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FRACTICAL STAY (ICS FOR THE HEALTH pHYSICIST"
Joseph A, Ash
Health Physics snd Safety Division

Brookhaven Nationsl Laboratory
Uipton, New York 11973

The refresher course will provide a practical spprosch to the use of
statistical concepts in tnterpreting data related to problems of applied
healeh physies,

After & brief review of the theorstical probabilicy diseributions,
emphasis will be placed on counting statistics, in particulsr the concept
of the standard deviation, In this category the following topics will be
covered: (1) caleulation of the stendavd deviation. (2) propagstion of errors
(when two or more quantities are combined arithmetically or vis a formula),
(3) confidence limits, and (&) the null hypothesis,

The following topics will atao be discussed: (1) Chi-Square in relation
to checking the reliability of & counting instrument, (2) correction factors

for deadtime losses, and (3) for the case of s decaying source.

" Work carried out at Brookhaven National Ladorstory under contract with the
U. 8. Atomic Encrgy Commission,



INTRODUCTION

Any measurement repeated under supposedly identicsl conditions will
yvicld a varicty of results. There are numerous ressons for these devia-
tions; a few ave:

1) reading errors,
2) alteration of supposedly similar conditions; for exsmple,
tnstrument 4rift, ete.
3) the random nature of certain processes, ss the nsture of
radiosctivity,
THE _NORMAL DISTRIBUTION

Many random processes may be approximated by the norwal distribution,
that is, the curve known as the bell-shaped curve. Although also known as
the Gauvssian curve, the curve was first developed by de Moivre in 173) and
later by Gauss in the 1790's,

If one took many vandom sawples from a population and plotted a fre-
quency distribution, one would get a "normal distribution” curve approximati=g
the shape of one of the curves shown in Fig. 1. The curve say be deficed by
the egquation shown above the graph.

The normal distribution has two independent parameters, the mean i and
the standard deviation o. The graphs represent normsl distridbution of a
mean of 5 and standard deviations of 1, 2 and 3, respectiv.ly, The mean or
average is represented cn the graph by the abscissa (x value) with the largest
ordinate. It is the most probable value. The standard deviation is a measure
of how widely the data varies from the mean. Most of cthe practical statistical
analysis is based on the normal distribution.

Nuclear cvents follow the Poisson probability distribution whose equation
is showm in Fig. 2., The Polsson distribution has one parameter, the mean,

similarly defined as the mean for the normal distribution. For practical
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purposes for means greater than 20, the Polsson distribution of mean p can
be approximated by a normal distribution of mean p and standard deviation

/i. This convergence is seen in Fig. 3. Thus all the properties of the

normal distribution may he applied to radioactivity, providing the number
of events is greater than 20,

The parameters, the mean and standard deviation are calculated as shown
in Fipg. 4. The decision te use N or N-1 depends on whether one is utilizing
the entire population or a sample of the population for the calculation as
shown in Fig. 5. Aithough not shown in Fig. 4, the statistical literasture
recognizes the difference between utilizing an entire population or just a
sample of the population. i and n are usually reserved for the parameters
calculated from the entire population, while x and s are reserved for the
parameters caleulaced from sample populations.

SAMPLING

In counting samples and reporting dats, one is interested in the true
mean count rate. In order to shiain the true wean count rate, one would
theoretically have to repesat the count an infinite number of times and use
the sversge. This is impossible; thus one is concerned in estiiating the
mean count vate, Along vith this estimated mean, one is interested in how
well this estimated value approximates the true mean, This introduces the
topic of sempling with paramcters known as the sample mean and standard devia-
tions of the mecan, Although the concept has broad application, we will
restrict ourselves to considering counting samples and count rates,

STANDARD DEVIATIONS OF COUNTING DATA

The standard deviation of a count rate is given by

G'."!'
t

where v = the count rate
t = the actual time counted
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Note, as t becomes larger (a longer count is taken), the deviation of the
count rate is decreased (see Figs. 6 and 7).

Usually one is interested in estimating the difference between two
count rates, viz. a sample and a background. This brings up the topic of
propagation of deviations, that is, when one determines an estimare of a
mean via some mathematical function that involves parameters and their re-
spective standard deviations. One must then calculate the associated
standard deviation according to varinus prescribed rules.

