

BNML-CC-2478

BATTELLE  NORTHWEST  
BATTELLE MEMORIAL INSTITUTE  
POST OFFICE BOX 999 / RICHLAND, WASHINGTON 99352

PACIFIC NORTHWEST LABORATORY

DATE

April 7, 1970

TITLE AND AUTHOR

ENVIRONMENTAL STATUS OF THE  
HANFORD RESERVATION FOR JANUARY - JUNE, 1969

By

The Environmental Evaluations Staff  
Radiation Protection Department  
TECHNICAL SERVICES DIVISION

C. B. Wilson and T. H. Essig, Editors

CONTRACT PROJECT NO.

- 1830  
 - 1831

RESERVED FOR TECH. INFO. USE



## DISTRIBUTION

| NAME                      | COMPANY | LOCATION                 | NAME                             | COMPANY | LOCATION                 |
|---------------------------|---------|--------------------------|----------------------------------|---------|--------------------------|
| <u>Battelle-Northwest</u> |         |                          | <u>Battelle-Northwest (Cont)</u> |         |                          |
|                           |         | <u>Bldg.</u> <u>Area</u> |                                  |         | <u>Bldg.</u> <u>Area</u> |
| 1. D. W. Alton            | 3705    | 300                      | 23. F. W. Woodfield              | ROB     | 3000                     |
| 2. P. J. Blumer           | 3705    | 300                      | 24. Department File              | 712     | 700                      |
| 3. L. A. Carter           | ROB     | 3000                     | 25-27 Technical Information      |         |                          |
| 4. J. P. Corley           | 713     | 700                      | Files                            | 3760    | 300                      |
| 5. D. H. Denham           | 3705    | 300                      | 26-27 Extra Copies               | 3705    | 300                      |
| 6. T. H. Essig            | 3705    | 300                      |                                  |         |                          |
| 7. W. L. Fisher           | 3705    | 300                      |                                  |         |                          |
| 8. R. F. Foster           | PSB     | 3000                     |                                  |         |                          |
| 9. R. B. Hall             | ROB     | 3000                     |                                  |         |                          |
| 10. K. R. Heid            | 3701L   | 300                      |                                  |         |                          |
| 11. J. F. Honstead        | 3706    | 300                      |                                  |         |                          |
| 12. W. C. Horton          | 3705    | 300                      |                                  |         |                          |
| 13. R. T. Jaske           | PSB     | 3000                     |                                  |         |                          |
| 14. J. J. Jech            | 713     | 700                      |                                  |         |                          |
| 15. H. V. Larson          | 3705    | 300                      |                                  |         |                          |
| 16. T. P. O'Farrell       | 1704F   | 100F                     |                                  |         |                          |
| 17. J. M. Selby           | ROB     | 3000                     |                                  |         |                          |
| 18. J. K. Soldat          | 3706    | 300                      |                                  |         |                          |
| 19. W. L. Templeton       | 1704F   | 100F                     |                                  |         |                          |
| 20. B. E. Vaughan         | 1704F   | 100F                     |                                  |         |                          |
| 21-22 C. B. Wilson        | 3705    | 300                      |                                  |         |                          |

MASTER

| ROUTE TO | PAYROLL NO. | COMPANY | LOCATION | FILES ROUTE DATE | SIGNATURE AND DATE |
|----------|-------------|---------|----------|------------------|--------------------|
|          |             |         |          |                  |                    |
|          |             |         |          |                  |                    |
|          |             |         |          |                  |                    |
|          |             |         |          |                  |                    |

## NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## INFORMATION CONCERNING USE OF THIS REPORT

### PATENT STATUS

This document copy, since it is transmitted in advance of patent clearance, is made available in confidence solely for use in performance of work under contracts with the U.S. Atomic Energy Commission. This document is not to be published nor its contents otherwise disseminated or used for purposes other than specified above before patent approval for such release or use has been secured, upon request, from the Chief, Chicago Patent Group, U. S. Atomic Energy Commission, 9800 So. Cass Ave., Argonne, Illinois.

### PRELIMINARY REPORT

This report contains information of a preliminary nature prepared in the course of work under Atomic Energy Commission Contract AT(45-1)-1830. This information is subject to correction or modification upon the collection and evaluation of additional data.

### LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

## PACIFIC NORTHWEST LABORATORY

RICHLAND, WASHINGTON

operated by

BATTELLE MEMORIAL INSTITUTE

for the

UNITED STATES ATOMIC ENERGY COMMISSION UNDER CONTRACT AT(45-1)-1830

## CLASSIFICATION

## DOCUMENT IDENTIFICATION NO.

BNWL-CC-2478

BATTELLE  NORTHWEST  
 BATTELLE MEMORIAL INSTITUTE  
 POST OFFICE BOX 999 / RICHLAND, WASHINGTON 99352

COPY AND SERIES NO.

DATE

## TITLE AND AUTHOR

## CONTRACT

|                                     |        |
|-------------------------------------|--------|
| <input checked="" type="checkbox"/> | - 1830 |
| <input type="checkbox"/>            | - 1831 |

## PROJECT NO.

RESERVED FOR TECH. INFO. USE

## DISTRIBUTION

| NAME                                                     | COMPANY | LOCATION | NAME                               | COMPANY | LOCATION  |
|----------------------------------------------------------|---------|----------|------------------------------------|---------|-----------|
| Atomic Energy Commission -<br>Richland Operations Office |         |          | J. A. Jones Construction Company   |         |           |
|                                                          | Bldg.   | Area     |                                    | Bldg.   | Area      |
| 43. W. Devine, Jr.                                       | FED     | 700      | 60. L. C. Roos                     |         | 1256 1200 |
| 44. O. J. Elgert                                         | FED     | 700      |                                    |         |           |
| 45. W. E. Lotz                                           | FED     | 700      | ITT-Federal Support Services, Inc. |         |           |
| 46. C. R. Qualheim                                       | FED     | 700      | 61. R. H. Wilson                   | FED     | 700       |
| 47. P. G. Rhoades                                        | FED     | 700      |                                    |         |           |
| 48. C. L. Robinson                                       | FED     | 700      |                                    |         |           |
| 49. R. B. St. John                                       | FED     | 700      |                                    |         |           |
| 50. M. W. Tiernan                                        | FED     | 700      |                                    |         |           |
| <u>Douglas United Nuclear Inc.</u>                       |         |          |                                    |         |           |
| 51. P. A. Carlson                                        | 1760D   | 100D     |                                    |         |           |
| 52-54 C. D. Corbit                                       | 1704H   | 100H     |                                    |         |           |
| 55. F. W. Grubb                                          | 3717    | 300      |                                    |         |           |
| 56. V. V. Johnson                                        | 1101N   | 100N     |                                    |         |           |
| 57. D. W. Peacock                                        | 1760D   | 100D     |                                    |         |           |
| 58. O. C. Schroeder                                      | 1101N   | 100N     |                                    |         |           |
| 59. DUN Files                                            |         |          |                                    |         |           |

| ROUTE TO | PAYROLL NO. | COMPANY | LOCATION | FILES ROUTE DATE | SIGNATURE AND DATE |
|----------|-------------|---------|----------|------------------|--------------------|
|          |             |         |          |                  |                    |
|          |             |         |          |                  |                    |
|          |             |         |          |                  |                    |
|          |             |         |          |                  |                    |

ENVIRONMENTAL STATUS OF THE  
HANFORD RESERVATION FOR JANUARY-JUNE, 1969

By

The Environmental Evaluations Staff  
Radiation Protection Department  
TECHNICAL SERVICES DIVISION

C. B. Wilson and T. H. Essig, Editors

March 1970

TABLE OF CONTENTS

|                                                              | <u>Page</u> |
|--------------------------------------------------------------|-------------|
| I. INTRODUCTION                                              | 1           |
| II. SURVEILLANCE SUMMARY—JANUARY—JUNE, 1969                  | 2           |
| III. COLUMBIA RIVER WATER                                    | 5           |
| IV. SWAMPS, DITCHES, AND PONDS                               | 15          |
| 1. 200 Area Waste Waters                                     | 15          |
| 2. 300 Area Process Pond                                     | 15          |
| 3. 300 Area Sanitary Waste                                   | 16          |
| V. AIRBORNE RADIOACTIVITY                                    | 23          |
| VI. RADIATION SURVEYS                                        | 47          |
| Surface Contamination                                        | 47          |
| 1. Hanford Roads                                             | 47          |
| 2. Control Plots                                             | 49          |
| 3. Special Surveys                                           | 49          |
| 4. Waste Disposal Sites                                      | 51          |
| 5. Aerial Surveys                                            | 51          |
| 6. Other                                                     | 61          |
| External Exposure Rates                                      | 61          |
| 1. Exposure Rates On-Plant                                   | 61          |
| 2. 100-N Area                                                | 65          |
| 3. Exposure Rates at the Columbia River<br>Shoreline         | 74          |
| 4. Exposure Rates Below the Surface of<br>the Columbia River | 74          |

LIST OF FIGURES

|                                                                 |    |
|-----------------------------------------------------------------|----|
| 1. TOTAL BETA ACTIVITY OF COLUMBIA RIVER WATER (GRAB) SAMPLES   | 10 |
| RINGOLD                                                         |    |
| a. Ringold - Far Shore                                          |    |
| 2. TOTAL BETA ACTIVITY OF DRINKING WATER (GRAB) SAMPLES         | 12 |
| a. 100-K Area                                                   |    |
| b. 200-West Area                                                |    |
| c. B-Y Telephone Exchange                                       |    |
| 3. TOTAL BETA ACTIVITY OF DRINKING WATER (GRAB) SAMPLES         | 13 |
| AND ESTIMATED GI TRACT DOSE                                     |    |
| a. 100-N Area                                                   |    |
| b. Estimated Dose to GI Tract from 100-N<br>Area Drinking Water |    |
| 4. RADIOACTIVITY OF WASTE WATER SAMPLES                         | 19 |
| 200-WEST AREA                                                   |    |
| a. U Swamp North                                                |    |
| b. Redox Swamp Northeast                                        |    |
| c. T Swamp North                                                |    |
| 5. RADIOACTIVITY OF WASTE WATER SAMPLES                         | 20 |
| 200-WEST AREA                                                   |    |
| a. 222-S Swamp                                                  |    |
| b. Laundry Ditch Outlet                                         |    |
| c. 231 Ditch Outlet                                             |    |
| 6. RADIOACTIVITY OF WASTE WATER SAMPLES                         | 21 |
| 200-EAST AREA                                                   |    |
| a. Gable Swamp North                                            |    |
| b. B Swamp North                                                |    |
| 7. WASTE WATER ANALYSES                                         | 22 |
| 300 AREA                                                        |    |
| a. Process Pond Inlet                                           |    |
| b. Process Pond Inlet                                           |    |
| c. Porcess Pond Inlet                                           |    |

LIST OF FIGURES (Continued)

|     |                                                      |    |
|-----|------------------------------------------------------|----|
| 8.  | IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE | 32 |
|     | 100 AREAS AND VICINITY                               |    |
|     | a. Midway                                            |    |
|     | b. 100-B Area                                        |    |
|     | c. 100-K Area                                        |    |
| 9.  | IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE | 33 |
|     | 100-AREAS AND VICINITY                               |    |
|     | a. 100-N Area                                        |    |
|     | b. 100-D Area                                        |    |
|     | c. 100-F Area                                        |    |
| 10. | IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE | 34 |
|     | 200-AREAS                                            |    |
|     | a. 200-West Redox                                    |    |
|     | b. 200-West West Center                              |    |
|     | c. 200-West East Center                              |    |
| 11. | IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE | 35 |
|     | 200-AREAS                                            |    |
|     | a. 200-West Northeast                                |    |
|     | b. 200-East West Center                              |    |
|     | c. 200-East East Center                              |    |
| 12. | IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE | 36 |
|     | 200-AREAS AND INTERMEDIATE AREAS                     |    |
|     | a. 200-East Southeast                                |    |
|     | b. 200-East North Center                             |    |
|     | c. Rattlesnake Springs                               |    |
| 13. | IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE | 37 |
|     | INTERMEDIATE AREAS                                   |    |
|     | a. Emergency Relocation Center                       |    |
|     | b. Wye Barricade                                     |    |
|     | c. Hanford                                           |    |

LIST OF FIGURES (Continued)

|                                                          |    |
|----------------------------------------------------------|----|
| 14. IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE | 38 |
| 300 AND 700 AREAS                                        |    |
| a. 300 Area                                              |    |
| b. 700 Area                                              |    |
| 15. TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE               | 42 |
| 100 AREAS                                                |    |
| a. 100-B Area                                            |    |
| b. 100-K Area                                            |    |
| c. 100-F Area                                            |    |
| 16. TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE               | 43 |
| 200 AREAS                                                |    |
| a. 200-West Redox                                        |    |
| b. 200-West West Center                                  |    |
| c. 200-West East Center                                  |    |
| 17. TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE               | 44 |
| 200 AREAS                                                |    |
| a. 200 West Northeast                                    |    |
| b. 200-East East Center                                  |    |
| c. 200-East Southeast                                    |    |
| 18. TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE               | 45 |
| 200 AREAS AND RATTLESNAKE SPRINGS                        |    |
| a. 200-East West Center                                  |    |
| b. 200-East North Center                                 |    |
| c. Rattlesnake Springs                                   |    |
| 19. TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE               | 46 |
| 300 AND 700 AREAS                                        |    |
| a. 300 Area                                              |    |
| b. 700 Area                                              |    |
| 20. EXTERNAL RADIATION ON PLANT                          | 67 |
| 100 AREAS AND VICINITY                                   |    |
| a. Midway                                                |    |
| b. 100-B Area                                            |    |
| c. 100-K Area                                            |    |

LIST OF FIGURES (Continued)

|     |                                  |    |
|-----|----------------------------------|----|
| 21. | EXTERNAL RADIATION ON PLANT      | 68 |
|     | 100 AREAS AND VICINITY           |    |
|     | a. 100-N Area                    |    |
|     | b. 100-D Area                    |    |
|     | c. 100-F Area                    |    |
| 22. | EXTERNAL RADIATION ON PLANT      | 69 |
|     | 200 AREAS                        |    |
|     | a. 200-West Redox                |    |
|     | b. 200-West West Center          |    |
|     | c. 200-West East Center          |    |
| 23. | EXTERNAL RADIATION ON PLANT      | 70 |
|     | 200 AREAS                        |    |
|     | a. 200-West Northeast            |    |
|     | b. 200-East West Center          |    |
|     | c. 200-East East Center          |    |
| 24. | EXTERNAL RADIATION ON PLANT      | 71 |
|     | 200 AREAS AND INTERMEDIATE AREAS |    |
|     | a. 200-East Southeast            |    |
|     | b. 200-East North Center         |    |
|     | c. Rattlesnake Springs           |    |
| 25. | EXTERNAL RADIATION ON PLANT      | 72 |
|     | INTERMEDIATE AREAS               |    |
|     | a. Emergency Relocation Center   |    |
|     | b. Wye Barricade                 |    |
|     | c. Hanford                       |    |
| 26. | EXTERNAL RADIATION ON PLANT      | 73 |
|     | 300 AREA and 700 AREA            |    |
|     | a. 300 Area                      |    |
|     | b. 700 Area                      |    |

LIST OF FIGURES (Continued)

|     |                                                            |    |
|-----|------------------------------------------------------------|----|
| 27. | EXTERNAL RADIATION AT THE COLUMBIA RIVER SHORELINE         | 79 |
|     | a. Priest Rapids Gauge Station                             |    |
|     | b. Ringold Far Shore                                       |    |
|     | c. Powerline Crossing Far Shore                            |    |
| 28. | EXTERNAL RADIATION AT THE COLUMBIA RIVER SHORELINE         | 80 |
|     | a. Richland Pump Plant                                     |    |
|     | b. Sacajawea Park                                          |    |
|     | c. McNary Dam                                              |    |
| 29. | EXTERNAL RADIATION BELOW THE SURFACE OF THE COLUMBIA RIVER | 81 |
|     | a. Priest Rapids Gauge Station                             |    |
|     | b. 100-F                                                   |    |
|     | c. Ringold Far Shore                                       |    |
| 30. | EXTERNAL RADIATION BELOW THE SURFACE OF THE COLUMBIA RIVER | 82 |
|     | a. Richland Pumphouse                                      |    |
|     | b. Pasco Pumphouse                                         |    |

LIST OF MAPS

|                                                                                   | <u>Page</u> |
|-----------------------------------------------------------------------------------|-------------|
| 1 Drinking and Raw Water Sampling Locations                                       | 4           |
| 2 Swamps, Ditches, and Pond Water Sampling Locations                              | 14          |
| 3 Air Sampling Stations                                                           | 24          |
| 4 Hanford Road Surveys                                                            | 48          |
| 5 Control Plot Locations                                                          | 50          |
| 6 Underground and Surface Radioactivity                                           | 52          |
| 7 Standard Flight Pattern 1R and 2R                                               | 53          |
| 8 Standard Flight Patterns 2S, 3S, and 4S                                         | 54          |
| 9 Standard Flight Pattern - 5S                                                    | 55          |
| 10 Standard Flight Pattern - 1L                                                   | 56          |
| 11 Standard Flight Pattern - 2L                                                   | 57          |
| 12 Standard Flight Pattern - 3L                                                   | 58          |
| 13 Standard Flight Pattern - 1E                                                   | 59          |
| 14 Standard Flight Pattern - 2E                                                   | 60          |
| 15 On-Plant External Radiation Exposure Rate Measurement Points                   | 62          |
| 16 Columbia River Shoreline Survey Locations and Exposure Rate Measurement Points | 75          |

LIST OF TABLES

|                                                                                                                                 | <u>Page</u> |
|---------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1 Concentrations of $^{3}\text{H}$ and $^{90}\text{Sr}$ at the Priest Rapids Gauge Station and at Richland (January-June, 1969) | 5           |
| 2 Biological Measurements in the Columbia River (January-June, 1969)                                                            | 6           |
| 3 Chemical Characteristics of Columbia River Water at Vernita                                                                   | 8           |
| 4 Chemical Characteristics of Columbia River Water at 100-F Area                                                                | 9           |
| 5 Fluoride Ion Concentrations in the 300 Area Process Pond (January-June, 1969)                                                 | 16          |
| 6 Biological Measurements of Samples Collected at the 300 Area Trench and River Shoreline Seepage Area                          | 17          |
| 7 Concentrations of Selected Radionuclides in the Muscle of Ducks Collected Near Redox Swamp and Gable Mountain Swamp           | 18          |
| 8 Concentration Guides for Selected Radionuclides in Air for Individuals in Uncontrolled Areas                                  | 25          |
| 9 Gamma Emitters Measured on Selected Air Filters (January-June, 1969)                                                          | 26          |
| 10 Average $^{131}\text{I}$ and Particulate Total Beta Concentrations in the Atmosphere                                         | 29          |
| 11 Average Total Alpha Concentrations in the Atmosphere                                                                         | 39          |
| 12 Average External Gamma Exposure Rates (January-June, 1969)                                                                   | 63          |
| 13 Maximum Readings from Monthly Shoreline Surveys, 1969                                                                        | 76          |
| A. Columbia River - Plant Shore                                                                                                 | 76          |
| B. Columbia River - Far Shore                                                                                                   | 77          |

ENVIRONMENTAL STATUS OF THE  
HANFORD RESERVATION FOR JANUARY-JUNE, 1969

I. INTRODUCTION

This report summarizes data collected during the first six months of 1969 from locations within the Hanford plant boundaries for the routine environmental surveillance program, under the direction of the Environmental Evaluations staff. These environmental data are reported here for the information of the Richland Operations Office of the Atomic Energy Commission and its contractors.

The previous report in this series is BNWL-CC-2026, "Environmental Status of the Hanford Reservation for July-December, 1968." However, to show long-term trends and facilitate comparisons, the graphs in this report show 14 months of data - the current six months and the preceding eight. The reader may also wish to refer to BNWL-CC-1197-6, "Environmental Status of the Hanford Reservation for November-December, 1967 (Annual Summary)" which contains a complete summary of 1967 data. Ground water data are not included in this report but are presented in BNWL-1123, "Radiological Status of the Ground Water Beneath the Hanford Project, January-June, 1969". Data from offsite sampling locations are no longer presented in a series of monthly reports, but are summarized semiannually in the series "Evaluation of Radiological Conditions in the Vicinity of Hanford for ...". Some data from offsite locations are included in this report for comparison with similar measurements made onsite. The majority of radiochemical analyses presented in this report were performed by the U. S. Testing Company, Inc. on samples collected by Battelle-Northwest.

