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ABSTRACT . - ‘ o
Functional integration method is applied to derive Ward- : .'i‘ o
Takahashi identities involving the energy-momentum tengbr, currénts;
and fields.' In the process of the derivation, we have introduced
a variational method to derive conservation ltaws, in which the
improved énergy-momentumltensor of Callen-Coleman-Jackiw is obtained.
Establishfng the correspondence between the c-number relations
obtained in the functionai integration hethod and thé'q-number ones
resulting from the conventional way, we demonstrated that the two
approaches of the quantum.field-theory give identical results for
" the perturbation expansioﬁ, canonical equal-time commutation relations,

etc. They are, therefore, equivalent.

ZBg;gg[gh support in part by the Atomic Energy Commission.

—————————NOTICE— =

{ This report was prepared as an account of work b
sponsored by the United States Government. Neither ’
the Un.ite:d States nor the United States Atomic Energy ;
Cox:mmssnon, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any 1
legal liability or responsibility for the accuracy, com- '

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
pleteness or ‘usefulness of any information, apparatus, A ~

product or process disclosed, or represents that its use |
1| would not infringe privately owned rights, . | '
|




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



I. INTRODUCTION
In 1948 Féynman] proposed a path integral formulation of quantum
mechanics which was later extended to the tfeatment of tﬁe relativistic
quantum field-theory, praticularly, the quantum electrodynamics.2
Over the.last one and a half aecades, many authors have investigated
,tﬁis functionél integration fsrmulation of quantum field-theory and
demonstrated in the few caées:investigated,.that this formulation repro-

3,4

duces results of the perturbation theory. However, the hope that this

method would offer a closed solution of the quantum field-theory to by-

pass the difficulties of the perturbation calculation has not been

realized.

The formulation has not been particularly popular until now due

‘to its unfamiliarity and mathematical difficulties that have not been
completely worked out. Irrespective of its weakness in performing

.actual calculations, the functional integration method has recently

attracted ‘wide atténtion. It has been used to construct renormaliiable
gauge ffela—theoryS and representations of dual resonance amplitudes.
In this article, we shall:discuss an application of the functional
integration formulation to de%iVe general Ward-Takahashi identities
(called W-T idéntities hereafter) involving the energy-momentum tensor,

its trace, and gauge currents. The conventional method in deriving W-T

identities, involving the use of equal-time commutators among field

operators, is not suitable for the present purpose, since the energy-
momentum tensor contains time derivatives of field operators. Another

interesting method, due to Gross and Jackiw,7 using the idea of the




covariant T-product; has been‘successfully applied in a few simple
cases.8 The method, however,'seems to be quite involved in more compli-
cated cases. The functionaf iﬁtegration formulation appears to be a ﬁore
economical machinery to achieve the purpose.

In the fuﬁctional integration approach, like the conventional method,
one starts with a definite Lagrangian to providé a'dynamical framewprk;
névertheless, unlike the convéntfonal approach; equations of motion of
the fields will not enter the calculation, final results sétisfying auto-
matically constraints of the'équations of motion.

In Sec. 11, we obtain local transformations. of fields which generate,
in a variational method, conservation laws when applied to a Lagrangian.
'Especially, we derive gauge currents, the improved energy-momentum tensor

9

of Callen, Coleman, and Jackiw,” and its trace. The results of the gauge

‘currents agree with those of Gell-Mann and Lévy.~]O These same local
‘transformations are used in Sec. Il and IV as changes of functional
~integration variables in the path integral representations of N-point

~functions (n-pf's), theréby producing the W-T identities. The functional

formulgtion will bg reviewed briefly in Sec. {Il, where the procedure
of derivfng W-T identities wffl also be illustrated. In Sec. IV, W-T
identities and trace identities of n-pf's involving the eneréy-momentum
tensor, vector currents, and axial-vector currents are deered. In
Sec. V, we dis;qss the general relations betwéen W-T identities, con-
servation laws, and equal-time commutators. Section VI is reserved fqr
cbncluding remarks,

In Appendix A, we derive two expressions of the generating functional

-for a vector gluon interaction. The Jacobians of the transformations



of fields will be discussed in‘Appendix B. The Feynﬁan rules for the’

energy-momentum tensor will be given in Appendix C.

I1. GENERAL CONSERVATION LAWS

Assume that a systemAconsjsting of fieldS'qb, a=1, 2, ««+ n,is

described by a Lagrangian

Loy @y,u) s

where

= =2 900
Bkt

The action integral is defined as usual by

I El‘fé'i(cpa, cpa;u)deX- | '. (2.1) -
Ve consider a variation of the fields
9, () =0 () + 69,(x), - e
where |
995,00 + 300, 006 (g )
(2.3)

[u] denotes a sgt of lndlces‘u], LR w[v](x) is an anfinutgsnmal

b, (%) = [ 3 (IFV ¢

tensor function vanishing on the L-dimensional (infinite) boundary surface
together with its first m-th derivatives. In the following consideration

we need m = 2. ‘We also have from Eq. (2.3),
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P, o¥) =gy () (7,00 * 301 o (9,9
[ ] wlv]
+ au)[ ]( ) v (CPB:(P&)\) + apauw[\)] (X)GOé (@B’QPB,)\)-
(2.4)
The corresponding variation of tHe action integral is
S Y 17 [u] ul
51 = [d XM %, Fg +Bcpa’)\aF ak(aq’ou\ o )
PR SN 11 - SRR ) W Al
ax(aqx Ga * aqa,v avga h * axap(aqx 5 )}
(2.5)

fo show that Eqs. (2.2) and (2.3) will lead to a éonservation Iaw; let

us rewrite Eq. (2.5)

- Jatxuy, ](x){[s:lcpa FHl 4o (181g, 621 .8
where
_13_ _ of
[S]‘P = acp ap a(pa,p

is theAEuIer-Lagrange equation'for Py Upon the use of the equations of
motion of P 5Ivvanishes. Hénce the terms in the curly bracket of (2.5)
must lead to a conservation or partial conservation law.

In obtaining the above exbression, partial integrations have been

freely used. The quantity in the curly bracket of (2.5) cdrresponds to the

divergence of a current density arising from the transformation (2.3).

In the following, we list various conservation laws which can be obtained
from (2.5). Let us emphasize that the space-time coordinates are not trans-

formed in the présent derivation of conservation laws.
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A. The Euler-Lagrangian.Equation

:Take
Flel 5 (B a fixed index)
o] ap
Mpl _
Ga =0
then
ok a8 ag
§! = [d ' x w(x){== - 23 ( ) 3.
j | aqx A qu’x
B. Canoniéal Energy-Momentum Tensor
(k] _
ﬁx' =3 9y
AMul _
-0
; L v A »
8l = - Jd™x wV(x)3 Ty N
Where
. d& o A
Tkv - B¢a A qy,v ‘SKvS :
3

is the canonical energy-momentum tensor. Notice that

b

e = 0, (0P, (0

(2.7)

(2.8)

(2.9)

is actually the local variation of Dy due to a coordinate dependent

translation.ll




C. Angular Momentum Tensor

VAV Voo v PERTAY)
‘Fa = '3 Py - X O @t (z )anB
Géu] -0 v | 4 (2.10)

where the spin tensor,_Zuv, is given by

0 for scalar and pseudoscalér field

(zw)o“3 = “lf[vu’vv]aa for spin % field

9 g - 2.11)
%ulgvﬁ 9.6 o fpr spin 1 fleld‘. (2.11)

We obtain

51 = jdl*x' W™V (x) faxmm\)’ 8,00 - (2.12)
Where

My = TXuxv - Tkvxu - a;ifx (Zuv)aBQB‘r

Buv = acpzfu Cor, v T Sfi:;\, G, 36% s % * %(Ew)aﬁ %6,

(2.13)

The Lorentz covariance requires as an identit’yl2

A = 0; : : | A | kZ.Ih)

VRS

so that we recover the conservation of angular momentum from Eq. (2.12).




