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Summary 

Three methods of using characteristics for the evaluation of 

solutions of equations of non-steady isentroplc compressible flow 

In one space variable are considered and compared. 

One Involves the use of a grid of characteristics, in terms 

of Eulerian variables (§5-1), two others Involve use of the proper -

ties of characteristics to relate the flow at the beginning and end 

of a given time-interval, but do not Involve the use of a grid of 

characteristics^ One of these uses Eulerian variables (§4), and 

the other Lagrangian variables (97)* 

The arithmetical process of solution is appreciably simpler for 

the equations in terms of Eulerian variables rather than in terms of 

Lagrangian variables. Also use of specified time intervals seems to 

have several advantages over the use of a grid of characteristics, 

in simplifying the numerical process, in providing results in the 

form most likely to be required, namely the flow field at different 

times, and in other ways (§'l'.l). Hence the use of specified time 

Intervals, in Eulerian variables, is chosen as the method to develop 

further. 

The extension to anlsentroplc flow is found to be numerically 

simple and straightforward (§3) and the treatment of a shock appears 

surprisingly simple (§6). 

Some tentative suggestions are made of methods for evaluating 

unsteady flow in two space dimensions, retaining as much as possible 

of the advantages of the use of characteristics in unsteady flow in 

one space dimension (§8). 
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Bl, Introduction. 

Two branches of fluid dynamics in which hyperbolic partial dif­

ferential equations occur are steady supersonic flow in two space 

variables (flow in two dimensions or axlally symmetrical flow in 

three dimensions) and non-steady flow of a compressible fluid in 

one space variable (flow in one dimension, radial flow in two or 

three dimensions). 

In numerical work on the evaluation of steady flows, much use 

has been made of the curves known as "characteristics" of such 

equations [2, 4, 5, 7, 11, 12], In the evaluation of non-steady 

flows, it seems that much of the work has been done by direct numer­

ical integration of the equations in Lagrangian form, though pro­

posals for using characteristics in this context have also been made 

and some work done on these lines (see, for example [13, 14, 15])» 

In much of the work using characteristics, a grid of character­

istics has been used, to such an extent that use of such a grid is 

often referred to as "the method of characteristics" as if there 

were no other. But there are other methods of using characteristics, 

and it is the main purpose of the present report to propose another 

method which seems to have several advantages, at least for non-

steady flow in one space variable. It gives a simple numerical 

treatment both of Isentroplc and anlsentroplc flow, and also promises 

to give a simple treatment of the propagation of shocks, though this 

has not been examined numerically. It may also be applied to 

the evaluation of steady flow in two space variables, though its 

advantage in this context may not be so marked, and to other ex­

amples of hyperbolic equations. 

This report is written primarily for those who are immediately 

concerned with carrying out calculations of non-steady flow, either 

V I > 
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by hand or by means of automatic digital machines. Its main purpose 

Is to give practical numerical processes rather than formal theory; 

for this reason some attention is given to details of procedure which 

would be out of place in a presentation of general theory. The 

methods discussed are suitable for hand calculation, and are simple 

enough to be used on a large scale; exploratory hand calculations 

have been made on an example of isentroplc flow. 

The methods should also be quite practicable for use with auto­

matic digital machines, though the details of the organization for 

such a machine would depend on such machine properties as storage 

capacity, nature of auxiliary store (if any), and means of transfer 

to and from it. Although the best way of carrying out a calculation 

by means of an automatic machine is often not the programmed form of 

the method best suited to hand calculation, it seems likely that in 

this case the best procedure for hand calculation may well form the 

basis for a good method for machine calculation. This is another 

reason for giving some details of the procedure found to be most 

convenient for hand calculation. However, no detailed program in 

terms of the facilities and order of a particular machine has yet 

been drawn up. 

In most methods for the numerical integration 

of partial differential equations, integration is -t 
t 

carried out along a set of curves C In the space 

of the Independent variable^ for example, along 

particle paths, along characteristic curves, or 

along lines x = constant. The quantities which are Integrated are 

rates of change along the curves C along which integration is be­

ing carried, and the evaluation of these Integrands may Involve the 

evaluation of derivatives in other directions, "across" the curves 
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C; for example, i f the Euler ian form of the equat ions for one-dlmen 

s i o n a l flow 

2JL+ u - ^ H - i ^ ^ = 0 
9t 9x r dx 

S ^ + - ^ (/?u) = 0 
3 t dx ^ 

are Integrated with respect to t along a set of curves x =» con­

stant, the values of the time-derivatives, which are the Integrands, 

depend on the values of x-derlvatlves, which are derivatives "across 

the direction in which the integration is being carried; such derlva 

tlves will be called "crosswise derivatives", and the process of 

determining them will be called "crosswise differentiation" . 

The term "cross-derivative" is sometimes used for a derivative 
9 u/^x9y obtained by an operation of differentiation (3/3 x) 
"across" the direction of another operation of differentiation 
{d/3y)» "Crosswise differentiation" is differentiation across a 
direction in which an operation of Integration is being carried. 

The extent to which crosswise differentiation is Involved is 

an Important point in the consideration of numerical methods for the 

integration of partial differential equations, for the following 

reason. The form of these equations suggests that some crosswise 

dlfferDntiatlon will be Involved in their solution; but in numerical 

work differentiation is a notoriously unsatisfactory process, whereas 

integration is a satisfactory one, and it is usually desirable to 

organize numerical calculations so as to avoid differentiation as 

far as possible. 

In the numerical Integration of partial differential equations 

it may not be possible to avoid crosswise differentiation entirely. 

However, for hyperbolic equations in two variables, one property of 

the characteristics is that they are curves C such that integra­

tion along them Involves no crosswise differentiation; in the numer­

ical integration of such equations this is the Important property of 
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the set of characteristics as a whole. 

As will be seen in §2,1, this property of characteristics is 

only another aspect of a property which, expressed in different 

terms, forms part of the general theory of characteristics of hyper­

bolic differential equations. But since the formal theory is norm­

ally developed without reference to practical numerical procedures, 

the Importance of this property in this context is not usually em­

phasized. It will, however, be recognized by those who have had 

practical experience in theevaluatlon of solutions of partial dif­

ferential equations by methods involving the use of characteristics 

and by other methods. It is hoped that the explicit expression of 

this property in the above terms may suggest practical methods for 

work in two space dimensions; a tentative first essay in this direc­

tion is considered in §8. 

§1.1, Characteristic variables. 

In the exposition of the general theory of characteristics (for 

example, [4, 5]) it is customary to Introduce "characteristic vari­

ables" ("characteristic parameters" or "characteristic coordinates"), 

a and /% , say, which are supposed defined in some way such that 

the characteristics of one sot are curves a = constant and those of 

the other set are curves /3 = constant. 

In the application of characteristics to specific problems, two 

distinct steps may be Involved, one Involving use of the properties 

of characteristics without reference to characteristic variables, 

and the other involving the Introduction of characteristic variables, 

which, in numerical work, means the assignment of a definite numer­

ical value to each characteristic of each set. The first step does 

not imply the second; but in the application of characteristics, the 

formulation in terms of characteristic variables is sometimes adopted 
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as the starting point, without considering whether it is necessary or 

even helpful. 