The rules for subtraction and addition are given in Fig. 8, and an
example shown in Fig. 9. The rules for multiplication and division are
shown in Figs, 10 and 11; that for & constant in Fig, 12, Fig, 13 shows
the generalized rule for the propagation of errors when an estimated mean
is calculated via any smecoth fumction,

Now that we know how to chtain the deviation of our net sample count,
what is its significance? This cen be seen in Figs. 14 and 15. Additional
applications of practical problems are illustrated in Figs. 16, 17 and
18,

NULL HYPOTILIS1S

Often one is interested in knowing if the difference between a sample
and background is due to actual activity in the sample, or due to statistical
fluctuations of the background.

The null hypothesis test, as other statistical tests, does not give
absolute answers, It essentially reports the probability that the sawple
count rate is a result of statistical fluctuations of the background rate.
1f this probabiiity is very small, then we assume the sample count is not
a8 rcesult of statistical fluctuations but is & result of activity present in

the samsle,
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In using the null hypothesis, a confidence limit is chosen., Usually,
and for the examples presented here, the 957 confidence limit is chosen.
The difference of the sample and background rates is assumed to be 0. Then
the probability of obtaining the actual difference is calculated. If this
probability is less than or equal to 5%, we reject the hypothesis and assume
the sample contains activity above background,

Since the 957 confidence limit corresponds to approximately twc stand-
ard deviations, one need not compute the probability., If the net result

differs by more than two standard deviations, one rejects the null hypcthesis,

CHI-SQUARE

The Chi-square statistic determines the probability that the deviations
observed in repetition of the observations follew that of the assumed distri-
butfion., It is useful in checking out counting equipme..z, Successive counts
are taken with the instrument. The x2 statistic is calculated from the data
as shown in Fig., 21; then one locks up the percentile values from a Chi-
square table for the appropriate degree of freedom. The degree of freedom
for the Poisson distribution iz n-1 where n is the number of repetitions.
it is advisable to make at lcast 10 vepetitions. The table (Fig. 22) gives
the arca vnder the entire curve to the point in question, The area repre-
sents the probability of obtaining a Chi-square value of 0 to the value in
question, Therefore the fdeal percentile value is 0.5, Note a too amall
value for the xz is just as bad as a too large number. In practice, at the
§5% confidence limit, £{f the percentile value found on the table i{s between
0.025 and .975, the instrument is acceptable. A value less than 0,025
indicates the deviattons in the data are greater than one would expect
from statistics, probably due to some instability of the instrument, A

value preater than (975 indicates the deviations of the sample data are
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less than expected from statistics, probably due to some oscillations or
the counting of noise.
DEAD TIME

The topic of dead time and that of the decaying source does not pertain
to statistics., However, being closely related to counting data and impor-
tant to the health physicist, it has been included in this refresher course.

If two particies enter the counter in rapid succession in a Geiger
counter, the avalanche of ions from the first particle paralyzes the counter.
The positive ions are massive and slow moving. These form a sheath around
the anode, thereby greatly decreasing the electric field intensity around
the anode, making it impossible to initiate an avalanche by another ionizing
particle. As the prsitive ion sheath moves toward the cathode, the field
intensity increases until a point is reached when another avalanche could
be started (see Fig. 23). The time required to attain this electric field
intensity is called the dead time. However, after the end of the dead time,
when another avalanche can be started, the output pulse from this avalanche
is still relatively small and goes undetected as the electric field intensity
is still not great enough to produce a Geiger pulse., When the output pulse
is large enough to be passed by the discriminator and be counted, the counter
is said to have racovered. This total time is the resolving time.

In other words, the resolving time is the minimum ctime that must elapse
befare a second particlie may be decected., Typical resolving times of Geiger
counters lie from 100-200 usec. A proportional counter is much faster than
a Geiger counter, as the avalanche is limited to a short segment of the
ancde, Their resolving times are much smaller than that for a Geiger counter,
typically, in the order of microseconds, The resolving time can be gotten

from an oscilloscope or by the two source method (see Fig. 24),



THE_DECAYING SOURCE

The decaying source correction is necessary when the counting time
is large compared to the half-life, about 5% or greater. The correction

factor as well as its development is showm in Fig. 25.
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DEFINITION OF SYMBOLS

mean
standard deviation

count rate

time

relative standard deviation

respective count rate, standard deviation,
and time counted, for the sample (sample

Plus background)

respective count rate, standard deviation,
and time counted for the background count

respective count rate and standard deviation
of the count rate for the net sample; that
is, total sample minus background

average

sample data

number of sample points

total number of counts



NORMAL DISTRIBUTION

With a mean of p
and a standard deviation of ¢

1 eyl
By = —== e

ag/J2n

Figure 1%
*Reference: W.J. Dixon and F.J. Massey, Introductionm to Statisties,.
(Used with permission of McGraw-Hill Book Company)

POISSON DISTRIBUTION

With a mean of i,

o
P(n) = MI_I..J.‘_e__.

n!

