-hand sides to
directly iterate that will provide for optimal solution times.

The convergence rate of the GMRES algorithm is enhanced both by the block algorithm
and by preconditioning the system with a sparse incomplete LU factorization generated by
an ILU(T) algorithm with partial pivoting. This "drop tolerance" algorithm permits
adjustment of the completeness of the preconditioner and guidelines are shown for
choosing the most beneficial completeness percentage.

This algorithm is analyzed on a realistic MOM matrix problem of rank 3,400 to determine
the parameters for efficient operation. The error in computed RCS values, the equation
residual error and solution error are all used in this analysis. A method, based on Nyquist
sampling theory, is shown to predict an optimal method of choosing the angles to directly
iterate such that the total solution process is most efficient. It is shown in this case that
the solver runs nearly an order of magnitude faster than single precision LINPACK.




The BL-QMR Algorithm for Non-Hermitian’ Linear Systems
With Multiple Right-Hand Sides

Roland W. Freund

AT&T Bell Laboratories
Room 2C-420
600 Mountain Avenue
Murray Hill, New Jersey 07974-0636
email: freund@research.att.com

Many applications require the solution of multiple linear systems that have the same coefficient matrix,
but differ in their right-hand sides. Instead of applying an iterative method to each of these systems
individually, it is potentially much more efficient to employ a block version of the method that generates
iterates for all the systems simultaneously. However, it is quite intricate to develop robust and efficient
block iterative methods. In particular, a key issue in the design of block iterative methods is the need
for deflation. The iterates for the different systems that are produced by a block method will, in
general, converge at different stages of the block iteration. An efficient and robust block method needs
to be able to detect and then deflate converged systems. Each such deflation reduces the block size,
and thus the block method needs to be able to handle varying block sizes. For block Krylov-subspace
methods, deflation is also crucial in order to delete linearly and almost linearly dependent vectors in
the underlying block Krylov sequences. An added difficulty arises for Lanczos-type block methods for
non-Hermitian systems, since they involve two different block Krylov sequences. In these methods,
deflation can now occur independently in both sequences, and consequently, the block sizes in the two
sequences may become different in the course of the iteration, even though they were identical at the
beginning.

In this talk, we present a block version of Freund and Nachtigal’s quasi-minimal residual (QMR)
method for the solution of non-Hermitian linear systems with single right-hand sides. The QMR
algorithm is a Krylov-subspace iteration that uses a look-ahead variant of the classical nonsymmetric
Lanczos process to build basis vectors for the underlying Krylov subspaces and generates QMR iterates
defined by a quasi-minimization of the residual norm. The block-QMR method (referred to as BL-
QMR hereafter) is an extension of QMR to multiple linear systems. The BL-QMR method uses a
novel Lanczos-type process for multiple starting vectors, which was recently developed by Aliaga,
Boley, Freund, and Herndndez, to compute suitable basis vectors for the two underlying block Krylov
subspaces. The BL-QMR iterates are characterized by a block version of the quasi-minimization
property, which can be formulated as a matrix least-squares problem. The underlying Lanczos-type
process can handle the most general case of block Krylov sequences with arbitrary block sizes, and in
particular, can also handle deflation in both sequences. The BL-QMR method employs the deflation
procedure of the Lanczos-type process to detect and delete linearly and almost linearly dependent
vectors in the underlying block Krylov sequences. In addition, BL-QMR also includes a deflation
procedure to identify and drop linear systems whose solution can be recovered from the solutions of
the remaining multiple linear systems. First, we describe the basic BL-QMR method and some of its
important implementation details. We then present some theoretical properties of BL-QMR, such as
error bounds. Finally, we report numerical results that illustrate typical features of the block-QMR
method.

This is joint work with Manish Malhotra (Stanford University).




Iterative Solution of Multiple Radiation and Scattering Problems
in Structural Acoustics Using the BL-QMR Algorithm

Manish Malhotra

Department of Civil Engineering
Stanford University
Stanford, California 94305-4020
email: manish@am-sun2.stanford.edu

Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result
in large sparse systems of linear equations with complex symmetric coefficient matrices. In many
situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with
the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to
multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming
plane wave need to be considered. .

In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and
scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR
method. First, we summarize the governing partial differential equations for time-harmonic structural
acoustics, the finite-element discretization of these equations, and the resulting complex symmetric
matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex
symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally,
we report some typical results of our extensive numerical tests to illustrate the typical convergence
behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics,
to identify appropriate preconditioners for these problems, and to demonstrate the importance of
deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems
arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR, method.
In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and
significant speed-ups over solving the systems individually.

This is joint work with Roland W. Freund (AT&T Bell Laboratories).




GALERKIN PROJECTION METHODS FOR SOLVING MULTIPLE
RELATED LINEAR SYSTEMS

TONY F. CHAN , MICHAEL NG ., AND W. L. WAN

We consider using Galerkin projection methods for solving multiple related linear
systems Az = b for 1 < ¢ < s, where A() and b(*) are different in general. We
start with the special case where A®) = A and A is symmetric positive definite. The
method generates a Krylov subspace from a set of direction vectors obtained by solving
one of the systems, called the seed system, by the CG method and then projects the
residuals of other systems orthogonally onto the generated Krylov subspace to get the
approximate solutions. The whole process is repeated with another unsolved system
as a seed until all the systems are solved. We observe in practice a super-convergence
behaviour of the CG process of the seed system when compared with the usual CG
process. We also observe that only a small number of restarts is required to solve all
the systems if the right-hand sides are close to each other. These two features together
make the method particularly effective. In this talk, we give theoretical proof to justify
these observations. Furthermore, we combine the advantages of this method and the
block CG method and propose a block extension of this single seed method.

The above procedure can actually be modified for solving multiple linear systems
A@z6) = b), where A¢) are now different. We can also extend the previous analytical
results to this more general case. Applications of this method to multiple related linear
systems arising from image restoration and recursive least squares computations are
considered as examples.
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Adaptive Mesh Refinement and Multilevel Iteration for Multiphase,

Multicomponent Flow in Porous Media

Richard D. Hornung
Department of Mathematics, Duke University
Durham, NC 27708-0320
e-mail: hornung@math.duke.edu

Abstract

An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas
dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we
combine specialized numerical methods to treat the different aspects of the partial differential
equations. Multi-level iteration and domain decomposition techniques are incorporated to ac-
commodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the
time integration of the hyperbolic mass conservation equations. When combined with AMR,
these numerical schemes provide high resolution locally in a more efficient manner than if they
were applied on a uniformly fine computational mesh. We will discuss the interplay of physical,
mathematical, and numerical concerns in the application of adaptive mesh refinement to flow
in porous media problems of practical interest.

Multi-phase flow in oil recovery and aquifer remediation problems exhibits behavior typi-
cal of the solutions to both elliptic/parabolic and hyperbolic partial differential equations. For
example, pressure changes are felt quickly throughout the reservoir when the flow is incom-
pressible or only slightly compressible. In contrast, injected fluids move with finite speeds and
the flow can develop sharp fronts separating different fluid states. Generally, the equations of
multi-phase porous media flow can be written as a system of conservation equations for the
masses of the fluid components, subject to a constraint that the fluid fills the void space in
the rock. If the model describes incompressible flow, one obtains an elliptic pressure equation
by summing the mass conservation equations and applying the volume balance constraint. In
the compressible case, it is often reasonable to linearize the volume balance constraint in time
to develop a nonlinear parabolic pressure equation. Although this separation of the governing
equations is not supported by any rigorous mathematical analysis, the splitting is heuristically
motivated by model problems and computational experience.

Conventional numerical treatment of practical multi-dimensional, multi-phase fluid flow
problems in enhanced oil recovery and aquifer remediation is very computationally expensive
and may provide inadequate results. The primary impediments to simulation accuracy are
standard numerical methods that cannot properly treat complicated physical and chemical flow
mechanisms, and the employment of computational meshes that do not allow sufficient resolu-
tion of important flow features. To provide useful information for the development of recovery
processes, field-scale simulations must be able to resolve complicated, fine-scale, localized (tran-
sient and static) flow behavior. Consequently, the computational mesh employed in a simulation
must be sufficiently fine to resolve the length scales of important features. However, the sys-
tems of discrete equations resulting from the approximation of typical reservoir and fluid models




severely restricts the allowable refinement of the mesh. This is dué to the magnitude of the dis-
crete systems and the complicated nonlinear relationships amongst the variables. By comblmng
AMR with high resolution numerical techniques, we can concentrate numerical effort near lo-
calized features. As a result, greater local resolution can be achieved more efficiently than if a
globally fine mesh is used.

The adaptive local mesh refinement paradigm that we employ is based on the ideas intro-
duced by Berger and Oliger, and extended by Berger, Colella and Trangenstein in separate
pursuits. The AMR process automatically and dynamically generates a hierarchy of nested
levels of computational cells. Within each level, the cells are maintained as a list of logically-
rectangular patches. The advantages of this patch refinement approach over other refinement
strategles are significant for a wide range of computational problems including, but not limited
to, flow in porous media. The patch approach is designed so that a small number of com-
putationally rich tasks can be organized in a highly structured fashion. We are able to use
integration and iteration routines developed for rectangular meshes on all patches on all levels
in the adaptive mesh hierarchy. Therefore, the user interface in the code appears much like it
does in a conventional simulator. Moreover, the implementation of efficient and accurate high
resolution numerical routines is better understood on logically-rectangular meshes. In addition,
the numerical integration routines used to solve the equations on the adaptive mesh are easily
separated from the structure of the AMR. algorithm. This greatly enhances code extendibility,
maintenance and generality. Finally, high resolution numerical methods and domain decomposi-
tion methods can be made efficient on vector and parallel computers when the data is organized
in a logically-rectangular fashion as allowed in the patch refinement approach.

Our use of multilevel iteration to solve the pressure equation associated with flow in porous
media is motivated differently than conventional applications of multigrid-type methods. We
are primarily concerned with capturing fluid interfaces whose time evolution is modeled by
the coupling between hyperbolic mass conservation equations and an elliptic/parabolic pressure
equation. The placement of mesh refinement is governed by the need to resolve fluid inter-
faces and the complicated wave behavior presented by the hyperbolic system. The role of the
multilevel iteration is to solve the pressure equation on the given adaptive mesh configuration.
The iteration must be able to treat fairly general mesh configurations as well as reasonably
general behavior in the system of discrete equations representing the pressure equation. In ad-
dition, physically-motivated up-scaling and mesh communication concerns need to be honored
during the iteration process to ensure consistency of the pressure solutlon with that of the mass
equations.

We will discuss algorithmic performance and various computational examples. Ina typical
two-dimensional problem, the overhead cost associated with AMR. for inter-patch communica-
tion and mesh adaptivity is roughly 10% to 20% of the cost of the entire computation. As a
result, our AMR code can complete a simulation in a fraction the time required for a comparable
simulation in which the mesh is fine everywhere. For the incompressible case, we will present a

two-phase polymer flooding model consisting of a system of nonlinear hyperbolic mass conser-
vation equations coupled to an elliptic pressure equation. The presentation of the compressible
case will center on a fully compositional reservoir model that describes local phase equilibrium
through the minimization of the Gibbs free energy of the fluid mixture. We will also address
issues concerning the development of a general object-oriented AMR. methodology that exploits
the advantages of C++ for the AMR program structure and data management.




Semi-Coarsening Multigrid Methods for Parallel
Computing

Jim E. Jones

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Standard multigrid methods are not well suited for problems with anisotropic
coefficients which can occur, for example, on grids that are stretched to re-
solve a boundary layer. There are several different modifications of the
standard multigrid algorithm that yield efficient methods for anisotropic
problems. In the paper, we investigate the parallel performance of these
multigrid algorithms.

Multigrid algorithms which work well for anisotropic problems are based on
line relaxation and/or semi-coarsening. In semi-coarsening multigrid algo-
rithms a grid is coarsened in only one of the coordinate directions unlike
standard or full-coarsening multigrid algorithms where a grid is coarsened
in each of the coordinate directions. When both semi-coarsening and line
relaxation are used, the resulting multigrid algorithm is robust and auto-
matic in that it requires no knowledge of the nature of the anisotropy. This
is the basic multigrid algorithm whose parallel performance we investigate
in the paper. The algorithm is currently being implemented on an IBM
SP2 and its performance is being analyzed. In addition to looking at the
parallel performance of the basic semi-coarsening algorithm, we present al-
gorithmic modifications with potentially better parallel efficency. One mod-
ification reduces the amount of computational work done in relaxation at
the expense of using multiple coarse grids. This modification is also being
implemented with the aim of comparing its performance to that of the basic
semi-coarsening algorithm.




Petr Vanek,
Jan Mandel,
Marian Brezina
Center for Computational Mathematics
University of Colorado at Denver
Denver CO 80217-3364

An algebraic multigrid algorithm for symmetric, positive definite linear systems is
developed based on the concept of prolongation by smoothed aggregation. Coarse levels
are generated automatically. We present a set of requirements motivated heuristically by a
convergence theory. The algorithm then attempts to satisfy the requirements. Input to the
method are the coefficient matrix and zero energy modes, which are determined from
nodal coordinates and knowledge of the differential equation. Efficiency of the resulting
algorithm is demonstrated by computational results on real world problems from solid
elasticity, plate bending, and shells.
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Lattice QCD computations:
Recent progress with modern Krylov subspace methods

Andreas Frommer
Fachbereich Mathematik
Bergische Universitdt GH Wuppertal
42097 Wuppertal, Germany

Abstract

Quantum chromodynamics (QCD) is the fundamental theory of the strong
interaction of matter. In order to compare the theory with results from ex-
perimental physics, the theory has to be reformulated as a discrete problem
of lattice gauge theory using stochastic simulations. The computational chal-
lenge consists in solving several hundreds of very large linear systems with
several right hand sides. A considerable part of the world’s supercomputer
time is spent in such QCD calculations.

This talk considers solving systems for the Wilson fermions. We review
some recent progress on the algorithmic level obtained in our cooperation
with partners form theoretical physics. The Wilson fermion matrix M is of

the form
M=1-«&D,

where D is a matrix with stochastic complex entries resulting from a nearest
neighbour coupling between grid points on a 4-dimensional time-space lattice.
Each grid point holds 12 unknowns. Typical grid sizes are 16% to 32% so that
M has dimension up to 12 - 108. The hopping parameter £ € R varies in
an interval [0, &.), where £ is the first value for which M becomes singular.
The matrix M is non-hermitian, but exposes a so-called vs-symmetry

A3

’)’5MH = M’)’s

with a simple hermitian matrix 75 representing a permutation of variables
within each grid point. .

The ~s-symmetry of M and its particular dependence on & can both be
exploited to simplify the Lanczos process used in generating a basis of the
Krylov subspaces associated with the initial residual. We will show how this




yields more efficient solvers for the Wilson fermion matrix as compared to
the popular standard methods in QCD.

Moreover, we will address the issue of parallel preconditioning. In par-
ticular, we will present a new ordering for the SSOR preconditioner which
" yields significant improvements upon standard red-black SSOR. This precon-
ditioher exposes a medium grain parallelism which can be exploited on MIMD
machines as well as on some special purpose machines like the Quadrics SIMD
computers used in QCD. ’




Numerical Solution of High-kappa Model of Superconductivity?

Rossitza Karamikhova!

Abstract

We present formulation and finite element approximations of High-kappa model of superconductivity
which is valid in the high x, high magnetic field setting and accounts for applied magnetic field and
current. Major part of this work deals with steady-state and dynamic computational experiments which
illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space
along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of
k, steady states of the model system, computed using the High-kappa model, are virtually identical with
results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal
rates of convergence in space and time for the £? and H' norms of the error in the High-kappa solution.
Finally, our numerical approximations demonstrate some well-known experimentally observed properties
of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied
magnetic field and the sample size, and the effect of applied constant current.

1 Introduction

Throughout this work  C IR?, d = 2,3 denotes a bounded region occupied by the superconducting sample,
T is the Lipschitz continuous boundary of €, and n is the unit outer normal vector to I'. The High-kappa
model presented in [7], see also [2], and [3], consist of the following two leading order systems for the
vector-valued magnetic potential A, and the complex-valued order parameter 1, respectively:

curlcurl A = (0,7)7 in @,
A-n = 0 on T, (1)
curl A = H—-Jz on T,

2
b= ($) svriappraa-ns + wPv+2i(3)a-ve=0 o axD00)
V¢-n = 0 on T x[0,00), #))

$(0) $° in Q,
where X and £ are two temperature dependent microscopic characteristic lengths called penetration depth
and coherence length, respectively, 12 is length scale used in nondimensionalization of the equations, o is

a microscopic parameter, & = — is the scalar electric potential, H = (0,0, H)T is the applied

—— y
o€
magnetic field, and J = (0, J,0)7 is the applied constant current.

In what follows we will use the spaces H™(Q) = [H™(Q)]%, and H1(Q) = {Q €e H*(Q) | Q-n =0 on T}.
Then, solution A of the leading order system (1) satisfies the following weak formulation:

Seck A € HL() such that a(A,A)=F(A) VY A e HL(Q), (3)

1Department of Mathematics, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408. E-mail:
rossi@utamat.uta.edu. This work is based on the Ph.D. thesis of the author completed in August 1995 at Virginia Tech.
2This work was supported by the Department of Energy through contract DE-FG0593ER25175.




where a(:,-) is the bilinear form
(A, A) = (curl A, curl A) + (div A, div A),
and F(.) is the linear functional
F(A)=(H - Jz,curl A.

Denote V = L*® (O,T;’HI(Q)) nHE(0,T; L2(Q)) . Then, solution ¢ of the time-dependent leading order
system (2) satisfies the following weak formulation:

Seek ¥ € V such that
(1, 9) +a(h,v) = b(A,v,9) = (f(¥),v) forall veH(Q),t>0, (4)
P(0) = ¢°, '

where a(, -) is the bilinear form

a9 = (§) 70,99+ 00),

b(:,-,-) is the trilinear form

b(Aa 'l)b; ‘U) =2 (%) (A -V, 'U),
and f(-) is a nonlinear function of the form

£ = @—id - - [A]) .

Given a uniformly regular triangulation 73 of and a fixed integer » > 1, we consider standard finite
element spaces S* = {vs € C°(Q); w|x € P, VK € Tp}. Then we set V* = SP, and W» = Sk nHL(Q),
where S* and S? denote the corresponding complex and-vector spaces, respectively. For the purpose of our
analysis, see [1], and [7], assume that:

. . -4 _
Jim, (t:;%]v:gg,, (ll¢(t)—vhllw+h |I¢(t)—vhllo)) = 0, and

. . -4
tim (_int (A~ walleo + 5414 - wih)) = o
The approximate problem for A reads:
Seek Aj € W" such that @(As,Ay) = F(Ay) Y Ap € Wh. -~ (5)

Let k > 0 denote a fixed time step, t, = nk, for 0 < n < N, and let T = Nk. In what follows we will use %
to denote the fully discrete Backward-Euler-Galerkin (B-E-G) approximation of 9(t,) at time t,,. Similarly,
U3 will denote the Crank-Nicolson-Galerkin (C-N-G) approximation of ¥(t,). These approximations satisfy
the following two discrete problems:

B-E-G: Seck U7 € V? such that

du? N "
(E—’v") +a(¥T,vn) — b(As, v, T})

(fa(¥T),vn) Yor €V?, 1<n< N,
" o= 9 (6)

C-N-G: Seek U2 € V" such that




dun - _ }
(%g',vh)+a(‘lf'2‘,vh)—b(Ah, 2oon) = (Fu(82),0) Yop€VE 1<n <N,
lI’g = 1;0) X - (7)

~

where we denote -‘%\Il;‘ = (\I!:' - \E?—l) [k for s=1, 2, and \il’z‘ = (\Il’z' + \I}’z‘—l) /2.

Existence, uniqueness, and error estimates for problem (5) have been established in [7]. In particular, for
A € HL(9) N H™+1(Q) we have the following optimal H! and L? estimates for the error B = A — Aj:
IEall; < CR™'||Allms1, 55=0,1.

Errors in (6) and (7) are defined as e = ¥} — %(t,), where s = 1, 2, respectively. The following theorem
establishes optimal error estimates for the approximations ¥} and ¥% of ¥(¢,). The proof of this theorem
can be found in [7], and is based on some results of [1] and [8].

Theorem 1.1 Let ¥ denote the solution of ({), and for 1 < n < N let ¥, s = 1, 2 satisfy (6) or
(7),respectively. For a positive integer m with m > d/2 we assume that ¢ € V with ¢(-,x) € H™+1 (Q),
[esello < C, and [| Aullo < C. If A € HE (Q)NH™(Q) and if [lel]|; < CA™ 17 | j =0,1, then for

sufficiently small h and fork =o h3%) there exists unigue solution T? of (6) or (7), respectively. Moreover
the following optimal estimates are valid

llesll; < CR™ 7 +£7) 5 §=0,1, (8)
where s = 1, 2 for the B-E-G and the C-N-G problems, respectively O.