Here again, we see that Eq. (2,.10) is the local variation of the fields

due to a coordinate dependent homogeneous Lorentz transformation.

D. Symmetric Energy-Momentum Tensor

In the conventional approach, the symmetric energy-momentum tensor

can not be derived from a Spacé-time variation of the fields; it is

defined in terms of the Belinfante tensor,]3
B TS V- AR 38 3¢ . -
00 =T + LNz + ) + (3 .
v wy ¥ E [Bm 4x( uv)aﬁmﬁ o u( vk)aBmB y v( uk)aﬁwﬁ]
a)' C(, . . '(Pa,
(2.15)

In order to prove that GEV is symmetric in and_Q, equations of motion

have to be used since

(2.16)

N S - L

WV W o9, A acpa,)\

uv)aB @55

after identity (2.14) is used. 1indeed, in Spinbr electrodynamics, for
instance, the expression of st‘caléulated from Eq. (2.15) ‘is not
symmetric in pu and v, unless equations of motion are used to rearrange

some of the terms. To make st explicitly symmetric, we define

" L

o B B 38

2] = e + 0 =0 + — L PN

Y 3( 1AV vu) Y [acpa A 00y \ WV ap%s (2.17)
s

i+

which is, needless to say, equal to Gsv We shall see that our variational

method generates the tensor B#V. Consider the field variations

©

elul _ ow
o' a,

Al 2™ 0, - (2.18)



It is easy to check that the corresponding variation of the action

integral is

51 = - Jat (0 28, - . (2.19)

The variétiohs of fields, Eq. (2.18), do. not arise from a known space-
time ;ransformation. Still £q: (2.19) does not determfne the energy-
momentum tensor uniquely, it admits further modification by divergentless
symmétric tensors which do not contribute to the energy-mémentdm operator:f
Tﬁerefore, we shgll'define our final form of -energy momentﬁm tensor to
be |

6. =190. + : : ' 2.2
Ap Al *xu . T ' (2.20)

where Xku’ to be determined from the consideration of the trace of ©

"satisfies the constraints:

A’

' . )\ o
A T ° Xx K 0,

.and
| X a3 = 0 - ‘ . (2.21)
Ol ‘ _ g .

The last condition is needed to make sure that the energy-momentum vector

is still

o a3 3
Pu‘— jeou d.x = j Tou.d x.
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E. Trace of the Improved Energy-Momentum Tensor

We take

(]
Fozu - dofpoz
Gé[“‘]' =0 . : | (2.22)

where da is the canonical dimension of Dy

1 for bosons

N\

for fermions . : (2.23)

The variation (2.22) gives rise to the following change in the action

b a8 - VIR
61 = - fd x w(x) {da 3. % T dy 3. - P, a® ‘xp
o o\

(2.24)

The Lagrangian is a homogeneousiexpression of degree four except terms
which break the dilatation invariance. Assuming that the only dimen-

sional coupling constants are the masses, we can write

oL oL oL
(d_+1) ® +d — ¢ =4f - m — (2.25)
a Bcpa’x a,\ a acpa o o] ama

where m, is the mass of ¢y Substituting (2.25) into (2.24), we have

§l = - fdux'w(x){ai + axv + ma é%i}, | (2.26)

A

where 5“ is the trace of @ and
e TV



‘ 38 38 ‘
WV, =d_ — o - € ). . (2.27)
A a %, AT aq)a,u pA QB B

is called a field virial,]

. Notice that Eﬁ'; 93“ from Eq. (2.17). Vk

and
.0 for fields of spin % and 1
A~axm.w for field of spin 0. o (2.28)

for Lagrangians without derivative couplings in a renormalizable theory.
‘We shall restr{ct ourselves to the case (2.28). We requife that the
additional term in Eq. (2.20) satisfies

TREATI , '

X' = 9"V, , : 2,2

n ST o ‘ ( 9)
in order to obtain a proper trace relation for the improved energy-

momentum tensor, ie

b 3L _, o ' 4
Qp‘ +ma ama =0, | | (2..30)

Equations (2.29) and (2.21) determine Xuv uniquely

0  for fields of spin % and I

VRS . : . ‘

-1 @2 -g o™ )wz for field of spin 0, (2.31)
6 “uv VRS A ° » )

which satisfies the constraints listed in Eq. (2.21). Thus finally, we

obtain



=

.discussion of Gasiorowicz and Geffen

12

25 -S(3 3 -o. 2
®uv =% 6(aua‘v v 2 3)e

where ¢ = 1 for field of spin 0 and ¢ = 0 for. fields of spin £ and I.

OMV is the improved energy-momentum tensor.9

F.” Internal Symmetry Transformation

* The variations of fields defined in Eqs. (2.2 - 2.4) can be applied

‘to the cases of internal symmetry transformations.. They are a generaliz-

" ation of the transformation proposed by Gell-Mann and Lévy,]0 which

Alu]

corresponds to Ga

=0 in Eq. (2.3). In more general cases, however,
gauge transformations contain the Gé[u] term. (See, for example, the
' ‘ ’ 15

on the Gauge transformation of

chiral Lagrangians containing vector and axial-vector fields.) In the

present paper, we will restrict ourselves to the qése of Gé[g] =0 and

will discuss it.in Sec. 1],

P11, FUNCTIONAL INTEGRATION FORMULATION OF QUANfUM FIELD-THEORY

In this section, we review briefly the functional integration
formulation of quantum field-theory. For definiteness, let us take an
SU(3)'symmetric model containing a triplet quark field {(x) of mass m

interacting with a singlet vector gluon field BM(X) of mass M, for which

we have a Légrangian»
£ = 200 (Y53, - My + 3 13§00V - m())§ ()

2
- 18,008V () + -8 (8% (x)

- (Y08 (x) | (3.1)




with
Buv(x) EvauB\)(x) - avBu(x).
The derivation discussed in Eqs. (2.15 - 2,32) gives (note that qu = aﬁv
in the present case)
ATy s vl - 3T .
qu(x) = 4[¢(X)yu8v y(X) avw(X)yuw(X) + B e—y]
(3.2)

'-'B#l(x)evX(x) - %Kakaxu(x)BQ(x)ff boe—sv) - 9u;£

and by making use of equations of motion, we can prove the trace relation

) = 00 = my(x)y 00 - w8, 00 8 () (3.9

which is just (2.30). For later use we list the SU(3) curfénts, vector,

axial-vector, scalar, and pseudoscalar, in this model

V00 =¥y, 5 ) (3.L+a)
a - | . )‘a '
Au(x) = W(X)YMYS 5 ¥(x) (3.4b)
o
s%(x) = y(x) j? (%) | (3.h4c)
a - " xa . .
Po(x) = 4(x) iyg 5 ¥(x) 4 (3.4d)

- + 8, are the Gell-Mann matrices.

where Ay » @@= 0,1, 2 -
In the functional integration formulation, the vacuum expectation

value of ‘a time-ordered product of n functions of fields, Q](x])5

Q,(x ) is given by the following functional integral



Th
(7@ () + + + Q(x))),

S R e i
= N7 [ Oy 8,0, (x) Q (x) e, (3.5)

where | is the action integral defined in Eq. (2.1) with £ given by Eq.