The Introduction of characteristic variables is sometimes re­

ferred to as a "natural" step in the theory (see, for example, [4, 

p, 42]), and so, from the point of view of the formal presentation 

of the general theory, it may be. But any numerical work is con­

cerned with one or more specific cases, and from the point of view 

of numerical work the introduction of characteristic variables seems 

not natural but highly artificial. This is emphasized by the high 

degree of arbitrariness in the choice of numerical values to be 

assigned to the individual characteristics of a set, and by the fact 

that if such numbers are assigned, they play no part in the calcula­

tion. They are quite Irrelevant to the method considered in §§4-6, 

and evon in work on a grid of characteristics they play no part 

except for indexing purposes. They seem to complicate rather than 

to help the argument, and use of them has deliberately been avoided 

in this report. 

§1,2, Some points of terminology and notation. 

Following the usage of Courant-Frledrlchs [4], "adiabatic" will 

be used to mean that the entropy per unit mass of each element of 

fluid is constant in time, and "isentroplc" to mean that this con­

stant entropy is the same for all fluid elements in a region of the 

field of integration considered. It will be assumed that the motion 

is adiabatic, except at shocks, but not necessarily that it is isen­

troplc. 

The time-rate of change of a quantity fi following the motion 

of a particle will be written d^/dt (except in §7 which is con­

cerned with the Lagrangian form of the equations); the time rate of 

change of fi along a curve C will be written (d^/dt)p. 
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The form of the t rms Involving the derivatives of highest 

order is the same for flow in one dimension, radial flow in two 

dimensions, and spherically symmetrical flow in three dimensions. 

These will be classed together as "flows in one space variable" in 

n = 1, 2 and 5 dimensions respectively, 

§2, Eulerian form of equations. 

The equations to be solved, and the numerical procedure for 

evaluating a solution, are appreciably simpler for Isentroplc flow. 

The equations for anlsentroplc flow will first be obtained, then 

procedures for the calculation of Isentroplc flow will be considered 

to illustrate in a simple context the essential features of the 

methods to be discussed. The generalizations to anlsentroplc flow 

and to flow with shocks will be considered later (§5 and §6 re­

spectively). 

In Eulerian form, the basic equations are the equation of motion 

(2.1) . ^ + u - ^ 4 . i - ^ ^ = 0 , 

the equation of conservation of mass, 

(2.2) ^ ^ + u .3>?+ /?£iL== _ (n-l)nu/r , 

at ar ' ^r ' 

and the equation of state of the material. 

For anlsentroplc flow, we must take the general equation of 

state, and since we are concerned with notions in which the behavior 

of each element of the fluid is adiabatic (apart from shocks), it 

is convenient to take the equation of state in the form 

(2.3) p = p(yO, s) , 

where s is either the entropy per unit mass or some function of 

this quantity (for example the value, for a perfect gas, of p//)^, 

which is constant on an adiabatic and has different values on differ-
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ent adlabatlcs). Then if s varies from particle to particle. 

Now (3p/9p)g is just the square of the adiabatic velocity of 

sound a; hence (2.1) can be written 

f2 4^ - ^ 4. .1 S u . a 3 p . 1 f9ps 5 s ^ „ 

^̂ •̂ ^ 9T+"-ar-*-^a-r-*-^ ̂ -̂ s jj 3T = ° • 

For isentroplc flow the last term on the left-hand side is zero since 

s is uniform over the field of flow. For anlsentroplc flow, how­

ever, in which the behavior of each particle is adiabatic, s is 

constant along a particle path, so 

(2.5) 2±+ ,, ^ ^ 0 . 
3t dr 

§2,1, Characteristics from the Eulerian form of the equations. 

Equations (2,2), (2.4), (2.5) are three linear first-order 

equations for three dependent variables. The procedure for obtain­

ing the equations for the characteristics and the variation of 

u, yo , and s along them is standard (see, for example, [4, 

§§22, 31]) and its application to the equations of Isentroplc flow 

can be found in various references (see, for example [4, §23]). We 

require its application, however, to anlsentroplc flow. 

We form a linear combination of these equations, and determine 

the coefficients of the linear combination in such a way that the 

differential operators operating on u, yO and s represent rates 

of change in the same direction in the (r,t) plane. This is the 

step whl.ch ensures that the resulting equations for the rates of 

change along the characteristics Involve no crosswise derivatives, 

and it is this property which makes this equation so attractive 

for numerical work. 
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The result of forming the linear combination of (2.4), (2,2) 

and (2.5) with coefficients 1, A,/*/ respectively is 

(2.6) [ ^ + (u+d^ ) ̂ ) u + [̂  ^ +[>>u + (aV^)] ^]p + 

= - (n-l)Xou/r . 

The condition that these three differential operators shall represent 

rates of change in the same direction is 

(u + XjO)/l - ( Au + {a^/jO )} A = f/̂ u + i (ffjo] f^ ' 

whence 

(2.7) X = - a ^ , ^-= (A/a2)(0p/^s)^. 

Further, if C is a curve in the (r,t) plane on which (dr/dt)g 

= u + 7\p , then for any function ĵ (r, t) 

[_£_+ (u+xp) ̂ ]^= (d|) . 
at ' 9 r °̂  '̂  

Hence the root X = + a/o of (2,7) gives 

along curves I such that 

(2.9) (dr/dt)j = u + a , 

and the root A = -a/o gives 

(2-W) - (î )„ +^ (^)„ * ̂  (§i) (Sf)„ - -(n-lWr 
along curves II such that 

(2.11) (dr/dt)jj = u - a . 

For Isentroplc flow, the third term on the left-hand side of 

each of equations (2.8), (2,10) is zero, and equations (2,8)-(2,ll) 

I P 



12 AECU-2713 

a r e s u f f i c i e n t t o d e t e r m i n e t h e m o t i o n . F u r t h e r , a d / O / o I s an 

e x a c t d i f f e r e n t i a l , say 

a.Ap/p = dW(/0 ^ 

so that equations (2.8), (2,10) become 

(2.12) [^{w(/0) + u} ]j = -(n-l)au/r , 

(2.13) [̂ ('"̂ (/O) - "] 3jj= -(n-l)au/r 

(the quantities j'^{p) - ul are sometimes called the "Rlemann 

invariants", though they are not invariant except for the plane case 

n = 1). 

If the adiabatic equation of state is 

(2.14) p = AyO'Y + B , 

whore 7, A and B are constants, then (and only then) W(>o) is 

a constant multiple of a(iO); in fact 

(2.15) W(^) = [2/('Y-l)]a(^ ) . 

Since [W(^ ) - u] are the quantities obtained by Integration of 

equations (2,12), (2,13), whereas a(/0 ) is required for the evalu­

ation of the integrands in equations (2.9), (2.11), (2.12) and (2.13). 

the simple relation (2.15) is very convenient for numerical work. 

This is a practical argument for the addition of an equation of state 

of the form (2.l4) if such a formula gives an adequate approximation 

to the properties of the fluid over the relevant pressure range. 

For anlsentroplc flow, equations (2,8) to (2.11) give only two 

equations for the three dependent variables u, /O , s. However, 

there is a third equation, namely 

(2.16) (ds/dt)jjj = 0 

on particle paths, that is, on curves III such that 

(2.17) (dr/dt)jjj = u ; ( 



AECU-2713 13 

(this is not Included in (2,6), since a non-zero coefficient of 

equation (2,4) has been assumed in forming this linear combination). 

Equations (2,8)-(2,13) and (2,15) hold in any consistent set of 

units. It may be convenient to consider the units so chosen that 

the density p of the fluid, and the velocity of sound a In 

it, in some standard state, both have value unity. If the fluid 

starts from rest at a uniform pressure and density, this is a con­

venient state to adopt as a standard. 

§3. Isentroplc flow. Finite-difference approximation. 

