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ABSTRACT 

I n  response t o  the  d iscovery o f  a non l inear  index o f  r e f r a c t i o n  (n*)  

in Nd:gl ass l a s e r  media, experimenters have t r a d i t i o n a l l y  expanded the  

beam diameter (and reduced the  i n t e n s i t y )  t o  a l l e v i a t e  the s e l f  focusing 

tendency. We propose, instead, t o  reduce the  peak i n t e n s i t y  by i n j e c t i n g  

a lower i n t e n s i t y  and longer -dura t ion  pu lse  i n t o  the  ampl i f i e r  chain. We 

p r e d i c t  t h a t  t h e  g lass n o n l i n e a r i t y  w i l l  impress upon the  pu lse  a c h i r p  

s u i t a b l e  f o r  e f f i c i e n t  temporal compression. This  may r e s u l t  i n  more e f f i -  

c i e n t  l a s e r  operat ion.  Related schemes have been used i n  radar  systems. 

As an example, we have ca l cu la ted  the  e v o l u t i o n  o f  a 1 nsec ( f u l l  1/e dura t ion)  

tempora l l y  Gaussian pu lse  i n  a 2 m long Nd:gl ass l a s e r ' c h a i n .  For a cha in  

averaged i n t e n s i t y  o f  2 ~ ~ l c m * ,  we c a l c u l a t e  t h a t  t h e  pu lse  cou ld  be subse- 

7 quen t l y  compressed (by a se r ies  o f  Gires-Tournois in te r fe rometers )  t o  125 psec 

+. w i t h  youd stab11 i t y  aga lns t  i n p u t  puise amp1 i t u d e  noise. 

I 

This work was performed under the  auspices o f  the  U. S. Atomic Energy 
Commission. 



I. INTRODUCTION 

For e f f i c i e n t  and r e l i a b l e  opera t ion  o f  a h igh  energy sho r t  pu lse  
" 

Nd:glass l a s e r  system, the re  are many reasons fo r  reducing the  1 i g h t  in ten-  
u\ 

b s i t y  i n  the  l a s e r  m a t e r i a l .  We wish t o  present  here a pulse compression 

scheme consis t ing o f  t he  use o f  longer  du ra t i on  and l e s s  in tense pulses i n  

the l a s e r  a m p l i f i e r  chain, fo l lowed by  the  use o f  a d i spe rs i ve  s t r u c t u r e  t o  

temporal ly  compress the pulses a f t e r  they e x i t  the l a s e r  chain. This d i s -  

pers ive  s t r u c t u r e  must have a frequency dependent ,group delay such t h a t  

lower frequencies have a greater  t r a n s i t  t ime. This  scheme i s  p i c t o r i a l l y  

depicted i n  F ig .  1 . I n  order  t o  prepare the  pulses f o r  compression, 'we 

take advantage o f  the  non l i nea r  index o f  r e f r a c t i o n  o f  the hos t  g lass.  . 

Duguay , Hansen , and   ha pi rol have presented evidence which has brought 

much a t t e n t i o n  t o  the  non l inear  index o f  r e f r a c t i o n  o f  the  hos t  glass i n  

Nd:glass l ase rs .  ' Here the  glass index o f  r e f r a c t i o n  i s  w r i t t e n  
2 

n = n + 4 n2 .  e where n2 approximately equals 1.7 x  1 0 - I  esu and &' i s  
0 

the  e l e c t r i c  f i e l d  envelope func t i on .  This non l inear  index o f  r e f r a c t i o n  i s  

responsib le f o r  s e l f  fo&sincj2 ( i n  which a b r i g h t  beam may c o n s t r i c t  and 

i n t e n s i f y ,  and may subsequently damage o p t i c a l  components), and s e l f  phase 

modulat ion3 ( i n  which the  spec t ra l  content  o f  a pulse broadens as the pulse 

propagates).  As po in ted  ou t  by ~ l i s s , ~  l a r g e  sca le  s e l f  focusing tendencies 

can be reduced somewhat by c e r t a i n  design considerat ions.  Marburger and 

5 co-workers have addressed the  problem o f  small sca le  s e l f  focusing i n  l a s e r  

systems .due t o  s t a t i s t i c a l  f l uc tua t i ons  o f  t he  index 

o f  r e f r a c t i o n .  The s e l f  focusing tendency i s  r e a d i l y  a l l e v i a t e d  by 

increas ing  the  beam cross sec t iona l  area t o  reduce the  peak i n t e n s i t y .  
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The above considerat ions o f  t h e  e f f e c t s  due t o  t h e  glass n o n l i n e a r i t y  

have a  profound (and c o s t l y )  e f f e c t  on h igh  power, u l t r a  sho r t  pu lse  l a s e r  

chain design, and the re  i s  s t rong i n t e r e s t  i n  developing l a s e r  glasses w i t h  

a  lower non l inear  index ("1. We wish t o  p o i n t  o u t  t h a t  there  may be a  wide 

v a r i e t y  o f  circumstances i n  which we f i n d  t h a t  the concern over  n p r e l a t e d  

engineer ing problems may t o  a  l a r g e  ex ten t  be unnecessary. We base t h i s  

content ion  on ou r  observat ion t h a t  al though s e l f  focus ing  I s  detr imenta l  

t o  the  f a i t h f u l  opera t ion  o f  a l a s e r  amp1 i f i e r  chain, ' s e l f  phase modulat ion 

can be usefu l  i f  the  pu lse  emi t ted  from t h e  l a s e r  chain acqui res a  " ch i rpu  

s u i t a b l e  f o r  subsequent d i spe rs i ve  compression. 

I I. PULSE COMPRESSION SCHEME 
- - 

The scheme o f  " c h i r p  radarub was f i r s t  made pub1 i c  i n  1960. This development 

r e s u l t e d  i n  f a r  more e f f i c i e n t  opera t ion  o f  a  h igh  r e s o l u t i o n  radar  s e t  

because t h e  peak power l i m i t e d  t r a n s m i t t e r s  cou ld  generate longer du ra t i on  

pulses w i t h  more energy. With the  appropr ia te  c h i r p  impressed on the  ou t -  

going pu l  se, t h e  r e f 1  e c t i o n  ( s igna l  ) coul d  be temporal l y  compressed by passage 

through a  s u i t a b l y  d i spe rs i ve  c i r c u i t ,  thus op t im iz ing  the  e f f e c t i v e  power 

hand1 i n g  capab i l  i t y  o f  t h e  t ransmi t te r .  

Analogous compression o f  ch i rped o p t i c a l  pulses was independently p ro-  

posed by Gires and ~our r i o i s ' l  and by Giordmaine, e t  a1 .8 I t  has been suggested 
9 

t h a t  unchirped l a s e r  pulses may be tempora l l y  compressed by f i r s t  passing 

them through a  nondispers ive o p t i c a l  Kerr  ma te r i a l ,  and subsequently com- 

press ing  them by passage through an anomalously d i spe rs i ve  s t r u c t u r e .  Some 



experimental v e r i f i c a t i o n  o f  t h i s  scheme was presented by ~ a u b e r e i u ,  lo but  

the  two photon f luorescence technique used t o  de tec t  reshaping has 

12 been shown t o  be q u i t e  unsu i tab le  i n  t h i s  regard. l1 Duguay a n d  Hansen have 

s u c c e s ~ f u l  l y  performed a re1  ated compression scheme by rf modulat ion o f  cw 

mode-locked l a s e r  pulses and. subsequent d i spe rs i ve  compression. 

