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STRAIN HARDENING IN THE HEMP CODE |

ABSTRACT

The Prandtl-Reuss eqﬁations used in the HEMP elastic-plastic computer program
are satisfied exactly for elastic, perfectly plastic materials, and are less exact for
materials that strain harden. This paper presents a new method of incorporating
strain hardening into the flow law that is exact for linear strain hardening and very -
nearly exact for nonlinear strain hardening. A'tensile test of a strain-hardening

.material is simulated using the present method and the previous method. The original
approximate method has an accumulated'error of less than 2% when compared to the A

present method. The present method agrees with exact calculations to within 0.05%.

INTRODUCTION

In recent yéars computer programs have been developed to simulate the elastic,
elastic-plastic, and hydrodynamic behavior of metals and other materials.l’2
Initially, these assumed elastic, perfectly plastic behavior. Subsequently, the strain-
hardening characteristics of materials were incorporated into the simulation. This
paper reports a refinement in the way of introducing this strain-hardening behavior
into the calculations. A stress-strain curve for a 5083 aluminum alloy has been
simulated_using the previous and the presently réported computational schemes to

measure the improvement in precision gained in using the new method.

STRAIN-HARDENING COMPUTATIONS

" Previous Computational Schemes

The yield condition of von Mises describes the elastic limit. In the principal
stress space, depicted in Fig. la, the yield condition can be written as '

2 2

(0, -0+, -0%+(0,-0p?=2v)? - (1)

where the o, are the principal stresses and Y0 is the yield strength in a simple tension

test.

Since the computational.scheme in the computer program uses deviatoric stresses,

it is convenient to restate Eq. (1) in terms of deviatoric stresses, as

2 2 2 2 : . '
(s, = 8))" + (s, - 55" +(s5-5)" =2(Y))" (2)
4":The deviatoric stress, Sii =¢0.. + P, where P is the hydrostatic stress component,
i.e., P=1/3(c, +0,+0g). M :



By definition, s, + s2 + s3 = 0, which allows Eq. (2) to be simplified into

1
2 2 2 _ 2,2 .
s] +85*+s3=3Y,. (3)
. 2 2 2. 22 e _— C e .
If s; t s, + S5 is less than -3-Y0 , the material is within the elastic limit and

Hooke's law may be used to calculate the stress deviators. Assume that the (n + 1)
strain increment used with Hooke's law takes one beyond the yield surface, as shown
in Fig. 1b. One must then correct the assﬁmption of elasticity; this strain increment
was, in fact, composed of an'elastic and a plastic component. The elastic component
moves along the yield surface and the plastic component moves perpendicular to the
yield surface. Thus, the calculated stress must be relaxed back to the yield surface.
The magnitude of this relaxation is given by (ZuAGP). This relaxation is

accomplished most conveniently by multiplying each of the stress deviators (sl, Sy s3)

by a scalar

_[2 /2 2 2
m-J; YO/ sl+s2+s3.

The projection of the radius vector of the point at (n + 1) is thus scaled so that the
point lies on the yield surface. The observed incompressibility of the plastic state
is implicit in the above prbcedure. ‘

Prandtl3 and Reussf1 extending the Levy—Misess’6 equations to allow a strain
inerement Lo have an elastic and plastic component, assumed that

deg - sijdx.' : ' | ()

The physical significance of Eq. (4) is that the plastic strain increment is assumed
to be proportional to the deviatoric stress component, The geometric significance
of Eq. (4) with respect to Fig. la is that it requires‘ the plastic strain increment to
be perpendicular tc the yield surface. .

Under what circumstance does the scaling procedure previously describedrsatisfy

n+l

this condition? Prior to scaling, s;; may be described by

n+l n L ’ -
Sii Sii 2“A€u ‘ : : . . (&)
where
sini = deviatoric stress prior to straining
'T

Aeii = total deviatoric strain (elastic-plastic) increment’

u = shear modulus.



Yield surface

Fig. la. The von Mises yield assumption in (o T 03) space.

2;

Yield surface

Ae'E = deviatoric elastic
strain increment

Ae'P = deviatoric plastic E
strain increment 2u(Aé )

Ae'T = deviatoric total
strain increment

Fig. 1b. Schematic of the stress scahng procedure for elastic-plastic hehavior.
From n to (n + 1)}* represents the stress calculation, assuming complete
elasticity. From (n + 1)” to (n + 1) represents.the relaxatlon of the
elastic stress to correct for the plastic part of the total strain. From.n
to (n + 1) represents the actual increase in the elastic stress for the strain
increment, A€’



After scaling, the deviatoric stress is given by

n+l _ n 'T) ‘ et
S = m(sii + ZpAeﬁ. X | ' : (6)

Furthermore, the incremental stress increase is given by

ASn+1/2

11

- n 'T) _.n- -
= m(sii +2ube 555 . : (7_).