(3.1). N is defined by

N= agq;aa)@ssu el! | (3.6)

and gives the vacuum amplitude. In Eq. (3.5), Qi(x) on the left-hand
side fepresents a function of the fields as Heisenberg operators, while
on the right-hand side it represents the.same function of the fields as
integration variables. The T* symbol has dugl meanings. First, it
'means the T*-prﬁduct of dea énd Nishijima'.,]6 in Which derivatives of.
operators inside a T-producf ére defined in terms of the dipole formu]a,

i.e,

oo
W

‘ A o) | Je) '
TR0 - g = = o5 TEEm -0y, )

This follows difectly from the definition of the n~-pf in tefms of thg
functional intégration (3.5). The symbol T*Astands also for covariantized
T-product as in.the case of the vector'meson_propagator. No;ice that
any S-matrix efement can be exbressed in termé of a functional integral
of the form (3.5), if we take Qi(x )'s as asymptotic, in- or out-
fields.

In practical calculations, (3.5) can be evaluated by means of a

generating functional defined as
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- By = -1 ' (\—
z2[n,n,J"] = N J“asqu.wsu_

i R0 + R0y - F )8 ()]
| | | (3.8)
where ﬁ(x), n(x) and Ju(x) are external sources fof the spinor and vector
meson fields; and n(x), n(x), ¥(x) and ¥(x) anticommute with each other.

Then

T T8, (2) - - )

3 _a ) "y [5) L. Z[n’B’Ju] - .
an(x) a(y) aM(z) | n=n=J=o0.

(3.9)

=3

"Explicit forms of the generating functiona]_.wii] be derived in Appendix A.
Let. us défive an axfal-veétor W-T idéntity making use of the |

formulation ofjphe functionél integration. .Thiﬁ serves as an illustration

of the procgdure‘which will be used over and over-again in Sec. IV. We A

consider the transformations of fields

, N
y(x) - (1-+ iw(X)v53?)¢(X)

_ _ o

P(x) = y(x) (1 + iw(X)y5 <)

B (x) =B (x). . . A | (3.10)
Y P .

It is easy to show that under the change of variables (3.10),

=1 fd 0P 00 - 2m 07 (0] + 062 (x). (3.11)



16

For deffhiteneSs, let us derive the axial-veétor W-T identity for the

AVV vertex. Consider
T OVE)) = W opsies, e (3.12)

Changing the integration variables in Eq. (3.12) according to (3.10),
the value of (3.12) is not éhanged as leng as the integral exists, and

we obtain
! voB - [V° ) . w(y) ad(y)]
N [ oyoy08; e abd @Y1 Ay

’ . . LI' A.Q a
V() + £, w2 ad@)] el T dxe 00 [0A 00 - 2m P T (x)]

+ O(wz(x)) = ihdependent of_w(x),v-'. o (3.13)

where the Jacobian of the transformation (3.10) is unity (see Appendix c).
DIfferentiating;(B.lB) with réspect to w(z) and setting w(z) to zero, we
obtain

b

S (A (2)8(z - )

0=n" Jﬂwﬁmu{fabd ‘As(y)V\c,(Z)ﬁu(y -2+ g v
+ i V:(Y) V\f(z)[a)‘A:(x) - 2m PP ()]} el (3.14)

In the conventional notation this is

S (TS v V@) = 2m (%00 (Y (),

L

+ ity TTAIME@))g 6%y =0 + ity T 0L WIAL@)Y, 64 (z-n).

(3.15)

This is just the naive axial-vector W-T identity for the AVV vertex.




17

With Eqs. (3.9) and Eq. (A.16) or (A.24), a perturbation expansion can
be obtained for. an n-ﬁf° The result is identical to that of the conven-
.tional_épproach. In the following we give a brief consideration of a

regularization scheme to eliminate divergences of the theory. We shall

17

follow the scheme of Pauli-Villars-Gupta. In addition to the physical

spinor fields § and § and the vector fields BM’ we introduce one auxiliary

. R. - L .
. vector field B“ of mass MR and n aux1I|§ry fermion fleld§ ¢], ¢2, . . "-wn

of mass Mys Moy o o vy M respectively. We denote ;he physical spinor
vfield and its mass by ¢0 and Mg In the end, MR and My » L=1,2, ... - N,

go to infinity. .  The Lagrangian is

6 =3 E Ty (x)(.z m ¥, () + 4, () (- jE - my, (%)}
- 58, (08" 00+ 3n%, (08" () - 38, (08" (0™
2 | | | '
+ 3N 81 (x) B (x) - zw()r ()(B()+B()) (3.16)
R u X | gL o 3 X ¢L x | X x _
+

R ) 170

R e e
where Buv(x) |s.def|ned similar to Buv(x) (see Eq. (3.1)).
ja(x), with & rebresenting the internal symmetry and Lorentz tensor indices,
répresent Su(3) currents, energy-momentum tensor, and its trace, their
explicit expressions are given previously in this section. Now, fhey con-
tain also the regulator field, for example, the vector current, etc., are

- n ‘Xé

etc. ﬁx(x) are external currents having the same tensorial properties as
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those of ja(x); Unlike the coﬁventional approach in which signs of the
terms involving a certain regulator fields are oppésite’to tHat of the
physical fields, their signs in Eq. (3.1b) are the same. This allows
us to introduce a small negative imaginary parf to all massés involved
in ordgr to obtain the #eynman Probagafors and maintain the convergencé
of'thé;functional integral. The regularization céh be achiéved by
requiring a ceftain regulator fields wj to be commuting fields rather
than anti-commuting fields. ;THis corresponds to'reqdiring fhose fields
to satisfy Bose statistics in the quantized fieid version. Following,
Lee,]7 we assign signature factofs C& = +1 (-1) to an anti-cbmmuting
(éqﬁmunting) fermion fields. My 5 C,, and n are chosen to satisfy

L

=0 - a=0,1, 2 ' (3.17)

but otherwise unspecified. We write the generating functional

T T U TR n — R _i8d x£(x)
Z['ﬂ,'ﬂ,J ’ra] =N T\] s " 'T]nJJ 0 ‘r&go‘@w&ﬁw&'@BuﬁBu e

. L = R—
| EJ 008,00+ 7, 0m 001

e

- ;jd"x[ﬁ(x)'au(x) s ¥ (x)8] ()]

N N

iZ Id xfa(x) Ja(x) ' . (3.18)
a

. : .

where 1) = M, and 1= ﬁ;; T, and ﬁi are taken to be anti-commuting (cammuting), if

the signature factor of the corresponding field is«c& = +1 (C& =-1),
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Notice that the auxiliary vector meson field couples to the external
source through an imaginary coupling relative to that of the vector
meson field itself. This may look to destroy the very existence of

the functional integration in (3.]7),4but it actually does not do so.

v

For in order to obtain Feynmann rules, we have to assign small negative
imaginary parts to all masses in the Lagrangian (see Appendfx A), which

in turn gives a negative real part eJ‘(BuBM + B&BR“ dx in the exponents

’ljlj(x)d x, providing a convergent factor to the integrand of the
functional integration. Since this term is quadratic in Bu, it dominates
- over the linear coupling term JuBu. [The above argument shows that_B0

must be treated as an imaginéry integration variable.] In Appendix A,

we shall derive an explicit form for the generating functional (3.18).