We are  p o i n t i n g  ou t  here t h a t  a Nd:glass l a s e r  cha in  may serve as the  o p t i c a l  

Kerr  mater i .al  or " ch i rpe r "  i n  t h e  compression scheme of  Ref. 9, We address ou r  

a t t e n t i o n  t o  Nd:glass l a s e r  chains s u i t a b l e  f o r  p re l im ina ry  l a s e r  f u s i o n  ex- 

periments. Fusion experiments w i t h  l a s e r  heated pel  1 e t s  w i l l  r e q u i r e  l o 4  J 

l a s e r  pulses w i t h  durations o f  approximate1.y 100 psec. Since i t  has h e n  

estimated14 t h a t  the  cost  o f  capaci tors,  flashla,mps, and g lass f o r  such a 

4 10 J Nd:glass l a s e r  system depends l i n e a r l y  upon t h e  rec ip roca l  o f  the  l a s e r  

pulse dura t ion ,  t h e  savings can be considerable. We a l so  expect t h a t  t h i s  p;lse 

compression technique cou ld  improve by an order  o f  magnitude the  temporal 

reso l  u t i o n  o f  the  1 aser moon-ranging e f f o r t .  
15 

I n  the  Absence o f  d ispers ion,  the' p repara t ion  of sel f-phase modulated 

plane wave l a s e r  pulses f o r  subseq.uent d i spe rs i ve  compression i s  f a i r l y  we l l  

understood. L e t  us f i r s t  consider  the  example where se l  f-phase modulat ion 

o f  an i n i t i a l l y  tempora l l y  Gaussian pu lse  i.n nondispers ive undoped g lass causes 

a c h i r p  t o  be impressed on the  pulse, R, t h e  ra t i . 0  o f  pu lse  dura t ions  be fore  

and a f t e r  opt imal  delay l i n e  compression i s  est imated by comparison o f  spec t ra l  

widths o f  i n p u t  and ou tpu t  pulses, From Appendix A, we f i nd :  

R = Iorigina1 = 0.86 K. %tinmax + 1 .  
Tcompres sed o 



Here K = 2r/A (A i s  measured i n  vacuum), R i s  t he  propagation length,  and 
0 

6nmax i s  t he  maximum non l inear  index change. Note t h a t  R i s  n o t  a func t i on  

o f  pulse dura t ion .  

P r i o r  t o  compression, t he  . e l e c t r i c  f ie1.d i s  w r i t t e n  as 

whkre o0 i s  the  l a s e r  frequency, k = Wono/c, and 69 i s  the  phase pe r tu rba t i on .  
Q 

The envelope func t ion  ae;.(t) i s  a r e a l  quan t i t y .  The compressed complex e l e c t r i c  

f i e l d  o f  t he  pu lse  i s  di'scussed i n  Appendix B, and i s  g iven by 9 

where O r w - w and Q2, Q3, e t c .  a re  c o e f f i c i e n t s  determined by the  d e t a i l s  
0 

of t he  compressor. I f  a pulse has a p o s i t i v e  " l i n e a r  ch i rp , "  a negat ive group 

d i spe rs ion  (Q2 < 0) ca31 compensate f o r  the  c h i r p  i n  o rder  t o  compress the pulse. 

3 I n  most cases the  QgQ term can be neglected. 

111. A 2 GW ONE NSEC EXAMPLE 

Since s tag ing  w i l l  tend t o  keep the  peak i n t e n s i t y  r e l a t i v e l y  constant,  we 

2 consider  a pu lse  w i t h  a cha in  averaged peak i n t e n s i t y  on-axis o f  2 GW/cm . This 

corresponds t o  peak index change g iven by 6nmax = 9.2 x  1 0 ' ~ .  I n s e r t i n g  t h i s  

value i n t o  Eq. ( I ) ,  we f i n d  R = 10.3 .if the  pulse passes through 2 m o f  glass. 

I f  the  o r i g i n a l  pulse had a du ra t i on  o f  1 nsec, t he  o p t i m a l l y  compressed pulse 

woul d be approximately 97 psec i n  dura t ion .  



The above est imate i s  somewhat imprecise. It assumes t h a t  t h e  e n t i r e  

bandwidth o f  t he  s e l f  phase modulated pulse w i l l  p a r t i c i p a t e  i n  pulse com- 

pression, Since the  c h i r p  due t o  s e l f  phase modulat ion i s  no t  a  l i n e a r  

ramp, the re  w i l l  be some reduc t i on  from t h i s  est imate. The est imate a l so  does 

n o t  r e f l e c t  a  s p a t i a l  average over  t ransverse modes, and there  w i i l  a l so  be 

some d e v i a t i o n  because t h e  glass and the ampl i fy ing  ions a re  somewhat 

d i spe rs i ve  which a1 t e r s  the  c o l l e c t i o n  o f  non l inear  phase change as t h e  pulse 

propagates. A1 though the  l a t t e r  e f f e c t  i s  q u i t e  small, i t s  i n f l uence  w i  11 be inc luded.  

I n  o rde r  t o  more accura te ly  est imate the  d i spe rs i ve  c o m p r e s s i b i l i t y  o f  

plane wave 1  nsec ( f u l l  l / e  i n t e n s i t y  du ra t i on )  Gaussian l a s e r  pulses, we have ,per- 

formed computer s imu la t i cnso f  i n  owens-111 ino is16 ED-2 g lass amp1 i f i e r  
. . 

1, ? 
chains us ing  a  prev ious ly  described . a lqor i thm: The plane wave c a l c u l a t i o n  

1 
inc ludes:  the  n o n l i n e a r i t y  o f  t he  glass (n2  = 1.7 x 10-13 esu), the  d isper -  

3 2  2  
s i o n  o f  the  glass18 [A ( d  n/dh ) = 0.01845 urn], and the  l i n e a r  p rope r t i es  o f  

the  amp1 i f y i n g  ions. The ga in  a t  l i n e  center  was chosen g(o)  = 0.09 cm-l , 
and T2 f o r  t he  homogeneously broadened l i n e  was chosen as T2 = 0.042 psec. 

( s ince  t h e  value o f n 2  i s  on l y  known t o  w i t h i n  20%, the  r e s u l t s  presented 

here may undergo a  small refinement as t h e  value becomes b e t t e r  known.) 

Staging was modeled by i nc reas ing  a  d i s t r i b u t e d  l o s s  u n t i l  t he  peak pu lse  l n t e n s i  t y  

remained r e l a t i v e l y  independent of p o s i t i o n  a long the  chain. F6r t h e  1  nsec pulse, 

t h i s  s t a b i l i t y  c o n d i t i o n  was achieved a t  aloss = 0.089 cm" . , Since the  nonl i n e a r  phase 

important  t o  d i spe rs ion - f ree  s e l f  phase modulat ion i s  equal t o  

2 2 I., K n  1 i~ ( z )  dz (which i s  p ropo r t i ona l  t o  t he  chain averaged i n t e n s i t y ) ,  
0 Z o  

t h i s  s tag ing  modeling does n o t  s i g n i f i c a n t l y  d e t r a c t  from the  accuracy o f  



. . 

t h e  c a l c u l a t i o n  because i t  keeps t h e  chain averaged i n t e n s i t y  co r rec t .  Si'i - 
l a r l y ,  g(o) i s  chosen as a  chain averaged quan t i t y ,  and t h i s  prov ides t h e  

c o r r e c t  i n f l  uence o f  d i spe rs ion  due t o  t h e  resonance. ~ i s ~ e r s i v e  compressi b i l  i t y  

was ca l cu la ted  us ing  Eq. (3) w i t h  Qg = 0  and Q4 = 0  a f t e r  2 m o f  l a s e r  g lass 
- 

propagation, and i s  shown i n  F ig.  2. 1.06 pm i n p u t  pulses o f  1  and 5 GW/cm 2 

2 were compared t o  t h e  2 GW/cm case. The " r e l a t i v e  compression s e t t i n g s "  i n  each 

f i g u r e  a re  p ropo r t i ona l  t o  t he  values o f  Q2. and our  convent ion i s  des t r i bed  

