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Summary

Three methods of using characteristics for the evaluation of
solutions of equations of non-steady isentropic compressible flow
in one space variable are considered and compared,

One involves the use of a grid of characteristics, in terms
of Eulerian variables (§3‘1), two others involve use of the proper-
ties of characteristics to relate the flow at the beginning and end
of a given time-interval, but do not involve the use of a grid of
characteristics, One of these uses Eulerian variables (8§4), and
the other Lagrangian variables (§7).

The arithmetical process of solution is appreciably simpler for
the equations in terms of Eulerian variables rather than in terms of
Lagranglian variables. Also use of specified time intervals seems to
have several advantages over the use of a grid of characteristics,
in simplifying the numerical process, in providing results in the
form most likely to be required, namely the flow field at different
times, and in other ways (§4.1). Hence the use of specified time
intervals, in Eulerian variables, is chosen as the method to develop
further,

The extension to anisentropic flow is found to be numerically
simple and straightforward (§5) and the treatment of a shock appears
surprisingly simple (86).

Some tentative suggestions are made of methods for evaluating
unsteady flow in two space dimensions, retaining as much as possible
of the advantages of the use of characteristics in unsteady flow in

one space dimension (88),
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81, Introduction.

Two branches of fluid dynamics in which hyperbolic partial dif-
ferential equations occur are steady supersonic flow in two space
variables (flow in two dimensions or axially symmetrical flow in
three dimensions) and non-steady flow of a compressible fluid ir
cne space variable (flow in one dimension, radial flow in two or
three dimensions),

In numerical work on the evaluation of steady flows, much use
has been made of the curves known as '"characteristics" of such
equations [2, 4, 5, 7, 11, 12]. 1In the evaluation of non-steady
flows, it seems that much of the work has been done by direct numer-
ical integration of the equations in Lagrangian form, though pro-
posals for using characteristics in this context have also been made
and some work done on these lines (see, for example [13, 14, 15]).

In much of the work using characteristics, a grid of character-
istics has been used, to such an extent that use of such a grid is
often referred to as "the method of characteristics" as if there
were no other, But there are other methods of using characteristics,
and it is the main purpose of the present report to propose another
method which seems to have several advantages, at least for non-
steady flow in one space variable, It gives a simple numerical
treatment both of isentropic and anisentropic flow, and also promises
to give a simple treatment of the propagation of shocks, though this
has not been examined numerically, It may also be applied to
the evaluation of steady flow in two space variables, though its
adantage in this context may not be so marked, and to other ex-
amples of hyperbolic equations,

This report is written primarily for those who are immediately

concerned with carrying out calculations of non-steady flow, either

¢
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by hand or by means of automatic digital machines. Its main purpose
is to give practical numerical processes rather than formal theory;
for this reason some attention is given to details of procedure which
would be out of place in a presentation of general theory, The
methods discussed are suitable for hand calculation, and are simple
enough to be used on a large scale; exploratory hand calculations
have been made on an example of isentropic flow,

The methods should also be quite practicable for use with auto-
matic digital machines, though the details of the organization for
such a machine would depend on such machine properties as storage
capacity, nature of auxiliary store (if any), and means of transfer
to and from it, Although the best way of carrying out a calculation
by means of an automatic machine is often not the programmed form of
the method best suited to hand calculation, it seems likely that in
this case the best procedure for hand calculation may well form the
basis for a good method for machine calculation, This is another
reason for giving some details of the procedure found to be most
convenient for hand calculation, However, no detailed program in
terms of the facilities and order of a particular machine has yet
been drawn up.

In most methods for the numerical integration
of partial differential equations, integration is ;' /////

carried out along a set of curves C 1in the space

Z=C

of the independent variableg for example, along p—e

particle paths, along characteristic curves, or

along lines x = constant. The quantities which are integrated are
rates of change along the curves C along which integration is be-
ing carried, and the evaluation of these integrands may involve the

evaluation of derivatives in other directions, "across" the curves

r~
o
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C; for example, if the Eulerian form of the equations for one-dimen

sional flow
2u .

o

u—?_u_-‘-.].'. = 0
ot ox (P ox
2, 2
Zo+ £ (pu) =0
ot Ix /0

are integrated with respect to t along a set of curves x = con-

stant, the values of the time-derivatives, which are the integrands,
depend on the values of x-derivatives, which are derivatives "across
the direction in which the integration is being carriedj such deriva

tives will be called "crosswise derivatives", and the process of

determining them will be called "crosswise differentiation"l.

1Ths term "cross-derivative" 1s sometimes used for a derivative
2°u/2 x 2y obtained by an operation of differentiation (9/3 x)
"across'" the direction of another operation of differentiation

(8/8y). "Crosswise differentiation" is differentiation across a
direction in which an operation of integration is being carried,

The extent to which crosswise differentiation is involved is
an important point in the consideration of numerical methods for the
integration of partial differential equations, for the following
reason, The form of these equations suggests that some crosswise
differantiation will be involved in their solution; but in numerical
work differentiation is a notoriously unsatisfactory process, wherecas
integration is a satisfactory one, and it is usually desirable to
organize numerical calculations so as to avoid differentiation as
far as possible.

In the numerical integration of partial differential equations
it may not be possible to avoid crosswise differentiation entirely.
However, for hyperbolic equations in two variables, one property of
the characteristics is that they are curves C such that integra-

tion along them involves no crosswise differentiation; in the numer-

ical integration of such equations this is the important propey?y of

| o
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the set of characteristics as a whole,

As will be seen in §2.1, this property of characteristics is
only another aspect of a property which, expressed in different
terms, forms part of the general theory of characteristics of hyper-
bolic differential equations, But since the formal theory 1is norm-
ally developed without reference to practical numerical procedures,
the importance of this property in this context is not usually em-
phasized, It will, however, be recognized by those who have had
practical experience in theevaluation of solutions of partial dif-
ferential equations by methods involving the use of characteristics
and by other methods, It is hoped that the explicit expression of
this property in the above terms may suggest practical methods for
work in two space dimensions; a tentative first essay in this dircc-

tion is considered in 88,

8§1.1. Characteristic variables,

In the exposition of the general theory of characteristics (for
example, [4, 5]) it is customary to introduce "characteristic vari-
ables" ("characteristic parameters" or "characteristic coordinates"),
a and (3 » say, which are supposed defined in some way such that
the characteristics of one set are curves a = constant and those of
the other set are curves p = constant,

In the application of characteristics to specific problems, two
distinct steps may be involved, one involving use of the properties
of characteristics without reference to characteristic variables,
and the other involving the introduction of characteristic variables,
which, in numerical work, means the assignment of a definite numer-
ical value to each characteristic of each set., The first step does
not imply the second; but in the application of characteristics, the

formulation in terms of characteristic variables is sometimes adopted
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as the starting point, without considering whether it is necessary or
even helpful,

The introduction of characteristic variables is sometimes re-

ferred to as a "natural" step in the theory (see, for example, [4,

p, 42]), and so, from the point of view of the formal presentation
of the general theory, it may be, But any numerical work is con-
cerned with one or more specific cases, and from the point of view
of numerical work the introduction of characteristic variables seems
not natural but highly artificial, This is emphasized by the high
degree of arbitrariness in the choice of numerical values to be
assigned to the individual characteristics of a set, and by the fact
that if such numbers are assigned, they play no part in the calcula-
tion, They are quite irrelevant to the method considered in §§4—6,
and even in work on a grid of characteristics they play no part
except for indexing purposes. They seem to complicate rather than
to help the argument, and use of them has deliberately been avoided

in this report,

81,2, Some points of terminology and notation,

Following the usage of Courant-Friedrichs [4], "adiabatic" will
be used to mean that the entropy per unit mass of each element of
fluid is constant in time, and "isentropic" to mean that this con-
stant entropy is the same for all fluid elements in a region of the
field of integration considcred, It will be assumed that the motion
is adiabatic, except at shocks, but not necessarily that it is isen-
tropic.

