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Abstract

A general method, suitable for fast computing machines, for
investigating such properties as equations of state for substances
consisting of interacting individual molecules is described. The
method consists of a modified Monte Carlo integration over con-
figuration space. Results for the two-dimensional rigid sphere
system have been obtained on the Los Alamos Maniac and are pre-
sented here. These results are compared to the free volume equa-

tion of state and to a four term virial coefficient expansion.



I. Introduction

The purpose of this paper is to describe a general method,
suitable for fast electronic computing machines, of calculating the
ﬁroperties of any substance which may be considered as composed of
interacting individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential field of a
molecule is assumed spherically symmetric. These are the usual
assumptions made in theories of liquids. Subject to the above
assumptions, the method is not restricted to any range of tempera-
ture or density. This paper will also present results of a pre-
liminary two-dimensional calculation for the rigid sphere system.

" Work on the two-dimensional case with a Lennard-Jones potential is
in progress and will bg reported in a later paper. Also, the prob-
lem in three dimensions will be investigated.

II. The General Method for an Arbitrary Potential between the Particles

In order to reduce the problem to a feasible size for numerical
work we can, of course, consider only a finite number of particles.
This number N may be as high as several hundred. Our system consists

of a square* containing N particles. In order to minimize the surface

e will use the two-dimensional nomenclature here since it is easier

to visualize. The extension to three dimensions is obvious.

effects we suppose the complete substance to be periodic, consisting

of many such squares, each sqﬁare containing N particles in the same
configuration. Thus we define 6tAB’ the minimum distance between
particles A and B, as the shortest distance between A and any of the
particles B, of which there is one in each of the squares which comprise

the complete substance. If we have a potential which falls off rapidly
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with distance, there will be at most one of the distances AB which
can make a substantial contribution; hence we need consider only
the minimum distance EI;B'

Qur method in this respect is similar to the cell method ex-
cept that our cells contain several hundred particles instead of
one. One would thin# that such a sample would be quite adequate
for describing any one-phase system. We do find, however, that in
tvo-phase systems the surface between the phases makes quite a per-
turbation. Also, statistical fluctuations may be sizable.

If we know the positions of the N Aparticles in the square,

we can easily calculate, for example, the potential energy of the

system,
:/;.ZZ\/(I ) (1)
=1 &r
i 'e é{
(Here V is the potential between molecules, and L.is the minimum
distance between particles 1 and J as defined above.)
In order to calculate the properties of our system we use the

canonical ensemble. So, to calculate the equilibrium value of any

quantity of interest F,

F-UFup CEADUR LV U e CEARTIER AT <

where (dznp danq) is a volume element in the hN-dimensional phase
space. Moreover, since forces between particles are velocity inde-
pendent, the momentum integrals may be separated off and we need per-
form only the integration over the 2N-dimensional configuration space.
It is evidently impractical to carry out a several hundred dimensional

integral by the usual numerical methods, so we resort to the
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Monte Carlo method.* The Monte Carlo method for many dimensional

* This method has been proposed independently by J.E. Mayer and by
S. Ulam. Mayer suggested the method as a tool to deal with the probe-
lem of the liquid state, while Ulam proposed it as a procedure of

general usefulness. B, Alder, J. Kirkwood, S. Frankel, and V. Lewinson

discussed an application very similar to ours.

integrals consists simply of integrating over a random sampling of
points instead of over a regular array of points.

Thus the most nalve method of carrying out the integration would
be to put each of the N particles at a random position in the square
(this defines a random point in the 2N-dimensional configuration
space), then calculate the energy of the system according to equation (1),
end give this configuration a weight exp.(-E/kT). This method, however,
is not practical fof close~packed configurations, since with high prob-
ability we choose a configuration where exp (-E/kT) is very small, hence
a configuration of very low weight. So the method we employ is actually
a modified Monte Carlo sc heme, where, instead of choosing configura-
tions randomly, then weighting them with exp (-E/kT), we choose configu-
rations with a probability exp (-E/kT), and weight them evenly.