2 Numerical Results

Numerical solution of the full G-L equations, especially for simulation of vortices, has been successful only
in the recent years, see e.g. [4], [5], and [6]. The objective of our computational experiments is to study
vortex dynamics in type II superconductors under constant applied field and current. This is accomplished
using a two dimensional finite element code based on the High-kappa model. Since the leading order time
independent linear system for A is decoupled from the leading order time-dependent nonlinear system for
1, one may first solve (1) and then substitute the solution into (2). This valuable computational property
of the High-kappa model simplifies significantly numerical experiments both in terms of speed and storage
requirements. :

We present numerical results based on simulations with square superconducting samples having sides
equal to 10¢, 20¢ and 30€, where € = 0.11. We often refer to such samples as a 1x1, 2x2, 3x3 sample. Spatial
discretization in problems (3) and (4) is by piecewise biquadratic elements on a uniform grid having a given
number of grid lines in x and y directions. For example, a 13x13 mesh means that there are 13 grid lines in
each coordinate direction. For time discretization of system (4) we use B-E-G and C-N-G schemes, see (6)
and (7), respectively. Initial conditions in all experiments correspond to a perfect superconducting sample
characterized by |¢| = 0. Numerical results are visualized using contour plots of magnitude of the order
parameter at a fixed moment in time. Figures representing time evolution of order parameter should be read
from left to right and top to bottom.

The linear system for A has symmetric and positive definite banded coefficient matrix, and is solved
using banded Cholesky factorization. The nonlinear systems for U3, s = 1 ,2; are solved using Newton’s
method. As a result, at each iteration one has to solve a linear system of algebraic equations which is
symmetric and positive definite, if there is no applied current. However, in the applied constant current case
the linearized system has a positive definite, but nonsymmetric coefficient matrix. To solve this system we
use banded LU decomposition.

2.1 Steady-State Numerical Results

In steady-state numerical simulations (no applied current), we apply a constant (in space and time) magnetic
field H directed perpendicular to the cross-section of the superconducting sample. As a result, vortices




Table 1: Maximum and minimum values of the magnetic field for different x and applied fields H,.
Kk | He/k Hpaz/E Hpin/k !

3 0.3 0.2961 | 0.2868
5 | 0.3 0.3002 | 0.2943
20 0.5 0.5005 | 0.4906
30 | 0.3(3) | 0.3337 [ 0.3271

steady
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Figure 1: Time evolution for a 2x2 sample using the High-kappa model with Hy = 0.5; B-E-G scheme.

appear and time evolution leads to steady-state, in which vortices form a hexagonal lattice pattern in order
to minimize the Gibbs free energy of the system, see Figure 1 and Figure 4.

To demonstrate numerically that our model is valid for high values of the G-L parameter x = A/¢, we
fix the applied field H = 0.5 and generate steady-state solutions using increasing values of & in the full
G-L equations. These solutions are then compared with the steady-states solutions from the High-kappa
model. In Figure 2 we present results for a 2x2 sample using £ = 5 and 100 in the full G-I model, and
the steady-state solutions for our model valid for & = co. It is evident that for values of & exceeding 5 the
contour plots appear virtually identical.

In Table 1 we examine the magnetic field in the superconductor for different values of x and the applied
field H,. Maximum and minimum values of the magnetic field computed from full G-L equations at various
values of k¥ demonstrate that, as expected, for large values of « the magnetic field in the superconductor is
nearly constant, and that it is equal to the applied field.

Next, we turn our attention to computations with increasing applied fields, which are known experimen-
tally to cause appearance of more vortices. We demonstrate this phenomena numerically in Figure 3, where
we present steady-state configurations for a 1x1 sample using H = 0.3, 0.5,0.7, respectively. Another exper-
imentally observed phenomena is the significant increase in the number of vortices resulting from increasing
the sample size. This phenomena is demonstrated numerically in Figure 4, where we present steady-state
configurations for 1x1, 2x2 and 3x3 samples using fixed H = 0.3.

A task of critical importance in computations is to avoid local minimizers of Gibbs free energy. Our
experiments indicate that this issue is clearly related to the choice for the Newton’s method tolerance T'ol in
computations. In Figure 4 presents results using T'ol = .5 x 10~ and Tol = .5 x 10-!. Each row represents
steady-states obtained using a fixed Newton tolerance Tol, and each column corresponds to a fixed value
H =0.3,0.5, and 0.7, respectively. Figure 5 demonstrates that, indeed, allowing for larger tolerances in the
Newton iteration, the steady-state criteria may be satisfied at a local minimum of the system’s energy.




kappa=5 kappa=100 infinity
e c OO0 e o0 ® 060 e Cc®o00O
® 00 060 2 00 06 2 00 086
® o 0 O o o ¢ O o o 0 O
00 0@ 208 06 900 0@
eC o Ooe e0Ce06e e C o 9Oo0

H=0.3

H=0.5

Figure 2: Steady-state vortex configurations for a 2x2 sample using fixed H=0.5 and increasing values of .

®
®

® &
® &

Figure 3: Steady-state configurations for a 1x1 sample using increasing values of the applied field H.
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Figure 4: Steady-state configurations using fixed H = 0.3, and increasing the sample size.

Tol=.5d-4 Tol=.5d-4 Tol=.5d-4
v
> ® 9
A
Tol=.5d-11 Tol=.5d-11 Tol=.5d-11

o
©

® @
® ®

Figure 5: Steady-state configurations for a 1x1 sample using different values for Tol, and H=0.3, 0.5, 0.7.




Table 2: Spatial rates of convergence in the High-kappa model.

L* rates in space

Time R713 | Ri3,25 | Ros,30
3.5410"° 3.22 3.16 3.03
10.54+107 1| 3.26 3.15 3.02
‘H* error rates

Time R713 | Riz25 | Ros,30
3.54-10"7 2.12 2.08 1.98
10541077 || 215 2.08 1.98

Table 3: Temporal rates of convergence in the High-kappa model

L? rates in space
Time discretization || time=1.6 | time=4.1 | time=11.1
B-E 0.97 1.04 1.03
C-N 2.12 2.03 2.21

« ‘H! error rates

Time discretization || time=1.6 | time=4.1 | time=11.1
B-E 0.95 1.01 1.07
C-N 2.16 1.98 1.93

2.2 Numerical Approximations of Convergence Rates

We continue with numerical results concerning approximation of the £2 and ! rates of convergence in
both space and time. We show that the optimal rates established in Theorem 1.1, see (8), are also valid
numerically. Our task here is complicated by the absence of a closed form exact solution for our model, which
can be used to estimate the actual rates of convergence. To overcome this difficulty we compute “exact”
solution using a “very” fine grid and appropriate time step.

In Table 2 we present numerical approximations of the spatial rates. We generate initial states using a
69x69 grid at times: ¢ = 3.5 and ¢ = 10.5. Then we make one “very small” time step k£ = 10~7 to obtain
our “exact” solution at times ¢ = 3.5+ % and £ = 10.5 + k. Next we use the initial guesses at ¢ = 3.5 and
t = 10.5 as starting points on a sequence of coarser meshes havipg 7x7, 13x13, 25x25 and 39x39 grid lines,
After computing the errors corresponding to the approximate solutions we calculate rates of convergence in
the usual manner. Table 2 indicates a very good agreemen between the numerical approximations for the
spatial rates and the optimal theoretical values of O (h2) in ! and O (R3) in £2? using biquadratics.

Next we turn to numerical approximations of the £2 and #! rates in time. We expect to observe O(k) for
B-E and O(k?) for C-N scheme. In Table 3 we present results obtained at three different moments in time:
t= 1.6, t=4.1, and t=11.1. Corresponding initial states at times t=1.0, t=3.5, and t=10.5 were generated
using a 39x39 grid, fixed time step & = 0.5, and prescribed number of nt = 2,7 and 21 steps, respectively.
An “exact” solution was obtained using 39x39 mesh, starting with the initial states, and using fixed k = 0.01
and nt = 60. Two approximate solutions are computed starting from each of the above initial states using
k =0.1,0.3, and nt = 6, 2, respectively. Results presented in Table 3 are again in a very good agreement
with the optimal theoretical values. ’ ’

2.3 Vortex Dynamics Under Applied Constant Current

Numerical results presented in previous sections deal with the case when the superconducting sample is
subjected only to an applied magnetic field. Below, we present results for the case, when in addition to the
applied magnetic field there is applied constant current of magnitude J. It is experimentally established
that if current.is passed through a type II superconductor (in the presence of applied magnetic field), then
vortices begin to move in a direction transverse to the transport current. As a result of the viscous flow of
vortices, energy is dissipated. This induces voltage, produces resistance in the sample, and hence destroys
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Figure 6: Vortex dynamics for a 1x1 sample using H = 0.5 and J = 0.01; current is applied after steady-state
is reached.

superconductivity. Vortex movement can be clearly observed in Figure 6, which corresponds to a simulation
for a 1x1 sample with H = 0.5 and J = 0.01. At the initial moment only magnetic field is applied. After
steady-state vortex configuration has been formed current of magnitude J is applied in the direction of the
y-axis. As a result vortices begin to move at right angles to the current flow (from left to right across the

sample).
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There are usually many factors that ultimately determine the quality of computer
simulation for engineering applications. Some of the most important are the quality of the
analytical model and approximation scheme, the accuracy of the input data and the
capability of the computing resources. However, in many engineering applications the
characteristics of the sparse linear solver are the key factors in determining how complex a
problem a given application code can solve. Therefore, the advent of a dramatically
improved solver often brings with it dramatic improvements in our ability to do accurate
and cost effective computer simulations.

In this presentation we discuss the current status of sparse iterative and direct solvers in
several key industrial CFD and structures codes, and show the impact that recent advances
in linear solvers have made on both our ability to perform challenging simulations and the
cost of those simulations. We also present some of the current challenges we have and the
constraints we face in trying to improve these solvers. Finally, we discuss future
requirements for sparse linear solvers on high performance architectures and try to
indicate the opportunities that exist if we can develop even more improvements in linear
solver capabilities.
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We show how auxiliary subspaces and related projectors may be used for preconditioning nonsymmetric
system of linear equations. It is shown that preconditioned in such a way (or projected) system is better
conditioned than original system (at least if the coefficient matrix of the system to be solved is
symmetrizable). Two approaches for solving projected system are outlined. The first one implies
straightforward computation of the projected matrix and consequent using some direct or iterative method.
The second approach is the projection preconditioning of conjugate gradient-type solver. The latter approach
is developed here in context with biconjugate gradient iteration and some related Lanczos-type algorithms.
Some possible particular choices of auxiliary subspaces are discussed. It is shown that one of them is
equivalent to using colorings. Some results of numerical experiments are reported.

1. Introduction. Among the conjugate gradient (CG)-type methods for solving
nonsymmetric systems of linear equations Ax = b, biconjugate gradient (BCG) iteration [10] is one
of the most popular algorithms. Despite the absence of minimization property, the BCG method
and related algorithms CGS [18], CGSTAB [20] outperform the others in many scientific and
engineering applications. Therefore, Lanczos-type methods are widely used and in a rapid further
development. In particular, the QMR [6] and related algorithms are based on quasiminimization
principle. Apart from more smooth convergence behavior, they overcome some kinds of breakdown
of the underlying Lanczos process, especially when coupled with a look-ahead technique.
Composite step approach [2] is another technique for improving the erratic convergence history of
Lanczos-type methods as well as for avoiding a pivot breakdown. For more information of
Lanczos-type methods and techniques for avoiding breakdown see [8], [3].

Here we describe yet another way for improving biconjugate gradients. It uses auxiliary
subspaces and projection operators. Projected algorithms of the BCG and related methods are
proposed. The approach under consideration may be regarded as preconditioning by means of
projector. Such preconditioning may be applied by itself or in conjunction with one of commonly
used preconditioners as considered in [7]. The present paper generalizes the technique developed in
[15] to nonsymmetric linear systems. We will show that projected algorithm of Lanczos-type
method may be more effective than standard one.

It should be pointed out that developed approach is closely related to deflation of conjugate
gradients [16], where the projection preconditioner is built from linearly independent vectors. For
practical application of this technique it is convenient to orthogonalize these vectors with respect to
the inner product u” Av [11]. However, Gram-Schmidt procedure may be very expensive as the
number of vectors under orthogonalization is large. If the system to be solved arises from
discretization of partial differential equation (PDE), then deflation technique may be implemented
effectively in context with domain decomposition method by exploiting some knowledge of the
PDE, the mesh, and the differencing technique used [12), [13]. Although the lower bound of the
spectrum may be increased, this approach is not sufficiently general since the above mentioned
apriori knowledge are usually not available.

In contrast to deflation method, we will build the projectors from vectors which are already
A-biorthogonal. Projected versions of BCG, CGS, and CGSTAB are investigated in conjunction




with some particular projection preconditioners are developed in this way using red-black and some
linear orderings. Results of some numerical experiments are reported.

2. Projected System and Projection Preconditioning. Suppose we would like to solve
the following two related linear systems
2.1) Ax =),

(22) AT3=b,

where A is general n by n nonsymmetric matrix and we are given initial guesses x* =0 and
%" =0 for convenience. If nonzero x and X" are available then we could set b and b are equal to
the corresponding residuals and use zero initial approximations.

The basic idea of the technique we develop is in exploiting the properly chosen auxiliary
subspaces. To determine them we assume the vectors
(2.3) Dos Ppsees Picts Po» Proeees Pacs
to be given, where k<n. We will assume throughout that (2.3) satisfy to the standard biconjugacy
condition

ﬁiTApj =pJTATﬁi =0, i#j; ﬁiTApi = piTATi’i #0.

We denote the nxk matrices of which columns are the vectors (2.3) as P and P
respectively. Denote also E =span{ py, p;,..., pr_;},  F=span{p,, P;,-.., P_; }. Or, in still the
other words, .E is the column space of P and F is that of P. Now R” may be represented as
R"=E@E* and R"=F® F*, where E is an orthogonal complement of the column space of

ATP and F” is that of AP, see [19]. Then it is naturally to introduce two pairs of complementary
projectors .

(2.42) 0=P(PTAP) P74,
(2.4b) R=I1-0

and

(2.4c) 0= ﬁ(PTA"ﬁ)" PTAT,
(2.4d) R=1-0,

where I denotes the nxn identity matrix. Here Q (alternatively, R) is the projector onto E
(alternatively, E”) along E* (alternatively, E). The other pair of projectors uses F and F~
likewise.

The following equalities may be easily verified by direct computations
(2.53) AQ=0TA=0TAQ, AR=RTA=RTAR,
(2.5b) ATO=QTAT =QTATQ, ATR=RTAT =RTATR

The following statement we present here without proof.

Theorem 2.1. Let biconjugate vectors (2.3) be given. Then the solution of (2.1) may be
expressed as

(2.6) x=y+z
where y e E is given by
~ =1 A
@7 y= P(PTAP) P,
and z€ E” can be found from
(2.8) Az=R"b.

Furthermore, for the solution of the adjoint system (2.2) we have




2.9 x=y+z,
where y e F is given by
A~ an—-] ~
(2.10) §= P(PTATP) PTh,
and ze F~ can be found from
(2.11) ATz=R"b.
The solution of (2.2) is not usually of interest. Therefore, we will focus on solving (2.1).
Since z = Rx then
(2.12) ARx=RTb
may be considered instead of (2.8). It will be referred throughout as projected system. In (2.12) AR

is singular. However, this system is compatible because of (2.5). rankAR = rank[AR, RTb ]=
rankR= n—k. Clearly, (2.12) may be obtained from (2.1) by means of preconditioning from the

left with the matrix R .

Solution of (2.12) is not unique because of singularity of AR. Therefore, to obtain the
solution of (2.1) by solving (2.12), we have to determine an additional condition. Theorem 2.1
gives it as (2.7).

Thus, the projection preconditioning implies three stages: (i) choose vectors (2.3) as a
basis of an auxiliary subspace; (ii) compute the component y € E from (2.7); (iii) solve (2.12).

The developed technique is of no practical value unless the vectors (2.3) can be
determined. We discuss the choice of these vectors in Section 4.

Let p(X) be the spectral radius of a matrix X. The following rather obvious result deals

with the conditionality of projected system regardless the particular choice of (2.3).
Lemma 2.2. If A is symmetrizable by similarity transformation
(2.13) A=T7 AT,
where A is symmetric and T is nonsingular, then
pP(AR)<p(4).

Thus, one may hope that iterative methods will converge more rapidly when applied to
(2.12) than when applied to (2.1).

3. Projected Algorithm of Biconjugate Gradients. It is known that preconditioning
makes the use of CG-type methods especially attractive in practice, see [7]. We restrict our
attention by the only left preconditioning with the matrix C since right-hand-side preconditioning
may be easily taken into account by means of appropriate change of the unknowns [1].

We now give the result related to preconditioning of A regardless particular choice of
(2.3). In this case both standard and projected BCG algorithms need the same amount of
arithmetics, associated with preconditioning.

Suppose matrix of the system to be solved can be symmetrized with a similarity
transformation (2.13). We assume also that preconditioner may be given as

(3.1) C=(L+D)D”'(D+U),

where L(U) is strictly lower (upper) triangular of A. A particular choice of diagonal matrix D
determines a special procedure from the class (3.1). The following statement is the extension of
Lemma 2.2. We give it here without proof.
Theorem 3.1.  Suppose A is symmetrizable by a similarity transformation (2.13). Suppose the
preconditioner from the class (3.1) has a positive definite real part, i.e.
u"Hu>0

for any ueR”, H=0.5(C+ CT) . Then




p(CAR)<p(C4).
We focus on the problem of solving (2.12). Obvious way is to compute the matrix AR and

the vector R7b explicitly. Then to solve projected system one can apply some direct or iterative
technique. This approach is equivalent to straightforward computation of preconditioned system.
Another approach for solving (2.12) implies completing both sets of vectors (2.3). It may
be provided by the BCG method. In this case it is sufficient to carfy out at most n —k iterations to
meet the solution of (2.1) if exact arithmetics is assumed. The standard BCG method is changed
meanwhile since every pair of direction vectors, generated by the BCG algorithm, must be A-
biorthogonalized against corresponding sets of given vectors (2.3). This means appearance of two

additional matrix-vector products with R and R inside the iteration loop. Furthermore, (2.7) and
(2.10) should be used as initial guesses for initialization of both residuals. With these in mind we
can reformulate the BCG method as follows.

Algorithm 3.1 (preconditioned projected BCG algorithm)
1. Construct the precondltloner C.

2.Set r" =b—Ax",? is arbitrary, (#*)"r*#20,e.g. ¥ =r (or ¥ -b ATEY), p,=p,=0,

po=1.
3. Compute y and y from (2.7) and (2.10) respectively.
4.Set xo=x" +y,ry=r —Ay, 7, =% —ATy.
5. Iterate for i=1,2,... until converge
5.1.Solve Cf =r_;; 5.2. t=Rt; 53. p, =}.,t; 54. B, =p,/p;;; 55. py=t+P,p.;;
5.6.Solve CT% =%_,; 5.7. t=R%; 5.8. p,=t+B,p,_,s 5.9. s=Ap,; 5. 10 8 =pls;
511. 0,=p,;/8; 5.12. x; =x,_, +0,p;; 513. r,=r,_,—a;5; 5.14. %, =F_, — ;A" D,.
Here nonzero initial approximations are assumed for generality. Comparmg Algonthm 3.1 to the
standard BCG algorithm, it can be easily seen that the former will be more effective than the latter
if total cost of new operations is covered by either (i) more rapid convergence because of Lemma
2.2; or (ii) reducing the total cost of iteration if vectors (2.3) are chosen properly.

4. Choice of Auxiliary Subspaces. General approach, described above, needs specific
vectors (2.3). We will assume for the remainder of the paper that (2.1) arises from finite element or
finite difference discretization of the second order elliptic PDE.

One possible goal in choosing vectors (2.3) is to improve the spectrum. Thls can be
provided by exploiting some apriori knowledge (as mentioned above, see [12]) which is usually not
available, however.

Another aim is to reduce the amount of arithmetics per iteration. We will use the idea of
[11] which implies A-orthogonalization of some set of unit vectors. The question is how to choose
these unit basis vectors? In [11] some knowledge of PDE under consideration were exploited. In
contrast to [11], we will determine unit vectors according to graph coloring.

Suppose all the nodes, determining unit basis vectors, are marked by one color and
numbered first. Then all the remaining nodes may be marked by another color and numbered.
Under these circumstances (2.1) takes the form

4.1 = .
@D [Azz Ay | x" b,

p CTa
After application of two-sided Gram-Schmidt process we have P = [ ':I, P= [;’ :l where
2




P, e R P eR¥* p e R-kxk p cRU-KXk p B are nonsingular upper triangulars, and
I} ] 2 2 IR pp

P, =P, =0.Then (2.4b) and (2.4d) transform into

(4'2) R= 0 _A;IIAIZ , k = 0 _AI-ITAZTI
0 1 0 1
respectively. Furthermore, (2.7) and (2.10) may be represented as
Ajlb A;Th
4.3 =", y={ 1

respectively. Thus, to obtain y and ¥ we should solve two systems of order k. Note, that projected
system (2.12) now looks like

Ay Apllo -AjjA, [*'] [0
@4 [Az, Azz}[o I ]Lc"]_[f}

where f=b, — A,,A;]b,. Let us briefly consider how it can be solved.
The natural approach is to compute AR explicitly. Then instead of (4.4) we have to solve

0 Offx'] |0
[0 Sjl[ "]=l:f} where S is Schur complement of A;,. This system is compatible, as it has
x

already been mentioned above, and we can find x"€ R by solving
4.5) Sx"=f.
After x” has been obtained we have to compute the component z of the solution (2.1) by projecting

Al )
z=Rx =|: A } i.e. x' is of no practical value. Then from (2.6) and (4.3) it is clear that
xll

s o[ o]

X

From (4.5) and (4.6) it can be easily seen that straightforward computation of AR leads to well-
known reduced system approach which is usually used together with red-black [9] and generalized
red-black [4] orderings. This is not surprising since in this case A,, is diagonal and Schur
complement of A;; may be computed easily.