The time-rate of change of a quantity ¢ following the motion
of a particle will be written dg/dt (except in 87 which is con-
cerned with the Lagrangian form of the equations); the time rate of

change of 4 along a curve C will be written (d¢/dt)c.
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The form of the t..rms involving the derivatives of highest
order is the same for flow in one dimension, radial flow in two
dimensions, and spherically symmetrical flow in three dimensions,
These will be classed together as "flows in one space variable" in

n=1, 2 and 3 dimensions respectively.

82, Eulerian form of equations.

The equations to be solved, and the numerical procedure for
evaluating a solution, are appreciably simpler for isentropic flow,
The equations for anisentropic flow will first be obtained, then
procedures for the calculation of isentropic flow will be considered
to illustrate in a simple context the essential features of the
methods to be discussed., The generalizations to anisentropic flow
and to flow with shocks will be considered later (B85 and 86 re-
spectively),

In Eulerian form, the basic equations are the equation of motion

) 1 2p
(2.1) 20, 4,2u,1 = 0
ot er P or

b4

the equation of conservation of mass,

(2.2) Ly, 2P
ot or

+ P;: = - (n-l)pu/r s

and the equation of state of the material,

For anisentropic flow, we must take the general equation of
state, and since we are concerned with notions in which the behavior
of each element of the fluid is adiabatic (apart from shocks), it

is convenient to take the equation of ‘state in the form
(2'3) p = P(/O, S) )
where s 1is either the entropy per unit mass or some function of

this quantity (for example the value, for a perfect gas, of p4/37,

which is constant on an adiabatic and has different values on differ-
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ent adiabatics), Then if s varies from particle to particle,

(20, (ZR), (5B, + (2B (5D, -

Now (BIV@%O)S is just the square of the adiabatic velocity of

sound a; hence (2,1) can be written

2

: 2u 2u o 1 ,2py, 28
(2.’-") —é—t--l-u +/D 'a—$+/-:7(—9—§)ﬂ—9-?=0.

For isentropic flow the last term on the left-hand side is zero since
s 1is uniform over the field of flow. For anisentropic flow, how-
ever, in which the behavior of each particle is adiabatic, s 1is

constant along a particle path, so

(2.5) 28 L 4 28_¢o .,
ot ar

82,1, Characteristics from the Eulerian form of the equations,

Equations (2,2), (2.,4), (2.,5) are three linear first-order
equations for three dependent variables, The procedure for obtain-
ing the equations for the characteristics and the variation of
u, o, and s along them is standard (see, for example, [4,
§§22, 31]) and its application to the equations of isentropic flow
can be found in various references (see, for example [4, B23]), We
require its application, however, to anisentropic flow,

¥e form a linear combination of these equations, and determine
the coefficients of the linear combination in such a way that the
differential operators operating on u,)O and s represent rates
of change in the same direction in the (r,t) plane. This is the
step which epnsures that the resulting equations for the rates of
change along the characteristics involve no crosswise derivatives,
and it is this property which makes this equation so attractive

for numerical work,
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The result of forming the linear combination of (2.4), (2,2)

and (2.5) with coefficients 1, A,/u/ respectively is

(2.6) [-Zg + (wrap) Bxlu+ [h 2 +{ 2+ (%00} S50 +

1 .
+ [/*éa"t' +{,u.u + 3 %\; 20} gr]s

= - (n-l)kPu/r .

11

The condition that these three differential operators shall represent

rates of change in the same direction is
1 ap
(u+)\p)/1={)\u+(a/Jo}/)\={/u.u ;—9—5)3/0/,
whence

4+
(2.7) v talp, e a0/ 8),.
Further, if C 1is a curve in the (r,t) plane on which (dr/dt)C

= u + kf), then for any function ¢(r, t)

[—99; + (wrhp) Log - (), .

Hence the root A = + a4o of (2.7) gives

fO
(2.8)  (gp)y + %G + /~’ (8), (§8); = ~(n-Dlau/r
along curves I such that
(2.9) (dr/dt)I =u+a,

and the root A\ = —aéo gives

d
(2.10) - (g%)n +/a_6 —éQT)II aﬂ ) (aT i1 = -(n-l)au/r

along curves 11 such that
(2.11) (dr/dt)II = U - a .

For isentropic flow, the third term on the left-hand side of
each of equations (2.8), (2.10) is zero, and equations (2,8)-(2,11)
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are sufficient to determine the motion, Further, ad/béo is an

exact differential, say

ad/o//J = dw(/O\

so that equations (2,8), (2,10) become
(2.12) a{"(e) + ul ) = =(a-law/r ,

(2.13) g {¥(p) - u} 1 = -(n-D)au/r

(the quantities {W(/g) + g} are sometimes called the "Riemann
invariants”, though they are not invariant except for the plane case
n=1),

If the adiabatic equation of state is
(2.14) p = AfsV +B ,

where vy, A and B are constants, then (and only then) w(/o) is

a constant multiple of a(/D); in fact

(2.15) W) = [2/(y-1)]a(P) .
Since [ng ) t u] are thc quantities obtained by integration of
equations (2,12), (2.13), whereas a@o } is required for the evalu-
ation of the integrands in equations (2.9), (2.11), (2.12) and (2.13).
the simple relation (2.,15) is very convenient for numerical work,
This is a practical argument for the addition of an equation of state
of the form (2,14) if such a formula gives an adequate approximation
to the properties of the fluid over the relevant pressure range,

For anisentropic flow, equations (2.8) to (2.11) give only two
equations for the three dependent variables u,/o , S. However,

there is a third equation, namely

(2.16) (ds/dt) =0

III

on particle paths, that is, on curves III such that

(2.17) (dr/dt) qq = v ; 5



AECU-2713

(this is not included in (2.6), since a non-zero coefficient of
equation (2,4) has been assumed in forming this lincar combination),

Equations (2,8)-(2.13) and (2,15) hold in any consistent set of
units, It may be convenient to consider the units so chosen that
the density fgo of the fluid, and the velocity of sound a, in
it, in some stgndard state, both have value unity. If the fluid

starts from rest at a uniform pressure and density, this is a con-

venient state to zdopt as a standard.