2 i n  Sect ion V I .  The 5 GW/cm pulse i s  o n l y  shown fo.r comparison because i t  

w i l l  sa tu ra te  the  t r a n s i t i o n .  Sa tu ra t i on  was n o t  considered i n  t h i s  ca l cu - '  

l a t i o n .  I f  s a t u r a t i o n  were included, t h e  r e s u l t a n t  reshaping i n  t ime w i l l  

s u b s t a n t i a l l y  modi fy  t he  c h i r p  on the  pulse. As can be seen, a1 1  th ree  pulses 

develop s u f f i c i e n t  c h i r p  fo,r e f f i c i e n t  compression, y e t  we w i l l  focus our a t t e n t i o n  

2 on the  2 GbJ/crn case. I f  t h e  s lowly  r i s i n g  l ead inq  edges were unwanted, they might  be 

somewhat e l im ina ted  by passage through a  s u i t a b l e  sa turab le  absorber. 
19 

The 

o p t i m a l l y  compressed pu lse  has a  f u l l  l / e  du ra t i on  o f  125 psec. Thus we can 

improve the  crude compression r a t i o  est imate i n  Eq. (1 ) by rep lac ing  t h e  m u l t i -  

p l  i e r  (0.86) by t h e  empirSical  value 0.65. Although the  du ra t i on  o f  the  peak 

pulse i n  t h i s  example i s  reduced by a  f a c t o r  o f  8, i t s  peak i n t e n s i t y  i s  o n l y  

increased by a  f a c t o r  o f  6;2, This imp l i es  t h a t  t he  e f f i c i e n c y  o f  compression 

i s  -76%. We expect t he  case of  Nd:YAG o s c i l l a t o r  pulses (1.064 pm) i n  a  glass 

cha in  t o . g i v e  q u i t e  s i m i l a r  r e s u 1 . t ~  because the  d ispers ion  due t o  t h e  resonance 

2 2 i s  a t  maximum o n l y  10% o f  ( d  n/dX ) due t o  t h e  g lass.  

I V .  STABILITY AGAINST AMPLITUDE NOISE 

A. Pe r iod i c  Amp1 i t u d e  Modulat ion 

Since t h e  temporal shape o f  t h e  i n p u t  pulses may n o t  be as smooth as i n  
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Relative compression 
settings 

Fig. 2. Calculated dispersive compress ib i l i ty  o f  pulses emanating from 
a  2m Nd:gl ass 1  aser chain. Cases are shown for  input  peak inten- 
s i t i e s  o f  1, 2, and 5 ~ ~ / c m 2 .  Spat ia l  e f f ec t s  due t o  the rad ia l  
i n t e n s i t y  p r o f i l e  are not  considered. Relat ive compression 
se t t ings  i n  a l l  ' f igures are propor t iona l  t o  92 ( i n  Eq. 1 3 ) ) ,  
wi th  a  se t t i ng  o f  u n i t y  corresponding t o  Q =-6.4 x 10- 1  sec . 
I n  each case, the i n i t i a l  f u l l  l / e  intensiZy durat ion i s  1  nsec. 



t h e  ca l  cu la ted  cases presented here, we have repeated t h e  above c a l c u l a t i o n s  

w i t h  10% (peak-to-peak i n t e n s i t y )  s inusoidal.  r i p p l  e impressed ubon the i n p u t  pu l  se. 

R.esults a r e  shown i n  F ig .  3 ,  T t  can be seen t h a t  these considerat ions do n o t  

2 
s u b s t a n t i a l l y  reduce our  i n t e r e s t  i n  t h e  2 GW/cm case. 

2 2 1. The 2 GW/cm . case. I n  t h e  case of compressing 2 GW/cm cha in  averaged peak 

i n t e n s i t y  pulses, we -observe t h a t  for d ispe rs i ve  delay s e t t i n g s  f a r ,  l e s s  than t h e  

o p t i m a l l y  compressing s e t t i n g ,  t he  impressed r i p p l e  becomes accentuated i n  the com- 
. . . , . .  . . 

pressed pulse. Each r i p p l e ,  however, corresponds t o  a r i c h e r  spec t ra l  content,  and 

i s  q u i t e  smoothly dispersed (over-compressed) by the  opt imal  l y  compressing d i spe rs i ve  . ' 

delay. At  optimum compression, t he  10% r i p p l e  case i s  i n d i s t i n g u i s h a b l e  from t h e  

smooth case (F ig .  2) . in t h e  t ime span we present.  It i s  somewhat unfor tunate,  how- 

ever, t h a t  du r ing  s e l f  phase modulat ion the  spectrum o f  t he  pulse develops sharp 

sidebands ' (a t  t he  modulat ion frequency) we1 1 separated from the  smooth pu lse  s e l f -  

phase modulated spectrum (Fig.4). These sidebands apparent ly  have a spec t ra l  i n t e n s i t y  
. . . . 

dependent growth r a t e ,  and are  -1120th the  he igh t  o f  t h e  peak spectrum by the  t ime 

t h e -  pu lse  e x i t s  the  l a s e r  chain. A t  t h e  o p t i m a l l y  compressing d i spe rs i ve  delay 

( t h e  s e t t i n g  1 . 2  i n  Figs. 2 and 3 ) , these "renegade" spec t ra l  components a re  

delayed and advanced by approximately 1.72 nsec w i t h  respect  t o  t h e  center  o f  

t h e  compressed pulse.  These temporal fea tures  ( n o t  w i t h i n  t h e  f i e l d  o f  view 

on Fig. 3.) are  approximately t he  he igh t  and shape o f  t he  secondary lobes which 

2 .'<. appear on the  2 GW/cm pu l  se a f t e r  i t  has been opt imal  l y  compressed 



Relative compression 0.6 A 
settings 

Fig. 3 .  A repeat o f  the ca lcu la t ion  o f  Fig. 1 w i th  the inc lus ion  o f  10% 
peak-to-peak amplitude p ipp le  on thc  pulsc which enters the 
l ase r  chain. Note t ha t  compression o f  r i pp les  occurs f o r  f a r  
smaller compressor settings,so t h a t  the unwanted features are 
again temporar i ly  spread out  a t  the optimal1 compressing d is -  
pers ive delay set t ing,  except i n  the 5 GW/c& case. 
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Fig.  4.  Comparison o f  ca l cu la ted  spectra f o r  pulses emanating from 
l a s e r  a m p l i f i e r  chain. Cases o f  no ise  f r e e  i npu t ,  10% peak- 
to-peak r i p p l e ,  and random no ise  o f  the  same RMS d e v i a t i o n  as 
i n  t he  10% r i p p l e  are  presented f o r  chain averaged peak i n -  
t e n s i t i e s  o f  2 G W / C ~ ~  and 5 G W I C ~ ~ .  



2. Comparison t o  o the r  average i n t e n s i t i e s ,  I n  the  5 fi!i/cm2 case, the pre-  
. . 

cursers are  prominent features, and a re  w i t h i n  the  f i e l d  o f  view because 
. . .  . .  . 

less  d ispers ive  delay i s  used i n  compressing the  pu lses-  The precursor i n  the  2 GW/cm 2 

case w i l l  have t o  be blocked by a  s u i t a b l e  gate o r  sa turab le  absorber. 

Thus we conclude t h a t  p e r i  odic amp1 i tude modulat ion i s  somewhat de le te r ious  t o  t h i s  

h igh  power glass laser pulse compression scheme because i t  can ( i f  there  i s  

s u f f i c i e n t  depth o f  modulat ion on the  i n p u t  pulse)  cause undesi rable precursors 

t o .  come ou t  of t he  compressor. W i  t h  the  except ion o f  produci ng these precursors, 

these p e r i o d i c  amplitude changes do n o t  a f f e c t  t h e  compressed pulse shapes. 