The term "analytical limit," as used herein, is the concentration at which the laboratory can measure a radionuclide with a precision of  $\pm 100$  percent at the 90 percent confidence level. The detection limit for a specific radionuclide varies with sample type, sample size, counting time, and the amounts of interfering radionuclides present. The "analytical limits" were chosen to represent upper bounds to these fluctuating detection limits.

## II. SURVEILLANCE SUMMARY - JANUARY-JUNE, 1969

A summary of surveillance highlights for the period is given below with references to the page number(s) where more detail on the subject appears.

### Columbia River Water

Recurrence of minor oil seepage into the river was noted at 100-N in February; however, sampling of the river at downstream locations indicated only occasional oil concentrations in the river above the detection limit of 0.3 ppm (page 7). Unusually high concentrations of stable elements (Fe, Cl) and radioactive Mn-56 were noted in the river during April and May as a result of the unusually turbid river during the spring runoff. All other results of river analyses were within their expected ranges of variation (page 7).

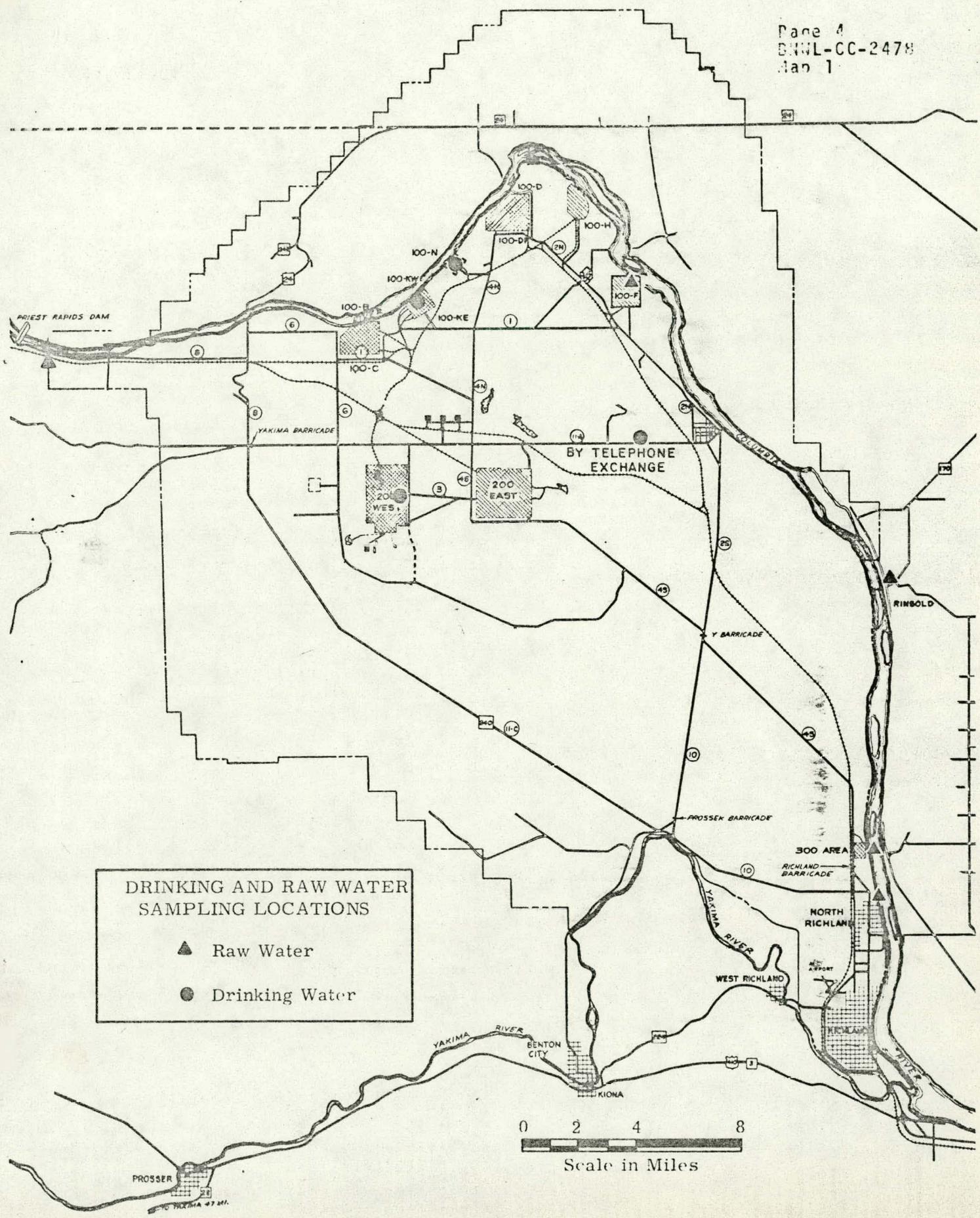
### Swamps, Ditches, and Ponds

Total beta and total alpha concentrations in samples from open waters remained well below the recommended guides of 50,000 pCi/l during the first six months of 1969. Gable, T, and U swamps experienced significant decreases in concentrations compared to those measured the year before (page 15). Results from radiological and biological analyses of samples collected from the 300 Area ponds and trenches remained within the expected range (page 16). Biological measurements on samples collected at the river shoreline seepage area (near the 300 Area) were below the appropriate limits for this stretch of the river (page 5).

### Airborne Radioactivity

A general slight increase in total beta and total alpha concentrations in air during the period May-June was attributed to worldwide fallout. Total beta and alpha concentrations slightly exceeding 1 pCi/m<sup>3</sup> and 0.02 pCi/m<sup>3</sup>, respectively, occurred at some offsite locations.

General increases in total beta and total alpha activity at two air-sampling locations at the 200-East Area were noted from February to May. These increases were attributed primarily to waste handling and processing operations. The highest beta concentration, 2.6 pCi/m<sup>3</sup>, during the first half of the year occurred at the north side of the 200 East Area (page 31). The highest concentration of alpha activity, 0.25 pCi/m<sup>3</sup>, was observed on a filter from the east side of 200-East Area following work on the ductwork at the Purex facility PR vault (page 40). Alpha energy analysis indicated <sup>239</sup>Pu, and either <sup>230</sup>Pu or <sup>241</sup>Am. If <sup>239</sup>Pu and <sup>238</sup>Pu were present in a soluble form, their concentrations at this location temporarily exceeded the Concentration Guides (AECM Chapter 0524) for non-occupationally exposed individuals.


Except for temporary increases associated with brief laboratory releases, iodine concentrations continued to remain at low levels. The maximum  $^{131}\text{I}$  concentration noted during the first six months of 1969 was 0.1 pCi/m<sup>3</sup> in the 300 Area during an unusual release from a laboratory building (page 23). The release was of no significance in the environs. For comparison, the maximum  $^{131}\text{I}$  concentration during the last half of 1968 was 0.3 pCi/m<sup>3</sup> at a 200 East Area location.

#### Radiation Surveys

Only one instance of radioactive particulate contamination was found during road surveys. On Route 4S a particle associated with the soil was detected during early June. An activity of 20,000 c/m (GM) at the surface was found, with the major gamma emitter being  $^{60}\text{Co}$  (page 47). During March, May, and June, low-level contamination (generally <300 c/m with a maximum of 6,000 c/m GM, surface) was found on control plot 10 on the east perimeter of 200 East Area (page 49). The contamination was associated with waste handling and processing operations.

An increased influx of fallout material was partially responsible for the increased exposure rates measured at most locations during the first half of 1969. The highest average exposure rate measured during the period was 1.9 mR/day at the east side of 200 East Area. Increased exposure rates were also recorded at all 100 Area locations, compared to previous years. This was partially attributed to reactor effluent vapors as well as increased fallout, but readings were influenced by dosimeter reader problems during the early part of 1969 (page 65).

The exposure rates and surface contamination levels at shoreline locations downstream from the operating reactors were below those observed during the last half of 1968 and similar to those observed a year ago. The maximum shoreline exposure rate during the first six months of 1969 was 210  $\mu\text{R}/\text{hr}$  observed on the far shore of D Island in March, significantly less than the 400  $\mu\text{R}/\text{hr}$  which was observed at Powerline Crossing in December 1968. Radiation levels from shoreline contamination were typically less than 300 c/m; however, a single maximum reading of 5,000 c/m was observed near the Richland water plant pump house in March (page 74).



### III. COLUMBIA RIVER WATER

Sampling locations for raw water and drinking water appear in Map 1. On April 25, 1969, "C" reactor was retired.

#### Raw Water

Columbia River water sampled above the Hanford project at the Priest Rapids Gauge Station is analyzed for comparison with analyses of samples collected below the project.

Concentrations of,  $^{34}$ ,  $^{90}\text{Sr}$ ,  $^{95}\text{Zr-Nb}$ ,  $^{99}\text{Tc}$ , and  $^{106}\text{Ru-Rh}$  as well as total alpha activity were measured in monthly composites of weekly grab samples at Priest Rapids and in monthly composites of weekly integrated samples at Richland.  $^{3}\text{H}$ ,  $^{99}\text{Tc}$ , and  $^{106}\text{Ru-Rh}$  could be present in the river at Richland as a result of ground water migration from the 200 Areas as well as a result of worldwide fallout.

In all samples,  $^{95}\text{Zr-Nt}$ ,  $^{99}\text{Tc}$ , and  $^{106}\text{Ru-Rh}$  concentrations were at or below the Analytical Limit (A.L.) which is 5 pCi/ $\text{\mu}$  in each case. At Richland in June alpha activity was slightly above the analytical limit (1.5 pCi/ $\text{\mu}$ , compared to A.L. = 1.0 pCi/ $\text{\mu}$ ).

Concentrations of  $^{90}\text{Sr}$  and  $^{3}\text{H}$  at Priest Rapids and Richland are shown in Table 1. Concentrations of total beta activity at Ringold appear in Figure 1.

TABLE 1. Concentrations of  $^{3}\text{H}$  and  $^{90}\text{Sr}$  at the Priest Rapids Gauge Station and at Richland (January-June, 1969)  
(Results in pCi/ $\text{\mu}$ )

| <u>Month</u> | <u><math>^{3}\text{H}</math></u> |                 | <u><math>^{90}\text{Sr}</math></u> |                 |
|--------------|----------------------------------|-----------------|------------------------------------|-----------------|
|              | <u>P.R.</u>                      | <u>Richland</u> | <u>P.R.</u>                        | <u>Richland</u> |
| January      | < 1000                           | < 1000          | < 0.50                             | < 0.50          |
| February     | < 1000                           | < 1000          | < 0.50                             | 0.57            |
| March        | 2800                             | 2000            | < 0.50                             | 0.75            |
| April        | 1700                             | < 1000          | 0.52                               | < 0.50          |
| May          | 1100                             | 1600            | < 0.50                             | < 0.50          |
| June         | 2300                             | 1600            | < 0.50                             | < 0.50          |

Biological measurements of Columbia River water samples collected semi-monthly from Vernita, 100-F, and North Richland appear in Table 2. The Columbia River from the Washington-Oregon border to Grand Coulee Dam is in Class A according to

TABLE 2  
BIOLOGICAL MEASUREMENTS IN THE COLUMBIA RIVER (January-June, 1969)

| Date    | Vernita                      |                             |             | 100-F                        |                             |             | North Richland               |                             |             |
|---------|------------------------------|-----------------------------|-------------|------------------------------|-----------------------------|-------------|------------------------------|-----------------------------|-------------|
|         | Coliform<br>count/<br>100 ml | Enterococci<br>count/100 ml | BOD<br>mg/l | Coliform<br>count/<br>100 ml | Enterococci<br>count/100 ml | BOD<br>mg/l | Coliform<br>count/<br>100 ml | Enterococci<br>count/100 ml | BOD<br>mg/l |
| 1-21-69 | 2                            | 0                           | 1.8         | 4                            | 0                           | 1.9         | 4                            | 0                           | 0.55        |
| 2-6-69  | 4                            | 15                          | 8.0         | 7                            | 17                          | 6.4         | 42                           | 15                          | 3.8         |
| 2-18-69 | 11                           | 8                           | 9.4         | 16                           | 23                          | 9.3         | 12                           | 15                          | 7.9         |
| 3-4-69  | 2                            | 11                          | 6.9         | 6                            | 8                           | 4.4         | 7                            | 14                          | 5.7         |
| 3-19-69 | 4                            | 16                          | 5.2         | 5                            | 16                          | 4.8         | 7                            | 14                          | 4.4         |
| 4-8-69  | 12                           | 3                           | 1.0         | 10                           | 5                           | 1.1         | 11                           | 5                           | 1.0         |
| 4-22-69 | 12                           | 10                          | 4.9         | 10                           | 7                           | 3.8         | 7                            | 6                           | 3.5         |
| 5-6-69  | 5                            | 4                           | 3.0         | 3                            | 7                           | 3.6         | 12                           | 10                          | 3.4         |
| 5-20-69 | 10                           | 7                           | 2.4         | 27                           | 7                           | 4.2         | 20                           | 10                          | 3.9         |
| 6-3-69  | 23                           | 5                           | 4.3         | 40                           | 46                          | 3.8         | 32                           | 183                         | 4.1         |
| 6-24-69 | 40                           | 42                          | 4.2         | 89                           | 150                         | 3.2         | 125                          | 110                         | 3.2         |

the Washington state water quality standards\*. For Class A rivers, total coliform organisms shall not exceed median values of 240 per 100 ml with less than 20% of the samples exceeding 1000 per 100 ml when associated with a fecal source.

Enterococci in addition to coliform are measured as an indication of contaminants of fecal origin.

Recurrence of minor oil seepage into the river bank at 100-N was noted in February. Fuel oil measurements were initiated on special grab and integrated samples downstream from the apparent source. Possible sources were thought to be a fuel oil line with a slow leak or an earth fracture from the severe winter weather which could have released oil trapped from the previous leak of 1967. In April, DUN personnel completed hydrostatic testing of all lines and tanks in their underground oil storage area at 100-N and found no apparent leaks. During this period, weekly samples of river water from 100-F indicated occasional concentrations of fuel oil above the analytical limit of 0.3 ppm, but none exceeded 1.0 ppm. The highest concentration noted was in a special grab sample from 100-D on April 1, 1969, at 3.4 ppm, but subsequent samples indicated <0.5 ppm. Fuel oil sampling was discontinued on July 1 since reported concentrations remained near the analytical limit and no further sightings of oil were reported at 100-N.

Results of chemical analyses of grab samples of river water collected at Vernita and 100-F (above and below the production reactors) as reported by Douglas-United Nuclear are shown in Tables 3 and 4. The higher concentrations of iron observed in April and May at both Vernita and 100-F, and the unusually high chloride ion concentration in April at 100-F were probably a result of the unusually turbid river conditions associated with spring runoff. Special analyses for stable manganese were requested when increased <sup>56</sup>Mn concentrations were noted in April. These results also appear in Tables 3 and 4.

---

\* A Regulation Relating to Water Quality Standards for Interstate and Coastal Waters of the State of Washington and a Plan for Implementation and Enforcement of such standards. Water Pollution Control Commission, State of Washington. December 4, 1967.

TABLE 3  
CHEMICAL CHARACTERISTICS OF COLUMBIA RIVER WATER AT VERNITA

(ppm)

| <u>Date</u> | <u>Mg</u> | <u>Fe</u> | <u>Cu</u> | <u>Ca</u> | <u>SO<sub>4</sub></u> | <u>PO<sub>4</sub></u> | <u>Cl</u> | <u>Mn</u> | <u>Diss<br/>CO<sub>2</sub></u> | <u>Phth<br/>Alk.</u> | <u>M.O.<br/>Alk.</u> | <u>Hard-<br/>ness</u> | <u>Solids</u> |
|-------------|-----------|-----------|-----------|-----------|-----------------------|-----------------------|-----------|-----------|--------------------------------|----------------------|----------------------|-----------------------|---------------|
| 1-7-69      | 3         | 0.01      | 0.003     | 22        | 13                    | 0.02                  | 0.35      | NA        | 12.2                           | 0                    | 55                   | 70                    | 95            |
| 1-22        | 3         | 0.02      | 0.010     | 23        | 15                    | 0.05                  | 0.30      | NA        | 10.6                           | 1                    | 54                   | 71                    | 93            |
| 2-4         | 3         | 0.03      | 0.010     | 25        | 15                    | 0.05                  | 0.30      | NA        | 11.6                           | 1                    | 58                   | 75                    | 74            |
| 2-18        | 3         | 0.07      | 0.002     | 24        | 14                    | 0.14                  | 0.25      | NA        | 10.9                           | 0                    | 52                   | 75                    | 90            |
| 3-4         | 3         | 0.04      | 0.003     | 26        | 15                    | 0.06                  | 0.15      | NA        | 14.4                           | 2                    | 59                   | 79                    | 105           |
| 3-18        | 4         | 0.04      | 0.003     | 25        | 16                    | 0.04                  | 0.30      | NA        | 11.8                           | 1                    | 59                   | 80                    | 87            |
| 4-8         | 4         | 0.20      | 0.003     | 29        | 20                    | 0.03                  | 0.50      | NA        | 10.2                           | 2                    | 67                   | 88                    | 115           |
| 4-22        | 4         | 0.38      | 0.002     | 23        | 18                    | 0.01                  | 0.75      | 0.014     | 11.                            | 0                    | 58                   | 75                    | 102           |
| 4-25        | NA        | NA        | NA        | NA        | NA                    | NA                    | 0.80      | 0.017     | NA                             | NA                   | NA                   | NA                    | NA            |
| 5-6         | 4         | 0.35      | 0.003     | 23        | 19                    | 0.02                  | 0.68      | NA        | 11.2                           | 0                    | 56                   | 74                    | 103           |
| 5-20        | 3         | 0.22      | 0.008     | 21        | 23                    | 0.05                  | 0.35      | NA        | 10.6                           | 0                    | 56                   | 74                    | 89            |
| 6-3         | 2.3       | 0.054     | 0.001     | 19        | 10                    | 0.008                 | 0.25      | NA        | 9.7                            | 0                    | 46                   | 58                    | 74            |
| 6-24        | 2.3       | 0.020     | 0.012     | 21        | 10                    | 0.039                 | 0.55      | NA        | 8.67                           | 1                    | 46                   | 62                    | 81            |

NA - Not analyzed.