§3, Isentropic flow. Finite-difference approximation,

Consider first the treatment of isentropic
flow, f

The finite-difference approximation which t

will be used here is that expressed by the

trapezium-rule formula
X

1l
(3.1) f £(x)dx = % (f° + fl)(x1 - xo) .

*o

—rv

For brevity, it is convenient to write
(3.2) v=a+u, w=a - u,

(3.3) P=W(P)+u, Q=W(p)-u.

Then if A 1is the intersection of the characteristic of I through

B and the characteristic of set II through C, we have:-

(3.4) from equation (2.12) P,-F =-%(n-l)[(a|.yi')A+ (au/r )] (tA- tg)

(3.5) " " (2.9) vy =5 (v + vg)(t, - tg)
(3.6) " " (2413) Q-G =- (-1 (au/r),+ (ank )] (L, to)
(3.7) " " (2011) ryero= - 3 (wy + W)ty - o)

Up is given by

(308) 2u
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and if the adiabatic equation of state is (2.14), so that ng) and

a(p) are related by the simple formula (2.15[, a, is given by
(3.9) [4/(v-1)]a, = P, + Q, ;

for a more general equation of state, a, has to be deduced from
W, = é-(PA + Q,) and the equation of state adopted,

There arc several ways of using the set of equations (3.4) -
(3.9) to obtain an approximate numerical solution of the original
partial differential equations., One 1is to use a grid of character-
istics; another is to use specified time-intervals, relating the
values of a and u at selected points A at the end of the time
interval to values at the beginning of the time interval by means of
the characteristic relations (3.4)-(3.7). The latter procedure was
suggested some years ago as a possible process for use on analogue
equipment, and a schematic set-up worked out for a differential
analyzer [6, 83,8]. It was not at that time regarded as a practi-
cable method for digital calculation, but I have recently found it
to be quite practicable, and indeed it seems preferable in some
cases to the use of a grid of characteristics, Both these methods

will be considered, to give a basis for a comparison of them,

§3.1. Use of a grid of characteristics,

In this method, for cach pair of IQ@%&
points B and C 1located on the grid t 0 N\”'m
of characteristics as shown in the "
figure, equations (2.3)-(3.9) are re- B =
garded as equations for the four un- (g-'—t")n:u—q,
knowns Tps tA’ Up, apo They form a - v

set of non-linear simultaneous equations for these quantities, and
the problem is to organize the work of solving them. The following
[}

is the most convenient procedure I have found; it is similar to a

{ N
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method used by A, J, R. Schneider [13], but Schncider used two draft-
ing machines and graphical constructions for some stages of the cal-
culation, whereas a purely numerical process seems easier, more ac-
curate, more reliable, and easier to check,

First estimate a, and Upye If the characteristics for waich
the calculations are being carried out are chosen in a systematic
way, and tables of the results are kept as the calculation proceeds,
it stlould be possible to make these estimates quite accurately (in a
trial calculation, carried out with u and a expressed in units

such that the values of FJO and a, were unity, I found it

+

practicable to estimate both u, and a to - 1 in the third deci-

A
mal place).

Then from (3.5) and (3.7)

it

ta- tg [2(rc—rB)—(wA+wC)(tB-tC)]/(vA+vB+wA+wC)
(3'9) .
ta- to [2(rc-rB)+(vA+vB)(tB-tC)]/(vA+vB+wA+wC)

These quantities should both be calculated; the agreement between

the values of tA derived from them provides a useful check, which
should be used since these time-differences are used later in the
calculation,

Them r, - rg, r, - r. are calculated from (3.5), (3.7) and
the values of (tA - tB), (tA - tc) just obtained, and the agree-
ment between the values of T, deduced from them is a further
check that the arithmetic has been correctly carried out sco far,
The value of Ty obtained here is used in the subsequent calcula-
tion for this point,

The following seems the most convenient way to use formulas

(3.4) and (3.6). For brevity, write
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PX = Pp - % (n—l)(au/r)B(tA - tB)
(3.10) -
Qé = QC - % (n‘l)(qu/r)c(tA - tc)

Then the result of subtracting (3.6) from (3.4) is

2uy = Py - Q= P¥ - QX - % (n-1)(au/r),(tg - t5) ,

so that

1l
(3011) uA = [Pﬁ - Q*C]/[E + § (n‘l)(a/r)A(tB - tc)] H
the right-hand sidc of this formula involves only the estimate of

ap and quantities already calculated,

Then the sum of (3,4) and (3.6) gives

(3.12) W, = Pry + Q% + 5 (n-1)(an/r),[2t, - t5 - t.] .

If the equation of state is such that the relation between W(/o)

and agg ) is the simple relation (2.15), then (3,12) is a linear

equation for a, and gives
(3.13) a, = [P*x5 + Q% /{4 (v-1)} + 5 n-l)(u/r)A(QtA-tB—tc)] .
The valucs of u,, a, calculated from (3.11), (3.13) will be called

"final" values,

The procedure has been given in some detail since details of
procedure may have considerable effect on the case with which a cal-
culation is carried out. The one suggested has been reached as the
result of several exploratory calculations, and is quite practicable
for hand computation, A suggested computing schedule is given in
Table I,

An alternative procedure, after cvaluating Tas is to usc the
and u

A A

(3.6), hence evaluate P, and Q,, and then "final" values of u

and a, from PA pa QA' But, in some cases at any rate, the main

estimates of both a to evaluate (au/r)A from (3.4) ad

A



AFCU-2713
TABLE 1

Suggested computing schedule

17

for use when working on a grid of characteristics

A

Sum = S1 Sum = 82
S,/8 = ty -ty 52/s = t, - tg
‘s tc
Sum = tA Sum = t,
(vy + vg)(t, - tg) -(wy + wa)(ty - to)
Ty [*d]
Sum = r, Sum = r,

[Ts] , [

- %’ (n-l)(au/r)B(tA-tB) -3 (n"’l)(a“/i')c(A"tc)
m

Sum ="P¥, Sum = Q%
W ——————
B C
Prg + Q%
8y =2 - % (n-l)(a/r)A(tC - tg)

uA = (p*B - Q*C)/SB

sy = [4/(v-1)] - 3 (n-1)(u/r),(tg - tp)
a, = (P*g + Q*C)/s4

T27v-11Ta,
P= [2/(v-1)]ag+ vy Q= [2/(v-1)]a, - u,

+ u

Vi« 23 A WA= 834 - Uy

Note: Quantities in "boxes" | I

Notes

Check

Check

Only calculated

when adequate agree-
ment between in-
itial and final

values of u,, a
has been attéineé.

are copied from the initial
data or results of previous calculations.

