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ABSTRACT

The numerical solution of the one-space-dimension age-diffusion
equation by multigroup methods is outlined. Finite-difference
equations are derived for solving the multigroup equations in a
finite region where the composition is piecewise continuous. The
equations contain many possible wvariations of multigroup problems:
KAPL or ORNL multigroup; Selengut-Goertzel multigroup for hydro-
genous compositions; adjoint multigroup.
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GENERAL 03SE-SPACE-DIMENSIONAL MULTIGROUP

G. J. Habetler

INTRODUCTION

Multigroup methods heye beer used successfully for some time for solving
one-space-dimensional age-diffusion problems.* The age-diffusion equation is
reduced to a set of coupled ordinary differential equations, called multigroup
equations. For numerical computation, each group equation is usually replaced
by a set of three-point finite-difference equations. These may be solved in a
straightforward manner.**

In two-space-dimensional multigroup calculations, the situation is some-
what different. There is no simple method available for solving the finite-
difference equations explicitly. Therefore, iterative procedures are
currently being used at SAPL.

In this report we develop, for the one-space-dimensional multigroup case,
three-point finite-difference equations which, contain a higher degree of
approximation than those used previously at KAPL.*** Tt is hoped that these
equations will lead to a reduction of the number of mesh points necessary
for a certain degree of accuracy. Since the equations are more complicated
than those used previously, there may be no savings in machine calculation
time for one-space-dimensional multigroup problems. However, similar
equations may lead to large savings in two-space-dimensional multigroup
calculations, where iteration is the time consuming factor. It is hoped
that an investigation of the one“dimensional equations will inform us about
the possibilities of better equations in two dimensions.

It is intended that this report be used as a layout for a general
purpose one-space-dimensional multigroup setup on a high-speed digital
computer. It will handle s large variety of problems. We also feel that
it has great value in answering questions concerning multigroup approxi-
mations. Comparisons can be made of various schemes to determine how
simplified the physical model can be and still give realistic answers.

*Ehrlich, R. and H. Hurwitz, Jr., Nucleonics, February, 1950* P* 23.
This paper contains numerous references to other articles on the subject.

**See Section G.
*¥**Much of Section A is based on unpublished work by R. R. Coveyou,

ORNL.
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In Section 4, we derive three-point finite~difference equations for a
differential equation of the form

D(C) £(0 - DIC) 7 2(c) + A(O €£(C) = (C)

in a region where all the functions are continuous and possess derivatives
of sufficiently high order. At interfaces between such regions (f¥’QO and

D(C) '(C) are continuous.

We apply the analysis of Section A to the age-diffusion equation and
derive multigroup finite-difference equations in Sections B and C. KAPL
and OBKL schemes for obtaining multigroup equations are included as well as
inelastic-scattering and the Selengut-Goertzel approximation for hydrogeneous
compositions. In Section D we derive adjoint multigroup finite-difference
equations. Our results are listed in Section 1.

Boundary conditions are examined in Section F.

An explicit method for solving the three-point finite-difference equations
is outlined in Section G.

GEKERAL DIFFEEENCE EQUATIONS FOB OHE-DIMDSfSIOHAL IEFEITOERCY

In this section we shall derive finite-difference equations to be used
for finding an approximate solution to a differential equation of the form

D(O (©) - p(0 + MO f(O - «/(0 €D

where P is a constant which depends on the geometry of the problem (p = O,
cartesian geometryj p s 1 cylindrical geometry! P = 20 spherical geometry).
The equation is to be solved in a closed region™ Cj < © With
appropriate boundary conditions Equation (1) can be used to describe one-
dimensional monoenergetic neutron-diffusion”™, where D(X) is the diffusion

coefficient™ AéC) is the absorption cross section.,,/(£) is the neutron
source and ™ (C) 1is the neutron fluxj all evaluated at the given energy.

We assume that the closed region can be divided into a finite set of sub-
regions, in each of which all the functions are continuous and possess
derivatives of sufficiently high order. At interfaces between such sub-
regions we assume that ™ (C) D(£)d"™/d£ are continuous.

We choose a set of points

n " *=n “ ~n-1%

KAPL-1182



which will yield a suitably fine mesh for our difference equations and are
such that they contain the interfaces between the subregions mentioned above
as a subset. Integrating Equation (1) from

AC "
to
AC
/\n +
we obtain
1 r.c,t1i
2 2

D(C) fc2(c) .+ s’ sa - AE)(G>(c)] 'Cp <«iC )

Using Taylor's series expansion, we can express the left-hand side of
Equation (2) as

-D(Cnt+1) Cnt1i t D(Cn.]1) C1
ACii
+ D™n+|) €<| M (A™n)2 3(3) ("nt|)
-~ O k2 13D 3)

2 2 2

If we define

Q (&) =3(c) - A(O p (©)

™
we have, for the integral on the right-hand side of Equation (2),

- Q(Cn) + Q(Cn-1+) rp+1 >n

Q (C) 'CP ~C = 2 1 .
c i Vi

2
<JKn-) - «(Cn-i+) —~ _ Cp-i £+!
Ac- p+2 2 P
-k i <av)3«(2)Kni)+ 5)