This we do as follows: We place the N particles in any configu-
ration, for example, in a regular lattice. Then we move each of the

particles in succession according to the following prescription:
X—> X+oC
Y-——) Y+oc?<’,_
o

(3)
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where OC is the maximum allowed displacement, which for the sake of

this argument is arbitrary, and g 1 and ge are random numbers*

#It might be mentioned that the random numbers that we used were
generated by the middle square process. That is, if §n is an
m-digit random number, then a new random number, g nel’ is given as

the middle m digits of the complete 2m-digit square of g n®

between (-1) and 1. Then after we move a particle it is equally
likely to be anywhere within a square of side 20C centered about

its original position. (In accord with the periodicity assumption,
if the indicated move would put the particle outside the square, this
only means that it reenters the square from the opposite side.)

We then calculate the change in energy of the system, AE, which
is caused by the move. IfAEO, i.e., if the move would bring the
system to a state of lower énergy, we allow the move and put the
particle in its new position. If AE >0, we allow the move with a
probability exp (-AE/kT); i.e., we take a random number 23 between
0 and 1, and if §3< exp (-AE/kT), we move the particle to its new
position. If §3) exp (-AE/XT), we return it to its old position.
Then, whether the move has been allowed or not, i.e., whether we are
in a different configuration or in the original configuration, we con-
sider that we are in a new configuration for the purpose of taking our

averages. So

—_— ™M
F=(/MEF, (¥
=T

where F, is the value of the property F of the system after the jth

J

move is carried out according to the complete prescription above., Hav-

ing attempted to move a particle we proceed similarly with the next one.
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We now prove that the method outlined above does choose con-
figurations with a probability exp (-E/kT). Since a particle is
allowed to move to any point within a square of side 20 with a
finite probability, it is clear that a large enough number of moves

will enable it to reach any point in the complete square.® Since

*In practice it is, of course, not necessary to make enough moves to
allow a particle to diffuse evenly throughout the system since con-

figuration space is symmetric with respect to interchange of particles.

this is true of all particles we may reach any point in configuration
space. Hence, the method is ergodic.
Next consider a very large ensemble of systems. Suppose for

simplicity that there are only a finite number of states¥** of the

*¥*A state here means a given point in configuration space.

system, and that‘W%r is the number of systems of the ensemble in
state r. What we must prove is that after many moves the ensemble
tends to a distribution
V), o< anthy (- EL/JQT')

Now let us make a move in all the systems of our ensemble. Let
the a priori probability that the move will carry a system in state T
to state s be P.,. (By the a priori probability we mean the proba-
bility before discriminating on exp (-4E/kT).) First it is clear that
Prs = Psr’ since according to the way our game is played a particle is
equally likely to be moved anywhere within a square of side 20K centered
about its original position. Thus, if states r and s differ from

each other only by the position of the particle moved, and if these

positions are within each other's squares, the transition probabilities

-7-



are equal; otherwise they are zero. Assume Er7Es « Then the number
of systems moving from state r to state 8 will be simply vrprs’
since all moves to a state of lower energy are allowed. The number
moving from s to r will be '\)sPsr exp (-(Er-Es )/kT), since here
we must weight by the exponential factor. Thus the net number of
systems moving from 8 to r 1is