¥ ] *j
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influence of the estimates on the "final" values of u, and a,

evaluated by this process arises through the dependence of (au/r)A
on the estimate of Ups this is avoided if the form (3.11), (3.13)
is used, Further, tB - tC is often fairly small, and then u

A
calculated from (3.11) is not sensitive to the a, in the denomin-

ator,

The procedure used to improve the estimates of Ups a, from
which the calculation for a point A starts may depend on the cir-
cumstances (accuracy required, intervals between characteristics,
etc,) of the particular calculation being carried out., One possible
procedure is direct iteration, the "final" values of one iteration
being taken as estimates for the next. Alternatively, the calcula-
tion for each point A may be carried out with three estimates,
say (ul(\o), a}(‘o), (u“(\o) + Bu,, al(\o)), (ugo), ago) + b8a,), and
the results used to determine what fractions of t&uA, L&aA. should
be taken to obtain agreement between estimated and "final" values of
Ups 8p; it would be advisable to make a check calculation with the
resulting values of Uy, 3, as estimates. This procedure is unduly
lengthy if fewer than four iterations, on the average, are required
when a direct iterative process is used, In the exploratory cal-
culations which I have made, I found that for a calculation to 4
significant figures, the first estimate could usually be made
closely enough bHr further estimates to be unnecessary.

An alternative procedure has been suggested to me by Dr, R, F.
Clippinger, who has had extensive experience of the use of a grid
of characteristics in the calculation of steady supersonic flow,

One can correct for the main part of the truncation error of the
integration formula by carrying out two {or more) independent
calculations with grids of different mesh size, and using the

results to extrapolate to zero mesh size on the lines of Richardson's

N
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process of "h2-extrapolation" [9]. Clippinger has found that if
this procedure is used, and values of the dependent variables at A

are found by an iterative process bascd on a consistent use of the

crude integration formula
x

1
j; £f(x) dx = (%, - x )1,
o
to give the first estimates, then there is no ultimate advantage in

carrying the iteration more than one stage further. For although
the results on each grid separately may be affected appreciably by
carrying the iteration further, the final results obtained by extra-
polation to zero mesh size are not, The same would probably be true

of equations (3.%) to (3.7).

§3°2. Boundaries,

If the fluid has a physical boundary, Toumdary h\‘{i\

the regionof the (r,t) plane in which the +
solution of equations (2,2), (2.4) is re- ?

quired will be bounded by a curve in the >
(r,t) plane which in general is not a

B
characteristic, >

R

An internal boundary will be considered here; the treatment of
an outer boundary is similar with the roles of characteristics of
sets I and II interchanged.

In working on a grid of characteristics, the points calculated
on the boundary in the (r,t) plane will be the points where the
successive character%stics of set II cut it, Let B be the last
boundary point to have been determined, C the point of inter-
section of the characteristic of set I through B and the next
characteristic of set II, and D the intersection of this char-
acteristic with the boundary curve,

Then for CD we have relations (3.6) and (3.7) with A re-

f
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e ———

placed by D, and need two more relations at D to determine rpns
tys up and ape The nature of these relations, and their numerical
treatment, will depend on the conditions at the boundary,

If the boundary is a solid wall whose motion is given, we have
rD = f(tD)J uD = f‘(tD) ’
where f(t) and ¢g(t) are given functions of t; in general thesec

give an implicit equation for t which may have to be solved by

D*
iteration (for each estimate of u,, aA).

If the boundary is a boundary between the fluid and an enclosed
gas (e.g., expanding or contracting bubble) in which pressure grad-
ients can be neglected, then (to the accuracy of the trapezoidal

integration formula)

1
(3.14) rp - rg =5 (uD + uB)(tD - tB)
for the motion of the boundary, and

(3.15) ap, = F(rp),
determined from the pressure-volume relation for the enclosed gas
and the pressure-(velocity of sound) rclation for the fluid,

If the boundary is a shock, the motion of the fluid on the
other side of the boundary is relevant, and the relations are more
involved; further, the motion is in general anisentropic. For this
reason, consideration of the treatment of shocks is postponed till
later (86).

The only difference betwcen cquations (3.14) and (3.5) is that
v in (3.5) is replaced by u 1in (3.14), Hence as far as the de-

termination of r, (now r the procedure of §3.1 stands, with

o)
v replaced by u, From Ips 8 is given by (3.15), then up is
given by (3.6) (with A replaced by D). ap then follows directly
from (3.15), and Q, then follows from (3.,6), (3.7), in which

T, is now known,
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84, Usc of specified time intervals,

In this process we consider u and

a as known functions of r at time ¢, I T
either as given initial conditions or ast'T \\\;><<i§;<:;/
results of a previous stage of the cal- v4§¢ \\ ()

culation, and we use equations (3,4) to

t, |—

(3.7) to determine at a set of \

Uar 34
specified values of r, at a later time —>

to + 5t. The equations are the same as for the process of §3,1, but

which variables are known, and which are to be determined, are dif-
ferent; tA’ r, are now known, and both u and a as functions of

r at time to; the unknowns are u r

A’ 23’ Tpe Tco
The best procedure seems to be as follows., As in the method of
§3.1, start with the calculation for cach point A with estimates
1 1
of Ups Ape From them form 'y - 5 vat, r, + 5 wAﬁt. To deter-
mine rg, write equation (3.5) in the form

1 1
(4.1) rA —§VA6t= rB+§VBﬁt .

The right-hand sidc is a known function of Iy, and the left-hand

side has been calculated, so that rg can be determined; similarly

ro can be determined from cquation (3.7) in the form
(4.2) r, o+ A w,Bt = re - & W.BE
* A 2 A c 27 *

The best way of performing these interpolations for rgs To is
likely to be different for hand calculations than for work with an
automatic digital calculating machine, If r + % vbt, r - % wbt
at time t are given at equal intervals of r, the determination
of rp for a value of (rB + % vsﬁt) obtained from (4,1) involves

inverse interpolation, For hand calculation it seems best to use

the data at t = to in the form of a table of

(4.3) u a v r + %—vbt w r - % wot

21
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as functions of r, at close enough intervals for linear interpola-
‘ r
tion of v and w as functions of (r + 5 vbt), (r - é wot); then

r'p is formed as

(4.4) ry = (rg + 3 vpot) - 5 vgbt ,

the quantity in brackets being evaluated from (4.1), and similarly
for Tae The advantage of this procedure is that the interpolation
is performed on v, which is multiplied by the time interval &t
and usually gives a relatively small contribution to r, rather
than on r itself,

For an automatic machine with a sub-routine for non-linear in-

terpolation with unequal values of the argument, a table of
u a r + % vHt r - % wbt

as functions of r, and requiring quadratic or perhaps cubic in-
terpolation, would probably be more convenient, and should not make
embarrassing demands on storege capacity. Relative to the method of
§3.1, some space is saved since it is not now necessary to store a
separate value of t f{for cach point.

