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Abstract

A general method, suitable for fast computing machines, for

investigating such properties as equations of state for substances 

consisting of interacting individual molecules is described. The 
method consists of a modified Monte Carlo integration over con­
figuration space. Results for the two-dimensional rigid sphere 
system have been obtained on the Los Alamos Maniac and are pre­
sented here. These results are compared to the free volume equa­
tion of state and to a four term virial coefficient expansion.



I. Introduction
The purpose of this paper is to describe a general method, 

suitable for fast electronic computing machines, of calculating the 

properties of any substance which may be considered as composed of 
interacting individual molecules. Classical statistics is assumed, 

only two-body forces are considered, and the potential field of a 
molecule is assumed spherically symmetric. These are the usual 
assumptions made in theories of liquids. Subject to the above 
assumptions, the method is not restricted to any range of tempera­
ture or density. This paper will also present results of a pre­
liminary two-dimensional calculation for the rigid sphere system.
Work on the two-dimensional case with a Lennard-Jones potential is 
in progress and will be reported in a later paper. Also, the prob­
lem in three dimensions will be investigated.
II. The General Method for an Arbitrary Potential between the Particles

In order to reduce the problem to a feasible size for numerical 
work we can, of course, consider only a finite number of particles.
This number N may be as high as several hundred. Our system consists 
of a square* containing N particles. In order to minimize the surface

*We will use the two-dimensional nomenclature here since it is easier 
to visualize. The extension to three dimensions is obvious.

effects we suppose the complete substance to be periodic, consisting 
of many such squares, each square containing N particles in the same 
configuration. Thus we define the minimum distance between
particles A and B, as the shortest distance between A and any of the 
particles B, of which there is one in each of the squares which comprise 
the complete substance. If we have a potential which falls off rapidly



with distance, there will be at most one of the distances AB which

can make a substantial contribution; hence we need consider only 
the minimum distance ct"AT, •

Our method in this respect is similar to the cell method ex­
cept that our cells contain several hundred particles instead of 
one. One would think that such a sample would be quite adequate 
for describing any one-phase system. We do find, however, that in 
two-phase systems the surface between the phases makes quite a per­
turbation. Also, statistical fluctuations may be sizable.

If we know the positions of the N particles in the square, 
we can easily calculate, for example, the potential energy of the 
system.

(1)
N N

E = i/zZ ZI V(<£. j)
^ v ■+■(Here V is the potential between molecules, and (a.is the minimum

'■T
distance between particles i and j as defined above.)

In order to calculate the properties of our system we use the 
canonical ensemble. So, to calculate the equilibrium value of any 
quantity of interest F,

F=[I (-E/fel)4^T/[L^ (-E /kTU1^ ip <2>
where (d^p d^nq) is a volume element in the 4N-dimensional phase 

space. Moreover, since forces between particles are velocity inde­
pendent, the momentum integrals may be separated off and we need per­
form only the integration over the 2N-dimensional configuration space. 
It is evidently impractical to carry out a several hundred dimensional 

integral by the usual numerical methods, so we resort to the
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Monte Carlo method.* The Monte Carlo method for many dimensional

* This method has been proposed Independently by J.E. Mayer and by 

S. Ulam. Mayer suggested the method as a tool to deal with the prob­
lem of the liquid state, while Ulam proposed it as a procedure of 

general usefulness. B. Alder> J. Kirkwood, S. Frankel, and V. Lewinson 
discussed an application very similar to ours.

integrals consists simply of integrating over a random sampling of 
points instead of over a regular array of points.

Thus the most naive method of carrying out the integration would 
be to put each of the N particles at a random position in the square 
(this defines a random point in the 2N-dimensional configuration 
space), then calculate the energy of the system according to equation (l), 
and give this configuration a weight exp.(-E/kT). This method, however, 

is not practical for close-packed configurations, since with high prob­
ability we choose a configuration where exp (-E/kT) is very small, hence 

a configuration of very low weight. So the method we employ is actually 
a modified Monte Carlo sc heme, where, instead of choosing configura­
tions randomly, then weighting them with exp (-E/kT), we choose configu­
rations with a probability exp (-E/kT), and weight them evenly.

This we do as follows: We place the N particles in any configu­
ration, for example, in a regular lattice. Then we move each of the 
particles in succession according to the following prescription:

(3)
y->
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where OC is the maximum allowed displacement, which for the sake of

are random numbers*

*It might be mentioned that the random numbers that we used were
generated by the middle square process. That is an
m-digit random number, then
the middle m digits of the complete 2m-digit square of

between (-1) and 1. Then after we move a particle it is equally 

likely to be anywhere within a square of side 2 OC centered about 
its original position, (in accord with the periodicity assumption, 

if the indicated move would put the particle outside the square, this 
only means that it reenters the square from the opposite side.)