2 A%
KAPL-1182
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n+1

and 4(0 . + n+1~) £p+l1
m ptl

Q("™n+1 ) " Q("=n+) i!!—l‘ X e+l

lAgﬁ\ p+2 TI+7 pt+1
n

if =~ (7™)3 £12)(Cnt) + ™~k ©)

Using Equations (3)> (5)> and (6)® we can write Equation (2), after multiplying

through by -/Cp
n n

iﬁ DIC_Y) - ~n-1= +Tn ~ DIC_1} ~~n~ " £ An+lr
Bl n+1

In™) +

F AN -4 DK+ + (Pn)2 A< (> - A (N)3 Q<)) (CBH>

n+5

+ iSDIC i) (M)2<2(B)K p - i: (AO)3 42)C D{ +—AC5), (7)

n-i n n-i n n n-i

where
PACT  p(P-D(Ay
Jn=0 g T 4 sene £ €37QC- )
- !n n-
291(— 5P§P—D(AC5)
+3(d ~=7" +1 7717 T—— 1 Q(C-) S

iWCn2

W <@ =g Cn ~4 3 (X+ PACH Sp(p-D(0+)2

SKp
AST 144C n4
/ V224 4 p(p-D(ACT) 1
+ 1+ + 16C ~ J QKn+1-) ©))

n

KAPL-1182
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and
I 10)
Thus
(5*; <2;:...;//~/)
where oOC™) Is to interpreted as replaced by

is a set of possible difference equations to replace Equation (2). The

solution of the difference equations is denoted by and is to be
distinguished from the solution of the differential equations
evaluated at . Equation (j) shows that the truncation error.

£™M = <KSV) — 9otv

will be continuous and where
- A ¢+ At points where these conditions are not met, the

truncation error will be O(h$'3j-

We can get better difference equations if we can eliminate the
bracketed quantities in Equation (7) Then our equations will be
good to O Cc™SS)-

If we differentiate Equation (1) with respect to £ and solve for
, we find (after eliminating )

IT=Zppf~=lI> 7

KAPL-1182
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Using this equation and the equation

we find for an approximation for

LIPS
i+ /2 (s«.ti) 1 A

where
L 21>(?) AS
Since
/O /= \ O¢s™N+1) "™
W C™1 ) ~ —
and
A0\ -
<f£ ?
Untm
we have
Aj£
Ag- S~* 1+ Mfed+i)
H? Vel ==

//

JZ3<)
4- O Cc ™I
LV clS’ W
at A
—'—O G AL -)¥)
D¥*yASJ o

/, AN
4 (T ([(RPE)*)

I-C2(?-D) + OUsXKL)

o ((B(s_)- <3(£0)
) f-HO ™
D("*s) NS- i/J

KAPL-1182



A similar expression can be obtained for ™3

where

s 0 O

If the composition is discontinuous at f we cannot find approxi-

mations for & in terms of wvalues of QO¢$) at
5N, £D , gJt -1 + Thus at points of discontinuity in
composition we can substitute the above expressions for [ r and
in the left-hand side of Equation (2) but we cannot

obtain a better approximation for the right-hand side than that obtained
from Equations (5) and (6). Making these substitutions and dropping terms
of order we obtain, after multiplying through by

dan

where

1+ VV(£H-1)

KAPL-1182
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@) - ""@Q) - [+ W (?~) °~-3 A g
+ N A VEPL (=t DT (12)
j
r ()= L. jg)-—-- 5 .2f o£JSr  -i,
T [+vv/) VoL *

iNt TN TS+ )1

and where plus or minus signs on the Q/* 's mean evaluation from the left
or right, respectively, of the nodal points - . Equation (11) gives

truncation errors provided D(-S) and its first two derivatives are

known at Sn +J, ¢

At points where the composition varies continuously, the terms of
O CAL™) (7) ca» be approximated

AQO)

= AN w cNALlZ -~

+ L. 4% A3 T

KAPL-1182
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Using this, we obtain an equation good to OC) (&€

L' D(£\-i) UFst- ~=if » K% ¢ n D(S'ntj: ) \sPA~"Viti J

N\ /\‘Vt A\
- I!\(<()+199 )] (13)
0"VL
where

. Y

l* 1

A

L =t
K o) - —(A— I~ (— = (- AL L)

an
A formula (containing the degree of approximation used in the
difference equations) for integrating over a region E of continuous
composition extending from 5V, to is given by
+ +sVigp ()

~(®
V(+.

where

KAPL-1182
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Integrating our differential equation over the region E, we find the
conservation equation

fr'j'w -(VijjJds; = € QO(s)-sf<es

”V,

where, in later sections.

will be the outward directed neutron current (multiplied by ) at
Eeplacing the integral in our conservation equation by the approximation in
Equation (15)/ we have

=r”’+ )c<2)

/-1

+ A, 4
A/4-1 '

In Equation (17) j~Ct) is now an approximation to the neutron current at 5*°

and we will redefine it in such a way that Equation (17) holds.