In equations (3.4) and (3.6) the time intervals (tA - tB)
(tA - tC) are given. and not dependent on the estimates of u

and

A’ 2a
as they are in the method of §3.1; also they are equal, so that

formulas (3.10) become

o)
*
It

g = Pg - (au/r)gbt
(4.5) s
O*- = Q. - (au/r)cﬁt

and formulas (3,11), (3.13) simplify to
1
(4'6) uA = 23 (p*B - Q*C)
(5.7) Ay = (Pxg + @¥%)/[{4/(v-1)}+ (n-1)(u/r),6t] ,
of which the former does not involve the estimate of a, explicitly’

(as (3.11) does). ,

£

fus avm
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TABLE 11

Suggested computing scheme
for use with specified time tntervals

t
T
tsrét
t
> o
Ta
Est aA
Est uA
ay +u, = v, a, - uy = w,
- Tt |+ % w, bt
1l 1
Ty - 75 vAﬁt} Tt wA5t§
1 1
= Tg + 5 vBﬁt —rC - é-wcﬁt
Vg W
- % VBGt + %-wcﬁt
'y Tc
U uc
ag ag
2 2
y-1 2B y-T 2c
U ~Ue
-l ey @y st | + L (n-1)(RY) st
2 T B 5 Tk
Sum = P*B Sum = Q*C

ap = 7 (Prg - Q%)
P*, + Q%
sy = §4/(v-1)] + (n-1)(u/r) 5t
a, = (1>*B + Q*C)/s1

23
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A suggested computing schedule is given in Table II, Experience
with exploratory calculations with both methods is that the present
method [including the interpolation in the table of quantities (4.3)
is simpler to carry out in practice than that of §3.1. The comput-
ing schedule involves fewer steps of computation, as can be seen by
comparing Table I and Table II, though it must be remembered that for
the present method Table .II does not include the preparation of the
table of the input data; this, however, is very simple and can be
done separately from the calculations for the various points A, and
this division of the calculation into two parts which can be done
separately is probably an advantage rather than the reverse, both
for hand computation and for work with an automatic machine, at
least with one which has an auxiliary store,

The process for revision of the estimates of u, and Ay,
should it be necessary, fallows that of §3.1, but my experience with
some exploratory calculations has been that for work of moderate
accuracy the first estimates can usually be made closely enough for
such revision to be unnecessary.

For hand calculations it is convenient, as already mentioned,
to have the input data (4.%) at close enough intervals for linear

interpolation of v and w as functions of (r + % v6t) and

(r - %-w&t), and perhaps of u and a as functions of r. But it
is not necessary to carry out the calculations using formulas (4.1),

(4.2), (4.5) and (4.6) for values of r, at such close spacing. It

A
might, for example, be adequate to carry out these calculations,
for part of the range of r, for values of r, at two, four or
five times the r-interval required for the input table for the next

time interval, and to fill in the data for the intermediate values

of r by subtabulatione.

2The "end-figure" method of subtabulation [3] is recommended,

f

de N2
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S Comparison of methcd using a grid of characteristics (BB,Il

with method using specified intervals in time (E4).

One reason why the method of B4 is simpler to carry out numer-

ically than that of §3.1 is that now and tA are given and

Ta
known exactly, and only two quantities at A have to be determined
by integration, namely u, and ay, whereas in the method of §3.l,
all four of these quantities have to be determined by integration.
Another reason is that, as already mentioned, the time-differences
tA - tB and tA - tC on the two characteristics through A are not
only known but equal.

Further, for the calculation of unsteady flow the present method
has the considerable advantage that it produces results directly in
the form most likely to be nceded, namely the velocity distribution
in space at different times, Also, the value of 6t, and the

values of Ty at which u, and a are calculated, are entirely

A
under the current control of the individual who is doing the work
(or superintending the machine, in an automatic calculation); if at
any time it appears advisable to shorten the time interval 6t, it
can be halved (for example) without any previous notice of the
change being taken in the work; and small intervals in r can be
taken, for example near boundaries, shocks, or incipient shocks,
without difficulty.

This method in terms of Eulerian variables is appreciably
simpler than in terms of Lagrangian variables (57). It has there-
fore been chosen for further development; to anisentropic flow (§5)
and to the treatment of shocks (86),

Some, but not all, of the advantages of use of specified time
intervals in non-steady flow would also apply to the use of a

similar method for calculating steady supersonic flow in two space

variables, However, as Dr, Clippinger has pointed out to me, there
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are two advantages of the use of a grid of characteristics in this
context, One is that consistent use of a grid of characteristics in
different solutions (for example, flows round cone-cylinders at zero
for different cone angles) may sSimplify interpolation between
ihose solutions. The other is that a characteristic is a possible
line of discontinuity, and if such a discontinuity does occur, it is
convenient to determine the corresponding characteristic (this could
however, be done when using specified intervals of one independent
variable).

For n =1, the calculation is simplified by the absence of
the terms on the right-hand side of equations (3.%4), (3.6). In this
case the solution at A depends strictly (and not only to the ap-
proximation of the integration formula) on that at B and C only,
This corresponds to the "existence of a Huyghens Principle" in one
dimension. But the procedure n = 2 1is just the same as for n =3
whether the calculation is carried out on a grid of characteristics
or by use of specified intervals of time, there is no distinction
corresponding to the "existence of a Huyghens Principle" in three

dimensions but not in two,

84,1. Boundaries, +

Let B¥*, D be the points in the T \<:B"' 'J‘y
(r,t) plane representing the boundary tO*ét .b\
at times t,, to + bt respectively, £, ’

B\ C

The treatment of a boundary whose

motion is given is simpler than in work-
ing on a grid of characteristics, since now rn and up, are El;;g;
and it is only necessary to determine r'c and an by integration
along the characteristic of set II (for an interval boundary)

through D.

LA
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For a boundary at which therc is a given relation between r

and p, and hence between and the following procedure,

rp aps
which only requires an estimate of u,, sSeems convenient.

Estimate up and from it calculate

(4.8) rp = Tpe + 3 (ug, + up)st,

use tlLe relation between rp and ap to determine aps from this

determine r, from (4.2) (with D substituted for A). Then

2 1
up + 557 ap = Q% - = (n-1)[(au/r), + (au/r)D]st
and ap has been determined, so u, is calculated from

(3.9) up = [Q% - 5 (n-1)(au/r)bt - By apl/[1 + 3 (n-1)(a/r)pbt]

27

it rg or up departs appreciably from linearity in t during

the time interval ©&t, it may be advisable to evaluate some inter-
mediate points between B and D on the curve in the (r,t) plane

representing the motion of the boundary. This can be done by re-

placing 6t in (4.8), (%4.2), (4.9) by the value of (t, - tz) for
each intermediate point calculated.
84,2. Points near boundary.

Let B¥,D be the boundary points r
in the (r,t) plame at t = t_, t + 6t t+5t NP & 4
respectively, as in B4,1, and let A* ta ¢

be the point at which the character- 0*\\\ ﬁ‘\\\\\

istic through B* cuts the line

t =t  + 6t. The method of 84 can Bided
only be used for points A for which r, > Ty (for an internal
boundary; Tp < Tpy for an external boundary); for points A be-

tween D and A*, the appropriate equations are (3.4) to (3.7)
where B 1is the point at which the characteristic of set I through

A cuts the boundary curve,

E [ ‘J
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A* itself is given by

(4.10) ax - Tpx = 5 (Vyx + Vpe)Bt
from estimates of Upys 34, the value of r,, 1is calculated from
(4.10) and the rest of the calculation follows the procedure of 8,
Tge determination of A* should be the first calculation carried
out for each time interval, to avoid attempts to carry out the stan-
dard procedure of 84 for points A for which Tp < Tpye

Suppose the motion of the boundary between B* and D has al-

ready been calculated, Them, given A, we have to solve

1
(4.11) r, - Tg = 2-(vA + vB)(tA - tg)
for tB’ where rg and vg are functions of tB already known in
numerical form from the calculation of the motion of the boundary.
This equation involves the unknown tB in an awkwardly implicit

way. But we have also, for the motion of the boundary between B

and D,
(4.12) r, -Tg =5 (uD + uB)(tA - tB) (since tp = tA),
and can elininate rp from (4,11) and (4.12), giving

(4.13) ty - tg = 2(rA - rD)/(vA + ag - up)

The right-hand side only involves the point B through the term apg
in the denominator, and in most cases it should be possible to esti-
mate this to sufficient accuracy so that no iteration is required.
The value of tA - tg can be checked by interpolating rgs Vg for
the corresponding value of tB, and yerifying that the values sat-
isfy equations (4.11)., r, isdetermined as in Bu,

Then

u,, a, are given by (3.11), (3.12).
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5. Anisentropic flow of a perfect gas.