B. Random .Amp1 i t  ude :Modul..at i o n  

We have repeated the  above c a l  c u l  a t i  ons w i  t h  the  i n c l u s i o n  o f  a  random 

ampli tude modulation. The modulat ion was generated by a  mu1 t i p l i c a t i o n  o f  

the o r i g i n a l  Gaussian pulse shape f u n c t i o n  p t  ti@ N by the  f a c t o r  [I + a A 1. 
N s  N 

Here a i s  an ad jus tab le  constant and AN = L Ri, where (Ri} i s  a  s e t  o f  
1  

random numbers d i s t r i b u t e d  between t h e  ranges + 1. and - 1  . The pul  se. f fl tered  

by a  0.4 4 bandwidth Lorentz ian fi l t e r ,  and the  value o f  a was then adjusted u n t i l  

the ca l cu la ted  RMS dev ia t i on f rom the  o r i g i n a l  Gaussian was equal t o  t h e  calcu- 

l a t e d  RMS dev ia t i on  f o r  the 10% peak t o  peak p e r i o d i c  ampli tude r i p p l e  prev ious ly  

discussed. The spect ra l  f i l t e r i n g  d i d  no t  s i g n i f i c a n t l y  reduce t h e  RMS dev ia t ion .  

We have ca lcu la ted  t h e  passage o f  such randomly modulated pulses through 

the  2 meter l a s e r  chain, and have s tud ied t h e i r  compress ib i l i t y .  We f i nd ,  as 

before, t h a t  f o r  f a r  l e s s  than o p t i m a l l y  compressing d ispers ive  delay se t t i ngs ,  

t h e  noise i s  accentuated, bu t  a t  opt imal l y  compressing d i spe rs i ve  delay, t h e  

noise i s  no t  d iscernable.  There i s  a l so  no pe rcep t ib le  precurser, and t h e  

spectrum as seen i n  Fig. 4 does n o t  e x h i b i t  sidebands as had been observed i n  

the  p e r i o d i c  modulat ion case. 
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As we had po in ted o u t  before,' the  growth r a t e  o f  a sideband i s  spec t ra l  

i n t e n s i t y  dependent, and the  s p e c t r a l l y  broader random noise d i d  n o t  have 

s u i t a b l e  peak spect ra l  ampli tude t o  ge t  s i g n i f i c a n t l y  amp l i f i ed  dur ing  s e l f -  

phase modulat ion i n  the  l a s e r  chain. < 

, From' the  comparison o f  the above r e s u l t s  fo r  p e r i o d i c  and random amp1 i tude 

modulation, we conclude t h a t  a1 though random ampl i tude modulat ion can be we1 1 

to le ra ted ,  e f f o r t s  must be made t o  reduce p e r i o d i c  ampli tude modulat ion i n  

order  t o  prov ide  a p u l s e  s u i t a b l e  f o r  p recursor - f ree  d i spe rs i ve  compression. 

V .  COMPRESSOR CONFIGURATIONS ' 

Since the  pulses we wish t o  compress have a p o s i t i v e  ch i rp ,  the 'group d i s -  

pers ion o f  the compressor must be anomolous so t h a t  lower frequencies a re  

delayed more. By t h i s  we nean t h a t  Q2 I n  Eq. (3 )  must be negative. For 

propagation through an o p t i c a l l y  c l e a r  d ispers ive  ma te r ia l ,  t h i s  

requ i res  (d2n/d~')  < 0. ( I n  a l l  f igures ,  a r e l a t i v e  
. . .  

2  compression s e t t i n g  o f  1.0 corresponds t o  Q2 = -6.4 x 10 -~ ' sec  .) The 

compressor we w i l l  focus our  a t t e n t i o n  on i s  a Gires-Tournois in ter fe rometer .  7 

Other p o t e n t i a l  candidates 'found t o  be less  des i rab le  inc lude a g r a t i n g  p a i r ,  

a  gas o r  l i q u i d  which absorbs a t  a wavelength s l i g h t l y  g reater  than 1.06 run, 

and poss ib l y  an e l e c t r o n  gas. We w i l l  d iscuss on ly  the  Gires-Tournois i n t e r -  

ferometer and the  g r a t i n g  p a i r  here. 

A .  The Gires-Tournois . In ter ferometer  

The Gires-Tournois in ter fe rometer  i s  a modi f ied  Fabry-Perot in ter fe rometer  

w i t h  unequal r e f l e c t i v i t i e s .  One sur face i s  100% r e f l e c t i n g ,  one sur face i s  

p a r t i a l l y  r e f l e c t i n g ,  and the  device i s  obv ious ly  used' i n  r e f f e c t i o n .  A l l  

l i g h t  i n c i d e n t  on the  device i s  re f l ec ted ,  so there  are no f r i nges .  Two 



d i f f e r e n t  Four ie r  components, however, can s u f f e r  very d i f f e ren t  phase 

s h i f t s .  The f i r s t  r e f l e c t i o n  upon e n t r y  t o  the  device may be e i t h e r  re in fo rced  

o r  cancel led by con t r i bu t i ons  from t h e  f i r s t  few " z i g  zags" between p la tes .  

Thus some co lo rs  are  r e f l e c t e d  " r i g h t  away," wh i le  o ther  are  r e f l e c t e d  on ly  

a f t e r  several i n t e r n a l  z i g  zags. This gives a  frequency dependent group 

delay. The theory o f  t h i s  device has been presented e l  sewhere,' and an 

Engl ish t r a n s l a t i o n  o f  t h i s  reference i s  inc luded i n '  t h i s  note as Appendix C. 

We c a l c u l a t e  t h a t  Q f o r  t h i s  device i s  given by 
2 

2  2  2  t o ( l  - r ) 2 r  s i n  6 
- - 1 -  . -  

9 2 - 1  2 
- - 

a~ w=w 2(1 + r2 - 2 r  cos 6 )  
2 

0 ! 
... 

where Q i s  t h e  phase s h i f t  in t roduced by t h e  compressor, r i s  the  square r o o t  

o f  t he  r e f l e c t i v i t y  f o r  t h e  p a r t i a l l y  t r a n s m i t t i n g  coat ing, to = 2sno cos O/c 

(s  i s  the  spacing between r e f l e c t i n g  surfaces, no i s  t h e  index o f  r e f r a c t i o n ,  

0 i s  t he  angle o f  incidence, and c  i s  t h e  speed of l i g h t ) ,  and 6 = (uo - wR)to 

where wo i s  t h e  center  frequency o f  t he  l ase r ,  and wR i s  the  nearest resonant 

frequency of t h e  cav i t y .  Note t h a t  Q2 can be e i t h e r  p o s i t i v e  o r  negat ive 

( thus causing expansion o r  compression o f  t he  pulse)  depending on whether 

> w o r  w < w . Since the  con f igu ra t i on  o f  the  in ter fe rometer  s t r o n g l y  "'R 0 R 0 

depends on t h e  pulse bandwidth BW (because .conpressing 1 ines r  c h i r p  efficiently 
.. . . . . .  - .  

