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PRACTICAL STA» fICS FOR TIE iGEALTH PHVSICIST*

Joseph A. Ash
lie*!tit Physics *nd Safety Division

Brooktiavtm National Laboratory
Upton, New York 11973

The refresher course will provide a practical Approach to the use of

statistical concepts In interpreting data related to problems «f applied

health physics.

After a brief review oi the theoretical probability distributions,

emphasis will be placed on counting statistics, In particular the concept

of the .standard deviation. In this category the following topic* will be

covered: (1) calculation of tltcr standard deviation* (2) propagation of errors

(when two or more quantities are combined arithmetically or via a formula),

(3) confidence limit*, and <A) the null Hypothesis.

The following topics wilt also be discussed: (I) Chi-Square in relation

to checking the reliability of a counting instrument, (2) correction factor*

for deadtine losses, and (3) for the case of a decaying source*

* Work carried out at throokhaven National Laboratory under contract vith Che
U. S. Atomic Energy Commission.
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ItffROPUCTION

Any measurement repeated under supposedly identical conditions will

yield a variety of results. There are numerous reasons for these devia-

tions; a ttv ore:

1) reading errors,

2) alteration of supposedly similar conditions; for example,

instrument <irifc, etc,

3) the random nature of certain processes, as the nature of

radioactivity.

THE NORMAL DISTRIBUTION

Many random processes may be approximated by the normal distribution,

that Is, the curve known *s the be11-shaped curve. Although also known as

the Gaussian curve, the curve was first developad by de Hoivra in 1733 and

later by Gauss in the 1790's.

If one took many random samples from a population and plotted a fre-

quency distribution, one would gee a "normal distribution" curve approximating

the shape of one of the curves shown in Fig. 1. The curve may b* defined by

the equation shown above the graph.

The normal distribution has two independent parameters, the mtan it and

the standard deviation 0. The graphs represent normal distribution of a

mean of 5 and standard deviations of I, 2 and 3, respectively. The mean or

average is represented on the graph by the abscissa (x value) with the largest

ordinate. It is the most probable value. The standard deviation is a measure

of how widely the data varies from the mean. Host of Che practical statistical

analysis is based on the normal distribution.

Nuclear events follow the Poisson probability distribution whose equation

is shown in Fig. 2. The Poisson distribution ha» one parameter, the mean,

similarly defined as the mean for the normal distribution* For practical
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purposes for means greater than 20, the Polsaon distribution of mean u can

be approximated by a normal distribution of mean n and standard deviation

/jl. This convergence is seen in Fig. 3. Thus all the properties of the

normal distribution may be applied to radioactivity, providing the number

of events is greater than 20.

The parameters, the mean and standard deviation are calculated as ahovn

in Fig. 4. The decision to use N or N-l depends on whether one is utilizing

the entire population or a sample of the population for the calculation as

shown in Fig. S. Although not shown in Fig. 4, the statistical literature

recognizes the difference between utilizing an entire population or just a

sample of the population, ji and n are usually reserved for the parameters

calculated from the entire population, while x and a ar« reserved for the

parameters calculated from «ample populations.

SAMPLING

In counting samples and reporting data, one is interested in the true

mean count rate. In order to iM»tain the true mean count rate, one would

theoretically have to repeat the count an infinite number of times end use

the average. This is impossible; thus one is concerned in estimating the

mean count rate. Along with this estimated mean, one is interested in how

well this estimated value approximates the true mean. This introduces the

topic of sampling with parameters known as the sample mean and standard devia-

tions of the mean. Although the concept has broad application, we will

restrict ourselves to considering counting samples and count rotes.

STANDARD DEVIATIONS OF COUNTINC DATA

The standard deviation of a count rate is given by

where i* = the count rate

t * the actual time counted
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Note, as t becomes larger (a longer count Is taken), the deviation of the

count rate is decreased (sec Figs. 6 and 7).

