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ABSTRACT

The numerical solution of the one-space-dimension age-diffusion 
equation by multigroup methods is outlined. Finite-difference 
equations are derived for solving the multigroup equations in a 
finite region where the composition is piecewise continuous. The 
equations contain many possible variations of multigroup problems: 
KAPL or ORNL multigroup; Selengut-Goertzel multigroup for hydro­
genous compositions; adjoint multigroup.
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GENERAL 03SE-SPACE-DIMENSIONAL MULTIGROUP

G. J. Habetler

INTRODUCTION

Multigroup methods heye beer used successfully for some time for solving 
one-space-dimensional age-diffusion problems.* The age-diffusion equation is 
reduced to a set of coupled ordinary differential equations, called multigroup 
equations. For numerical computation, each group equation is usually replaced 
by a set of three-point finite-difference equations. These may be solved in a 
straightforward manner.**

In two-space-dimensional multigroup calculations, the situation is some­
what different. There is no simple method available for solving the finite- 
difference equations explicitly. Therefore, iterative procedures are 
currently being used at SAPL.

In this report we develop, for the one-space-dimensional multigroup case, 
three-point finite-difference equations which, contain a higher degree of 
approximation than those used previously at KAPL.*** It is hoped that these 
equations will lead to a reduction of the number of mesh points necessary 
for a certain degree of accuracy. Since the equations are more complicated 
than those used previously, there may be no savings in machine calculation 
time for one-space-dimensional multigroup problems. However, similar 
equations may lead to large savings in two-space-dimensional multigroup 
calculations, where iteration is the time consuming factor. It is hoped 
that an investigation of the one“dimensional equations will inform us about 
the possibilities of better equations in two dimensions.

It is intended that this report be used as a layout for a general 
purpose one-space-dimensional multigroup setup on a high-speed digital 
computer. It will handle s large variety of problems. We also feel that 
it has great value in answering questions concerning multigroup approxi­
mations. Comparisons can be made of various schemes to determine how 
simplified the physical model can be and still give realistic answers.

*Ehrlich, R. and H. Hurwitz, Jr., Nucleonics, February, 195^* P* 23. 
This paper contains numerous references to other articles on the subject.

**See Section G.
***Much of Section A is based on unpublished work by R. R. Coveyou,

ORNL.
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In Section A, we derive three-point finite^difference equations for a 
differential equation of the form

D(C) f (0 - D(C) l ?(c) + A(0 f (C) = ^ (C)

in a region where all the functions are continuous and possess derivatives 
of sufficiently high order. At interfaces between such regions (f{'Q and 
D(C) '(C) are continuous.

We apply the analysis of Section A to the age-diffusion equation and 
derive multigroup finite-difference equations in Sections B and C. KAPL 
and OBKL schemes for obtaining multigroup equations are included as well as 
inelastic-scattering and the Selengut-Goertzel approximation for hydrogeneous 
compositions. In Section D we derive adjoint multigroup finite-difference 
equations. Our results are listed in Section 1.

Boundary conditions are examined in Section F.

An explicit method for solving the three-point finite-difference equations 
is outlined in Section G.

A. GEKERAL DIFFEEENCE EQUATIONS FOB OHE-DIMDSfSIOHAL lEFEITOERCY

In this section we shall derive finite-difference equations to be used 
for finding an approximate solution to a differential equation of the form

d(0 (C) - d(0 + MO f(0 = «/(0 (i)

where P is a constant which depends on the geometry of the problem (p = 0, 
cartesian geometryj p s 1^ cylindrical geometry! P = 2o spherical geometry). 
The equation is to be solved in a closed region^ Cj < ^ With
appropriate boundary conditions Equation (l) can be used to describe one­
dimensional monoenergetic neutron-diffusion^, where D(X) is the diffusion 
coefficient^ A(C) is the absorption cross section,„/(£) is the neutron 
source and ^ (C) is the neutron fluxj all evaluated at the given energy.
We assume that the closed region can be divided into a finite set of sub- 
regions, in each of which all the functions are continuous and possess 
derivatives of sufficiently high order. At interfaces between such sub- 
regions we assume that ^ (C) D(£)d^/d£ are continuous.

We choose a set of points

n " ^=n “ ^n-1*

KAPL-1182



which will yield a suitably fine mesh for our difference equations and are 
such that they contain the interfaces between the subregions mentioned above 
as a subset. Integrating Equation (l) from

to

AC "

AC
^n + —

we obtain

Ci r

D(C) fc?(c) • s'
2

.c,+i
2

yu - A(c)(j>(c)] 'Cp <iC

Using Taylor's series expansion, we can express the left-hand 
Equation (2) as

-D(Cn+i) Cn+i t D(Cn.l) Cl
A C ii

+ D^n+|) C| M (A^n)2 y(3) (^n+|)

-^n-^ O k^n)2 f(3)(^.l)
2 2 2

If we define

q (c) =y7(c) - a(o p (c)

we have, for the integral on the right-hand side of Equation (2),

=n

C i 
2

Q(Cn) + Q(Cn-l+) rp+1 
Q (C) 'C P ^C = 2 Ci

>n

Vi

<JKn-) - «(Cn-i+)

aC -
n

^ - Cn-i £+ 1

p+2 2 P+1 Cr, 1n-2

- k Ci <av)3«(2)Kni)+
2 v

(2)

side of

(3)

(^)

(5)

KAPL-1182
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?

and 4(0
. + ^^n+l~) £p+1

■n p+1

‘’n+l

Q (^n+1 ) " Q(^=n+)

■aC^^ n
i!!-r x e
p+2 ti+7

+1

p+1
n

if ^ (^)3 £!(2)(Cn4) + ^<)kJ (6)