R, (0, up (~(E~EVAT) - v,) ®

So we see that between any two states r and s, if

(v/v,) > Lo (-E ATV g (-E 1-,/;JI’)] (6)

on the average more systems move from state T to state 8. We have
seen already that the method is ergodic; i.e., that any state can be
reached from any other, albeit In several moves. These two facts
mean that our ensemble must approach the canonical distribution. It
is incidentally clear from the above derivation that after a forbid-
den move we must count agein the initial configuration. Not to do
this would correspond in the above case to removing from the ensemble
those systems which tried to move from 8 to r and were forbidden.
This would unjustifiably reduce the number in state s relative to r.
The above argument does not, of course, specify how rapidly the
canonical distribution is approached. It may be mentioned in this con-
nection that the maximum displacement O must be chosen with some care;
if too large, most moves will be forbidden, and if too small, the con-
figuration will not change enough. In either case it will then take
longer to come to equilibrium.
For the rigid sphere case, the game of chance on exp (-AE/kT) is ,

of course, not necessary since AE 1is either zero or infinity. The
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particles are moved, one at a time, according to equation (3). If a
sphere, after such a move, happens to overlap another sphere, we re-
turn it to its original position.

III. Specialization to Rigid Spheres in Two Dimensions

A. The Equation of State

The virial theorem of Clausius can be used to give an equation of
state in terms of n, the av_esage density _o_g; other particles at the
surface of a particle. Let X(?)t') and X(int.) represent the total
and the internal rorce, respectively, acting on particle i, at a

position ;;_ Then the virial theorem can be written

—-> T =, N
{tet) (nt)
ZX '; =LPA+ZX. o =2‘E»<i (7)
L 4 L PR ¢ N

n the total kinetic

Here P 1is the pressure, A the area, and Eki

energy,
E KIN = N mn.—\ﬁ/ 2
of the system of N particles.

Consider the collisions of the spheres for convenience as repre-
sented by those of a particle of radius J’o , twice the radius of the
actual spheres, surrounded by n point particles per unit area. Those
surrounding particles in an area of 2“&6VCAQ+At travelling with velocity
V at an angle 4) with the radius vector, collide with the central parti-
cle providgd l<1)|<1|'/2 (See Fig. 1) Assuming elastic recoil, they each
exert an average force during the time At on the central particle of

2 o veou AT
One can see that all +'s are equally probable, since for any velocity

independent potential between particles the velocity distribution will
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Just be Maxwellian, hence isotropic. The total force acting on the

central particle, averaged over'JP, over time, and over velocity, is

F /YYbVlTrJVo M ()

The sum Kﬂmt)v* is -1/2 2{; F } , with Fij the magnitude

o
of the force between two particles éhd r 1 the distance between them.

We see that Ty =(L° and ZJF:I.J is given by equation (8), so we have

% by N T5/2) Td (9)
ZXOF, = = (NmT2) Td =
Substitution of (9) into (7) and replacement of grm ve by Eg o
gives finally

2 ’ - __
PA=E, (eTdim/a)= NKT Gerdimz) 0
This equation shows that a determination of the one quantity n,
according to equation (4), as a function of A, the area, is sufficient

to determine the equation of state for the rigid spheres.

B. The Actual Calculation of n

We set up the calculation on a system composed of N = 224 parti-
cles (i=A,1.--223) placed inside a square of unit side and unit area.
The particles were arranged initially in a trigonal lattice of four-
teen particles per row by sixteen particles per column, alternate
rows being displaced relative to each other as shown in Fig. 2. This
arrangement gives each particle six nearest neighbors at approximately
equal distances of d = 1/14 from it.

Instead of performing the calculation for various areas A and

for a fixed distance dc, we shall solve the equivalent problem of

«]10=



Jeaving A =1 fixed and changing do. We denote by Ao the area
the particles occupy in closely packed arrangement (see Fig. 3). For
numerical convenience we defined an auxiliary parameter 1), vhich we
varied from zero to seven, and in terms of which the ratio (A/Ao) and

the forbidden distance d° are defined as follows:
A.°=al..(l—-2,1)_?)5 d=0/1g) (11)a
()= 1L /LN = 1/0989743290-2F) @

The unit cell is a parallelogram with interior angle 60° » slde 4,
and altitude 3%/ 2(10/2 in the close packed system.