Figure 2
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CONVERGENCE OF THE POISSON TO THE NORMAL DISTRIBUTION
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STANDARD DEVIATION FORMULAS

T X -X%2
By Definition: c=f1 1
N-1
’ N (X2 - (= x,)?
By Computational § 1 1
Method: c= N (8-
Figure 4

SAMPLE CALCULATION OF THE STANDARD DEVIATION

Run X x2

1 S, 364 28,772,496 X = 5,290.30
2 5,319 28,291,761

3 5,329 28,398,241

4 5,211 27,154,521 T = 52,903
5 5,340 28,515,600

6 5,295 28,037,025 )

7 5,231 27,363,361 XS = 279,903,187
8 5,193 26,967,249

9 5,303 28,121,809

10 5,318 28,281,124 x)2 = 2,798,727,409
5 52,903 279,903,187

10 x 27,903,187 - 2,798,727,409
10 x 9

Q =

o = 58,16

Tpoisson = 72.70 (for a single count of 5,290)

Figure 5
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DEVIATION OF A COUNT RATE

Let r = count rate

t = total time the sample was counted

,r
= f=
t

Figure 6

Example:

A 10 min. count resulted in 1,000 counts,

r= 1000 100 cnts/min
10
as= 1—3.2 = 3,2 cnts/min

Suppose a 1 min. count yielded 100 counts,
then

r = 100 ents/min

o = /TO0 = 10 cats/min

Figure 7
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PROPAGATION OF DEVIATIONS

Addition or Subtraction

Ify=a+b

ory=a-bb

Ov = “/ U‘ + sz

o

Figure 8

BACKGROUND SUBTRACTION

In gencral

-fo2 2 . [fs , Tbkg
n \/os +obks v tg + tbkg

Example:

A 5 min sample count yielded 510 counts,
while a 1 hr bkg yielded 2,400 counts, Calcu-
late the net sample count rate and standard
deviation,

. 210 cnts _ 2400 cnts _ - cnts
Tn S5 min 60 min 102-40 = 62 min

62 + 4.6 cnts/min
Usually 2 standard deviations are desired
62 + 9.2

Figure 9*

*Reference: H. Cember, Introduction to Health

Physics. (Used with permission of Pergamon Press,
Tnc.)
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PROPAGATION OF DEVIATIONS

Multiplication and Division

For multiplication or division, it is
convenient to use the relative deviations.
Given a + 04 and b + o)

Gon = O
Ta a

o
"’x'l:'--b2

Figure 19

Multiplication and Division
Ify=axb

a
ory = ¢

then Gry = °raz + °rb2

Figure 11
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PROPAGATION OF DEVIATIONS

Multiplying by & constant - multiply the
devistion by the same constant.

Ppivision by a constant - divide the devia-
tion by the sawme constant.

This is useful when changing units or
applying correction factors.

Figure 12

Genersl Form:

1f y is calculated from a + 04, b + Op, ¢ i O oo

via some function y = f(a, b, ¢ ,..), then

o af2 2, 3F\ 2 . 3£\ 2
Uy"j\S;/ Oa +\a-§) % +\$)oc .

Figure 13
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SAMPLING

An estimsicd mean sample count rate of
By and standard deviation gy implics
that

(1) there is approximately a 68% proba-
bility that the true mean count rate
lies in the interval pp # og;

{2) there is approximately a 95% proba-
bility that the true mean count rate
lies in the interval p, + 20,;

(3) there is approximately a 99% proba~
bilicy that the true mean count rvate
lies in the interval p, + 2.540,;

(4) there fs approxiwmately a 99.9% proba-

bilicy that the true mean count rate
lies in the interval py ¢ 30,.

Figure 14

In our previous example we calculated
rp, = 62
On = 4.6
205 = 9.2
This implies there is approximately a
687 chance the true mean count rate lies
between 57.4 and 66.6.
There is approximately a 95% chance the

true mean count rate is between 52.8 and
71.2.