Using Equations (3)> (5)> and (6)^ we can write Equation (2), after multiplying 
through by -/Cp

n n

i5 D(C !)11 n-i
5 L-

- ^n-l> + Tn ^ D(C_1}
n+i

^ ^n^ ' f ^n+1^

Jn^) +

+ ^ f - 4 DK +1> + (^n)2 ^<3) (Cn+l> - ^ (^)3 Q<2) (Cb+1>
n+5

+ i5D(C j.) (^-)2<?(3)K p - i: (aO)3 4(2)(C !){ +^aC5), (7)

n-i n n-i n n n-i

where

Jn<0 ‘ g ^ ^
PaCj p(P-D(Ay 
----- -------------16^Q(C- ^ + )1_ 3Cn +

' n n-1

2(K- 5p(p-D(aC5)
+ 3 (1 ~ -7^ + ■ 771-7 7-------- 1 Q(C-)

W <«) = g Cn ^4 3 (X +

iWCn2

2pAC+ 5p(p-D(0+)2

^sT 144C n4
SKp

/ p^t p(p-l)(ACJ) 'l
+ 1 + + 16C ^ j QKn+1-)

n

(8)

(9)

KAPL-1182
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and

f (10)

Thus

(**l; <2;...;//-/)

where Q C^) Is to interpreted as replaced by

is a set of possible difference equations to replace Equation (2). The 
solution of the difference equations is denoted by and is to be 
distinguished from , the solution of the differential equations
evaluated at . Equation (j) shows that the truncation error.

£ M = <KSV) - 9tv

continuous and wherewill be
- A • At points where these conditions are not met, the

truncation error will be 0(h$'3j-

We can get better difference equations if we can eliminate the 
bracketed quantities in Equation (7)• Then our equations will be 
good to 0(^S)-

If we differentiate Equation (l) with respect to £ and solve for
, we find (after eliminating )

fjZpf-glD 1

KAPL-1182
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//

Using this equation and the equation

we find for an approximation for

JZ3<? 
J. V clS'

4- 0(c^)li)

at A

____!_______f?(s^)-^)

i + // (s«.+i) l a

-'-0(,(4£‘'-)¥)

where

L ?!>(?) AS D* y AS J o .

Since

/O /,-= \ Q(s^+1) "^ /, ^ \
W C^i ) ~ ----------- --------------- -- 4* (J ((*?£)*)

and

we have

^j£
^s-

AQ\
<£ ?

?/»+■

. )-(?(?-') + Q(UsX)k)

S~,*i l + Mfe4+i)
-f- (($(s_,)- <3(£0)

H? P(^±) D(^*s) ^S-
) f-hO^

i / J

KAPL-1182



A similar expression can be obtained for '^'3

where

s 0 0*

If the composition is discontinuous at f we cannot find approxi­
mations for & in terms of values of Q($) at

5^4., , £^ , g’Jt -1 • Thus at points of discontinuity in
composition we can substitute the above expressions for |^4. r and

in the left-hand side of Equation (2) but we cannot 
obtain a better approximation for the right-hand side than that obtained 
from Equations (5) and (6). Making these substitutions and dropping terms 
of order we obtain, after multiplying through by

(11)

where

1+ VV(£h-1)

l
1 + )

KAPL-1182
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J/vi (q ) — ^ ^(q ) +•
l+W(?~-±) °^-3 a g;

+ (^ + vi?L.,(^- + ^)J (12)
j

r (f<?) = L.jg)------- ^,?f, o£J5r - i
T / + vv^+i) j-v L

--✓i-h i 
+

i^ + Tr^l ’J$: + ^,)l

and where plus or minus signs on the Q/* 's mean evaluation from the left 
or right, respectively, of the nodal points ^ . Equation (11) gives 
truncation errors provided D(-S) and its first two derivatives are
known at Sn + J,t.

At points where the composition varies continuously, the terms of 
0(a£*) (7) ca» be approximated

AO2

= ^ w c^Ali __ ^ ^; '

+ L. 4S*4 A ^3 J -

KAPL-1182



Using this, we obtain an equation good to C) (&€

L 'vu D(£\-i ) L^F-vt - ^-i] ^ K*. (* n D(S'n+j: ) \sP^ ~ ^vi.+ i J

19

_ ^ ^ -vt r ^

O "VL
[!(«)+1,, ^)] (13)

where

A,

l*

A
L

\/
i

= t-

K(q) - -(A^+i~(^Jf(:££i)

(i^)

A formula (containing the degree of approximation used in the 
difference equations) for integrating over a region E of continuous 
composition extending from 5V, to is given by

^(f) + +sVi(f) (i5)
V(+. ;

where

KAPL-1182
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Integrating our differential equation over the region E, we find the 
conservation equation

fr'j'W -(VjjJ; = f Q(s)-sf<es
"V,

where, in later sections.

will be the outward directed neutron current (multiplied by ) at 
Eeplacing the integral in our conservation equation by the approximation in 
Equation (15)/ we have

=r„,+ ,c<2)
//,- /

+ A, 4-
A/,4- I '

In Equation (17) j^Ct) is now an approximation to the neutron current at 5*^ 
and we will redefine it in such a way that Equation (17) holds.

We would like to be able to express the current at a nodal point in 
terms of quantities given entirely on one or the other side of the nodal 
point. We therefore assume that the current can be written in either of 
the two forms

(3s )„_ =. ) f ^ ^ , +- Cw +■ £"-vi 1 J
and

(Sfj): = D (SA) fAm Qt + K QA, +■ ^7 J.

The fact that these are two-point formulas is in keeping with our using 
three-point difference equations.