TABLE 4

## CHEMICAL CHARACTERISTICS OF COLUMBIA RIVER WATER AT 100-F AREA

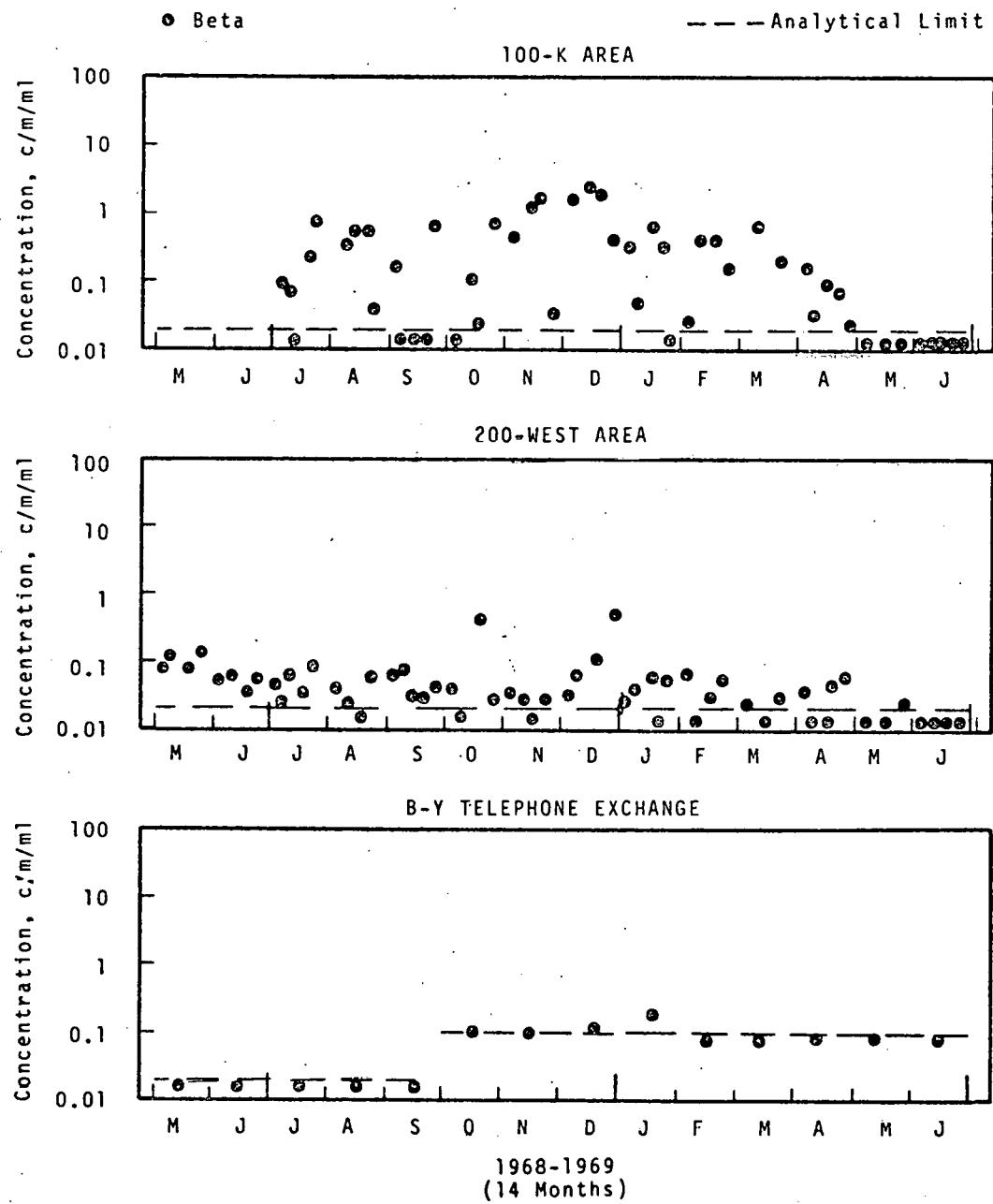

(ppm)

| <u>Date</u> | <u>Mg</u> | <u>Fe</u> | <u>Cu</u> | <u>Ca</u> | <u>SO<sub>4</sub></u> | <u>PO<sub>4</sub></u> | <u>Cl</u> | <u>Mn</u> | <u>Diss O<sub>2</sub></u> | <u>Phth Alk.</u> | <u>M.O. Alk.</u> | <u>Hardness</u> | <u>Solids</u> |
|-------------|-----------|-----------|-----------|-----------|-----------------------|-----------------------|-----------|-----------|---------------------------|------------------|------------------|-----------------|---------------|
| 1-7-69      | 4         | 0.01      | 0.004     | 22        | 12                    | 0.02                  | 0.45      | NA        | 10.3                      | 0                | 55               | 73              | 95            |
| 1-22        | 4         | 0.02      | 0.006     | 22        | 14                    | 0.03                  | 0.25      | NA        | NA                        | 1                | 57               | 70              | 85            |
| 2-4         | 3         | 0.04      | 0.008     | 24        | 16                    | 0.03                  | 0.35      | NA        | 10.9                      | 1                | 59               | 74              | 76            |
| 2-18        | 3         | 0.08      | 0.008     | 26        | 12                    | 0.15                  | 0.23      | NA        | 10.1                      | 0                | 56               | 79              | 97            |
| 3-4         | 3         | 0.05      | 0.003     | 27        | 15                    | 0.11                  | 0.30      | NA        | 13.8                      | 3                | 59               | 80              | 102           |
| 3-18        | 4         | 0.03      | 0.004     | 25        | 19                    | 0.09                  | 0.42      | NA        | 12.2                      | 1                | 61               | 80              | 80            |
| 4-8         | 4         | 0.14      | 0.014     | 22        | 22                    | 0.07                  | 0.55      | NA        | 9.9                       | 2                | 62               | 81              | 111           |
| 4-22        | 4         | 0.36      | 0.001     | 24        | 18                    | 0.02                  | 1.55      | 0.012     | 12.0                      | 0                | 62               | 76              | 107           |
| 4-25        | NA        | NA        | NA        | NA        | NA                    | NA                    | 0.85      | 0.022     | NA                        | NA               | NA               | NA              | NA            |
| 5-6         | 4         | 0.35      | 0.002     | 22        | 18                    | 0.03                  | 0.68      | NA        | 11.8                      | 0                | 58               | 72              | 100           |
| 5-20        | 3         | 0.24      | 0.002     | 22        | 14                    | 0.05                  | 0.45      | NA        | 10.6                      | 0                | 59               | 68              | 84            |
| 6-3         | 1.9       | 0.075     | 0.004     | 24        | 10                    | 0.003                 | 0.30      | NA        | 11.3                      | 0                | 41               | 63              | 68            |
| 6-24        | 2.4       | 0.018     | 0.011     | 21        | 12                    | 0.039                 | 0.38      | NA        | 12.2                      | 1                | 46               | 63              | 72            |

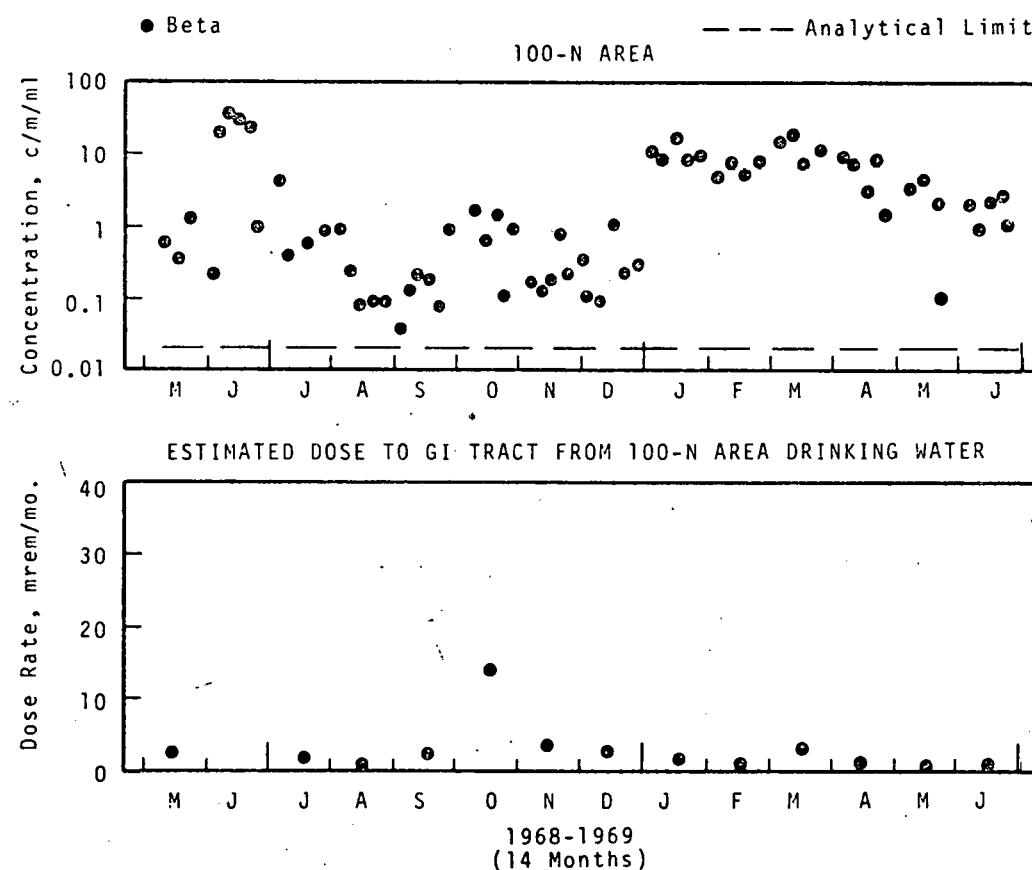
NA - Not analyzed.

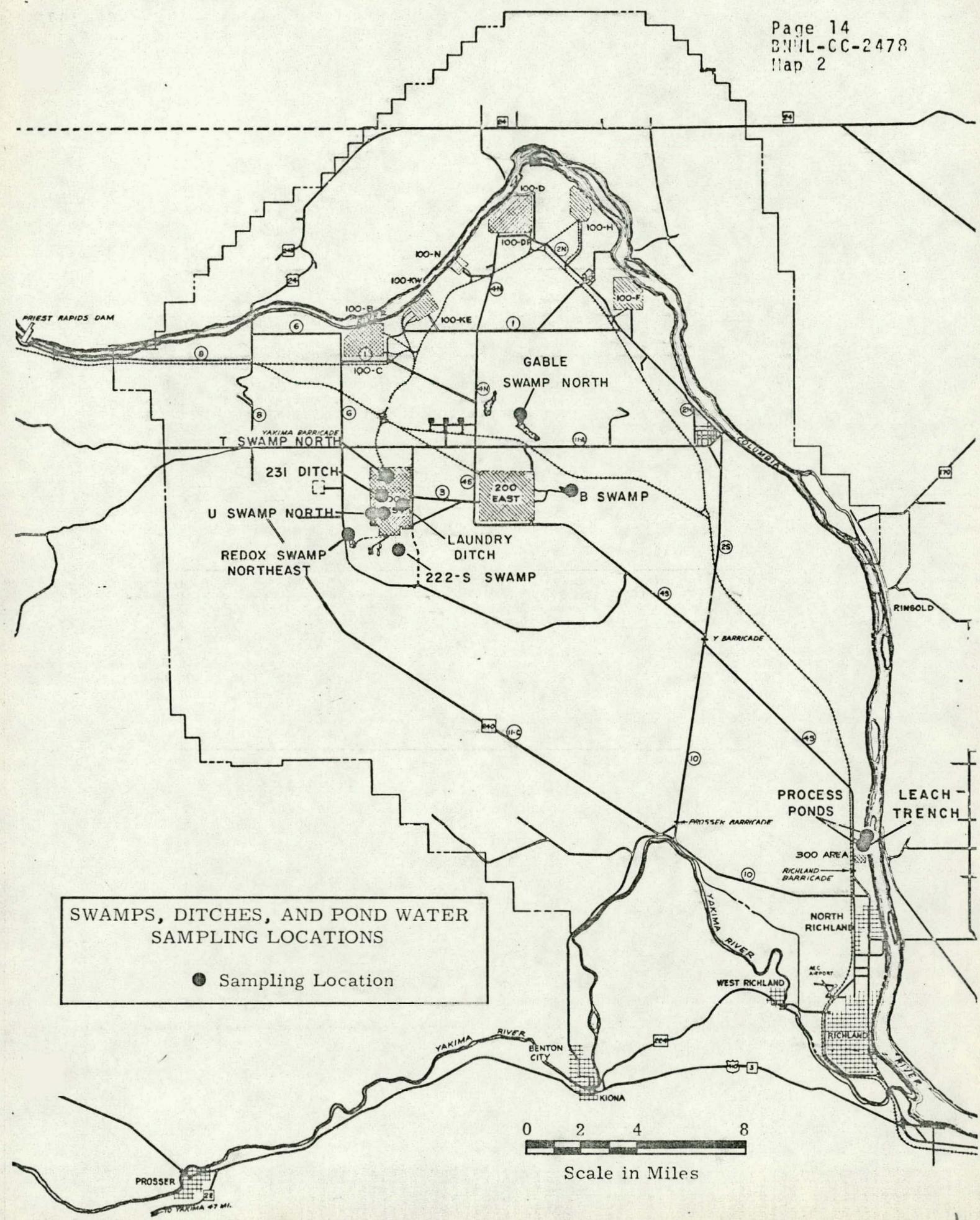
5-6-69-CC-2476

**TOTAL BETA ACTIVITY OF COLUMBIA RIVER WATER (GRAB) SAMPLES  
RINGOLD**




Drinking Water


Drinking Water grab samples taken weekly from 100-K, 100-N, and 200-W and monthly from the B-Y telephone exchange were analyzed for total beta activity (Figures 2 and 3). Following the retirement of "C" reactor in April, total beta concentrations in 100-K drinking water decreased to below the analytical limit (.02 c/m/m).


The monthly GI-tract dose from drinking 100-N water (Figure 3) is estimated from monthly isotopic and weekly total beta analyses. The assumed intake of water is 0.93 liters/day, for 5 days/week, and 50 weeks/year. The intake is based on dietary surveys of 3,257 Richland adults that indicate an average local daily water intake of 1.86 liters/day of which one-half is assumed to be at the place of work. During the first six months of 1969, the estimated GI-tract dose from drinking 100-N water was about 9 mrem or 0.6% of the limit for non-occupationally exposed individuals, compared to 13 mrem during the first six months of 1968.

## TOTAL BETA ACTIVITY OF DRINKING WATER (GRAB) SAMPLES



## TOTAL BETA ACTIVITY OF DRINKING WATER (GRAB) SAMPLES AND ESTIMATED GI TRACT DOSE





#### IV. SWAMPS, DITCHES, AND PONDS

##### Water

Open waters near the 200 and 300 Areas which may be used by migratory waterfowl are routinely sampled at the locations shown in Map 2. Grab samples were collected monthly with the exceptions of the 300 Area Process Pond Inlet which is a weekly cumulative sample, and the 231 Ditch Outlet which is a weekly grab sample. Total alpha and total beta concentrations in samples collected during January-June, 1969, were below 50,000 pCi/ $\mu$ , the guide for open waters (AECM, Chapter 0511).

Radiochemical results for the 200 Area surface waste water samples are shown in Figures 4-6. Data for the 300 Area Process Pond include both radiochemical and chemical analyses (Figure 7 and Table 5).

Biological measurements of samples from the 300 Area leaching trench and the river shoreline seepage area are summarized in Table 8.

##### 1. 200 Area Waste Waters

No samples were collected in January at T-Swamp, U-Swamp, Redox Swamp, B-Swamp, or the Laundry Ditch because the swamps were frozen.

Increased total beta concentrations were noted in the 200 West Area 222-S swamp in June. The principal gamma emitter was  $^{137}\text{Cs}$ - $^{137\text{m}}\text{Ba}$  (1500 pCi/ $\mu$ ).

$^{137}\text{Cs}$ - $^{137\text{m}}\text{Ba}$  was detected in samples collected from T-Swamp during January, February, and March (1300, 2800, and 530 pCi/ $\mu$ ) and those collected from 222-S Swamp in January, March, April, and June (200, 270, 320, and 1500 pCi/ $\mu$ ).  $^{131}\text{I}$  was detected in a single sample from B-Swamp in February (180 pCi/ $\mu$ ). In addition to the previously mentioned radio-nuclides, the activation products  $^{51}\text{Cr}$  and  $^{65}\text{Zn}$  were occasionally detectable at concentrations somewhat below those observed in the Columbia River, as expected since river water is the source of cooling water discharged to these ponds.

##### 2. 300 Area Process Pond

Total beta, uranium, nitrate ion, and hexavalent chromium ion concentrations measured in weekly cumulative samples collected near the inlet of the 300 Area process pond appear

in Figure 7. The concentration of uranium is based on a measurement of total alpha. Monthly average fluoride ion measurements appear in Table 5.

TABLE 5. Fluoride Ion Concentrations in the 300 Area Process Pond (January-June, 1969)

| <u>Month</u> | <u>F<sup>-</sup></u><br>ppm |
|--------------|-----------------------------|
| January      | 2.6                         |
| February     | 1.6                         |
| March        | 4.1                         |
| April        | 5.1                         |
| May          | 7.0                         |
| June         | NA*                         |

\*NA = Not Analyzed

### 3. 300 Area Sanitary Waste

Samples were collected monthly from the 300 Area leach trench and from the river shoreline seepage area. Analyses for coliform, enterococci (fecal bacteria) and BOD (biochemical oxygen demand) are summarized in Table 6.

#### Game Birds

Game birds that have utilized swamps or ponds receiving low-level radioactive wastes may contain  $^{32}\text{P}$ ,  $^{65}\text{Zn}$ ,  $^{137}\text{Cs}$ - $^{137\text{m}}\text{Ba}$ , and other radionuclides. Table 7 shows the results of radio-assays of the muscle of ducks collected from Gable Swamp and Redox Swamp in early January. For comparison, the maximum concentration of  $^{137}\text{Cs}$ - $^{137\text{m}}\text{Ba}$  in game birds collected near swamps during December 1968 was 500 pCi/g.

TABLE 6

BIOLOGICAL MEASUREMENTS OF SAMPLES COLLECTED AT THE  
300 AREA TRENCH AND RIVER SHORELINE SEEPAGE AREA

300 Area Leach Trench

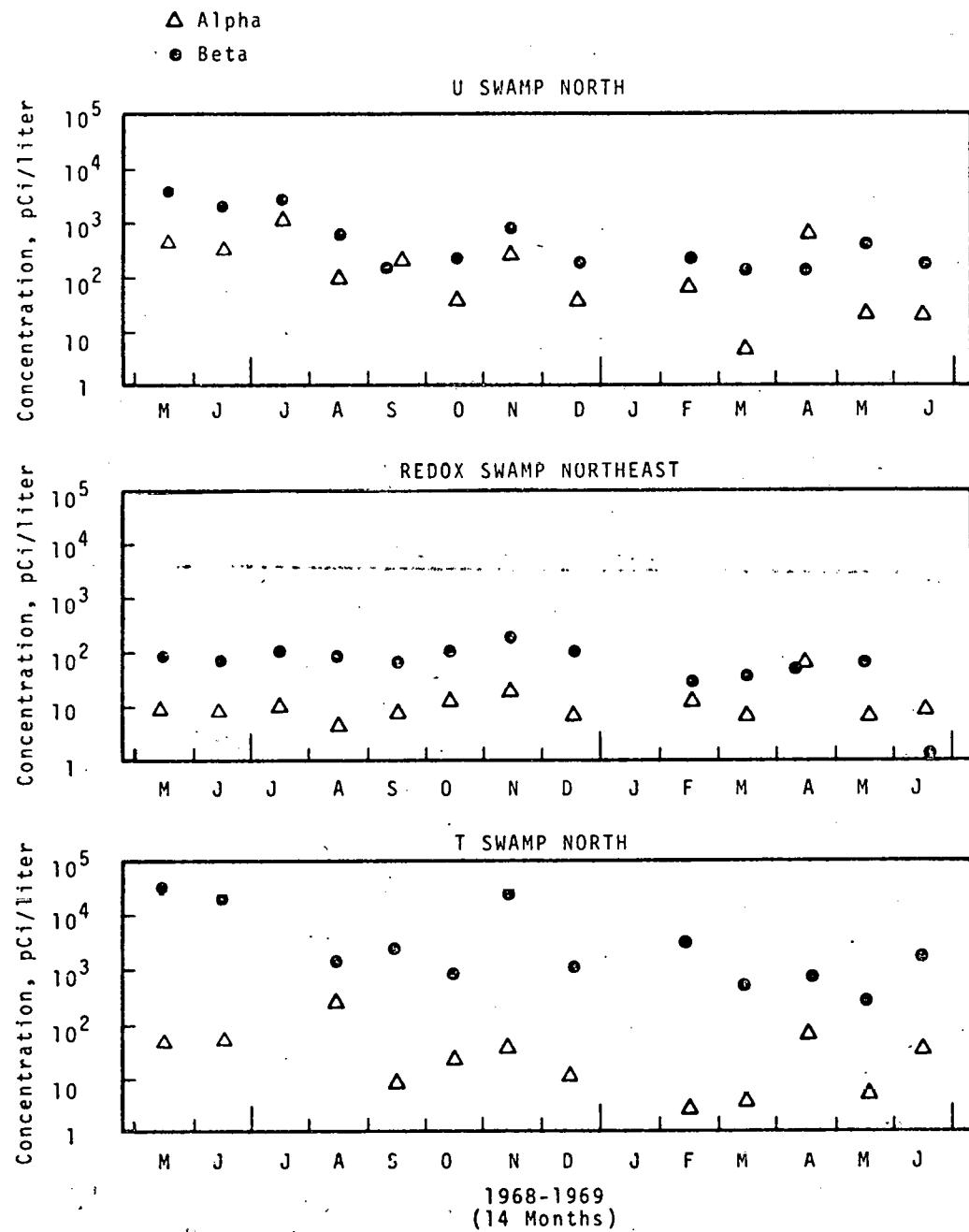
| <u>Date</u> | <u>Coliform/100 ml</u> | <u>Enterococci/100 ml</u> | <u>BOD mg/l</u> |
|-------------|------------------------|---------------------------|-----------------|
| 1-21-69     | 55,000                 | 1,800                     | 4.4             |
| 2-18        | 80,000                 | 14,000                    | 4.2             |
| 3-19        | 80,000                 | 1,400                     | 6.6             |
| 4-22        | 9,000                  | 3,200                     | 4.5             |
| 5-20        | 120,000                | 8,800                     | 4.2             |
| 6-24        | 240,000                | 13,000                    | -               |