IV. WARD-TAKAHASH! IDENTITIES AND TRACE RELATIONS

Derivation of W-T identitfes_and trace relatfons in the fﬁnctional
integration method is stréight~forward once the transformation of fields
déstribed<in Sec. |l are used gs change of integration variables and tHe
Jacobians of the transformatiohsfare obtained. The simplicfty of the
present approach is due to the fact that the use of equations of motion
and equal time cpmmutation relations which are essential in the conveﬁ+
tional method can be avoided. The essentialAéteps for deriving W-T

identities have already been illustrated in Sec. 11l and in Popov

5

and Faddeevu and Lee and Zinn-Justin.
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A, Current W-T Identities

By current W-T identity, we mean those with respect to the currents

'eogo
2 (8 @5 ) (4.1)
> (T () pr(Z)JVISYI) oy b -1

where jii(xi), i=1,2, " .+ n, are vector, axial-vector, scalar, or
pseudosc;lar currents; bi are SU(3) indices; v, represents the Lorentz
‘indices in the case of vector and axial?vécgor cﬁrrents. The forms of
.the currents are given in Eqs. (3.ka - d). 'Our starting pojnt is

the n + 1 - pf defined by

b b] N bn
(T (exp(z).Jvl(y])'i""‘JVn(yn))>
= N-.]l Sy0y08 [0, (z) ‘b'( ) o 'b”( )] L (k.2)
- AI ¥y b Ap z Jv].yl _Jvh Yn/ i€ ) ' -

Axial-Vector W-T ldentities. Here

We consider the change of variables (3.10) in (4.2)

-1 — by : b, il
N fwsweulexp(z);v](y]) Ty (r)le
b b

=N [opsges [(8, (2) + 68, ()G (y) +8f (y))e - -
1 xp Ap 1 V| 1

B
Y1
G+ 65" ye! T, (1.3)

where the Jacobian of the transformation is unity and to the first order

.in w(x), the variations §l, etc. are
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-

sl = [ d* w(x)[équ(x) - 2m PP (x)]
A% (x) = w(x) F,, VE()
évz(x) =w(x) f AAS)(-X)
§Sb(_x) = w(x) 4 PS(x).
6P°(x) = - w(x) d_,_ 5€(x)
68, () = g, [3% (x)A2 (x) + 2m w(}i) P20

- %[ad»<x)éi(g) + 3w (AT | (4.4)
.4Since the Ireft-."hand side of Eq. (4.3) is indebenﬂeﬁt of w(x)., we obtain
. after diffe,renAt_iating it with- fespeét to w(x) and setting w(x) =0
0=n" j,\gwwsu{[(--;-(Ai(z)apa(z - x) + A':(z)a)\ﬁ(z - x))

o ) . X
" 9, @B -0+ 2m P00z 0) S ) - e T

E T
, . Aii(x),
: fab'ic c
' V\’i (x)

X .

e N N Bly; - %)
MONE
dab..c ‘ ( > .
i _ Sc(x)
. bn . - .
ORI | (1.5)

LM, @ a; .bl : ' .b" il
+ ild Au'(x) - 2m P9 (x)] vy (Y]) '4J\)n(yn)} e
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b,
The four cases in the second term correspond to jv' being a vector, an -
. ’ i _
axial-vector, a scalar, or a pseudoscalar current. £q. (4.5) leads to

the W-T identity

C 2 T A% ()6 P o
- i a—x; (T (A, () )\p(Z)JV] (v;) T Jvn(yn).)>o
L i T (p? by Ph
= - 2mi(T (P (X)g)\p(z)Jv](Y]) SR Jvn(yh))}o
g - TOy 0O | -* a .bl .bn
- 3(87 6 + 696 " 29,59 ) 7 8(z=xKT (A (2) ] (yy) e e 1] Ty D))
oz L n .
. *, . by b,
+ 2m(z - x)gy (T (P (Z)jv] (yy) = - - J’Vh.(yn))>o +
A, 0
fabic | '
VC
o b ' vi(X) b |
7 -x)<r"“(exp<z)jv‘:<y’,> NS SR NN
Pc(x) n
dabic
o _ Sc(x)
e (4.6)

When calculated according to Eq. (3.9) in a perturbatfon expansion,
Eq. (L4.6) contains totally connected parts as-well disconnected ones
involving products of two or more totally conrected m-point function,

m < n. Therefore, Eq. (4.6) contains the W-T identities of the totally
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connected (n+2)-point function, (n-#l)-pointAfunction, etc. This
decompésition 6ccurs in the conventional approach as a result of the
Wick theoreﬁ. It is easy to convince oneself that the W-T identities of
these connected (n+2)-pf, (n+1)-pf, etc. are‘satiéfied individually,
~Therefore, we consider the W-T fdentity 6f an n-pf to contain only |

totally connectéd parts for all the terms involved.

Vector W-T ldentitieé. The transformations for vector W-T
identities are

, - A,
P - (1 + iw(x) 5)(x)

YO =¥ (1 - iw(x) 5.
B (x)'—aBu(x) ' | o ‘ (4.7)

"

which lead to the following variations .to first order in w(x).

4J’duxw(x)auvs(x)

5l

61000 =w()f, 3500 (1.8)

88 (0)= -3 (V1) + 3 (V2601 + g, P (x)VS (x)

. .b . .. '
where JV(X) is.any of the four currents. Again the Jacobian of the
transformations (4.7) is unity and we obtain the W-T identity
|
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b b -
. O w,oa, . . .
- é;; (T (VM(><)9>\p(~Z)J\)l (y]) J\):(Yn))>o
1 g Tv c.T 2 GT a ). T* Va ).b'( ) . . ..bn( ))>
= - El(ﬁ)\ﬁp * a0, - g)\pg ) ;g 8(z = x)T (V_(x J\)‘ Yy Jv] Y7,
- ¥ ' bl c bh

R +-fabic<T (exp(z)jvl(y]) o "jvi(yi) T jvn(yn))>° 6(y; - x)
+ | (4.9)

B. Energy-Momentum Tensor W-T Identity

We consider

b, . b |
az (T8, (z)j‘v:(y,).- SRENCAN I - (4.10)

"The transformation of the field variables are, according to (2.18)

) - (F+ot(0a, + 3 B)\up(x)[yk,ypj)w(x)
W00 > T (1 + 50h 0 - § 200 [yyv )

5,0 = (5, + 5,7 (03, + 3Ly, DBYG) (k)

ghu pv T I Ol

for which the Jacobian is unify (see Appendix C). Transformations (4.11)

generate the following variations.

200 = ut003,5200 + g 2P €, ) 1700 (4. 123)

for the four types of currents; where
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g. g -g. g for vector and axial-vector currents
PNV AV AV ol
(EM)W =

for ‘scalar and pseudoscalar currents.