We then calculate the change in energy of the system, AE, which 
is caused by the move. If Ae<0, i.e., if the move would bring the 

system to a state of lower energy, we allow the move and put the 
particle in its new position. If AE>0, we allow the move with a 
probability exp (-AE/kT); i.e., we take a random number ^^ between 

0 and 1, and if exP (-AE/kT), we move the particle to its new

position. If exp (“AE/kT), we return it to its old position. 

Then, whether the move has been allowed or not, i.e., whether we are 
in a different configuration or in the original configuration, we con­
sider that we are in a new configuration for the purpose of taking our 

averages. So

(4)

th

move is carried out according to the complete prescription above. Hav­

ing attempted to move a particle we proceed similarly with the next one.
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We now prove that the method outlined above does choose con­

figurations with a probability exp (-E/kT). Since a particle is 

allowed to move to any point within a square of side 2 OC with a 
finite probability, it is clear that a large enough number of moves 

will enable it to reach any point in the complete square.* Since

♦In practice it is, of course, not necessary to make enough moves to 
allow a particle to diffuse evenly throughout the system since con­
figuration space is symmetric with respect to interchange of particles.

this is true of all particles we may reach any point in configuration 
space. Hence, the method is ergodic.

Next consider a very large ensemble of systems. Suppose for 
simplicity that there are only a finite number of states** of the

**A state here means a given point in configuration space.

system, and that ^r is the number of systems of the ensemble in 

state r. What we must prove is that after many moves the ensemble 
tends to a distribution

Now let us make a move in all the systems of our ensemble. Let 

the a priori probability that the move will carry a system in state r 
to state s be Prs. (By the a priori probability we mean the proba­
bility before discriminating on exp (-AE/kT).) First it is clear that

P - P since according to the way our game is played a particle is rs sr
equally likely to be moved anywhere within a square of side 2oC centered 

about its original position. Thus, if states r and s differ from 

each other only by the position of the particle moved, and if these 
positions are within each other's squares, the transition probabilities
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are equal; otherwise they are zero. Assume ^. Then the number 

of systems moving from state r to state s will be simply r rs
since all moves to a state of lower energy are allowed. The number
moving from s to r will be ^ P exp (-(E -E )/kT), since here

s sr r s
we must weight by the exponential factor. Thus the net number of 
systems moving from s to r is

^(-(e-p.'iAt)-v.) (5)
Af f J ^ t

So we see that between any two states r and s, if

U/n) >[^(-(- E|/1t)] (6)
on the average more systems move from state T to state s. We have 
seen already that the method is ergodic; i.e., that any state can be 
reached from any other, albeit in several moves. These two facts 
mean that our ensemble must approach the canonical distribution. It 
is incidentally clear from the above derivation that after a forbid­
den move we must count again the initial configuration. Not to do 
this would correspond in the above case to removing from the ensemble 
those systems which tried to move from s to r and were forbidden. 
This would unjustifiably reduce the number in state s relative to r.

The above argument does not, of course, specify how rapidly the 
canonical distribution is approached. It may be mentioned in this con­

nection that the maximum displacement OC must be chosen with some care; 
if too large, most moves will be forbidden, and if too small, the con­
figuration will not change enough. In either case it will then take 

longer to come to equilibrium.
For the rigid sphere case, the game of chance on exp (-AE/kT) is , 

of course, not necessary since Ae is either zero or infinity. The

O 8
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particles are moved, one at a time, according to equation (3)* If a 

sphere, after such a move, happens to overlap another sphere, we re­

turn it to its original position.
III. Specialization to Rigid Spheres in Two Dimensions 

A. The Equation of State
The virial theorem of Clausius can he used to give an equation of 

state in terms of n, the average density of other particles at the 
surface of a particle. Let X(*ot ' ^ and X(ft0 represent the total 

and the internal force, respectively, acting on particle i, at a 
position r^. Then the virial theorem can be written

It*-* =£PA+ZX^. = ^E; (7)
l 4. i, i ^ t KIN

Here P is the pressure, A the area, and the total kinetic
energy, EK!N = N mro V'/Z
of the system of N particles.