KAPL-1182



To determine the coefficients in the defining equations for the current, we 
examine Equation (17)- Using Equations (l6), (13)> aad (12) we obtain

/\ (Q.) (q)'J

m L UVi L
0(s«h) 4$ /V/+x -h

A/,+ 1

+ (-£— +-L- i£j

D(?a/,+-±) ids' Ia/,4^
I

I + W[SA/, +£ )

'h
{JL +-L- pi +_L_

4-
f

d^.J-V cP
_J___ dD

But, using Equation (13) and the definitions of

2 [L(4)+L*,(<?)]

N, + I

, we have

A/l-'

AJ,+- t

_ P r - r

KAPL-1182



n
On the basis of these results. Equation (17) becomes

14-1/^-,) [f^+ pi?)

4"i?4., )] ^pr~ %-ii£-i t>(&i-h)[¥v,-iJ

^ ^4^3 — J

+ J*- ^ ^-7'-P*] .

Since Tvt and are arbitrary points, the tvo sides of the equation
must equal the same constant. This constant must be taken to be zero, so 
that there will be zero current in the absence of neutrons. Thus we 
obtain the formulas

(<?i)Z = hCa) n.-,

" ~ T~u- XQ) ~ £ ^*1+ I 7 ,

The fact that neutrons are conserved in passing from one region to the 
next is expressed by the boundary condition (at an interface )

(19)

Substituting Formulas (l8) into (19) and using

?>- = ‘P-i

KAPL-1182
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we obtain^ after some manipulation. Equation (ll) wbicb holds at interfaces. 
Therefore, we have verified that Equation (ll) is the proper difference 
equation to be used at an interface.

B. THE AGE-DIFFUSION EQUATION

The age-diffusion equation* is

(20)

-S7
U-*>UT (21)

where

% C?j*)

U

ur

m Vfr) U)

ial?, *)

is the slowing-down density

is lethargy = Eo/E , where E is energy, 
E0 is some reference energy

- So /Er where E^_ is thermal energy

is the neutron flux per unit u

is the macroscopic transport cross section

is the macroscopic absorption cross section.

and

The source terms XMYff) and represent neutrons liberated in
fissions and neutrons scattered inelastically from higher energies.
Thus we have

r
£(?) = V -n.v(SlH') du,' + V 2!i(flttT)'ynr(flUT)

Jtfu) =

ur r
-DO r-M.)

^ a' mvC? u
f'M.) ^ -- 1 ' )

(22)

*For a derivation of the age-diffusion equation and a discussion of its 
validity in reactor problems, see Marshak, Brooks, and Hurwitz, Nucleonics. 
May 1949*

KAPL-1182
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where
r*r

~X- (^Jls the fission spectrum, normalized so that J + Xt^r) - / (

■ 60
~l/ is the average number of neutrons emitted per fission,

^.(r^is the macroscopic fission cross section,

-y/ , \is the probability that a neutron scattered inelastically, 
7by material m, from lethargy u' reaches u, so that we have

(-m)

U_

/ =i_
J,' 't™) ; and

the macroscopic inelastic-scattering cross section of 
material m.

We assume a relation between the slowlng-down density and the neutron flux 

% ('r)^) = S(<?>“-)>tv-(y:>) U.). (23)

At KAPL, we take

S C^)
where ^ is the average logarithmic energy-loss in moderating collisions, and 
^ is the macroscopic scattering cross section. ORNL uses

S i it

rtere ZUr*,*)!* the macroscopic total cross section.

If we restrict ourselves to the one-space-dimensional case (where we 
denote the space variable by £ ), our investigations in Section A give us 
the following finite difference representation (in space) for Equation (20):

<„ K) o ^ ‘b-i +''r [“-)j))«) ^

"n

5 **
*^>7

(24)

KAPL-1182
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where the turrets are to be replaced by inverted turrets at points of dis­
continuity and

where

Cp (S,1a-) = >1-1'- f?, A-),

D 0^“-)= (g,u.) }
Q(S,u) = - + Tiio.)P(!)+!(£, u-)- «).

^ 6/--

To derive multigroup equations from Equations (24) we restrict our­
selves to a relevant energy range, E 0 to E^_ , and split the corresponding 
lethargy range, uc to u , into increments ^ ; ), where
t =■ I, a ,T* • We average Equations (24) over a lethargy width 
obtaining

t.
s>t-
<V,

(25)

where bars denote averages; that is.

One approximation to Equations (25) consists of splitting the 
averages of products into products of averages, yielding

1 ->n

V)

(26)
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where

\M
I (asZT s(s+i) ^ ^ (ULY £fi_

"t- L 5 5 K ) p7 _U
<s.

V) t I + _ i i

"A -I- L»
^ ^ i I r ^Vn t,'

r
 <

>1 I z

6f>,-^Ag>,~N)3+- )

A ~t & £yi +

(?)*
8

kX.

* e(p-i) zS2(&s*f _/^_

o2 y- > J- ^ G-k

-H gnri4fc^) (j^++ -U ) T^C-/

+
3 ^ V-

^A^Tfp ^_ /
S'

p

f- . \ +j^K^t+Mp-Kx(^ , ^ ^
^ x ,2. ^ 3g^f ^

~n

3 g 7-

_ (^ Vf A H t ^L_\

3 y Q a l^V)<'J
X,

+• 24 + ng

^-Q-*- PC- P'lfi<^ 'j'}7~

^rn-y^ ( P \ \)'l__________ /___ j

*v[jtw^ V.^ D[- &5»75n^
y.».

;

(27)
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and

= >7 ~U~ >7 L
(28)

with

Ql i = +

>7 c — ^ >0 (^^ C ^ .