From Lemma 2.2 now follows that p(S)<p(A) which is in agreement with the result of

[17] for symmetric positive definite case.
Next turn our attention to another way for solving (4.4). Let us consider, for instance,

0 0
rojected preconditioned BCG. Clearly r, = 7= where r", e R"*, 7 e R"F.
proj p 0 " 0 rllo 0 0

0

oo .. - £, ~ .
Further, if C is preconditioner for A then t =C T, =|_ | ie., nonzero 7' is appeared. However,
P 0= zn pp

- : o o _|=Aj A" :
7' is never used in further computations since = R? =[ H7I25 1 Tt can be easily seen that
t n

0o 0
s=Ap; = |: A A ] p;, ie., s contains first £ zero components. Then r; is of the same nonzero
21 Az

structure as r,. Similar relations may be obtained for 7, A p;. Obviously, both inner products are

standard operations in R"*.




Thus, we have a significant decreasing amount of arithmetics per iteration if only solution
of systems with A;;, and A], does not require substantial efforts. In contrast to the reduced system
approach, this technique may be applied in conjunction with various colorings since A,, is never
computed explicitly. '

If we consider 2-linear (zebra) ordering and assume C to be an approximate Schur
complement preconditioner then described technique reduces to that considered in [5]. This is
because CG-type method in fact solves (4.5) rather than (2.1). Our experiments with zebra
ordering also show that preconditioning of S yields more effective solver than preconditioning of A.
In this case the order of Schur complement is approximately a half of the order of A as well as for
red-black ordering. However, we can use another orderings to reduce the order of S even more.
Then the problem of construction of the approximate Schur complement preconditioner faces some
difficulties. In this case preconditioning of A might become efficient if the order of resulting Schur
complement is small enough. }

5. Numerical Experiments. In this section we consider a linear system as it arises from
the discretization of non-self-adjoint elliptic PDE over a two-dlmensmnal rectangular domain using
standard five-point computational molecula.

ILU(0) factorization [14] of A is used throughout our experiments. The BCG, CGS, and
CGSTAB methods are investigated. For every of them the following orderings are applied to
determine auxiliary vectors (2.3): (i) natural ordering (i.e., unprojected algorithm); (ji) red-black
ordering; (iii) 2-linear (zebra) ordermg, (iiit) 3-linear ordering where two of the colors determine
unit basis vectors. ,

Test problem was taken from semiconductor device simulation because of ill-conditionality
of discrete current continuity equations. This is a submicron bipolar transistor, see [15] for more
details. All the investigated algorithms are applied to solve both electrons and holes continuity
equations. Grid size is 4818 points. Iterations were terminated as soon as ||er|°° / "rolL <TOL,

where TOL is a given value of stopping tolerance and N is total number of iterations performed.
All the experiments were carried out on an IBM PC AT 486 using double precision.

Tables I-III present N and normalized run time # for all the three investigated methods. It
can be seen from these tables that projected methods are more effective than traditional versions.
Moreover, an algorithm based on 3-linear ordering is comparable to that based on zebra ordering
and approximate Schur complement preconditioning from the point of view of overall performance.

Table I
Total number of iterations and normalized run time for the projected BCG
TOL=I.e-6 TOL=1.e-12
Ordering electrons holes electrons holes

N t N t N t N t

natural 107 | 1.00 | 64 1.00 § 129 | 1.00 | 105 | 1.00
red-black 101 | 0.78 | 48 0.62 | 127 | 0.81 | 101 | 0.79
2-linear 30 062 | 51 0.67 ] 115 | 074 | 92 0.73
3-linear 70 053 | 48 0.61 92 | 058 | 77 0.59

6. Concluding Remarks and Topics of Further Study. We have shown how projected
versions of Lanczos-type methods may be developed. In other words, projection preconditioning
has been extended to nonsymmetric systems of linear equations. Some advantages of this approach
have been shown. One possible way of constructing auxiliary subspaces has been investigated. The
results of numerical experiments illustrate its effectiveness. However, there are another goals,
which may be taken into account when auxiliary vectors are determining. One can try to reduce the




spectral condition number of the projected system (at least for the case when the matrix of the
system to be solved is symmetrizable) by checking diagonal domination and choosing the rows (or
columns) of A as a basis vectors with consequent orthogonalization. Furthermore, unit vectors may
be determined during this procedure. Perhaps Gershgorin’s theorem may also be helpful in this

way.

Table I
Total number of iterations and normalized run time for the projected CGS
TOL=l.e-6 TOL=l.e-12
Ordering electrons holes electrons holes
N t N t N t N t
natural 50 1.00 58 1.00 77 1.00 81 1.00

red-black 50 | 084 ] 64 [ 092] 75 | 081 | 79 | 0.82
2-linear 42 | 0.71 65 | 094 | 71 | 078 { 75 | 0.78
3-linear 40 | 066 | 48 | 068 ) 60 | 0.64 | 69 | 0.69

Table I
Total number of iterations and normalized run time for the projected CGSTAB
TOL=l.e-6 - TOL=1.e-12
Ordering electrons holes electrons holes
N ¢ N t N t N t
natural 42 1.00 23 1.00 73 1.00 66 1.00

red-black 36 0.69 | 25 087} 67 | 074 | 71 0.87
2-linear 35 068 | 26 | 092§ 62 | 069 | 54 | 0.66
3-linear 38 0.71 26 | 0.88 ] 59 | 063 | 48 0.56
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EXTENDED ABSTRACT: PARTIAL ROW PROJECTION METHODS
RANDALL BRAMLEY AND YOUNGHEE LEE
DEPARTMENT OF COMPUTER SCIENCE
INDIANA UNIVERSITY - BLOOMINGTON*

Accelerated row projection (RP) algorithms for solving linear systems Az = b are
a class of iterative methods which in theory converge for any nonsingular matrix. RP
methods are by definition ones that require finding the orthogonal projection of vectors
onto the null space of block rows of the matrix; see [3, 2, 5] for a general introduction,
and a bibliography of the field. The Kaczmarz form, considered here because it has
a better spectrum for iterative methods, has an iteration matrix that is the product
of such projectors. Because straightforward Kaczmarz method converges slowly for
practical problems, typically an outer CG acceleration is applied. Definiteness, sym-
metry, or localization of the eigenvalues of the coefficient matrix is not required. In
spite of this robustness, work has generally been limited to structured systems such as
block tridiagonal matrices because unlike many iterative solvers, RP methods cannot
be implemented by simply supplying a matrix-vector multiplication routine. Finding
the orthogonal projection of vectors onto the null space of block rows of the matrix in
practice requires accessing the actual entries in the matrix.

Research on efficient implementation of RP methods has been stalled because of
three fundamental problems. The first is computing of the action of the orthogonal
projectors on vectors, in particular solving subsystems with coefficient matrix AT A;
where AT is a block row of A. Most practical approachs to date perform a Cholesky
factorization RT R; of AT A; and then solve two triangular systems when computing the
projection w = Pyd = A;(RF R;)"*ATd. This is practical only if the Cholesky factor is
sparse. Although sparsity can be assured by choosing row partitionings that place only
a few rows in each block row, the outer CG accelerator requires fewer iterations if the
block rows can be made large.

Another difficulty with RP methods is in choosing row partitions. Beyond the need
for efficiency in computing the projections, there is no theory to guide the selection
of partitionings from the combinatorially large number of possibilities. For centered
difference operators on quasi-uniform meshes, [4] gives the tradeoffs in terms of storage
and parallelism possible. However, the techniques in that work do not extend to general
unstructured meshes for PDE’s or other problems.

The third major problem is that even after CG acceleration, RP methods are often
too slow. Standard Krylov subspace methods which rely on matrix-vector products with
the original matrix A can be made more robust by using an incomplete factorization of
A as a preconditioner. Increasing the amount of fill-in (and thus storage required) in the
preconditioner often improves the robustness, since in the limiting case the factorization
becomes Gaussian elimination. This approach cannot be taken with the RP systems

* WORK SUPPORTED BY NSF GRANTS NSF CDA-9309746, CDA-9303189, AND
ASC-9502292




since it is impractical to actually form the RP coefficient matrix.. Arioli and Duff [1] have
used right preconditioning with a diagonal matrix D. However, this preconditioning is
limited to reducing the dependencies between two block rows, and cannot be practically
extended to allow incomplete factorizations.

This talk introduces a new “partial” RP algorithm which retains the advantages
of RP methods and solves the above three problems. addressed by introducing a new
“partial” RP algorithm. When A is partitioned into two block rows, the new system
leads to the implicit solution of the auxillary sysi:eg;

[AT(I — P)Ag]w = by — AT A, (AT A)) 15,

where P; = A;(ATA;)1AT. A preconditioned CG algorithm is derived, and on each it-
eration k the approximate solution vector zy, exactly satisfies the first block of equations:
AT.'D = b

The talk shows how a modification of graph partitioning algorithms allows effective
scalable parallelism in all phases of the algorithm, and computation of the required
Cholesky factors using O(n) storage, where A is n X n. Furthermore, standard pre-
conditioning methods such as incomplete factorizations can be used to improve the
convergence properties of the partial RP method. Testing results are presented com-
paring the new partial RP methods with earlier RP methods and Krylov subspace
solvers, and showing the effects of different partitionings on the convergence.
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GENERALIZED SUBSPACE CORRECTION METHODS
PETTER KOLM| PETER ARBENZ!AND WALTER GANDER!

Eztended Abstract
submitted to CMCIM’96 on Iterative Methods, April 9-18, 1996

1. Introduction. A fundamental problem in scientific computing is the solution
of large sparse systems of linear equations. Often these systems arise from the dis-
cretization of differential equations by finite difference, finite volume or finite element
methods. Iterative methods exploiting these sparse structures have proven to be very
effective on conventional computers for a wide area of applications. Due to the rapid
development and increasing demand for the large computing powers of parallel com-
puters, it has become important to design iterative methods specialized for these new
architectures.

We present a class of iterative methods for parallel architectures that evolve from
the general framework of subspace correction [7]. The basic ideas go back to the
Cimmino [4] and Kaczmarz [6] projection methods, where an iterative process is
defined by computing corrections to an approximate solution restricted to subspaces
spanned by the rows of the system matrix. These corrections can be performed in
succession, as in the Kaczmarz method; or in parallel, as in the Cimmino method.
Extensions to these methods to non-overlapping block-rows have been studied, cf.
[5, 1, 3, 9, 2], and shown remarkable robustness and potential for parallelism. In this
note we focus on extensions to general subspaces, that may overlap, and discuss how
the incorporation of weighting schemes can improve convergence significantly.

. 2. Subspace Correction Methods. For a finite-dimensional vector space V
we consider the linear equation

() Au=b, AeL(V),

with A invertible. Let (Gi)iez, Gi € L(V), T C IN, be a finite family of linear maps
such that V = J;cz R(Gi), where R(G;) is the range of G;. We get by applying these
maps to (1)

) GiAu=Gib, i€Z,

which can be viewed as (1) restricted to the subspace R(G;). For an approximate
solution u* of the linear equation (1) we denote by ef the error of the i-th equation
of (2). Then with equation (2) we have the subspace correction equation

GiAef = Gir¥,
and
¥ = (G;A)1Gir*,

t Computational Mathematics and Mechanics, Royal Institute of Technology, 5-100 44 Stockholm,
Sweden. email: kolm@nada.kth.se

{ Institut fiir Wissenschaftliches Rechnen, Eidgenossische Technische Hochschule, CH-8092
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where r* := b — Au* and (G;A)! is the Moore-Penrose generalized inverse. We will
consider two natural ways of defining the next iterate u*+1. In the first approach each
correction is computed independently and then combined

ubtl = ok 4 E E;ef,
' iex

where the weightings E; are all diagonal and satisfy ) ;.7 E; = I. Clearly, the j-th
component of ef does only have to be computed if the j-th diagonal element of E;
is nonzero. In the second approach, each correction is calculated at a time, thereby
using the most recent approximation of the solution, in a Gauss-Seidel type fashion.
We remark that the first way explores natural coarse-grained parallelism. In Fig.1

the generalized parallel and the generalized successive subspace correction methods,
*PSC and *SSC, are summarized.

/¥ *PSC */ /¥ *SSC */
choose (Gi)iezr and weighting (E;)iez choose (Gi)iez
choose u°, k=0 choose #®, k=0
repeat repeat

for all i do in parallel y =u*
ef= (G:A)IGir* for each  do
=(GiA)!Gi(b - Au") ei = (G:A)!Gi(b — Ay')
el:fl k % v =y te
ut =u"4 > . Eief end
k=k41 Liez uF = g
until convergence k=k+1

until convergence

FiG. 1. The generalized parallel and the generalized successive subspace correc-
tion methods, *PSC and *SSC.

The *PSC and *SSC algorithms generalize the PSC and SSC algorithms intro-
duced by Xu [9] for symmetric positive definite systems to general linear equations.
Here, we also consider an arbitrary family (G;);ez, instead of just orthogonal projec-
tions. The weighting incorporated in ¥*PSC has shown to be a useful tool to signifi-
cantly improve the convergence in applications.

3. Convergence and Consistency. The convergence proofs of the *PSC and
*SSC are based upon the following straightforward representation.

PROPOSITION 3.1. *PSC and *SSC are linear stationary methods of first degree,
t.e. in the form uk+l = Qu"+d, with Q.psc = I- Ziez E;(G,'A)TG,'A and Q.ssc =
Qm - Q1 where Q; = I — (G A)1G; A.

By using the above representation one can show [7]

THEOREM 3.2. The *SSC method is convergent and completely consistent, i.e.
[@ssscll < 1.

Showing convergence of the *PSC method needs more care. A proof where the
subspaces R(G;) are all mutually orthogonal has been established by Elfving [5]. For
the general case, incorporating weighting and allowing overlapping subspaces, one can
show the following [7].

THEOREM 3.3. For the consistent weighting B; = L1, i € {1,...,m}, the *PSC
method is convergent and completely consistent.
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Briefly, this is established by constructing an equivalent *SSC algorithm on an
extended linear system consisting of the original equation and linear constraints. The
result then follows from THEOREM 3.2.

4. Numerical Results. We restrict the experiments to the *PSC method due
to its natural parallelism. The implementation is done in C for a 96 node Intel Paragon
XP/S54 at ETH Ziirich using message passing primitives from Intel’s NX library [8].
As model problem we consider the elliptic partial differential equation

du du

) - w95 ( +i5t) =0, @10 x 0D

"oz
with Dirichlet boundary conditions. The differential equation is discretized over a
300 x 300 grid using centered differences for the first and second order derivatives
resulting in a banded linear system. To compare the *PSC implementation with the
block-Cimmino method we present computations done where the family (G;)iez is
chosen such that (G;A)iez constitutes 90 subsequent overlapping block-rows of the
banded system matrix. Hereby, the blocks are all equally large and only neighboring
blocks are allowed to overlap. The resulting correction equations are solved in minimal
norm sense by a sparse L@ decomposition. Four different types of weighting schemes
were considered for the correction vectors: in (1) each component is weighted by 515, in
(2) overlapping components are halved, in (3) overlapping components are multiplied
by weights uniformly distributed between zero and one, and in (4) the components
corresponding to half of the overlap in the blocks are set equal to zero making all
correction vectors orthogonal.

TABLE 1
Timings of the LQ decomposition and 1 iteration in seconds for *psc
with different overlap(ov) and weighting scheme 3.

Number of Processors

ov 15 18 30 45 g0

0 | 9.25/0.78 | 7.64/0.66 | 4.49/0.43 | 2.93/0.31 | 1.40/0.19
2 9.26/0.79 7.66/0.66 4.51/0.43 2.95/0.31 1.39/0.19
4 9.32/0.77 7.70/0.66 4.52/0.43 2.96/0.31 1.40/0.19
10 | 9.57/0.81 | 7.96/0.68 | 4.59/0.45 | 3.00/0.32 | 1.40/0.20
20 | 9.80/0.80 | 8.12/0.68 | 4.74/0.44 | 3.05/0.33 | 1.43/0.20
40 - 8.45/0.70 | 4.93/0.45 | 3.16/0.33 | 1.44/0.21

80 - 9.22/0.71 | 5.34/0.47 | 3.39/0.35 | 1.49/0.22
120 - 9.89/0.73 | 5.07/0.49 | 3.63/0.36 | 1.55/0.23
160 - 10.58/0.76 | 6.03/0.51 | 3.85/0.37 | 1.59/0.25
200 - 11.35/0.78 | 6.48/0.53 | 4.06/0.40 | 1.63/0.26
280 - - 6.93/0.56 | 4.26/0.43 | 1.73/0.29
360 - - 7.79/0.59 | 4.88/0.44 | 1.84/0.31

TABLE 1 reports the costs for different overlaps, showing that fairly large overlaps
are computationally competitive. Computations with so small processor numbers that
the whole problem did not fit into main memory have been omitted.

TABLE 2 shows the convergence properties for different weighting and overlap
for the model problem. Each test is started with the the same random vector and is
stopped if the convergence criterion, |uezact—u’° loo < 1074, is not reached within 5000
iterations. We remark that the *PSC method with and without overlap is superior to
the block Cimmino method that does not converge within 5000 iterations. Weighting
of type 24 improves the convergence significantly.
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TABLE 2
Number of iterations and time in seconds needed for convergence of the *PSC
method for different weighting(w) and overlap.

Overlap
w 0 40 80 120
none >5000 - - -
1 >5000 >5000 >5000 >5000
2 | 3913/616.9 | 4371/712.1 | 3414/560.6 | 3135/531.0
3 | 3913/616.9 | 4352/708.6 | 3402/558.6 | 3053/510.0
4 3913/616.9 | 4339/706.6 3334/546.9 | 3251/542.0
Overlap
w 160 200 280 360
1 >5000 >5000 >5000 >5000
2 3085/521.0 | 2865/490.8 3232/568.6 | 3002/542.2
3 3026/511.4 2938/503.1 3145/553.3 2820/509.6
4 2955/498.0 | 3217/549.1. 3211/563.2 2738/490.5

As a stationary method, *PSC in some cases needs too many iterations to achieve
convergence. Therefore, it will be important to consider acceleration techniques or to
combine the *PSC method with some other iterative process. We believe that these
methods are potential preconditioners in parallel environments for standard iterative
methods.
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A MULTIGRID METHOD FOR VARIATIONAL INEQUALITIES

S. OLIVEIRA, D.E. STEWART AND W. WU

ABSTRACT. Multigrid methods have been used with great success for solving
elliptic partial differential equations. Penalty methods have been successful in
solving finite-dimensional quadratic programs. In this paper these two tech-
niques are combined to give a fast method for solving obstacle problems. A
nonlinear penalized problem is solved using Newton’s method for large values
of a penalty parameter. Multigrid methods are used to solve the linear systems
in Newton’s method. The overall numerical method developed is based on an
exterior penalty function, and numerical results showing the peformance of the
method have been obtained.

1. INTRODUCTION

Variational inequalities are problems that often arise in connection with free-
boundary problems, contact problems and elastic-plastic problems [2]. A well-known
example of such a problem is the so-called “obstacle problem” [2, pp. 104ff]. The
idea is to model an elastic sheet which is suspended over some terrain. The sheet is
assumed to be supported at its edges, but it might also be supported by the ground,
though the region the sheet is in contact with the ground is unknown. Where the
sheet is suspended, the usual equations apply, though over the region of contact, a
frictionless force is exerted on the sheet by the ground to keep it from sinking into
the ground. A linearized version of this can be represented by the equations below,
where u(z,y) is the downward vertical displacement of the sheet at co-ordinates

(z,9).
ey

where b(z, ) is the downwards displacement of the ground and ¢(z,y) is the down-
ward force applied per unit area of the sheet. Typically this force would be gravity.
Such problems can be considered to be infinite-dimensional versions of quadratic
programs as they can be reformulated as minimization problems in Hilbert spaces.
For example, the above obstacle problem can be reformulated as

@) miy /Q [-;-|vu|2 —c(m)u} av.

Numerically such methods can be discretized and solved as large quadratic pro-
grams. However, in spite of the recent advances in such methods, the guaran-
teed convergence rate of such methods are highly dependent on the dimension of
the discretized problem. Furthermore, the rates of convergence go to zero as the

—Au=c(z,y)  where u(z,y) > b(z,y)
—Au>c(z,y)  where u(z,y) = b(z,y)
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dimension is increased. Here an alternative approach is to apply multigrid to a
grid-independent penalty formulation by developing algorithms in the appropriate
Hilbert space. The convergence rates of these methods will approach that of the
infinite-dimensional algorithm as the gfid is refined and the approximations are
made more accurate [1]. To achieve full mesh-independence, the multigrid method
must be modified to properly deal with large penalty parameters. The ideal method
is known to be monotone for appropriate penalty functions [4] so that the successive
Newton iterates u(*+2)(2) are monotone in k for every z. The corresponding dis-
crete property holds provided a lumped mass scheme is used for the penalty terms,
and the multigrid method is monotone when applied to M-matrices.

The methods described here are believed to be competitive with the best pub-
lished algorithms which are essentially active set methods (see Kornhuber [3]).

2. THEORY AND NUMERICAL PROPERTIES

The basic problem to be solved here is

3) min ) = [ [31vur - clayu) dv

over u € H}(). We assume that b is Lipschitz continuous and b < 0 on 0%, and
that ¢ belongs to L?(£2). The region {2 is assumed to be an open subset of R* with
a Lipschitz boundary, and that n < 4. This minimization problem is equivalent to
the variational inequality

@ /Q[V'u-V(v-u)—c-(v-—u)] dv >0, for allvGH&(Q)lwhereva,
and u > b.