Consider first the treatment of isentroplc 

flow. f 
The finite-difference approximation which ^ 

will be used here is that expressed by the 

trapezium-rule formula 
X-, 

6 X 
(5.1) f̂  f(x)dx = I (fo + fi)(xi - x^) 

For brevity, it is convenient to write 

(3.2) v = a + u , w = a - u , 

(3.3) P = W(^) + u, Q = W(/?) - u . 

Then if A is the intersection of the characteristic of I through 

B and the characteristic of set II through C, we have:-

(5.4) from equation (2,12) P̂ -Pg =-|(n-lX(aifi-)̂ +(au/r]̂ ] (t̂ - tg) 

(3.5) 

(3.6) 

(3.7) 

u. is given by 

(2,9) r^-r^^ ?(VA + V3)(t^ - t^) 

(2,13) Q^-t^ =»- ̂ (n-lX(au/r)^+ (ai/r\,](t̂ - t̂ ,) 

(2,11) r^-rc= - \ (w^ + Wc)(t^ - t^) . 

(3.8) 2u, PA - QA ̂  
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and if the adiabatic equation of state is (2,14), so that W(y3) and 

a(p) are related by the simple formula (2,15)^^ a. is given by 

(3.9) [V(Y-l)]a^= ̂ A + S ' 

for a more general equation of state, a. has to be deduced from 

W. = 2-(P/, + 9.) and the equation of state adopted. 

There are several ways of using the set of equations (5»^) -

(3.9) to obtain an approximate numerical solution of the original 

partial differential equations. One is to use a grid of character­

istics; another is to use specified time-intervals, relating the 

values of a and u at selected points A at the end of the time 

interval to values at the beginning of the time Interval by means of 

the characteristic relations (3.^)-(3.7). The latter procedure was 

suggested some years ago as a possible process for use on analogue 

equipment, and a schematic set-up worked out for a differential 

analyzer [6, §3.8]. It was not at that time regarded as a practi­

cable method for digital calculation, but I have recently found it 

to be quite practicable, and Indeed it seems preferable in some 

cases to the use of a grid of characteristics. Both these methods 

will be considered, to give a basis for a comparison of them. 

*vc+a. 

§5,1, Use of a grid of characteristics. 

In this method, for each pair of 

points B and C located on the grid t 
T 

of characteristics as shown in the 

figure, equations (2,3)-(3.9) are re­

garded as equations for the four un­

knowns r^, t^, u^, a^. They form a -^'^ 

set of non-linear simultaneous equations for these quantities, and 

the problem is to organize the work of solving them. The following 

is the most convenient procedure I have found; it is similar to a 
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method used by A, J, R. Schneider [13], but Schneider used two draft­

ing machines and graphical constructions for some stages of the cal­

culation, whereas a purely numerical process seems easier, more ac­

curate, more reliable, and easier to check. 

First estimate a» and u.. If the characteristics for which 

the calculations are being carried out are chosen in a systematic 

way, and tables of the results are kept as the calculation proceeds, 

it should be possible to make these estimates quite accurately (in a 

trial calculation, carried out with u and a expressed in units 

such that the values of O and a^ were unity, I found it 

practicable to estimate both u. and a. to - 1 in the third deci­

mal place). 

Then from (3o5) and (3.7) 

r*A- *B= f2(rc-rB)-(w^+w^)(t3-tc)]/(v^+VB+w^+Wc) 
(3.9) J 

L V *C = f2(r^,-rg)+(v^+VB)(tg-tc)]/(v^+Vg+w^+Wc) 

These quantities should both be calculated; the agreement between 

the values of t. derived from them provides a useful chock, which 

should be used since these time-differences are used later in the 

calculation. 

Then r. - r_, r. - r_ are calculated from (3.5)j (3.7) and 

the values of (t. - t^), (t. - t^) just obtained, and the agree­

ment between the values of r. deduced from them is a further 

check that the arithmetic has been correctly carried out so far. 

The value of r. obtained here is used in the subsequent calcula­

tion for this point. 

The following seems the most convenient way to use formulas 

(3,4) and (3.6), For brevity, write 
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( ^ P g = Pg - I ( n - l ) ( a u / r ) 3 ( t ^ - t ^ ) 

( 3 . 1 0 ) ^ 

L Q ^ = Qc - I ( n - l ) ( q u / r ) ^ ( t ^ - t ^ ) 

Then the result of subtracting (3.6) from (3.4) is 

2"A = PA - ̂ A = ^i - ̂  - ? (n-l)(au/r)^(te - t^) , 

so that 

(3.11) u^ = [P* - Q*(,]/[2 + I (n-l)(a/r)^(t3 - t̂ ,)] ; 

the right-hand side of this formula involves only the estimate of 

a. and quantities already calculated. 

Then the sum of (3»'̂ -) and (3,6) gives 

(3.12) 2W^ = P*g + Q*(, + I (n-l)(au/r)^[2t^ - tg - t^] . 

If the equation of state is such that the relation between W(/o ) 

and a(/3 ) Is the simple relation (2,15), than (3,12) is a linear 

equation for a. and gives 

(3.13) a^ = [P*g + Q*C]/[{V(Y-1)} + I (n-l)(u/r)^(2t^-tg-t^,)] . 

The values of u», a, calculated from (3,11), (3,13) will be called 

"final" values. 

The procedure has been given in some detail since details of 

procedure may have considerable effect on the case with which a cal­

culation is carried out. The one suggested has been reached as the 

result of several exploratory calculations, and is quite practicable 

for hand computation. A suggested computing schedule is given in 

Table I. 

An alternative procedure, after evaluating r,, is to use the 

estimates of both a. and u. to evaluate (au/r), from (3.^) aid 

(3.6), hence evaluate P, and Q., and then "final" values of u. 

and a. from P. - Q.. But, in some cases at any rate, the main 
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TABLE I 

Suggested computing schedule 
for use when working on a grid of characteristics 
A. 

'B E] 
to - *B 

Est a, 

Est u 

«A+ "A 

.̂A + ^B 

^A - "A 

*A + *C _y 
Sum = S 

^^'r - r„) B' 

('A + 'C)(*C - *B) 
Sum = S. 

S^/S 
"B 

[V 
Sum = t, 

(̂ A + ̂ B)(*A - *B) 

2trr - roJ B' 

•(v* + v„)(t B' ^B) 

Sum = Sr 

So/S = t. 

Sum = t. 

B 

Sum 

C2 , 
- I (n-l)(au/r)g(t^-tg) 

Sum = P* B 
P^ 

-(% + *cH*A - *c) 

Sum = r, 

m 
I (153i)(aivf)c(t^-tc) 
Sum = Q*j, 

-^r 

P*B + Q*C 

S^ = 2 - I (n-l)(a/r)^(tc - tg) 

"A - (P*B - Q*c)/S3 

Sî  = [V(7-l)] - I (n-l)(u/r)^(tc - tg) 

«A = (P*B -̂  Q*C^/S4 

== L2/(7-i)Ja^ 

P^= [2/(7-l)]a^+ u^ Q^= [2/(7-l)]a^ - u^ 

^A= «A + "A *A = «A - "A 

Note: Quantities in "boxes" L 

Notes 

Check 

Check 

17 

Only calculated 
when adequate agree­
ment between in­
itial and final 
values of u., a^ 
has been attained. 

J are copied from the Initial 
data or results of previous calculations. 
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influence of the estimates on the "final" values of u. and a. 

evaluated by this process arises through the dependence of (au/r). 

on the estimate of u^; this is avoided if the form (3.11), (3.13) 

is used. Further, tg - t^ is often fairly small, and then u. 

calculated from (3.11) is not sensitive to the a. in the denomin­

ator. 

