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An Alternative Derivation of the Formulas for

the Smooth Approximation

Keith R. Symon, Wayne Uaniversity, August 10, 1954

The smooth approximation formulas are derived in a simpler

form, and as the first of a sequence of successive approximations.

Formulas are

Let the

dimension be

where primes

also worked out for the two dimensional case,

l. The One-Dimensional Case
alternating gradient equations of motion in one
written in the form
57 Dy

p! = £(x,s),

denote differsentiation with respect to s, and

f(x,d) is periodic in s with period S, It will be shown in

Anpendix A that if we assume the truth of Powell's conjecture,

that under the transformacion

x(s) —» x(s + 8)

p(s) —» p(s + 8)

(2)

the stable part of the x,p=-plane is covered by a family of closed

invariaat curves, then the solution of Zgs. (1) can be written

in the form

A

= Xls) + I (L, 80,

i Bl g Jut )7 (X,P,8),
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where X,P satisfy the equations
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where H(X,P) 1is independent of s, and where f’, y? are periodic
functions oi s with period S (for fixed X,P) which vanish at an
arbitrary reference point in the sector. We will call X,P the
smooth motion, and g? p Yl the ripple,

Let us substitute Eqs. (3) in Egs. (1):
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If P,X are held fixed (X',P' are then also fixed by Eqs. (L)),
all terms in fqs. (5) are periodic in s., Let us average these
equations over a sector length S, We denote such an average by
a bar, Then, since the derivative of a periodic functioan has

zero mean value, we obtain
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We subtract these equations from Eqs. (5), and d enote the
periodic part of a periodic fuanction by a double bar, that is,

for example,
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We then obtain
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Egs. (6) can be solved for X!, P':
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Equations (8) are subject to the initial condition that j? ,7\
vanish at the reference point in the sector,

We will solve these equations by successive approximations
based on the assumption that JF ’ Yl - XV and Pt are smallgeLl
we neglect terms in X', P! in Egs. (8) and neglect Mf § W

comparison with X,P, we obtain in zero order approximation:
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If we take s = 0 at the reference point, kgs. (10) cau be

solved:

(12)

We substitute these expressions in the neglected terms in

Eqs. (8) and (9), and obtain in first approximation
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Equations (1ll.) are not in Hamiltonian for=a, since
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We can brin¢ Eqs. (1L) iato Hamiltoailan foru, however, by auding
a term to the second equation which is of the order of the terms

wirich have been neglected:
b _E_f_ﬂ'f_
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The Hamiltonian is then
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Equations (16) have still the disadvantage that the betatron
period will depend on the choice of rei'erence point through the
term (1 + “fa X). This is presuaably a. symptom of the inaccuracy
in the approximation when the ripple is large. We will assume
the reference point is so chosen that

e
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With the simplification, Zgs. (16) can be combined to give the

following equation for X:

X'z 40, a)+ fi $(X ) . (19)

This equation agrees with the approximation equation obtaiaed in

KRS(MURA) =1,



2e The Two-Dimensional Case

The equations of motion in two dimensions have the form
A= Py
) P
1 oFy
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We substitute

x=X+FRY, )
= +£(X,Y o) (21)

and proceed in precise analogy with the development in Section 1,
The theorem of Appendix A does not apply to the two-dimeasional
case, but it turns out that to a first apvroximation the
substitution (21) can be :ade to fit Lgs. (20). The resulting

equations corresponding to (19) are
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The constants of integration in £qgs. (23) are to be so chosen
that ji ,_Z; are periodic functions with zero mean value, It
follows that only the periodic parts of the functions f and h need
be used in computing the second and third terms in Eqgs. (22),

We consider now the two-dimensional equations in the form

FlE o) = Fl g («)

4 (2l)
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where g(s) is a unit square wave,
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We have taken f and h with zero mean values (diaconal of necktie),
but the resulting equations are easily modified for the off
diagonal case, simply by adding the mean values of f and h to

the smoothed forces.

We calculate Jf and éﬁ :
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where/x{ (s) is a periodic function with period S defined by
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We have now to calculate
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The smooth equations of motion are then
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Inhomogeneities, bumps, displaced sectors, etc., can be

QQ

treated in either of two ways. The smooth equations (22) may be
written down for the distorted sector (as if it were periodic)
and used to carry the smooth solution through this sector,
Alternatively, the difference between f(X,Y,s) for the distorted
sector and the undistorted periodic f(X,Y,s) can be included

on the right side of Egs. (22) as an added inhomogeneous term,
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Appendix A, Proof of the Zxistence of Smooth Equations of HMotion

We will assume the truth of the conjecture of J., L, Powell,
based on numerical solutions carried out on the Illiac, that
every point in the stable region of the phase plane lies on an
invariant curve which is transformed into itself under the
transformation (2) generated by Zgs. (1), It follows that there
is a constaant of the notion ol (x,p,s) which is periodic in s with

the sector period S, such that the invariant curves are given by

ol (Z,p,2) = @ @"""ﬁ’“"“) (3Q)
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We now choose any reference point, say s = 0, in the sector,
and we define the function ¢, (X,P) of the "smooth variables"

X,P by the equation

o, (XP)zoL (X,P0). e

Following a suggestion of Powell, let H(ol,) be a function of

ol, to be specilfied later, and consider the equations
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These equations define a motion X(s), P(s) for which H, and

hence also oly » is a constant of the motion:

o (x) P) - Q,W"Fa/v\/{". (3L)

Bquation (3l1) defines the orbits of X,P,

Comparing Eqs. (30), (32), and (34), we see that the orbits
for the smooth motion X(s)P(s) are the same as the invariant
curves (30) at the reference point in each sector,