This in turn is equivalent to the pointwise inequalities in (1).
A solution exists for (3) since the functional J is a proper convex and norm-
continuous function and is coercive:

T(w) 2 llulizgy — Nellzr-1 llull ;-

Note that here we use the norm

Il =/ [ (Va2 av.

Thus J is weakly lower semi-continuous (LSC), and by weak compactness of bounded
sets in H} and coercivity, minima exist. Strict convexity ensures uniqueness and
continuous dependence on the data of the problem. '

Since (3) is a difficult problem to solve directly, we consider a penalty functional

(5) () = /Q [%IV'U,F —c-u+ po(, u)] av.

Here we use the esterior penalty function ®(z,u) = (u — b(z))%, and to obtain the
solution of the original variational inequality we need to find the limit of minimizers
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ug of Jg as B — oo. The exact form of @ is not important, but the following
properties are:

there is an h € L*(2) where ®(-,u) > h for all feasible .

o8 2%
(©) Ou’ fu? ~—
2p | .
RS non-decreasing in u.
The necessary conditions for a minimum of Jg are that
) —Aug —c+ Bo(z,ug) =0

in © and ug = 0 on 892, where ¢(z,u) = (0®/0u)(z, ). This is a nonlinear equation
for ug. This is solved by means of Newton’s method. At each stage of Newton’s
method, with u(¥) being the approximation at the k iteration, the correction w(*) =

. ulk+1) — 4 (F) satisfies the equation

® —A@® 4 w®) — ¢+ Bz, u®) + ﬁ%(z, u®ye® = o

in Q and w*) =0 on 6.
The Newton equations (8) can be rewritten as

©) —Aw® 4 ﬂg?_(x, 4y ® = 7
(7

where fi, = —[-Aul®) — ¢ + Bo(z,u®)]. Note that u® € H§, so AulF) € HL;
u(® may still be unbounded (for n > 2), so ¢(-,u'*)) and (8¢/8u)(-,u*)) may also
be unbounded. This can cause problems with the existence theory for these PDE’s.
However, solutions can still be shown to exist by considering the following strictly
convex, coercive quadratic functional

1)  Kausw) = [ 3P+ 3055w 0) 07— 5] 0V

Note that w(*) solves (9) if and only if it minimizes Kg,u, 0. By the same
arguments that are used for the existence of ug, and the solution of the variational
inequality, a unique solution w = w(®) exists which solves (9).

Newton’s method typically exhibits only local convergence. Here, however, it
is possible to show that the convergence is monotone provided that —Au©® —c+
B(z,u®) > 0 everywhere in §; then, u©® > «® > u® > ... > ug. This is
described in some detail in the functional analytic context in [4]. This is essentially
due to the fact that (—~A)~! is a monotone operator for Dirichlet boundary condi-
tions. Obtaining a starting solution u(® where —Au(® — ¢ + B¢(z,u®) > 0 is not
difficult; one way to do this is to solve —Au® — ¢ =0. Then as ¢(z,u) > 0 for any
value of u, the desired inequality holds for this choice of MON

In Stewart and Wright [4] quadratic convergence for this monotone Newton
method is shown provided 82¢4/8u? is uniformly bounded. However, for &(z,u) =
(b(z) — u)%, there is no second derivative with respect to u where u = b(z).
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3. NUMERICAL SOLUTION

For the test problems, the standard five point difference stencil is used in two
dimensions. Note that this is equivalent to the piecewise linear finite element on a
regular triangular mesh based on a regular square grid.

The choice of discretization can be important in order to preserve the mono-
tonicity properties of the Newton iteration, which require the property that the
discrete operator —Ay, is an M-matrix. If, for example, higher order finite elements
are used, this property is lost, and the discrete Newton method cannot expected
to be monotone. At least for piecewise linear finite element methods, —A, is an
M-matrix. |

To solve the pena,hzed problem for the variational inequality, a Newton-multigrid
method was used. This involves setting up the linearized equations for the discrete
system, and applying a multigrid method to the linearized system. The algorithm
used is a modification of the FMV multigrid method. The modification uses Gauss—
Seidel for the relaxation as the original method does, but with the diagonal penalty
ternis added. On coarse grids, the problem is to properly define the diagonal penalty
terms. For a given coarse grid node, the diagonal penalty term is defined in terms
of the value of u at the corresponding fine grid node. For the penalty function
®(z,u) = (b(x) —u)], the diagonal penalty term is 2 if u < b(z), but zero otherwise.
This may be inappropriate where the geometry of the contact region is complex, as
a node of the coarse grid may be close to a contact region, but because it is not
itself in the contact region, the penalty term is zero. Nevertheless, this method is
often able to solve the penalized problem for large valugs of S.

4. NUMERICAL RESULTS

The first test problem was the problem of a semi-sphere as an obstacle, which
was chosen because it was possible to obtain an exact solution. The actual obstacle

had the form -
VI-z2—y? 22442<1
b(z,y) = S .

otherwise

The obstacle problem was solved with ¢ = 0 on Q = (—2,+2) x (—2,+2) with
Dirichlet boundary conditions consistent with the exact solution

The most important issues for this method is the dependence of the number of
iterations needed on the grid spacing and the dependence on the penalty parameter
B. Ideally, the number of iterations would be bounded, or only slowly growing, as
the grid spacing becomes small and the penalty parameter becomes large.

Table 1 shows the number of inner iterations (calls to the multigrid routine) and
the number of outer iterations (the number of Newton steps) for different grid sizes
for the semi-sphere obstacle. This was solved on the square Q = (=2, +2) x (=2, +2)
with inhomogeneous boundary conditions consistent with the exact solution

w(z y)={\/1—7'2 r<rt
’ —(*)?In(r/R)//1~ () r2>r*

where 7 = /22 + y2, R = 2, and r* satisfies
(r*)?[1 - In(r*/R)} =
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B grid size | # outer loops # inner loops
10° 32 x 32 5 10
102 64 x 64 9 16
10° 128 x 128 12 20

TaBLE 1. Dependence on grid size (semi-sphere obstacle)

B grid size | # outer loops # inner loops
10 64 x 64 5 8
103 64 x 64 9 16
10¢ 64 x 64 8 17
105 64 x 64 8 18

TABLE 2. Dependence on penalty parameter 3 (semi-sphere obstacle)

With R = 2, this gives r* = 0.6979651482.... A plot of the numerically computed
solution is shown in Figure 1. The convergence history for the algorithm applied to
this problem with various grid spacings is shown in Figure 2. A plot of the errors
in the computed solution for the 32 x 32 grid with 8 = 103 is shown in Figure 3. As
can be seen in this figure, the solution is very accurate in the region of contact, but
is least accurate just outside. This is probably due to the jump discontinuity in the
contact forces, which is difficult to resolve accurately without adaptive methods.

The penalty parameter 8 was set to 103. The stopping tolerance for the inner
loop was 10~2, and the stopping tolerance for the outer loop was 1073.

The convergence history for the algorithm applied to this problem with various
penalty parameters is shown in Figure 4.

Table 2 shows the number of inner and outer loops for different values of the
penalty parameter 3 for the semi-sphere obstacle using the same stopping tolerances
as before, and a 64 x 64 grid.
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A MULTIGRID SOLUTION METHOD FOR
MIXED HYBRID FINITE ELEMENTS

WERNER SCHMID*

Summary. We consider the multigrid solution of linear equations arising within the discretization
of elliptic second order boundary value problems of the form

L(u) :== —~V(AVu) +bu=fin Qe R? w=0onT,

by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-
conforming nodal finite elements (cf. Arbogast/Chen [1]), we construct a multigrid scheme for the
corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite
elements, following guidelines from Arbogast/Chen [1].

For a rectangular triangulation of the computational domain, this non-conforming schemes are the
so-called nodal finite elements (cf. Hennart/Del Valle [6]). We explicitly construct prolongation and
restriction operators for this type of non-conforming finite elements. We discuss the use of plain
multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

Key words. Mixed Finite Elements, Hybridization, Iterative Methods, Multigrid.

AMS(MOS) subject classifications. 65N55, 65N30, 82D75

1. Discretization. We consider in the sequel the typical second order elliptic
boundary value problem

L(u) := —div(A gradu) +bu = f in Q € R?, (1)
4 =0on I :=09Q,

where A is a matrix-valued, positive definite function on €, i.e., there is a constant
o > 0with ¥ aj(@)6& > ofé]* forallz € Q, € R¢. We assume f and b

1,7=1,2
€ L*() and b > 0. We assume further that the coefficients are smooth enough to
ensure the required regularity of u, whenever necessary. '
For applications where both u and the (possibly weighted) gradient A gradu are
of interest, the use of mixed finite elements is a reasonable choice. Then equation (1)
is formally written as first order system

A7lj+gradu=0
(2)
divj+bu=f

with the corresponding boundary conditions. For simplicity we assume homogeneous
Dirichlet boundary conditions throughout.

*  Mathemat.-Naturwiss. Fakultit, Universitit Augsburg, D-86159 Augsburg, Germany,
(schmid@math.uni-augsburg.de). Partially supported by a Ph.D. grant of SIEMENS AG and grant
03-HO7TUM of the German Federal Department of Research and Technology (BMFT)




Let us define V = H(div; Q) := {q € (L3())% divq € L)}
The variational formulation of (2) is then given by

a(J,Q) —c(u,q)

(47%,q)—(u, dlvq)—O qevV
(w, divj) + (bu, w) = (f,w), we W
——— ——— e —

—(wd)  buw)  fw)

(3)

For numerical computations we have to use adequate finite dimensional function
spaces. In the case of the saddle-point problem above, these function spaces have to be
chosen carefully in order to guarantee existence and uniqueness of the solution in the
discrete case. This can, e.g., be accomplished by fulfilling the discrete Babuska-Brezzi-
condition, cmp. Brezzi / Fortin [4, Kap. I1.2].

One possible choice in 3D (for hexaedral grid), the one we use in the sequel, is the
use of the so-called Raviart-Thomas-Nédélec spaces of lowest order as discrete substitute
of H(div; ) (cmp. Nédélec [7, 8]) and the corresponding discrete space for the primal
variable u: Starting from a domain € R? and a coarse grid 7 consisting of cubes K
with radius h, we have the following conforming discretization

Vi = RIo) (% Th) -= {q € H(div; Q); qlx € RTjp(K)}
Wi = Wig(7n) := {w € W(= L*(Q)); w|x € Qo(K)}

with RTjo(K) := Q1,00 X Qo,1,0 X Qo1
Here, we use Qpim = {Cap7$ yPz7 0 < o < By 0< <15 0<vy<m}and

Qr = Qi k-

Now we can switch from (3) to the finite dimensional problem

(A™%n, an) — (un, divan) =0, an € RTj(%T5)
(wr, divin) + (bun, wa) = (f, Wp), Wp € Wi (€2 71)

(4)

Vi x W, fulfills the inf-sup-condition. Therefore, existence and uniqueness of the discrete
solution of (4) is guaranteed. Furthermore, this solution converges to the solution of
(3) with A — 0.

Every vector-field v, € V;, must satisfy (like every v € V = H(div; Q)) the condition
that its normal component is continuous. This leads to a coupling between the elements
Ke To via,

r{n-qhd0=—rg‘n-qhd0 | | (5)

for the common faces of two neighbour elements K, K’. In operator (or matrix) nota-
tion with .
A : RTi($% 74) — RTig(% %), C : BTy (Q; Tn) — Wi (2; 74)* and
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B : W) (2; Tn) — Wioy(Q2; 71)*, we arrive at the following, uniquely solvable, but indef-
inite linear system of equations with global coupling

(é f;)(ii)z(—of)‘

TIterative solution of those indefinite problems is usually harder to do than for positive
definite systems. Therefore, we transform (4) into a symmetric positive definite (s.p.d.)
system by the technique of hybridization. Then a subsequent post-processing gives the
solution of the original problem.

The main idea of hybridization is to eliminate continuity of the normal components
(5) from the function space, i.e.,

RTio)( 1) = {q € H(div;Q); q|x € RTjg(K); K € Tp}

U
RT(Q) = {alx € RTjy(K); K € T}
Now we can use function spaces for the vector-field that are locally defined, i.e., there

will be no inter-element coupling for the vector valued variable jj.
Continuity of the normal components is assured by introducing a further equation:

a(in, an) + &anm vn) = —d(ur, ) , an € RTH(Q Th),
&Gnovn) — b(un,vn) = —f(vn) , Un € Wig)(©2;7r) (6)
‘Z(Piujh) =0 y Pn € M[O](Q; Fr),

The bilinear forms are locally defined on single elements wherever necessary:
a(Dr, An) = a(Pr, dn), E(Ph, Vn) = K%:T (vn, divas)|x,
h

b(vh, wn) = (bvn, ws) (in Q), and d(pn, an) = Ké:T I{ pr12 - qudo with
3
M[()](Q; fh) = {ph € (Lz(gh))a;/’hle S Po(e); e € &N ph[e =0,e €& N FD}.

It seems that we have inserted further unknowns requiring more work than before. But
since j is defined element by element it can a priori be eliminated leaving us with a
linear system of equations in u; and A, only that even is s.p.d. Using matrix notation

and starting with
¢t D in 0
-B 0 up | =| —f (7)
0 0 A 0
we have j, = —A™1(Cuy, + D)). Using this relation, we get

GAGT 4B CADTN (w\_ [ f ®
paer papr )\ )= o

3

U’ Q>




A local a priori elimination of u; leads to
DATICT[CATYCT + BI'CAL DT — DAT'DT = DA-LET[CAIET + BIYf. (9)

REMARK 1.1. We will not perform this second elimination and refer to Arbo-
gast/Chen [1] and Arnold/Brezzi [2] for this linear system.
In the application we have in mind (i.e., neutron diffusion), s, cannot be eliminated
because it explicitly is used in the right hand side. Therefore, we further deal with the
system of equations in up and \p. ‘
A system in Ay, only would probably have better numerical properties since the use de-
grees of freedom defined on faces and in the interior of an element usually leads to a
worse condition number than just the use of degrees of freedom defined on faces.

REMARK 1.2. The solution (jn,un, An) of the mized hybrid finite element ansatz
always ezists and is unique. If (j;, u}) is the solution of the mized finite element ansatz
(4), then we have j, = jj and uy = u}. For a proof see e.g. Arnold/Brezzi [2]. A
general analysis can be found in Brezzi/Fortin[4, Chapter V.1.2].

The relation between mixed hybrid finite elements and a corresponding non-conforming
primal approach is given by ' »

THEOREM 1.1. (Equivalence of mixed hybrid and non-conforming FE)
We assume piecewise constant coefficients and a diagonal A in (1). Further let iy, €
N(Q;75) be a non-conforming approzimation of the solution u of (1) defined by the
mized hybrid solution (jr, un, ) for (1) via I, (u — @) = 0 and P} (u— %) = 0. Then
iy, 18 equzvalent to a non-conforming pmmal approzimation 4, € N(Q;7,) satisfying
ap(tn, vg) = f(vh) Vv, € N(Q;7;) where f(vh) Y ket Jx Prfordz Yo, € N(Q;T3,)
and ax(.,.) is defined by

an(wh, o) == / A graduvy, - Qgradw,dz + /K vp PLbwpdz. (10)
KeT, ‘

For a proof and the explicit definition of the non-conforming ansatz space see Hennart
/Del Valle [6, Chapter V).

2. Multilevel methods. Starting point of our multilevel method is the discretiza-
tion of (1) using the mixed hybrid ansatz (or of the corresponding non-conforming finite
element ansatz, resp.). We assume a triangulation 7 for © C R3? with radius hg to
-be given. For k& > 1 the triangulation 7 is then given by uniform refinement of 7;_;
which results in Ay := 27% - hg. On the whole, we have a family (7x)k>0 of triangula-
tions with a corresponding family (IV(7x;Q))x>o of non-conforming ansatz spaces and
a family of non-conforming bilinear forms (ax(.,.))r>0 according to the non-conforming
ansatz equivalent to the mixed hybrid finite elements. We have N(Q;7,_;) ¢ N(4; 7)),
i.e., there is no natural injection operator from N(f;7;_;) into N(€;7;). Therefore,
in analogy to Arbogast/ Chen [1, Kapitel 8], we introduce an interpolation operator
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IF |« N(;Ti-1) — N(; 7). In our case a further condition dealing with the inner
degrees of freedom wy, is necessary. If_, is defined for all £ € N(;7;-1) by

1 1
] / i€ do = T / ¢dzVK €T,  and (11)
K K

ﬁ {(§|K1 + fle) ds, fCKiNKy Ki,Ks €Tt
1
T / L€ ds=q /¢ ds, F¢OK K' € Try (12)
714 il
0, fClp

The operator I¥_; can be calculated easily using the local basis functions of the non-
conforming ansatz (cf. Hennart [5, Appendix C}) .
The multigrid algorithm is then given by (Correction-Scheme):

Level k=0 u} = Ay'fo calculated using another method,
e.g., a direct method as LU-decomposition.
Level k > 1 Pre-smoothing: ud « S*1(k, u}, fx)
Calculation of the residual: T = fr — Ay - u}
Restriction of the residual: rp_; = IF 1ry
Calculation of a correction on level k-1:
w)_;=0
forj=1,...,p:ud_; — MG(k—1,u)_;,Tk-1)
Prolongation of the correction: vy = If_ju_,
Coarse grid correction: u = 4 — vk
The restriction operator IF~! is given as the transposed of the prolongation operator:
IF~1 .= (I%_,)T. For this scheme the following theorem can be proved:

THEOREM 2.1. (Multigrid convergence of W-cycle)
For the W-cycle, a constant 0 < v < 1 and a sufficient number m > 1 of smoothing
steps exists, both independent of the level k, such that we have

llu, — MGk, uf, fillle < llux — il - (13)

for the vector ul, where wy, is the solution of (8) (or of the equivalent nonconforming
system, resp.).

Proof: A proof for a system of equations in A4 only can be found in Arbogast /Chen
[1, Appendix]. The proof in our case is a simple variation where only the extension of
the prolongation operator for the unknown A, to the case of unknowns (%, Ap) must
be taken into account. Details can be found in Schmid [9, Chapter 4.3]. a

3. Numerical Results. As test problems, we use Helmholtz equations of the form

-—-le(D grad'u’(xa Y, z)) tc- u(a:, Y, Z) = f(.'L', Y, z) in O
5
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FIG. 2. Number of iteration steps, different levels,us(z,y, 2)

with Q := [0, 1]%, homogeneous Dirichlet boundary conditions and different right hand
sides and coefficients. The analytical solutions were given by

u1(%,9,2) := 1000 - ezp(—100 - (z — 0.4)% — (y — 0.2)% — (z — 0.3)?)
{z (z—1.0)y (y — 1.0) z (z — 1.0)}

us(2,9,2) ;= 1000exp(—100 - [(z — 0.4)* — (y — 0.2)2])
{x(x — 1.0)y(y — 1.0)2(z — 1.0)}

u3(2,9,2) ;== —% - 1000z(z — 1.0)(z — 0. S)y(y —1.0)(y — 0.5)2(z — 1. 0)(z —0.5)
w1th D =1/501in [0.5,1.0]%, D =1.0 elsewhere.

In our numerical results, we compare three different iterative solvers: cg-iteration with
ILU-preconditioning, cg-iteration with one multigrid step as preconditioner .and plain
multigrid as described above.

We start with a coarse grid of 20 unknowns and refined uniformly resulting in a grid
with 128000 unknowns on level 4. Calculations for Fig. 1-3 have been performed using
2 pre- and 2 postsmoothing steps with ILU-smoothing.
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Convergence of multigrid and cg with multigrid preconditioning is independent of

the number of unknowns which nicely corresponds to theorem 2.1, while ILU-preconditioned

cg shows significant growth in the number of iteration steps. It has to be noted though
that one iteration step of cg with ILU-preconditioning is much “cheaper” than one step
of cg with multigrid-preconditioning or of multigrid, resp. Interpretation of the results
shown in Fig. 1-3 has to keep this in mind.
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1 Introduction

In the last years, sparse grids have turned out to be a very interesting approach for the efficient
iterative numerical solution of elliptic boundary value problems [2, 3, 5, 6, 8]. In comparison
to standard (full grid) discretization schemes, the number of grid points can be reduced signifi-
cantly from O(N¢) to O(N(log,(N))?~1) in the d-dimensional case, whereas the accuracy of the
approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear
basis functions, e. g., an accuracy of the order O(N~2(log,(IN))*~!) with respect to the L-norm
and of the order O(N~') with respect to the energy norm has been shown. Furthermore, regu-
lar sparse grids can be extended in a very simple and natural manner to adaptive ones, which
makes the hierarchical sparse grid concept applicable to problems that require adaptive grid
refinement, too. '

Starting from d-dimensional basis functions that are created from the one-dimensional ones
by a tensor product approach, sparse grids allow the formulation of unidirectional algorithms for
partial differential equations which are essentially independent of the number d of dimensions.
Those unidirectional techniques are advantageous, since most of the algorithmic development
can be done in the (simple) one-dimensional situation, whereas the generalization to d > 1 just
results in additional outer loops or further levels of recursion.