For a perfect gas the equations of anisentropic flow simplify
considerably, It scems most convenient to take for s a constant

multiple of the entropy per unit mass, that is

(5.1) s = (1/p8) log (o/P")

where f9 is a constant to be determined later, Then
(5¢2) p= pve?s

(a multiplying constant in p does not affect the final formulas),

and
= (9p/20)g = 7"t ofs - TpJo
(5.3)  (2(a*)/BP)g = (v - 1)a°)0, (D (a® 1/83)0 - Ba’

and

(5.4) (Sp/as;O =pp-= ﬂafo /Y .
Then along any curve C  in the (rzt) plane
2
2a(§2), = <5’?§;)>s (@2) + (222 ), @,

= (v - 1)/(a%/0 ) (d0/at); + B (ds/at)g
from (5.3), so
(5.5) (v - 1)(a/0)(a0/dt)g = 2(da/dt)y - Fa(ds/dt)c .

Now in both equations (2.8) and (2.10) there occurs the combina-

tion

(aj0)tdpo/at)e + (1/20)(Fp/0 5)o (ds/dt)g
Substitution in the first term from (5.5) and in the second from
(5.4) gives

(v-1)[(a/0)(dp/at)g + (1/a,0)(8 v/ s), (ds/dt)c]
= da/dt /j/’y ds/dt)c .
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It now appears most convenient to put
(5.6) /3== v(y «1),

and equations (2.8), (2.10) become

3Sauer (11, §23.4] quotes equations for anisentropic flow, in u, a, s
as dependent variables, and obtains equations similar to these; the
derigatian of the basic equations is in Sauer [10, §5.16, formulas
(55)71.

(5.7) (§)1 - 2§Dy = -(n-D)au/r
(508) (g%)ll' a(g"s")ll= "(n'l)au/r
where

P=[2/(y-1)]a +u, Q= [2/(y-1)]a - u

as for the isentropic case, and

(5.9) s = [1/v(v-1)] log (p/fDV)-

The other equations are (2.9), (2.11) as for the isentropic case,

and the additional equations (2.16), (2.17).

85.1. Integration using specified time intervals.

The equations for the anisentropic

flow of a perfect gas are so nearly sim- *

ilar to those for isentropic flow that tbt

much the same procedure can be used for ¢
>4

them,

We start with estimates of Up, 2,

The equations for the characteristics are thc same as for isen-

tropic flow, so exactly the same procedure can be used as far as
the determination of Tps Toe We have now, in addition, to find

rps the point at t = to on the particle path through A; this is

given by integration of equation (2,17):-

1
T, -fg=7x (uA + ug)6t ,
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whence
1 1

(5.10) ry - zuy 6t =ry+ xugbt
from which re is found by the same procedure as used for finding
rg and rg.. s(r) at t = t, has to be included in the table of
input data, and since 8 1is constant along a particle path, inter-
polation for s at r = re glives Spe This value is then used in
the further calculation,

The integrated forms of (5.7), (5.8), corresponding to equa-

tions (3.4), (3.6) for the isentropic case, with ty - tg=t, -t
= bt, are
(5.11) P, - Pg= - % (n-l)[(au/r)A+ (au/r)B]Bt + % (ay + aB)(sA -sp)

(5.12) @, - Q = - & (n-1)[(au/r),+ (au/r)ol6t + & (a, + ac)(s, -sc)

and the most convenient way of dealing with these relations seems to
be one which is an extension of that used for the isentropic case.

Subtraction of (5.12) from (5.11) gives
1

(5.13) Qu, =P, -Q = P¥ - Qx+ E'[aA(SC'sB) + aB(sA—sB) - aC@A—Qﬂ;
where P*;, Q% are given by (4,6) as before; the estimated value of
a, is used in the first term in the square brackets, the other terms
involve quantities already calculated.

Addition of (5,11), (5.12) gives

1 1 1
[¥(y-D]a,= P§+QE-(n-1)(alyi')A+ 5 aA(2sA-sB-sC) + 5 aB(sA-sB) + ?acéA'sC)
whence
(5.14) a, = [P*, + Q*, + 5 Jan(s, - s3) + & an(s, - s.)81/
y a= "B ctz72'% "%/ * 2 3\% c}
1
[{F/(W-I)E + (n-1)(u/r), + 5 (28, - sy - s.)] .

Equations (5.13), (5.14) take the place of (4.6), (4,7) for isen-

tropic flow,
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The evaluation of formula (5.9) only has to be carried out for
the initial conditions and at a shock; in the absence of shocks, no

reference has to be made to this formula in the course of the in-

tegration,

86, Shocks,
The treatment of shocks looks ':

involved at first sight, but turns

out to be fairly simple when using{2’+'56

specified time intervals, and is {b

probably simpler than in work on a

grid of characteristics,

Let R and S refer to the
shock at times to and to + 5t, and let suffixes + and - refer
to conditions just ahead of the shock and just behind it, respective-
ly; also, let U be the velocity of the shock, UR and rp, as

well as a, u and s as functions of r at time t = ¢ are

o’
supposed known, either as given initial conditions or as results of
calculation for previous time intervals,

If the fluid ahead of the shock has not been traversed by
previous shocks, its motion is isentropic and Sg, is known, Then

for the point S we have ten unknowns, namely:-

rgs Uss g, Ug , Sg_s 3g4s Ygys Tge "1 TC
and need ten equations relating them, These are given by the follow-
ing considerations,

The velocity of the shock relative to the fluid ahead of it is
greater than the velocity of sound in that fluid, so that the motion
of a particle of this fluid is independent of the presence of the
shock until the shock reaches it; whereas the velocity of the shock

relative to the fluid behind it is less than the velocity of sound

f L

(s

- S
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in that fluid, It follows that there are three characteristics

through S and intersecting the line t =t namely: -

o’
BS, a characteristic of set I in the fluid behind the shock;
B'S, a characteristic of set I in the fluid ahead of the shock;
CS, a characteristic of set II in the fluid ahead of the shock.
Each of these gives two relations between the unknowns, making six
altogether.
Then there are three relations, given by the conservation of
mass, momentum, and of energy, between the shock velocity U and
the values of a, u and s on the two sides of the shock, Finally

there is the relation between the velocity and position of the shock

itself,
1
(6.1) rg - rp=x (Us + UR)Gt .