River Shoreline Seepage Area

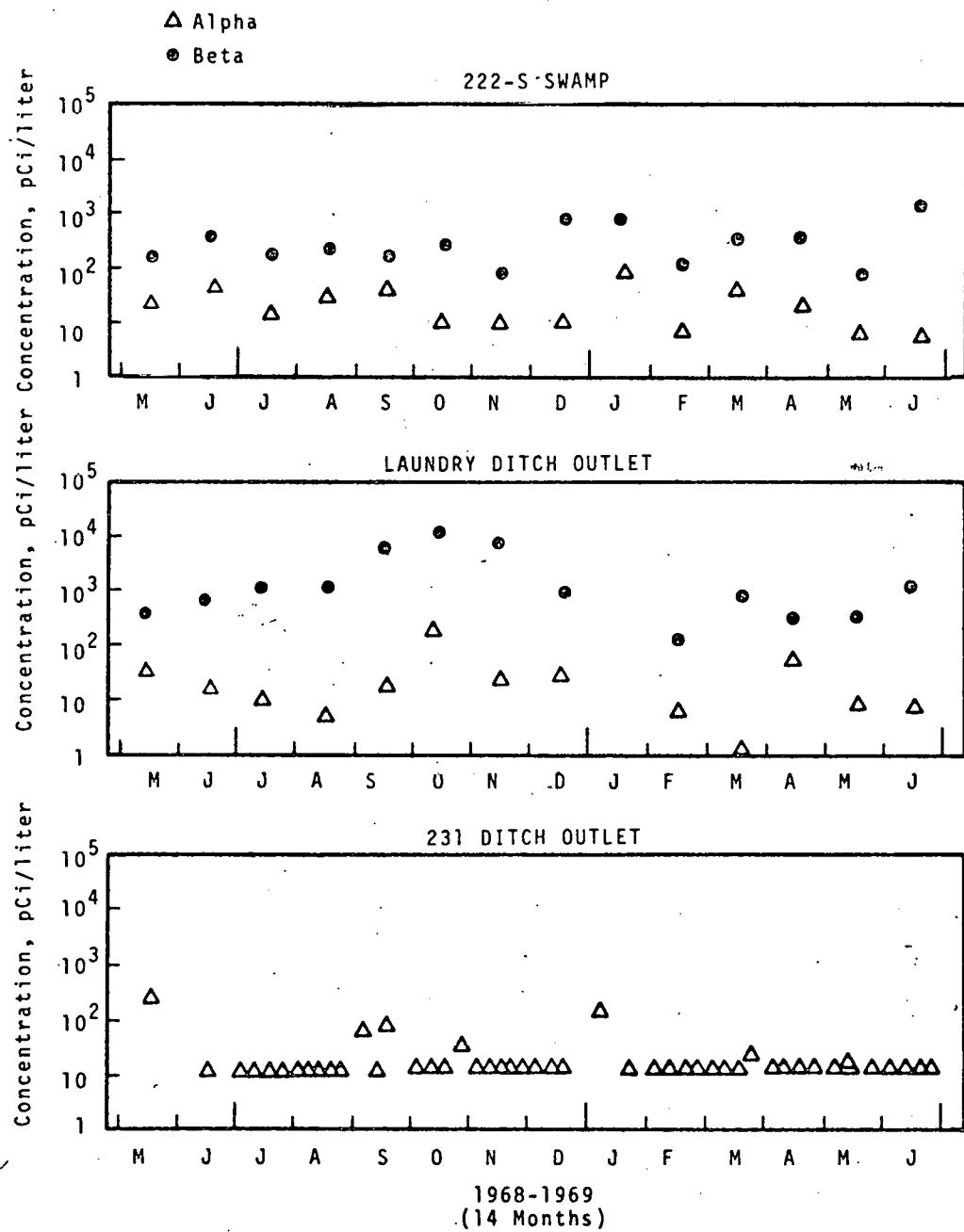
| <u>Date</u> | <u>Coliform/100 ml</u> | <u>Enterococci/100 ml</u> | <u>BOD mg/l</u> |
|-------------|------------------------|---------------------------|-----------------|
| 1-21-69     | 2                      | 30                        | 2.0             |
| 2-18        | 50                     | 26                        | 7.3             |
| 3-19        | 10                     | 10                        | 3.2             |
| 4-22        | 10                     | 29                        | 3.6             |
| 5-20        | 20                     | 9                         | 4.4             |
| 6-24        | 120                    | 90                        | 3.4             |

TABLE 7

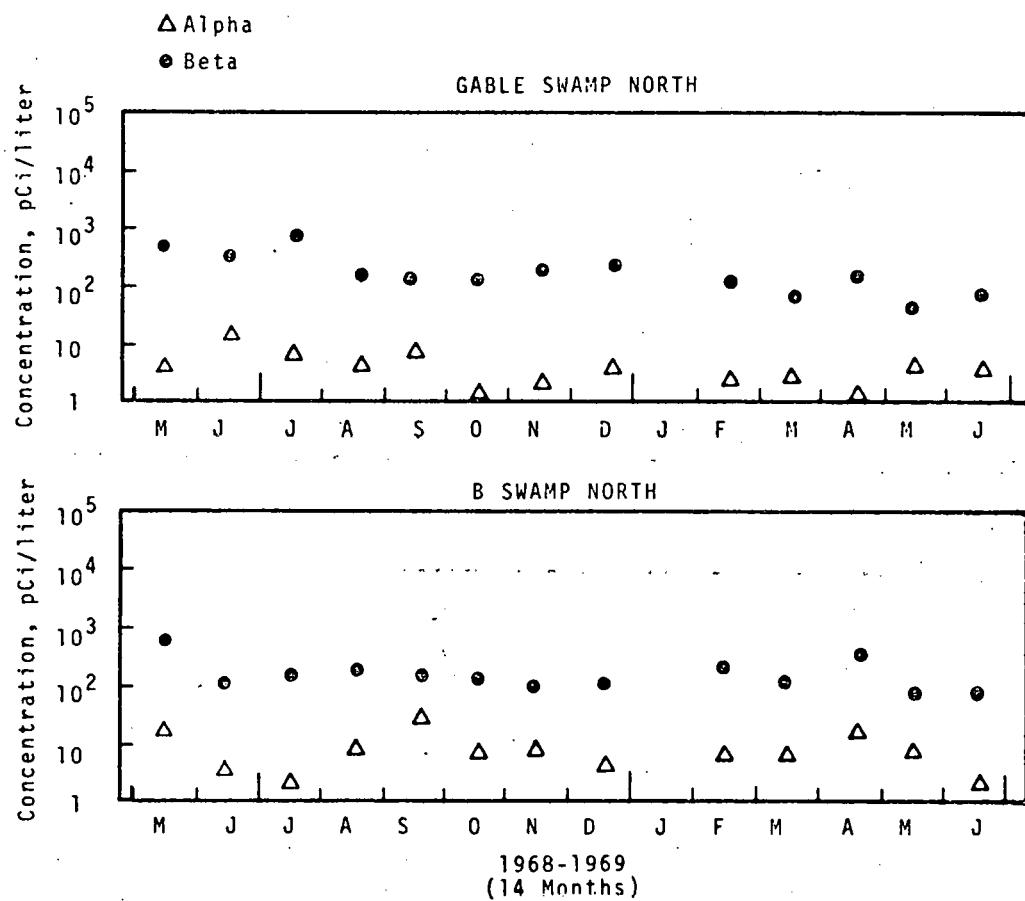
CONCENTRATIONS OF SELECTED RADIONUCLIDES IN THE MUSCLE  
OF DUCKS COLLECTED NEAR REDOX SWAMP AND GABLE MOUNTAIN SWAMP  
(pCi/g)


Redox Swamp

| <u>Date</u> | <u>Species</u> | <u><sup>32</sup>P</u> | <u><sup>40</sup>K</u> | <u><sup>65</sup>Zn</u> | <u><sup>134</sup>Cs</u> | <u><sup>137</sup>Cs - <sup>137m</sup>Ba</u> |
|-------------|----------------|-----------------------|-----------------------|------------------------|-------------------------|---------------------------------------------|
| 1-3-69      | Ruddy Duck     | 2.5                   | <4.0                  | <0.62                  | <1.4                    | 70.                                         |
| 1-3-69      | Ruddy Duck     | 80.                   | 5.2                   | <0.44                  | 5.4                     | 390                                         |


Gable Mountain Swamp

|        |                 |     |      |       |     |     |
|--------|-----------------|-----|------|-------|-----|-----|
| 1-3-69 | Bufflehead      | 97. | 5.4  | <0.52 | 5.2 | 390 |
| 1-3-69 | Bufflehead      | 9.2 | 5.0  | <0.57 | 5.7 | 420 |
| 1-3-69 | Bufflehead      | 6.1 | 4.9  | <0.74 | 4.2 | 290 |
| 1-3-69 | Gr. Winged Teal | 5.2 | <2.6 | <0.41 | 8.4 | 380 |
| 1-3-69 | Gr. Winged Teal | 40. | 4.6  | <0.41 | 1.6 | 130 |


RADIOACTIVITY OF WASTE WATER SAMPLES  
200-WEST AREA



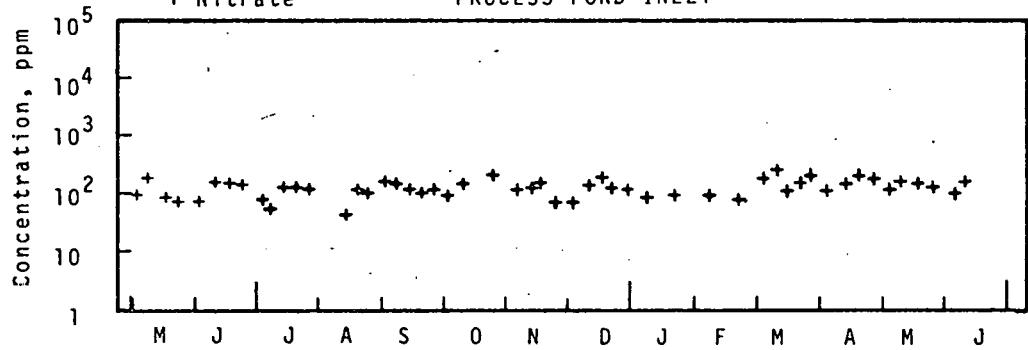
RADIOACTIVITY OF WASTE WATER SAMPLES  
200-WEST AREA



RADIOACTIVITY OF WASTE WATER SAMPLES  
200-EAST AREA

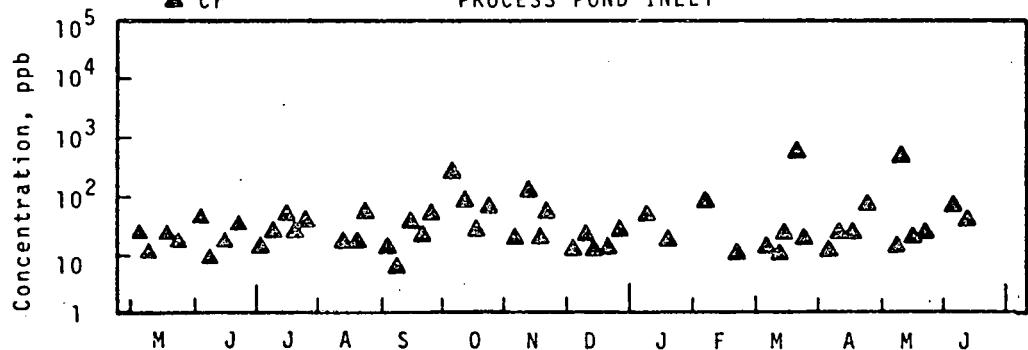


WASTE WATER ANALYSES  
300 AREA


✖ Uranium  
● Beta

PROCESS POND INLET




+ Nitrate

PROCESS POND INLET



▲ Cr<sup>+6</sup>

PROCESS POND INLET



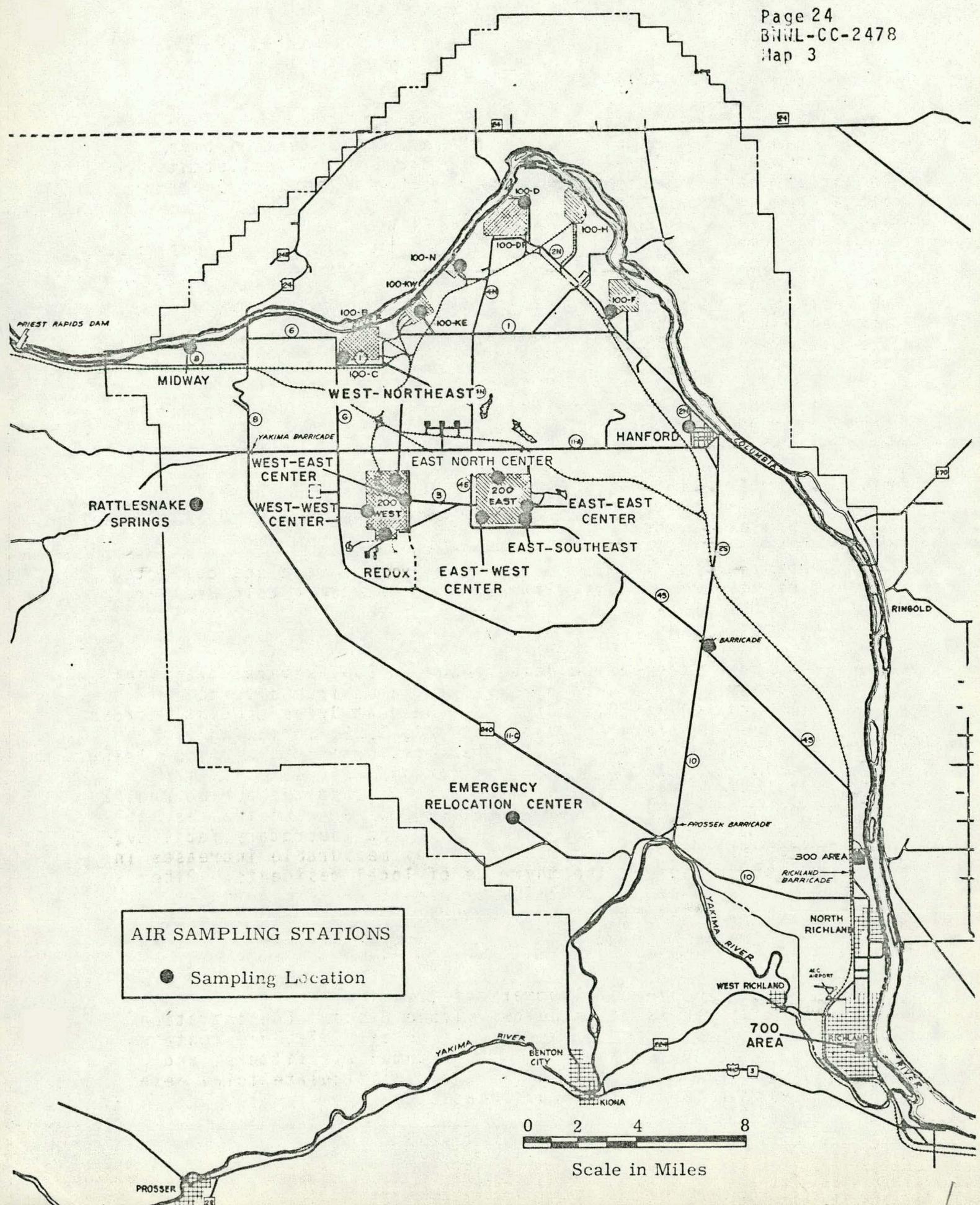
1968-1969  
(14 Months)

## V. AIRBORNE RADIOACTIVITY

Results of routine sampling of the atmosphere for radioactivity at 20 locations within the Hanford Reservation (Map 3) are shown in Figures 9-19. (Sampling for chemical pollutants in the atmosphere is conducted and reported by Hanford Environmental Health Foundation.)

The sampling equipment sheltered in small buildings designated "614", draws air at a flow rate of 1.5 cfm through HV-70 filter paper and then through a solution of NaOH for radioiodine collection. The normal sampling period is one week. The gross beta activity of particulates collected on the filter paper during the sampling period (calculated as  $^{90}\text{Sr-Y}$ ) is reported as total beta.

In January, radioiodine measurements on the 200-West West Center sample were discontinued. The 300 Area sampling location was moved from a south-central to a west-central location in late March. The 100-N Area sampling location was moved from the middle of N Area to the north side of WPPSS area southwest of N Area in mid-April. At the end of June, the sampling location at the old Hanford townsite was discontinued.


During January and February, some samples were not collected because of equipment difficulties due to extremely cold weather.

### Iodine-131

During the period January-June, 1969, several transient increases in  $^{131}\text{I}$  were observed. The maximum offsite  $^{131}\text{I}$  concentration was 0.1 pCi/m<sup>3</sup> measured at Byers Landing (across from the 300 Area) on January 20-28, 1969, following a transient increase in  $^{131}\text{I}$  releases from a laboratory building. The maximum onsite  $^{131}\text{I}$  concentration was also 0.1 pCi/m<sup>3</sup> and was measured inside the 300 Area during the period June 2 through June 6, 1969. This high value was also the result of an increased release from a 300 Area laboratory facility. These releases did not result in any measurable increases in radiation doses to the thyroids of local residents. Other transient increases of a lesser magnitude were noted at scattered onsite locations throughout the six-month period.

### Total Beta

A month-by-month summary of transient changes in total beta activity is given below. Table 8 shows Concentration Guides for selected radionuclides in air. Table 9 contains results of gamma scans on environmental air filters, and Table 10 shows the average  $^{131}\text{I}$  and particulate total beta activity in air at various locations.



Scale in Miles

TABLE 8  
 CONCENTRATION GUIDES FOR SELECTED RADIONUCLIDES  
 IN AIR FOR INDIVIDUALS IN UNCONTROLLED AREAS\*  
 (pCi/m<sup>3</sup>)

| Radionuclide            | <u>90Sr</u> | <u>95Zr</u> | <u>106Ru</u> | <u>131I</u> | <u>134Cs</u> | <u>137Cs</u> | <u>140Ba</u> | <u>144Ce</u> | <u>238Pu</u> | <u>239Pu</u> | <u>240Pu</u> | <u>241Am</u> | <u>U-Nat.</u> |
|-------------------------|-------------|-------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Most Restrictive        |             |             |              |             |              |              |              |              |              |              |              |              |               |
| CG                      | 30          | 1000        | 200          | 100         | 400          | 500          | 1000         | 200          | 0.07         | 0.06         | 0.06         | 0.2          | 2             |
| Insoluble or<br>Soluble | (S)         | (I)         | (I)          | (S)         | (I)          | (I)          | (I)          | (I)          | (S)          | (S)          | (S)          | (S)          | (I)           |

NOTE: For a mixture of unknown radionuclides with no alpha emitters nor with <sup>227</sup>Ac present, the corresponding CG is 1 pCi/m<sup>3</sup>.

\* AEC Appendix 0524, Annex A, Table II, Column 1, (approved November 8, 1968). These Concentration Guides are for individuals. For the general population, the appropriate Concentration Guide would be one-third of the listed values.