Making variable change (4.11) in the following n-pf

1 ——  b] - ’bn- v i . R
[ovsuss L, (0)) - - - 5 ) let (4.13)

we obtain, by the same procedure described in deriving the current W-T
'identity,

2T, 00) ) i)
' T (6, 5 J\,](yl . J\)n(yn Do

T

T4+ [6 6(x y) ay 5 ?(ka)v '(ay - 6(yi'-><))]

. by : b, b
T R A A IR WA

(4. 14)

C. Trace ldentity

We apply to the n-pf, Eq. (4.13), the transformation (2.22),

.€.
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(X)) o (1 + 3/2 w(x))y(x)

Tx) = (1 + 3/2 w(x)§(x)

8, () - (1 +au(x))§#(‘x) R (4.15)
which induce the variations

8, (x) = 3 is ()
for the four types of.¢urrents; and

Al = - j_dl’x[et(x) - 800w (x)

where Qu(x) and 8(x) are given by Eqs.‘(3.2)‘and (3.3) respectively.
_ u , ‘ ‘ , n

. Let us denote the Jacobian of the transformations (4.15) by J(w)

J(w)v% J¢§D) Ji(m)'JB(w),’ : | (4.16)

)
The n-pf (4.14) becomes

‘where J (x), etc. are the Jacobians of the transformations for { etc.

-1 — bll | 'b] | ®n Py |
J@)N ,rﬂw@wﬁsu[<1v]<y,>»+ N M R R VAR
n - ...n

el F Bl | (&.17)

Differentiating it with respect to w(x) and setting w(x) = 0, we obtain
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- — b, b, if
N ‘fswswﬂeu[jvl(yl) sy, (y)]e
n

0 8J (w |
w(x) =0

B (%)

b.

’ _ b | . b. .
0 +,N".r@¢svﬁeu[Jv:(y]> Ce 3 s e ey -0
ol . n :

. — o b o [
e, Ny IR0 @00 - 8GNt (18)

In the above ekpression,,@e have used J(0) = 1. Take first n = 0, we
obtain |
Bl i@ - e, =0 . o )

‘Notice that the secondkterm does not vanish in spffelof thé trace relation
n(3.3). This is because that 95(x) - G(X), bilinear in f?elds, is

defined by the functional integration as their T*-productS'which in
.fturn; dictatés:that derivatives be outside the T-product. ‘Thus the
équations of mofion do not‘appiy directly on.ffelds inside the T-produét

and hence Eq. (3.3) can not be used. In Apbéndix B,. we shajl prove

(k.19) by an explicit évalugfion. For n greatef than zero, we separate

successively dfsconnected parts with the aid of (4.19), we obtain finally °

the trace identity
' b b

gkp<r*(exp(x>jv:<y,).- JRENCANN
v, b] B bn
= (TGOS, ) * 5 ),
. . n :
B P S T Pt ) oo
6 (yy=x) + = == +8(y -x)]¢ by ) Jvn(yn))>0
| (4.20)

Ward-Takahashi identities with respect to cuf}ents and involving the trace

of the enerav-momentum tensor can be obtained easily, We shall not list

them here.
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' Although.all the relations defived so far in this section are in
terms of the vécuym expectation values, they are valid between any
physical states.  This is'becagse that any number of the jz(x)'s can
be substituted by asympotofic'fiélds at [x | - »; thus the vacuum
expectation values are converted into matrix elements between phy$|cal
sfates. Detailed argument. of this type will be given in Sec. V.

A.few examples of theuw-T identities and trace identities which
have been derived from éuité different methods in the 1iterature8 are
listed below. Let |

_ s
3,00 = v2(x) s V)
be the electrdmagnetic current. From (4.9); (4b.14), and (4.20) we |

obtain respectively

LD ot e
lgy—p;'{T (pr(X) Ju(}')}
- 1,0 _5_ . _§__ - . |
= 2{ 4(X)[9>\0 ax_ * 950 ") ,29‘)\9 0 =16(x-y), " (4.21)
. a l:': ‘
IW[T (GM(X)JM(Y)-}
‘ v

=%{29 Sy - x) ; + (gwgpv - pu) y}\ 5(y -x) 37 (y),

(4.22)

and

A kS A
92T (0,03, (1))

= T*(e<x)Ju(y)> - 316(x- )4, (). (4.23)
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We shall also give the following two relations between the energy-

momentum tensor and the fermion fields

LD o T
i ;(—)\-{T (pr(x)wa(y)wa(z)} A

= 160y =025+ (2 - ) 2T (4, (0T, ()]

oy : oz
o
+ 507y, (Y)\vB.(Z)H{[Y)\,Yp oot Pep % 6(y - x)
- v lgip S BS (z-%)) (.24

and -

1" (0, (¥ ()T

= T OV (NT() + AT WMT@)I Moy =) + 6z -]
(4.25)

Using the Feyﬁﬁan rules given }n Appendix C,. we have checked that, to
the lowest (zerbth) order in the spinor-giuon coupling constant, all"
the W-T identities, (4.6), (4.9), (L4.14), (4.21), (4.23), and (L.24),
and the trace identities, (4.26) and (L4.25), are satisfiedvnaively.

By ""naively,'" we mean this, inevaluating the ]oop integrations we have
freely shifted the origin of the integration.QariabTes, ignoring the
surface terms due to the shift. We shall comment on this aéain in Sec.

VI,
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,V. DER IVATION OF CONSERVATION LAWS AND COMMUTATION RELATIONS

FROM W-T IDENTITIES

In the derivation of W-T {déntitigs using conventional method,
relevent conservation (or partial conservation) laws and equal time
' éommutatdrs, as operator relations, are needéd. The present method
does‘not resortato this ih£ermediate knowledge, although we did use the
sahe-field tranSfofmations‘wHich gfve conservation laws from the action
pr%nciple (see Sec. 111).. Two questiéns arise naturally in the con;
struction of a field-theory soiey using the-fuﬁctional integration
‘method: (1) Do conservation laws follow from W-T identities? (2) Are
‘equal-time commutators among currents and fields derivable froﬁ W-T
“identities? Tﬁe second question is meaningfui only when thé equality
is assumed between the ﬁ;poiﬁt;functional integral, in which fie]ds'are
simply c-numbe; integration yériables, and the operator n-pf as expressed
:in Eq. (3.5).-:In the folfowiﬁé, we give a brief considerafién to the
above questjons, for whi;h we>have positive ansﬁérs.

To:illﬁstrate, let.us deduce a“euv(x) = Of-vConsider (h;Zh), we obtain
fpr finite xu,

tim 32 (776, (04 T())
: p

yooo

Z -
o

. e d : —
= tim (T 5 8, V() = 0. BENCR)
Yoo Moo |
Z 9=~
The seagull terms which covariantize the T-product do not contribute in

the above limit, since they contain at least one §-function involving the
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the arguments 6f two of the opérators in the T—product.]8 - If there are
more than three operators, the passing to tHe limit of infinite times

can be carried out successively, so that noﬁe of the §-functions in the
time coordinates will survive. Eq. (5.1) is simply the matrix element of
a)\e)\p(x) between one fermion states. We can generalize Eq.A(S.I) to more

general cases and deduce the following relation
(n, out|a“euv(x)|n3, in) =0 . (5.2)

for arbitrary |n, out) and Inf, iny. Clearly (5.2) is equivalent to -the
usual statement of the conservation of the energy-momentum tensor as an
operator equation.

The derivation of equal-tfme commutatipﬁ relations is slightly more
“involved. Let us first ;onsidér a simple caée, the equal-time commutator
‘between the time component‘of a vector or axial-vector current and an
arbitrary component of one of fhe four types-of current. Let us take a

current W-T identity similar to (4.10) without the energy-momentum tensor

- e TR ) = f

2 iSstly - %), (5.3)
¥

abc

where jz(y) rebresents one of the four currents. This relation holds
Between any physical state as explained above. Further, the conservatim
of vector current a“vz(x) = 0 follows by letting Yo * ® and X, arbitrary
but finite. We obtain immediately

.C

abCJ\)(y)&u(y'- x) + Schwinger term.