The procedure used to improve the estimates of u., a. from 

which the calculation for a point A starts may depend on the cir­

cumstances (accuracy required, intervals between characteristics, 

etc,) of the particular calculation being carried out. One possible 

procedure is direct iteration, the "final" values of one iteration 

being taken as estimates for the next. Alternatively, the calcula­

tion for each point A may be carried out with three estimates, 

say ru(0), a(0);, (u^^) . A u,, a^^)), (u^^), a^^) + A a ^ ) , and 

the results used to determine what fractions of ^ ^^A* ''̂  ̂ A should 

be taken to obtain agreement between estimated and "final" values of 

u., a.; it would be advisable to make a check calculation with the 

resulting values of u,, a. as estimates. This procedure is unduly 

lengthy if fewer than four iterations, on the average, are required 

when a direct iterative process is used. In the exploratory cal­

culations which I have made, I found that for a calculation to 4 

significant figures, the first estimate could usually be made 

closely enough fer further estimates to be unnecessary. 

An alternative procedure has been suggested to me by Dr. R, F. 

Clippinger, who has had extensive experience of the use of a grid 

of characteristics in the calculation of steady supersonic flow. 

One can correct for the main part of the truncation error of the 

integration formula by carrying out two (or more) Independent 

calculations with grids of different mesh size, and using the 

results to extrapolate to zero mesh size on the lines of Richardson's 

\ 
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process of "h'^-extrapolation" [9], Clippinger has found that if 

this procedure is used, and values of the dependent variables at A 

are found by an Iterative process based on a consistent use of the 

crude integration formula 

r f(x) dx = (Xj - x^)f^ 
o 

to give the first estimates, then there is no ultimate advantage in 

carrying the iteration more than one stage further. For although 

the results on each grid separately may be affected appreciably by 

carrying the iteration further, the final results obtained by extra­

polation to zero mesh size are not. The same would probably be true 

of equations (3.4) to (3.7), 

"Q^n-avtfLaA**-

~^ JV 

§3 o 2. Boundaries. 

If the fluid has a physical boundary, 

the regionof the (r,t) plane in which the ± 

solution of equations (2.2), (2.4) is re- ' 

quired will be bounded by a curve in the 

(r,t) plane which in general is not a 

characteristic. 

An Internal boundary will be considered here; the treatment of 

an outer boundary is similar with the roles of characteristics of 

sets I and II interchanged. 

In working on a grid of characteristics, the points calculated 

on the boundary in the (r,t) plane will be the points where the 

successive characteristics of set II cut it. Let B be the last 

boundary point to have been determined, C the point of inter­

section of the characteristic of set I through B and the next 

characteristic of set II, and D the intersection of this char­

acteristic with the boundary curve. 

Then for CD we have relations (3.6) and (3.7) with A re-

... u 
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placed by D, and need two more relations at D to determine r̂ ,̂ 

tjj, u_ and ajj. The nature of these relations, and their numerical 

treatment, will depend on the conditions at the boundary. 

If the boundary is a solid wall whose motion is given, we have 

rp= f(tp), ujj= ^(tp) , 

where f(t) and fi{t) are given functions of t; in general these 

give an implicit equation for t„, which may have to be solved by 

iteration (for each estimate of u., a.). 

If the boundary is a boundary between the fluid and an enclosed 

gas (e.g., expanding or contracting bubble) in which pressure grad­

ients can be neglected, then (to the accuracy of the trapezoidal 

Integration formula) 

(3.14) D̂ - ̂ B" I ("D + "B^^S - *B) 

for the motion of the boundary, and 

(3.15) ap = F(rjj), 

determined from the pressure-volume relation for the enclosed gas 

and the pressure-(velocity of sound) relation for the fluid. 

If the boundary is a shock, the motion of the fluid on the 

other side of the boundary is relevant, and the relations are more 

Involved; further, the motion is in general anlsentroplc. For this 

reason, consideration of the treatment of shocks is postponed till 

later (§6). 

The only difference between equations (3.14) and (3.5) is that 

v in (3.5) is replaced by u in (3.l4). Hence as far as the de­

termination of r. (now r_.) the procedure of §3.1 stands, with 

V replaced by Uc From r„, a„ is given by (3.15)> then Uj, is 

given by (3.6) (with A replaced by D). a^ then follows directly 

from (3.15), and Q. then follows from (3.6), (3.7), in which 

r- is now known. 
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^4. Use of specified time intervals. 

In this process we consider u and 

a as known functions of r at time t, 

either as given initial conditions or as T 

results of a previous stage of the cal- t^+£i 

culation, and we use equations (3.4) to , 

(3.7) to determine u,, a. at a set of 

specified values of r„ at a later time 

t + 6t, The equations are the same as for the process of §3,1, but o —-* 

which variables are known, and which are to bo determined, are dif­

ferent; t., r. are now known, and both u and a as functions of 

21 

-^A. 

r at time t ; the unknowns are u., a., rg, r 

The best procedure seems to be as follows, 

§3,1, start with the calculation for each point A with estimates 

of u«, a.. From them form ^\ ~ o ̂ A^*' 

mine rg, write equation (3.5) in the form 

o' - A' "A' *B' *C' 
The best procedure seems to be as follows. As in the method of 

5- VftBt, r, + i w.5t. To deter-

(4.1) - ?T v.5t = r. A 2 "A"-" ~ "B "̂  ? ^B v„5t . 

The right-hand side is a known function of rg, and the left-hand 

side has been calculated, so that rg can be determined; similarly 

r„ can be determined from equation (3.7) in the form 

(4.2) r^ + ̂  w^5t = r̂. 2 Wp6t . 

The best way of performing these Interpolations for rg, r̂ , is 

likely to be different for hand calculations than for work with an 

automatic digital calculating machine. If r + ̂ ^ v5t, r - g- w5t 

at time t are given at equal intervals of r, the determination 

of rg for a value of (rg + ^ ^Q^^) obtained from (4,1) Involves 

inverse interpolation. For hand calculation it seems best to use 

the data at t = t„ in the form of a table of 
o 

(4,3) r + 2" v5t w r - w5t 

'1 
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as functions of r, at close enough intervals for linear Interpola­

tion of V and w as functions of (r + ^ v5t), (r - ̂ -wBt); then 

rg is formed as 

(4.4) rg = (rg + I Vg6t) - I Vg6t , 

the quantity in brackets being evaluated from (4.1), and similarly 

for Vp. The advantage of this procedure is that the interpolation 

is performed on v, which is multiplied by the time interval 5t 

and usually gives a relatively small contribution to r, rather 

than on r itself. 

For an automatic machine with a sub-routine for non-linear in­

terpolation with unequal values of the argument, a table of 

u a r -f «• v6t ^ ~ ^ *^* 

as functions of r, and requiring quadratic or perhaps cubic in­

terpolation, would probably be more convenient, and should not make 

embarrassing demands on storage capacity. Relative to the method of 

§3.1, some space is saved since it is not now necessary to store a 

separate value of t for each point. 

In equations (3«4) and (3-6) the time intervals (t. - tg) and 

(t. - tp) are given, and not dependent on the estimates of u., a. 

as they are in the method of §3.1; also they are equal, so that 

formulas (3.10) become 

= Pg - (au/r)g5t 

(4.5) 

\?*C " ^c - (au/r)c5t 

and formulas (3.11), (3.13) simplify to 

(4.6) û  = I (P*g - Q*̂ ) 

(4.7) a^ - (P*g + Q*C)/[{4/(Y-1)]+ (n-l)(u/r)^5t] , 

of which the former does not Involve the estimate of a. explicitly' 

(as (3.11) does). , 
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TABLE I I 

Suggested computing scheme 
for use with specified time Intervals 

t^+5t 
\ 

i \ / ( ^ / \ / ^^^^c-
' J^ - ^ ^ 

- * AJ 

Est â  
Est u. 