Usually one is interested In estimating the difference between two

count races, viz. a sample and a background. This brings up the topic of

propagation of deviations, that is, when one determines an estimate of a

mean via some mathematical function that involves parameters and their re-

spective standard deviations. One must then calculate the associated

standard deviation according to various prescribed rules.

The rules for subtraction and addition are given in Fig. 8, and an

example shown in Fig. 9. The rules for multiplication and division are

shown in Figs. 10 and 11; that for a constant in Fig. 12. Fig. 13 shows

the generalized rule for the propagation of errors when an estimated mean

is calculated via any amooth function.

Now chat we know how to obtain the deviation of our net sample count,

what is its significance? This can be seen in Figs. 14 and IS. Additional

applications of practical problems are illustrated in Figs. 16, 17 and

18.

NULL HVPOTHKS1S

Often one is interested in knowing if the difference between a sample

and background is due to actual activity in Che sample, or due to statistical

fluctuations of the background.

The null hypothesis test, as other statistical tests, does not give

absolute answers. It essentially reports the probability that the sample

count rate is a result of statistical fluctuations of the background rate*

If this probability is very small, then ve assume the cample count is not

a result of statistical fluctuations but is a result of activity present in

the sample.
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In using Che null hypothesis, a confidence limic is chosen. Usually,

and for Che examples presented here, Che 957. confidence limit is chosen.

The difference of che sample and background rates is assumed to be 0. Then

Che probability of obtaining Che actual difference is calculated. If this

probability is less Chan or equal Co 57., we reject che hypothesis and assume

Che sample coneains activity above background.

Since the 957, confidence limit corresponds to approximately two stand-

ard deviations, one need not compute the probability. If the net result

differs by more than two standard deviacions, one rejects the null hypothesis.

CHI-SQUARE

The Chi-square statistic determines the probability that the deviations

observed in repetition of the observations follow that of the assumed distri-

bution. It is useful in checking out counting equipment. Successive counts

2
are taken wiCh the instrument. The X statistic is calculated from the data

as shown in Fig. 21; then one looks up the percentile values from a Chi-

squarc table for the appropriate degree of freedom. The degree of freedom

for the Polsson distribution Is n-1 where n is the number of repetitions.

It is advisable to make at least 10 repetitions. The table (Fig. 22) gives

Che area under the entire curve to the point in question. The ares repre-

sents the probability of obtaining a Chi-square value of 0 to the value in

question. Therefore che ideal percentile value is 0.5. Note • too »mall

value for the X is Just as bad as a too large number. In practice, at the

confidence limit, if cite percentile value found on che table is between

0.025 and .975, the instrument is acceptable. A value less Chan 0.025

indicates the deviations in Che data are greater than one would expect

from .statistics, probably due to some instability of the instrument. A

value greater than .975 indicates cite deviations of the sample data are
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less than expected from statistics, probably due to some oscillations or

the counting of noise.

DEAD TIME

The topic of dead time and that of the decaying source does not pertain

to statistics. However, being closely related to counting data and impor-

tant to the health physicist, it has been included in this refresher course.

If two particles enter the counter in rapid succession in a Geiger

counter, the avalanche of ions from the first particle paralyzes the counter.

The positive ions are massive and slow moving. These form a sheath around

the anode, thereby greatly decreasing the electric field intensity around

the anode, making it impossible to initiate an avalanche by another ionizing

particle. As the pctiitive ion sheath moves toward the cathode, the field

intensity increases until a point is reached when another avalanche could

be started (see Fig. 23). The time required to attain this electric field

intensity is called the dead time. However, after the end of the dead time,

when another avalanche can be started, the output pulse from this avalanche

is still relatively small and goes undetected as the electric field intensity

is still not great enough to produce a Geiger pulse. When the output pulse

is large enough to be passed by the discriminator and be counted, the counter

is said to have recovered. This total time is the resolving time.