2 requ i res  t h a t  Q2 >> Q3 (BW/2) + Q4(Bhf(2) +. ... where Q3 = 1/6[(a3@/aw3) 1 w=wo 
2  and Q4 = 1/24[(a4Q/a>1 ), we w i l l  focus our a t t e n t i o n  t o  the  2 GW/cm case w=wo 

as seen i n  F i  g.-!z; We c a l c u l a t e  t h a t  t h e  opt imal r e l a t i v e  compression s  d t i , n g  

2  f o r  t h i s  case i s  1.2 (corresponding t o  Q2 = -7.6 x  lo - "  sec ) ,  and g ives 



a pulse compression r a t i o  o f  about 8. Neglect ing the  i n f l uence  o f  t he  Q3 

and Q4 terms, t h i s  compression r a t i o  would r e q u i r e  sequential  r e f 1  ec t ions  

from e i g h t  Gires-Towrnoi s  in ter fe rometers  ( f r o n t  m i r r o r  ref lectance a t  49%, 

r e a r  m i r r o r  re f l ec tance  a t  100%, and to equal t o  15 psec). Although Q3 = 0 

a t  6 = 0.207, we choose t o  operate a t  6 = 0.3. The number o f  Gires-Tournois. 

in te r fe rometers  may undergo some change because op t im iza t i on  considerat ions 

concerning the  Q3 and Qq terms h a v e n o t  y e t  been f u l l y  analyzed. These 

terms, of course, would have a l a rge  e f f e c t  on t h e  precursors described 

i n  Sect ion I V .  We have performed compression calcul .at ions i n c l u d i n g  the  

3 4 in f luence o f  the Q3Q and Q4Q terms f o r  t h e  above-mentioned device. We 

4 f i n d  t h a t  (because o f  the detr imental  i n f l uence  of the Q 4 f i  term) opt imal  

compressfon requ i res  sequential  r e f l e c t i o n  from n ine in ter fe rometers .  The 

s l i g h t  reduct ion  in.compression r a t i o  R and i n  peak i n t e n s i t y  can be seen 

i n  Fig.  5 .  The det r imenta l  i n f l uence  o f  the h igher order  terms can be 

reduced wi thout  l i m i t  by s u i t a b l e  choice i n  t h e  opera t ing  range ( 6 )  of 

the in ter fe rometer .  It may be poss ib le  t o  t a i l o r  the  pulse shapes 

inpu t ted  i n t o  the  l a s e r  'amp1 i f i e r  chain i n  order  t h a t  t he  output  c h i r p  i s  

we l l  matched t o  t h e  d i spe rs i ve  delay curve o f  f a r  fewer in ter fe rometers .  

This could provide substant ia l  savings. The con f igu ra t i on  now envis ioned i s  

a se t  o f  f o u r  p a r a l l e l  Gires-Tournois in ter fe rometers  fac ing  a se t  o f  f i v e  

in ter fe rometers  separated from each o the r  by a perpendicular  d is tance h. 

The angle o f  inc idence (8) should be as small as possib le,  and i s  determined 

by thed iamete r  o f  t he  beam d and the  separat ion d is tance h such t h a t  tan0 = d12h. 

, This  device cou ld  be tuned by changing the  anqle o f  incidence s l i g h t l y ,  o r  by 

vary ing the  pressure i f  the  in ter fe rometers  were a i r  gapped. With a i r  gapping, 

tun ing (which must be done) can be i n t e r f e r o m e t r i c a l l y  performed. . 
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2 Fig. 5. Resul t  f o r  o p t i m a l l y  compressed 2 GW/cm pulse as shown i n  F ig.  2, 
con ared t o  an a c t u a l  c a l c u l a t e d  case cons ider ing  terms up through 
QiR9. This case corresponds t o  r e f l e c t i o n s  from n ine  i n t e r f e r o -  
meters under t h e  cond i t i ons  6 = 0.3, to = 15 psec, and R = 0.49. 



. . . . 

It i s  essen t i a l  t o  conf i rm t h a t  t he  response o f  t he  Gires-Tournois 

i n te r fe romete r  w i l l  n o t  be obscured by t h e  uncor rec tab le  beam divergence 

in t roduced by the  l a s e r  g l a s s  n o n l i n e a r i t y .  It has been est imated 20 

2  
t h a t  f o r  a  chain averaged peak power o f  10 GWIcm , t h i s  divergence w i l l  be 

on the  order  o f  y = 30 prad.We est imate t h a t  f o r  an angle o f  incidence o f  

6.6" (corresponding t o  h = 2  m, d  = 46 cm), t h e  change i n  , 6  o f  Eq. ( 4 )  i s  

2  2 
approximately A6 = w0(y8 + y 12) to. For t h e  2  GWIcm case (i - 6 prad ),  the 

usable range o f  6 corresponds t o  0.06 L 6  5 0 . 5 4 .  This A6 represents about 

4% poss ib le  e r r o r  i n  t he  exact  delay seen by each Four ie r  component. A1 though 

t h i s  dev ia t i on  i s  t o le rab le ,  t h i s  e r r o r  can be minimized by reducing d, by 

increas ing  h, o r  by using the  apodized c h i r p e r  described i n  Sec. V I I .  We the re fo re  
r .  " 

conclude t h a t  t h i s  problem i s  n o t  ser ious as l ong  as the  uncorrectable beam 

divergence does n o t  become excessi.ve. 
,. .. . . .... 

There are  many advantages of the  Gires-Tournois i n te r fe romete r  when com- 

pared w i t h  the  g r a t i n g  p a i r  discussed below. I t s  main advantage i s  t h a t  i t s  

t ransmiss ion e f f i c i e n c y  i s  c lose  t o  100%. Secondly, i t  i s  l e s s  sub jec t  t o  

damage i n  comparison t o  t h e  g r a t i n g  p a i r .  As l ong  as t h e  beam energy den- 

s i t y  i s  l e s s  than t h e  damage th resho ld  o f  bu l k  g lass and good coat ings 

i t  would be poss ib le  t o  b u i l d  a more campact compressing 

device by focusing the  beam down t o  a  smal le r  s ize .  An improvement i n  t he  

coa t l ng  technology may a l so  a l l o w  a  f u r t h e r  s i z e  reduc t i on  o f  t h e  device. 

B. The Gra t ing  P a i r  Compressor 

  not her poss ib le  compressor c o n f i  gura t  i o n  i s  a  p a i r  of para1 1  e l  g ra t i ngs .  

The theory  o f  the d i spe rs i ve  delay due t o  t h e  g r a t i n g  p a i r  has been expla ined 



. - - .  
. I .  - .  

e l  sewhere." We have ca l cu la ted  t h a t  a i e l d t i v e  compressor s e t t i n g  o f  1.0 

(as used i n  a l l  o f  our  f igures)  corresponds t o  a 1200 Rlmm g r a t i n g  p a i r  w i t h  

an angle o f  inc idence o f  17.Z0, angle o f  d i f f r a c t i o n  o f  89", and a s l a n t  

he igh t  separat ion o f  4 m. A g r a t i n g  p a i r  has several drawbacks when en- 

v is ioned as an ac tua l  compression device f o r  l a s e r  fusion. F i r s t ,  t h e  best 

g r a t i n g  b laze e f f i c i e n c y  one can o b t a i n  i s  approximately 90%. Since such 

h igh  angles o f  d i f f r a c t i o n  a re  invo lved here, t he re  w i l l  be a shadowing e f f e c t  

because opera t ion  i s  so f a r  from the  L i t t r o w  cond i t i on .  This  could reduce the  

e f f i c i e n c y  o f  a g r a t i n g  by as much as 2 orders o f  magnitude. Even i f  t h i s  

problem were overcome, t h e  combined e f f i c i e n c y  o f  the  g r a t i n g  p a i r  would 

probably s t i l l  be too  low t o  warrant f u r t h e r  cons idera t ion .  Secondly, one 
. . . .. 

must consider  t h e  p o s s i b i l i t y  t h a t  g ra t i ngs  wil.1 damage a t  much lower i n ten -  

s i t i e s  than good coat ings.  Although t h e  damage th resho ld  f o r  g ra t i ngs  does 

n o t  seem t o  be too  we1 1 documented, one can surmise ' f rom the  work o f  

~ l o e m b e r ~ e n * '  t h a t  t he  preponderance. o f  sharp corners coul d severely  reduce 

the  a b i l i t y  o f  a '  g r a t i n g  t o  handle h igh  l i g h t  f luxes .  This  cons idera t ion  

would probably r e q u i r e  unreasonably 1 arge surface'  g ra t i ngs .  One might  so lve  

t h i s  problem by p i e c i n g  together  several s i m i l a r  g ra t ings ,  b u t  t h e  al ignment 

problems and poss ib le  wavefront d i s t o r t i o n  would probably make t h i s  sugges- 

t i o n  extremely hard t o  c a r r y  ou t .  