Furthermore, it has been shown in [4] that sparse grids allow an accuracy of the finite element
solution of O(M~?) with respect to the energy norm, where M denotes the total number of
unknowns involved in the given d-dimensional problem, and p is the polynomial degree of the
basis functions used. Because of the accuracy’s independence of the number d of dimensions, the
sparse grid concept looks quite promising for the construction of efficient high order techniques
in three or more dimensions.

In this paper, a unidirectional sparse grid Poisson solver for an arbitrary number d of di-
mensions and for various polynomial degrees p of the finite element basis functions is presented,
together with first numerical examples. Combining the unidirectional sparse grid concept with
higher order finite elements, this algorithm can be seen as a step on the way to the implemen-
tation of h-p-version-type finite element methods for arbitrary d on sparse grids.




2 The Problem

We want to develop a new technique for the efficient numerical solution of elliptic partial differ-
ential equations. In this paper, the approach is presented for the Laplacian on a unit domain.
Concerning the discretization, finite elements, hierarchical tensor product bases of piecewise
arbitrary polynomial degree, and sparse grids are used. The crucial part of the method is an
algorithm that multiplies a matrix A (the stiffness matrix) with a vector w (the actual solution
or an increment to it). Such a kernel allows a large flexibility with respect to the solver that
is to be used later (cg, multi-level-techniques, even the integration in domain decomposition or
recursive substructuring; at the moment, a diagonally preconditioned cg-iteration is used). The
algorithm works in a unidirectional way and can handle an arbitrary number of dimensions by
means of a recursive reduction of the general d-dimensional situation to the one-dimensional
case. Thus, most of the algorithmic development can be done in a simpler one-dimensional
context.

3 The Sparse Grid Concept

The use of hierarchical bases for finite element discretizations as proposed by Yserentant [7] and
others instead of standard nodal bases stood at the beginning of the sparse grid idea, together
with a tensor-product-type approach for the generalization from the one-dimensional to the d-
dimensional case. For the corresponding subspace splitting of a full grid discretization space in
two dimensions with piecewise bilinear hierarchical basis functions as in the left part of figure
1, it can be seen that the dimension (i.e., the number of grid points) of all subspaces with
iy + 42 = c is 2°72. Furthermore, it has been shown in [3] that the contribution of all those
subspaces with i, + 4, = ¢ to the interpolant of a function u is of the same order O(2~%¢) with
respect to the Ly- or maximum norm and O(27°) with regard to the energy norm, if » fulfills
the smoothness requirement -5% € C°(Q) for the two-dimensional and a_z??;—x'g € C°(Q) for the

general d-dimensional case, respectively. Here, £ denotes the underlying domain. Therefore, it
turns out to be more reasonable to deal with a triangular subspace scheme as given in the right
part of figure 1. This leads us to the so-called sparse grids. For a formal definition of sparse
grids, see [2, 3, 8].

Besides the regular sparse grids that result from skipping certain subspaces according to fig-
ure 1, adaptive grid refinement can be realized in the sparse grid context in a very straightforward
way. Since we use recursive dynamic data structures like binary trees for the implementation,
and since the value of a hierarchical basis function, the hierarchical surplus, can be used itself
to indicate the smoothness of u at the corresponding grid point and, consequently, the necessity
to refine the grid here, no additional work has to be done to implement adaptive refinement.
Figure 2 shows a two-dimensional regular sparse grid and a three-dimensional adaptive one with
singularities at the re-entrant corner and along the edges.

Speaking about the most important properties of sparse grids, we at least have to look at
the number of grid points involved and at the approximation accuracy of piecewise d-linear
hierarchical basis functions on sparse grids. For a detailed analysis, we once again refer to [3,
8]. For a d-dimensional problem, the approach described above and illustrated in figure 1 leads
to regular sparse grids with O(N(log,(V))¢™?) grid points, if N denotes the number of grid
points in one dimension (i. e., + is the smallest mesh width occurring). A variant even leads to
regular sparse grids with O(IV) grid points. These results have to be compared with the O(N¢)
points of regular full grids. Concerning the approximation quality, the accuracy of the sparse
grid interpolant is only slightly deteriorated from O(N—2) to O(IN~2(log,(INV))¢™!) with respect
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Figure 2: A regular and an adaptive sparse grid.

to the Lo- or maximum norm. With regard to the energy norm, both the sparse grid interpolant
and the finite element approximation to the solution of the given boundary value problem stay
of the order O(N™?).

Thus, sparse grids enable us to gain a factor of 2 in accuracy for arbitrary number d of
dimensions by just doubling the number of grid points. Since the smoothness requirements
can be overcome by adaptive grid refinement, sparse grids are a very efficient approach for the
solution of partial differential equations.

Recently, the class of problems that can be treated with sparse grid methods has been
significantly extended. Pflaum developed a first algorithm for the treatment of general elliptic
differential operators of second order in two dimensions, and Dornseifer developed a mapping
technique to deal with curvilinear domains [6].




4 The Algorithmic Principle

For d-dimensional tensor-product-type hierarchical basis functions

i

@i(T1,. ., Ta) = I_I‘Pi,z (fb'z) (1)

with some kind of one-dimensional hierarchical basis function ¢;,(z;),1 <! < d, an entry a; ; of
the stiffness matrix A for the Laplacian is of the form

T Z (/. 1Ny agog;(kmk) agoj k(mk) H /. N2 Soi'l(xl) R (ml) dxl) , (2)

k=1 1k

where Q;; = supp(pir(zr)). For each k, the corresponding summand in (2) is calculated
separately in an own pass through the data structure. Since all of those d terms are products
of d one-dimensional integrals, the computation of the a;; requires just two one-dimensional
procedures, namely integration routines for '

/ 0p; 1. (1) 3%,1:(331:) - 3)
Nk a.'Bk 3:1;;,
and : .
/ v, k(fb'k) . <Pj,k($k) dzy. (4)
Q. kﬂQ

Actually, for an efficient calculation of our matnx-vector—product Au, we do not need the
a;; themselves, but just for each unknown u; the sum ZJ=1 a;ju;. This is done in a recursive
way, such that we get all of those sums during a single pass through the data structure. Roughly
spoken, we start with a vector u consisting of the actual solution «; in all grid points ¢ and make
a copy uu of it. Then, with u, a top-down-pass (called down in the following) through the data
structure in hierarchical order is done, and with uu, we make a bottom-up pass (called up).
After that, u; contains the sums of all values a; ju; originating from grid points j hierarchically
higher than ¢ and from ¢ itself, and wu; contains all a; ,'u,J from grid points or unknowns, resp.,
hierarchically lower than . Finally, » 4+ wu provides 2;—1 a;;u; in each grid point ¢. This
one-dimensional algorithmic scheme is shown in figure 3.

u down

&1 copy uu add p——e

up uu

Figure 3: Scheme of the one-dimensional algorithm.

Note that, in the one-dimensional case (i. e. for u” = f), only integrals of type (3) occur.

The recursive extension of the algorithmic principle indicated in figure 3 to the general d-
dimensional case is given by figure 4. There, for d = 2, e. g., the grey boxes entitled rec_ezt have
to be replaced by the one-dimensional scheme from figure 3. Thus, due to the copy-process, 2d
variables are necessary per grid point.
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Figure 4: Scheme of the one-dimensional algorithm.

5 The Polynomial Bases

Next, we have to choose a suitable hierarchical basis. Due to the tensor product approach, we
only have to deal with the one-dimensional case. Each basis function ¢;; is defined by three
natural conditions: its value is 1 in grid point ¢ and 0 at the two boundary points of €; ;. For a
polynomial degree p > 2, this is not sufficient for fixing the basis functions. Therefore, we add
additional interpolation conditions in grid points outside ;, i.e., in hierarchical ancestors of
i. Thus, depending on the position of 7 in the grid, we get two different types of basis functions
for p = 3, four types for p = 4, eight for p = 5, and so on. Figures 5 and 6 show the quadratic,
cubic, and quartic basis functions.

Figure 5: Hierarchical basis functions for p = 2 (left) and p = 3 (centre and right).

Figure 6: Hierarchical basis functions for p = 4.

If we number the types of basis functions in their natural order, i.e., the quadratic type gets
number 0, the cubic types get numbers 1 and 2, the quartic ones numbers 3 through 6, and
so on, we can indicate the actual type of basis function at each grid point (see figure 7 for a
possible choice if p = 4).

Each basis function is characterized by the vector of its Taylor-coeficients a;,0 < I < Pmaz,
i.e.

Pmaz l

Qoi,k(wk) = z_: az%, (5)

where the maximal degree p,... has to be specified at the beginning. Furthermore, the local
interpolant or the local approximation to the solution, resp., can be represented as such a vector
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Figure 7: Basis functions and grid points.

of Taylor-coefficients, too. This allows a very elegant and simple access to p-adaptivity, since

the actual local degree can be varied by taking another g; into account or by omitting it, resp.
Now, let’s remember the down- and up-procedures in ﬁgure 3 and 4. During the top-down-

pass, we have to pass on the information concerning the local interpolant from the father to its

two sons. It can be shown that this is just a multiplication of an upper triangular (p+1) x (p+1)

Toeplitz-matrix T constant for all grid points with the local vector of Taylor-coefficients and some
additional scaling. Furthermore, the process of passing on the information of the accumulated
a; ;u; from the sons to their father during the bottom-up-pass can be shown to be equivalent to
a matrix-vector-multiplication with 7’7 'and some scaling. This fact shows the close relation of
the down- and up-procedures. '

6 The Implementation and Conclusions

Up to now, all programming has been done in a rapid prototyping spirit: All code necessary for
the construction of the different types of basis functions of arbitrary polynomial degree p, for
the calculation of their Taylor-coefficients, and for the computation of certain type-dependent
integrals has been written in Maple. All of those calculations can be done in a kind of setup
process, and the Maple output can be directly used as input for the actual solver. Overall, for
a maximal polynomial degree p, about (p+ 1) - 27~ coefficients and (simple) integrals have to
be pre-computed and stored.

The code for the algorithm itself has been written in Perl. Originally developed for pur-
poses of system administration, Perl has turned out to be a very efficient and powerful tool for
prototyping in a numerical environment, too, since it combines the functionality of standard
programming languages with the simple and direct programming possibilities of a shell script
(interpreter) language. Especially, in comparison with C or C++, all of the declaration over-
head can be avoided, and the development and tests of code can be significantly accelerated since
there is no compiling. Furthermore, Perl has some interesting features like associative arrays
which allow a much easier programming of adaptive hierarchical structures than pointers do.
In this implementation, e.g., each grid point in the adaptive sparse grid is characterized by a
hierarchical number in each dimension (see figure 7). In a three-dimensional problem, e.g., the
centre of the cube has the number 2 in each dimension. This is interpreted as a string 2 2 2”,
which is now used as the hash key for the associative array. Thereby, the programmer always
has a direct access to the entries in the array, without having to organize, maintain, and follow
wide nets of references.




Of course, from the point of view of run-time efficiency, an interpreter language like Perl
cannot keep up the pace with standard programming languages. Therefore, once the algorithmic
idea has been verified and has turned out to be quite promising, an implementation in a language
like C or C++ has to follow, which will be the future work in this area.

As a short summary of this extended abstract, let us recall the most important properties
of this new sparse grid algorithm. First of all, it allows to deal with an arbitrary number of
dimensions just by changing the input parameter d. Second, it can handle piecewise polynomials
of an arbitrary degree p, which — together with the sparse grid efficiency — leads to a very high
accuracy [4]. Third, the algorithmic structure is totally independent of p. All information
concerning the different types of basis functions is pre-computed and stored in a table, and
during the iteration, these tables are used depending on the local type of basis function. Finally,
the storage requirement per grid point is independent of p. The grid points only hold the value
of the function and other information necessary for the cg-iteration, but everything that depends
in size on p is organized and stored on the stack, but not along with the data structure.
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TWO-LEVEL METHOD WITH COARSE SPACE SIZE INDEPENDENT
CONVERGENCE *

PETR VANEK , RADEK TEZAUR , MARIAN BREZINA ! AND JITKA KRIZKOVAt

1. INTRODUCTION. The basic disadvantage of the standard two-level method
is the strong dependence of its convergence rate on the size of the coarse-level problem.
In order to obtain the optimal convergence result, one is limited to using a coarse space
which is only a few times smaller than the size of the fine-level one. Consequently, the
asymptotic cost of the resulting method is the same as in the case of using a coarse-
level solver for the original problem. Today’s two-level domain decomposition methods
typically offer an improvement by yielding a rate of convergence which depends on the
ratio of fine and coarse level only polylogarithmically ([1], [2], [3], [5], [4], [6]). However,
these methods require the use of local subdomain solvers for which straightforward
application of iterative methods is problematic, while the usual application of direct
solvers is expensive.

We suggest a method diminishing significantly these difficulties. Following the un-
published technical report [8], we develop a simple abstract framework based on the
concept of smoothed aggregation introduced in [9] with aggregates derived from the
system of nonoverlapping subdomains. We show that the smoothing of the coarse-space
by an appropriate polynomial of degree about N_¢ (symbol d denotes the dimension of
the problem to be solved and N, is the characteristic number of degrees of freedom per
subdomain) can assure the coarse-space size independent convergence. The associated
cost is significantly smaller than that of the local solvers in the case of standard domain
decomposition. Moreover, it decreases as d increases.

Because of the page limit, we only apply the abstract framework for the case of scalar
equation with jumps in coefficients. More general problems and numerical experiments
will be treated in [7].

2. ABSTRACT FRAMEWORK. We are interested in a numerical solution of
a system of linear algebraic equations

Ax=Db (1)

with a symmetric positive definite n X n matrix A. Let P : R™ — IR®, m << n be
a linear injective tentative prolongator and S € [IR"] a symmetric smoother commuting
with A. Let us set

As=S2A, §'=1I-— %As, we(0,2), p=p(As) (2)
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Furthermore, let x < Ss(x,b) and x ¢ Ss/(x,b) be relaxation methods consistent
with (1) such that their linear parts are matrices S and S’. Qur algorithm is a standard
variational two-level method with a smoothed prolongator SP, a pre-smoother Ss and
a post-smoother Sgi. ‘
ALGORITHM 2.1. Given the initial approzimation X,
repeat
1. x + Ss(x,b),
2. solve (PTAsP)v = PTS(Ax —b),
3 x+x—SPv,
4. X ¢ Ssl(x, b)
until convergence;
5. Post process x + Ss(x,b).

In the following, we will prove that, for a suitable S and P, steps 1-4 of the algorithm
ensure convergence independent of the dimension ratio n/m in the As—norm. The
postprocessing step 5 of the algorithm enables us to prove the same result in the energy
norm of the original problem (1). The main disadvantage of the convergence estimate in
As—norm is its indirect coarse-space dependence as for a smaller coarse-space we need
a more powerfull smoother S to get the optimal convergence result.

ASSUMPTION 2.2. Let the smoother S be a symmetric matriz that commutes with
A, and p(S) < 1. We assume that the tentative prolongator P satisfies the weak ap-
prozimation property in the following form: For every u € IR", there exists v € IR™
such that

lla =PIl < C1Co(m, m)o™/2(A) [l (3)
For the prolongator smoother S, we require
p(§*A) < C3Cp*(m, n)p(4), (4)

where Cp(m,n),C1,Cy > 0, and C,, Ca do not depend on m and n.

REMARK 2.3. For second order problems, we typically have Cp(m,n) = H/h (the
ratio of local meshsizes on the coarse and the fine level). In Section 8 we construct S as
a suitable polynomial in A for which p(S?A) ~ N~2p(A), where N denotes the degree of
S. In order to satisfy Assumption 2.2, we need N = H/h. This choice yields a coarse
level matriz (SP)T A(SP) with @ number of nonzero entries per row uniformly bounded
with respect to H/h. Detailed arguments will be given in Section 3.

The following theorem shows that, under Assumption 2.2, the convergence rate of
Algorithm 2.1 is independent of dimensions m and n of the coarse and fine spaces.

THEOREM 2.4. Let e; denote the error after i iterations given by steps 1-4 of
Algorithm 2.1 , and ef = Seq the error smoothed by step 5. Then, it holds that

lecalliy < (1= Co)llelllys  and lef|l% < (1 Ca)'lleolf, (5)

where C3 = 15_6("0%)2;3&22,) > 0. Here w is the damping parameter from (2).
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Proof. Since p(S) < 1 and ef = Se;, we have ||ef||4 = ||ei]|4s and |leo]l4s < |leo]|4-
Therefore, the second inequality in (5) follows from the first one.
It is obvious that the linear part of the steps 1-4 is given by

S'[I — SP(PTAsP) *PTSA|S = §'S[I — P(PTAsP) 7 PT Ag).

Thus, the method can be viewed as a standard two-level method for solving a problem
with matrix As (in place of A) and prolongator P (in place of SP).

Since I — P(PTASP)‘IPTAS is the As-orthogonal projection onto Ag—orthogonal
complement of Range (P) (i.e., projection onto Ker (PT As)), §'S = 55, p(S) <1, and
p(S") £ 1, we have

2 I+ |12
1S'SIL — P(PTAsPY*PTAg)|3, < sup niin{"SX”AS Ll x”*‘s}. ©)

x€Ker (PTAs) ||X||313 ’ ||x||315
In the rest of the proof, we will show that at least one of the expressions in the minimum
above is bounded by 1 — Cs for any x € Ker (PT As).
We first express ||S"x||as/l|%|l 45 in terms of ||Sx|[4s/l|x][4s- It is easy to see that
| Asx|l* 15 1%
[1x11%s [l

Let us recall that As = AS?, and A and S commute. Hence, we can write ||S?x[|% =
[15x|\%s, and

> Cgp(As) implies . <1-Cpw(2 —w). (N

sl _ IAsxl? 1% _ IAS 2 IS, 9
I, 182G lxlE,  157=l% I,
Now, consider x € Ker (PTAg) = Ker (PTAS?). Then, setting u = 5%x, we have u €
Ker (PTA) = Range (P)*4. From the weak approximation condition (3), we estimate

the ratio 11”’;%";93 using the standard orthogonality argument: For v € R™ from (3), we
A

obtain
[ullZ = (Au,u) = (Au,u — Pv) < [|Au| [[lu — Pv|| < C1Cp(m,n)p'/*(A)||Au]| |lul|a-

Therefore, ||Au|| > C;C5 (m,n)p'/?(A)||ul| 4. Substituting this estimate into (8) and
using Assumption 2.2, we get

”ASX“2 —2 =2 ”SX'PA —2 "SX”.%
W2SXI > 02052 (m, n)p(A S > (C1Cy) 2 p(A s 9
x5, 2 O Op (mme(A e = (G0 " 4s) e ©
Thus, by (7)
I5ll%, IS
N AlAs 11 — s —w.
. < T, (GO e )

Since ||Sx||%,/I%/|%5 < 1, we may finally write using (6)

15'S[I — P(PTAsP)™*PTAs]|%, < sup ]min {01~ a(C1C)w(2 - w)}
a€f0,1

The expression on the right hand side is bounded by 7 (e 0'2)1-2(»(2-—(.0) which completes
the proof. O




3. EXAMPLE OF A TENTATIVE COARSE SPACE AND PROLONG-
ATOR SMOOTHER. Let Q C'IR? be a Lipschitz domain and 7~ be a shape-regular
(locally quasiuniform) finite element mesh on .- Let Vi be P1 or Q1 finite element
space associated with the mesh 7 with zero Dirichlet boundary conditions imposed at
some nodes of 7 NJS). Note that, for the purpose of numerical solution of the discretized
problem, we do not need any assumptions on the form or measure of the part of the
boundary with Dirichlet conditions imposed. For simplicity, we assume that the finite
element basis functions ¢; are scaled so that lleillLee = 1. We consider the following
elliptic model problem: Find v € Vi such that

Ou(z) 8’0(:1:) 9v(z)

Aa(u,0) = ()@ W0 € Vi, Aa(u,v) = S @) e (10)

i=1 am‘

We allow large variation -of a(z) between the subdomams, more detalled assumptions
on a(z) will be specified below. »

Finite element discretization of (10) on Vi leads to a system of linear algebraic
equations with a symmetric positive definite matrix A7. In order to accomodate discon-

“tinuities of the coefficient a(z), we will solve the system with a diagonally scaled matrix
A = D7Y2A7D~/2 instead, where D = diag(A7).

For the sake of construction of the tentative prolongator P we need a system {Q;}7,
of closed disjoint subdomains of § such that each subdomain ; is a simply connected
closure of an aggregate of elements. We assume that each node of the underlying finite
element mesh belongs to exactly one of the subdomains and that there is a layer one
element wide between two neighboring subdomains. Further, we assume that the family
of subdomains {Q;} satisfies the followmg propertles

ASSUMPTION 3.1. :

(i) We assume that there is about the same number of elements in each subdomain
;. Let us denote the characteristic number of elements per subdomain by N,, and set
h = N2, We require that subdomain €; can be mapped onto a reference subdomain
Q=10 l] x [0,1] by a one-to-oné locally szschztz mapping G;:

A

h()

where h(z) is the local meshsize in the neighborhood of z and ¢,C > 0 are constants
uniform with respect to 1. Symbol || - || denotes a matriz operator norm.

(i) The coefficient a(z) is allowed only a modest variation within each subdomain
in the sense that a(z) ~ a; >0, Vz € Q.