The plastic strain increment is the difference in the total deviatoric strain inéremen_t

and the elastic deviatoric strain increment, or

Aghtl/2
AEP = Ag'T - L (8)
it . ii 2u :
Substituting (8) into (7) and rearranging terms, gives
. - o
P _ ,'T, P ‘ . ’
Aeii = Ae .(1} m) + e (1 - m). (9)
But, according to the Prandtl-Reuss assumption, -
Aeg .
s— - I B . (10)
ii .
Substituting (9) into (10) and simplifying, gives
!
AeiiT 1
A= (-m) | | (11)
Sii
If dA is to remain constant for i =1, 2, 3, then
'T 'T T
Beqp _ B€pp  Beg3 | ‘ - | 12)
sh R s S '
11 22 33 '
But Eq. (10) states that
P P P
Ae :
11 _ %€ _ €33 E e B (13)
n n n : . ’
511 S22 33

Thus, the scaling to the_ yield surface as described earlier satisfies the Prandtl-Reuss
criterion exactly when the total deviatoric strain equals the plastic strain; i.e., there
is no strain-hardening.

For a perfectly blastic material, the yield surface in (o 129 9 0-3) space may be

picturéd as a cylinder of axis [li +1j + 1k]J. The scaling procedure moves one in a

.-4_



“direction perpendicular to the axis of the cylinder, and thus, perpendicular to the

surface of the cylinder as required by the Prandtl-Reuss criteria. If strain harden-
ing occurs, however, the yield surface in [o 1'% 9 03] space is more properly
described by a truncated cone whose axis is also the [111] direction. Scaling

(s11> S99
axis. This direction will not be perpendicular to the surface of the cbne, however,

333) in this case again moves one in a direction perpendicular to the cone
and thus violates the Prandtl-Reuss criterion. ‘

When strain hardening was added to the scaling scheme for (Sll’ Sogr s33) '
described above, the plastic strain in a given increment was used to calculate a new
yield surface for the next increment. Thus the conic yield surface representing a
material that strain hardens is approximated by a cylinder with an incrementally
increasing diameter as shown in Fig. 2, or the effective-stress effective-plastic-
strain curve is approximated by an incremental stress-strain curve as shown ih Fig. 3.

The error introduced in such a scheme is a result of producing the plastic strain
increment perpendicular to the incremental surfaces of the cylinder rather than to the
truc conical yield surface. The error accrued in such a scheme should be négligible
for small increments and moderate strain-hardening. . Furthermore, the error

approaches zero as the first derivative of the stress-strain curve approaches zero.

‘New Computational Scheme

The present computational scheme requires at the outset a definition of the
Prandtl-Reuss proportionality constant, dX, as a function of the stress-strain
behavior of the material to be simulated. Inverting the Prandtl-Reuss criterion of

Eq. (4) gives
s..dn =del . ' (14)

Squaring each side of the equations given in tensor notation in (14) and adding the re-

sulting equations gives
(s, 5.0 @07% = (aeF aef ) (15)
ij 1ij ij =~ ij - |

where repeated indices are summed, i = 1, 2, 3.

Equation (15) may he rearranged to give
1/2

P.P
_3 NEZE (deij deij) de

3
dh — - = — (16)
2 [37215..&-.)1/2 2 7
where RUNRY
de ¥ = effective plastic strain
o = effective stress,



Approximation to conical yield surface

Conical yield surface for a strain hardening
material

Axis of cone in (1) ‘a.irecfio'n in (c],.q2;03) space

Fig. 2. ' True yield surface of a material that strain hardens (o =a, + CEP) and
the approximate yield surface used in the stress scaling cor%putational
scheme (pictured in (o /990 3) space ). .



True stress-strain behavior of a material
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b Approximate stress-strain behavior
E assumed in the stress scaling comput-

ational scheme
Effective plastic strain — €
Fig. 3. A material's true stress-strain behavior and the approximate stress-strain

behavior assumed in the stress scaling computational scheme.