Consider the collisions of the spheres for convenience as repre­
sented by those of a particle of radius cLo, twice the radius of the 

actual spheres, surrounded by n point particles per unit area. Those 
surrounding particles in an area of travelling with velocity
V at an angle <|) with the radius vector, collide with the central parti­

cle provided (See Fig. l) Assuming elastic recoil, they each

exert cm average force during the time At on the central particle of

Z nfirvf V COX'
One can see that all (j) ’s are equally probable, since for any velocity 

independent potential between particles the velocity distribution will

-9-
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just be Maxwellian, hence isotropic. The total force acting on the 
central particle, averaged over <b , over time, and over velocity, is

= /YYU V1 TT cL0'm (8)
The stun >/T is -l/S^iS rtr. R.^ , with F. . the magnitude

i -i i +irJ 1J
of the force between two particles and r^ the distance between them. 
We see that r^^ = (jt0 and i® given by equation (8), so we have

zx1^. = - Cm™ vy*> (9)

N 2Substitution of (9) into (7) and replacement of ^ m v by Ekin

gives finally

PA = EKiN (i+rdl*m A)= NkT Ci+vl>/4) (10)
This equation shows that a determination of the one quantity n, 

according to equation (4), as a function of A, the area, is sufficient 

to determine the equation of state for the rigid spheres.
B. The Actual Calculation of n

We set up the calculation on a system composed of N = 224 parti­

cles (i=ft,l*•*223) placed inside a square of unit side and unit area. 
The particles were arranged initially in a trigonal lattice of four­
teen particles per row by sixteen particles per column, alternate 

rows being displaced relative to each other as shown in Fig. 2. This 

arrangement gives each particle six nearest neighbors at approximately 
equal distances of d = l/l4 from it.

Instead of performing the calculation for various areas A and 

for a fixed distance dQ, we shall solve the equivalent problem of
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leaving A - 1 fixed and changing dQ. We denote by Aq the area

the particles occupy in closely packed arrangement (see Fig. 3). For
numerical convenience ve defined an auxiliary parameter V, vhich ve

varied from zero to seven, and in terms of which the ratio (a/Ao) and

the forbidden distance d are defined as follows:o

dl<,= dUl-2,1’~S); oUti/u}.') <n>a

U/A0) = i/MN/z) = lAmVqSZKl-Z'T <n>b

The unit cell is a parallelogram with interior angle 60°, side dQ, 

and altitude in the close packed system.
Every configuration reached by proceeding according to the 

method of the preceding section was analyzed in terms of a radial
pdistribution function N(r ). We chose a K>1 for each 'V and

divided the area between If d^ and Aa? into sixty-four zones of
OO

2equal area A A :
AAi=(K-lWcLo/6if

We then had the machine calculate for each configuration the number 
of pairs of particles Nm (m = 1,2*•*64) separated by distances r 

which satisfy

(/Yn-i'>AA\-Tr^<Trrz$ rm aAVlfd^ (12)

The Nm were averaged over successive configurations according to
equation (4), and after every sixteen cycles (a cycle consists of

2 2moving every particle once) were extrapolated back to r = d^ to 

obtain N^yg. This N^g differs from n in equation (10) by a 

constant factor depending on N and K.

1 1
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The quantity K was chosen for each *]) to give reasonable

statistics for the N . It would, of course, have been possiblem
by choosing fairly large K*s, with perhaps a larger number of

ozones, to obtain N(r ) at large distances. The oscillatory be- 

haviour of N(r ) at large distances is of some interest. How­

ever, the time per cycle goes up fairly rapidly with K, and with 
the number of zones in the distance analysis. For this reason

2 ponly the behaviour of N(r ) in the neighborhood of dQ was 

investigated.
The mayiTmim displacement OC of equation (3) was set to 

(d-do). About half the moves in a cycle were forbidden by this 
choice, and the initial approach to equilibrium from the regular 
lattice was fairly rapid.
IV. Numerical Results for Rigid Spheres in Two Dimensions

We first ran for something less than sixteen cycles in order to 
get rid of the effects of the initial regular configuration on the 
averages. Then about forty-eight to sixty-four cycles were run at

n) = 2, k, 5, 5.5, 6, 6.25, 6.5, and 7

Also, a smaller amount of data was obtained at = 0, 1, and 3*

The time per cycle on the Los Alamos Maniac is approximately three 

minutes, and a given point on the pressure curve was obtained in 
four to five hours of running. Fig. 4 shows (PA/NkT)-l versus 

(A/Ao)-l on a log-log scale from our results (curve A), compared 
to the free volume equation of Wood1 (curve B), and to the curve

1 William W. Wood, J. Chem. Phys., 20, 1334 (1952).

Id
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given by the first four virial coefficients (curve c). The last

two virial coefficients were obtained by straightforward Monte Carlo
integration on the Maniac (see Section 5)• It is seen that the
agreement between curves (a) and (B) at small areas, and between
curves (a) and (C) at large areas, is good. Deviation from the free
volume theory begins with a fairly sudden break at ^ = 6 (A/Ao 1.8).

A sample plot of the radial distribution function for V = 5 is

given in Fig. 5* Th© various types of points represent values after
sixteen, thirty-two, and forty-eight cycles. For = 5, least square
fits with a straight line to the first sixteen N values were made,m
giving extrapolated values of = 6367, =: 6160, and = 6377

The average of these three was used in constructing PA/NkT. In general

least square fits of the first sixteen to twenty N *s by means of ani
parabola, or, where it seemed suitable, a straight line, were made.
The errors indicated in Fig. 4 are the root mean square deviations for 

the three or four values. Our average error seemed to be

about 3 per cent.
Table I gives the results of our calculations in numerical form.