V I  . S P A T I A L  AVERAGING OVER TRANSVERSE STRUCTURE 

Because t h e  peak i n t e n s i t y  i s  n o t  consta.nt across the  s p a t i a l  e x t e n t  of  

the  beam, we have averaged t h e  above c a l c u l a t i o n s  over a Gaussian beam p r o f i l e .  

For every plane wave pu lse  of peak i n t e n s i t y  Ima,, we w r i t e  t h e  compressed i n ten -  

s i  ty as C( ta , , t ) .  The average over t h e  s p a t i a l  s t r u c t u r e  <I> i s  w r i t t e n  



We have performed t h i s  a ~ e r a g ~ i n g  over a  Gaussian beam p r o f i l e  w i t h  peak 

2 3 4  i n t e n s i t y  on a x i s  o f  2  GW/cm . The, QgQ and Q4Q terms were n o t  included. 

The r e s u l t s  a re  shown i n  Fig.  6, where i t  can be seen t h a t  s i g n i f i c a n t  compression 

s t i l l  takes place. The o p t i m a l l y  compressing d ispers ive  delay i s  nea r l y  50% 

2 greater  than i n  the  2  GW/cm plane wave case, and t h i s  i s  because a  greater  

d ispers ive  delay i s  needed t o  compress t h e  l e s s  intense po r t i ons  o f  the  pulse. 

The weaker s p a t i a l  po r t i ons  are responsib le f o r  t h e  shoulder which appears t o  

each s ide  o f  t h e  cen t ra l  peak, and some reduct ion  o f  t h i s  shoulder could be 

e f f e c t e d  by.subsoquent passage through a  saturable abosrber. Note t h a t  i n  

the  s p a t i a l  1.y averaged r e s u l t ,  the  e f f i c i e n c y  i s  reduced. A1 though the  pulse 

i s  compressed i n  t ime by a  fac tor  of 4.7, i t s  peqk i s .  increased by 2,75, 
. . . . . . . . 

This corresponds t o  a  59% e f f i c i e n c y  (compared t o  the  76% e f f i c i e n c y  we found 

f o r  t he  temporal 1  y Gaussian plane wave case). I n  prac t ice ,  a  f a r  more f l a t  

topped ( s p a t i a l )  pulse i s  desired2' ( i n  preference t o  a  Gaussian) i n  order  

t h a t  energy be ex t rac ted  from a h igher percentage o f  the  a m p l i f i e r  cross 

sec t iona l  area. The reduct ion  o f  peak power (through t h i s  compression scheme) 

w i l l  a l l ow  f l a t  topped pulses t o  t r a v e l  f a r t h e r  w i thout  s e l f  focusing, and 

we the re fo re  expect t h a t  compressed shapes i n  p r a c t i c e  w i l l  be more l i k e  the  

76% e f f i c i e n t  case i n  F ig.  2  than l i k e  the  !%%,e f f i c i en t  case i n  F ig .  6. 
. . 

V I I. ALTERNATIVE SCHEMES 

Several v a r i a t i o n  o f  t h i s  scheme should be considered. F i r s t  i t  must 

be po in ted o u t  t h a t  t he  Gaus-sian ( i n  t ime) pulse shape i s  no t  optimum for  

generat ing a  1  i nea r  c h i r p .  The lead ing and t r a i l i n g  edges of t he  pulse, f o r  
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F ig .  6 .  Compression study o f  an average over a Gaussian transverse 
mode w i t h  peak chain averaged i n t e n s i t y  on a x i s  o f  2 G W / C ~ ~ .  
Note t h a t  ample compression can be achieved. As i n  Figs.  2 
and 3, Q3 and Q4 terms were n o t  included. 



instance,. have a c h i r p  w i t h  t h e  wrong s i g n  f o r  compression. I n  t h e  d i  s- 

pers ionless plane wave case, the  t r u l y  l i n e a r  c h i r p  i s  generated by  a 

t runcated parabola ( i n '  t ime) .  C lear ly ,  if i n p u t  pulses cou ld  be made c l o s e r  

t o  t h i s  shape, the  e f f i c i e n c y  o f  a pulse compression scheme would be sub- 

s t a n t i a l  l y  increased. 

It i s  a lso  poss ib le  t h a t  a more un i fo rm c h i r p  may be wanted across the  

t ransverse mode shape. I f  t h i s  i s  necessary, i t  may be poss ib le  t o  u t i l i z e  

a t h i n  c e l l  o f  CS2 w i t h  windows made from plano-convex lenses. Y i  t h  the  

convex faces adjacent,  t he  center  of t he  beam w i l l  experience l ess  path length  of 

CS2 than w i l l  t he  weaker edges o f  the  pulse. With t a i l o r i n g  o f  t h e  geometry, 

t he  phase f r o n t  d i s t o r t i o n  can be reduced fa r  below t h a t  in t roduced by a 

para1 l e l  s ided CSp ce l l . .  . Th is  "apodired c h i r p e r "  w i  11 no t  be as severe a 

source o f  unwanted s e l f  fo..cusing as would be expected a t  f i r s t  glance. One 

must be c a r e f u l  t h a t  t he  i n c l u s i o n  o f  CS2 does n o t  dep le te  the  beam v i a  90' 

2 s t imu la ted  Raman sca t te r i ng .  A t  2 GW/cm the  Raman ga in  i s  = I 5  cm-I, so 

a CS2 p r e c h i r p e r m u s t  be used e a r l y  i n  t he  cha in  where the  beam diameter i s  

small , o r  might  poss ib l y  be used i n  a "mosaic" s t r u c t u r e  a t  t he  end so t h a t  

t he re  i s  no long path w i t h  h igh  Raman gain. 

V I I I .  PROPOSAL 
.. . 

Since t h e  experimental  demonstrat ion o f  these p red i c t i ons  need n o t  awai t  

t h e  cons t ruc t i on  o f  a 1 KJ chain, we have evaluated compression p o s s i b i l i t i e s  

f o r  the  e x i s t i n g  Lawrence Livermore Laboratory l ong  path l a s e r  p r i o r  t o  t h e  

d isks .  . I n  t h i s  system, t h e  pulse durat i .on i s  approximate ly  1 nsec, t he  peak on 

a x i s  i n t e n s i t y  averaged along the  rod  cha in  i s  1 GWIC~', and t h e  l e n g t h  of  g lass 
.. - . ' . \ .  . 



t r a n s i t  i s  approximately 5 m. Results o f  t h a t  c a l c u l a t i o n  are shown i n  

Fig.  7. No s p a t i a l  average was performed here, so the  s ignal  depi'cted i n  
. . 

F ig.  7 would be a t ta ined  by t r y i n g  t o  compress the  p o r t i o n  o f  t he  beam 

which would pass th rough a centered aperture whose diameter were far  l e s s  

than any c h a r a c t e r i s t i c  t ransverse dimension. Note t h a t  compression of 

the  pulse 'should be r e a d i l y  demonstrable i f  the shape can be maintained 

down the  chain. It i s  un for tunate  t h a t  a t  present, the  pulses i npu t ted  

i n t o  the  cha in  have. l a r g e  amp1 i t u d e  no ise  on them. 1n:repeating the  c a l -  
. . 

c u l a t i o n  o f  F ig.  7 w i t h  50% impressed r i p p l e ,  t he  r e s u l t i n g  pulse cannot 

be d i s p e r s i v e l y  compressed. An i n p u t  pulse i s  requ i red  which i s  temporal ly  

smoother than the  one p resen t l y  i n j e c t e d  i n t o  the  a m p l i f i e r  chain. Although 

t h i s  example has been presented for  t he  l ong  path l ase r ,  any ,cha in  may be 

used f o r  a v e r i f i c a t i o n  o f  t h i s  scheme. The optimum compression r a t i o  can 

be est imated from Eq. (1) .  Unpumped glass rods may be placed i n  the  output  

f o r  g reater  e f f e c t i v e  propagation lengths.  

