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STRAIN HARDENING IN T.HE HEMP CODE 

ABSTRACT 

The Prandtl-Reuss equations used in the HEMP elastic-plastic computer program 

a r e  satisfied exactly for  elastic, perfectly plastic materials,  and a r e  l e s s  exact for  

mater ials  that s t rain harden. This paper presents a new method of incorporating 

s t ra in  hardening into the flow law that i s  exact for l inear  s t ra in  hardening and very . 
n'early exact for nonlinear s t ra in  hardening. A' tensile tes t  of a strain-hardening 

mater ial  is simulated using the present method and the previous method. The original 

approximate method has an accumulated e r r o r  of l e s s  than 270 when compared to the 

present method. The present method agrees  with exact calculations to within 0.05%. 

INTRODUCTION 

In recent ykars  computer programs have been developed to simulate the elastic,  

elastic-plastic, and hydrodynamic behavior of metals  and other materials.  1,2 

Initially, these assumed elastic, perfectly plastic behavior. Subsequently, the s t ra in-  

hardening character is t ics  of mater ials  were incorporated into the simulation. This 

paper repor t s  a refinement in the way of introducing this strain-hardening behavior 

into the calc,ulations. A s t ress -s t ra in  curve for a 5083 aluminum alloy has been 

simulated using the previous and the presently reported computational schemes to 

measure the improvement in precision gained in using the new method. 

STRAIN-HARDENING COMPUTATIONS 

Preuious Coalputational Schemes 

The yield condition of von Mises descr ibes  the elastic limit. In the principal 

s t r e s s  space, depicted in Fig. l a ,  ,the yield conditidn c a n b e  written a s  

where the a. a r e  the principal s t r e s se s  and Yo i s  the yield strength in a simple tension 
1 

test. 
-0. ,a- 

Since the computational scheme in the computer program uses deviatoric s t r e s se s ,  

it is  convenient to res ta te  Eq. (1) in t e r m s  of deviatoric s t r e s se s ,  a s  

..,.. 
The deviatoric s t r e s s ,  s. .  = a .. + P, where .P i s  the hydrostatic s t r e s s  component, 

11 11 i .e . ,  P = 1/3(al + a 2  +a3). 



By definition, s l  + s2 + s3 = 0 ,  which allows Eq. (2) to be simplified into 

2 9 2  If s + S- + s i s  l e s s  than :Y:, the mater ial  i s  within the elastic l imit and ' 1 2 3  
Hooke's law may be used to calculate the s t r e s s  deviators. Assume that the (n + I) 

s t rain increment used with Hooke's law takes.one beyond the yield surface, a s  shown 

in Fig. lb .  One must then correct  the assumption of elasticity; this s t rain increment 

was, in fact, composed of an elastic and a plastic component. ' The elastic component 

moves along the yield surface and the plastic component moves perpendicular to the 

yield surface. Thus, the calculated s t r e s s  must be relaxed back to the yield surface. 
P 

The magnitude of this relaxation i s  given by (2yAc ). This relaxation i s  

accomplished most conveniently by multiplying each of the s t r e s s  deviators ( s  11 S2, s3) 

by a sca la r  

The projection of the radius vector of the point a t  (n + I) is thus scaled so that the'  

point l i es  on the yield surface. The observed incompressibility of the plastic s ta te  

i s  implicit in the above p iucedure .  
3 Prandtl and ~ e u s s f  extending the ~ e v ~ - ~ i s e s ~ ' ~  equations to allow a s t rain 

incremenl lu have an elastic and plastic component, assumed that 

The physical significance of Eq. (4) i s  that the plastic s t rain increment i s  assumed 

to be proportional to the deviatoric s t r e s s  component'. The geometric significance 

of Eq. (4) with respect to Fig. l a  i s  that it requires. the plastic s t rain increment to 

be perpendicular to the yield surface. 

Under what circumstance does the scaling procedure previously described satisfy 

this condition? ~ r i o r : t o  scaling, s?." may be  described by 
11 

n ' T "+' = s.. +2pAri i  s . .  
11 11 

where 

n s.  = deviatoric s t r e s s  to straining 
I i 

A = total deviatoric s t rain (elastic-plastic) irlcrernent' 

y = shear  modulus. 



. . 

Fig. l a .  The von Mises yield assumption in ('u 0 2, a 3 )  space. 

= deviatoric elastic 
strain increment 

= deviatoric plastic 
strain increment 

A€' ' = deviatoric total 
strain increment 

. . 