TABLE 9

GAMMA EMITTERS MEASURED ON SELECTED AIR FILTERS (January-June, 1969)  
 (pCi/m<sup>3</sup>)

| <u>Inclusive Dates</u> |      | <u><sup>95</sup>Zr-Nb</u> | <u><sup>106</sup>Ru-Rh</u> | <u><sup>131</sup>I</u> | <u><sup>134</sup>Cs</u> | <u><sup>137</sup>Cs-<sup>137m</sup>Ba</u> | <u><sup>140</sup>Ba-La</u> | <u><sup>144</sup>Ce-Pr</u> |
|------------------------|------|---------------------------|----------------------------|------------------------|-------------------------|-------------------------------------------|----------------------------|----------------------------|
| <u>100-K</u>           |      |                           |                            |                        |                         |                                           |                            |                            |
| 1-20                   | 1-27 | -                         | 0.079                      | -                      | -                       | 0.009                                     | -                          | -                          |
| 1-27                   | 2-24 | 0.008                     | -                          | -                      | -                       | 0.014                                     | 0.42                       | -                          |
| 2-24                   | 3-24 | 0.025                     | 0.15                       | -                      | -                       | 0.009                                     | -                          | -                          |
| 3-24                   | 4-28 | 0.034                     | 0.10                       | -                      | -                       | <0.006                                    | -                          | 0.076                      |
| 4-28                   | 5-26 | 0.15                      | 0.34                       | <0.05                  | -                       | 0.009                                     | -                          | 0.24                       |
| 5-26                   | 6-23 | 0.32                      | 0.42                       | 0.03                   | -                       | 0.025                                     | 0.22                       | 0.61                       |
| <u>200 EEC</u>         |      |                           |                            |                        |                         |                                           |                            |                            |
| 1-20                   | 1-27 | -                         | 0.12                       | -                      | -                       | 0.12                                      | -                          | -                          |
| 1-27                   | 2-17 | 0.078                     | -                          | -                      | -                       | 0.23                                      | 0.55                       | 0.26                       |
| 2-17                   | 2-24 | 0.13                      | <0.20                      | <0.15                  | -                       | 0.28                                      | 0.49                       | 0.44                       |
| 2-24                   | 3-6  | 0.065                     | <0.46                      | <0.27                  | 0.52                    | 0.18                                      | -                          | -                          |
| 3-6                    | 3-10 | 0.058                     | <0.09                      | <0.16                  | <0.07                   | 0.44                                      | -                          | 0.27                       |
| 3-10                   | 3-17 | 0.38                      | <0.20                      | <0.16                  | <0.16                   | 0.72                                      | 2.8                        | <0.32                      |
| 3-17                   | 3-25 | 0.062                     | -                          | -                      | -                       | 0.064                                     | -                          | -                          |
| 3-25                   | 4-28 | 0.050                     | 0.41                       | -                      | -                       | 0.055                                     | -                          | <0.09                      |
| 4-28                   | 5-12 | 0.22                      | 0.51                       | -                      | -                       | 0.053                                     | -                          | <0.32                      |
| 5-12                   | 5-26 | 0.245                     | 0.60                       | <0.045                 | -                       | 0.056                                     | -                          | 0.21                       |
| 5-26                   | 6-23 | 0.34                      | 0.56                       | <0.016                 | -                       | <0.067                                    | -                          | 0.27                       |
| <u>200 ESE</u>         |      |                           |                            |                        |                         |                                           |                            |                            |
| 3-3                    | 3-6  | <0.025                    | <0.44                      | <0.26                  | <0.41                   | -                                         | -                          | -                          |

TABLE 9 (Continued)

| <u>Inclusive Dates</u>     |      | <u><sup>95</sup>Zr-Nb</u> | <u><sup>106</sup>Ru-Rh</u> | <u><sup>131</sup>I</u> | <u><sup>134</sup>Cs</u> | <u><sup>137</sup>Cs-<sup>137</sup>MBa</u> | <u><sup>140</sup>Ba-La</u> | <u><sup>144</sup>Ce-Pr</u> |
|----------------------------|------|---------------------------|----------------------------|------------------------|-------------------------|-------------------------------------------|----------------------------|----------------------------|
| <u>200 ENC</u>             |      |                           |                            |                        |                         |                                           |                            |                            |
| 3-3                        | 3-6  | 0.18                      | 0.63                       | <0.20                  | <0.42                   | -                                         | -                          | -                          |
| 3-10                       | 3-17 | 0.17                      | <0.20                      | <0.16                  | 0.18                    | 2.0                                       | -                          | 0.69                       |
| 3-24                       | 4-1  | 0.42                      | <0.17                      | <0.096                 | <0.13                   | 0.99                                      | 3.2                        | 0.27                       |
| 4-14                       | 4-21 | 0.073                     | <0.21                      | -                      | -                       | 1.2                                       | -                          | 0.45                       |
| 4-21                       | 4-28 | 0.16                      | <0.20                      | -                      | -                       | 1.1                                       | -                          | <0.32                      |
| 5-5                        | 5-12 | 0.47                      | <0.20                      | <0.14                  | -                       | 2.4                                       | -                          | 1.2                        |
| 5-12                       | 5-19 | 0.43                      | 0.20                       | 0.49                   | -                       | 0.97                                      | -                          | 0.63                       |
| <u>200 WWC</u>             |      |                           |                            |                        |                         |                                           |                            |                            |
| 5-5                        | 5-12 | 0.25                      | 0.64                       | -                      | -                       | <0.028                                    | -                          | <0.32                      |
| <u>Rattlesnake Springs</u> |      |                           |                            |                        |                         |                                           |                            |                            |
| 1-16                       | 1-22 | -                         | 0.099                      | -                      | -                       | <0.008                                    | -                          | -                          |
| 1-22                       | 2-26 | 0.004                     | -                          | -                      | -                       | 0.007                                     | 0.28                       | -                          |
| 2-26                       | 3-26 | 0.015                     | 0.17                       | -                      | -                       | <0.007                                    | -                          | -                          |
| 3-26                       | 4-30 | 0.041                     | 0.11                       | -                      | -                       | <0.006                                    | -                          | 0.067                      |
| 4-30                       | 5-28 | 0.12                      | 0.33                       | -                      | -                       | <0.007                                    | -                          | 0.17                       |
| 5-28                       | 6-25 | 0.25                      | 0.47                       | <0.038                 | -                       | <0.007                                    | -                          | 0.76                       |
| <u>Hanford</u>             |      |                           |                            |                        |                         |                                           |                            |                            |
| 3-10                       | 3-17 | 0.45                      | <0.20                      | <0.18                  | -                       | <0.029                                    | <0.39                      | <0.32                      |
| <u>Ringold</u>             |      |                           |                            |                        |                         |                                           |                            |                            |
| 1-21                       | 1-28 | -                         | <0.049                     | -                      | -                       | 0.008                                     | -                          | -                          |
| 1-28                       | 2-25 | 0.009                     | -                          | -                      | -                       | -                                         | 0.066                      | -                          |
| 2-25                       | 3-25 | 0.014                     | 0.077                      | -                      | -                       | <1.0                                      | -                          | -                          |
| 3-25                       | 4-15 | 0.49                      | -                          | <4.9                   | -                       | <1.0                                      | -                          | -                          |
| 4-15                       | 4-29 | 0.022                     | <0.053                     | -                      | -                       | <0.007                                    | -                          | <0.084                     |
| 4-29                       | 5-27 | 0.068                     | 0.15                       | -                      | -                       | <0.010                                    | -                          | <0.11                      |
| 5-27                       | 6-24 | 0.20                      | 0.37                       | <0.041                 | -                       | <0.007                                    | -                          | <0.31                      |

TABLE 9 (Continued)

| <u>Inclusive</u><br><u>Dates</u> | <u><sup>95</sup>Zr-Nb</u> | <u><sup>106</sup>Ru-Rh</u> | <u><sup>131</sup>I</u> | <u><sup>134</sup>Cs</u> | <u><sup>137</sup>Cs-<sup>137m</sup>Ba</u> | <u><sup>140</sup>Ba-La</u> | <u><sup>144</sup>Ce-Pr</u> |
|----------------------------------|---------------------------|----------------------------|------------------------|-------------------------|-------------------------------------------|----------------------------|----------------------------|
| <u>Byers Landing</u>             |                           |                            |                        |                         |                                           |                            |                            |
| 1-20 1-28                        | -                         | 0.056                      | -                      | -                       | <0.004                                    | -                          | -                          |
| 1-28 2-24                        | 0.005                     | -                          | -                      | -                       | 0.009                                     | 0.31                       | -                          |
| 2-24 3-24                        | 0.018                     | 0.094                      | -                      | -                       | <0.007                                    | -                          | -                          |
| 3-24 4-28                        | 0.040                     | 0.10                       | -                      | -                       | <0.007                                    | -                          | 0.078                      |
| 4-28 5-26                        | 0.16                      | 0.44                       | <0.041                 | -                       | <0.007                                    | -                          | 0.22                       |
| 5-26 6-23                        | 0.28                      | 0.53                       | <0.044                 | -                       | 0.009                                     | -                          | <0.31                      |

Washtucna

|         |       |       |       |        |   |       |       |        |
|---------|-------|-------|-------|--------|---|-------|-------|--------|
| 12-4-68 | 2-24* | 0.006 | 0.045 | <0.034 | - | 0.004 | 0.070 | <0.036 |
|---------|-------|-------|-------|--------|---|-------|-------|--------|

\* Also a peak at 60 keV was observed and was attributed to fallout.

Eltopia

|      |      |       |       |   |   |        |      |   |
|------|------|-------|-------|---|---|--------|------|---|
| 3-19 | 3-26 | 0.022 | <0.20 | - | - | <0.029 | 0.72 | - |
|------|------|-------|-------|---|---|--------|------|---|

TABLE 10  
AVERAGE  $^{131}\text{I}$  AND PARTICULATE TOTAL BETA  
CONCENTRATIONS IN THE ATMOSPHERE  
( $\text{pCi}/\text{m}^3$ )

| Location                                       | $^{131}\text{I}$ |      |      |      |                  | Total Beta |      |      |      |                  |
|------------------------------------------------|------------------|------|------|------|------------------|------------|------|------|------|------------------|
|                                                | 1965             | 1966 | 1967 | 1968 | Jan-June<br>1969 | 1965       | 1966 | 1967 | 1968 | Jan-June<br>1969 |
| 100 Areas <sup>1</sup>                         | 0.03             | 0.20 | 0.02 | 0.02 | 0.01             | 0.44       | 0.29 | 0.34 | 0.30 | 0.29             |
| 200 Areas <sup>2</sup>                         | 0.14             | 0.10 | 0.09 | 0.03 | 0.02             | 0.80       | 0.58 | 0.41 | 0.28 | 0.39             |
| Other On-<br>Plant <sup>3</sup> Loca-<br>tions | 0.05             | 0.20 | 0.04 | 0.02 | 0.02             | 0.34       | 0.24 | 0.26 | 0.20 | 0.24             |

1. 100-B, K, N, D, and F during 1969.
2. 200 West: Northeast, Redox, West Center, East Center; and 200 East: West Center, Southeast, North Center, and East Center during 1969.
3. Midway, Rattlesnake Springs, Emergency Relocation Center, Wye Barricade, Hanford, and 300 Area during 1969.

General increases in total beta activity in the air in 200 East Area in March through April resulted primarily from waste handling and processing operations. The maximum total beta concentration on a weekly filter ( $2.5 \text{ pCi}/\text{m}^3$ ) occurred at 200 East North Center in mid-March. Total beta activity was generally lower during January-March than during April-June at locations other than 200 East Area. As a result of increased fallout, monthly average total beta concentrations for June ranged from  $0.4$  to  $0.6 \text{ pCi}/\text{m}^3$  at most locations. Exceptions were averages for two onsite locations in the 200 East Area ( $1.0$  and  $0.7 \text{ pCi}/\text{m}^3$ ) and the averages for two offsite locations (Washtucna and Moses Lake), both  $0.9 \text{ pCi}/\text{m}^3$ .

February:

At 200-East North Center in early February, a somewhat higher than usual concentration of total beta activity in the atmosphere was noted ( $0.76 \text{ pCi}/\text{m}^3$  on a filter removed 2-3-69). It was thought to be due to waste handling practices.

In late February, unusual beta and alpha activity were noted on a particulate filter from 200-East East Center ( $1.4 \text{ pCi}\beta/\text{m}^3$  and  $0.023 \text{ pCi}\alpha/\text{m}^3$  on the filter removed 2-24-69) following the cleaning of the 152A diversion box at the A waste tank farm. The principal gamma emitters were  $^{140}\text{Ba-La}$ ,  $^{144}\text{Ce-Pr}$ ,  $^{137}\text{Cs-Ba}$ ,  $^{95}\text{Zr-Nb}$ , and  $^{131}\text{I}$  ( $0.54$ ,  $0.44$ ,  $0.30$ ,  $0.14$ , and  $0.02 \text{ pCi}/\text{m}^3$ , respectively).

March:

Higher total beta activity at 200-East North Center and 200-East East Center in early March ( $0.62$  and  $0.56 \text{ pCi}/\text{m}^3$ , respectively during 2-24 to 3-3-69) was attributed to the spread of a fine powder from contaminated equipment near the 200-East North Center sampling location on 2-25-69.

In early March, special gamma scans of particle filters were requested following a particulate release at Purex stack.  $^{106}\text{Ru-Rh}$  and  $^{95}\text{Zr-Nb}$  were detected on the 200-East North Center filter and  $^{95}\text{Zr-Nb}$ ,  $^{134}\text{Cs}$ , and  $^{137}\text{Cs-137mBa}$  were detected on the 200-East East Center filter removed on March 6, 1969. Low-level activity [300 c/m (GM) maximum] was detected on a control plot (page 50).

Increased concentrations of airborne particulate radioactivity continued to be observed at 200-East Area with the highest concentrations occurring in mid-March at 200-East North Center ( $2.5 \text{ pCi}/\text{m}^3$  during 3-10 to 3-17-69).

These increases were associated primarily with waste handling and processing operations.

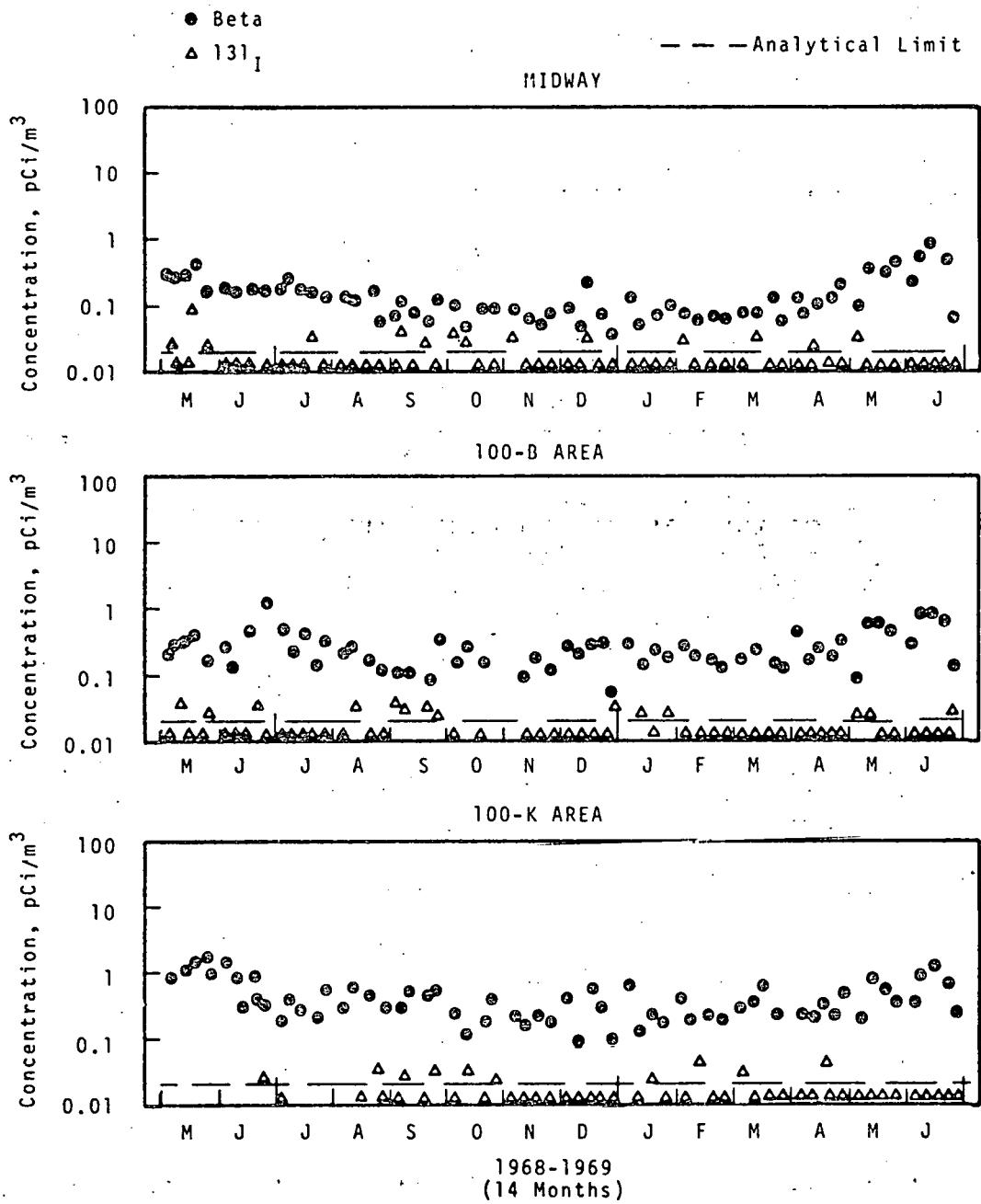
Major gamma emitters detected on the 200-East North Center filter were  $^{137}\text{Cs}$ ,  $^{95}\text{Zr-Nb}$ ,  $^{106}\text{Ru-Rh}$ ,  $^{144}\text{Ce-Pr}$ ,  $^{134}\text{Cs}$ , and  $^{131}\text{I}$  with concentrations of 2.0, 2.0, 1.0, 0.99, 0.36, and 0.14 pCi/m<sup>3</sup> respectively. These represent 0.4, 0.2, 0.5, 0.5, 0.09, and 0.14 percent of the Concentration Guides for individuals in uncontrolled areas (Table 8).

April:

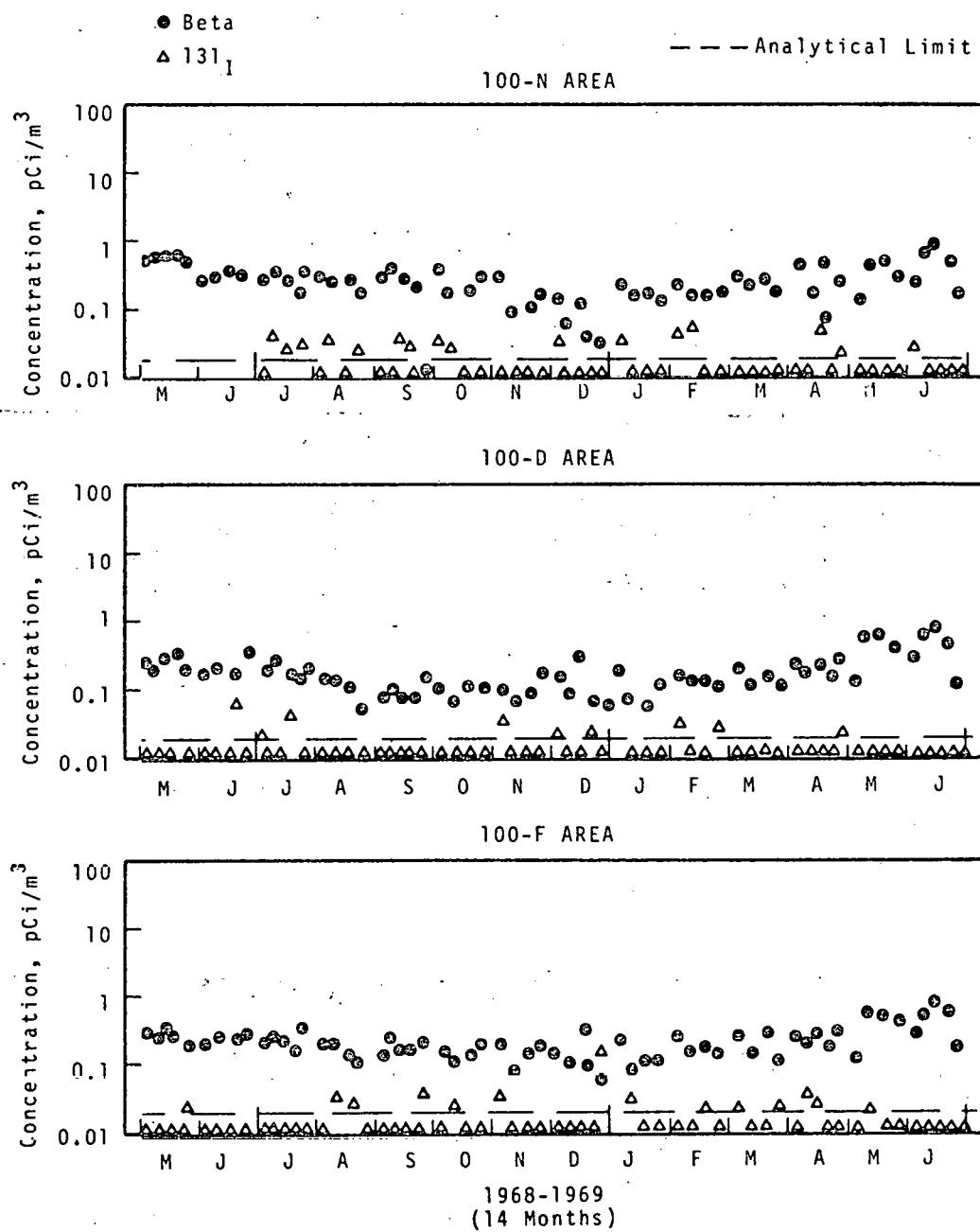
The maximum gross beta activity reported was at 200-East North Center (1.4 pCi/m<sup>3</sup> during 4-14 to 4-21-69) with the major gamma emitter being  $^{137}\text{Cs}$  (1.2 pCi/m<sup>3</sup>).