We can justify Equations (26) by taking a sufficient number of groups^ 
so that cross sections are essentially constant over any group.

If we postulate the following relationship between the average and 
group-limit values of the slowing-down densityP

fy-nt ~ ‘fr'* l'~l + i lr ^ i
and make use of an approximate equation derived from Equation (23),

>1 (•

(29)

(30)

we have

Qv=+xr pk)+1

Thus, if we write

ten,; \

(31)

our multigroup difference equations become

A
^nV

Di D; [f„. - ^ .■

(Jx.'
JT

T^-b v?
(32)

KAPL-1182
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Equation (29) is used at KAPL with two main schemes of choosing (jOitil and. .
In the first scheme we take ^/-m' - ^ivu = • This scheme has its
disadvantages. It may even lead to negative fluxes in some group, if the 
group widths are not small enough. In the second scheme we take ^/yii = O and 
^•2.->u = ■ft'> where (($>?) is chosen by trial and error. We may 
check the choice of -Pt- (S>0 after the group equation has been solved by 
ascertaining whether gives a reasonable estimate of >, t' . .
In general, the solution does not seem very sensitive to the choice of -fy (5>, 
and reasonable guesses (based on previous calculations) can be made.

On the other hand, if we postulate (as does ORHL) that

= ^.>,1 +-

and if we use Equation (30), we obtain

5 (?
^2. >1 t £

(33)

(34)

In addition to Equations (32), another set of approximate equations 
which can be obtained from Equations (25) is

<\
^ Hi ^)t

H >ii

f)

3» i (i.) (35)

KAPL-1182
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where

3^7oW^),' S(^-y-^' (36)

and where T77~V
S($»); 'b(y,Jc

replaces (£r\)il in ^>1 ^ • If ve assume that 4o)changes less
radically over a group width than >rxr (^)^) , the use of Equations (35) 
rather than Equations (32) is justified. KAPL makes use of this assumption 
in its present calculations on the UNIVAC and the CPC.

In each of the multigroup equations so far considered, it is to he 
noticed that a contribution from the i-lst’ group enters into the source 
for the ith group. Therefore, in solving the multigroup equations, we 
must proceed down from the top group (lowest lethargy, tfhere Q. 0 - 0 ).
The thermal equation, when taken over into difference form^can be taken as 
the last of the multigroup equations if we set = / and -J— = O

The fission source term, P(^) , in the finite-difference multigroup 

equations can be expressed as

T'l'
P(i >,)’!, 7s7):

J: I J
while the inelastic-scattering source term is given by

LA r
(c > 2.)

J = I J

where

r f

Jr,-HlW)
cL\x' ct.

KAPL-1182
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To provide a scheme of calculation for the multigroup equations, an initial 
fission source distribution is assumed, the multigroup equations are solved 
for the >i-ir • with this assumed source distribution, and a new fission 
source distribution is calculated from the • Normalized in some
fashion, this is to be used as input for the next calculation through the 
groups; and this procedure is continued until suitable convergence is reached. 
Experience at KAPL (with a one-dimensional setup on UNIVAC) has shown that 
only a few source iterations are necessary. Thus the source terms in our 
finite-difference multigroup equations can be written as

-1 I Xj£- ^ l/u, (^)
Tv!)

~y? XT' •V! J
/C5 ^ (37)

where P is a curve determined previous to this particular multigroup
calculation.

A numerical check on the multigroup calculation is the neutron balance.

!)<% < + E * = y, ^ P * c K-< e ■ -hL L
tz

(38)

which accounts for the conservation of neutrons in a region R in the ith ^ 
group, where "X £‘U't'P^is the fission source in that region and group, /\ t- 
is the absorption in that region and group, gT 5 is the neutron escape 
from the Rth region into thefR+l)st, Dt^is the neutron degradation out 
of the ith group in the Rth region, and I; ^ is the source of neutrons in 
the ith group and Rth region as a result of inelastic scattering.

Taking these quantities to be normalized such that

V

where

tie,-)
1 if 5 is in a region having fission, 

0 elsewhere ,
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^4

we have the following formulas (where we have assumed that the Eth region, 
extending from to ^ is a region of continuous variation in
composition):

r- </*-/ / . —1

y u v,+i >

F* = aia;

V
4- X

^ (% (^-i)v'v^-u' A tevi-h) viva/jI )

/te) j,

D: -- r" &.*' ^^ +lh, J + (p > ]

(39)

(^o)

(41)

(42)

and

-p* _ *LL>
r- //j~/ —1

V- < —' >»

where

f ^ F)Lpt(«n)t'jni) * J ' J^Uj 

/-/ ‘-00
and

(43)

('i >^ ) (44)

Y - cc?)s?Jls .

kapl-1182



32 2-7

C . THE SELENGUT -GOERTZEL METHOD

Following Selengut and Goertzel, we have a simple age-diffusion approxi­
mation for hydrogenous compositions (when the other materials present scatter 
only elastically)

”732i! (i«) V^ -h ?(*) ft?) +■ u) 5

+ ^ ar-) = ^ u,j +■

where satisfies the subsidiary equation

9 66 (^5)
Here is the macroscopic scattering cross section for hyrogen,
ZftrCfjH) and Il&CfjU) are the macroscopic transport cross section and 

macroscopic absorption cross section, respectively, of the entire composition, 
and S6^u.) involves all materials other then hydrogen.

On solving Equation (45)* we find

e
Hence if l!sn and -niT are essentially constant over the ith group

bUi -h (?)>
&<4t

\^u--i-hc'AU,'J (46)

The finite-difference equations obtained from Equation (44) in the one­
dimensional case will differ from the difference equations obtained in 
Section B only in the extra terms added to the absorption and the source

"a 1 - At , - e~tilLi ±
A AUi }

^ i

A(i.6.)nT =

JsfZti +

Air

j

\-e'*u: .