Fig. lb. Schematic of the s t ress '  scaling procedure for  elastic-plastic behavior. 
F rom n to (n + 1)" represents  the s t r e s s  calculation, assuming complete 
elasticity. F rom (n + 1)"' to (n + 1) represents . the  relaxation of the 
elastic s t r e s s  to correct  for the plastic par t  of the total strain.  F r0m.n  
to (n + 1) represents  the actual increase in the elastic s t r e s s  for  the s t ra in  
increment, A€'*. 



After scaling, the deviatoric s t r e s s  i s  given by 

n+l S.. 
11 = m(syi + ~PAE~:). 

Furthermore,  the incremental s t r e s s  increase i s  given by 

The plastic s t rain increment i s  the difference in the total deviatoric s t ra in  increment 

and the elastic deviatoric s t rain increment, o r  

n+1/2 As..  
AEP = A E I T  - 11 

11 . 11 2I-J . 

Substituting (8) into (7) and rearranging te rms ,  gives 

n S.. ,€P = ~ e ' ~ ( 1  - m) + 11 (1 - m). 
11 

Bul, accorcling to t h e  Prandtl-Reuss assumption, 

P AE.. 
11 - - - 

S.. dX . 
u 

Substituting (9) into (10) and simplifying, gives 

If dX i s  to remain constant for i = 1, 2, 3, then 

But Eq. (10) s ta tes  that 
. .  . . 

Thus, the scaling to the yield surface a s  described ear l ie r  satisfies the Prandt l -R~USS 

cr i ter ion exactly when the total deviatoric s t rain equals the plastic s t ra in ;  i. e . ,  there  . 

i s  no strain-hardening. 

a. ) space may be ' For  a perfectly plastic material ,  the yield surface in (o o 2, 
pictured a s  a cylinder of axis [li + l j  + Ik ] .   he scaling procedure moves one in a 



direction perpendicular to the axis of the cylinder, and thus, perpendicular to the 

surface of the cylinder a s  required by the Prandtl-Reuss cr i ter ia .  If s t ra in  harden- 

ing occurs,  however, the yield surface in [a a ] space i s  more  properly 2' 3 
described by a truncated cone whose axis i s  also the [ I l l  ] direction. Scaling 

( s l l ,  s ~ ~ ,  s ~ ~ )  in this case  again moves one in a direction perpendicular to the cone 

axis. This direction will not be perpendicular t o  the surface of the cone, however, 

and thus violates the ~ r a n d t l - ~ e u s s  criterion. 

When s t ra in  hardening was added to the scaling scheme for  (s 11' S22' s33) 
described above, the plastic s t rain in a given increment was used to calculate a new 

yield surface for  the next increment. Thus the conic yield surface representing a 

mater ial  that s t ra in  hardens i s  approximated by a cylinder with an incrementally 

increasing diameter a s  shown in Fig. 2, o r  the effect ive-stress  effective-plastic- 

s t rain curve i s  approximated by an incremental s t ress -s t ra in  curve a s  shown in Fig. 3. 

The e r r o r  introduced in such a scheme i s  a resul t  of producing the plastic s t ra in  

increment perpendicular to the incremental sur faces  of the cylinder rather  than to the 

t ruc  conical yield surface. The e r r o r  accrued in such a scheme should be negligible 

for  small  increments and moderate strain-hardening. . Furthermore,  the e r r o r  

approaches zero a s  the f i r s t  derivativc of the s t ress-s trai t1  curve approaches zero. 

New Computational Scheme 

The present computational scheme requires  at  the outset a definition of the 

Prandtl-Reuss proportionality constant, dh,  a s  a function of the s t ress -s t ra in  

behavior of the mater ial  to be simulated. Inverting the Prandtl-Reuss criterion of 

Eq. (4) gives 

Squaring each side of the equations given in tensor notation in (14) and adding the r e -  

sulting equations gives 

where repeated indices a r e  summed, i = 1, 2, 3. 

Equation (15) may be rearranged to give 

,Jw(dr; dc??) 112 
dh z 2  

- 3 d~~ - -  - 
7f 

w11e1.e 

d ~ '  = effective s t rain 

a = effective s t r e s s .  

- 5- 



P 
Fig. 2. True  yield surface of a mater ial  that s t ra in  hardens ( a  = a .  + CE ) and 

the approximate yield surface used in the s t r e s s  scaling cogputational 
scheme (pictured in (o o 2, o 3)  space 1. 

1' 



- P  Effective plastic strain - E 

Fig. 3 .  A material 's  t rue  s t ress -s t ra in  behavior and the approximate s t r e s s - s t r a in  
behavior assumed in the s t r e s s  scaling computational scheme. 