May:

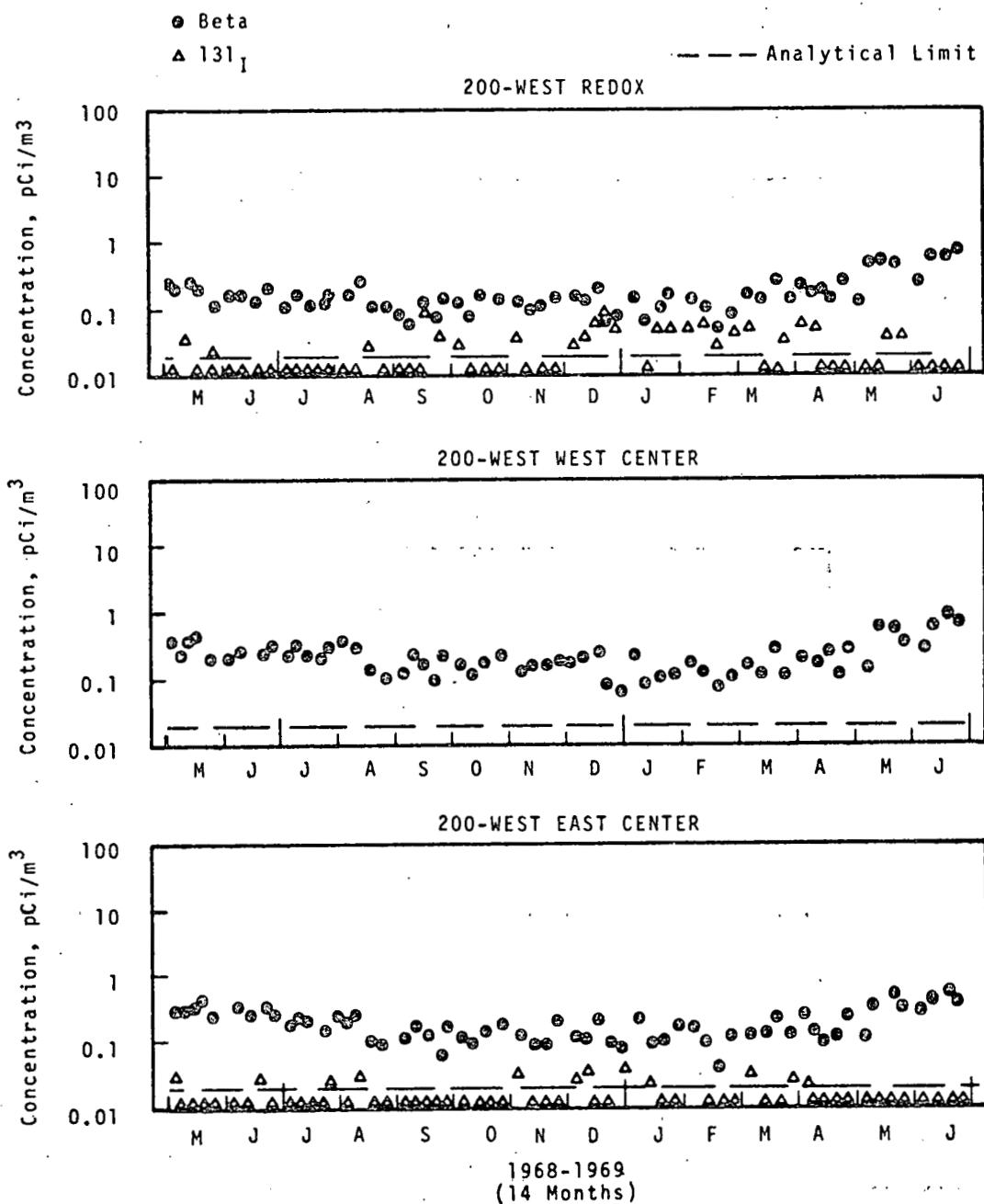
Continued elevated gross beta concentrations of airborne particulates on the north side of 200 East Area were observed, accompanied by a gradual increase in alpha activity. These were attributed to tank farm operations in the 200 East Area. The highest gross beta concentration at any location during the first six months was at 200-East North Center (2.6 pCi/m<sup>3</sup> during 5-5 to 5-12-69) with the major gamma emitters being  $^{137}\text{Cs}$  (2.4 pCi/m<sup>3</sup>),  $^{144}\text{Ce-Pr}$  (1.2 pCi/m<sup>3</sup>) and  $^{95}\text{Zr-Nb}$  (0.47 pCi/m<sup>3</sup>).


June:

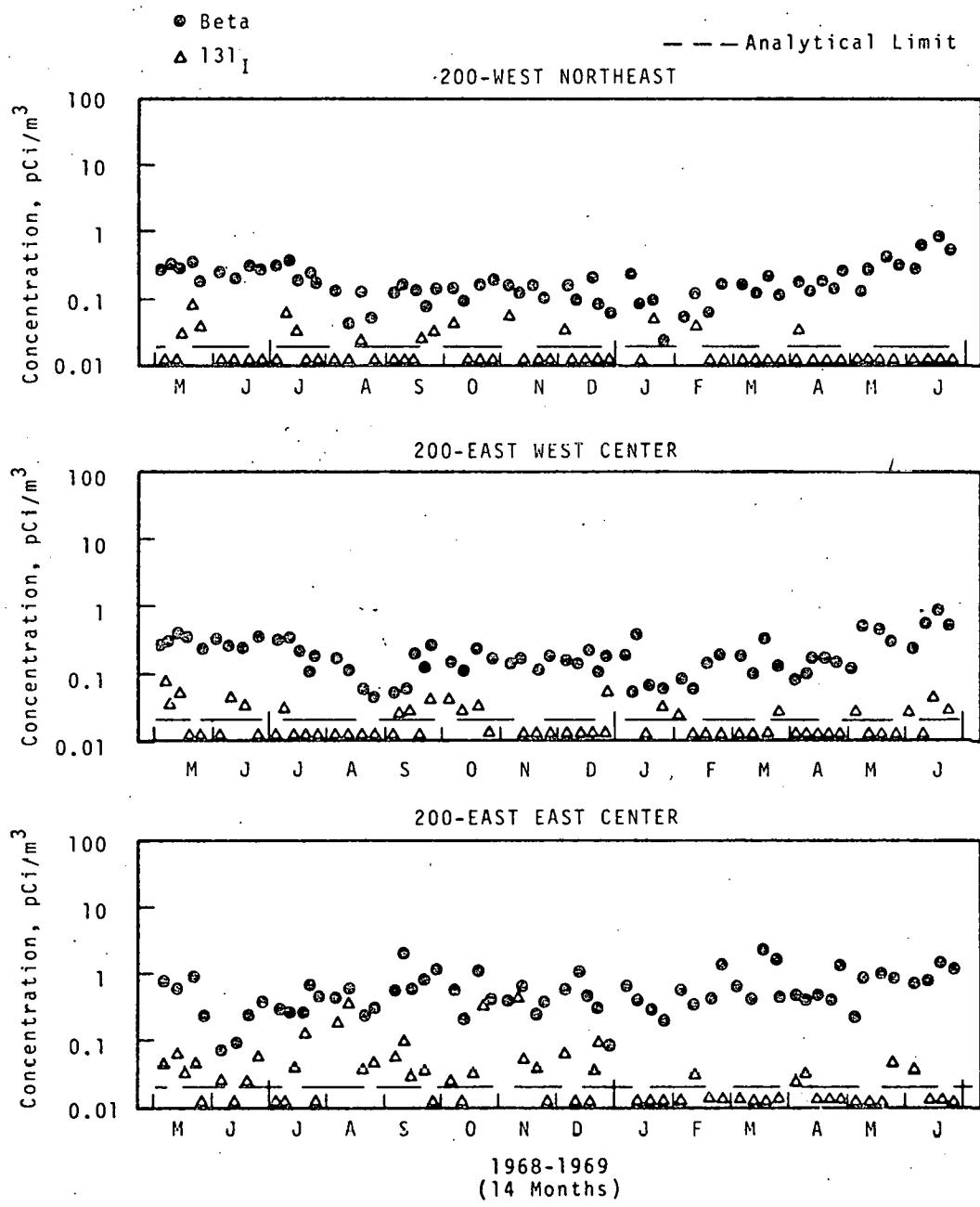
Particulate radioactivity from worldwide fallout continued to increase with total beta concentrations slightly exceeding 1 pCi/m<sup>3</sup> at some offsite locations. At the majority of locations, maximum values were in the range 0.7 to 1.0 pCi/m<sup>3</sup>. These are somewhat higher concentrations attributed to fallout than observed in recent years.


A decrease in total beta activity on samples from 200 East Area in June was attributed to a decreased work load in the waste handling areas, and increased air dispersion.

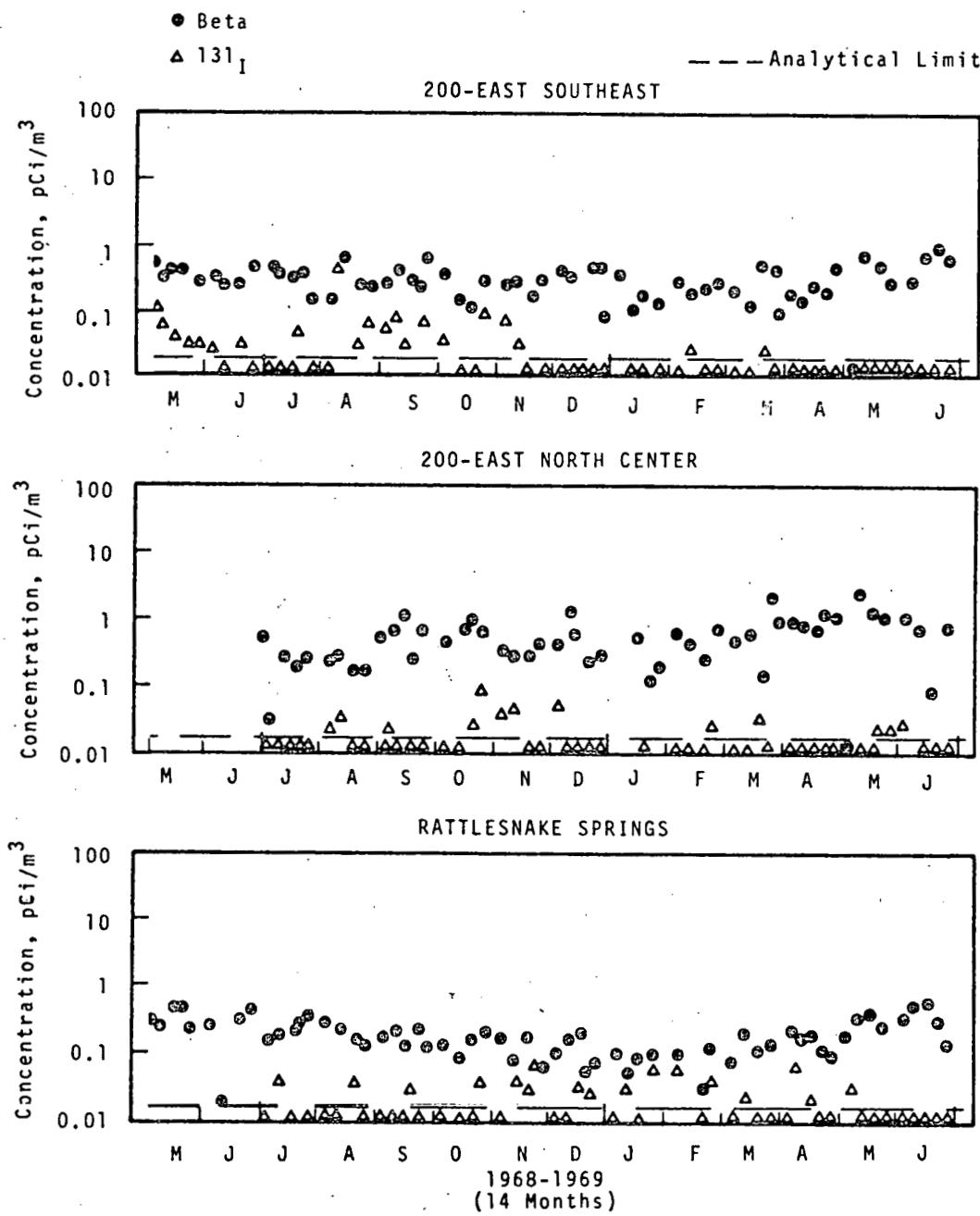
Increased total beta activity at the 300 Area (1.3 pCi/m<sup>3</sup> during the week 6-9 to 6-16-69) was attributed to releases of particulates from a laboratory stack as a result of faulty filter performance. The major gamma emitters present were  $^{154}\text{Eu}$  and  $^{144}\text{Ce-Pr}$ , based on examination of the stack sample filter.


# IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE 100 AREAS AND VICINITY




IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE  
100-AREAS AND VICINITY




IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE  
200 AREAS

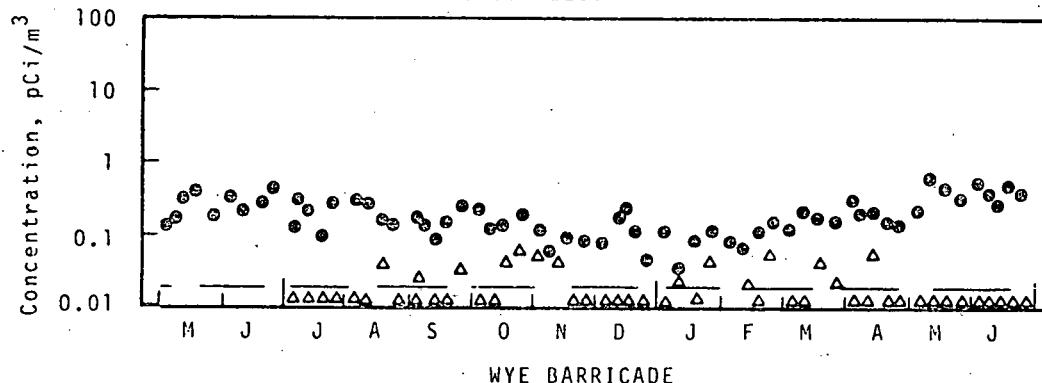


IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE  
200 AREAS

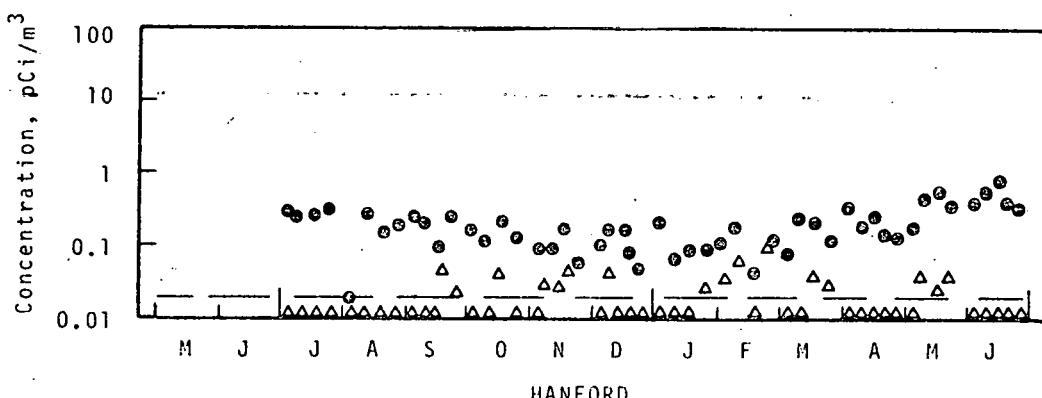


IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE  
200 AREAS AND INTERMEDIATE AREAS

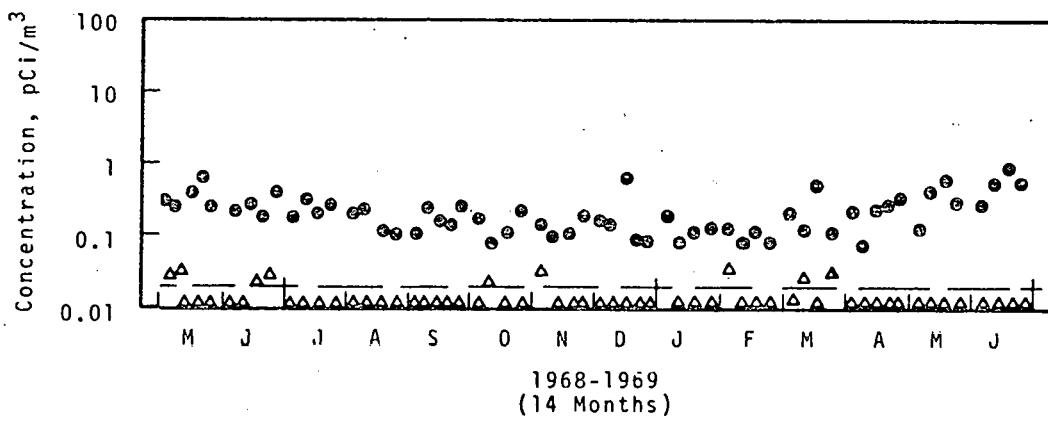



IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE  
INTERMEDIATE AREAS

• Beta

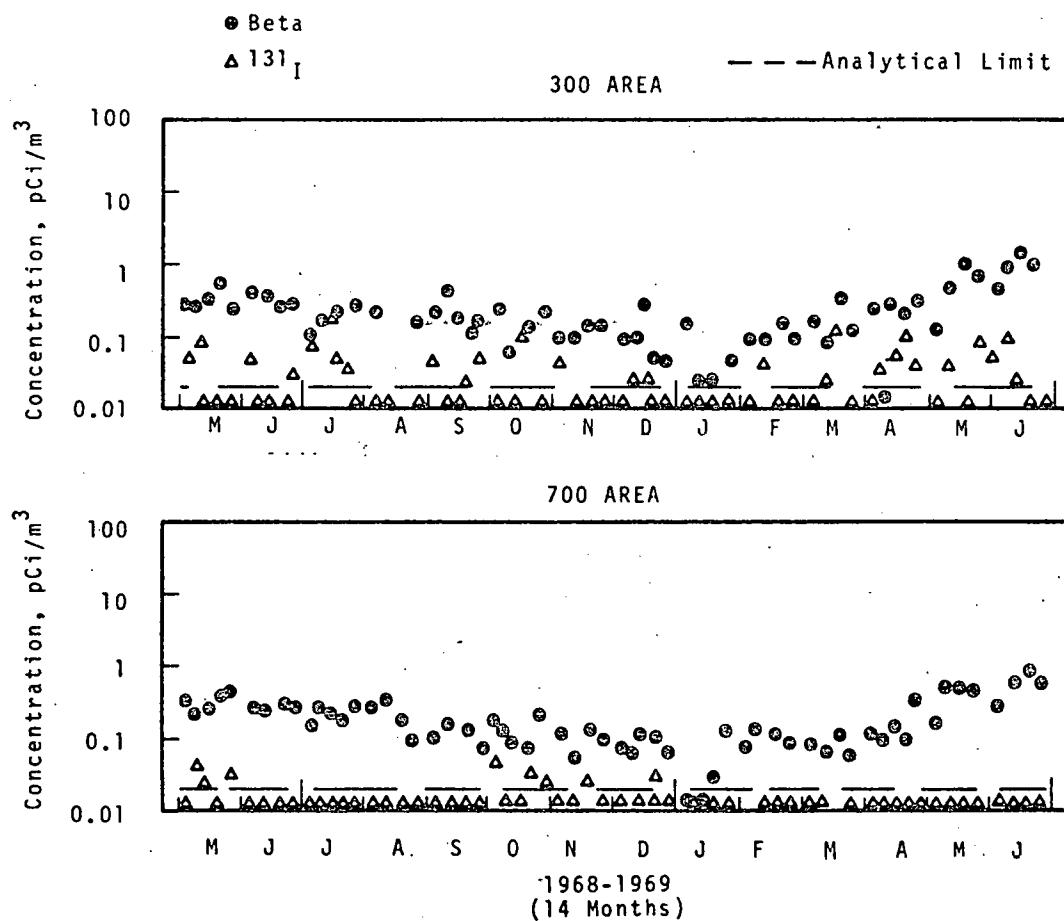

△  $^{131}\text{I}$

— — — Analytical Limit


EMERGENCY RELOCATION CENTER



WYE BARRICADE




HANFORD



1968-1969  
(14 Months)

IODINE-131 AND TOTAL BETA ACTIVITY IN THE ATMOSPHERE  
300 AND 700 AREAS



Total Alpha

Fourteen of the twenty weekly filters that are analyzed for beta-gamma emitting radionuclides are also analyzed for alpha activity, with most such sampling sites located in the 200 Areas. These data are presented in Figures 15-19. Routine analysis of the 100-K and Rattlesnake Springs filters for the presence of alpha emitters was begun in January, 1969.