(i%) If Q; and Q; are adjacent subdomains ( there exists T € T so that 0TNOQ; # 0
and T N OQ; # 0 ) and a; >> a;, the jump in a(z) occurs along 8Q;. In other words,
the dzscontmuzty zs located on the boundary of the subdomain with the larger value of
a(z). ‘

Conditions (11) imply that an element T' C €; of size h(z) is mapped by G; onto
" G;i(T') of size about . Thus, G; maps locally quasi-uniform mesh on Q; onto a quasi-
uniform mesh of meshize &, and subdomains ; are reasonable aggregates consisting of

h(z)

10Gi(=)[| < Cr—— HaG 1( M=% Vi=Gilz)zel, (11)
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about N., = h~? elements. If the mesh 7 is quasi-uniform (h(z) ~ k), then h(z)/h
can be viewed as the characteristic size of 2;. Note that, if a subdomain decomposing
algorithm uses only the adjacency of elements or nodes and generates shape regular
subdomains in the case of quasiuniform mesh, then for locally quasi-uniform meshes it
can be expected to generate subdomains satisfying (11).

The purpose of assumption (%) is to ensure that the basis function ¢; associated
with a node v; € §);, satisfies

a(j, ¢5) = ai. (12)

If (iii) were not satisfied, (12) could be violated for the basis functions corresponding
to the nodes on 0f); adjacent to a subdomain §; with a; >> a;.
The tentative prolongator based on scaled aggregations is defined as follows.

ALGORITHM 3.2. _ .
(i) Set P;; = { 1, if the node v; belongs to subdomain (;,

0, otherwise.

(ii) Set P < DY?P, where D = diag(AT).

For each subdomain, we introduce an index set F; of all unconstrained (with no
Dirichlet boundary conditions imposed) degrees of freedom associated with Q;. Let
II: R® — V, denotes the finite element interpolator given by IIx = 3°7_, z;¢;, the local
interpolator II;x = 3¢ z50;, and discrete I(F;)—norm ||x||% gy = Tjer 23, % € IR™.

Let Q; be a subset of Q; consisting of all elements T' C £; such that all degrees
of freedom on T are unconstrained. On each subdomain we define a linear mapping
Q; : R™ — IR™ (acting on the degrees of freedom of F; only) to be the I?(F;)-orthogonal
projection onto the one-dimesional space of vectors spanned by ¢ € IR™ such that ¢; =1
for j € F;, zero elsewhere.

LEMMA 3.3 (DISCRETE SCALED POINCARE-FRIEDRICHS INEQUALITY). For every
u € R”, it holds that

||u — Q,-u||12(F,.) < ON:!ZIHiUIHI(Qi), (13)

the constant C > 0 depends on the constants from (11) and on the aspect ratios of
elements in ; only.

Proof. Consider a transformed function & = v o Gi* i.e. 4(2) = u(G;'(2)),% €
Q). Let us define a weighted L?—norm by lullzz = llw(z)/R(z)]lz2. Owing to (11),
H'—seminorm scales uniformly, i.e. |u|m(g;) = |8 (g). It can be easily seen that

||u||L§(n.-) ~ h~1llﬁ|lL2(ﬁ) and ||Hix||Lg(n') ~ |[x||le@)-

Let ¢ € IR™ be the vector given by ¢; = 1 for j € F;, zeroes elsewhere (as in the
definition of @;). Then, by the equivalence of I>(F;) and L}(€) for finite element
functions , ) C §;, and the scaling above, we have for € IR

lu—ocllp@E) = || T — a“Lﬁ(Qﬁ-) (14)

<M - ofliz@y & A7 — o) 0 G2y,
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Using the definition of @Q;, inequality (14), Poincaré-Friedrichs inequality on £} and the
uniform scaling of H! seminorm, we obtain

lu— Qaullemy = infemliu— eclleE) < CA™ inf,ep [[(TTu) o Gt — oflz2
< Ch7(TTa) 0 Gi | gey < CA 7Yl ey,

concluding the proof. O

Now we are ready to prove the weak approximation property (3).

LEMMA 3.4 (WEAK APPROXIMATION PROPERTY). Under Assumption 3.1, the
inequality (3) is satisfied with Cp(m,n) = NX? and C; that depends only on constants
from (11) and aspect ratios of elements.

Proof. We set Q@ = DY?(X7, Q;)D~*/2. Let u € R", x = DY?u. Then, using
(12),

% = lx|la, = Ae(llx, ITx) > 3 A, (Ilx, Ix) > €3 a:|lix|m 0y,

i=1 =1

e = Quil* = [DY2(I = 32 Qx| < O3 aillx — Qx| my-

i=1 i=1

From here, setting Pv = Qu and using Lemma 3.3 and p(A) < C, the statement follows.
0

In the rest of this section we will discuss the choice of the prolongator smoother S.
Let p be the estimate of p(A) satisfying

p(A) < 5 < Cop(4). (15)

For any integer : > 0, we define §; = -9’2;, Ap = A and

4.

i—1
Si=1Iw;, Wi=1- 3Pi Y4;, Aj=WI A (16)

i=0

It is easy to see that deg(S;) < 23'. We choose the prolongator smoother S = Sy for K
such that

deg(Sx+1) = gN* > deg(Sk), (17)

where g € (0,1] is a given parameter.

THEOREM 3.5. Let the tentative prolongator P be given by Algorithm 8.2 with the
system of subdomains {;}7, satisfying Assumption 8.1. Let the prolongator smoother
S be defined by (15)-(17). Then, the statement of Theorem 2.4 is valid with the constant
C3 independent of the meshsize, coefficients a;, constant N, and boundary conditions.
Moreover, the coarse-level matriz end the smoothed prolongator SP have a uniformly
bounded number of nonzero entries per row.

Proof. Due to Lemma 3.4, the approximation property (3) is satisfied with C(m,n) =
NZ{2. Let us show that (4) holds with the same C/(m, ). From definition (16), we have
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S?A = Ak41. By induction, we can prove p(A;) < pi: For 1 = 0, the inequality holds by
(15); assume it holds for j < 4. Then, by (16)

4 4
p(Aiy1) = téﬂ?ﬁf_)(l —3hr )% < tgf&;i](l — 3P 14)% < pigr-
Hence, p(Ax) < 97X . Considering that, by (17), K = log; N/?, we get (4). The
optimal convergence result now follows from Theorem 2.4.

Let us show that the number of nonzero entries per row of the coarse-level matrix
A., = (SP)TA(SP) is bounded uniformly with respect to Nes. It is easy to see that
[Ac)i; can be nonzero only if supp(ILSPe’) N supp(ILSPe’) # 0, where €' is the i—th
canonical basis vector of IR™. Clearly, supp(ILPe’) is the domain ; with one belt
of surrounding elements added. Bounded overlaps of such supports are obvious. The
smoother S adds at most qNes strips of elements. Consequently, each support has a
nonempty intersection with only a bounded number of other supports. O

THEOREM 3.6. Let the assumptions of Theorem 3.5 be fulfilled and the Choleski
factorization be used to solve the coarse-level problem. Then, the optimal number of
elements per subdomain is N = n?/® and the system (1) can be solved to the level of
truncation error in O(n'?) operations.

Proof. We only consider the components of the algorithm which cost more than
O(n) operations. During the setup, such procedures involve evaluation of SP (O(NY/?n)
operations) and Choleski factorization of the coarse-level matrix, which costs O(m?) =
O(n?/N.s) operations. As Theorem 3.5 assures the optimal convergence result, we only
have to perform O(1) iterations. Nonscalable procedures during each iteration are the
smoothing (O(N}/*n) operations) and the back substitution (O(m!®) = O((n/NZ{?)*5).
The statement follows by trivial manipulations. O
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NUMERICAL COMPUTATION OF THE LINEAR STABILITY OF
THE DIFFUSION MODEL FOR CRYSTAL GROWTH SIMULATION

C. YANG *, D. C. SORENSEN !, D. I. MEIRON ! AND B. WEDEMAN §

Abstract. We consider a computational scheme for determining the linear stability of a diffusion
model arising from the simulation of crystal growth. The process of a needle crystal solidifying into
some undercooled liquid can be described by the dual diffusion equations

aUl aUu s 2

3 T VU
with appropriate initial and boundary conditions. Here Ui and U, denote the temperature of the
liquid and solid respectively, and o represents the thermal diffusivity. At the solid-liquid interface,
the motion of the interface denoted by # and the temperature field are related by the conservation
relation

= aV2U,

dr
dt
where # is the unit outward pointing normal to the interface. A basic stationary solution to this
free boundary problem can be obtained by writing the equations of motion in a moving frame and
transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution.
Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the

it = (YU, - & — VU; - ),

form
1 U | *U au au
_—7724'52 [—a-é;+a—ﬂ§'+2P(ﬂa—n—f'¥>] = AU,
-1 {8U 2 N _
-1_+_£2[—é;+4p N+2P(N+$—a-€—] = AN,

U=2PN at n=1.

The largest real part of the eigenvalue ) is proportional to the growth rate of the perturbation, and
the eigenfunction is related to the perturbation of the temperature field and the interface geometry.
Numerical solution of the above equations is based on a finite difference discretization. The corre-
sponding large scale algebraic eigenvalue problem is solved by ARPACK, a software package that
implements the Implicitly Restarted Arnoldi Method (IRAM.)

Accurate computation of these eigenvalues helps to determine interesting unstable modes that
involve excitation of the interface. Analysis suggests that at least part of the spectrum corresponding
to this eigenvalue problem is continuous and unbounded. In addition computation via standard
methods such as QR becomes expensive when the mesh size of the discretization becomes small. We
find however that IRAM is very efficient in extracting eigenvalues and eigenvectors of interest with
modest cost. Numerical results will be presented to demonstrate the effectiveness this method.

1. Introduction. There has been a great deal of interest in the simulation and
modeling of crystal growth and dentridic solidification in the past few years [2] [6].
It is well known that the physical behavior of a needle crystal solidifying into some
undercooled liquid can be described by the dual diffusion equations

ovU, U,
(1) = =aV’l, —

ot
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Here U; and U; denote the temperature of the liquid and solid respectively. They
are functions of the time ¢ and the spatial coordinates = and z. The parameter &
represents the thermal diffusivity. At the solid-liquid interface, U; = U,, and the
motion of the interface denoted by 7 and the temperature field are related by the
conservation relation

() ‘Z = a(VU, -7 — VU - ),

where 7 is the unit outward pointing normal to the interface. It is also matural to
impose the boundary condition :

(3) Uy—0, as z — oo.

Both analytical and numerical solutions of (1) and (2) are difficult to obtain because
of the moving boundary. We are interested in analyzing the stability of a well known
stationary solution that corresponds to a simple parabolic shaped moving front. In
the following, we give a brief description of the Ivantsov solution and a standard linear
stability analysis that gives rise to an eigenvalue problem. Numerical discretization of
the continuous model and the solution of the large scale algebraic eigenvalue problem
derived from the discretization are also discussed. It is observed from our numerical
computation that the solidification is unstable.

2. Ivantsov solution. A stationary solution of (1) that corresponds to a parabolic
shaped moving front can be obtained by the method of Ivantsov [3]. Suppose the front
is moving in the z direction with a constant velocity v. We first rewrite the equation
(1) in a moving frame. i.e., we let

4) z <+ z—ot and 2« z.

After these changes of variables, equatioﬁs (1) become

!
©) v 201

in both the liquid and solid phases. The boundary conditions (2) (3) remain the same.
To simplify the geometry, transformations

772_§2
2

are used to map the parabolic interface in (z, z) coordinates to the horizontal line 7 = 1
in (§,7) coordinates. In these new coordinates, the convection diffusion equation (5)
can be written as

PU 8% U \
@ 3+ g + 2 (15~ € ) = 0P + PG

where P = p/l is the Peclet number, and  is defined to be 7 = (v/ 2p)t. The boundary
condition imposed at the moving front 5 = 1 satisfies

0 o sersa(o )] - (8- 3) - SH(- 2

It is easy to verify that a stationary solution to (7) and (8) is in the form
(9) N =1, O =+rPexp(P)erfc(vVPn), and U, = v/xPexp(P)erfc(vP).

2

(6) z=pn{ and z=p

8U




3. Linear Stability Analysis. The objective of this paper is to determine the
linear stability of the Ivantsov solution under small disturbance. This is done by
assuming that there exists a solution to (7) and (8) of the form

(10) N = N + N exp(or), Ur=U+ U; exp(o7), and Us = U; 4 U, exp(o7),

where N, U; and U, are stationary solutions derived by Ivantsov method, and o is the
growth rate.
The substitution of (10) into (7) leads to the disturbance equation

920 820 BU Filij 2
(D (e + ) + 22 (5, ~ €3 ) = 0P + 0P,
in both phases with boundary conditions
U, = 0 everywhere, U; = ——%—ZIN atp=1 and
(12)  PloF(L+6%)+2(F + gaTN)] - (-%% - 4P2N>, at g =1.

To simplify the notation, we rename variables N and T to N and U respectively,
and let A = oP. Equation (11) and the boundary condition (12) can be written as
the following eigenvalue problem:

09 oyl a2 (v o)) = W
(14) 1_:62[8U+4P2N+2P(N+§ £>] = AN (n=1).

where U and N are coupled by U = 2PN at n=1.
On an infinite domain. The boundary condition at infinity are

9y au
on 0¢
4. Discretization. In our numerical approximation, the infinite domain problem

is first transformed into a finite domain problem by using the following change of
variables. Let

— 0, as 7 — %00, and — 0, as £ — too.

< ¢ ;_ 21
s—1+§ and t—1+n.
In these new variables, (13) and (14) become
U U ou ou
\4 4 _ a9y ovl _
(15) CG,7) [(1 DR (2 'S — E(@) g + FO) aZ] AT,
(16) D(3, t){Pa—U + 4P?N + 2P [N +(1- 5)2%—‘7;]]} = =N,

where
o) = [ty pEd=[rr ]
E(G) = 21— 387+ 2P5(1—3), and F(i) = -%(2 _#? + Pi2-9).




Let §; = iA§, t; = jAL, U;; = U(8;,1%;), and N; = N(5;). The standard centered
difference formula is used to discretize the equation (15). At the boundary § = 0
and § = 1, we use ghost values U_; ; = U1,55 Unt1,j = Un-1,; and centered difference
to discretize 9U/03. A similar scheme is used to discretize dU/d% at § = 2. At the
interface boundary ¢ = 1, the temperature U;o and the displacement of the moving
front N; satisfies U; o = 2PN;. To avoid mixing U and N values, an upwind difference
scheme is used to discretize the term dU/d7 in (16). The term AN /93 is approximated
by centered difference.
The above discretization scheme gives rise to an algebraic eigenvalue problem

Az = Az, where
U’l Uo,; No
z = U , U = and N = :
]\}n Un,j Nn

Eigenvalues of positive real parts are sought to determine interesting unstable modes
that involve excitation of the interface. Analysis [5] suggests that at least part of the
spectrum corresponding to this eigenvalue problem is continuous and unbounded. The
conventional QR method become expensive as the mesh size of the discretization gets
small. Fast iterative scheme such as the Arnoldi method is attractive in this setting.

5. Implicitly Restarted Arnoldi Method. The standard Arnoldi method
computes a factorization of the form

AVy = ViHi + fef, ViEVi=1I, and VHf =0,

where Hy is a k X k upper Hessenberg matrix. The first column of V; is arbitrarily
chosen and normalized such that [[v;]| = 1. Subsequent columns of Vi, the matrix Hy
and the vector f are generated from the Arnoldi process illustrated below.

Input: (4, v)
Output: (Vk, Hy, f)
w— Av; o1 = 'quw;
H =();Vi=(n); f—w—vo;
for j=1,2,3,..,k—1
L Bi=Ifll; vi+1 «— f/B;
= (Voo ven) | i ).
. V7+1 = (V}) 'v.’l-!-l)) ( ﬂ]eg‘ )7
3. 2 — Avjq;
4. h — V,,-Hz; H;yy = (Hj-1, h);
5. f—z—Viuh;
end;

[N

It can be verified that the columns of ¥V form an orthonormal basis for the Krylov
subspace K = {v;, Avy, ..., A¥1v;}. Eigenvalues of H provide approximations to the
eigenvalues of A. They are often referred to as the Ritz values. If y is the eigenvector
of H corresponding to an eigenvalue 6, the Ritz vector z = Vy is an approximation
to an eigenvector of A. It is well known that Ritz values converges very fast to well
separated extreme eigenvalues. However, in our problem these eigenvalues correspond
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to the ones on the left half of the real axis, and are not interesting. To overcome this
difficulty, one must construct a starting vector v; such that the subspace spanned by
columns of V contains the desired eigencomponents. The construction of v; is not
trivial. The Implicitly Restarted Arnoldi Method (IRAM) [7] provides an efficient
scheme to repeatedly modify an arbitrary starting vector vy so that the unwanted
eigencomponents v; are annihilated by a polynomial in A. The analysis and some
of the implementation issues of IRAM are also contained in {4]. The basic theory is
outlined below.
Given a (k + p)-step Arnoldi factorization

(17) AVk+P = Vk'i‘P‘Hk'H’ + fe£+p7 Vk}-I}-ka-i-p =1, V—Ic}-]}-pf =0,

a sequence of QR updates corresponding to the shifts pi1, p2, ..., ptp may be applied as
follows. Let Hyyp — 1 = Q11 be the QR decomposition of Hgip — p1l, it follows
from (17) that

(18) (A= p1D)Virp = Visp(Hisp — 1) + fefyp = (ViapQu)Ra + feiy,-

Multiplying the above equation on the right by @ yields

(A = 1) (Viegp@1) = (Vesp@1)(QF HipQ1) + feiy,Qa-

It is easily seen from (18) that the first column of the updated Vk'*_'l_p = Vi4p@1 is related
to the first column of Viy, through (A — pal)v = v¥ p11. Let Hif o = fo_ 1HQj-1.
The next step starts with the factorization of H P o — B2l followed by the update of
Vk-l:l-p and H ,;*' o After all p shifts have been used, the Arnoldi factorization can be

recovered by dropping the last p columns of Vk':_p and Hf, p 2nd performing p more
steps of Arnoldi iteration to give

+ _y+ gt +.T
AV = Vi i + 7 ety

This is equivalent to a new Arnoldi factorization with v; replaced by vt = Pp(A)v1,
where P,(])) is a polynomial with roots at p1, f2, .-, p- This polynomial is designed
to filter out the unwanted eigen-components in the original starting vector v;. Thus
the shifts p1, g2, ..., 4y are chosen to be approximations to the unwanted eigenvalues
of A.

A software package based on this algorithm, ARPACK is used successfully in our
computation. Table 1 lists the leading eigenvalues that corresponds to different levels
discretization and the number of matrix vector multiplications (MATVECs) and CPU
time used to obtain them. The Peclet number is set to be 0.1 in our computation.
The experiment is performed on a SUN-SPARC 10. For coarse discretization up to
about A§ = Af = 1/29, the results compared favorably to those obtained from the
LAPACK [1]. As the matrix size increases, the computation becomes more expensive
as indicated by a large number of matrix vector multiplications used. In the case
A5 = Af =1/99, IRAM did not converge in 300 iterations.

An alternative to compute the eigenvalues of A directly is to work with (A—ol )3,
where o is an estimated location of desired eigenvalue. Since eigenvalues of (A—oI)™
are often large and well separated, the Arnoldi approximation converges extremely fast.
However, the fast convergence is obtained at the cost of factoring the matrix (A-ol)
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| matrix size | eigenvalue | MATVECs | CPU(seconds) ]

2500 6.39 4381 876.68

3600 7.78 6645 1252.61

4900 9.17 10406 2664.33

6400 10.6 10508 3847.50
TABLE 1

The performance of ARPACK in direct mode. Three eigenvalues are found in each run. Parameters
k andp are set to be 4 and 40 repectively.

| matrix size | LSs | CPU(secondsT|

2500 121 44.09

3600 121 69.19

4900 87 73.88

6400 88 107.25

8100 86 147.88

10000 83 188.95
TABLE 2

The performance of ARPACK in shift—invert mode. The shift used is 0 = 15.0. Ten eigenvalues are
found in each run. Parameters k and p are set to be 10 and 50 respectively.

and solving a linear system (A — oI)w = v at each iteration. In our application, the
matrix can be easily factored using a block Guass elimination. The initial shift can
be predicted from the runs of smaller size problems. In Table 2 we list the number
of linear system solved (LSs) and the CPU time used for problems of various size.
It is observed that using ARPACK in shift-invert mode is considerably faster in this
application. :

eigenvalue=0.102 eigonvaluex=0.869
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FiG. 1. The interface N associated with different eigenvalues

6. Numerical Results. Our computation shows that there are many eigenval-
ues of A with positive real parts. This implies that the solidification of the needle
crystal is unstable. It is also observed in our computation that the leading eigenvalue




increases as A3 and A7 decrease. This agrees with the analytic prediction that eigen-
values are unbounded as A§, A? — 0. The computed interface N for the disturbance
equation corresponding to the four positive eigenvalues of A are plotted in Figure 1.
The computation is done on a grid with A5 = At = 1/99. It is observed that as
the eigenvalue increases, the interface becomes more oscillatory. This agrees with the
result obtained from analysis [5]. Finally the temperature field U in both phases that
corresponds to a typical positive eigenvalue is plotted in Figure 2.

elgenvalue = 0.89

FI1G. 2. The temperature field associated with A = 0.869.
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Highly Indefinite Multigrid for Eigenvalue
Problems

by L. Borges and S. Oliveira

1 Introduction

Eigenvalue problems are extremely important in understanding dynamic pro-
cesses such as vibrations and control systems. Large scale eigenvalue problems
can be very difficult to solve, especially if a large number of eigenvalues and the
corresponding eigenvectors need to be computed. For solving this problem a
multigrid preconditioned algorithm is presented in “The Davidson Algorithm,
preconditioning and misconvergence” [2]. Another approach for solving eigen-
value problems is by developing efficient solutions for highly indefinite problems.
In this paper we concentrate on the use of new highly indefinite multigrid algo-
rithms (such as in Shapira’s 1995 paper [3]) for the eigenvalue problem.