Figure 15
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CHOOSING THE LENGTH OF A COUNT

A preliminary shor: count revesled
approximazely 30 c/min, An earlisr back-
geound count of 60 minutes resulted in &
count vate of 25 c/min, Utilizing the
95% confidence limit, calculste the re-
quired length of s count so that the true
net count vate wiil be within 16% of the
sample net count rate.

IG% of 30 = 3 cifmin

Using the 95% confidence limit,

20 = 3

¢ = 1.5
1.5 =4+

Ve, 60

ty = 16.4 win

Figure 16%
*Reference: H. Cember, Introduction Lo

Health Physics. (Used with permission of
Pergamon Press, Inc.)

OPTIMUM COUNTING TIME

Optimum counting time for the sample and
the background is given by

thkg _ [ Tbkg
t rg

)

Figure 17
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OPTIMUM COUNTING TIME
Example: Only one hour is available to count &
sample and backcround. What is the optimum time
division between sample and background counting
times if the approximate rates for the sample plus

background and background alone are 1,000 and 20
counts/min, respectively?

t
Sbkg [_JHL_ -
t, 1,000 0.14
Since the total time is 60 wminutes:
. tpgg t tg = 60
then 14 tg + t, = 60
.tg = 53 min,

tbks » 7 min,

Similarly, for count rates of 60 and 20, the approx-
imate times are

t, = 38 min,

tbkg = 22 min,

The deviations may be calculated as in Figure 9.

Figure 18*

*Reference: W, J. Price, Nuclear Radiation Detection.
(Used with permission of McGraw-Hill Book Company.
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NULL HYPOTHESIS

Example:

A sample of drinking water counted for 10 minutes
resulted in 600 counts, A 30 minute background count
resulted in 1,500 counts, At the 95% confidence limit
is there any activity in the water?

_ 600 1200

™30 - 30 ° 6G-50 = 10 c/min

_ [60 . 50 _
O =y 10 * 30 = 2-8 c¢/min
Tn _ 10 _
o 2.8

T
Since Eﬂ is greater than 2, that is, 2.8 is greater than
a
2 standard deviations, there is less than a 5% probability
that the net c¢/min is a result of statistics., Therefore,
the null hypothesis is rejected and activity is assumed to
be present in the sample,

Figure 19%

*Reference: H. Cember, Introduction to Health Physics.
(Used with permission of Pergamon Press, Inc,)

Example (cont'd)

1f, on the other hand, the drinking water resulted
in 530 counts in 10 minutes, then:

n-—‘T(')--—B—O—=53-50=3C/min
/53 50

Op =4 1_0+'3_0_2'6 ¢/min

'n 3 _

On 2.6 1.15

3 c¢/min represents only 1.15 standard from 0. Because it
is less than 2 standard deviations, thus within the 95%
confidence limit, we accept the null hypothesis,

Figure 20
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CHI-SQUARE
(Xobs - xexp)z [ . 2
Run X Xexp 2 = % (observed-expected), ]
1 5,364 1.0267 (expected),
2 5,319 .1557
3 5,329 .2831 XZ = 5,7551
4 5,211 1.1887
5 5,340 4669
6 5,295 .0042 v =9
7 5,231 6647
8 5,193 1.7896
9 5,303 .0305
10 5,318 .1450 P = .25
bR 52,903 5.7551

NOTE: For this case the average count X is substituted for xexp'

Figure 21
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PERCENTILE VALUES (xf,)
for
THE CHI-SQUARE DISTRIBUTION
with + degrees of freedom