We would like to be able to express the current at a nodal point in
terms of quantities given entirely on one or the other side of the nodal
point. We therefore assume that the current can be written in either of

the two forms

(% ), = ) £ A = Cw oaf'i L J

(Sf)): = D(S4) fAM QOt+ K QOA, N7 J.

The fact that these are two-point formulas is in keeping with our using
three-point difference equations.

KAPL-1182



To determine the coefficients in the defining equations for the current, we
examine Equation (17)- Using Equations (16), (13)> aad (12) we obtain

/\ Q) (Q)J

s LUVi O(E«H) 4% Nix h

A+

v (- A —Z— £ /

D, +-x) ids' 14,4 ™ [ + W[SA/, +£)

JIL. +—7 — o7 -+ I

'h
4 F J___dD
/N
s

But, using Equation (13) and the definitions of , we have

= [L(D+L7*(<)]

N, +1

A/l-

AJ -t

KAPL-1182
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On the basis of these results. Equation (17) becomes
N\ 7\ —
L-1/7-) [fN+ e = =)

4"i24., D]  pr— 26-iif-i t=(&i-1)[3, -iT

A M3

Je- —~ ———"-:="‘.'-ul)$%]'.

are arbitrary points, the tvo sides of the equation

This constant must be taken to be zero, so
Thus we

Since Tvt and

must equal the same constant
that there will be zero current in the absence of neutrons.

obtain the formulas

(<)L = hCa) n.-,

" Teu- XO) ~ £ AL+ |

The fact that neutrons are conserved in passing from one region to the
next is expressed by the boundary condition (at an interface )

19

Substituting Formulas (18) into (19) and using

> = P

KAPL-1182
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we obtain”™

after some manipulation. Equation (11) wbicb holds at interfaces
Therefore, we have verified that Equation (11)

is the proper difference
equation to be used at an interface.

B. THE AGE-DIFFUSION EQUATION
The age-diffusion equation® is
(e4V)
-S7
U-*>UT Q1
where
% C?7%) 1is the slowing-down density
U is lethargy = FEo/E , where E is energy, and
EO is some reference energy
107~ - So ~FEr where E®  is thermal energy
m Vfir) U) is the neutron flux per unit u
is the macroscopic transport cross section
ial?, *) 1is the macroscopic absorption cross section.
The source terms XAZYff) and represent neutrons liberated in
fissions and neutrons scattered inelastically from higher energies.
Thus we have
r
£c?) = V -n.v(SIH') du,’” + V 27i(fZttT) 'vrr(fZUT)
ru
r
22
Ttfie) = -~ a’ mvC? u
-DO £M.)

*For a derivation of the age-diffusion equation and a discussion of its
validity in reactor problems,

see Marshak, Brooks, and Hurwitz, Nucleonics.
May 1949*

KAPL-1182
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where
r*r
~X- (" Jls the fission spectrum, normalized so that J + X7 r) - /|
160
~Il/ 1s the average number of neutrons emitted per fission,

N (r™Ms the macroscopic fission cross section,

-y/, \is the probability that a neutron scattered inelastically,
o 7by material m, from lethargy u' reaches u, so that we have

U

N,

/
S, ™) ; and

the macroscopic inelastic-scattering cross section of
material m.
We assume a relation between the slowlng-down density and the neutron flux

% ()T = SC2FT)ETr=(7>) U). (23)

At KAPL, we take
S cY

where ~ is the average logarithmic energy-loss in moderating collisions, and
- is the macroscopic scattering cross section. ORNL uses

S 1 Zz

rtere ZU7r¥*, *¥)/* the macroscopic total cross section.

If we restrict ourselves to the one-space-dimensional case (where we
denote the space wvariable by £ ), our investigations in Section A give us

the following finite difference representation (in space) for Equation (20):

<, K) o - b-z +""r [“) B W™ I)«) -

" (24)

KAPL-1182



where the turrets are to be replaced by inverted turrets at points of dis-
continuity and

where

Cp (S, 14-) = >1-1- 2, A-),

D 0™-)= (gu.) |

OCS,w) = - + Tiio)P(L)+1 (£, u-)-
N 6/~
To derive multigroup equations from Equations (24) we restrict our-
selves to arelevant energy range, EO to E* , and split the corresponding
lethargy range, uc to u , 1nto increments S ; )., where

tal,a _ T* + We average Equations (24) over a lethargy width
obtaining

S>1-

(25)
where bars denote averages:; that is.
One approximation to Equations (25) consists of splitting the
averages of products into products of averages, yielding
I ->n
V)
(26)

KAPL-1182
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H gnri4fc’\fx' g++-U |

where
I (ASZT
Mg L5
<s.
V)t [ + i
"A -I- Ly
MAg [ 7 ~Vn {
<
r
>1 I = A
)
I}
+
SV
- o\

s(s+i) T~

)y K

6F>.-~Ag=>,~)3+

~t & £yi +

02 y-

3y QAIV)KI

A Q_ sk_

-y

Evgew

PC- PIfi<" "7~

24
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CVEFA FLt~r \
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> J- > G-K

T C-/

3AV-

~Nn
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and

= =70~ g

with

>7 c _ N >0 (/\/\ C A

27

28

We can justify Equations (26) by taking a sufficient number of groups”®

so that cross sections are essentially constant over any group.