5(x -y ) V(x), 2(y)] = if

The Schwinger term can not be determined in the present approach; it is

intimately related to the seqgull term which covariantizes the T-product.
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We can also derive the canonical equal-time commutator of the fermion

fields.]9 Let us consider

N J ;sw,s?i;msﬂ(y)ei g (5.4)

and makeAthe field transformations which genérate the equation of motion
for ¥(x)

P(x) - y(x)

Y(x) - y(x) +w(x)

8,00 =B . (5.5)
Then, the variafion of the actfon integral is
61 = fd‘*x E(X)[i\(“aLL -m- gv“Bu(X)]v(X)- (5.6)

~ Substituting (5.5) and (5.6) into (5.4) and using the fact that the
Jacobian for the transformatipn (5;5) is one, we obtain

- i<T-f";(i\/M gaj -m - gquu(X))w(X)E(y))>o = 64(y - x). ,(5.'7)
X : ' ‘ .

Taking Yo 2 and xu finite,we obtain

(iyuau -m - gyuBu(x)?w(x) =0 (5.8)

between the vacuum and one fermion state. Agéin one can obtain Eq. (5.8)

between any physical states; it is, needless to say, the equation of

motion of {(x). Now, using Eq. (5.8) as an ‘identity in Eq. (5;7), we get
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YOV, 5003, 60x =) = 670x =) R

which is the familiar canonical equal-time commutator. The equal-time
commutator of the vector meson field can be derived in a similar way.

Consider the variation of fields
b)) Sy,
Y(x) = y(x)
8,00 ~8,(0) +w,(x - (5.10)

" which give rise to a variation of the action integral:

§l = J'dh*wu(x){[guv(apab + MZ) - auaV]B”(x)’- QE(X)YM¢(X)}

(5.11)

|
. - N . l
~ Substituting (5.10) and (5.11) into the following integral .
N [ oysy08 B (v)e'! )
! poA ] : ° 4
we obtain, after differentiation with respect to wu(x),

2

(T (L5, (0% + H) - 3,2.1870) = gF (v, 4(x) 18, (1)),

- L ' . :
=.19,,6 (x-y). | : . (5.13)
An immediate consequence of (5.13) is the equation of motion of B“(x)

[g,,(3% +#%) - 3.3 18%(x) - gf(x)y,4(x) =0. (514




3k
. We differentiate (5.13) to obtain
(8 ) - o Ty, 400)18, (), = 188 (x=y). (5.15)

The second term in the left-hand side vanishes as can be proved easily
by making a gauge transformation of the fermion fields. It gives the

conservation of the current E(k)yuw(x) and the vanishing of the equal-

Y

. time commutator [W(X)YOW(XL B)\(y)]x _ , - Equation (5.15) then becomes
. o o

@, (08, (0)) = =7 38" (x -y (5.16)
which giveé
| a“Bu(x) =0

which is the subsidiary condition; and for A = k, k = 1, 2, 3

(B (x), Bk(y)]x0 - yé‘= M—'z- 8k53(x-y)- | (5.17)

Two expressions.are obtained from (5.13) by the use of Eq. (5.14) for

‘w=2=1,2,3and \ = k,
8(x, =g 13,8, (0) = 3,8 (x), BL(N] + 3 {5(x, - v )[B, (x),8,(y)]}
=iguphh-y); | | (5.18)

8(x, - v,) [7*B(x), B, (y)] = 0. . | (5.19)

With the assumption that [B&(x),Bk(y)]x —y contains A-function and
o ‘o
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and its finite derivatives, one can see that the above equation is

equivalent to
[8,(x),8, (] =0 (t,k=1,2,3 -~ (5.20)

which must hold if B&, £ =1, 2, 3, are independent field variables.

Substituting (5.20) into (5.18), we obtain

(38,00 - 38,0, BT, _, = 198 (x - ). (5.21)

VI, CONCLUSION

The derivation of general conservation laws is formulated in terms
of a local variational method, in which the improved energy?momentum

9

tensor of Callen-Coleman-Jackiw” is derived.: Appl?ing the same trans-
formations of thé'field variableé to the functional integration as changes
6f integration vériables, we derive W-T }dentities involving the energy-
momentum tensor, its trace, and the SU(3) X SU(B) currents. The frame- 
work of the derivatién is a've;tor gluon model containing spin 5 quarkv‘
.fields and a massive unitary singlet vector meson. Using the Feynman
rules for the energy-momentum tensor described in Appendix C, we have
checked that the W-T identities and the trace felations derived-}n Sec, 1V
are satisfied naively (to the lowest (zeroth)lorder of the spinor-gluon
coupling constant). Undoubtly, some of the W-T identities and trace
identities cannot be satisfied in the explicit calculation when surface
terms due to the shift of origin of the integration variables are taken
into account. This is analogous‘with the well-known triangle20 and thel gen-

eral anomalies of W-T identities involving currents.ZI Brown gg_gl:,ZI
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have obtained two sets of miminaf solutions for the W-T identity
anomalies of SU(3) X SU(3) cﬁrrents; hopefully, by requiring a minimal
set of solutions for the W-T identities invélving.enerQy-momentum tensor,
@ unique set of the solutions of Brown et al. will emerge. This can be
readily investigated by means of tHe regularization scheme outlined in
-Sec. |11l and. Appendix A. Work on this is iH §rogfess. |
We also demonstrated that starting from a W-T identity, one can

derive the corresponding conéervation laws and éppropriateVequa]-

time commutation relations. TBis leads us to the conclusion that the
functional integratidn approéch is completely equivalent to'tﬁg convent%onal
approaéh. |

The virtue of the functional integratidﬁ aéﬁfoach lies in tHe fol]bw—

 _ing facts: (f) It render; the derivation of W-T‘fdentitigs straight-
 forward. . Information of the equal time commutation relatipns which is
_indispensable in the cdhvent}énal approach is unnecessary. The variatfons
of field variables and theAcorr¢5ponding‘w-Tjjdentities discussed in Sec.
11l and IV have coveréd most-bf the ihteresﬁing cases, Other W-T identities
can be derived-gasily once the corresponding variétions of the field
variables are found. (2) Thekfunctional integration defines covariant
T*-products and leads to consistent Feynman‘%ﬁ]es. As an illustration,

let us consider. the energy-mementum tensor of a free fermion theory.

One may write

8,500 = ZIF(AY,3 4 (x) - 3§00y 4 (x) el 6

by dropping the -gqu term, since the equations of motion implies that

£ = 0. Then the Feynman rule for the qu - ¢ - @ vertex becomes
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gly, (p+a) + v (p+a) ], - (6.2)

where p and q are respectively the momenta of the outgoiﬁg and . incoming

- fermions, insteéd of the rule derived in Appendix C, Eq. (C;l). Obviously
(6.2) does not satisfy (4.25) and (4.26). NéQertheless, the W-T
identities and trace relations-are also chaﬁged dQe to the omission of
the term, -guv£’ The changes can be easily arrived by means of the

following identity which holds for a free fermion‘Lagraﬁgian

(T yly)) - W‘-Yn>‘)5c>= —é-&zr;i,a(yfl-x)<r""w<y,) D, -
This follows f}om the fieldifransformafi;nv

V) > (14006, T - (1 +u (TG

.and an analysis of the Jacbbién of the transformation similar to that
described in Appendix B. The right-hand sides of Egs. (4.24) and

(b.25), for examples, are adding, respectively, with the terms

-3 gx; (5% y -x) + 5 (z- x)] (T (4, (¥) JB(Z)HO

and

- 206" (y =) + A%z =] (T () T, -

By these modifications, (4.25) and (4.26) are satisfied indeed with the

Feynman rule (6.2).
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APPENDIX A
DERIVATION OF GENERATING FUNCTION

In this appendix, we derive the generatihg functional -for the Lagrangian

(3.1). The generating functional is defined as

z[n,m, ] N".fﬁwﬁiseu’éi' SRR CONCETOLOREOING)

(A.1)

where N is given in Eq. (3.6) and 1,'m, ¢ and ¢ are anti-commuting

C;numbers, i.e.
{77:5} = {n:‘b} = MJ} = ." -+ =0.
We réwrite.thg;term in the exponent, '
el +'ifd“x[ﬁ(x)w(x)g+6(x)n(x) -Ju(x)Bu(x)]

(a5 (500 (x, D) y(x)] + i [T +70) y(x)]
= e . . .