(shaded area = p) X
v X X X X xhe X% X3, x.’-.'.\ e x_’m Xop X4 Xo0s
1 7.88 6.63 6.02 3.84 2.71 1.32 465 102 0168 .0039 .0010 .0002 .00ND
2 10.6 9.21 7.38 5.99 4.61 2.77 139 576 211 .103 0606 .020f .0100
3 128 11.3 9,36 7.81 6.26 4.11 2.37 1.21 bR¢ 362 216 116 072
4 14.9 133 11.1 9.49 778 6539 3.36 1.92 1.06 11 484 297 207
5 16.7 1h.1 12.8 11.1 9.24 663 4.36 2.67 1.61 1.16 831 564 412
6 18.5 168 144 12.6 10.6 7.84 65.36 3.46 2.20 1.64 1.24 872 676
1 20.3 1856 16.0 141 12.0 9.04 6.35 4.26 2.83 2.17 1.69 1.24 989
8 22.0 20.1 17.6 16.6 13.4 10.2 7.34 6.07 3.49 2.73 2.18 1.66 1.34
G 21.6 21.7 19.0 16.9 147 114 8.34 65.90 4.17 3.33 2.70 2.09 1.73
10 2h.2 232 20.5 183 16.0 12,6 9.34 6.74 4.87 3.94 3.26 2.66 2.16
11 26.8 247 219 19.7 17.3 13.7 103 7.68 65.68 4.57 3.82 3.06 2.60
12 28.3 26.2 23.3 21.0 186 148 11.3 8.44 6.30 5.23 4.40 3.67 3.07
13 20.8 277 24.7 224 19.8 16.0 123 9.30 7.04 65.89 6.01 4.11 3.67
e 13 29.1 26.1 23.7 21.1 171 133 10.2 1.19 6.67 5.63 4.66 4.07
16 328 30.6 216 26.0 223 18.2 143 11.0 8.66 17.26 6.26 5.23 4.60
16 343 32.0 2R.8 26.3 2356 194 16.3 11.9 231 1.968 6.91 5.81 5.14
17 35.7 33.4 30.2 27.6 248 20.6 16.3 12.8 10.1 8.67 7.66 6.41 5.70
18 37.2 348 31.6 28.9 26.0 21.6 173 13.7 10.9 9.39 8.23 17.01 6.26
19 38.6 36.2 329 30.1 27.2 22,7 18.3 146 11.7 10.1 8.91 7.63 6.84
20 40.0 37.6 34.2 314 284 238 19.3 16.6 124 10.9 9.69 8.26 7.43
21 414 58.9 36.6 32.7 29.6 24.9 203 16.3 13.2 11.6 103 8.90 8.03
22 428 40.3 36.8 33.9 308 2560 213 17.2 14.0 12.3 11.0 9.64 8.64
23 44.2 4156 38.1 36.2 32.0 271 223 18.1 148 13.1 11.7 10.2 9.26
24 45.6 43.0 394 36.4 33.2 282 234 190 15.7 138 12.4 109 9.89
25 46.9 443 40.6 317 344 29.3 243 19.9 16.5 14.6 13.1 116 10.6
26 48.3 45.6 419 389 356.6 304 26.3 20.8 173 164 13.8 12.2 11.2
27 49.6 47.0 43.2 40.1 36.7 31.6 26.3 21.7 18.1 16.2 146 12.9 118
28 51.0 48.3 4.5 41.3 37.9 32.6 273 22.7 18.9 16.9 16.3 13.6 12.6
29 52.3 49.6 45.7 420 39.1 33.7 28.3 23.6 19.8 117 16.0 14.3 13.1
30 53.7 50.9 47.0 43.8 40.3 34.8 29.3 246 20.6 18.6 16.8 16.0 13.8
40 66.8 63.7 59.3 656.8 51.8 456 393 33.7 29.1 26.5 244 22.2 20.7
60 795 76.2 .4 6756 63.2 563 493 42.9 3717 348 324 29.7 28.0
60 92.0 88.4 83.3 791 744 67.0 593 52.3 46.6 43.2 40.6 3175 36.6
70 1042 1004 95.0 90.5 85.6 1.6 69.3 61.7 656.3 61.7 48.8 454 43.3
86 1163 1123 1066 1019 96.6 88.1 79.3 71.1 64.3 60.4 57.2 63.6 61.2
90 | 1283 1241 1181 1131 1076 986 893 80.6 733 69.1 66.6 618 69.2
100 1402 1368 1296 1243 1186 109.1 99.3 90.1 82.4 77.9 74.2 70.1 67.3

Figure 22
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RESOLVING TIME

Time, micrascconds

Putse height

Relationship among dead time, recovery time, and resolving time.

Figure 23*

*Reference: H. Cember, Introduction to Health Physics.
(Used with permission of Pergamon Press, Inc.)
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RESOLVING TIME CORRECTION

Ro
R =T Rt

Calculation of resolving time
by the two source method:

‘R1+R2-R12‘Rb

= —

Rf, - Ry2 - Ry2

Figure 24%

*Reference: H. Cember, Introduction to Health Physics.
(Used with permission of Pergamon Press, Inc.)

THE DECAYING SOURCE

Let A, be the count rate at to
t; be the time the count was started
ta be the time the count was finished

—= = the count rate at any time t

Lo ¢
Y t = - .lL -AtJ 2
Ne = l ﬁoe de x Ao® t;
1

=\t =At
N = 52 (7 - e

AN
0 (e=Aty - e-htz)

Figure 25
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