A Newton iteration coupled with the algorithm of Shapira [3] for solving
the highly indefinite linear systems can generate efficient iterative methods for
solving eigenvalue problems. Notice that the original guess plays a special role
on the efficiency of the algorithm. In fact, it has been observed already that
if the correct spectrum is well spaced out, this algorithm works better than
standard algorithms such as Rayleigh quotient methods. We are in the process of
analyzing the use of diverse initial guesses for this iterative eigenvalue algorithm.

This Newton-multigrid algorithm has the advantage of being highly paral-
lelizable. Consider an environment in which an unlimited number of processors
is available; each processor could address the search of one of the eigenvalues of
the matrix which makes this approach attractive. Coordination between proces-
sors is only needed to prevent solutions on different processors from converging
to the same eigenvalue and eigenvector. Methods for achieving this are under
development.

Tt is relevant to mention that the multigrid for highly indefinite systems of
Shapira does not address all the cases of interest where eigenvalue problems
arise. Thus we are also working on modifications of these algorithms. At this
stage our computational results are promising but our theoretical results are
preliminary. Most of this work will be shown in the conference presentation.

2 A Newton—-Multigrid Algorithm for Eigenval-
ues

Let A be a square matrix and consider (),z) as the approximate eigenvalue
and eigenvector pair. The associated pair (8},dz) which corrects A and z,
respectively, must satisfy

[A—(A+8NI)(z +6z) =0.




Omitting the small term ) dz this becomes
A=Az =6 z— (A— Az . (1)

Adopting the approximated normalized eigenvectors: 2Tz = 1 and (z+67)T (z+
0z) = 1in (1) and considering ||6z|| as an small term, we have

2Tz + 62T =0= 276z =0. 2)

Let v the solution for |

A-Apw==z. (3
From equation (1), we have

0z=A(A—-A)"lz—z=56\v—uz.

Thus, the final eigenvector is given by

z+0z =0\, 4)
that is, (z + 6z) must be pa.ralle} to p. Also

a:T&z; =gTvéA—zTz .

And using (2),

Ty 1

A== )

Equations (3), (4) and (5) lead to the iterative algorithm
Eigenvalue Algorithm

Given a normalized initial guess .
A=zl Az /* Rayleigh quotient */
while |[[Az — Az|| > ¢

v=(A- )"z

A =1/zTv

A=A+62

z =v/||v]|
endwhile

Notice that this algorithm is different from the Rayleigh quotient method
[1] since it iteratively corrects the eigenvalue ) using 6 instead of the Rayleigh
quotient. The behavior of this algorithm may cause misconvergence, but on
the other hand, when the corrections éz and §) are small enough, each new
correction dA captures the actual error between the real eigenvalue and its ap-
proximation A, and the method converges fast as is the case with Newton derived
methods. Numerical results are presented in Section 4.




3 Multigrid Methods and Eigenvalue Problems

Since part of this algorithm uses an approach close to inverse iteration, a critical
point is the solution of either highly indefinite or nearly singular systems. When
considering a multigrid solver for (3), we must attempt to guarantee a minimal
set of properties as follows.

Since the linear system solver is supposed to be generic as much as pos-
sible, the multigrid method adopted must serve as an “automatic” solver de-
pending only on the finest grid equations. That means, coarse grid, restriction
and prolongation operators are easily obtained from the original linear system.
Moreover, the solver must deal with highly indefinite equations.

We have adopted the AutoMUG method [3, 4] as the multigrid solver because
it is designed to achieve many of these properties. Perhaps the critical difference
lies in its restriction to symmetric pentadiagonal matrices. Even so, it seems to
be very attractive as a first choice.

Our first step is to bring the AutoMUG concept back to directly using a
Schur complement approach. See {3] for a complete description of the method.

Red-black (RB) ordering provides a natural way to parallelize linear sys-
tems arising from (2d + 1) point stencils for discretization of partial differential
equations in d dimensions. Thus the system can be split into two problems:
red-system and black-system by adopting a Schur complement method. For the
one dimensional case, let

Az =1 (6)

where A is a tridiagonal matrix of order N. Suppose A has no vanishing diagonal
element and let D = diag(A4). We can rewrite

_ o I -B
A-DM(_C I)M,

where M = M(K) is the permutation matrix which reorders the variables of
a K-dimensional vector such that odd variables appear in the first block and
even numbered variables appear in the second block. Thus, B and C are the
bidiagonal matrices:

. 1. a2;,2i—1 Q24,2i+1
C = —tridiag(0, —=—, —="=)1<i<|K/2|
Q2i2i 023,24

and
a2i—1,2i—-2 02i—1,27

)
a2;—1,2i—-1 2i—1,2i-1

B = —tridiag( ,0)1<i<[K/2] -
For a diagonal matrix D let
even(D) = diag(dai)1<i<|k/2) and odd(D) = diag(dai—1)1<i<[K/2] -

So, rewriting (6):

(B amoy ) (Zm)=(m) o




Consider the two-level scheme for residual correction in (6)

a. guess Tip ‘
b. solve Ae=1r = Az;, — b (8)

C. Tout =Tin—¢€

One possible approach is obtained using a Schur Complement method over the
system (8b) where the block decomposition is induced by the odd-even ordering.
This procedure that.results consists of the following steps:

a. Odd(D)éodd = Todd :
. b. Qéeyen =Rr where Q= even(D)(I — CB),
, | R=(C DM, ©)

C = even(D)Codd(D)™!
C. €odd = €odd + Beeyen

Noticé thaﬁ tlie system (9b) has the same order of the even block.
Omitting (9a), that is, &,44 = 0, (8c) is written like

t €odd ¢t [ Beeye ;
Tout = Tin — M ( ° )=$in_M( even = Zin — Peeyen

..\ Ceven €even
where P = M? ?
Thus (8) leads to a two level algorithm
a. guess T,
b. e=0
c. solve Qe = R(Az;, —b) , \ (10)
d. Zout = Tin — Pe

which can be seen as a multigrid algorithm with coarse grid, restriction and
prolongation operators (@, R and P respectively) such that Q = RAP. Since
the product CB is tridiagonal, so is Q. It makes possible to define a multilevel
solver based on (10) and (9b).

To apply this algorithm for two-dimensional problems we need, for example,
to reduce a five points stencil to a three points stencil notation, as in the one-
dimensional case. It can be achieved using an permutation matrix U such that
for any vector v defined on a grid and ordered lexicographically row by row, Uv
is the same vector v ordered lexicographically column by column. Thus A is
written as

A=X+U%U,
and the previous algorithm applies to the X and ¥ components of A.
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Figure 1: Results for guess a

4 Numerical experiments

‘We have performed numerical experiments using MatlabTM . It provides a faster
way to implement prototypes and compare the results with theoretical estimates.
Thus, in the first two figures, solely to test the Newton iteration algorithm, we
resort to Matlab routines.

Our algorithm was presented in Section 2. In each of these figures we show
the residual Az — Az using the same initial guess, applied to both algorithms,
namely the Rayleigh quotient method and the Newton iteration (delta lambda).

Results for guess a are shown in Figure 1 and guess b in Figure 2. Ais a
225 x 225 pentadiagonal matrix obtained for a second-order central difference
scheme for the operator uzz + Uyy + Bu in the unit square. (Here 8 = 200.) A
direct solver is used in equation (3) for both methods. In the same way Figure 2
corresponds to another guess b.

Both algorithms show the same behavior in the convergence curves but the
new version may be delayed by some steps, as illustrated in Figure 2. This effect
results from the first group of 6 estimates: table 1 compares the éA estimative
with the difference between the nearest eigenvalue A of A and the approximation
X evaluated. In this example, steps 1 and 2 produce dA corrections that may
move the iterative \ nearer to an different eigenvalue of A, resulting in a two
step delay in convergence. Indeed, in case (a) both algorithms converge to the
same eigenvalue but it is not true for case (b).

Following the same iterative approach, but using a BICGSTAB multigrid
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Figure 2: Restlts for gueds b

step | - guess-a - - guess b
A=A | XA | A=A X .
7.7e-05 | -9.8¢-03 | 6.1e-05 | 1.1e-02
9.3¢-05 | 9.7e-03 | -7.1e-05 | -1.1e-02
-1.5e-05 } -1.0e-04 | 2.2e-05 | 4.4e-05
7.3¢-05 | 8.1e-05 | -2.2¢-05 | -2.2¢-05
-7.6e-06 | -1.8e-05 | 3.2¢-08 | 3.2¢-08
1.1e-05 | 1.2¢-05 | -2.8¢-13 [ -2.4e-13
-1.8e-06 | -1.9e-06
9.9e-08 | 9.9e-08
-6.8¢-11 | -6.8e-11- '

© 00O U Wi

Table 1: Eigenvalue errors and corrections
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residual (norm 2)

Figure 3: Newton-Multigrid algorithm behavior

preconditioned for the solution of the linear systems (3), we obtain the results
shown in Figure 3. This Figure also compares this against the case where the
preconditioner is the LU factorization.

The matrix for this example was chosen because of the rather dense con-
centration of the spectrum. When this is not the case, the Newton-Multigrid
algorithm behaves much better. In fact, the graphs for the two kind of solvers
(multigrid/LU - BiCGSTAB) basically coincide for many cases.
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An Adaptive Nonlinear Solution Scheme for Reservoir Simulation
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Numerical reservoir simulation involves solving large, nonlinear systems of PDE with
strongly discontinuous coefficients. Because of the large demands on computer memory
and CPU, most users must perform simulations on very coarse grids. The average
properties of the fluids and rocks must be estimated on these grids. These coarse grid
"effective" properties are costly to determine, and risky to use, since their optimal values
depend on the fluid flow being simulated. Thus, they must be found by trial-and-error
techniques, and the more coarse the grid, the poorer the results.

This paper describes a numerical reservoir simulator which accepts fine scale properties
and automatically generates multiple levels of coarse grid rock and fluid properties. The
fine grid properties and the coarse grid simulation results are used to estimate
discretization errors with multilevel error expansions. These expansions are local, and
identify areas requiring local grid refinement. These refinements are added adaptively by
the simulator, and the resulting composite grid equations are solved by a nonlinear Fast
Adaptive Composite (FAC) Grid method, with a damped Newton algorithm being used on
each local grid. The nonsymmetric linear system of equations resulting from Newton's
method are in turn solved by a preconditioned Conjugate Gradients-like algorithm.

The scheme is demonstrated by performing fine and coarse grid simulations of several
multiphase reservoirs from around the world.
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Recentely Vilhena and Barichello proposed the LTSn method to
solve, analytically, the Discrete Ordinates Problem (Sn problen) in
transport theory. The main feature of this method consist in the
application of the Laplace transformto the set of Sn equations and
solve the resulting algebraic system for the transport flux.
Barichello solve the linear system containing the parameter s
applying the definition of matrix invertion exploiting the
structure of the LTSn matrix. In this work, it is proposed a new
scheme to invert the LTSn matrix, decomposing it in blocks and
recursively inverting this blocks.
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Tterative solution of the Helmholtz equation

We have shown that the numerical solution of the two-dimensional Helmholtz
equation can be obtained in a very efficient way by using a preconditioned
iterative method.

We discretize the equation with second-order accurate finite difference operators
and take special care to obtain non-reflecting boundary conditions. We solve the
large, sparse system of equations that arises with the preconditioned restarted
GMRES iteration. The preconditioner is of “fast Poisson type”, and is derived
as a direct solver for a modified PDE problem.The arithmetic complexity for
the preconditioner is O(nlog, n), where n is the number of grid points.

As a test problem we use the propagation of sound waves in water in a duct with
curved bottom. Numerical experiments show that the preconditioned iterative
method is very efficient for this type of problem. The convergence rate does
not decrease dramatically when the frequency increases. Compared to banded
Gaussian elimination, which is a standard solution method for this type of prob-
lems, the iterative method shows significant gain in both storage requirement
and arithmetic complexity. Furthermore, the relative gain increases when the
frequency increases.

Elisabeth Larsson,
Kurt Otto,
Uppsala university, Sweden

Address: Dept. of Scientific Computing
Box 120
S-751 04 Uppsala
SWEDEN

Email address: Elisabeth.Larsson@tdb.uu.se




Iterative Procedures for Wave Propagation
in The Frequency Domain

Seongjai Kim* and William W. SymesT

Abstract. A parallelizable two—grid iterative algorithm incorporating a domain decomposition
(DD) method is considered for solving the Helmholtz problem. Since a numerical method re-
quires choosing at least 6 to 8 grid points per wavelength, the coarse-grid problem itself is not an
easy task for high frequency applications. We solve the coarse-grid problem using a nonoverlap-
ping DD method. To accelerate the convergence of the iteration, an artificial damping technique
and relaxation parameters are introduced. Automatic strategies for finding efficient parameters
are discussed. Numerical results are presented to show the effectiveness of the method. It is
numerically verified that the rate of convergence of the algorithm depends on the wave number
sub-linearly and does not deteriorate as the mesh size decreases.

1 Introduction

Let Q = (0,1)", 7 = 2 or 3, and ' = 9Q. Consider the following Helmholtz problem

—Au—-K(z)?uw = f(z), z€9,
ou ., ey
W +io(z)u = 0, z €T,

where i is the imaginary unit, v the unit outward normal from T, and the coefficients K (z) and

a(z) satisfy

K2=p2—ig? 0<po<p(z)<p1<oo, 0<go<qlz)<qr<oo,
oa=a, —t0;, a,>0, a; >0.

The coefficient « is properly chosen such that the second equation of (1) represents a first-
order absorbing boundary condition that allows normally incident waves to pass out of Q trans-
parently. Problem (1) models the propagation of time-harmonic waves, discretizations of the
time-dependent Schrédinger equation by implicit difference schemes, inverse scattering problems,
seismic waves, and ocean acoustics.

Let problem (1) be discretized by a FD/FE method of a mesh size b = 1/ (n—1), for an integer
n > 1. We will consider the 2-dimensional case for simplicity (7 = 2). Then, the approximate
solution u of (1) can be obtained by solving the following algebraic system:

Au = b, (2)

where A is a complex—valued symmetric (but, not Hermitian) N X N matrix, N = =", and b be
the source vector. Since we need to choose at least 6 to 8 grid points per wavelength for a stability

*Department of Computational and Applied Mathematics, Rice University, Houston, TX T77251-1892
skim@caam.rice.edu 1'symes@ca.am.rice.edu




reason, the dimension of A is often huge for realistic problems. For high—frequency applications,
in practice, it is required to choose 12 to 24 grid points per wavelength for accuracy reasons.

For ocean acoustics, we often consider K(z) = w/c(z) = a(z), where w is the angular fre-
quency and c is the wave speed. (In the earth, c(z) has its values between 0.5 Km/sec and 10
Km/sec.) For linear, isotropic, homogeneous electromagnetic waves, we have K? = pe w? — ipow,
where ¢ is the dielectric permittivity, u denotes the magnetic permeability, and o is the electric
conductivity. Note that pew® < pow for eaith materials at frequencies less than freq = 10°
Hz. (Here w = 27 -freq.) The resulting algebraic system obtained by an approximation
technique is therefore diagonally dominant for lower frequency applications and of the form:
Au = (P + iR)u = b, where P and R are symmetric with R being positive definite; it can
be solved relatively easier (in the sense of the rate of convergence) than that of acoustic wave
equations. It should be noticed that the existence of a (convergent) nonsymmetric conjugate
gradient-type algorithm for (2) is equivalent to the positive definiteness of R [4, 6, 5].

In this article, we consider the nearly non-attenuative acoustic waves: :

p2) = =~ = afz), 0<q<p. ' (3)

. c(z)

(In geophysical applications, the quality factor Q (:=p?/¢?) is known to be between 25 and 1000.
For the case ¢ = 0, we set Q = c0.) In this case, problem (1) is hard to solve numerically.
Addition to having a complex-valued solution, it is neither Hermitian-symmetric nor coercive,
and the matrix 4 in (2) is no longer diagonally dominant. As a consequence, most standard
iterative algorithms (relaxation methods and conjiigate gradient (CG)-type iterative algorithms)
either fail to converge or converge so slowly to be impractical. Furthermore, any local source/error
invokes an oscillatory solution over the whole domain. (This is another physical reason that
relaxation algorithms are hardly convergent.) '

Concerning iterative numerical solvers for solving (1), we refer to Bayliss, Goldstein, and
Turkel [1] and Freund [5] for the CG-type algorithms. Després [3] studied a domain decomposition
(DD) method in a differential level and Kim [7, 8, 9] analyzed nonoverlapping DD methods for
solving (1) by finite differences and finite element methods. A heuristic, efficient strategy for
choosing the relaxation parameter and an iterative artificial damping technique (IADT) were
proposed in [7] and [8], respectively, to obtain a better conditioning of the algorithm. Employing
the techniques, the algorithms converge independently on the mesh size h (but, dependently on
the number of subdomains) and they can be parallelized efficiently. The authors studied DD
methods incorporating the cell-centered finite difference methods [10].

It is known [2] that for sufficiently smooth p the finite element approximation errors are

O (ps+2hs+1)’ N

where s is the order of the polynomials used for basis functions. As a result, the number of points
per wavelength will have to increase with the wave number to maintain a given accuracy. This
makes the problem more difficult, in particular, for high frequency applications. In this paper, we
will propose a two-grid algorithm incorporating the DD method in [9] as the coarse grid problem
solver. ‘

2 The algorithm

Let (1) be discretized by an approximation scheme, e.g. finite elements or finite difference meth-
ods, on a finite dimensional space V*, where h is the parameter of the mesh size. Then the




resulting algebraic system can be written as
Alu? = b?, 4)

where A is a complex—valued square symmetric (but non—Hermitian) matrix, u is the unknown
vector, and b denotes the source vector.

Let H > h be the element size for a coarser grid mesh and V¥ be the corresponding (proper)
subspace of V*. We consider the following two-grid algorithm:

select u™?, ¢;
do £=0,1,---
(i) it = ph — Ahuh,e;
(i) if ||xP¥|| > &, continue;
(iii) find e¥ such that AHeH = IH(xht); (5)
(iv) uhlt1/2 = ght 4 I;LI (eH ) :
(V) nttl = ¢ (uh,e+1/2) :
enddo

Here || - || denotes a norm defined on V%, e.g. £2-norm || -||2 or £*°-norm || - ||co. The operators [ H
and I denote the projection from V* to VH and the interpolation from V¥ to V', respectively,
and § is a smoothing operator. The above two-grid algorithm is the simplest case of MG methods.
A MG algorithm can be obtained by trying to solve (5.iii) in another proper subspace VH cVvH
corresponding to another coarser grid mesh. A step of MG method consists of two substeps: a
coarse grid correction ((5.iii) and (5.iv)) and a smoothing step (5.v). The reason why the MG
method is so efficient is, roughly speaking, the following. In the coarse grid correction the low
and medium frequency components of the error (corresponding to small and medium eigenvalues)
are significantly reduced, while the smoothing step reduces the high frequency components of the
error. .

There are technical difficulties in applying two—grid methods to problem (1) that is complex-
valued and non—coercive. The convergence analysis for two-grid methods is often based on
coercivity analyses. Another difficulty in the simulation of wave propagation by two-grid methods,
in particular, is in the coarse grid correction: since one needs to choose at least 6 to 8 grid points
per wavelength (27 /p) for stability and/or accuracy reasons, it is hard to solve the problem on
the coarse grid for large wave numbers. The efficiency of the two-grid algorithm depends strongly
on the solution procedure for the coarse grid problem. For high frequency wave propagation (i.e.
p is large), the grid size h can be chosen such that ph is 1/3 to 1/4. This choice of h is the same
as choosing 18 to 24 points per wavelength and it is often required for accuracy reasons in wave
propagation simulation.

Now, we consider a method of solving (5.iii). It is known that if the (coarse grid) mesh is
not fine enough, problem (5.iii) will be unstable. Moreover, the solution, if any, may have few
characteristics of the original physical problem. In the case, (5) may converge slowly or fail to
converge; we should choose the coarse grid mesh sufficiently fine.

Let {Q;,7 = 1,2,---, M} be a partition of {:

Q=U§Vi1§j; QN =0, j#k; T; =T noQy; T = Lgj = 6925 N OQ.




Decompose problem (1) over the partition:

(a)  —Au;— K?u; = f(z), z € Q;,

Y 4o = .
(b) +iau; =0, z € T, (6)

5 ov; 5
94 o\ g, — YUk, . : )
(c) a; + ifu; = o +ifur, € ij?

where 8, Re(8) > 0, is a relaxation parameter. Equation (6¢) is called the Robin interface bound-
ary condition (RIBC) which impose the continuity of the pressure u and the normal component
of its flux on the interfaces. Now, we define the DD iteration as follows: '

Given {u2}, v@ € V; := HY(Q;), find {u}}, u} € V;, » > 1, by solving

(a) —-Au} - K?4? = f(z), z € Q;,
' ou? '
(b) ﬁ +icu} =0, zel; 1)
ouf . oupt
(C) ﬁ + Z,B’U,j = — al;k + ’Lﬁuk 1z e,l‘jk.