These give the required ten equations, several of them non-linear,

However, it turns out that if they are taken in the right order,
it is necessary to estimate only one of the unknowns in order to
determine the corresponding values of all the others, It seems
surprising that it is necessary to estimate only one quantity in
order to deal with the equations for the shock whereas it is nec-
essary (as far as I have found) to estimate two quantities for deal-
ing with the fewer and simpler equations involved in calculating the
continuous region of the flow.

The quantity to start from is an estimate of the shock velocity
Uge Then (6.1) gives rg and, since the flow ahead of the shock is
independent of the presence of the shock, Tgw Tos Bges Ugys
can be found by the procedure of 84.1 without further reference to
the shock (if the flow ahead of the shock is anisentropic, the
method of 85.1 is used and gives Sgy. also). Then from ag,s Ug.s

Sgyo and Us’ the equations of conservation of mass, momentum, and
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energy through the shock give ag_s Ug_ and Sq._¢ For a perfect
gas, the Rankine-Hugoniot relations, which give the density ratio
and the velocity ratio through the shock in terms of the pressure
ratio, are not the most convenient relations to use for this pur-
pose; it seems more convenient to proceed as follows (see Courant-
Friedrichs [4, 868, a]).

Let u*s, u*2 be the velocities, relative to the shock, of the
fluid in front of the shock and behind it respectively, and a,
= ag,s 3, = Bg_ the corresponding velocities of sound., Then from
the equation of energy, the quantity % (u*)2 + [1/(7-1)]a2 has the
same value on both sides of the shock, and if we write

[(vy+1)/2(v-1)]1(a*)® for this common value, so that

(6.2)  (v-1)(u*))? + 22, = (y-1)(u*,)? + 2a,° = (y41)(a%)?

we have the result4

4See Liepmann-Puckett [7], formula (4,3); Courant-Friedrichs [4],
formula (66,02). u*,, u*, are the u,, u, of Liegmann-Puckett,
whose notation is otherwiSe followed hére,” The of Courant-
Friedrichs is (y-1)/(v+1), and their c* is the’ a* of Liepmann-
Puckett,

(6.3) u,u, = (a*

Now ay = ag,, and u*1 = US - ug, can be determined from the
estimates Us and quantities already calculated, so (a*)2 can be
calculated from (6.2), then u*, from (6.3), then a22 from (6.2).
Also ypéty = 324bw-1, and fgu* is conserved through the shock,

so the change in s can be calculated from
2 2
(6.4) 82 - Sl = [log (32 /al ) + (y-1) log (“Q/u]_”/'Y('Y"l)'

Also = Ug ~ u*2. Thus all quantities just behind the shock

Us- s
are calculated in terms of the estimated US’ and no further esti-

mates or iteration has been needed in this stage of the work,
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Finally we obtain two values of Ps_, one directly from

ps_ = [2/(7'1)138_ - “s_

and the other by determining rs from (4,1) and integrating along
the characteristic BS by (5.11), If the estimate of Ug 1is cor-
rect these values of Ps_ will agree. There are clearly several
ways of arranging the numerical work of adjusting US so that this
criterion is satistied, and some exploratory numerical work would
be necessary before the best process could be determined,

This procedure for dealing with shocks when using specified
time intervgls seems simpler than that required when working on a
grid of characteristics, The only special procedure required is
that for dealing with the relations at the shock itself, and as far
as the use of characteristics is involved, the interpolation re-
quired is no more than if 8 were a point in the region of the
(r,t) plane in which the flow is continuous; whereas when working
on a grid of characteristics, some special procedure 1is required
for departing f;om the mesh points of this grid in the neighborhood
of shocks (see, for example, [15]).

} § 4 u, and a are required at points A hetween S and

A
the characteristic of set I through R, they can be found by a

procedure similar to that of 84,2,

86.1. Contact discontinuities,

A surface of separation of two different fluids, or two volumes
of the same fluid but with different values of the entropy ("contact
discontinuities", see [4, 856]) can probably be treated in a similar
manner to shocks, but no details of procedure have been worked out,
The conditions at the boundary are continuity of pressure and of

fluid velocity.
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7. Lagrangian form of the equations.

The use of characteristics with the Lagrangian form of the
equations will only b considered briefly, as it seems to offer no
advantages over the use of characteristics with the Eulerian form,
The main purpose of this section and the following is to show why
this is,

Let q be a Lagrangian variable, Baving a constant value for
each particle, and different values for different particles such
that r is a monotonic function of q and Pr/9Dq exists,

The equation of motion is now
(7.1) 28 . 3 (2p),

dt P or
[(D/5t) now means (’a/g)t)q , a time rate of change for a point
moving with the fluid,] If at ¢t = t, the density at the point

r = ro(q) is _fDo, the equation of conservation of mass is
n-1 n-1

(7.2) pr or/aa= Py 91, /Da,

and finally

(703) Qr/9t= a .,

A particular choice of the variable ¢q which is often convenient is

q=17r,; another is

(7.4) g=m= Jvforon'ldro ;
if the latter is adopted, (7.2) becomes
(7.5) or/om = 1/0:"1

and (7.1) can be written

(7.6) Su_ _ .1 2dp
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§7.1. Characteristics from Lagrangian form of the equationss.

5This derivation of the characteristics from the Lagrangian form of
the equations is bhased on cne shown me by Mr. Hugh Flynn; it may not
be new, but I had not seen it before.

Only isentrcpic flow will be considered; the time-variation of
/9, u and s along characteristics must be independent of the var-
iables in the plane of which the characteristics are drawn, so the
extension to anisentropic flow can be taken over directly from 85,1,

For isentropic flow, Zp/om-= aeaf’/a m, so (7.6) is

(7.7) 28 Bl 2L,
ot 2n

Also from (7.3), {7.5)
du o ,Or 2 n-1
- = 1
 On 2t (am) at(//or

_ 1 a/"_ n-1 9n
- E
/021.“ 1 at pr® OT

|

so that

(7.8) +/0r' ?——— o (n-1)u

r

The linear combination of (7.7), (7.8) with coefficients

1, N respectively is

(—9% + ?\/orn'l Qa [(fy//o ) = + a“r 5w = -(n-1)Au/r,

The condition that the differential operators represent differenti-

2.n-1 &2

ation in the same direction is

n-1 2. n-1
AorT N = a‘r /(7\40)
whence A = + a. The characteristics are curves I and II in the
(m,t) plane such that

dm n-1

(7.9) -t a/or

and the equations for the variation of u and f) along them are as

before. i \
f A
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The main reason why these equations are not so convenient for
numerical work as those for the Eulerian form of the equations is
that the evaluation of the integrand in equations (7.9) involves
appreciably more work than for the corresponding equations (2.9),
(2.11) of the Eulerian form, First, for a fluid with an equation of
state (2.1%),

ap = const x a('Y“)/('Y'l),

and however the calculation is arranged, this power or its inverse
has to be evaluated at some stage of the work, for each point A;
secondly, each value of af) has to be multiplied by rn'l; and
thirdly, r has to be evaluated by integration of (7.3), whether
the flow is isentropic or not, whereas with the Eulerian form r 1is
given and equation (2,17), which corresponds to (7.3), does not have
to be integrated except for anisentropic flow., The first of these
points is the main one, and is quite substantial; one could hardly
expect simpler integrands to evaluate than the u ¥ a of the Euler-
ian form, The extra integration is a simple one, but it is an ad-
ditional step which has to be carried out for each point A with
the Lagrange form, The only advantage of the Lagrange form is that
in isentropic flow no interpolation of s as a function of m is

required (except at shocks), but this does not seem a sufficient

compensation for the disadvantages,

88, Motion in two space variables.