^A 

^A 

= ' B 

1 
- 2 

•̂  " A = ^a 

- 1 v^5t 

- 1 V*) 
H- I Vg5tJ 

^B 

- 1 ^B^t 

^B 

"B 

^B 

7-1 ^B 

"B 

( n - l ) ( ^ ^ " 6 t 

Sum = P*g 
r - _ - ^ - . . i , ,1 

Â - "A = % 
4- 1 w^5t 

'̂ A •" ? V * ? 

='0 - lv*3 
«C 

+ 1 w^6t 

'"C 

"C 

«C 

7 - 1 ^C 

-"c 
4- 1 (n-l)(^)^5t 

Sum = Q* ,̂ 

u. = 4 (P* B Q»c) 

P * . 4- Q* 

Si = {4/(7-1)] 4- (n-l)(u/r)^5t 

«A = (P*B + n ^ / ^ l 
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A suggested computing schedule is given in Table II, Experience 

with exploratory calculations with both methods is that the present 

method [including the interpolation in the table of quantities (4.3) 

is simpler to carry out in practice than that of §3,1, The comput­

ing schedule involves fewer steps of computation, as can be seen by 

comparing Table I and Table II, though it must be remembered that for 

the present method Table -II does not include the preparation of the 

table of the input data; this, however, is very simple and can be 

done separately from the calculations for the various points A, and 

this division of the calculation into two parts which can be done 

separately is probably an advantage rather than the reverse, both 

for hand computation and for work with an automatic machine, at 

least with one which has an auxiliary store. 

The process for revision of the estimates of u^ and a., 

should it be necessary, follows that of §3.1* but my experience with 

some exploratory calculations has been that for work of moderate 

accuracy the first estimates can usually be made closely enough for 

such revision to be unnecessary. 

For hand calculations it is convenient, as already mentioned, 

to have the input data (4.3) at close enough Intervals for linear 

interpolation of v and w as functions of (r 4- p- v5t) and 

{T - 7r w5t), and perhaps of u and a as functions of r. But it 

is not necessary to carry out the calculations using formulas (4,1), 

(4,2), (4.5) and (4.6) for values of r. at such close spacing. It 

might, for example, be adequate to carry out these calculations, 

for part of the range of r, for values of r. at two, four or 

five times the r-lnterval required for the input table for the next 

time interval, and to fill in the data for the intermediate values 

2 
of r by subtabulatlon . 

"The "end-figure" method of subtabulatlon [3] is recommended. 
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^ 1. Comparison of metbod_using a grid of characteristics (§3rl \ 

with method using specified intervals in time (§4). 

One reason why the method of §4 is simpler to carry out numer­

ically than that of §3,1 is that now r. and t. are given and 

known exactly, and only two quantities at A have to be determined 

by integration, namely u. and a., whereas in the method of §3.1, 

all four of these quantities have to be determined by integration 

Another reason is that, as already mentioned, the time-differences 

t. - tg and t. - tp on the two characteristics through A are not 

only known but equal. 

Further, for the calculation of unsteady flow the present method 

has the considerable advantage that it produces results directly in 

the form most likely to be needed, namely the velocity distribution 

in space at different times. Also, the value of 5t, and the 

values of r. at which u. and a. are calculated, are entirely 

under the current control of the individual who is doing the work 

(or superintending the machine, in an automatic calculation); if at 

any time it appears advisable to shorten the time Interval 5t, it 

can be halved (for example) without any previous notice of the 

change being taken in the work; and small Intervals in r can be 

taken, for example near boundaries, shocks, or incipient shocks, 

without difficulty. 

This method in terms of Eulerian variables is appreciably 

simpler than in terms of Lagrangian variables (§7). It has there­

fore been chosen for further development; to anlsentroplc flow (§5) 

and to the treatment of shocks (§6), 

Some, but not all, of the advantages of use of specified time 

Intervals in non-steady flow would also apply to the use of a 

similar method for calculating steady supersonic flow in two space 

variables. However, as Dr. Clippinger has pointed out to me, there 

C... '"' 
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are two advantages of the use of a grid of characteristics in this 

context. One is that consistent use of a grid of characteristics in 

different solutions (for example, flows round cone-cylinders at zero 

for different cone angles) may simplify Interpolation between 

those solutions. The other is that a characteristic is a possible 

line of discontinuity^ and if such a discontinuity does occur, it is 

convenient to determine the corresponding characteristic (this could 

however, be done when using specified intervals of one independent 

variable). 

For n = 1, the calculation is simplified by the absence of 

the terms on the right-hand side of equations (5.4), (5.6), In this 

case the solution at A depends strictly (and not only to the ap­

proximation of the integration formula) on that at B and C only. 

This corresponds to the "existence of a Huyghens Principle" in one 

dimension. But the procedure n = 2 is just the same as for n s 5 

whether the calculation is carried out on a grid of characteristics 

or by use of specified intervals of time, there is no distinction 

corresponding to the "existence of a Huyghens Principle" in three 

dimensions but not in two. 

§4,1. Boundaries. 

Let B*, D be the points in the 

(r,t) plane representing the boundary ° 

at times t^, t + 5t respectively. _, 

The treatment of a boundary whose 

motion is given is simpler than in work-

ing on a grid of characteristics, since now r^ and Ujj are given, 

and it is only necessary to determine r^ and a^ by integration 

along the characteristic of set II (for an interval boundary) 

through D, 
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For a boundary at which there is a given relation between r 

and p, and hence between r^ and a^, the following procedure, 

which only requires an estimate of u^, seems convenient. 

Estimate u^ and from it calculate 

27 

(4.8) rp = rg^ + 2-h ("n* + "n)5t. B 

use the relation between r^ and a^ to determine â ,̂ from this 

determine r̂ , from (4.2) (with D substituted for A). Then 

"D + Y?r ̂ D " ^*C - ? (n-l)[(au/r)^, + (au/r)j,]6t 

and aĵ  has been determined, so u^ is calculated from 

(4,9) Up = [Q*c - I (n-l)(au/r)̂ ,6t - ^^ a^]/[l + | (n-1) (a/r )p6t] 

If rg or Ug departs appreciably from linearity in t during 

the time interval 6t, it may be advisable to evaluate some inter­

mediate points between B and D on the curve in the (r,t) plane 

representing the motion of the boundary. This can be done by re­

placing 5t in (4.8), (4.2), (4.9) by the value of (t^ - tg) for 

each intermediate point calculated. 

§4.2. Points near boundary. 

Let B*,D be the boundary points 

in the (r,t) plane at t = t^, t + 5t t^rSt 

respectively, as in §4,1, and let A* ^0 

be the point at which the character­

istic through B* cuts the line 

t = t + &t. The method of §4 can o 

only be used for points A for which r^ > r̂ ^̂  (for an internal 

boundary; r. < r.^ for an external boundary); for points A be­

tween D and A*, the appropriate equations are (5*4) to (5.7) 

where B is the point at which the characteristic of set I through 

A cuts the boundary curve. 

-^fif 
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A* i t s e l f i s givon by 

(4.10) r^^ - ' 'B* = I ("̂ A* "̂  ^B*)^* ' 

from estimates of "/>*» ^A** *̂ ® value of r.̂ ^ is calculated from 

(4.10) and the rest of the calculation follows the procedure of §4, 

The determination of A* should be the first calculation carried 

out for each time interval, to avoid attempts to carry out the stan­

dard procedure of §4 for points A for which r. < r.^. 