The. effective stress as a function of the effective plastic strain is most commonly

determined in a tensile test. If the slope of the stress-strain curve at an effective

plastic strain, EP, is given by H' = _q_% then Eq. (16) may be rewritten as
: C de

an =340 S - (17)

20 H'
Substituting (17) into (14) gives
3s. .do ‘ ‘ .
gef =i, | - (18)
o 20H : _ : ‘

The incremental increase in the deviatoric stress can be calculated using Hooke's

law, such that

= 1B T P , . '
dsij = Zudeij —Zy[dEij d€ij}' | _ (19)

Substituting (18) into (19) gives

. 3us. . '
T 1] — ' . . :
d ., = fl. . T — dO' . . (20)
Si; T wdey; cH'
Since
- 3 1/2
° =3 (Sﬂmsﬂm)
then
-2 _ 3
T2 (Sﬂmsﬂm) : (21)
and
20 do = 3(82 dsﬂm) (22)
such that
— _ 3 sﬁm . .
do = § 6__ dsﬁm . . . . (23)

Substitution of (23) into (20) gives

9us..{s, ds, )
ds,. = 2/.(d€'.’.r- ij #m_ fm . . (24)

i i] 9o H'

Equations (24) represent, in tensor notation for the most general case, six linear

equations in six unknowns (dsij) for a given strain increment de_'ir.r , stress state '
(Si') and strain-hardening materials characteristic (H'). In the Hydrodynamic-Elastic-

Magneto-Plastic (HEMP) program, 1,2 where this new strain-hardening calculation -

-8-



was first utilized to simulate stress-strain curves for cylindrical tensile samples,
T23 = T13 = 0. Therefore Eqs. (24 reduced to four equations in four unknowns.
Since s11 + 822 + s.33 =0, ds11 + d522 + ds33 = 0, and Egs. (24) may be further
reduced to three equations in three unknowns. '

The solution of the simultaneous equations given in (24) partitions the total strain
increment between elastic and plastic components in such a way that the stress
increase produced by the plastic strain component equals exactly the stress increase
predicted from the elastic stress component. The constant plastic volume condition
is also satisfied implicitly in the formulation. Thus one begins the strain increment
on the yield surface and also terminates the strain increment on the yield surface,
eliminating further scaling back to the yield surface.

If the plastic portion of the effective-stress effective-strain curve is linear, the
introduction of strain hardening into the formulation via Eqgs. (24) is exact, the 6n1y
error being that which is inherent in the finite difference approach. In terms of the
yield surface, this requirement demands that the surface of the cone retain a constant
angle of inclination with respect to its axis. If this angle changes or H' varies within
a plastic strain increment, AGP, then we must approximate the average value of H'
over thc plastic strain increment in question, as in big. 4. This may be done to a
first approximation by evaluating H' as follows: R

r1ot1/2 L (et ) o H“(?Pn)azpn-i/z. - (25)

Pn—l/2

n .
Since both H"(€F )and A€ are quite small, it should normally be possible

to neglect the second term in Eq. (25).

COMPARISON OF RESULTS, STRESS SCALING
VS STRAIN-HARDENING SCHE MES

For a Single Iteration

n+1/2 for the nth cycle of a given

T'able 1 lists the data required to calculate (dsij) 0
computer simulation. Substituting these data into Egs. (24) produces the results
listed in Table 2 ' ' ‘ |

From Eq. (4) the Prandtl-Reuss criterion is Aellj/le = dx. Comparing the
figures in the last two columns of Table 2 shows the high precision with which this
formulation maintains this criterion.

The same data given in Table 1 were then used again in the stress scaling
calculation scheme. Here the strains are assuhxed to be completely elastic, and

Hooke's law is used to calculate the stress increments and the new final stresses,

“A computational scheme that results from the simultaneous solution of Eqgs. (24)
appears in Appendix A, '

-9-
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Stress error
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Fig. 4.

Effective p|o§fic strain — €

Effective stress vs effective strain curve picturing the error that results
from neglecting the variation of H' over the plastic strain interval Ae”,

I'\

_\10:.



rilj+1/2 = s?j + AS?_+1/2_.__Then th_e_riew stresses are scaled back to the yield s.urface,
using the scalar m = N2/3 Yo'/xlsijsi. .

Normally the code calculates Y, for each cycle from the effective plastic strain
total at the-end of the previous cycle. These calculations, however, use the same -
Y. based on the data in Table 1, making the incremental stresses directly comparable

0
with those of Table 2. Table 3 shows the results.

Table 1. Data for caléulating (sij)nﬂ/2 for the nth cycle of computef simulﬁtion.

Sij Tij ' Ae'rfj

ij Kbar kbar 1076

xx 1.6773 - 3.187226783

yy -1.1128 ~ -2.,191054681

22 -0.5645 - 0.9961721024

xy ~ - 1.6797 . 5.927840127

yz ' - "0 0

XZ . - 0 0

u = 277 kbar H' = 4.0049 kbar

Table 2. Results of substituting the data of Table 1 into Egs. (24).