In other words, the resolving time is the minimum time that must elapse

before a second particle may be decected. Typical resolving times of Geiger

counters lie from 100-200 usec. A proportional counter is much faster than

a Geiger counter, as the avalanche is limited to a short segment of the

anode. Their resolving times are much smaller than that for a Geiger counter,

typically, in the order of microseconds. The resolving time can be gotten

from an oscilloscope or by the two source method (see Fig. 24).
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THE DECAYIMG SOURCE

The decaying source correction is necessary when the counting time

is large compared to the half-life, about 5% ;>r greater. The correction

factor as well as its development is shown in Fig. 25.
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DEFINITION OF SYMBOLS

p, = mean

a = standard deviation

r = count rate

t = time

or = relative standard deviation

rs» CTs> fcs = respective count rate, standard deviation,
and time counted, for the sample (sample
plus background)

rbkg> °bkg» tbkg = respective count rate, standard deviation,
and time counted for the background count

rn, an = respective count rate and standard deviation
of the count rate for the net sample; that
is, total sample minus background

X = average

Xj = sample data

N = number of sample points

Nc = total number of counts
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NORMAL DISTRIBUTION

With a mean of M>
and a standard deviation of

P(n) =

-2 -I

Figure 1*

^Reference: W.J. Dixon and F.J. Massey, Introduction to Statistics.
(Used with permission of McGraw-Hill Book Company)

POISSON DISTRIBUTION

With a mean of |x,

Figure 2
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CONVERCENCE OF THE POISSON TO THE NORMAL DISTRIBUTION

KEY

* Normal Distribution

0 Poisson Distribution

•
o

U=2

Two

•

•
e

2.00 4.00
N

"ft

e B

U=5

•

o

e
•

6.00 8.00
* » ^

T).OO 4.00 B.OD 17.00
N

16.00

s

• •
e e

U=10

8w 1*^!«••••••• I n
8.00 16.00 ?4.00 M.OO ^.00

Figure 3

U=50

!••>••••••
40.00 80.00 120.00 160.00

N



-11-

STANDARD DEVIATION FORMULAS

By Definition:

By Computational
Method: yN q Xt

2) - (S X 1)
3

N (N-l)

Figure 4

SAMPLE CALCULATION OF THE STANDARD DEVIATION

Run

1
2
3
4
5
6
7
8
9

10

5:

X

5,364
5,319
5,329
5,211
5,340
5,295
5,231
5,193
5,303
5,318

52,903

X2

28,772,496
28,291,761
28,398,241
27,154,521
28,515,600
28,037,025
27,363,361
26,967,249
28,121,809
28,281,124

279,903,187

5,290.30

52,903

EX2 - 279,903,187

(£X)Z - 2,798,727,409

- /
V

lO x 27.903.187 - 2.798.727.409
10 x 9

o = 58.16

apoisson = 72-70 (for a single count of 5,290)

Figure 5
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DEVIATION OF A COUNT RATE

Lee r • count rate

t * total time the cample vat counCdd

Figure 6

Example;

A 10 win. count resulted in 1,000 counts.

r . APJj
0- . ioo cnts/min

~ - 3.2 cnts/min

Suppose a 1 min. count yielded 100 counts,
then

r • 100 cnts/min

a * /TOF - 10 cnts/min

Figure 7
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PROPAGATION OF DEVIATIONS

Addition or Subtraction

If y - a + b

or y • a - b

" V <V

Figure 8

BACKGROUND SUBTRACTION

In general

2 / rs

Example:

A 5 min sample count yielded 510 counts,
while a 1 hr bkg yielded 2,400 counts. Calcu-
late the net sample count rate and standard
deviation.

«

"n V 5 60 "*u

62 +4.6 cnts/min

Usually 2 standard deviations are desired

62 + 9.2

Figure 9*
Reference: H. Cember, Introduction to Health
Physics. (Used with permission of Pergamon Press,
Inc.)