Suppose the motion of the boundary between B* and D has al­

ready been calculated. Them, given A, we have to solve 

(4.11) r^-^B- I W ^ ^ B ) ( \ - *B) 

for tg, where rg and Vg are functions of tg already known in 

numerical form from the calculation of the motion of the boundary. 

This equation involves the unknown tg in an awkwardly implicit 

way. But we have also, for the motion of the boundary between B 

and D, 

(4.12) ^D ~ ̂ B = I ^"D "̂  "B)^*A " *B^ (since tg = t^), 

and can elininate rg from (4,11) and (4.12), giving 

(4,15) Â - *B = 2(r^ - rg)/(v^ + ag - u^) , 

The right-hand side only involves the point B through the term ag 

in the denominator, and in most cases it should be possible to esti­

mate this to sufficient accuracy so that no iteration is required. 

The value of t. - tg can be checked by interpolating rg, Vg for 

the corresponding value of tg, and verifying that the values sat­

isfy equations (4.11). r„ isdetermined as in §4. 

Then u., a. are given by (5,11), (5,12). 
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S5' Antsentropic flow of a perfect gas. 

For a perfect gas the equations of anisentropic flow simplify 

considerably. It seems most convenient to take for s a constant 

multiple of the entropy per unit mass, that is 

(5.1) S = (l/yS) log (p/^"^) 

where 3 Is a. constant to be determined later. Then 

(5.2) p= p^J^ 

(a multiplying constant in p does not affect the final formulas), 

and 

^ = (£>p/PyO)g = 7/0 -̂-̂  e r = yvfo 

(5.5) (9(a^)/o'/5)g = (Y - l)a2^, 0(a2)/as)^ =/: 

and 

(5.4) O P / 9 S J ^ = / ^ P = / ^ a ^ / 7 . 

Then along any curve C in the (r,t) plane 

2 2 
or.l^^\ _ / ̂ ( a ) \ ('^-^\ 4. /5'(a )-> /dss 

2^^dtt- "̂~#r;̂ ŝ ^dr-t+ ("^-s—j^ ^^\ 

= (7 - l)/(a^^ )(d/^/dt)j, +^a2(ds/dt)^, 

from (5.5), so 

(5.5) (Y - l)(a/^)(d^/dt)^ = 2(da/dt)(, -y^a(ds/dt)c . 

Now in both equations (2.8) and (2.10) there occurs the combina­

tion 

{2i/^){&^/At)^ + (l/a^)(^p/£>s)^ (ds/dt)c . 

Substitution in the first term from (5,5) and in the second from 

(5.4) gives 

(7-l)r(a^)(d/:'/dt)c + (l/a^)(.9p/as)^ (ds/dt)^] 

= 2(da/dt)(, - (/3/Y)a(ds/dt)^ , 

I 0^ O 
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It now appears most convenient to put 

(5.6) ^ = Y(7 - 1), 

and equations (2.8), (2.10) become^ 

"̂ Sauer [11, §25.4] quotes equations for anisentropic flow, in u, a, s 
as dependent variables, and obtains equations similar to these; the 
derivation of the basic equations is in Sauer [10, §5.l6, formulas 
(55)]. 

(5.7) 

(5.8) 

where 

(a|)l - -(af)l = -(n-l)au/r 

(al^ii- <Vir -(n-iWr 

P = [2/(7-l)]a + u, Q = [2/(7-l)]a - u 

as for the isentropic case, and 

(5.9) s = [1/7(7-1)] log ( p / ^ ^ ) . 

The other equations are (2.9), (2,11) as for the isentropic case, 

and the additional equations (2.l6), (2.17). 

§5.1. Integration using specified time intervals. 

The equations for the anisentropic 

flow of a perfect gas are so nearly sim- X 

ilar to those for isentropic flow that "t,+i>* 

much the same procedure can be used for 
"to 

them. 

We start with estimates of u., a.. 
-^Ay 

The equations for the characteristics are the same as for isen­

tropic flow, so exactly the same procedure can be used as far as 

the determination of rg, r-̂ . We have now, in addition, to find 

r„, the point at t = t on the particle path through A; this is 

given by Integration of equation (2.17):-

Â - rg = I (û  + Ug)6t , 
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whence 

(5.10) 'A - I "A S* = ̂ E + I "E^* 

from which r„ is found by the same procedure as used for finding 

rg and r^, s(r) at t « t has to be included in the table of 

input data, and since s is constant along a particle path, inter­

polation for s at r - r- gives s.. This value is then used in 

the further calculation. 

The integrated forms of (5,7), (5*8), corresponding to equa­

tions (5.4), (5.6) for the isentropic case, with *A " *B ~ *A ~ *C 

= 5t, are 

(5.11) PA - ̂ B = - I (n-l)[(au/r)^+ (au/r)g]5t + | (a^ + ag)(8^ -Sg) 

(5.12) QA - Qc = - I" (n-l)[(au/r)^+ (au/r)^,]6t + | (a^ + a^,)(s^ -ŝ ,) 

and the most convenient way of dealing with these relations seems to 

be one which is an extension of that used for the isentropic case. 

Subtraction of (5.12) from (5.11) gives 

(5.15) 2u^ = PA - <JA = Pfi - <Jc + I f^A^^C-^fi) -̂  ̂ B ^^A-^B) - ̂ C^A-^C^' 

where P*n# Qp ^^^ given by (4.6) as before; the estimated value of 

a. is used in the first term in the square brackets, the other terms 

involve quantities already calculated. 

Addition of (5.11), (5.12) gives 

[y(7-l)]a^= P*+Q* -(n-l)̂ i,i')̂ + \ a^(2s^-s^-a^) + ^ ag(s^-Sg) + ^a^^^-s^,) 

whence 

(5.14) â  =: [P*g + Q*c + I [^BCSA - «B) + I «c(«A - ^C^]^/ 

[{4/(7-1)] + (n-l)(u/r)^ + I (2s^ - Sg - ŝ ,)] . 

Equations (5.15), (5.14) take the place of (4.6), (4.7) for isen­

tropic flow. 
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The evaluation of formula (5.9) only has to be carried out for 

the initial conditions and at a shock; in the absence of shocks, no 

reference has to be made to this formula in the course of the in­

tegration. 

§6. Shocks. 

The treatment of shocks looks 

involved at first sight, but turns 

out to be fairly simple when using 

specified time intervals, and is 

probably simpler than in work on a 

grid of characteristics. 

Let R and S refer to the 

shock at times t^ and t̂  + 5t, and let suffixes + and - refer 

to conditions just ahead of the shock and just behind it, respective­

ly; also, let U be the velocity of the shock. Ujj and r̂ ,̂ as 

well as a, u and s as functions of r at time t = t^, are 

supposed known, either as given initial conditions or as results of 

calculation for previous time intervals. 

If the fluid ahead of the shock has not been traversed by 

previous shocks, its motion is isentropic and Sg^ is known. Then 

for the point S we have ten unknowns, namely:-

^s' "s* ^s-' "s-' ̂ s-' ̂ s+' "s+' '"B* ''BI'^'C ' 

and need ten equations relating them. These are given by the follow­

ing considerations. 

The velocity of the shock relative to the fluid ahead of it is 

greater than the velocity of sound in that fluid, so that the motion 

of a particle of this fluid is independent of the presence of the 

shock until the shock reaches it; whereas the velocity of the shock 

relative to the fluid behind it is less than the velocity of sound 

f 
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in that fluid* It follows that there are three characteristics 

through S and intersecting the line t = t , namely:-

BS, a characteristic of set I in the fluid behind the shock; 

B'S, a characteristic of set I in the fluid ahead of the shock; 

CS, a characteristic of set II in the fluid ahead of the shock. 