The columns are a/Aq, (PA/NkT)-l, and, for comparison purposes, 

(PA/NkT - 1) for the free volume theory and for the first four coef­

ficients in the virial coefficient expansion, in that order, and 
finally PAo/NkT from our results.

V. The Virial Coefficient Expansion 
2One can show that

2 J. E. Mayer and M. G. Mayer, Statistical Mechanics, pp. 277-291,
John Wiley and Sons, Inc., New York, 1940.
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(PA/NJ*T)-I = C,(A0/A) /a)++ o(Ao/Af,
C^T/^1 , c3=TT3(fca-sa-aW^^M-C (13)

LizA-fcoA-ioA'+soA^^oA + 10A-3oA'-/5A +/o/l-/!, ]
5;6 ^7 ^7 ^7 «# s?-?S,?

The coefficients A^,k are cluster integrals over configuration 
space of i particles, with k bonds between them. In our prob­
lem a bond is established if the two particles overlap. The cluster 
integral is the volume of configuration space for which the appro­
priate bonds are established. If k bonds can be distributed over 
the i particles in two or more different ways without destroying 
the irreducibility of the integrals, the separate cases are dis­
tinguished by primes. For example, is given schematically by 
the diagram

A3>3:

and mathematically as follows:

A3,3'

if we define f(r..) by
1J

= 1 if r. .< d,ij
= 0 if > d, then

tai ^ ^2

The schematics for the remaining integrals are indicated in Fig. 6.

The coefficients A0 _j A,. and A. _ were calculated alge-3»3 ^
braically, the remainder numerically by Monte Carlo integration. 

That is, for A for example, particle 1 was placed at the origin, 
and particles 2, 3> and 5 were put down at random, subject to
f1p = fg^ = f ^ = f^ = 1. The number of trials for which f^ = 1, 

divided by the total number of trials, is just A_ e.



The data on A, is quite reliable. We obtained

A4,6/AM = 0.752(+ 0.002)

However, due to the relatively large positive and negative terns 

in Cj^ of equation (13), the coefficient C^, being a small difference, 
is less accurate. We obtained

C4 = 81T3(0 •585)/l35 (+ ^ 5 P6* cent)

Our final formula is
(PA/MkT) - 1 = 1.813799(a /a) + 2.57269(A /A)2 +

0 0 (14)
+ 3.179(aq/a)3 + 3.38(aq/a)4 + o(Aq/a)5

This formula is plotted in curve (c) of Fig. 4 and tabulated for some 
values of (a/Aq) in column 5 of Table I. It is seen in Fig. 4 that the 
curve agrees very well with our calculated equation of state for 
(A/Ao)>2.5. In this region both the possible error in our last virial 

coefficient and the Contribution of succeeding terms in the expansion 
are quite small (less than our probable statistical error) so that the 

virial expansion should be accurate.
VI. Conclusion

The results are in agreement with the free volume approximation 
for a/Ao<1.8 and with a four term virial expansion for A/Aq>2.5.

Ho indication of a phase transition appears.

•1 e;
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Table I

Results of this calculation for (PA/NkT) - 1 = compared to

the free volume theory (Xg) and the four-term virial expansion (X^). 
Also (PAo/NkT) from our calculations.

*0 (A/Ao) Xl X2 X3 (PAo/NkT)

2 1.04269 49.17 47.35 9.77 48.11
1.14957 13.95 13.85 7.55 13.01

5 1.31966 6.43 6.72 5.35 5.63
5-5 1.4909 4.41 4.53 4.02 3.63
6 1.7962 2.929 2.939 2.680 2.187
6.25 2.04616 2.186 2.323 2.065 1.557
6.5 2.41751 1.486 1.802 1.514 1.028
7 4.04145 O.6766 0.990 O.667 0.4149
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Captions for the Figures

Fig. 1 Collisions of rigid spheres
Fig. 2 Initial trigonal lattice

Fig. 3 The close packed arrangement for determining Ao
Fig. k A plot of (PA/NkT) - 1 versus (a/Aq) - 1 . Curve A

(solid line) gives the results of this paper. Curves B 
and C (dashed and dot-dashed lines) give the results of 

the free volume theory and of the first four virial co­
efficients, respectively.

Fig. 5 The radial distribution function, Nm, for V = 5,

(A/A ) = 1.31966, K = 1.5. The average of the extra­

polated values of ni/2 = 63OI. The resultant
value of (PA/NkT) - 1 is 64N1y2/N2(K2-l) or 6.43. 

Values after 16 cycles:# j after 32:X; and after 48:0 
Fig. 6 Schematic diagrams for the various area integrals
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