PROPAGATION OF DEVIATIONS

Multiplication and Division

For multiplication or division, it is
convenient to use the relative deviations.
Given a + oa and b + O|,

Figure 10

Multiplication and Division

If y • a x b

or y = r

then

ay " ary

Figure 11
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PROPAGA.TION OF DEVIATIONS

Multiplying by a constant - Multiply the
deviation by the same constant.

Division by a constant - divide the devia-
tion by the same constant.

This is useful when changing units or
applying correction factors.

Figure 12

General Form;

If y is calculated from a + am, b + aj,, c + ac

via some function y * f(a, b, c . . . ) , then

Figure 13
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SAMPUNC

An VKtimslfd mean autplv count ratv «>f
|in and standard deviation «Jn Implies
that

(1) there is approximately a 68% proba-
bility that the true await count rat*
lies in the interval n n + an;

(2) there is approximately a 95% proba-
bility that the true mean count rate
lies in the interval u-n + 2on;

(3) there ia approximately a 99% proba-
bility that the true mean count rate
lies in the interval i*n + 2.54on;

(4) there is approximately a 99.9% proba-
bility that the true mean count rate
liea in the interval i*n + 3on.

Figure 14

In our previous example we calculated

rn = 62

CTn - 4.6

2on - 9.2

This implies there is approximately a
68% chance the true mean count rate lies
between 57.4 and 66.6.

There is approximately a 95% chance the
true mean count rate is between 52.8 and
71.2.

Figure 15
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CiJOOSING THE LENGTH OF A COUNT

A preliminary shore count revealed
approximately 30 c/stln. An earlier b*ck>
ground count of 60 Minutes resulted in •
count rate of 23 c/min. Ut Hieing the
95% confidence limit, calculate the re-
qutrtd length of * count so that £ne true
net count rate will be vithin 10% of the
sample net count rate.

of 30 « 3

Using the 9S% confidence limit,

2s - 3

if - 1.5

ts « 16.4 win

Figure 16*

^Reference: H- Camber, Introduction to
Health Physics. (Used with permission of
Pergaiton Press, Inc.)

OPTIMUM COUNTING TIME

Optimum counting time for the sample and
the background is given by

Figure 17
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OPTIHUM COUNTING TIME

Example: Only one hour is available to count a
sample and background. What is the optimum tine
division between sample and background counting
times if the approximate rates for the sample plus
background and background alone are 1,000 and 20
counts/min, respectively?

Since Che total time is 60 minutes:

cbkg + ts » 6P

then .14 ts + t8 - 60

•ts - 53 min.

cbkg " ' m i n«

Similarly, for count rates of 60 and 20, the approx-
imate times are

to « 38 min.

22 min.

The deviations may be calculated as in Figure 9.

Figure 18*

Price, Nucle
(Used with permission of McGraw-Hill Book Company.
Reference: W. J. Price, Nuclear Radiation Detection.
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NULL HYPOTHESIS

Example:

A sample of drinking water counted for 10 minutes
resulted In 600 counts. A 30 minute background count
resulted in 1,500 counts. At the 95% confidence limit
is there any activity in the water?

I" =-lP-= 3 5
CTn 2.8

Since — is greater than 2, that is, 2.8 is greater than
CTn

2 standard deviations, there is less than a 5% probability
that the net c/min is a result of statistics. Therefore,
the null hypothesis is rejected and activity is assumed to
be present in the sample.

Figure 19*

*Reference: H. Cember, Introduction t£ Health Physics.
(Usec* with permission of Pcrgamon Press, Inc.)

Example (cont'd)

If, on the other hand, the drinking water resulted
in 530 counts in 10 minutes, then:

530 1500 c, ,. - , .
rn = TO 30~ = 5 3~ 5 0 = 3 c / m l n

an 2.6

3 c/min represents only 1.15 standard from 0. Because it
is less than 2 standard deviations, thus within the 95%
confidence limit, we accept the null hypothesis.