If we postulate the following relationship between the average and

group-limit values of the slowing-down density?

Sfy-nt —~ SR~ + i Ir™i

and make use of an approximate equation derived from Equation (23),

S

we have

O~ +XxXr PK)+1

Thus, 1f we write

ten,; |

our multigroup difference equations become

A Di D; [f,,. - — 1

AV

JT
(Fx.'
B -

29

(€Y

GD

32)
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Equation (29) is used at KAPL with two main schemes of choosing [OI7TIL and.

In the first scheme we take ~/-m' - ~ivu = ¢+ This scheme has its
disadvantages. It may even lead to negative fluxes in some group, 1if the
group widths are not small enough. In the second scheme we take ~Vyiz = O and
Ned->u = mft —— where (($>?) 1is chosen by trial and error. We may

check the choice of -Pt (S>>0 after the group equation

ascertaining whether gives a reasonable
In general, the solution does not seem very sensitive

has been solved by

estimate of >t .
to the choice of -fy (5>,

and reasonable guesses (based on previous calculations) can be made.

On the other hand, if we postulate (as does ORHL) that

= /\_>’1 +-
and if we use Equation (30), we obtain

5 (2

N2 >1t £

(33)

G

In addition to Equations (32), another set of approximate equations

which can be obtained from Equations (25) is
<\

) Hi Mt
H >ii

3»

35
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where
BN >N DO S cT—y—"7 36)
and where T77—V
S(8»); "b(y,Jc
replaces (£r\)il in 7~>1 ~+ 1If ve assume that 4o)changes less

radically over a group width than >rxr (™)) , the use of Equations (35)

rather than Equations (32) is justified. KAPL makes use of this assumption
in its present calculations on the UNIVAC and the CPC.

In each of the multigroup equations so far considered, it is to he
noticed that a contribution from the i-1st group enters into the source
for the ith group. Therefore, in solving the multigroup equations, we
must proceed down from the top group (lowest lethargy, tfhere 0 0 - 0 ).
The thermal equation, when taken over into difference form”can be taken as

the last of the multigroup equations if we set =/ and -J— = O

The fission source term, Z~¢7) , in the finite-difference multigroup

equations can be expressed as
T

Pi>), s

while the inelastic-scattering source term is given by

A r
(c >1.)

where

cl\x’' ct.

Jnnw)

KAPL-1182
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To provide a scheme of calculation for the multigroup equations, an initial
fission source distribution is assumed, the multigroup equations are solved
for the >i-ir + with this assumed source distribution, and a new fission
source distribution is calculated from the ¢+ Normalized in some
fashion, this is to be used as input for the next calculation through the
groups; and this procedure is continued until suitable convergence is reached.
Experience at KAPL (with a one-dimensional setup on UNIVAC) has shown that
only a few source iterations are necessary. Thus the source terms in our
finite-difference multigroup equations can be written as

7
XJ£ 1, (A) AT IC5 ~ (37)
Tv)) |

where P is a curve determined previous to this particular multigroup
calculation.

A numerical check on the multigroup calculation is the neutron balance.

=26 —— + E * =y, —~ " c K< 17
P el L (38)

which accounts for the conservation of neutrons in a region R in the ith ~
group, where "X £Ut'"P"is the fission source in that region and group, /¢
is the absorption in that region and group, gT 5 1is the neutron escape

from the Rth region into thefR-+1)st, Dt"is the neutron degradation out
of the ith group in the Rth region, and I: "™ is the source of neutrons in

the ith group and Rth region as a result of inelastic scattering.

Taking these quantities to be normalized such that

where
1 if 5 1s in a region having fission,
tie’-)

0 elsewhere ,

KAPL-1182
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we have the following formulas (where we have assumed that the Eth region,
extending from to is a region of continuous variation in
composition):

- <] . -
39
y u v, +i >
(7o)
A~ (e) N7 AN —
F* — a4 (% C—2)vv™-u A tevi-h) viva/ gl )

L% /ted i @1

D- B ' & *' AN +lh, J + (p>]
' “42)
and
- 1~ —1
1Nk * >
p* L (43)
V-« —"y
where
£ Fllptcm)tjni) + J " JINUj
(i =>") “4
/-/ ‘=00
and

Y - cc?)s?Jls
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THE SELENGUT-GOERTZEL METHOD

Following Selengut and Goertzel, we have a simple age-diffusion approxi-
mation for hydrogenous compositions (when the other materials present scatter
only elastically)

227320l (i«) —~— " b 2(%) f#2) w) §

+ -~ ar-) = “Su,j e

where satisfies the subsidiary equation

9 66 (*3)
Here is the macroscopic scattering cross section for hyrogen,
ZftrCfiH) and 7/I&CfiU) are the macroscopic transport cross section and
macroscopic absorption cross section, respectively, of the entire composition,

and S6”™u.) involves all materials other then hydrogen.