& At' ( ^ t 1 J

| ^(S.6.)Zi T
^ r-i }

(47)
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and the fact that they are accompanied by the subsidiary difference equations

J. (MS)

If we make use of the assumption that^f,u) changes less radically over 
the group than does'nZr^u^ , we must replace ^ L in Equations
(^7) and (48) by

5 *'K t

In computing the group-by-group balance for this method, it is 
necessary to compute the extra sum

This enters into the balance equations as

(49)

(50)

It is to be noted that the Selengut-Goertzel approximation can be 
considered as a special case of inelastic scattering by one material. 
When is written in the form

ru
,-U-M

(51)

and compared with T(r),u.) in Equation (22), we see that the two are the same 
if we take

(52)

and to be the inelastic scattering cross section for hydrogen.

D. ADJOINT EQUATIONS

In this section, we determine the multigroup adjoint equations. We do 
this by finding the adjoint equations for the age-diffusion problem, and 
then forming multigroup difference equations from them.

The age-diffusion equation, with no inelastic scattering, can be 
written in the operational form

_M ' f = O j (53)
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■where

5-,

a / V 'nv(\t,UT ' )
i- (r

and the operator M is given by

/ M„
= ( M,, K^j,

where

m„ = + ^>+a-l'S' -

H,a = - XMv$t(Ur)-
/-iHt

= -/far) v l sPu •£&&,*) >
Jo

-Mjj. — ^ S^-crtf, UT) ^ ~y(tfT) V Zf-ftfjHr) •

The adjoint operator M* can be determined from the relationship

(fjH'l) = (M'-f; ¥) ^

where $ and ^ are any two functions that satisfy the boundary conditions 
of the problem, and (-J , ) is the "inner product" defined by

r rUr r

(54)

(55)

$(?; Uj f&uj/Ud I/ 4

V 0
The adjoint equation is then

V

H*' i? = <? .

We split the operator M into four terms:

i4 - Mr,) + -hM^

(56)

(57)
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where

M =

M
(a)

/-V-=r-r-y

O

a, (?j u)

o

o

o

VJ3u-(r,U-r) , ;

° )
O

'SC? Ur)
and

nw = r«r
-/tyvj - riu^v^A^)) t

V
We will examine each term separately to determine its adjoint. We take ^ 
and f to vanish on the outside of the reactor and at u = 0. Across 
discontinuities in composition, we will take

£ , f, ik v£L

to be continuous,ana

Using Green's Theorem and Equation (56) we see that

(frvxfcv£) = (-vskrvf, i)t
that is, the first term in M is self-adjoint. This is also true for 
the second term, since

(f, ^ = (kk I)

For the third term we have

v r fur 1 rj $,)£u£v-- J yjtujSftur) £J7)«t)4V

Vo v

= ( - f py,u)j?u^v

V ° V o

m

(59)
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since §l(?,ur)= %aC?,Hr), iPityur)Ur) £,(?,o)=0.

Thus ve have

tl 'tl)
~ ^ h o

o o

For the last term we have
f''*T r

tA*) 'EM Au‘ t £f(?, Ur) ft UT)] _ 

r rVrUr) /(Ur) u Z4 ^ w) $ fa u')/u ' + Zffa Ur) Z fa) UT)J 4'\

r P^T
£/?,«) VI j XitOfir,*-)**' + X«r)iU?,ur)] AJv

J
V 0

Ur

(6o)

and hence

H 'M

/ r“r( '^Au)v) Au/fa) ~ v/(u.t)
o

-&fa, Ur)^«) ~Zt(vjUr) v Kut) J ,

Thus we see that our adjoint equations are

(6l)

«T
'Vii^ +%&«)* l l/W Mu'M«'+tor)plJ

- V2^faZr) 7 ^ ft Ur) Aj Ur) = iff (Pm) v[f%U )lfx(F’W)di'+ Zfar) ftf Ur)J (62)

with Y* satisfying the same boundary conditions as .
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The next step is to derive multigroup equations from Equations (62) for 
the one-space-dimensional case. At points of continuous variation in com­
position there are two sets of difference equations which can be obtained 
from Equation (62). If we assume that the are fairly constant over
the group widths assumed, we have the approximate equations

i'-ii ~ t ] Oi c - i 1

(63)

where

- JUl; -ij (%c - %c-l [[&*') fa,«'MS*

If we assume that the change less rapidly over the group 
widths than do the > a ss't °f somewhat more reasonable equations 
are

+ Z ~:[p:7c.*) - ft.'Ki)^t]

^ >
(64)

where the D's are those defined in Section B, and where

l/r
iu fa^fau'jTu'-hXfrrjfal/r)]-

We see that the adjoint multigroup equations are very similar to the 
usual multigroup equations. Instead of an initial guess at the usual 
source, we guess at the adjoint source

0 fay) du' + xiur-) -py uT)
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It is seen from the form of the equation at thermal energy that we might 
start our calculations at thermal energy. To proceed further, we again 
introduce one of the two conditions, either

'VI L — l

or

Yit £ - ifiMC Tj-Zii s^i-i i ~ i .

Then, except for the thermal group. Equations (63) become

i*; 0:1 -ji) [ 'i'+t-ii J A ,
-t it

A C'H. H j\L{Ai f.) A

+ i

■kk
j 5<b^

1 
1

A

-J-'H -hi i

-f^a]

(65)

with either of the two possibilities

(66)
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Equations (64) become

+ r^iu [p/'Vs-. j) £, .• - PfVc, J f„„ / ]

*■ j? [ f. ) + ]

= ^ + ] ,

with the two possibilities

(67)

(68)

We again include the thermal equation in the multigroup equations by- 
taking it as the last i group.