Figure 20
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CHI-SQUARE

Run

1
2
3
4
5
6
7
8
9
10

k.

5
5
5
5
5
5
3
5
5
5

52

X

,364
,319
,329
,211
,340
,295
,231
,193
,303
,318

,903

<xobs

1

1

1

5

- X >2

Xexp

.0267

.1557

.2831

.1887

.4669

.0042

.6647

.7896

.0305

.1450

.7551

2 = v C(observed-expected).Y

(expected).

X = 5.7551

V = 9

P a» .25

NOTE: For this case the average count X is substituted for Xfixp*

Figure 21
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i'Kltt'KNTILE VALUES (x
a)

for "
THE CHI-SQUARE DISTRIBUTION

with v degrees of freedom
(shaded area = p)

r

1
2
3
4

5
r>
7
8
<>

10
11
12
13
1-1

IS
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
40
60
60

70
80
90

100

* HIM

7.88
io.r.
12.H
14.9

16.7
18.5
20.3
22.0
2:i.fi

2f».2
2P..8
2H.3
2U.8
31.3

32.8
34.3
35.7
37.2
38.6

40.0
41.4
42.8
44.2
45.6

46.9
48.3
49.6
51.0
52.3

53.7
66.8
79.5
92.0

104.2
116.3
128.3
140.2

X2

mi

fi.63
H.21

11.3
13.3

lfi.l
16.8
18.5
20.1
21,7

2:t,2
24.7
26.2
27.7
29.1

30.G
32.0
33.4
34.8
36.2

37.6
38.9
40.3
41.S
43.0

44.3
45.6
47.0
48.3
49.6

50.9
63.7
76.2
88.4

100.4
112.3
124.1
135.8

X*

6.02
7.38
9.35

11.1

12.8
14.4
16.0
17.5
19.0

20.5
21.9
23.3
24.7
26.1

27.5
28.8
30.2
31.6
32.9

34.2
36.6
36.8
38.1
39.4

40.6
41.9
43.2
44.6
46.7

47.0
59.3
71.4
83.3

95.0
106.6
118.1
129.6

X2

3.84
6.»9
7.81
9.49

11.1
12.6
14.1
16.6
16.9

18.3
19.7
21.0
22.4
23.7

25.0
20.3
27.6
28.9
30.1

31.4
32.7
33.9
35.2
36.4

37.7
38.9
40.1
41.3
42.6

43.8
65.8
67.6
79.1

90.5
101.9
113.1
124.3

2.71
4.C.1
6.25
7.78

9.24
10.6
12.0
13.4
14.7

16.0
17.3
18.6
19.8
21.1

22.3
23.5
24.8
26.0
27.2

28.4
29.6
30.8
32.0
33.2

34.4
35.6
36.7
37.9
39.1

40.3
51.8
63.2
74.4

85.5
96.6

107.6
118.6

X2

x.n

1.32
2.77
4.11
5.39

6.63
7.84
9.04

10.2
11.4

12.6
13.7
14.8
16.0
17.1

18.2
19.4
20.6
21.6
22.7

23.8
24.9
26.0
27.1
28.2

29.3
30.4
31.6
32.6
33.7

34.8
45.6
66.3
67.0

77.6
88.1
98.6

109.1

.466
1.39
2.37
3.36

4.35
6.35
6.35
7.34
8.34

9.34
10.3
11.3
12.3
13.3

14.3
15.3
16.3
17.3
18.3

19.3
20.3
21.3
22.3
23.J

24.3
25.3
26.3
27.3
28.3

29.3
39.3
49.3
69.3

69.3
79.3
89.3
99.3

X*

.102

.576
1.21
1.92

2.67
3.46
4.25
6.07
6.90

6.74
7.68
8.44
9.30

10.2

11.0
11.9
12.8
13.7
14.6

16.6
16.3
17.2
18.1
19.0

19.9
20.8
21.7
22.7
23.6

24.6
33.7
42.9
52.3

61.7
71.1
80.6
90.1

y »
*.1O *.02.1 X.OI

»*
*.ooa

.0168 .0039 .0010 .0002 .0000

.211

.684
1.06

1.61
2.20
2.83
3.49
4.17

4.87
6.68
6.30