SJM
38 00k (8% - i[dxE 008 (0, (A2)
e ; HV B a ’
where
]

D(x; —ﬁ—)'E iyua -m - igyu 4 : (A. 3a)

i W N 6%
K (x) =g (. + MZ)'- 32 | (A.3b)
TR TR pov :

Partial integration is used to obtain (A.2). ‘Let us change the variables

of integration
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B (x) =B (x) + [0 (x,y)a"(y)d
W n T |

w(X) - w(x) - IS X, -——)n(Y)d 'y

i
F00 - T6) - [i)s. (vax: —‘j;)d‘*y | (A1)
o 6 -
with
3™ K 00,66y = 550" (x-y) (#5.2)
ys By = g N
D (x, GJ”(x))SF(X"y’_aJ“) = 0%k y) L (A%.b)
‘The solutions 6f (A.5) are
l+ (k k /M ) L : A
D (,y) jdl* Su e Tkixy) (A6.a)
VA k -M +ie - o
'».SA(,;_Q—-) S(,)- dS( ) Jy’_é_)
SF X,Y 5Ju X,Y | j' z X,Z ! §J“( ) F 6J“
' h (A6.b)
L -ip(x-y)
Sg(x,y) = (EIE) f upeé—nh—le— (R6.c)

Substituting (AfA) into (A.1) and (A.2), we.oBtain
: . irdtaT : W ) + Lph v
st < W [oyaios 0000 /88 0)p(0) + B8 (0K, ()87 (0]
’ i 4 m )

. 1 n0)SL(x,y; 8/69%)n(y)dxdy e- Lfaxdy J* () bw(x:Y)JV(Y) -

(A7)
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Lo

To evaluate N, we write

Lim o
N = Y0008
o OJ‘ ‘v w i e

J -

. T T
il-i)d B (x
I X7 (x)B (x) .8

Repeat the same argument, we obtain

_ £im

_jp' -0

i fd“x[ﬁ(x)n(x, 5/65")4(x) +38% (%) Kw(x)sv(x)]
N

_j‘ aﬂ)w@eu e

I SR LRI ) U (a9
. € .

.We see from Eqs. (A.7) and (A.9) that the vector meson field can be
‘divided out from the numerator and the denominator of z[n,ﬁ,Ju]. It

‘remains to evaluate the following integral

A
_ il dxy(x)D(x, ) g(x)
Z2[¢" = J"‘*S‘mweI FEETRAIE | (A.10)

We shall follow Schwinger's apbroach'.22

' A B e
5—&1;[Qu] - Z[gu]-l Iwwgg,g(x)gﬂxw(x)elj‘d YW(Y)D(Y:CM)¢(Y)
6C (x) ‘

- igTr by St (A.11)

Then

é{mlz[d“] - ig‘rdhx Ggu(x)Tr[yuSF(x,x;QM)]. : (A.12)
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Symbolically the solution of S (x,y;gu)(see (A.6b)) is

r
SF(Q“) = (1 - igstug“)i] Se - - : | (A.13f
~Me obtain
sinzlch] = Tris(l - igSFyugu)(l - igsFyug“)"] | (A.IA)

where the trace is taken with respect to the spinor indices as well as the

infinite space-time coordinates. The solution is -

2[c™ = det (1 - igsFyug“); | | (A.15)
.We obtain fina?ly

Z[n,ﬁ,J”]} =N det (1 - igSF\/L —G—)e_i‘f d’_(dYE(X)SF(X';’-y;—G_u)n(Y)

Nl o
i ) | v
-5 |dxdy J7 (x)D (x,y)J (y)
2 by & (A.16)
where
i .p .V
. - 7 dxdy j7(x)D . (x,y)j " (y)
il Lim det (1 - igS v ] )e 2‘r - Hv : (A.17)
i : FPooop
i -0 6]

X , . 2 .
is the vacuum-vacuum amplatude“3 and (A.16) generates the proper amplitudes
with the vacuum-vacuum amplitude being divided out.

It is sometimes more convenient to use a different form for the

generating function
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i+ %m0 ¢ 00+ Fom() - (0B ()]

e

= e%fauxBu(x)Kuv(x)Bv(x) - iJ‘dAX(Ju(X) + gu(x))su(x)

<

| ijd‘*xwx)o(x)w(x) + ijd“x[’ﬁ(x)w(x) + Y ()n(x)]
e o

(A.18)
whe}e |
) - ) ¥ 7 (x)
D(x) = iy“'au -m. | - | | (A.19)
By the change of the integration variables
5,00 = 8,00 + [ 0, 660 (1°) + &)y
00 S 400 - [ s Gy dly
00 -0 - [ ﬁ<y)s_.F(x,y>d“y (A.20)

the generating functional becomes

e b - o
- d'x [y (x)D(x)y(x) +3B" (x)K ~ (x)B"(x)]
2ln,m,*1 = N [oysy8 eff X BORRATDY 2 b *

Lo A0+ 0, o) ) 80

e -ijd“xd“yﬁ(x) sF(x,y)r/(y)_-- r (A.21)
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Similarly, we can write

‘ ;' L - m v
. . d x[§(x)D(x)¥(x) + 5B (x)K (x)B (x)]
N=E [oysyos e'I MBI RRaY : v
n',m' -0 "

Lty €600, (e (y)

‘e
L 4 —
-i d ’ I
. ifd"xdy m (x) Sc(x,y)n' (v) (A.22)
and
guu(X) =‘9b 6 yu, ] . C : | (A.23)

Finally, we obtain

Y 200, o0 0T+ )
Z[n,ﬁ)Jp‘] = }‘—l'- 'e '

iy A0S, (oymly) T )
- e ‘ | |
where
- 2im N ‘%IdthuY §Iu(X)D (x,Y)€ 'IId xduy n' (x)s (x,y)n (y).
N = _ e e
77',77' -0 . - . (A.ZS)

Another expression for the generating functional which is more

convenient when the interaction is more complicated than we have specified
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in Eq. (3.1) and is suitable for the discussion of regularization can be

obtained by rewriting (A.2) or (A.18) in the form

b 5 w6 &
gfd % 8T](X) Y ()ﬁ(x) GJu(X)

e

ijd“x[E(x)D(x)w(x) + %B“(x)Kuv(X)Bv(X)]

e

'Id MY (x) + FIN(x). - J“<x)s (1. (A.26)

The generating functional becomes

gfdux
Z[N.7.0% = )7 e

5 VO W
IO (ORI
N i i o
-i [d"xd y[n(x)D(x,y)n(y) + % (), (x,y) 97 (y)].

. €

(A.27)