Each of these gives two relations between the unknowns, making six 

altogether. 

Then there are three relations, given by the conservation of 

mass, momentum, and of energy, between the shock velocity U and 

the values of a, u and s on the two sides of the shock. Finally 

there is the relation between the velocity and position of the shock 

itself, 

(6.1) ^s - '"R" I ("s + "R)S* • 

These give the required ten equations, several of them non-linear. 

However, it turns out that if they are taken in the right order, 

it is necessary to estimate only one of the unknowns in order to 

determine the corresponding values of all the others. It seems 

surprising that it is necessary to estimate only one quantity in 

order to deal with the equations for the shock whereas it is nec­

essary (as far as I have found) to estimate two quantities for deal­

ing with the fewer and simpler equations involved in calculating the 

continuous region of the flow. 

The quantity to start from is an estimate of the shock velocity 

Ug, Then (6,1) gives rg and, since the flow ahead of the shock is 

independent of the presence of the shock, rg„ r,,, ag,, Ug,, 

can be found by the procedure of §4.1 without further reference to 

the shock (if the flow ahead of the shock is anisentropic, the 

method of §5.1 is used and gives Sg also). Then from ag , Ug+j 

Sg , and U , the equations of conservation of mass, momentum, and 
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energy through the shock give ag_, Ug_ and Sg_. For a perfect 

gas, the Rankine-Hugoniot relations, which give the density ratio 

and the velocity ratio through the shock in terms of the pressure 

ratio, are not the most convenient relations to use for this pur­

pose; it seems more convenient to proceed as follows (see Courant-

Friedrichs [4, §68, A]). 

Let u*j, u*p be the velocities, relative to the shock, of the 

fluid in front of the shock and behind it respectively, and a, 

= ag^, ap = ag_ the corresponding velocities of sound. Then from 

1 2 2 
the equation of energy, the quantity «" ("*) + [l/(Y-l)la has the 
same value on both sides of the shock, and if we write 

[(7+l)/2(7-l)](a*) for this common value, so that 

(6.2) (7-l)(u*^)2 + 2a^2 ̂  {y.i){u*^f + 2a2^ = {y+l)(a*f 

k 
we have the result 

See Liepmann-Puckett [7], formula (4.5); Courant-Friedrichs [4], 
formula (66,02). u*,, u*2 are the u,, Ug of Lieomann-Puckett, 
whose notation is otAorwise followed here. The uy of Courant-
Friedrichs is (7-l)/(7+l), and their c* is ther a* of Liepmann-
Puckett. 

(6.5) UjUg = (a*)^ . 

Now a, = ag , and u*, = Ug - Ug can be determined from the 
2 

estimates U_ and quantities already calculated, so (a*) can be s 
2 

calculated from (6.2), then u*2 from (6.5), then a2 from (6.2). 

Also 7p/o^ = a /p^~ , and pu* is conserved through the shock, 

so the change in s can be calculated from 

(6.4) Sg - S^ = [log (ag^a^^) + (7-I) log (ug/u^) ]/7(7-l) • 

Also Ug = Ug - u*2. Thus all quantities just behind the shock 

are calculated in terms of the estimated Ug, and no further esl 

mates or iteration has been needed in this stage of the work. 

:f 
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Finally we obtain two values of Pg_, one directly from 

V = f2/(7-1)lag. - Ug_ 

and the other by determining r. from (4,1) and integrating along 

the characteristic BS by (3.II). If the estimate of Ug is cor­

rect these values of Pg_ will agree. There are clearly several 

ways of arranging the numerical work of adjusting Ug so that this 

criterion is satisfied, and some exploratory numerical work would 

be necessary before the best process could be determined. 

This procedure for dealing with shocks when using specified 

time Intervals seems simpler than that required when working on a 

grid of characteristics. The only special procedure required is 

that for dealing with the relations at the shock itself, and as far 

as the use of characteristics is involved, the interpolation re­

quired is no more than If S were a point in the region of the 

(r,t) plane in which the flow Is continuous; whereas when working 

on a grid of characteristics, some special procedure is required 

for departing from the mesh points of this grid in the neighborhood 

of shocks (see, for example, [15]), 

If u. and a. are required at points A between S and 

the characteristic of set XI through R, they can be found by a 

procedure similar to that of 34.2, 

§6,1, Contact discontinuities, 

A surface of separation of two different fluids, or two volumes 

of the same fluid but with different values of the entropy ("contact 

discontinuities", see [4, §56]) can probably be treated in a similar 

manner to shocks, but no details of procedure have been worked out. 

The conditions at the boundary are continuity of pressure and of 

fluid velocity. 
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§7. Lagrangian form of the equations. 

The use of characteristics with the Lagrangian form of the 

equations will only be considered briefly, as it seems to offer no 

advantages over the use of characteristics with the Eulerian form. 

The main purpose of this section and the following is to show why 

this is. 

Let q be a Lagrangian variable. Having a constant value for 

each particle, and different values for different particles such 

that r is a monotonic function of q and c'r/^q exists. 

The equation of motion is now 

(7.1) ^«-i(^). 

dt P er 
[(S>/£?t) now means ('^/pt) , a time rate of change for a point 

moving with the fluid,] If at t » t the density at the point 

r " ^0(4) <̂3 Po' ^^® equation of conservation of mass is 

(7.2) />r"-^pr/9q , ̂ o V " ^ ^ V ^ «» ' 

and finally 

(7.5) pr/^t = u . 

A particular choice of the variable q which is often convenient is 

q = Tc^i another is ^ o' 

(7.4) q = ™ - J/o'"o°'̂ <J''o ' 

if the latter is adopted, (7.2) becomes 

(7.5) -pr/^^m = l^r"-^ 

and (7*1) can be written 

(T.6) | ^ = -••''"' (l^)t • 

t 
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§7,1. Characteristics from Lagrangian form of the equations-^. 

-'This derivation of the characteristics from the Lagrangian form of 
the equations is based on one shown me by Mr. Hugh Flynn; it may not 
be new, but I had not seen it before =, 

Only isentropic flow will be considered; the time-variation of 

p , u and s along characteristics must be independent of the var­

iables in the plane of which the characteristics are drawn, so the 

extension to anisentropic flow can be taken over directly from S5«l. 
o 

For isentropic flow, g) p/^ m = a 3/'/<? m, so (7.6) is 

(n •7\ ^^ o2 n-1 dp [JtJ) = - a r . 
0t 9m 

Also from (7.5), (7.5) 

am S»t a m Bt ' 

1 S)/* n ^ O^ 
- /)2̂ n-l ̂  -^^n av ' 

so that 

(7.8) 

The linear combination of (7.7), (7.8) with coefficients 

1, A respectively is 

(^ * V " - ' ^ ) " * [(-'//̂  ) ̂  * ̂ ''•°'' /»! - -("-')̂ "A-

The condition that the differential operators represent differenti­

ation in the same direction is 

yr'^-Vl =aV-V(A/;^) 

whence A = - a. The characteristics are curves I and II in the 

(m,t) plane such that 

(7.9) j^= - a^r 

and the equations for the variation of u and a along them are as 

before. i i, 
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The main reason why these equations are not so convenient for 

numerical work as those for the Eulerian form of the equations is 

that the evaluation of the integrand in equations (7.9) involves 

appreciably more work than for the corresponding equations (2.9), 

(2,11) of the Eulerian form. First, for a fluid with an equation of 

state (2.14), 

a^ = const X ^(y^^)/(y-^), 

and however the calculation is arranged, this power or its inverse 

has to be evaluated at some stage of the work, for each point A; 

secondly, each value of aO has to be multiplied by r ~ ; and 

thirdly, r has to be evaluated by integration of (7.5), whether 

the flow is isentropic or not, whereas with the Eulerian form r is 

given and equation (2,17), which corresponds to (7*5), does not have 

to be integrated except for anisentropic flow. The first of these 

points is the main one, and is quite substantial; one could hardly 

expect simpler integrands to evaluate than the u - a of the Euler­

ian form. The extra integration is a simple one, but it is an ad­

ditional step which has to be carried out for each point A with 

the Lagrange form. The only advantage of the Lagrange form is that 

in isentropic flow no Interpolation of s as a function of m is 

required (except at shocks), but this does not seem a sufficient 

compensation for the disadvantages. 