Asij ATij Aeg /sij Aeil:; /Tij
ij 1075 kbar 1073 woar . 1073 kbar "} 1073 kbar "}
xx  0.0752931589 - 1.819184733 . -
yy -0.0923329142 - 1.819184733 -
2z 0.0170397553 — 1.819184736 -
xy _— -0.0508375539 - 1.819184734

Table 3. Results of parallel calculations to those of Table 2, starting with the data
of Table 1 but this time using the stress scaling calculation scheme.

P

asg ot Aeg /544 Ae /T
ij 1073 kbar 107 kbar 1073 kbar ! 107° kbar !
xx  0.073252 _ 1.821381361 -
yy  -0.092757 - 1.818496831 -
2z 0.0167604 - 1.818291465 -

Xy - 0.0500070 - 1.818508727

-11-



Thé last two columns in Table 3 show that the Prandtl-Reuss criterion is.
satisfied fairly well, though not nearly as precisely as in the present formulation
(Table 2). The generally good results displayed in Table 3 might be expected in view
of the low value of H' used, corresponding to a point in the material's stress-strain
behavior where very little strain hardening occurs. In areas where strain hardening
takes place more rapidly the differences between Tables 2 and- 3 would certainly be

greater, as would the observed variation in dA in Table 3.

Complete Simulation of a Tensile Test

The HEMP code has been run with input boundary conditions and material
constants set to sifnulate a tensile test on a 5083 aluminum alloy. The stress-strain
behavior of material at the center of a cylinder has been simulated using the HEMP |
code with the strain scaling computatibnal scheme and then rerun with the present

strain-hardening scheme. The results are presented in tabular form in Table 4.

Table 4. Comparison of two different schemes for calculating stress and strain at
the center of a cylinder for a test of 5083 aluminum alloy.

crxx ’ cxx
Lengthwise Present Scaling Difference Presént Scaling Difference
extension scheme scheme _ scheane sche_rile .
% psi psi psi 10 10
2.5 38,205 38,323 118 . 214.7 218.3 : 3.6 .
5 42,356 42,437 81  457.0 459.4 2.4
7.5 45,546 45,594 48 697.7 698.6 : 0.9
10 48,166 48,187 21 ' 935.7 . 934.9 -0.8
12.5 50,425 50,420 -5 S 1172,0 - 1169.0 -3.0
15 52,441 52,411 -30 1409 1404 -5
17.5 54,305 54,244 -61 1649 1640 -9
20 56,100 55,997 -103 1897 1883 - -14
22.5 57,934 57,767 -167 . 2164 2141 -23

25 59,989 59,711 -278 2471 2432 -39

The strain simulated at the_ceni:_er of the cylindricai specimen using the two methods
of incorporating strain hardening varies by as little as 0.00008 (0.01%) to as much as
0.0039 (1.6%). The stress variation between the two rhethods rangéd from 5 psi (0.01%)
to 278 psi (0.46%). Thus, the error accumulated in the stress scaling is shown to be

only slight, at least in a tensile test of a 5083 aluminum alloy.

-12-



1. M. L. Wilkins, ""Calculation of Elastic-Plastic Flow,'

3 AW

Internal Accuracy of Present Strain-Hardening Model

In the initial programming of the present strain—hafden_ing scheme only the first .
term in Eq. (25) for H' is considered, the variation of H' over the strain interval,
AEP, in the stress-strain curve being neglected. The resulting error is pictured
graphically in Fig. 4. Starting at (o, €) defined by point 1,> the new strain-hard'ening
method would iterate to (o, €) at point 2, rather than to point 2'. It can be seen thaf
the resulting stress predicted is somewhat higher than the true value, while the
resulting strain is somewhat lower than the actual value. In any given cycle, the stress
calculated implicitly may be compared to a vaiue c.alculated from the material
characteristics and the plastic strain at that cyclé. The difference in these two values
estimates the error accumulated due to the variation of H' within a given AEP

This check was made in the simulation of the tensile test of a cylinder of 5083
aluminum alloy. The maximum variation between the calculated value and the correct

value was 29.4 psi (0.05%), which was considered to be satisfactory.

- SUMMARY

This new computational scheme partitions the total strain increment into elastic
and plastic components, and makes the strain hardenirig associated with the plastic
strain increment exactly equal the stress increase associated with the elastic incre-
ment ‘ A

This procedure has been compared to an earlier, less exact method of incorpora-
ting strain hardening using stress scaling, For 1 cyc.le and for a whole simulation of
over 15,000 cycles the stress scaling method error for this quasistatic tensile test .
was less than 2%.

‘Neglecting the variation in H' within the increments aeF causes less than 0.05%

error in the new strain-hardening calculation.
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