These equations are quite similar to Equations (32) and (35)• For 
the adjoint calculations, we proceed from the last group (thermal energy) 
to the first.

If inelastic scattering is present, our operator M has the additional
term

r u 

dn

o \

o

(69)
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3Jr

where

To find its adjoint, we consider
• «r ^] fM)ji/u'J&'Atfv - [fj^r) f~{{/->« t) £>, .

V 15 <5 V o
Changing the order of integration in the first integral, we have

- f f £/“) ' f f («)^(uHr) $Jur) ^/y _

Vo { ir l

Hence we have

- ) ‘ - lu^>uT)

M +(b') (70)

o 0

and our adjoint equations become

V +^a^)U)i;^U) ~ S(?,k) *) P^) t W-t^Ju-)Ur)i(Ur)j

'V
'%2jz,(r’, Mt)

7 ffyr) +2tJ?,UT)-ff*] Ut) - ¥*(?) (71)

The effect of inelastic scattering, therefore, is to add another term to 
in Equations (66) and (68), that is.

M (6)

= ^ X" I £ AUj ~1
(,yl* —1 '

)ertzel method, our opera'

J £u e*‘hfSH(u). ~ £Sh(<4)
J 0

/-^Ur
e-^ Jdu ^^.Hh)

dZc ~ l +■ ^ \ 4 &-)CJ Zti*/*.}',; ' Titj-At/j j (72)
j -i + l L '

For the Selengut-Goertzel method, our operator M has the additional term
lI

\o
(73)

O
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This is easily seen when we write 14) as

YjCl*) = *~uf<e '' tinC?,*) f(?,i4 )4«' .

o
Using Equation (73)> we see that

( bith)- £) = f f f/v) [e~*fe £/u')£u' - J!sH l«) $, (u) J?y

VO o

¥ I ZH e^j eu'z!5HCu‘)$/u‘)Ju'Jv

r
$,(«) J f(u'Jeu^u' + %(«r)e-Ur

Hence we have

M*u)

- l!SHU) ‘ <? '*ZlSH(u)eUT

o o
(75)

If we let

Ifr,*) = e* )ru' f(?jU')£u' -+ e*'Ur
u. J

the adjoint equation to the Selengut-Goertzel equation is given by

'7ife)t(?,«) - P(?) +

t ^Ur) ft?, Ur) = P*(?)

(76)

(77)
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where /C?,'*.) satisfies

2± ^ X - i? . (78)
3) ot

The one-space-dimensional finite-difference multigroup equations corre­
sponding to Equation (77) will again he either Equations (65) or (67) with 
the following changes in Equations (66) and (68):

A t

Cs.e*)^ii

& cs.g. r

A I / t- -—777— £ o

—rft. a- )-e.-“UL ^ ^ ±.
~~ JQ 'rt-C — ^777----- ''l-Mi-

-

(79)

tSG .*)'*. T ' i

The multigroup difference equations will be accompanied by the subsidiary 
difference equations

Z^c-I = -/) (a^tt - ) ; (t-1 jJi • • • j t)

?. 'UT ~ T .

(80)

(81)

E. FORMULAS: MULTIGBOUP DIFFERENCE EQUATIONS

In this section we gather the multigroup equations together in the form

A

ir [[>'"&-* - P/Vi)?w] * rj

^ ~?X f‘j + Iv+i.

;f [t-M) + 7 ■ox.) 1 (sa)A?,
S’ 1-’-n syt+l c
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A A ^

where the are given by

a . _ cf-i /?:

? + , L L

I + W-x-l

= ?S<s/z£

I -h IA/ /vi c

= <2 y L ? d; ( 01J
4l

D t S’-M +

(83)

while the linear forms and X«+( J are given by

f f(ri)CQUf~)\ ^f-i /i_+ ^ + ^ ) - A

-1-T7—t-------^---------*7[,+^~j Ur p; ^-j

frtr-i)C3fa~)\ tf.i (*>9-7 tjL j. l>‘i _ j_ ) , K
v-»- _ . .  -7 l I/0 AN . AC*''izy j-iTi + vz^-nl ^t' ^

(84)
f ./n)= [3r(rtif (£- +-^ + -^) + % 7^fc)
-«+n[yj [ g /oi 3?lj jyr/tn4,i3 AS*'S^l ^

+
< l f,y —

K ay /3<Z <3yr/-bM~,J tots’ ot ASi,
h \cjfc

’*+1.

in which

M ----------------------------- . if T/h is not an interface
/J. AC; rA9S

(85)

O 9 if Cw is an interface



We allow for the two possible cases

X ' ID-Yrj=p/^^ 7Z,

a) {
r d; s^) , - s^ij .

Df^) - / SCZ'H-i)'

(86)

The types of multigroup equations which we have encountered can be listed 
as:

(l-a) "KAPL multigroup" where ~ $'*.*-1 and
Equation (86a) applies

Afeiji _ ^ /-i) + S(^) t
Aa.L^)l At4. >

(4= 'jZj j T)

J - . -
Jd *1 L

_L /+ ^ 4![
j=1 l

/yar^j AUj
)

l (87)
O , A«r = | ,

/»

(l-b) "KAPL multigroup" where %^-t ~ ^<54 J and
Equation (86b) applies ^
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(2-a) "OREL multigroup” where mv„i = uJ{^ i-\ -t iw ir^ ^
Equation (86a) applies

and

AfeA = ZJ.O, + $(&)2
/Hi A 1,

Ah- - S Igfe,) gi. -/ -f ^ ^

* . •- \ —*J - I (89)

w-M r = ^7 h Ad 7-----I j

± -O'■VL P - ^ J

(2-b) "OREL multigroup" where ^nv^i — LO,*i M 2AAt'-/ ^ AAd 'yt^t 
Equation (86b) applies