§8. Motion in two space variables. 

One possible method for calculating non-steady flow in two spac 

variables is to integrate with respect to time the equations in La­

grangian form. These are 

,o ,. d^x _ 1 ap d^y 1 5 p 

and, if (x,y) are the current coordinates of the particle initially 
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a t ( X Q , y ^ ) , and /-'o('«o) ^^ ***® i n i t i a l d e n s i t y , 

(8.2) ^^/O = 3 ( x , y ) /a (x^, y^) . 

This involves no* reference to characteristics, but it involves six 

numerical differentiations for each point of the (x,y,t) grid, four 

for the four derivatives required in the evaluation of the density 

and two for the pressure gradients; further, the latter involve 

further differentiation of quantities already obtained by earlier 

differentiationso Any simple way of avoiding some of these cross­

wise differentiations is likely to be an advantage, and particularly 

if it avoids repeated differentiation. 

In the numerical calculation of non-steady motion in one dimen­

sion, the advantage of the use of characteristics, in avoiding cross 

wise differentiation, is so marked that for non-steady flow in two 

space variables it seems worth exploring the use of integration 

along selected curves in (x, y, t) space with the intention of re­

ducing the number of crosswise differentiations to be carried out. 

It can be shown that in general there are no curves with the 

properties of the characteristics in one space variable, that the 

rate of change along any one such curve involves no crosswise diff­

erentiation, though of course there may be such curves in special 

cases (for example, for motion with circular symmetry). Also the 

entities in (x, y, t) space most closely corresponding to the char-

scteristics in (r, t) space are characteristic surfaces, not curves; 

it is possible that these could be used as the basis for a practical 

numerical method (see [l6, §5], [1] and [10], and other papers re­

ferred to in [10]), but such a process appears likely to be compli­

cated and not amenable to the direct production of results as 

functions of t; the derivation of results a^ functions of (x,y,t) 

from results on a grid of intersectiors of characteristic surfaces 
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would be a substantial piece of interpolation! 

The case of one space variable suggests that for two space var­

iables the Eulerian form of the equations is the more promising. 

Consider therefore these equations, which for isentropic flow are 

(8,4) _ _ + u ^ r 3 ^ + v ^ - ^ + - 2 ; - — = 0 

(8,5) T f " ^ •" "̂  ̂  "" /^^a^ "̂  J3r̂  ̂  ° ' 

and, for irrotaticnal flow 

(«•«) 1̂  - If = ° • 
On a curve C on which 

(8.7) (^)c = u + aa, {%)^ = v + /3a, 

we have 

(8.8) (1^), = a(a | i . ̂ | i - ̂  ||) 

(8.9) (iT)c = ^t"|-x-^l?-;l-f?) 
(8ao) (-̂ )̂ = aa ̂ ^ + /3/a — - / > ( — + — ) . 

The linear combination of (8,8), (8.9), (8,10) and (8.6), with 

coefficients A,M, (a/Z)) and /c~ respectively, is 

(8.11) ^ (i-;)j, + /-(fi)^ *yi^)c - =[(^«-i) 1 ^ * (y-'c) f f 

We want to choose atAtfCt ^>h^ so as to give equations involving 

as few crosswise derivatives as possible. 

First, it is clear that we cannot remove all the derivatives of 

velocity components, for to make the coefficients of 9 \x/d x and 

<? v/3 y zero, we require Aa = 1, u.Gi- 1 and hence 'Ku.aA = 1, 

whereas to make the coefficients of 9 \x/g y and 9v/3 " zero, we 

f 
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require Ayua/5 = - K-^, 

We can, however, eliminate all but one of the six terms on the 

right-hand side of (8,11), m several ways. Four possibilities are 

(8.12) [ ^~~^'-'' ^ = ^ = - ^ ' ^ - 0 

/*- = /3=/c:=0, A = a - + 1 gives 

(8.15) [^ru + w(Z))] ] = -a ^ 

on curves C such that 

(8.14) /dxx 
(dt̂ C = 11 + a, (%h~-

and similarly for the other alternatives. These give altogether 

four equations involving altogether 

only two crosswise derivatives; 

three of these four equations like ^_^ 

(8,15) would suffice to determine 

and W(/5) at (x,y, t^+ 5t) 

given u, V and W(^) [or a(/?)] / j ! ^ 

as functions of (x,y) at time t; "̂̂  

the fourth would serve as a check. 

It should be possible to extend the procedure of §4,1 to deal with 

this. 

Alternatively, for irrotational flow it might be possible to 

use only two of equations (8,15), involving the same crosswise 

derivative (say those given by A = /C = t i) and equation (8,6) ex­

pressing the irrotational character of the flow. It is not clear, 

however, how this would best be done; it might involve a further 

cross-differentiation, and then nothing would be gained. 

From equations (8,5) - (8.5), it follows that flow initially 

irrotational remains so. But rounding errors in numerical work will 

\ 
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unavoidably introduce a certain amount of spurious circulation, 

in a more or less random fashion. This might simulate turbulence; 

but it is a purely numerical phenomena and would not appear in a 

correct solution of equations (8,5) to (8.5), supposing that this 

could be evaluated. Whether or not this "numerical turbulence" is 

serious might depend on the circumstances of the particular solution 

being evaluated; if it were serious, it might be necessary to derive 

procedures for preventing it building up as the solution proceeds. 

Another possible choice of coefficients in (8,11) is 

(8.15) a = A = cos X » ^ = /*-= sin "X, /c = 0 . 

Then the right-hand side of (8.11) becomes 

(8.16) -a[sin2;̂ |-i - sin ̂ cos X ( g + |f) + cos^X^] • 

Now if f is the angle which the velocity vector V at (x,y,t) 

makes with the x axis, the quantity in square brackets in (8.l6) Is 

sin {X- ^){sln'X^ - cos-X^] - V cos {X - i)[sln9(g^ - cosTfff ]. 

For ^ = V, X^ if + ^ this gives two equations Involving the 

crosswise derivatives 3f/-^x, 'B'^/hy only, and for Pf = î  + -^"^ t 

9f = T̂  + \'^ it gives two equations involving av/z? x, 9 V/3 y 

only. For irrotational flow it might be possible to use one of 

these pairs of equations with (8.6). 

In all these cases, reduction in the number of crosswise deri­

vatives to be evaluated is achieved at the cost of a considerable 

amount of interpolation in two independent variables. Whether this 

is avoidable, and if not, whether the price is too heavy a one, are 

questions for future exploratory work. 

\ 
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The treatment of anisentropic flow and shocks should wait until 

it has been established whether it is practicable to treat isentropic 

flow by a method of this kind, and if so, what is the best method. 
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