Every configuration reached by proceeding according to the
method of the preceding section was analyzed in terms of a radial
distribution function N(r2). We chose a K>»1 for each ¥V and
divided the area between T dg and K21f di into sixty-four zones of

equal area A A2:

aA*=(k=Nrd. /64
We then had the machine éalculate for each configuration the number
of pairs of particles N_ (m = 1,2-++64) separated by distances r
which satisfy

(m=-DaA™+ voL: <TA*g m AAL-FH’J: (12)

The Nm were averaged over successive configurations according to

equation (4), and after every sixteen cycles (a cycle consists of

moving every particle once) were extrapolated back to r2 = d§ to

obtain N This N differs from n in equation (10) by a

1/2° 1/2
constant factor depending on N and K.
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The quantity K was chosen for each ’l) to give reasonable
statistics for the Nm. It would, of course, have been possible
by choosing fairly large K's, with perhaps a larger number of
zones, to obtain N(ra) at large distances. The oscillatory be-
haviour of N(ra) at large distances is of some interest. How-
ever, the time per cycle goes up fairly rapidly with K, and with
the number of zones in the distance analysis. For this reason
only the behaviour of N(r2) in the neighborhood of dﬁ vas
investigated.

The maximm displacement O of equation (3) was set to
(d-do). About half the moves in a cycle were forbidden by this
choice, and the initial approach to equilibrium from the regular
lattice was fairly rapid.

IV. HNumerical Results for Rigid Spheres in Two Dimensions

We first ran for something less than sixteen cycles in order to
get rid of the effects of the initial regulaer configuration on the

averages. Then about forty-eight to sixty-four cycles were run at
1) = 2, h‘: 5, 5.5, 6: 6°25: 6-5: and 7

Also, a smaller amount of data was obtained at V- 0, 1, and 3.

The time per cycle on the los Alamos Maniac is approximstely three

minutes, and a given point on the pressure curve was obtained in

four to five hours of running. Fig. 4 shows (PA/RkT)-1 versus
(A/Ao)-l on a log - log scale from our results (curve A), compared

to the free volume equation of Woodl (curve B), and to the curve

1 Williem W. Wood, J. Chem. Phys., 20, 1334 (1952).
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given by the first four virial coefficients (curve C). The last

two virial coefficients were oubtained by straightforward Monte Carlo
integration on the Maniac (see Section 5). It is seen that the
agreement between curves (A) and (B) at small areas, and between
curves (A) and (C) at large areas, is good. Deviation from the free
volume theory begins with a fairly sudden break at 1V = 6 (A/a, 1.8).

A sample plot of the radial distribution function for Y = 5 1is
given in Fig. 5. The various types of points represent values after
sixteen, thirty-two, and forty-eight cycles. For V= 5, least square
fits with a straight line to the first sixteen Nm values vere made,
giving extrapolated values of N§}g = 6367, N§?g = 6160, and N§;% = 6377.
The average of these three was used in constructing PA/NkT. In general,
least square fits of the first sixteen to twenty Nh's by means of a
parabola, or, where it seemed suitable, a straight line, were made.

The errors indicated in Fig. 4 are the root mean square deviations for

the three or four N

1/2 values. Our average error seemed to be

about 3 per cent.

Table I gives the results of our calculations in numerical form.
The columns are U, A/Ao, (PA/NxT)-1, and, for comperison purposes,
(PA/NKT - 1) for the free volume theory and for the first four coef-
ficlents in the virial coefficient expansion, in that order, and
finally PAO/NkT from our results.