. 2 
. . 

I X.  CONCLUSIONS 

We have presented an a l t e r n a t i v e  means o f  opera t ing  h igh  .power sho r t  

pulse l a s e r  a m p l i f i e r s  when they a re  t o  run  near t h e  1 i m i t a t i o n s  imposed by 

s e l f  focusing considerat ions.  Our p o i n t  i s  t h a t  s e l f  focusing can be avoided 

by i nc reas ing  the  t ime du ra t i on  o f  t h e  i n p u t  pulse (and by correspondingly 

reducing t h e  peak i n t e n s i t y )  . The c h i r p  which t h e  pulse acquires through 

s e l f  phase modulat ion can be s u i t a b l e  f o r  e f f i c i e n t  d i spe rs i ve  temporal 

compression. A computer ca l cu la ted  s imu la t i on  was presented i n  which a 1 

nsec ( f u l l  l / e  i n t e n s i t y  dura t ion)  pulse w i t h  peak power o f  2 ~ ~ / c m '  cou ld  
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Fig.  7.  The ca lcu la ted  compressibi l i ty  o f  pulses emanating from the 
rod chain o f  the  LLL Con Path Laser. Input condit ions are:  ! 1 nsec duration, 1  GW/cm chain averaged peak in tens i ty ,  and 
5 m o f  propagation. These resu l ts  correspond t o  t r y i n g  t o  
compress the spatia, l  l y  centrql  por t ion  of the beam, 



be s u i t a b l e  f o r  such a  scheme a f t e r  passage through a  t y p i c a l  Nd:glass 

l a s e r  ampl i f i e r  chain. The pulse. can be compressed down t o  125 psec i n  

a  s u i t a b l y  d i spe rs i ve  in ter fe rometer .  Small f l u c t u a t i o n s  i n  ampl i tude (on 

the  i n p u t  pulse) were shown n o t  t o  be o f  major concern i n  thk  scheme p r e - '  

sented here.. A ca l cu la ted  example was presented f o r  an a1 ready e x i s t i n g  

l a s e r  chain so t h a t  t h i s  t h e o r e t i c a i  p r e d i c t i o n  might  be v e r i f i e d .  It i s  

hoped t h a t  t h i s  note w i l l  he lp  t o  i . n i t i a t e  experimental v e r i f i c a t i o n  o f  

t h i s  pulse compression p red ic t j on .  



Appendix A 

Estimates o f  Spectral Growth i n  Dispersion Free S e l f  Phase Modulation 

I n  the absence o f  dispersio'n, an ins tantaneous ' .~er r  e f f ec t  perturbs the 
'? 

phase o f  the l i g h t  pulse by the f ac to r  " .  

where KO i s  the f r ee  space wave vector, L i s  the distance o f  propagation, 

n2 i s  the nonl inear index coe f f i c ien t ,  a n d  tR = t - noz/c. For a temporally. 

Gaussian pulse we w r i t e  the envelope as 

where T i s  one-half o f  the time between 1/e i n t e n s i t y  points.  The instan- 
P 

taneous frequency s h i f t  (Q = - a&@/ a t )  i s  given by 

The pulse f u l l  l / e  spectral bandwidth, BW, i s  given approximately by 

BW = 9, - %in  + "natural 

Where BWnatural i s  given by 2/T 
P ' 



2  
The extreme values o f  6e-& occur when k6' = 112. We subs t i tu te  the va lue i  

6  k lln t o  get v 

Note t h a t  i n  the absence o f  non l i nea r i t y  (n2 = 0 ,  BW = 2/Tp. 

This spec t ra l l y  broadened pulse i s  s t i l l  the  same durat ion as i t  was when 

i t  entered the nonl inear mater ia l .  The . r a t i o  o f  bandwidths a f t e r  and before 

s e l f  phase modulation i s  found by d i v i d i n g  Eq. (A-5) by ZIT t o  get  
P  

. . 

Since 6nmai = n 2 ( t 2 / 2 ) ,  Eq. (A-6) can be w r i t t e n  

which i s  Eq.( l)  . The value o f  R represents the maximum possib le pulse dura- 

t i o n  r a t i o  i f  the compressing d ispers ive delay u n i t  could be p e r f e c t l y  matched 

t o  ' t h e  e n t i r e  frequency s h i f t  curve. 
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Appendix B 

Compression o f  Chirped Pulses w i t h  Dispersive Delay Lines 

One can .describe, i n  crude terms, a dispersive delay 1 ine  as a passive 
. . 

element which delays d i f f e r e n t  frequencies d i f f e ren t  amounts. This d e f i n i t i o n  
, . .  . 

can be misleading because Fourier components are in tegra ls  over time. More 

accurately then, one might way, t h a t  the speed o f  a pulse through a dispersive 

delay 1 ine w i l l  depend upon i t s  center frequency. 

The cor rec t  approach t o  the problem i s  t o  describe the dispersive delay 

l i n e  as a device which adds d i f f e r e n t  phase s h i f t s  t o  d i f f e r e n t  Four ier  com- 

ponents. Since t h i s  i s  a l i n e a r  device, the input  i s  Four ier  analyzed, the 

repsonse o f  the device i s  found f o r  each Four ier  component, and the resu l tan t  

pul se i s  reconstructed. Only a 1 inear nonattenuating dispersive delay device 

i s  considered here, and thus the photographic spectrum IE(w) 1' cannot be a l t e red  

by such a device. The delay l i n e  t rans fe r  funt t ' ion can then be w r i t t e n  as 
" 

exp ( iQ(w) )  where Q(w) i s  r ea l .  For fl = w - wo we w r i t e  f o r  Ec, the complex 

compressed. ,f i e l  d 

- i w 0 t  
- e 

Ec - 2 IT 1-1 d t  dfl [ ( t ' )  exp i [ 6 ( ( t 1 )  + Q( t l  - t )  + Q(f l) ]  (8-1) 

2 Expanding Q(Q) i n  a power series, i .e., Q(Q) = Qo + Qlfl + Q2" i t  i s  

seen from Eq. (8-1) t ha t  Qo ( the  overa l l  phase) can be neglected. The qlfl 

term can be absorbed i n t o  the exp [ i R ( t 8  - t ) ]  by rede f in ing  t, and thus Q1 
2 corresponds t o  an equalFy un in terest ing group delay. The Q2Q term: i s  then 

the f i r s t  important term i n  the series, and Q(0) can be e f f e c t i v e l y  replaced 



2 i n  Eq. (B-1) by Q2R . One can then in tegra te  over R t o  y i e l d  

t t 2  
exp [i (;@(.I 1 - - 492 + a)] 292 (B-2) 

A 1 i nea r l y  chirped pulse, f o r  example, has a quadratic time dependence o f  

2 
641 ( i .e.,  641 = - 6 t '  ) .  Thus Q2 o f  the dispersive delay l i n e  can be adjusted 

so t h a t  the f i r s t  two terms cancel i n  the exponent o f  Eq. (8-2), which impl ies 

2 t ha t  641 = -f3ta2 = ( t '  14Q2); or, equivalent ly ,  t h a t  f3-I = - 4 Q 2  I f  one 

f u r t he r  assumes t h a t  6 ( t ' )  I s  a Gaussian w i th  T being the h a l f  11e inten- 
P 

s i t y  width, then Eq. (B-2) can be evaluated t o  note t ha t  the i n t e n s i t y  I ( t )  

i s  given by 

I ( t )  a exp [-t21 ( 2 f 3 ~ ~ ) ~ ~ ]  (8 -3)  

which i s  a Gaussian pulse o f  durat ion Tc = 4/BTp. Since f3T i s  o f  the oeder 
P 

o f  the pulse bandwidth, the pulse has been compressed t o  near i t s  uncerta inty 

1 i m i t .  Thus, an increase i n  the 1 inear frequency sweep. (and, hence, .in the 

bandwidth) increases the possible compression e f f i c i ency .  I f  the frequency 

sweep i s  no t  l i near ,  then i t  may no t  be possib le t o  compress the pulse as we l l .  