2/iM)
scsz)h

S(&),:

AUi >

and
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and(S-s) Selengut-Goertzel multigroup, where %'*i' - uJiZt %'*L'
Equation (86a) applies

Afci - s(zi);
me

f- 1 -e A U

A 4/ )

j/*. 
-V/H £

= ^(lh ^I'W I-' 1 /
“bii/D*1 1

?(&) t- i
AUt Y*1-'

+IK
J — / *-

+ (e~w ii'yi ^-/ ~'Y^v^vii SH (&A’)

j__
= ^ , = 1 j

- *uT
e ^ 0 J

Kj*i)r --

%mo
= U° =0;

(91)

(3-b) Selengut-Goertzel multigroup, where ? - ^4 ‘ 9^,i -1 L ‘ and
Equation (86b) applies ^ ^

/ ZjfS)) yfri \ f + '-e /£sh&)) . c/f!) ■
W-li- (T7w7/; ~err ( 57«J/- s<w‘,

~ b3>' " j

d-
X''/ /$(&) -1 AU-

AL£;' i ste£) A' )jJ J J (92)

^ = 0 , AUr = s e"«%^ = °

O ~ & ) V]'*-0 ~= O
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(3-c) Selengut-Goertzel multigroup, where and
(86a) applies

Afe)- -AUS

01 -L (! J- U)*'»'L SCCn)c ] (7 - J_ -V . P/0+ 1 
= *ui r^u^j $&).-, + r^/

y]^i =- +(e-AU,:-I )(yii-, ))

(L ~ I“y 7~]

(93)

— O ^ A UT - I } £> T — O j Z/sh ~ ° )
'J-kT

= d?^to ^ J ! *1 O ~ ~ J* - (9 *

("3-d) Selengut-Goertzel multigroup, where ~ ^ 2^ ti-i and
Equation (86b) applies

/\fi°i) - (I'aJ£Z.)S) . S(z£.). + -^(^A, <g—^ /2/sn(?*)) . C(d-*J.

- ( sea;/ A AW.* ( sea; / 1

^^Ui+^sMh^+^,kl)
i-i

&Ui
+ -h y I Z fi)-—) ' 4/cij

. A-f ^ L^-J l sea; / 7

e c = \J2r-'j) r)

(94)

-- ^ (e-(ifJ:-,
S(^>Ji

u>O-hT = e? , Aser =■ > e
~AUf-r

_= <9 y v/±0 ^ o ;
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(k-a) Adjoint to l-a, where $(&):-i 'rt*;-, + Xti-t $(&)c 'Mml

Afe); - XM). -f-
$(&)i $(?£).

+ \ >r^iWt s(&)i

— (l -t- ^ s^-k-± _ S,t W**. . . + ■?*&)

^ | j (•**■) 0*i{sa) £ I ^VrAj 3

J=l J ^

^• ■ v T)

(95)

= ^ j A4, = 1 ; ~ °

=:
I ^ = /

o ^ V /
9

(We have relabeled the groups for the adjoint cases, so that the thermal group 
is i - 1.)

(4-b) Adjoint to l-b, where SLQ)i - lf\^i SfeJ);-, + fj£t' S^)j /

A />r] _ / r//..t x ) t- , Sf&i ) c‘ / S($£)i-

tt Pfcj

*c3 ^ ^
t*7/ • 'y TJ

(96)

^■n I = ^ ; A 4, = l > ^M0 = O
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(p-a) Adjoint to 2-a, where /*vb„i ■=■ $^1/yyIkL-\ ■‘rYa^isM*

Ateh - ZWk + S,,

^ ^ ^v. j (S*) l

U^l,^,... T)

J = I 1_(-M)

(97)

= ^ a u, - i , o - o ',
’(JIM./

^5-t) Adjoint to 2-b, where A^L^i ~ Ylni Wl'*{.-,+ 'W-n i

m - (W\ ■ ^+"S'4 Wt

CC-'b>r-,'r)

9c2VLt
/-/

r - <9 ,A^( = /, 'vtfGoi»vij y 1 y
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(6-a)

VS

Adjoint to 3~9> where S(z£); +-T*£c StSz.)i Wa

I -A/C*)- = Z! ^^ I e 6'i‘' ~kt)

cc-

'Ptej

l-e-W
hssr uov^+ *,i(^

■jt~*)zi‘*(*)iy'*j; j fVyl/*j ^

" 2*1-1 + (e*Ui-l)(2-«i-l f

y~ - 0 , %7^r)r-°,
Ojt'H.I 7

'VH'*.0 = & ) ^''*.0 — & )

(99)

(6-b) Adjoint to 3-b, where )i 'vyi'nL ” 'T'Ha

m - fav) m + ^as-&Li+-~ ^ s&)/; mJ' s&)s htim

dii ^-L^^-Sujsiaw, ^ • pfe;

^+ 'S-XWls^,
Li-->,±,....T)

j- I-e ^"f^sn(d)\ q/rt) i ^ 2’.. )), ^A-t \ \ -. At/.

SaaI L ~ ^ M t - / l^1 ~ 'J (/^-'wL-i — ^Z- ~+<! ) J

rr— = <9 AU, = lj tfsuCs*'), ~ 0 2 ^ A“' ~ ay
OjL'yt I J

'Wt ^y\o —— O j /t a ~ O j

(100)

KA EL-1182



51

(6-e) Adjoint to 3~c, where 'Wl,

Sl^ . .-e—'^7^.