7.04
7.79

8.65
9.31

10.1
10.9
11.7

12.4
13.2
14.0
14.8
16.7

16.6
17.3
18.1
18.9
19.8

20.6
29.1
37.7
46.6

65.3
64.3
73.3
82.4

.103

.352

.711

1.15
1.64
2.17
2.73
3.33

3.94
4.67
6.23
6.89
6.57

7.26
7.96
8.67
9.39

10.1

10.9
11.6
12.3
13.1
13.8

14.6
15.4
16.2
16.9
17.7

18.6
26.5
34.8
43.2

51.7
60.4
69.1
77.9

.0506 .020

.216

.484

.831
1.24
1.69
2.18
2.70

3.26
3.82
4.40
6.01
6.63

6.26
G.91
7.66
8.23
8.91

9.69
10.3
11.0
11.7
12.4

13.1
13.8
14.6
15.3
16.0

16.8
24.4
32.4
40.5

48.8
67.2
66.6
74.2

.115

.297

.654

.872
1.24
1.66
2.09

2.56
3.06
3.57
4.11
4.66

6.23
6.81
6.41
7.01
7.63

8.26
8.90
9.54

10.2
10.9

11.6
12.2
12.9
13.6
14.3

15.0
22.2
29.7
37.5

45.4
63.5
61.8
70.1

t .0100
.072
.207

.412

.676
.989

1.34
1.73

2.16
2.60
3.07
3.67
4.07

4.60
6.14
5.70
6.26
6.84

7.43
8.03
8.64
9.26
9.89

10.5
11.2
11.8
12.6
13.1

13.8
20.7
28.0
36.6

43.3
61.2
69.2
67.3

Figure 22
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RESOLVING TIME

Tim*, microsecond*

100 200 300 400

J» Rinlving Van* ••>

Relationship among dead lime, ncovtry lime, and raolving lime.

Figure 23

*Reference: H. Cember, Introduction to Health Physics.
(Used with permission of Pergamon Press, Inc.)
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RESOLVING TIME CORRECTION

Calculation of resolving time
by the two source method:

T -
 Rl + R2 " R12 ~ Rb

D2 2 2R12 " Rl " R2

Figure 24*

*Reference: H. Cember, Introduction to Health Physics.
(Used with permission of Pergamon Press, Inc.)

THE DECAYING SOURCE

Let Ao be the count rate at to

tx be the time the count was started

ts be the time the count was finished

dNc
— - = the count rate at any time t
dt
then

C

"dT * A»°

_ XN
Ao ~ (e-̂ ti -

Figure 25



BIBLIOGRAPHY

Witham H. Beyer, Handbook of Tables for Probability and Statistics.
Chemical Rubber Co., Cleveland, Ohio (1966).

K. A. Brownlee, Statistical Theory and Methodology in Science and
Engineering. John Wiley and Sons, New York (1960).

Herman Cember, Introduction to Health Physics. Pergamon Press, New
York (1969).

W. J. Dixon and F. J. Massey, Jr., Introduction to Statistical Analysis.
McGraw-Hill Inc., New York (1951).

Robley D. Evans, The Atomic Nucleus. McGraw-Hill Inc., New York (1955).

Nuclear Chicago Technical Bulletin No. 14, "How to Apply Statistics to
Nuclear Measurements", Nuclear Chicago Corp., Des Plaines, 111.

William J. Price, Nuclear Radiation Detection. McGraw-Hill Inc., New
York (1964).