The converse o f  pulse compression i s  a lso o f  some in te res t .  A very shor t  

pulse w i l l  come ou t  longer and chirped ( the  time-reversed problem). This can 

be seen b y l e t t i n g  [ ( t ' )  exp ( i s $ )  = 6 ( t  - t o ) .  I nse r t i ng  t h i s  i n t o  Eq. (8-2) 



and performing the  t r i v i a l  i n t e g r a t i o n ,  the  on ly  term quadrat ic  i n  t i s  

, t h e  exponent which precedes the i n t e g r a l  . I f  a p o s i t i v e l y  frequency-swept 

pulse i s  compressed t o  a short pulse, then a short pulse would be expanded 

and given a negative frequency sweep. 
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APPENDIX C 

INTERFEROMETER USEABLE FOR COMPRESSION OF 
FREQUENCY-MODULATED PUlSES OF LIGET 

Comptes Rendus de ltAcademIe des F-coie Oiree and Pierre ~ournoie* 
Sciences de Paris 

(Transactions of the Academy of 
Gcience of ~ a r i e )  

Vol 258, 22 June 1964 
Pages 6lJ.2-6115 

A t  the price of a certain experimental complexity, 1% 
is possible t o  emit frequency-modulated laser  pulsee. 
If the law of modulation is suitable,  such pulses are 
compressible and one can expect t o  obtain luminoue 
powers considerably higher than those produced by 
triggered lasers .  

. . 

A nonmonochromatic k v e  is strongly disturbed i n  passing through 
8 dispersive structure.  If the characteristice of t h i s  structure are  
perfectly suited t o  the frequency modulation of the Incident wave, the 
l a t t e r  is 'presented at  output i n  the form of 8 brief  pulse whose peak 
power has been greatly increased. This technique, called the pulse- 
compression technique, is now commonly used i n  radars (since t h e  
r a t i o  of the pulse duration before and a f t e r  compression can reach 
1,000). For s i ~ l i f i c a t i o n  and a l so  fo r  a number of related reasons 
(poss ib i l i t  of t ranslat ion of frequency produced by Doppler effect  , 
f o r  example 3 , 6 l inear  frequency-modulation l a w  1s chosen, with the 
signsl taking the form of a ..gate of duration T frequency-modulated 
l inear ly  wi th  8 t o t a l  deviation JF . It is theoret ical ly possible 
t o  reduce the duration of t h i s  gate i n  the r a t i o  TJF,. 

Many dispereive structures,  whether or not formed of a group 
of phase-shifting c a m ,  have been suggeated .ad wed [lJ. The 

* Reeented by Maurice PO&; eesslcm of 15 June 1w. 
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in ter feromter  described here is well suited t o  the domain of the 
opt ical  frequencies, but could easi ly be extended t o  any other type 
of wave. 

Let us consider a d ie lec t r ic  s t r i p  with plane and para l le l  
surfaces of thickness e of index n immersed i n  a medium of index nf  
( ~ i ~ u r e  1 ) .  One surface of t h i s  s t r i p  is made perfectly reflective. 
A beam of l i g h t  of uni t  amplitude fa l l ing  on the other surface is 
reflected by it and refracts  a t  angle 8 . This refrscted wave under- 
goes, within the s t r i p ,  a ser ies  of p a r t i a l  reflection8 of decreasing 
amplitudes. The wave8 comlng from theee reflectlone fuse t o  give a 
wave of amplitude 

e'"'t 
being the amplitude of the incident wave, to a constrant equal t o  

(2en cos 8)lC (c, speed of l igh t ) ,  and r the coefficient 'of ref lect ion 
f'm the  amplitude of the plane diopter. 

The module of )L is obvlouely unity, and Its phsse a h i f t  9 In  
re la t ion  t o  the iecsdent wave is given by 

The group delay time of the wave i n  relat ion t o  the Incident 
wave def b e d  by 1" = -- &[dw is written 

/,, 4 I - . I .?) I I I .  I 
I,, r.- --- :.= /" - 

. . ( 1  - 1  I .? )  .- :!rcvsb~t,, I . t* .; I .  CII* . - sia' - - 
( - . . a 

This delay t h e  i f  maxi- and equal t o  ! . ( I +  r ) / ( l , -  r, for  each 
of the resonance frequencies of the cavity formed by tihe s t r i p  ( ~ i g u r e  
2). It varies nearly l inearly with W ~ O  i n  a wide area around 8 
point of inflection; it is t h i s  area which m u s t  be wed 88 w e l l  as 
possible, since we have chosen 8 l inear  frequency law. 

The pulse has a duration T and e frequency deviation JF 
centered around frequency F. The interferanreter wi l l  be determined 
by i t s  thickness e and ref lect ing power r. It is then necessary t o  
evaluate what difference'&' i n  relat ion t o  the tangent at  the point 
of inf lect ion it is possible t o  to lera te  without notably d e c r e a s w  tho 
height of the compressed m e .  It can be ahown [2J that th ia  
condition 1s fulfilled if atm I ~#-m' :  



Figure 1 -- The incident wave of amplitude eiut undergoes, 
on the parellel-face s t r i p ,  a ser ies  of pa r t i a l  
reflections. All  these partial waves together 
constitute a wave of amplitude ))eiWr. 

AtR being the variation of the delay time between the extreme fre- 
quencies of the band .AF. Depending on the characterietics of the 
pulse, it will be possible t o  use a more or  lees large portion of the 
curve M, and a glence at  a table suffice6 for choosin~ the ref lect ing 
power r which ensure6 the largest  product A ~ A F  . A t  the end of 

passages of l i g h t  through the interferometer, the pulse has taken the 
width (bF)-' below which it is impossible t o  compress it. These 
multiple ref lect ions can be obtained by para l le l  etructures of the 
type indicated, i n  Figure 3. 

An interferometer of the type described above can be suitable 
only f o r  the low values of r. For larger  values, it i e  necessary t o  
w e  nonabsorbing mltidiaIar?t,ric layera partial reflector.  The 
apparatus is calculated i n  the same manner, with care taken t o  intro- 
duce the correct phase s h i f t s  fo r  ref lectfan and transmission. 

It remains t o  be pointed out tha t  there a re  several methods 
f o r  obtaining brief  frequency-modulated pulses of l ight .  Certain 
triggered lasers  whose optical  cavity contalne e lec t r ica l ly  anieotropfc 
moleullletl furnish frequency-modulated -pulses theme3 v e ~  . If one 
desires -- and t h i s  Is indispensable -- t o  s tay  i n  control of the 
modulation law, it 6ufficee t o  place inside or outside the  cavity 8 
substance whose index of refraction is nodlfiable st wilL by meam 
of an external force (ebctrical, -tic, or muchenlcal, for 

[ 3 J .  





h e e r  pulse compression w i l l  perhaps provide 8 eolution t o  the 
problem of very high powers, powers which it ie .not  easy t o  obtain 
i n  the usual l a se r  materials because of t h e i r  manifold imperfections. 
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