On solving Equation (45)* we find

e

Hence if //sm and -niT are essentially constant over the ith group

I (P> \Nu-—-i-hc'AU,"T

. - 46)
bUi &<4t
The finite-difference equations obtained from Equation (44) in the one-
dimensional case will differ from the difference equations obtained in
Section B only in the extra terms added to the absorption and the source
ve A 1 _ P - e—~tilLi +
& AU 2
. \—e "7
. JIsfZti +
" z & At ™t 1]
@7
AG.6)nT = —AZr

| N(S.6.)Zi T
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and the fact that they are accompanied by the subsidiary difference equations
J. (MS)

If we make use of the assumption that™~f,u) changes less radically over
the group than does'nZr™u” , we must replace N in Equations
(*7) and (48) by

S K.

In computing the group-by-group balance for this method, it is
necessary to compute the extra sum

(49)
This enters into the balance equations as
(50)
It is to be noted that the Selengut-Goertzel approximation can be
considered as a special case of inelastic scattering by one material.
When is written in the form
7
,—U-M
(51D

and compared with 7(7,u.) in Equation (22), we see that the two are the same
if we take

(52)
and to be the inelastic scattering cross section for hydrogen.

ADJOINT EQUATIONS

In this section, we determine the multigroup adjoint equations. We do
this by finding the adjoint equations for the age-diffusion problem, and
then forming multigroup difference equations from them.

The age-diffusion equation, with no inelastic scattering, can be
written in the operational form

M'f= 0j (53)
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mwhere

5.
z— (xr

A/ V 'mv(\t,UT ' )

and the operator M is given by

/M,
= (M, K7,

™M,, = + N=+)-1'S' —

H.,a = - XMvSz(Ur)-

J-HT
— _far) v lsPu «£&&, %>
Jo

-MJJ. —  AS*-crtf, UT)

~yfD V Zf-fifjHr)

49

The adjoint operator M* can be determined from the relationship

AT7EZL L = (M"—7: 2D

(55)

where 8 and ~ are any two functions that satisfy the boundary conditions

of the problem, and (-J , ) is the "inner product" defined by

v rUr v
8?2 Uj f&wj/UdL/ 4

Voo A%

The adjoint equation is then

H™' i? = <

We split the operator M into four terms:

i4 — Mr) + — A NA

(56)

57
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where
/S~-V-=r-r-y o
o IJ3u-r,U-1) , ;
(a) a, ( ? j u)
M <
o
(0
o 'SC? Ur)
and
W = r«r
2% %4 —7iee ™ VA ) Dt

35

We will examine each term separately to determine its adjoint. We take ™
and 7~ to vanish on the outside of the reactor and at u = 0. Across

discontinuities in composition, we will take

ana to be continuous,

Using Green's Theorem and Equation (56) we see that

(frvxfcvE) = (-vskrvf, i)t

that is, the first term in M is self-adjoint. This is also true for
the second term, since

ad. - =Kk D

For the third term we have

V _]rﬁr 1 B I) L v—— erjtujSﬁur) £I7)«T) LV
Vo

) %
= C -7 Py, w)jlu™v
v ° V o

(59)
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since $§/(?,ur)= %aC?Hr), zIFPzzy>2¢7) UV7) £, (7, 0)=0.

Thus ve have

o h 0O (60)

(0] o

1l

For the last term we have
ST r
A4 *) "EA Au' r £/77,Ur) JfEUD]

Ur) /AUP) u T r§4 “w) S fau)u’ + Zfra Ur) Zfa) U J 4'\

r P°T
£/2,«) VI j XitOfir,*-)**' + X«r)iU?,ur)] AJv
v
Ur
and hence “
/'/\Au)v)’;llzft/]‘a) ~ v/(U.T)
’ o
H M ~-&fa, OU7 ) <) ~Zt(vjUr) v Kun). 7, (61)

Thus we see that our adjoint equations are

«T
VA +%2&«) ¥ LW Mu'M«"+tor)plJ
- , . (62)
-2~fazr) 7> ttUr) AJUr) = iff(PM) v/[f2oU)lfx(F " W)di'+ Zfar) fz7Ur)J

with Y* satisfying the same boundary conditions as
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The next step is to derive multigroup equations from Equations (62) for
the one-space-dimensional case. At points of continuous variation in com-
position there are two sets of difference equations which can be obtained
from Equation (62). If we assume that the are fairly constant over
the group widths assumed, we have the approximate equations

i'-ii ~ t ] Oi ¢ - il

(63)
where
- JUL —ij (%6c - %6c-1 [1&*") fex, « MS*
If we assume that the change less rapidly over the group
widths than do the > a ss't °f somewhat more reasonable equations
are
+ Z —s/pp:=7cCc.*) - f¢e. " Ki» —~z/
(64)
N

where the D's are those defined in Section B, and where

Ir
iu JaSaujTu-hXfrrjfal/r)]-

We see that the adjoint multigroup equations are very similar to the
usual multigroup equations. Instead of an initial guess at the usual
source, we guess at the adjoint source

0fay)du'+ xiur-) -py ul)
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It is seen from the form of the equation at thermal energy that we might
start our calculations at thermal energy. To proceed further, we again
introduce one of the two conditions, either

vIL—1

or

Yitf{ - ifiMC Tj-Zii s™Ni-i i~i

Then, except for the thermal group. Equations (63) become

A —
i 05 i f ieii J -t 2z ST/

A

Ao HF\L{Ai f2) ;

wlk
N A (65)
U S X

with either of the two possibilities

66)
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Equations (64) become

+ 72zt [p/'Vs-.J) £, - PtVec,TI f,.,,.,/ 7/

LIV Ve A 7

o~ ¥ 7], (67)

with the two possibilities

68

We again include the thermal equation in the multigroup equations by-
taking it as the last 1 group.