The.effective s t r e s s  a s  a function of the effective'plastic s t rain i s  most commonly 

determined in a tensile test. If the slope of the s t ress -s t ra in  curve at an effective " .  - 
plastic strain,  r ', is given by H1 = di5 then Eq. (16) may be rewritten a s  

. . dEP 

Substituting (17) into (14) gives 

The incremental increase in the deviatoric s t r e s s  can be calculated using Hookels 

law, such that 

Substituting (18) into (19) gives 

Since 

then 

and 

such that 

Substitution of (23) into (20) gives 

Equations (24) represent ,  in tensor notation for  the most general case,  six l inear 

equations in six unknowns (ds. .) for a given s t rain increment drl , s t r e s s  state 
11 i j 

(s.  .) and strain-hardening mater ials  character is t ic  (HI). In the Hydrodynamic-Elastic- 
'J 

Magneto-Plastic (HEMP) program, where th i s  new strain-hardening calculation 



was f i r s t  utilized to simulate s t ress -s t ra in  curves for  cylindrical tensile samples ,  

T23 = T13 = 0. Therefore Eqs. (24 reduced to four equations in four unknowns. 

Since s l l  + s22 + s = 0, ds l l  + dsZ2 + ds  = 0. and Eqs. (24) may be further 
.3 3 3 3 

reduced to three equations in three unknowns. 

The solution of the simultaneous equations given in (24) partitions the total s t ra in  

increment between elastic and plastic components in such a way that the s t r e s s  

increase produced by the plastic s t rain component equals exactly the s t r e s s  increase 

predicted from the elastic s t r e s s  component. The constant plastic volume condition 

i s  also satisfied implicitly in the formulation. Thus one begins the s t rain increment 

on the yield surface and also terminates the s t rain increment on the yield surface, 

eliminating further scaling back to the yield surface. 

If the plastic portion of the effective-stress effective-strain curve i s  l inear,  the 

introduction of s t ra in  hardening into the formulation via Eqs. (24) i s  exact, the only 

e r r o r  being that which i s  inherent in the finite difference approach. In t e rms  of the 

yield surface, this requirement demands that the surface of the cone retain a constant 

angle of inclination with respect to i t s  axis. If this angle changes o r  H' var ies  within 

a plastic s t rain increment, acP ,  then we must approximate the average value of HI 

over thc plastic s t rain incl-ement in question, a s  in Pig. 4. This may be done to a 

f i r s t  approximation by evaluating H' a s  follows: 

n-112 
Since both H"kpn) and A 7  a r e  quite small ,  i t  should normally be possible 

to neglect the second te rm in Eq. (25). 

COMPARISON O F  RESULTS, STRESS SCALING 

VS STRAIN-'HARDENING SCHEMES 

Fop a Single Iteration 

'I'able 1 l i s t s  the data required to calculate (ds. .) "+Ii2 for  the nth cycle of a given 
'1 -8. 

computer simillation. Substituting these data into Eqs. (24)'" produces the resu l t s  

listed in Table 2 
P .  F rom Eq. (4) the Prandtl-Reuss cr i ter ion i s  A€. . I s . .  = dX . Comparing the 
1J  '3 

figures in the last  two columns of Tabl'e 2 shows the high precision with which this 

formulation maintains this criterion. 

The same data given in Table 1 were lhen used again in the s t r e s s  scaling 

calci~lation scheme. Here the s t ra ins  a r e  assur~ied to be completely elastic, and 

Hookefs law i s  used t o  calculate the s t r e s s  increments and the new final s t r e s se s ,  

4. 

."A computational scheme that resu l t s  from the simultaneous solution of Eqs. (24) 
appears  in Appendix A. 



Fig. 4. Effective s t r e s s  vs effective s t ra in  curve picturing the e r r o r  that resul ts  
f rom neglecting the variation of H' over the plastic s t ra in  interval A E ~ .  



"+'I2 = s!. + As. .  s . .  "+'I2 . Then the new s t r e s se s  a r e  scaied back to the yield surface,  
1J 11 11 - 

using the sca la r  m ,= 4213 Y ~ ' / " ~ ~ ~ s ~ ~  . 
Normally the code calculates Yo for  each cycle f rom the effective plastic s t ra in  

total at  the,end of the previous cycle. These ,calculations, however, use the same 

Y based on the data in Table 1, making the incremental s t r e s se s  directly comparable 
0 

with those of Table 2. Table 3 shows the results.  

Table 1. Data for  calculating (s. .)"+'I2 for  the nth cycle of computer simulation. 
1J 

s i j 

kbar 

T . .  
11 

kbar 

T,able 2. Results of substituting the data of Table 1 into Eqs. (24). 