V. The Virial Coefficient Expansion

One can show'2 that

2 J. E. Mayer and M. G. Mayer, Statistical Mechanics, pp. 277-291,

John Wiley and Sons, Inc., New York, 1940.
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(PAINKT)-1 = CA /R +C, (A CAM+C A+ OlAAY,
¢,=T3" ,C, LprA A,C, 1r3(6A -3A- A)/ C-(ihr/afb [ (13)

LizA- 60A—IOA 3oA’ 60A” s 10K 3oA /5A+/o -4 ]

d’y 510

The coefficients Ai’k are cluster integrals over configuration
space of 1 particles, with k bonds between them. In our prob-
lem a bond is established if the two particles overlap. The cluster
integral is the volume of configuration space for which the appro-
priate bonds are established. If k bonds can be distributed over
the 1 particles in two or more different ways without destroying
the irreducibility of the integrals, the separate cases are dis-

tinguished by primes. For example, A_._ is given schematically by

33

A3,3° A,

and mathematically as follows: if we define f(ri .j) by

the diagram

1 if rij< d,

= 0 (if ru)d, then

f(ri,j)

f(rn)

1

The schematics for the remaining integrals are indicated in Fig. 6.

The coefficients A, .; A, ,; and A were calculated alge-
3,3° ",k 4,5

3
braically, the remainder numerically by Monte Carlo integration.

That is, for A for example, particle 1 was placed at the origin,

25
and particles 2, 3, 4, and 5 were put down at random, subject to

f12 = f23 = 1’3,‘_ = fl5 = 1. The number of trials for which fh

divided by the total number of trials, is just A

5= 1

5,5°
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The data on Ah & is quite reliable. We obtained
b

Ah,6/A‘+,,+ = 0.752(+ 0.002)

However, due to the relatively large positive and negative terms
in Ch of equation (13), the coefficient Ch’ being a small difference,

is less accurate. We obtained
C, = 8“3(0.585)/135 (+ &~ 5 per cent)

Our final formula is

(PA/NKT) - 1 = 1.813799(A°/A) + 2.57269(4\(/1;)2 +
(1k)

+ 3.79(a /A)3 + 3.38(a /0)* + o(a /A)

This formula is plotted in curve (C) of Fig. 4 and tabulated for some
values of (A/Ao) in column 5 of Table I. It is seen in Fig. 4 that the
curve agrees very well with our calculated equation of state for
(A/Ao)>-2.5. In this region both the possible error in our last virial
coefficient and the contribution of succeeding terms in the expansion
are quite small (less than our probable statistical error) so that the
virial expansion should be accurate.
VI. Conclusion

The results are in agreement with the free volume approximation
for A/Ao< 1.8 and with a four term virial expansion for A/Ao> 2.5.

No indication of a phase transition appears.
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Table I

Results of this calculation for (PA/NKT) - 1 = X,

the free volume theory (Xg) and the four-term virial expansion (X3).

compared to

Also (PAO/NkT) from our calculations.

) (A/Ao) X, X, X3 (PAO/NkT)
2 1.04269 49.17 47.35 9.77 48.11

L 1.14957 13.95 13.85 7.55 13.01

5 1.31966 6.43 6.72 5.35 5.63
5.5 1.4909 . k. 4.53 4.02 3.63

6 1.7962 2.929 2.939 2.680 2.187
6.25 2.04616 2.186 2.323 2.065 1.557
6.5 2.41751 1.486 1.802 1.51k 1.028
7 4.041k4s5 0.6766 0.990  0.667 0.k1k9
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Fig. 1
Fig. 2

Fig. 3

Fig. &

Fig. 5

Fig. 6

Captions for the Figures

Collisions of rigid spheres

Initial trigonal lattice

The close packed arrangement for determining Ao

A plot of (PA/NKT) - 1 versus (A/Ao) -1 . Curve A
(s0lid line) gives the results of this paper. Curves B
and C (dashed and dot-dashed lines) give the results of
the free volume theory and of the first four virial co-~
efficients, respectively.

The radial distribution function, Nﬁ, for V = 5,

(A/Ao) = 1.31966, K = 1.5. The average of the extra-
polated values of Nl/2 in Nl/e = $301. The resultant
value of (PA/NkKT) - 1 is 6h_l/2/N2(K2-l) or 6.43.
Values after 16 cycles: e ; after 32:X ; and after 43: @

Schematic diagrams for the various area integrals
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