These equations are quite similar to Equations (32) and (35) For
the adjoint calculations, we proceed from the last group (thermal energy)

to the first.

If inelastic scattering is present, our operator M has the additional
term

o |\
(69)
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I+o

where

To find its adjoint, we consider

I ALY iee " T AL~ [f) P T) £,

AR S \Y% o
Changing the order of integration in the first integral, we have

f](.;‘é‘/') ’ff (D (et lL7) STur) "> _

Vo { ir l

Hence we have

- ) ‘ - u™>uT)
Az ) (70)
o O
and our adjoint equations become
14 +~aMHND ;) ~ S(?,k) )Pt W-t"Ju-)Ur)i(Ur)j
- 7 (o) +2002,UT)-fU) - ¥*(?) b
"%jz, (v, MT)
The effect of inelastic scattering, therefore, is to add another term to
in Equations (66) and (68), that is.
dZc = 1o X | # &) Zev L TiG- A i (72)

J-itl L (yl —1 "
For the Selengut—G)mmzfl method, our openzitor M has the additional term

] £u e*fSH(u). ~ £31<) o

73
m © AU (73)
e-~ Jdu ~FTT)
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This 1s easily seen when we write 14) as

YjCI*) = F—zgf<e " tinC?,*) f(?,id )F« " .

0
Using Equation (73)> we see that

(  bith) £) = _FFFV) [e~"fe £u)Eu' - JIsil«) 8, (u) J?y

Vo o
¥1 =7 77 eu'z!/5HCu) S /1) I’ ITv

r
8,(«) ] S(u'Jeuu’ + %o(«r)e-Ur

Hence we have

— //SHU) <? "*ZISH (z¢) €UT
\Y
(75)
o o
If we let
%) — s ’ . 4 ’ =3< 7, (76)
Ifr, ™) =e™ dDrzu' f(Z2jUDL£u’ + e Ur
u. J
the adjoint equation to the Selengut-Goertzel equation is given by
VT e =—— T 1(7,¢) - P?) +
77
t NUr) ft?2,Ur) = P*(?)
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42

where /C?,'*.) satisfies

2+ N X — iZ2. (78)
3) ot
The one-space-dimensional finite-difference multigroup equations corre-
sponding to Equation (77) will again he either Equations (65) or (67) with
the following changes in Equations (66) and (68):
A t AT/ t- —T77— £o0
F7r. 4~ J—e.—“UL ~r 4
Cs.e®)Nii ~ JQ n-C — AT --—-- "I-Mi-
79)
& cs.g. r _
tSG . %)'* T v i
The multigroup difference equations will be accompanied by the subsidiary
difference equations
Zre-1 = - (a™tt — ; r—1oJr g o7
D ( ) (: J 7) (80)
81)

2.'UT ~ 7 .

E. FORMULAS: MULTIGBOUP DIFFERENCE EQUATIONS

In this section we gather the multigroup equations together in the form

b [P&-* - P/VD?2WwW] Yy
A 2X TF + v+
(sa)

A [ z—NZ)D) + 7 mox.) [/
S’ syt+l ¢
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A AN
where the are given by
AL cf-i/7-
I + W-x-1
= 2S5<
f + ?S<s/z£ (83)
I -h TA/NQ ¢
41
Q Yy L ? D; ( 01J Dt M+
while the linear forms and X«+J are given by
. & Sri) CQUIF~)\ ~f-i /i S+~ ) A
= T7— e~ *7[,+" ~j ur P; ~—j
Srtr-D Cifa~—)\ ¢fii (*>9-7 gL j. I>f | ) , K
Vo 1izy j_iTi+va_ni7 1 1/0 /i.\tv. ACH L
(84)
£ ./n)=[_— G tif (£- D + =)+ 26 7o)
~-«+nlyj [ = /oi 32l jyr/tn4,i3 AS*'S™L ~
+ = 1y 7z \CJf?;
K ay /3<Z Syr/-bM~,J tots’ ot ASi, +1
in which
M - if TH is not an interface
/J. AC; rA9S
(85)
& g 1f Cw 1is an interface



We allow for the two possible cases

IO~ rj—p s/ 7z

7 D; ST, - ST Z7 .

(86)

N\ -_—
DT™) / SCZ'H-i)’

The types of multigroup equations which we have encountered can be listed
as:

(1-a) "KAPL multigroup" where ~ P+ and
Equation (86a) applies

~ /- + St

Afeuil = 4, 1591 Atd > _
@ v D
- ~ | o
TR - pary AU
J=1 )
: (87)
(0 . A«r = s
fy
1-b "KAPL multigroup'" where %"t ~ — —<54] and
( group
Equation (86b) applies A
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(2-a) "OREL multigroup” where mv,,i = uJ{™ i-\ -t iwir™ A and
Equation (86a) applies

AfeA = zro, + (9?2
MHi 4
Ah- - = Igfe.) gi.-/ ™~ —
e _* 89)
=~ h Ad7-—-1
wMr 7
+ —_ [ 4
L P J
(2-b) "OREL multigroup" where “nv"i — LO,*i M 1At/ ~ AAd 'yt and
Equation (86b) applies
2/iM) S(&),:
scsz)

AU >
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(S-s) Selengut-Goertzel multigroup, where %'*i' — uJiZt 26"’
Equation (86a) applies

and
Afci - i e
me A 4/ )
J/= - < IWE L Pe) t- i
-vm § “ii r> | e AUz 3=
J—s % (91)
+ (e—n- ii'yi Nof — i SH (&4 ")
J_ ) _ T g i -
=" > ]] t=4 ~ O0uJ
Foro = —QO;
(3-b) Selengut-Goertzel multigroup, where ? - NN -] L ‘ and
Equation (86b) applies A A
/7 Z7rS))  yfriy o + —e SESHK)) . eI
H—7z- (T7wW7/; —~err ( 57«J/- s<w°,
~b3>' '7
v ——8(&) -1 AU-
d- .
! / )'
ALL; i stef) A 17 | ©2)
—~ =0, AUr=s e"«2o"™ _ o
0~& ) J*0 = O
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(3-0) Selengut-Goertzel multigroup, where

and
(86a) applies
Afe)- -AUS
01 L (! J- U)i»’L_ SCCn)c 1 (7- 1 V. P/ot]
= *ui 77"t FKL).-, + r~/ (1~ %y 7~]
(93)
As _ . .o

i = +(e-AU:-1 ) (yii-, D)

— O ~ AUT-1)} £ T— Oj Z/sH ~°)
JKT

~to = {9J s¥0 - O J
('3-d) Selengut-Goertzel multigroup, where ~ N o ti-i and
Equation (86b) applies
Ni°) - ((d'aJ£Z)) . SizL). + -~~A " 2/sn(?*) . Cd-*7.
- ( seas/ A AW* ( sea:; / |
AN T+ ~NA F2 ™+ k)
ec=127"]) r)
i-i
+ W VIL miy—— i
eui AT A}LA—J ll)sea; )/ Cl“]7 (94)
N e-i T -,
S(>Ji
~AUf-r

WD e? , Aser a > e
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(k-a) Adjoint to 1-a, where S(&):-i 'rt*;-, + Xti-t $(&)c 'Mml
Afe): - XAz, o S&T 3070
NP s(&)i

/\'IVD

(At ™~ skt St WoERE g m?*&)

N g 0%ifsa) £ 1 "Vrdj 3

J=1 J ) ©5)

(We have relabeled the groups for the adjoint cases, so that the thermal group
is i - 1))

(4-b) Adjoint to 1-b, where SLQ)i - IA"Ni Sfed);-, + fj€t’ SN)j /
A/>rl _ 7/ x//..tx )t

. Sf&i)¢ s S($£)i-

z z r~rey

Y T

*C3/\/\

(96)

|
>
N
A

I

> M0 = O
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(p-a) Adjoint to 2-a, where /*vb,,i n SNI/NWIKL-\ \rYa™NisM*

Ateh - ZWk + &S _,

UNLA,... T)
A /\/\V_j (S*) Z
o7
J=1 1.(M)
=N A u, — i o — o
"(JIm/
AN5-1) Adjoint to 2-b, where ANN ~ YIni WI'*{.-+ "W-n i
o~ g
zzz - (BP\ —+— 4 WWr
CC-'b>r-,'r)
9c2VLt
/-1

—_ | o [}
ilj:(;i»vij < y A { / vtf
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(6-a) Adjoint to 3~9 where S(z£); +-T*£c StSz.)i Wi
A/C*)- = Z/ — = |- e 67" ~kz)
cc-
Prej
l-e-WW *
S.S 7 Z2zLc> VT F Wi~z K (R)iy i A
" 2% ] + (e*Ui-2) (2-«i-1 f
y— -0 , o7 )r-°,
OjfHI 7
TH*0) = & ) "M*0 — & )
(6-b) Adjoint to 3-b, where )i wi'nl > 'T'HA

71 - fQu) 11zt T AT A S XTIV,

dii ~—IL_ "~ —Sujsiaw ., D s pfe: Li->,%5..
J-I-e ™N'snd)\ ¢rz) i N2, ), CA-t\ - A/
SuL ~ AMt-/ N~ T (Wi — NZ-~4<] )
m— =9 AU, = I7 tfsuCs*), ~0 2 N A" ~ay
ojLyt1 J