"To evaluate the'regularized generating functional, we apply the following

transformations ‘to Eq. (3.18) with the help of Eq. (A.26)

100 54,00 = fa* sL oGy, ()
V00 =F,60 = o 0 sy,
5,00 8,00+ [d'y o, (632

BE(x) —eBS(g) - ifduy st(x;y)J|v(y);




We obtain
27,00, 1% = N tim
Tys oo M5 I -0
i A
z 6 + i A

-d{ y M—GA[ - 1 ]
=0 ¥ X%%u>YMgnﬁﬁu) 50 M 0x)

8 & 6
'+ 'l—a X)J 51'\&()()’ 6‘]‘]&( x)” GJPI(X) 5J U'(x)

iz z fdxdyﬂ&(X)S (x,y)ﬂ£(y)
.- €

. e"%dedy[Ju(*)DMQ(X:Y)Jv(Y):+ J'”(x)D§v<x,Y)J'”(y>1,

(A.28)

where D (x,y) fg siﬁilar to Duv(x’Y)’ Eq.(A.?é) except that p is repléced
by MR, Ja(gﬁl%;y, -++) denotes the expression obtained from the external
current j (W( ) ~°°) with ¢£(x), etc. belng replaced by Gﬂ( ), etc. NRxl
is similar to the rest of the expression in (A.28) except that all the
external sources ﬁgo to zero. One can check that in a perfurbétion
expansion of Eq. (A.28), the vector meson propagators are always in the
combination '

DLL x,y) - D. (x,y)

and all the fermion loops g(m;Pj, e pj) are in the form

n

20 G 9(mgiPys o, Py).
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APPENDIX B

JACOB IANS

We shall calculate the Jacobians of the transformations (4.11) and

(4.15). Let the field variable be changed by a linear transformation

@' (x) = IK(x,y)w(y)duy . _ - ' (B.1)

24

If we assume that K - 1 is infinitesimal, then

T I Kol +Tr(k - 1) for Boson field
e .

J(%') =

T An Ke 1 - Tr(K-1) for fermion field (B.2)
e o ‘

K is a matrix in the coordinate space as well as the spin space.
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For the Transformation (4.11):.

RO T O S CRNRS S CLAALIC
x| (kgD ) = wM(x) j 5(x-y) - % wap(X)[vk,vp]Mx-y)
kg -1, = g, 0" (x) ﬁ 60c-y) + 3w () (5,9, -9, 90 -

(B.3)

The second terms in the right-hand sides of. (B.3) do not cbntribute,
- their traces with respect to the spin indices vanish, In the momentum
representation, the first terms of (B.3) are proportional to

|
Id xd y e'PX X( ) — 5(X Y)e Py
ax

= |px Xd x W (x) e-'(p P')xX | : (B.Q)Z

which does not contribute to the traces summing over the four-momenta.
Therefore, we have J(5¢'/6¢) =

For the transformation (4.15):

Using a discrete label, we write

(K, = Dy = dw(x) By i | (8.5)

for ¢ = Vs w,.or BM; where dw<= dw = 3/2 and dB =1,
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(x|(wa-l)\x)

Tr(K_ - 1) =¢C Zx
@ ~ (x]x)
=CZ,d w(x
xdy. (x)
Lim | L 4
and
-4 C 6 (x=0) [dNw() - | (8.6)
e " T |
where C = 4 for spin 1 and 3 fields and C = | for spin 0 field. |In

(B.6) we have used the fblioW?ng relations

(=) =6 1(x=0) : : B.7
Ax —0 DX, o

which can be broved by passing to the infinite space-time limit from the

box normalization. Hence the Jacobian appeafhg in Egs. (4.18) and (4.19)is

J(Q)

= 3, () I ) JBu«»)"
~1 - Tk, = D) - T%(W - )+ Tr(kBu - 1)
=1-8 Bu(x = Q) I'dqxw(x) tUOImE)p
Therefore
—M—laj(ﬁ) = - 8 §¥(x=0). (8.8)

I't remains to calculate (T*(Gi(x) - 9(x)))o.
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This is needed in deriving the trace identity. From Egs. (3.2) and

(3.3), we write
(T () - e, = - 3<T""(WX)(‘YM% - 97’8, () (),

- {Tz':((va(X)Bv(X') - QE(X)YH‘MX))B“‘(X» >o'
) )

(8.9) -
From Eq. (A.lé) we writé,,' ' |
- T (i, - - §§“Bu<x»¢(x)>>o
=3 THT(IvM, - m - g ()Y (0T (),
) 332‘ Trl{myua“ o 'QYMB“(X))G#{(Sx) .5nfy)2’2[n’;”m}|n=5=d,“= 0.
= 12i 5“(x’=o). . - | (B.10)

We use (A.24) to write - -

(T (K, (8% () - gakx)vuw<x))s“<«)>>q

Lim

6 5 5__ ., _6 =
{GJH‘(Y)[KH\) (X)GJV(X) T3 Ve = )]Z[n’n’Ju]}‘n=ﬁ=Jp’=0

y —=x 6m(x

= Li 64(x==0). | (811)
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Equations (B.10) and (B. 11) give
(T (x) = 8())), = 8i 6 (x = 0).

The Eq. (4.19) follows immediately from (B.8) and (B.12).

" APPENDIX C

FEYNMAN RULES

(B.12)

Feynman rules for graphs involving the energy momentum tensor and

its trace25 are given in Fig. 1 and Fig. 2. In Fig. 2, Fél)(p,q) and

[fﬁi}p,q)]c+ and respectively

rél)(p,q) = 3v, (p+a), +'%yv(p.fq)u - %9, (3 +d - 2n)

and

) e, -

+ - p°q +
(P9, * 9P )gg, - Pralg 9, +9,.9,

+ pT(qugvd *a9,0) *agPar, tRe )

+

1.2 + E
51 + +
2(P” *+a) (g, +o, +9,.9,0)

2p, (P 9, * P9

" pvo

, 2
*9,,(Pragg - Pa) - Mg g

-1 +q-
IS CHCH SNCH)

(C.I)‘

(C.2)

It can be checked easily to the lowest order in g that the Feynman

rules (i) and (iv) listed in Fig. 2 satisfy the W-T identity (L4.24)



b9

and trace relation (4.25). Rules (ii) and (v) satisfy the similar

identities for the energy-momentum tensor-vector meson vertex.
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FIGURE CAPTIONS

Fig. 1. A wavy line represents the propagator of the vector meson and

Fig. 2.

a straight represents a spinor,
Feynman rules for vertices involving the energy-momentum

tensor and its trace. For the meanings of the various symbols

: 1)
see Fig. 1. Fév)(p,q) and [Fﬁi)

by’Eqs, (C.1) and (C.2).

(P,Q)]uv are given respectively
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an external line representing

Fig.

energy-momentum tensor 8

.

trace of energy-momentum tensor

A wavy line represents the pr0pagatof of the vector meson and

a straight represents a spinor,
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(- | S
r,,(pa) (2),
,J.V .
o (L, (p.a]
q p
q,t p,o
(iii) (iv)
QQPQYX

Flg. 2.

(v)-

Feynman rules for vertices involving the energy-momentum

tensor and its trace. For the meanihgs of the various symbols

(1)

» . , (2) : Lo . \
sgé an.ll. va (p,q) and [Tﬁv (p,q)]uv are given respectively
by Egs. (C.1) and (cC.2). .
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