Després [3], indebted to Lions [11], studied the convergence of algorithm (7) in differential, rather
than discrete, level. The algorithm was applied to finite différences and finite element approxi-
mations by Kim [7, 9]-and the cell-centered finite difference method by the authors [10].

Our next objective is to introduce a finite element procedure for algorithm (7). Note that the
RIBC (7c) imposes the continuity of both the solution u and the normal components of its flux,
while most finite element methods admit discontinuity of the normal components of the flux. Let
T4 be a rectangular (resp., cube-shaped) triangulation of Q with the mesh size A, and V* be
the finite element space corresponding to the bi-linear (resp., tri-linear) finite element method
on T}h. We assume that the subdomains 2; share their boundaries with the elements in 7. Let
the subspace V;-h be the restriction of V* onto Q;. (For simplicity, we have used % to denote the
coarse mesh size instead of H.)

Then, a corresponding FE iterative algorithm for (7) can be defined as follows: Given u;"o €

V}h, ji=1,...,M, build u;-"" € V;-h, n 2> 1, recursively by solving

hmn

n . 1 Ou; .n hn
(vu;z, ’ Vv)Qj - (-Kz u;z.,n, v)Qj + <Zau?’n, v>I‘j + zk:(é'(_ a;:’ + zﬂuj’ )7 v)ij (8)
1, fulm .o B
= GG it (ks v€ Y,
Let |- |0’[‘jk be the L2 norm on I';r and C7 and C) satisfy, Vv € th, i=1--- M,
ov |? - o
ZZ a—y— < Cih 1Z(V’U,V’U)Qj and Z|v|§,rj < Coh 1”’0”3,91..
i k J O,ij 7 k
Choose 8 = 8, — if3; as ) ,
Cih™
Bi==1—, =M, (9)
4 %




where £ > 1.

8h%5
01022)%
of the iteration matriz A of (8) is minimized and bounded as

1/2
Theorem 1. Let m_z}c.x|I‘jk| =0h)andé =1+ (1 + ) . Then the spectral radius
A

4
p(A) < 1 03;—2 1, (10)
1

for some C3 > 0 independent of h, p, and q.

In Theorem 1, the convergence of algorithm (8) is strongly dependent on (and most sensitive
to) the positivity of ¢. In fact, for ¢ = 0 we do not know the convergence of the algorithm. To
overcome the difficulty of (8) with (3), we will consider a technical scheme, named by the iterative
artificial damping technique (IADT).

Choose u™® and 7 > 0, find ©»™, m > 0, by solving

(Vuh’m+1, Vo)q — (I 2yhim+1 v)q + (z'auh’m+1, v)r+ (in2uh’m+1, v)q
=(f,v)o+ (inzuh’m,v)g, ve Vh

Theorem 2. Let A" be non-singular. Then, (11) converges for all n > 0.

Remark. In the algorithm (11), the problem is how one can solve steps efficiently. Since
each step is better conditioned, one can find more easily a convergent iterative algorithm. We
do not have to solve it directly/completely, in practical simulations. The problem can be solved
incompletely using an iterative method such as (8). (The DD method is used as the inner loop
solver.) We will force the inner loop to stop in a certain number of iterations n.. The following
is proposed in [8]:

For given u?,o,o € th, j=1,---,M, choose parameters 7 > 0 and 7, > 1 and build
’ u_';’m’" € V}, m >0, by solving

(11)

(2) (Vu;‘ ™ Vo), = ((K* — i) u?’m’n, v)q; + <iau;-"m'", v>
hmmn
1 au_t y
+ 2 7d
;(2( Ov;
1 au;?m'n - hmm—1
- Xk:(i(_ e +ifuy )> V)T

Ty

+iBul™™), v)r;,

(12)

+ (inzu?’m’o,v)gj +(f,v)e; vE th, n=1,-, 0,

h,m+1,0 _ _ hmna
(b) u; = u; .
Let the domain in 2-D be decomposed into M, and M, subdomains in z and y directions,
respectively. It is numerically verified that the choices

M.+ M, M,+M, p P
= ~ 2.2 13
give a (fast) convergence. For attenuative waves, i.e., when ¢ > 0, algorithm (12) with (13)
converges 2-10 times faster than (8). Note that in (10), the most sensitive component to the
convergence rate of the DD method is the imaginary part of the square of the wave number.

(Here it is ¢ + 7 and positive.)




1/h = 1080, H = 3k, M, = 60 || freq = 20, H = 2h, M, = 50
freq| £ Npp 715 CPU [|1/h|£ Npp ¢ CPU
20 8 626 2.1e-3 7135 {2007 492 6.5e-2 32.4
40 9 500 9.0e-3 619.8 || 400 [5 404 1.6e-2 114.7
60 {14 659 2.0e2 769.9 (6006 464 7.1e-3 335.8

80 |37 1313 3.9e-2 15224 | 800 |6 458 4.0e-3 658.4
Table 1: Two-grid algorithm.

3 Numerical results

In this section, we report numerical performances of algofithm (5) with (5.iii) being solved by
(12) on the coarse grid mesh. We choose the domain = (0,1)2 and the coarse gird mesh size
H = ~h, where y = 1,---,4. When 7 = 1, (5) is reduced to (12). The algorithm is implemented
in FORTRAN and run on the SGI Power Challenge L with a 75MHz T8000 processor (a serial

computer). The problem coefficients are given as p(z,y) = c—(f’?), a(z,y) = w, ¢ = 0, where
freq is the frequency, w = 27 - freq denotes the angular frequen)cy, and the wave speed

3 z < 0.5,

14 €® +sin(27zy), z > 0.5. (14)

c(z,y) = {

The source function f(z,y) is selected so that the true solution u(z,y) = W, where

#(z) = e(==1) 4 e=iwz _ 9 The domain is decomposed into M, (resp., M,) subdomains in z—
(resp., y)—direction, respectively. The computation time is denoted by CPU (seconds). For the
smoother 5, we employ « iterations of the symmetric Gauss Seidel (SGS) algorithm. The two-
grid iteration (V-cycle) is stopped when the relative residual is less than 10~° in the maximum
norm and the inner loop solving (5.iii) is stopped with relative L error being smaller than 10~2.
We choose the parameters arising in the IADT (12) as

M, + M,

=7 freq, n,= z (15)

(See (13).) The number of V—cyclés is denoted by £ and the total number of DD iterations by
‘ Rt _

Npp. The error is checked by the relative maximum norm rf, = ”u—u”(”, where u™? is the

lllloo
{-th iterate of algorithm (5). Zero initial values are given: u™® = 0.

From various numerical experiences, we observed the following: The algorithm converges 3
times faster (measured in the computation time) than (12) when H = 2h and 7-9 times faster
when H = 4h. Such two-grid algorithms take benefits not only on the computation time but on
the computer memory.

In Table 1, we check how the rate of convergence of the algorithm depends on the frequency
and the mesh size h. In the first panel, we choose 1/h = 1080, H = 3h, and M, X M, =60x1,
while we set freq = 20, H = 2h, and M, X My = 501 for the second panel. To check dependence
of the algorithm on wave number (resp., mesh size), four different frequencies (resp., mesh sizes)

are selected in the first (resp., second) panel. It seems that the frequency effects on the number,

¢



of iterations sub-linearly and on the CPU time l:ttle, provided that the coarse grid problem is
fine enough, i.e. wavelength > 6H ~ 8H. (When freq = 80, in the first panel, the wavelength is
4.5H; we can hardly expect that the coarse grid problem captures characteristics of the physical
problems; the algorithm converges even though it is slow. Note that the two-grid algorithm with
the coarse grid mesh badly assigned is still worthwhile to use for solving the problem.) On the
other hand, the number of iterations seems not affected by the mesh size k. So, the rate of
convergence depends only on the wave number sub-linearly and not on the mesh size. From such
a dependence, we can easily see that (5) is applicable to realistic/larger problems efficiently.
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Abstract.

In [5], Franca and Stenberg developed several Galerkin least squares
methods for the solution of the problem of linear elasticity. That work
concerned itself only with the error estimates of the method. It did not
address the related problem of finding effective methods for the solution of
the associated linear systems. In this work, we prove the convergence of a
multigrid(W-cycle) method. This multlgnd is robust in that the convergence
is uniform as the parameter, v, goes to 1 5- Computational experiments are
included.

1 Introduction

Let © be 2 bounded convex polygonal domain in R? and 9 be the boundary
of Q. The pure displacement boundary value problem for planar linear
elasticity is given in the form

(1) 2u{V-a(u)+T_L2;VV-u}+f=O in Q,
v =0 on 9Q.

Here u = (u1,u3) denotes the displacement, f = (f1, f2) is the body force, v
is the Poisson’s ratio and p is the shear modulus given by p = 1}_'“;_” where
E is the Young’s modulus.

We restrict Poisson’s ratio to 0 < v < % where the upper limit corre-
sponds to an incompressible material. The explanation for the notations

1




used in (1) is given in [2] and [5].

It is well-known that one way of driving stabilized mixed finite element
methods is to combine the classical Galerkin formulation with least-squares
forms of the differential equations. (See [5] and references therein). An ad-
vantage of this method is that the class of finite element spaces that can be
used are considerablely enlarged, hence the methods are easily incorporated
into existing finite element codes. In [5], Franca and Stenberg developed sev-
eral Galerkin least squares methods for the elasticity equations and proved
the error estimates of their methods with the stabilization parameter a
bounded by Cj, where Cy is the constant in the inverse inequality. But o
and Cr are unknown. So, for the implementation of stabilized mixed finite
element methods, we have to analyze the behaviors of @ 'and Cf in order to
obtain rapid iterative convergence.

As documented in [7], the standard multigrid method using conforming
bilinear finite elements requires a large number of smoothing steps in order
to achieve convergence for nearly incompressible linear elasticity problems.
Our algorithm converges with a small number.of smoothing steps and is the
first multigrid algorithm in the implementation that uses P-1 finite element
spaces for approximating both the displacement and the pressure.

In this paper, we developé a W-cycle multigrid method to solve the lin-
ear system arising from P-1 conforming finite element method for the mixed
formulation of the pure displacement boundary value problem as in [2] and
[6]. We prove the convergence of a W-cycle multigrid method a3 in [2] and
[8]. We show that the convergence is uniform with respect to the parameter
v. We demonstrate that the number of iterations for our algorithm depends
on the stabilization parameter c. Finally, we find the appropriate value of
a for several cases.

2 The Finite Element Method

For simplicity, we assume that 2u'= 1. Let p = —-V - u, where € = 1522,

Then (1) is eqmva.lent to

(2) —V-e(uw)+Vp=f in Q
ep+V-u=0inQ
u=0 on 9N

Hence, we have the following weak formulation:




Find (u,p) € H3(D) x L*(Q) such that
(3) (V-e(u),V-e())=(V-v,p) = (fiv), Yoe Hy(%),
e(,9)+ (V-u,q) = 0 VYge L*(Q).
With the first differential equation in (2), it is clear that (3) is equvalent to

the following stabilized mixed formulation:
Find (u,p) € HE(2) X L*(R) such that

(4) B((u,p), (v,9)= ]:f(”a q) V(v7w) € H&(Q) X Lz(Q)'

where

B((,p),(v,0)) = (e(u):e(v))=(V-2,0)—(V-v,p)
—a Y B3(-V -&(w) + Vp,~V -&(v) + Va)r
TeTk

—€(p, q)
and
}-f(vaq) = (f’v) -« Z hle‘(f’ -V. 5(”) + VQ)T
TeTk

Let T* be a family of triangulations of Q, where 7%*! be obtained by
connecting the midpoints of the edges of the triangles in T%. Let hy = diamT
for each T' € T* and hy = mazperihr, then by = 2hg41. Now let’s define
the conforming finite element spaces for our multigrid method.

Vi := {v € C%Q);vlr € Po(T),VT € T}
Py := {q € C*(Q); gl € P1(T),VT € T*} and
B, := {q € C%Q); dl1 € P1(T), /9 gdz = 0,VT € T*}
Then the discretized problem for (4) is the following :
Find (ug,pr) € Vi X Py such that
(5) Bi((uk: 2r), (v,0)) = Fy(v, ) for all (v,q) € Vi X P
where
Bi((ux, pr), (9,0)) = (e(ur):€(v)) = (V -k, 0) = (V - v, 7%)
- Z h%(=V -e(ux) + Vg, =V - €(v) + Vo)
TeT*k
—G(pk, q)




and

Fi(v,9)=(f,v)—a > h3(f,—V-e(v)+ Va)r
TeTk

Note that the bilinear form By is symmetric and indefinite.

In [5], Franca and Stenberg proved the uniqueness of the solution of the
conforming discretization (5) and derived the following discretization error
estimate :

lv — urlma) + Ip— prlze(a) < Chel flz(a)
for 0 < a < Cf where C7 is the constant satisfying the inverse inequality,

C1 35 BV ()l < le(@)lae), Vo € Vi
TeTk

3 Multigrid Algorithm
In this section we present lemmas and theorems without proofs which are
found in [9].

In order to define the fine-to-coarse operator I,’:'l, we introduce the
following mesh-dependent inner product:

((%, 1), (0, @)k = (2, %) 2(0) + hE(P, Q) 12(q)-
Then IF ™! : Vi X Pr — Vi_y X Pi_y is defined by

TE (u, 2), (2, 0))k=1 = (%, 2), (v, @)k

for all (u,p) € Vi X P and (v,q) € Viuy X Pr_j.
Define By : Vi X P — Vi x P by

(Bi(u,p), (v, )k = Bi((v, p), (v, 0)),
for all (u,p), (v,9) € Vi X Pg.
Lemma 1 (7) Given (u,p) € Vi X Py,
(w,p) € Vi X By & ((v,2),(0,1))x = 0.
(@) Y : Vi x B, — Vimy X Bry.

Lemma 2 The subspace Vi x Py is invariant under By.
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Let By = By lv, x5, -
Lemma 3 Spectral radius of B < Ch,:z.

The mesh-dependent norms on Vi X Py are defined as follows

11Ces DIy 2= v/ (BE(e, ), (w Pk for all () € Vi x B

Note that

(e, D)o = /113 + B3Ip|I3 for all (u,7) € Vie x P

Let

Bi_y((%,0),(v,0)) = (e(u):e(v))—(V-2,9)=(V-v,p)

—af4 > h3(-V-e(u)+Vp,—V-e(v) +Vor
TeTk-1

—e(p, Q)

and

Fi(v,q) = (fiv)—ef/s >, BH(f,-V-e(v)+Vor
TeTk-1
Define PF™! : Vi x By — Vi—1 X Pp1 by

Bt_1(PF~1(u,p), (v,4)) = Be((u,p),(v,9))

for all (u,p) € Vi X Py and (v,q) € V-1 X B4

We describe the k-th level iteration scheme of the conforming multi-
grid algorithm. The k-th level iteration with initial guess (%o, 20) yields
CMG(k, (v, %), (w,7)) as a conforming approximate solution to the fol-
lowing problem.

Find (v, 2) € Vi x By such that

Byi(y,z) = (w,r), where (w,7) € Vi X B

For k = 1, CMG(1, (%0, %), (w,7)) is the solution obtained from a direct
method. In other words,

CMG(1, (30, 20), (w,7)) = (B1) " (w, )




For k£ > 1, there are two steps.
Smoothingstep : Let (Ym,2m) € Vi X Pi, be defined recursively by the initial
guess (Yo, 20) and the equations

; 1
(w1, 21) = (Y11, 21-1) + XgBk((w, )= Br(yi-1,2i-1)), 1<I<m
k
where Ag := Ch,:2 is greater than or equal to the spectral radius of By, and
m is a positive integer to be determined later.
Correctionstep : The coarser-grid correction in Vi X Pj is obtained by
applying the (k — 1)-th level conforming iteration twice. More precisely,

(vo,90) = (0,0) and
('Ub Qi) = CMG(k - 1, (vi—ly di-1, ('&-’, F)) i= 172

where (@, F) € Vi1 X Py is defined by (@,7) := IF 1 ((w, ) - Bi(ym, 2m))-
Then CMG(k, (0, 20); (0, 7)) = (Um» 2m) + IF_; (v2, G2)-

Remark. In the smoothing step, we use By instead of By. Because the
space Vi X P; has a natural coordinate system which consists of the values of
piecewise linear functions at mesh points on the triangles. In view of Lemma,
1 and Lemma 2, the result of the smoothing step and the correction step
belongs to Vi X Py. Therefore, in the actual implementation of the multigrid
method, we use only the natural coordinate system of Vi X Pi. Note that
B is represented by a sparse banded matrix and By is not invertible.

Now we discuss the convergence of the two-grid algorithm where the
residual equation is solved exactly on the coarser grid. Let the final output
of the two-grid algorithm be

(%%, 4%) == (Ym» 2m) + (v*, ¢%)
where (v*,¢*) = (Br—1) "I Be(y — Ym» 2 — 2m)-

Lemma 4
('v*’ q*) = -Plf-l(y —Ym,Z — zm)~

Let the k-th level relaxation operator Ry be defined by

1
Ry:=I- -A—%(Bk)2.




Then we have

(¥ = Ym» 2 — zm) = RE(Y — Y0, 2 — 20)
(y-y2z=2")=(I- Pk—l)R?(y — Y0, 2 — 20)-

Lemma 5 Smoothing Step  There ezists a constant C, independent of
hy and m, such that

le (ﬂ',p)l2 ES Ch ‘/—ﬂl(u,P)mo ks ‘V(’d,p) € Vk X Pk

Lemma 6 Approximation Step  There ezists a constant C, indepen-
dent of hy and m, such that

(T = PEY(u, p)lok < CHEN(u D)l2s Mu,p) € Vi X P

Theorem 1 Convergence of the Two-Grid Algorithm  There ezists
a constant C, independent of k and m, such thai

My—-v"2z—2")oxr < \/—l(:ll Y0, 2 — zo0)llo,x-

Theorem 2 Convergence of the k-th Level Algorithm  There ezists
a constant C, independent of k and m, such that

C
1(y, 2) — CMG(k, (3o, 20), (w, *)llo,x < TFn'M(y — Y0, 2 — 2o)llo,k-

4 Experimental Results

We apply the V-cycle and W-cycle multigrid algorithm to the pure displace-
ment boundary value problem (1) studied in [2]. The domain 2 is the unit
square, and the body force f = (f1, f2) is taken to be as follows :

fi = 7*2sin2ry(~1+2cos2rz)— 0.5cosm(z +y) + . _}e_ 3 sin 7z sin 7y],

fa

72[2sin27z(1 — 2 cos 27y) — 0.5 cos 7(z + y) + . ¢ 3 sin 7z sin 7y].

The exact solution u = (uy,u2) is

wy = sin27y(—1+ cos27z)+ sin 7z sin 7Y,

€
€+2
ug = sin2wz(1— cos2my) + 6:_ 3

sin 7z sin TY.




' V-CYCLE W —CYCLE

smoothing | a=3 wa=1 a=0.1 a=0.01| a=3 a=1 a=0.1 «a=0.01

1 1190 937 840 831 | 446 327 284 280
2 595 469 420 416 | 224 164 142 140
3 397 313 281 278 1 149 110 95 94
4 298 235 211 208 | 112 82 71 70

Table 1: Number of grid = 32i.e. h = 1/32 and v = 0.3

V-CYCLE | _ W—-CYCLE
smoothing || =3 a=1 a=0.1 @=0.01 | a=3 a=1 a=0.1 a=0.01
1 1106 839 - 766 . 762 437 304 = 270 268
2 553 420 383 381 | 219 152 135 135
"3 369 280 256 254 | 146 = 102 90 90
4 277 210 192 191 110 . 76 68 68

Table 2: Number of grid = 32 i.e. h = 1/32 and v = 0.45

V-CYCLE W —-CYCLE
smoothing | =3 a=1 a=0.1 @=0.01|a=3 a=1 o=0.1 «=0.01
1 1081 . 825 774 773 | 437 296 271 271
2 541 413 387 387 | 219 148 136 136
3 361 276 259 258 | 146 99 91 91
4 271 207 194 194 | 110 75 68 68

Table 3: Number of grid = 32 i.e. h = 1/32 and v = 0.495




V-CYCLE W-CYCLE

smoothing || a= a=3 a=1 o=01]|a=5 a=3 o=1 oa=0.1

1 1501 1079 826 777 | 659 437 296

272

754 540 413 diverge | 330 219 148 diverge

2
3 503 360 diverge diverge | 220 146 diverge diverge
4 378 diverge diverge diverge | 165 110 diverge diverge

Table 4: Number of grid = 32 i.e. h = 1/32 and v = 0.4995

We follow the implementation of our algorithm as in [6]. Let the number
of grid be 32, i.e. the mesh size b = -315 The programs excute until the
discrete L? relative error is less than 5% of the initial error. We use the
initial guesses, u® = (u§,3) = (0,0) and p° = 0. The computations were
done in double-precision arithmetic for various @, smoothing steps and v,
where v = ﬂﬁ is the Poisson ratio.

First note that, in practice, our algorithm converges even for the V-cycle
with one smoothing step for appropriate a’s, while we have only proven the
convergence of W-cycle with sufficiently many smoothing steps.

The numbers in columns represent the number of iterations to achieve a I?
relative error of less than 5% in the displacement.

In table 1,2 and 3, we get an appropriate « for each case.

For the V-cycle, & = 0.01 is the appropariate value for the case of v =
0.3, 0.45 and 0.495. For the W-cycle, « = 0.1 (or 0.01) is the appropriate
value.

In table 4, case of v = 0.4995, we have to choose relatively big a in order
that our algorithm converges.
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