/H t

Ae-4 = ^ + j^r, -
& Hi

j1*)

dii = Atsr;

______ ^ r . ____ _ •
rr" ^sn(^)^ 1 2^i ^‘■ji'ui)u,(Utt)i

‘ J-» W-w)

-e-WL ^yiM / A if' (101)
J /

r„, ^ - I, e'*Ul -~0j S’sultf), - ^ ,-/

-Vt <3 0 J /L '*. o — X) j

(6-d) Adjoint to 3-d, where -wt^ - Yt~i i 'W^i- i ■Vt L 'Wf'Vl J
/\/r£) - (^(^)) Cfct) t +■ -(5*h: jd^ 
r\w«,)£ ( 5C *t)^ &UL $(**){

+“
9^;; , i-e-*^(^sd&)\ c/ft).

1 U Jt)
Ci ~ !)*,■'')

PtWIl ^ [^Y-'(%fl **>& Mj,l-e
AU<; (102)

+-Ce~tUc-i)y 

^ = °j *u>* i j e-*u' =£>, j

— O J S^-'H.O ^ *

KAPL-1182



*-7
52

F. BOUNDARY CONDITIONS

The three types of boundary conditions which we may have are:

1. Flux zero at an extrapolated endpoint. Here we assume that for an 
extreme point in our nodal system, the flux is zero, that is,

fs = o -
■ (103)

This is the simplest of the three conditions.

2. The assumption of an infinite homogeneous outer region, where no 
degradation is allowed, yielding a radiation-condition at the 
boundary

(5^ j)g

e>
auTfK 

rtfiS-. COHP. (104)

where the left-hand side of the equation is to be evaluated from 
the inside of the boundary. In the cartesian case, this reduces 
to the simpler equation

=■ V -A D
I oVTFn.
KCS-. '

(105)

which may be used at the origin (the '/j’a terms vanishing). In the 
cylindrical and spherical cases. Equation (104) will be used, if at 
all, at an outer boundary, where <J} is small and $£ is large.
Hence it may be expeditious to use Equation (105) in place of 
Equation (104), making the use of Equation (104) uniform.

3. At a boundary of symmetry, we have a variation of Equation (104), 
that is,

-= £ .

Equations (105) and (104) may be combined in the general equation

_= q:
8 ,

(106)

(107)

At an exterior boundary, , boundary condition (107) leads to the finite 
difference equation

(108)
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If Equation (107) were to be applied at the origin, the finite difference 
equation at the origin would be

(109)

Equation (109) can be expanded to

AC,
V (f + 1J

^1— (-£- +(2l)
-t 6 Sc

& S"o 
¥(ftO

-^-1 _.
s‘/(n-Woc)

(110)

It can be shown that Equation (110) is the finite difference equation 
obtained when we integrate the differential equation

+A^?(s) “ ^(s)
over the region extending from 0 to /a^ > use the boundary condition

and proceed as in Section A.
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• THE THKEE -TERM LINEAR SYSTEM

For each group, i, we have to solve a simultaneous system of equations 
of the form

Q-rtbi 9^t+i ^ — k-n-t -t C'vlc dl^i - O t, • >• j 4/) (in)

for the fluxes in the group. As we have seen previously, the general 
equations for interior points are

^A/b — ^ VL l A A4-H £ _j ^
b/VIt — L S*. L t A/m, l t /yit D^l l + X l A ** !■' ^].

r • = L ■ b ‘ - 2' ■ A + ‘'—/Vt O ^ c l/'W-/ L £-/*, c A> /vt-l L j

Jl/VL L = t zf/iti I t ~1~X/*_l sJ^/n, ‘ J
-f- X**/M 4 V Vt 4 "t~ ^ />\, i At, ,

(112)

where we have written

(-®!) ~ ©m-i t + i }

^f-Lru(®) = ^ t ,

For the origin, n = 0, we can include Equation (110) by

^ = [(sl'C-UPX ]

t..- " p?’ +fextil.0 /it.- J - ,

(^4) t ~

Jio i -
t ‘hfes Xt,;)MS0}/a t,'J

(113)

(114)
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To use condition (103) at the origin, we would have to take

a0l: = O ,

Co : - o ,

JLol = o .

For n = N, we must have either Equation (107) or Equation (108) 
holding. For the first we have

^ N l> ~ ^ Me ! t XVjAx/4 -I- A £ 4/ &/V / ^

C N L — L C P V~l l' i
y

dlhjL — X A/o i A/ £ At-1 4 (115)

<Pm+I ‘ ~ $ j

&-AS t — / .

while for the second we have 

\)nl — l f 

(X.M i = I j

d'Vt: = 0, (n6)

Cut -0j

fv+l1=0.

The method used for solving Equations (ill) has been explained in 
detail elsewhere. First, proceeding outward from n = 0, where

<LoJ
bo £ )

(Ao e 

hoc )
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we calculate the two sets of quantities

'M. u

-

X. ■M. i
p . + tl~lL )

CL'yv L

6h* jV)
(117)

Then, as is easily shown, we can work hack in calculating the hy

. (118)

With all the algebraic manipulation involved in using Equations (ll?) and 
(ll8), it would be wise to have some sort of check on the solution of our 
equations. Let us suppose that Equations (ll?) and (ll8) yield a set of J •
Do they satisfy Equations (ill)? As we proceed in calculating the (j3~i C 
we might also calculate

+c^L<f^->c (119)

Then we could have an estimate of the error involved in the solution of the 
system by machine. One estimate might be

where the (3^

€ 0
2

are properly

/
: ^ ^ +1 c ,

•M - o
chosen weighting factors.

(120)
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