We now show that if H(CLO) is properly chosen, the point
X,P traces out the invariant curve at such a rate that at
the reference points s = nS it coincides with the phase x,p of
the actual motion, We first note that changes in the factor
: HCL (cta ) in Eqs. (33) correspond to changes in the time scale
with which the orbit is traversed. Consider now any particular
value of & , and assume that the invariant curve C for this
value of ot ig a simply connected closed curve (Fige. 1),

Let C! be a nearby

e st ra --w\\
///”’tiv~—<“ S /i- b invariant curve, Take
A s S
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i afs o o\ any point ¥, e of C and
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e f s | connect it by a short line

3\\‘k ; L, to the curve C'. Let

\ ' 5 the line L, move according

\ . 1P s ,//l to Egs. (1) during the
Y Ve e e period
B g P At 8 = S the curves
3zfa. ! C,C!' will return to their

original positions and
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the line L, will have traasformned into a line L, connecting the
transform . Xqs Pq of X5, Py with C's TLet the total area between
the curves C,C' be A, and let the portion of A between the

lines Los L3y be A A, (The ambiguity as to which of the two

parts of A is between L, and Ll is to be settled in any consistent
and continuous way.) We then define the betatron wavelength

on C as follows:

5 : A
E Sfi;“@ﬂ ' (35)

By Liouville!s theorem, the areas A A swept out by L, on
successive transformations through a sector are all equal, If
for some integers n, N, nS = N7 and if C! is sufficiently close
to C, then after n sectors, the line LO will have swept cut a
total area n 4§ A = NA, and the final transform L, will nearly
coincide with L,, so that x,,p, nearly coincides with XoPos By
continuity, if XoPg is moved around the curve, the same »nair of
integers n,N will give nS = i 7, and hence the definition (35)
of 777 1is independent of the starting poiat Xg,p, on C.

We now choose Hy (al, ) for the value of, = ol corresponding
to the curve C so that the period of the smooth motion of X,P
around C according to Lgse (33) is 7. (The sign of Hy( oo )
is chosen so that the smootli motion traces the boundary of the
shaded region A A in Fig, 1) This deterunines the function
H( by ) to within an arbitrary additive constant., Now by letting
the line LO in Fig., 1 move according to the smooth equations (33),

and using the fact that the smooth motion is also area preserving
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by (33), we can show that

. A
< R SRS (36)
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where Z&.A' is the area between L, and L!, Li beinzg the transform
of Ly during one sector for the smooth motioa. As C' approaches
C, A AY/ A A approaches 1, and Li must therefore coincide with
L, at least at the point Xxj7,p; = X13Py. This shows that the
smooth variables X,P coincide periodically with the actual varlables
X,p at the reference point in each sector (if they coincide
initially),

The case where the invariant curve is not simply connected
can also be acconnodated., We cousider as an examnle the case
where the invariant curve C consists of two separate closed curves
which transform into one another through a sector. In th:s case,
we take the period 2S in which each piece of S transforms into
itself and proceed as in the preceding two paragraphs, The
result will be that the point X,P woving around one branch of C
will coincide at the r eference point in every other sector with
the actual phase noint x,p., At the reference points in the
alternate sectors, the poiat x,p will coincide with a point X,P
moving around the other branch of C,.

We now define the '"ripple variables" f? . >7 }

Tedilal= Xla)
o ple) - Fila)

(37)
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where x(s), p(s) is aary particular solution of s£gs. (1), and
X(s), P(s) is the corresponding solution of Egqs. (33), i.e. the
solution which agrees at the reference point in each sector,

The ripple variables é?, ﬂ then vanish at the reference points,
We define f;, Y] as functions of X,P,s in the following way,

For a given X,P,s, solve Egs. (33) backward (or forward) to the
next previous reference point s,= nS, and let X,,P, be the values
of X,P at s = sg. Then, starting at s = s, with x,,p, = XO,PO,
solve Lgs. (1) forward (or backward) to s. The functions

~

g {X,P 8}, n (X,P,s) are then defined by Eqgs. (37):

Ty = Kla)+ €48 Pa) s,
P (0 =P () +1(XP o). g

It is clear from the periodicity of Zqs. (1) (and (3)) and the
fact that x,p and X,P agree at tle reference points that the
functions fﬂ q are periodic in s with period S, for fixed X,P,

In the case where the invariant curve C is composed of
two separated closed curves, the ripple functions should be
defined as above, but taking the sector length as 23. Two sets
of ripple functions g ,'q are then obtained, depending on
whether we begin® the double sccfors on odd or even mpltiples of S,
The ripple functions are then periodic in ¢ with period2S, .-
vanishing at every other reference point, and, at the alternate
reference points, takin: on values which are the differences of
the coordinates X,P of the two smooth phase points, tracing out
the two parts'of C in synchronism with the actuél motion. More
complicated connectedness vnroperties of the invariant curves C can

be treated similarly,
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Corrigendums:

The last sentence in Section 1 is incorrect., Equation (19)

agrees with the formulas of KRS(MURA)=-1l only when f(x,s) = 0
(on the diagonal). Off the diagonal, the formulas of

I m——

KRS(MURA)}1 are slightly more accurate when ET;:§}<ﬂ:f(x,s), but
become inaccurate when E?;TEB is large enough to produce
oscillations of period comparaeble with the gector length. The
formulas of the present paper are simpler and only slightly

less accurate slightly off the diagonal, and are furthermore

accurate for f(x,sj))f%xgs). The dotted curve for the
predicted edge of the necktie in rfig, 2 of KRS(MUZA)-1l, for
example, is displaced about 2 to 5% closer to the correct
curve 1if we use the formulas of the present paper., The
formulas given here give presumably a good approximation as
long as the ripple is small in comparison with the smooth

part of the motion,