As . .  P A€.. 1 s . .  P 
A Ti j  

A € .  . I T . .  
1J 11 1J 13 1J 

1 0 - ~ k b a r  1 0 - ~ k b a r  1 0 ' ~  kbar 
- 1 

kbar 
- 1 

i j 

Table 3. Results of parallel calculations to those of Table 2, starting.with the data 
of Table 1 but this t ime using the s t r e s s '  scaling calculation scheme. 

As . .  AT.. P A € .  . IS i j  
P A<. . IT . .  

11 1J '1 1J 11 

1 0 - ~ k b a r  1 0 - ~ k b a r  l o d 3  kbar 
- 1 

i j kbar-' 



The las t  two columns in   able 3 show that the Prandtl-Reuss criterion i s  

satisfied fairly well, though not nearly a s  precisely a s  in the.present formulation 

(Table 2) .  ' The generally good resu l t s  displayed in Table 3 might be expected in view 

of the low value of HI used, corresponding to ' a  point in the material 's  s t ress -? t ra in  

behavior where very li t t le s t rain hardening occurs.  In a r eas  where s t ra in  hardening 

takes place more  rapidly the differences between ~ a b l e s  2 and. 3 would certainly be 

greater ,  a s  would the observed variation i n  d h  in Table 3.' 

Complete Simulation of a Tensile Test 

The H E M P  code has been run with input boundary conditions and material  

constants set  to simulate a tensile tes t  on a 5083 aluminum alloy. The s t r e s s - s t r a in  

behavior of mater ial  at the center of a cylinder has  been simulated using the HEMP 

code with the s t rain scaling computat&nal scheme and then rerun with the present 

strain-hardening scheme. The resul ts  a r e  presented in tabular form in Table 4. 

Table 4. Comparison of two different schemes f o r  calculating s t r e s s  and s t rain a t  
the center of a cylinder for a tes t  of 5083 aluminum alloy. 

Lengthwise Present  Scaling Difference Present  Scaling Difference 
extension scheme scheme s c h e p e  scheme 

7'0 psi psi psi 10- 10-4 

The s t rain simulated a t  t hecen te r  of the cylindrical specimen using the two methods 

of incorporating s t ra in  hardening varies by as little a s  0.00008 (0.0170) to a s  much a s  

0.0039 (1.6%). The s t r e s s  variation between the two methods ranged from 5 psi (O.O1yo) 

to 278 psi (0.46%). Thus,' the e r r o r  accumulated in the s t r e s s  scaling i s  shown to be 

only slight, at least  in a tensile tes t  of a 5083 a luminur~~  alloy. 



Internal Accuracy of Present  Strain-Hardening Model 

In the initial programming of the present strain-hardening 'scheme only the f i r s t  

t e r m  in Eq. (25) for  H' i s  considered, the variation of HI over  the s t ra in  interval, 

AT'. in the s t ress -s t ra in  curve being neglected. The r e su l t i nge r ro r  i s  pictured 

graphically in Fig. 4. Starting at '  (o ,  E )  defined by point 1, the new strain-hardening 

method would i terate  to (o,  E )  a t  point 2, ra ther  than to point 2'. It can be seen that 

the resulting s t r e s s  predicted i s  somewhat higher than the t rue  value, while the 

resulting s t rain i s  somewhat lower than the actual value. In any given cycle, the s t r e s s  

calculated implicitly may be compared to a value calculated from the mater ial  

character is t ics  and.the plastic s t ra in  a t  that cycle. The difference in these two values 

estimates the e r r o r  accumulated due to the variation of HI within a given 07'. 
This check was made in the simulation of the tensile tes t  of a cylinder of 5083 

aluminum alloy. The maximum variation between the calculated value and the.correct  

value was 29.4 psi (0.05%), which was considered to be satisfactory. 

SUMMARY 

This new computational scheme partitions the total s t rain increment into elastic 

and plastic components, and makes the s t ra in  hardening associated with the plastic 

s t rain Increment exactly equal the s t r e s s  increase associated with the elastic incre-  

ment 

This procedure has been compared to an e a r l i e r ,  l e s s  exact method of incorpora- 

ting s t ra in  hardening using s t r e s s  scaling. Fo r  1 cycle and for a whole simulation of 

over  15,000 cycles the s t r e s s  scaling method e r r o r  for  this quasistatic tensile tes t  

was l e s s  than 2%. 

Neglecting the variation in H' within the increments AE' causes l e s s  than 0.0570 

e r r o r  in the new strain-hardening calculation. 
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