Wiy = OjF /t a ~ O j

©9

7)

a00)
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(6-¢) Adjoint to 3~c, where 'Wl,/H t
Aed = —— ¢ R L oo/ T 7"
& Hi
T1%)
dzz = Atsr;
Nr o, '
_e_%l" /\Sﬂ(/\)/\ | 2N A‘lji’bp M,(UZ‘Z)Z' AyiM/Al_f (101)
¢ J-» W-w) J /
7, T - 7, e Ul -~0j Sﬁs*ulzj?, -,
-Vt <3 oJ A " 0 — X)) _F7
(6-d) Adjoint to 3-d, where -wt” - Yt~ii "WNi-i Wt 'Wfvi J
NIE) - 7)) Cfept  a -(5*h: jd~
r\we, )£ ( 5C FN &UL SCE*){
ON:c: | dme—FASdE) D).
+ 1 U Jr)
Ci~!)*m")
N\ N\ 1 ({0
l-e ;o177 [ {- (6fl *E— @ A7,
AU<; 102
+-Ce~tUc ——— Z-)y
L <] Fu>* i j e—Fu' =£>, J

- O0J SMHO o
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BOUNDARY CONDITIONS
The three types of boundary conditions which we may have are:

1. Flux zero at an extrapolated endpoint. Here we assume that for an
extreme point in our nodal system, the flux is =zero, that is,

fs = o -
I (103)
This is the simplest of the three conditions.
2. The assumption of an infinite homogeneous outer region, where no
degradation is allowed, yielding a radiation-condition at the
boundary
G g
auTfK
& nfis- corp.  (104)
where the left-hand side of the equation is to be evaluated from
the inside of the boundary. In the cartesian case, this reduces
to the simpler equation
=n V-A D
| oVTFn. (105)

KCS-. !

which may be used at the origin (the '/j/a terms vanishing). In the
cylindrical and spherical cases. Equation (104) will be used, if at
all, at an outer boundary, where <J is small and $£ is large.

Hence it may be expeditious to use Equation (105) in place of
Equation (104), making the use of Equation (104) uniform.

3. At a boundary of symmetry, we have a wvariation of Equation (104),
that is,

= £ . (106)

Equations (105) and (104) may be combined in the general equation

A (107)
= Q.8 i

At an exterior boundary, , boundary condition (107) leads to the finite
difference equation

aos)
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If Equation (107) were to be applied at the origin, the finite difference
equation at the origin would be

09
Equation (109) can be expanded to
AC, - ~— (£ +C2D
V(Fr1J 65
& S"o -~N-1 .
F(1tO s/(m-Woc)
(110)

It can be shown that Equation (110) is the finite difference equation
obtained when we integrate the differential equation

TAN? (s) “ N(s)

over the region extending from 0 to /a”™ > use the boundary condition

and proceed as in Section A.
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THE THKEE-TERM LINEAR SYSTEM

For each group, i, we have to solve a simultaneous system of equations

of the form
Q-rthi M+ * — k-n-t -t Cic di™i - O t, > j4) (in)

for the fluxes in the group. As we have seen previously, the general
equations for interior points are

-MIL AL

bVIt — LS§*L t A, 1 t it DNI +X | A %]
(112
— ( ’ (
Fpd = b 0 bw, i =250 d il
JIWWLL = 7iti| t ~1~X/* | sJ"/n, ¢ Mo NS G
t zf/iti LS I sy y vt A
where we have written
-®!) ~ OM-1 t + 7}
(113)
/N —
N -Lru(®) = t ,
For the origin, n = 0, we can include Equation (110) by
- = [(s1T'C-UPX 1
t..- " pr? +fextil.0 /it.- J - ,
(114)
Mz ~

t ‘hfes Xt,;)MSOYat,'J
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To use condition (103) at the origin, we would have to take

all: = 0,
Co o,
JLoL = o

For

n = N, we must have either Equation (107) or Equation (108)
holding. For the first we have

ANP ~ ~Me / t XVjAX/4 I A4 £4/ &V 7"
CNL L C PV-LI Z
y
dihjL — X A/o Z A/ £ At-1 4 ais
<PmM+I C ~ 8
&-AS t /.
while for the second we have
N — 1 f
XMi = Ij
d'Ve: = O (n6)

Cur —0j

Jv+I171 = O.

The method used for solving Equations (111) has been explained in
detail elsewhere. First, proceeding outward from n = O, where

<LoJ
bof )
(Ao e
hoc )
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we calculate the two sets of quantities
M u

6H* T
(117)

.+ tl~IL
X. i P )
CLyvL
Then, as is easily shown, we can work hack in calculating the hy
(118

With all the algebraic manipulation involved in using Equations (11?) and
(118), it would be wise to have some sort of check on the solution of our
equations. Let us suppose that Equations (11?) and (118) yield a set of J
Do they satisfy Equations (111)? As we proceed in calculating the (j3~i C

we might also calculate
119

+cNL < -=>c

Then we could have an estimate of the error involved in the solution of the

system by machine. One estimate might be

5 /
: N Atle, 120

€
M-o0
where the (3% are properly chosen weighting factors.
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