One possible method for calculating non-steady flow in two spac
variables is to integrate with respect to time the equations in La-

grangian form. These are
2

8.1 a®x _ _12p % _ _19p |
(8.1) G2- PR’ 2T 07

and, if (x,y) are the current coordinates of the particle initially

¢
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at (xo, yo), and /Ck(xo) is the initial density,

(8.2) Pofo = D(x 9)/Dx5, ¥5) -

This involves no’ reference to characteristics, but it involves six
numerical differentiations for each point of the (x,y,t) grid, four
for the four derivatives required in the evaluation of the density
and two for the pressure gradients; further, the latter involve
further differentiation of quantities already obtained by earlier
differentiations, Any simple way of avoiding some of these cross-
wise differentiations is likely to be an advantage, and particuiarly
if it avoids repeated differentiation,

In the numerical calculation of non-steady motion in one dimen-
sion, the advantage of the use of characteristics, in avoiding cross
wise differentiation, is so marked that for non-steady flow in two
space variables it seems worth exploring the use of integration
along selected curves in (x, y, t) space with the intention of re-
ducing the number of crosswise differentiations to be carried out,

It can be shown that in general there are no curves with the
properties of the characteristics in one space variable, that the
rate of change along any one such curve involves no crosswise diff-
erentiation, though of course there may be such curves in special
cases (for example, for motion with circular symmetry). Also the
entities in (x, y, t) space most closely corresponding to the char-
xcteristics in (r, t) space are characteristic surfaces, not curves;
it is possible that these could be used as the basis for a practical
numerical method (see [16, B3], [1] and [10], and other papers re-
ferred to in [10]), but such a process appears likely to be compli-
cated and not amenable to the direct production of results as
functions of t; the derivation of results ag functions of (x,y,t)

from resilts on a grid of intersectioms of characteristic surfaces

;
st U

39
—
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would be a substantial piece of interpolation!

The case of one space variable suggests that for two space var-
iables the Eulerian form of the equations is the more promising,

’
Consider therefore these equations, which for isentropic flow are

2 Z

(8.3) 2¢ruZ8ev e s oo

By P2V a® 3%9_
(8,4%) 9t+u?——+vm 7—9_.57_
(8.5) gtﬁ ug/x0+v 9/0+ /0( = 0,
and, for irrotational flow

7y du
8.6 - - =—==0,

( ) 2% 2 °

(8.7) (§)e=u+aa, (§he=v+ Pa,
we have
(8.8) (39, = ala JL+ pe - 828
(8.9) (&%), = ala %—;«- ﬂg" 5 32
&
(8.10) (%)= aa 2L, fa 25 PR+ )

The linear combination of (8.8), (8.9), (8.10) and (8.6), with

coefficients A,/M” (aé/?) and A respectively, is

(8.11) A (§) + A(EP), + /z( = (Aa—l) +(vB-r) 9“
+ (/wa +lc) + (/u,P )av {(a-)\)-g-,—‘- + (/3_/“»)_5

We want to choose Q,/B,A;, A,/A» so as to give equations involving
as few crosswise derivatives as possible.

First, it is clear that we cannot remove all the derivatives of
velocity components, for to make the coefficients of 6’u/9 x and
Jv/d y zero, we require Aa = L wp= 1 and hence 7\/U.Qﬂ =
whereas to make the coefficients of Qu/2 y and 2v/9 x zero, we

(
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require h/‘a/ﬁ = —iﬂe.
We can, however, eliminate all but one of the six terms on the

right-hand side of (8,11), in several ways, Four possibilities are
P +

{ p=p=0, r=a=%1, -o

A

(8.12)
+

o, /~=/@= -1,
M=B=K=0, A=a=+1 gives

a

Hi

0.

1]
il

8.1 d = - g 24
(8.13) g {u+ W)} ) = -2 22
on curves C  such that

(8.14) () = u+a, (Fp= v,

and similarly for the other alternatives, These glve altogether

four equations involving altogether

only two crosswise derivatives; T

three of these four equations like 1=t, |48t N

(8.13) would suffice to determine \\\L —y
u, v and W(P) at (x,y, t_+ bt) 8% ,)\( /

/
given u, v and w(/o) [or a(/o )] Z/C}// e ~ //%}y/
L

as functions of (x,y) at time t;
the fourth would serve as a check,
It should be possible to extend the procedure of B4,1 to deal with
this,

Alternatively, for irrotational flow it might be possible to
use only two of equations (8,13), involving the same crosswise

derivative (say those given by A = K = ¥ 1) and equation (8,6) ex-

i

pressing the irrotational character of the flow., It is not clear,
however, how this would best be done; it might involve a further
cross-differentiation, and then nothing would be gained,

From equations (8.3) - (8.5), it follows that flow initially

irrotational remains so. But rounding errors in numerical work will

41
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unavoidably introduce a certain amount of spurious circulation,

in a more or less random fashion, This might simulate turbulence;
but it is a purely numerical phenomena and would not appear in a
correct solution of equations (8.3) to (8,5), supposing that this
could be evaluated, Whether or not this "numerical turbulence" is
serious might depend on the circumstances of the particular solution
being evaluated; if it were serious, itwmight be necessary to derive
procedures for preventing it building up as the solution proceeds.

Another possible choice of coefficients in (8.11) is

(8.15) a= N = cos X, ﬂ=/&= sin %Y, £ =0.
Then the right-hand side of (8.11) becomes

23U v , 2u 2 9V
(8.16) -a[sin 3% " sin Acos 7<ax + ay) + cos 7( 5y] -

Now if ¢ 1is the angle which the velocity vector V at (x,y,t)

makes with the x axis, the quantity in square brackets in (8.16) is

sin (X- W)(Sin?(g% - cos 7;—%] -V cos (X- W)[sin}Yg-% - cos){‘g—‘g—]e

For )('= ¥, :3/= ¥ + T this gives two equations involving the
crosswise derivatives 2v¥/)x, 2V¥/dy only, and for X=v+ %’TT ’
X = Y + %""‘ it gives two equations involving 2V/ox, 3V/oy
only. For irrotational flow it might be possible to use one of
these pairs of equations with (8.6).

In all these cases, reduction in the number of crosswise deri-
vatives to be evaluated 1is achieved at the cosf of a considerable
amount of interpolation in two independent variables, Whether this
is avoidable, and if not, whether the price is too heavy a one, are

questions for future exploratory work,
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The treatment of anisentropic flow and shocks should wait until

it has been established whether it is practicable to treat isentropic

flow by a method of this kind, aud if so, what is the best method.
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