Alpha counting of the filters is normally done after 48 hours to allow for the decay of short-lived activity from naturally-occurring daughters of radon-thoron.

A month-by-month summary of transient increases during the first half of 1969 is summarized below. Because the analytical limit for total alpha concentrations in air (0.01 pCi<sub>a</sub>/m<sup>3</sup>) is a significant fraction of the Concentration Guide for individuals in uncontrolled areas for plutonium (Table 8, 0.06 pCi/m<sup>3</sup>), results only slightly above the analytical limit are of considerable interest.

The maximum average total alpha activity for the first six months of 1969 was 0.02 pCi<sub>a</sub>/m<sup>3</sup>. This maximum occurred at both the 200-East East Center and 200-East Northeast sampling locations.

The six-month average total alpha concentrations in the atmosphere for 1969 are presented in Table 11. For comparison, averages for the previous three years are also shown.

TABLE 11. Average Total Alpha Concentrations in the Atmosphere

| <u>Location</u> | <u>1965</u> | <u>1966</u> | <u>1967</u> | <u>1968</u> | <u>Jan-June<br/>1969</u> |
|-----------------|-------------|-------------|-------------|-------------|--------------------------|
| 100 Areas       | <0.02       | 0.01        | 0.01        | 0.006       | 0.007                    |
| 200 Areas       | <0.03       | 0.01        | 0.02        | 0.006       | 0.010                    |
| 300 Area        | 0.08        | 0.02        | 0.01        | 0.011       | 0.009                    |
| 700 Area        | <0.02       | 0.02        | 0.01        | 0.006       | 0.005                    |

NOTE: During the first half of 1969 sampling locations included in the average were: 100 Areas--B, K, and F; 200 Areas--200-West (Northeast, West Center, Redox and East Center) and 200-East (West Center, Southeast East Center and North Center). The Analytical Limit is 0.010 pCi/m<sup>3</sup>.

January:

Total alpha concentrations at 100-K during the period 12-30-68 to 1-6-69 were  $0.02 \text{ pCi}/\text{m}^3$  but decreased to  $0.004 \text{ pCi}/\text{m}^3$  in the following week.

February:

Total alpha concentrations during the week ending 2-24-69 at 200-East East Center and 200-East North Center were both  $0.02 \text{ pCi}/\text{m}^3$ , following the cleaning of a diversion box at the A waste tank farm.

March:

During the following week, total alpha concentrations near  $0.02 \text{ pCi}/\text{m}^3$  were noted at 100-F and 100-K.

A week later, the filter from 200-East East Center for the period 3-6-69 to 3-10-69 indicated  $0.03 \text{ pCi}/\text{m}^3$ . Higher than usual alpha radioactivity in airborne particulates was observed on most samples from around the 200 Areas for the week ending 3-25-69 when the highest total alpha concentration measured during the first six months of 1969 ( $0.25 \text{ pCi}/\text{m}^3$ ) occurred on the filter from the east side of 200 East Area. Analysis indicated a mixture of  $^{239}\text{Pu}$  and either  $^{241}\text{Am}$  or  $^{238}\text{Pu}$ . Assuming a mixture of  $^{238}\text{Pu}$  and  $^{239}\text{Pu}$  in a soluble form, the indicated concentrations were greater than the AECM Chapter 0524 Concentration Guides for non-occupationally exposed individuals (Table 8). ARHCO personnel were notified. Work in duckwork at the Purex facility PR vault might have caused the observed concentrations.

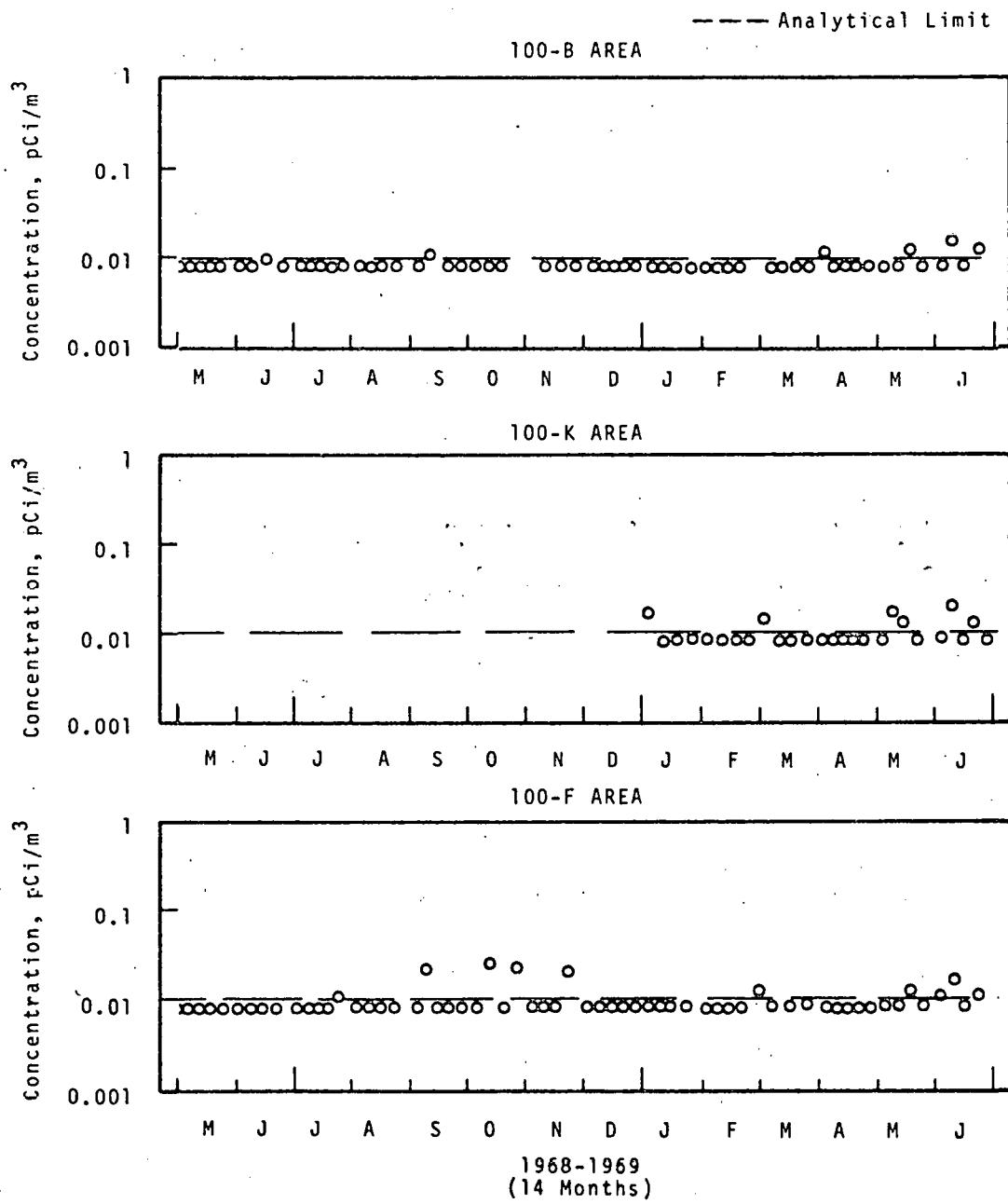
Concentrations during the same period were near to or exceeded  $0.02 \text{ pCi}/\text{m}^3$  at 200-West East Center, 200-West Northeast, 200-East North Center and 200-East Redox ( $0.09$ ,  $0.04$ ,  $0.03$ , and  $0.02 \text{ pCi}/\text{m}^3$ , respectively).

April:

Concentrations of total alpha activity approached or exceeded  $0.02 \text{ pCi}/\text{m}^3$  at several locations in early April. A re-count of the highest result (200-East North Center filter) indicated that the high initial alpha concentration had decayed from  $0.04$  to  $0.03 \text{ pCi}/\text{m}^3$  indicating that some of the activity was not due to long-lived alpha emitters. Alpha concentrations at 200-East North Center remained near or above  $0.02 \text{ pCi}/\text{m}^3$  through most of June.

Total alpha concentrations of about  $0.02 \text{ pCi}/\text{m}^3$  during April were observed at 200-East East Center 4-14 to 4-28.

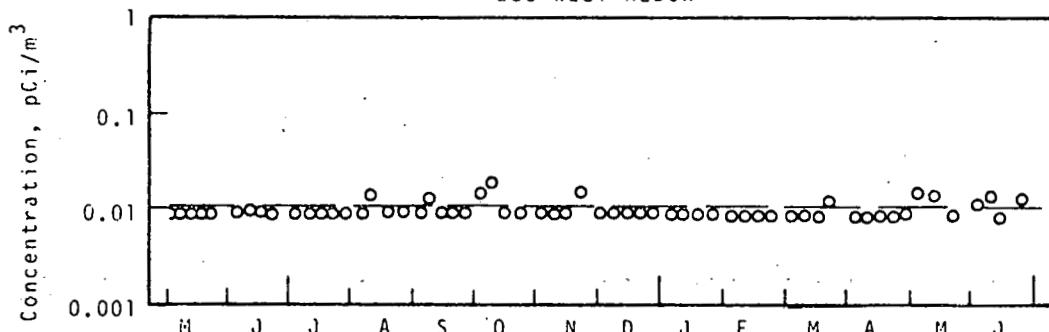
May:


Concentrations on air filters from every location increased in May. Total alpha activity exceeded 0.02 pCi/m<sup>3</sup> during the week 5-5 to 5-12 at 200-East North Center, 200 East Southeast, 200-West West Center, Benton City, 100-K, 200-West Northeast, and 200-East West Center Redox, 200-West East Center (0.09, 0.03, 0.02, 0.02, 0.02, and 0.02, respectively). The increased total alpha concentrations in the 200 East Area were attributed to tank farm operations in that area. During the remainder of the month, only filters from 200-East North Center had alpha activity exceeding 0.02 pCi/m<sup>3</sup>.

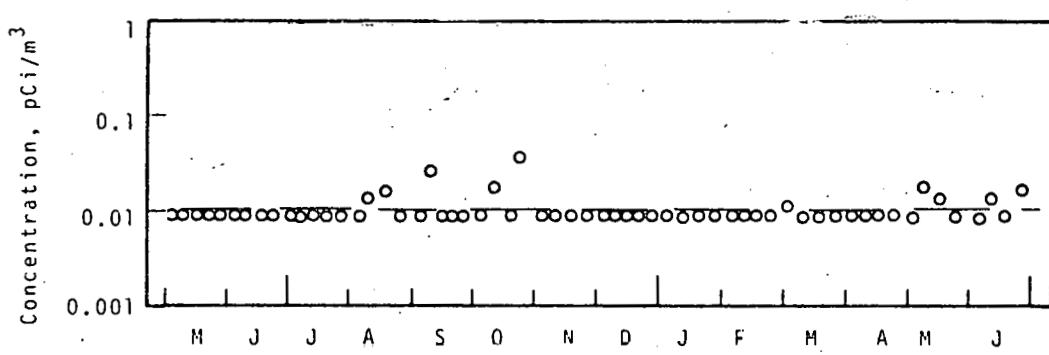
June:

In early June, the alpha activity at 200-East North Center increased to 0.03 pCi/m<sup>3</sup> but in the following week decreased to 0.02 pCi/m<sup>3</sup>. In the week of 6-2 to 6-9 increases were noted at 100-K, 700 Area, and the 300 Area. During the week of 6-16 the highest alpha concentration during the month was measured on a filter from the 300 Area (0.06 pCi/m<sup>3</sup>). Higher than usual alpha activity was noted at 200-East East Center, Ringold, and Benton City.

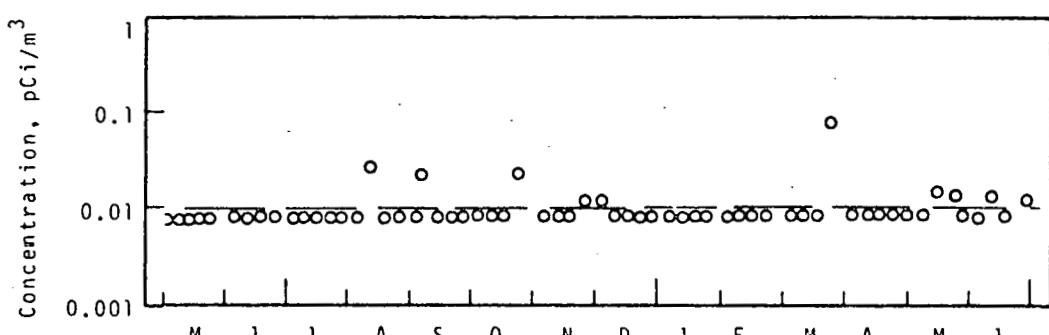
No explanation was found for the increased total alpha concentrations that occurred at several locations in June.


TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE  
100 AREAS




TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE  
200 AREAS

— Analytical Limit

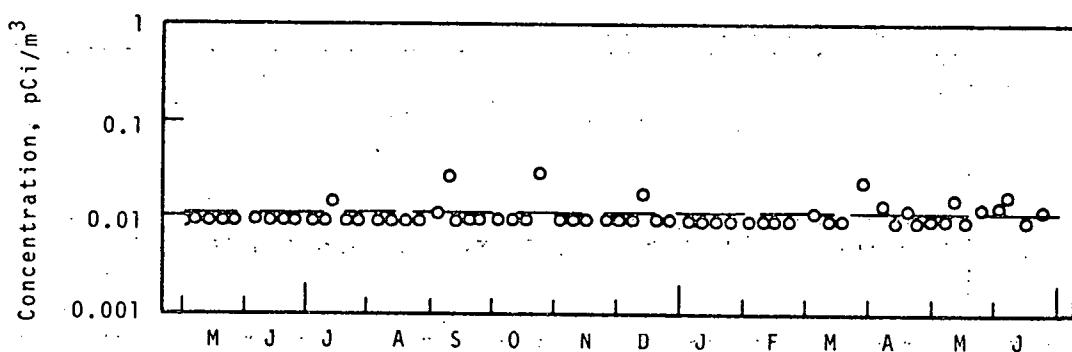

200-WEST REDOX



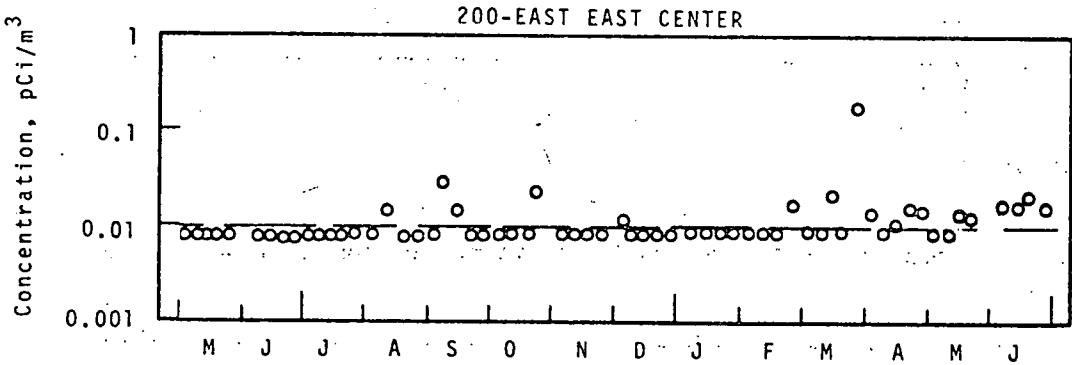
200-WEST WEST CENTER



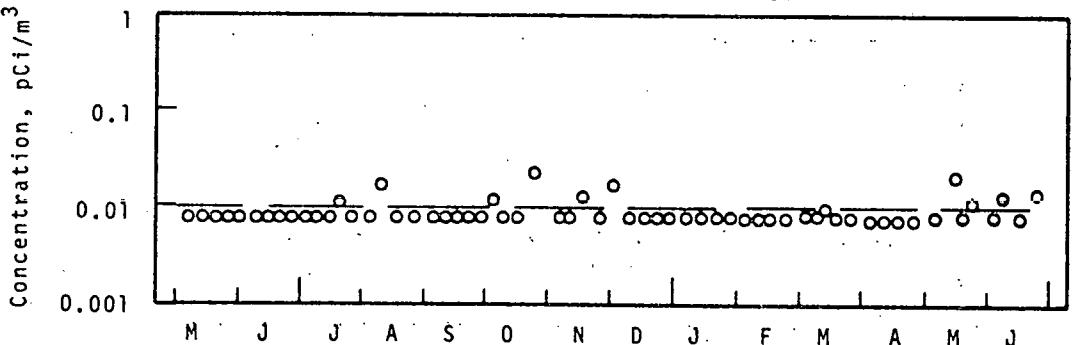
200-WEST EAST CENTER




1968-1969  
(14 Months)


TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE  
200 AREAS

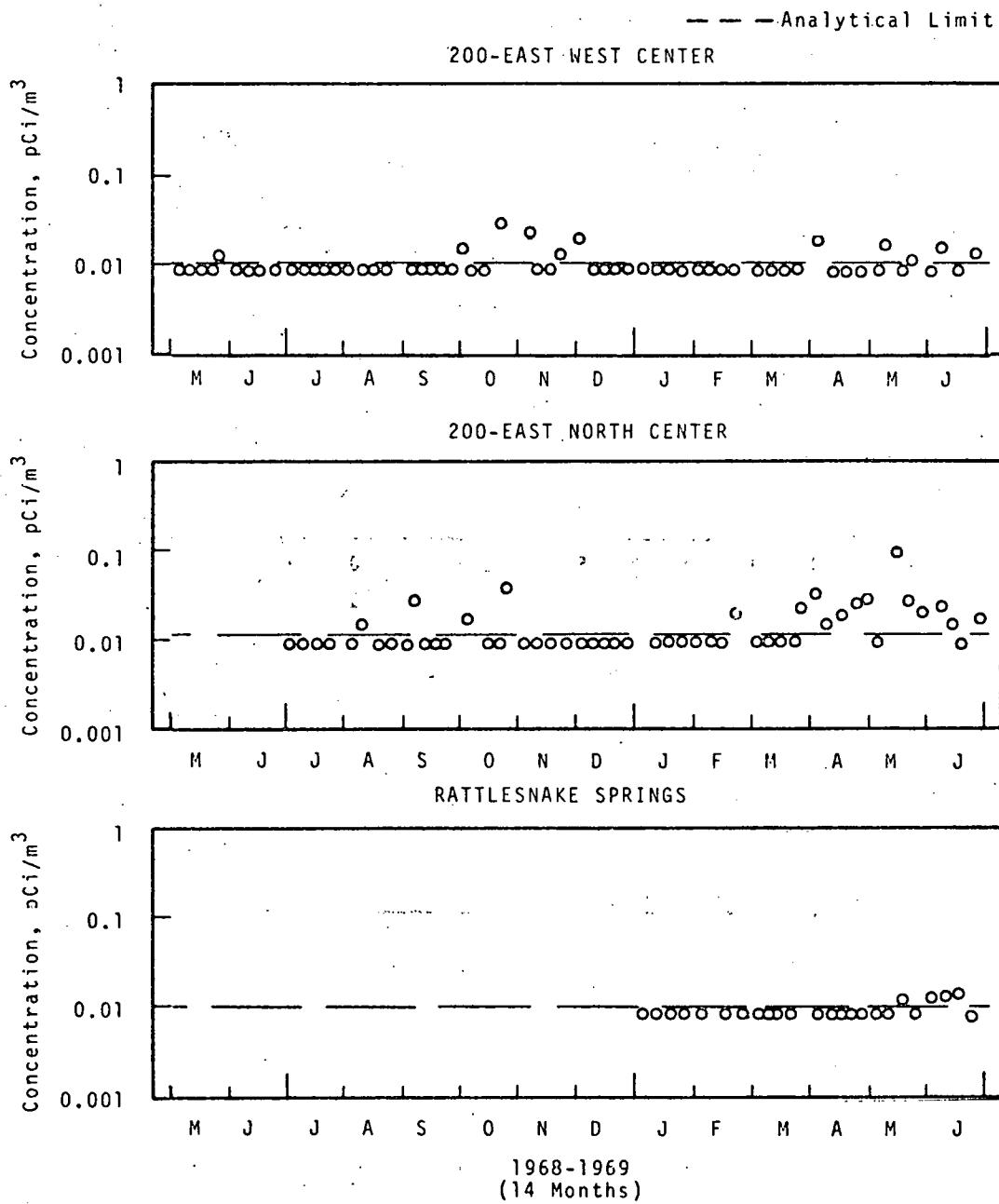
— Analytical Limit


200-WEST NORTHEAST

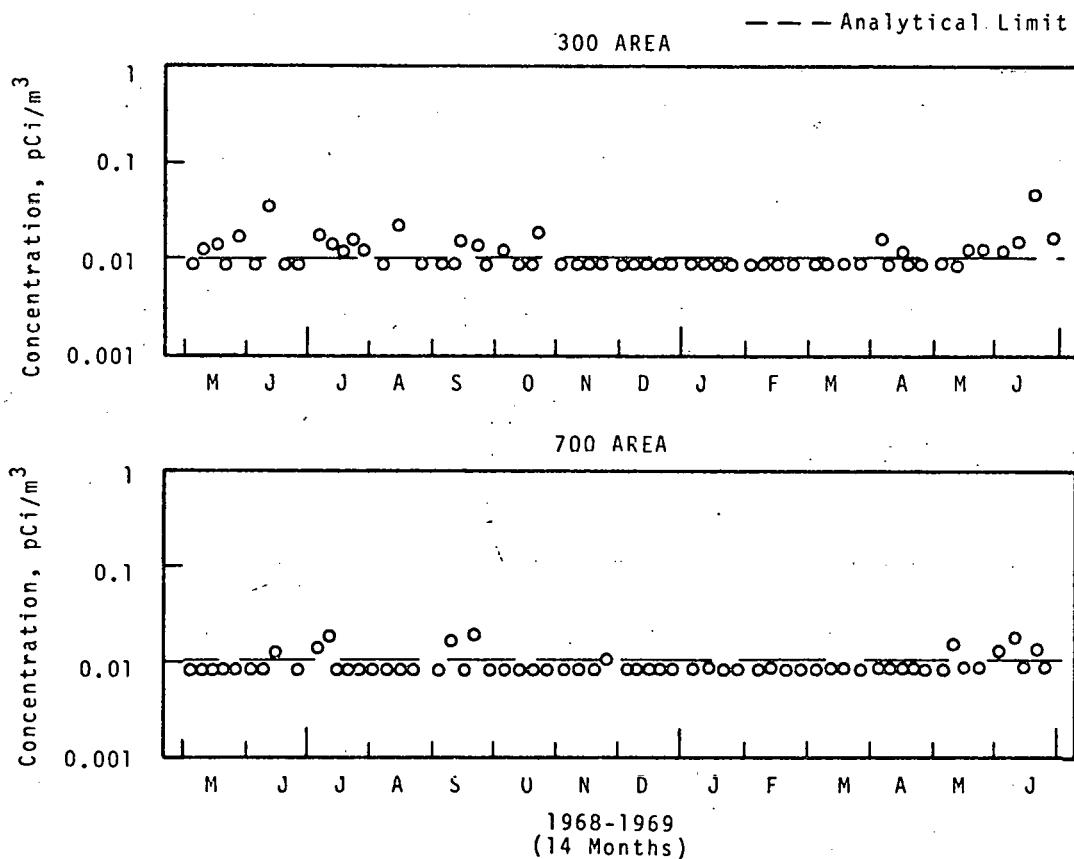


200-EAST CENTER




200-EAST SOUTHEAST




1968-1969  
(14 Months)

2

TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE  
200 AREAS AND RATTLESNAKE SPRINGS



TOTAL ALPHA ACTIVITY IN THE ATMOSPHERE  
300 AREA AND 700 AREA



## VI. RADIATION SURVEYS

### Surface Contamination

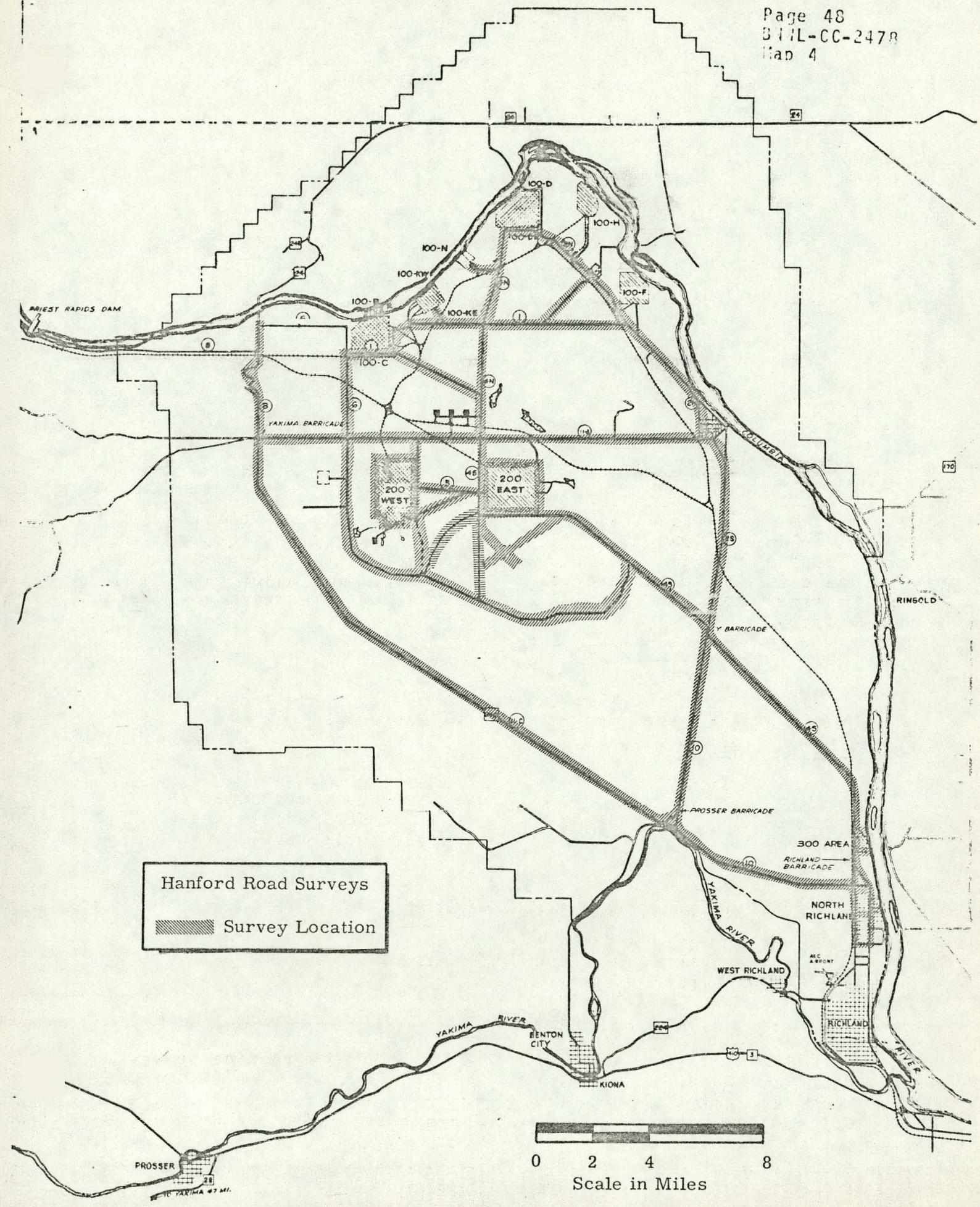
#### 1. Hanford Roads

Hanford roads are routinely surveyed (see Map 4) with a bioplastic scintillation detector attached to the front end of a truck and positioned about two feet above the road surface. This road monitor has been described in BNWL-62. The routes between the 300 Area and the 200 Areas were surveyed bi-weekly during the report period; the remainder of the Hanford roads were surveyed monthly. In May, road monitor trip No. 12 (300 Area environs) was replaced by No. 15, thus eliminating areas which were difficult to evaluate due to proximity of radiation sources.

The only instance of radioactive particulate contamination found on road surveys during the first half of 1969 was along Route 4S. The radioactive particle detected on June 4, 1969, was associated with the soil and had a surface reading of 20,000 c/m (GM). The major gamma emitter was  $^{60}\text{Co}$ . Unusual responses noted on surveys are summarized below:

#### February:

On February 12, 1969, a sustained response that was noted along Route 8 from the Yakima Barricade to the junction of Route 6 was attributed to fog from the reactor basins.


On February 27, 1969 an unusual response was noted on the road monitor along Route 4S near the southeast corner of 200 East Area. However, a GM survey indicated less than 200 c/m.

#### March:

Following a reported high air concentration on March 5, 1969, a special survey around 200 East Area detected no unusual activity.

#### June:

South of the Wye Barricade on Route 4S, a routine survey detected a radioactive particle [20,000 c/m surface (GM)] in the gravel at the east side of the road on June 4, 1969. The major gamma emitter was  $^{60}\text{Co}$ . Appropriate personnel were notified.

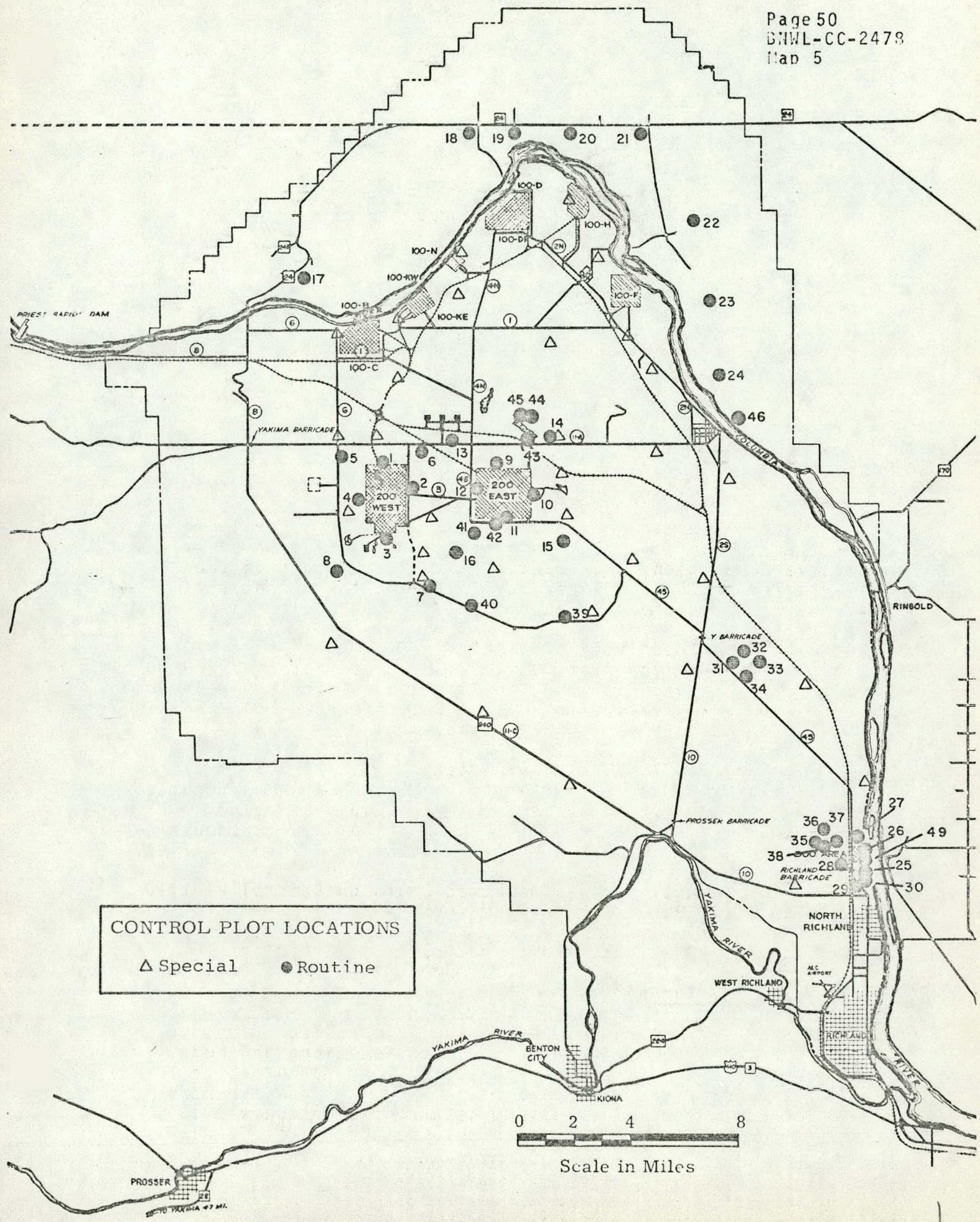


North of the Wye Barricade on Route 4S, an unusual response was noted on June 26, 1969, on a routine survey. Survey of the area indicated a general increase of 100-150 c/m above background. No discrete particles were detected.

## 2. Control Plots

Thirty-nine small areas, called control plots, are located within the Hanford boundaries (see Map 5). These plots, measuring 10' by 10', are periodically surveyed with a GM survey meter for deposited radioactive material. In addition, thirty-two special control plots located near test wells are usually surveyed on a semi-annual basis; however, no such survey was conducted during the first half of 1969.

On three occasions during the first six months of 1969, surveys of control plots detected radioactive deposition on Control Plot 10 on the east perimeter of 200 East. No radioactive particles were detected on other control plots during this period. For comparison, two instances of radioactive deposition were detected on control plots on the perimeter of 200 East Area during the last six months of 1968.


Low-level activity (250-300 c/m Ci-Surface) was detected on Control Plot 10 at the east perimeter of 200 East Area on March 6, 1969, following a particulate release from Purex. Surveys of other 200 East Area Control Plots found no activity above background.

On May 20, 1969, a general activity level of 300 c/m and a maximum surface reading of 6,000 c/m (GM) was detected on Control Plot 10. Analysis of a sand sample indicated that the principal gamma emitter was  $^{106}\text{Ru-Rh}$  with some  $^{144}\text{Ce-Pr}$  also present. Appropriate personnel were notified.

Unusual activity was detected again on Control Plot 10 on June 3, 1969, with a maximum surface reading of 4,500 c/m (GM). The major gamma emitter was  $^{106}\text{Ru-Rh}$ . A re-survey on June 17, 1969, detected no radioactive particles.

## 3. Special Surveys

A series of vegetation samples were collected around the 200 East Area following the increased alpha and beta concentrations noted on air filters during March. Beta activity was highest on vegetation from the east and north of 200 East Area. The maximum beta concentration was 13 pCi/g (wet weight) on a sample obtained near well 699-42-42.



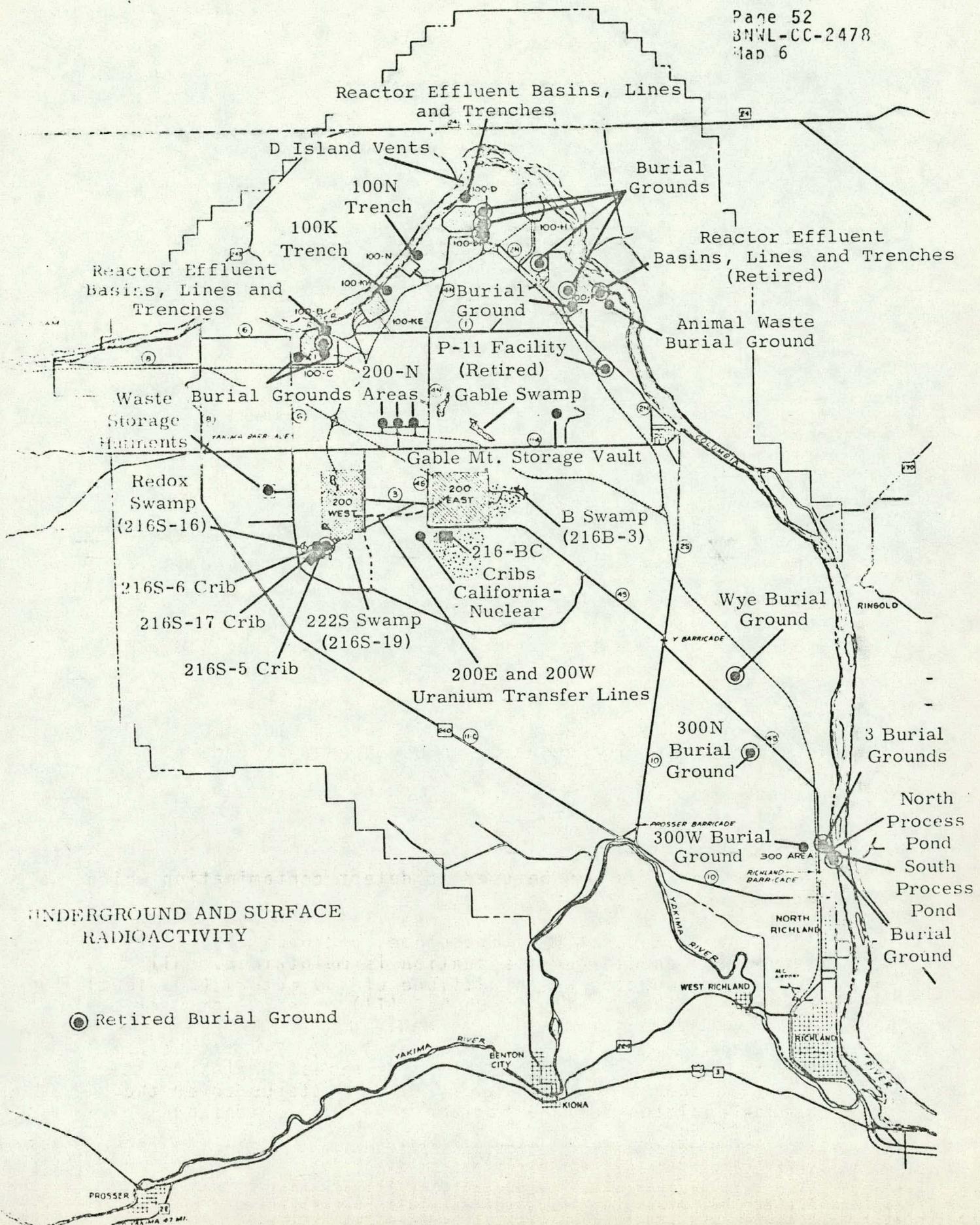
The principal gamma emitters were  $^{137}\text{Cs}$ - $^{137}\text{mBa}$  (8.8  $\mu\text{Ci/g}$ ) and  $^{144}\text{Ce-Pr}$ . Alpha activity on vegetation collected during this same survey was about 0.04  $\mu\text{Ci/g}$ . The highest alpha concentration (0.09  $\mu\text{Ci/g}$ ) was on a sample collected near the 200-West gate.

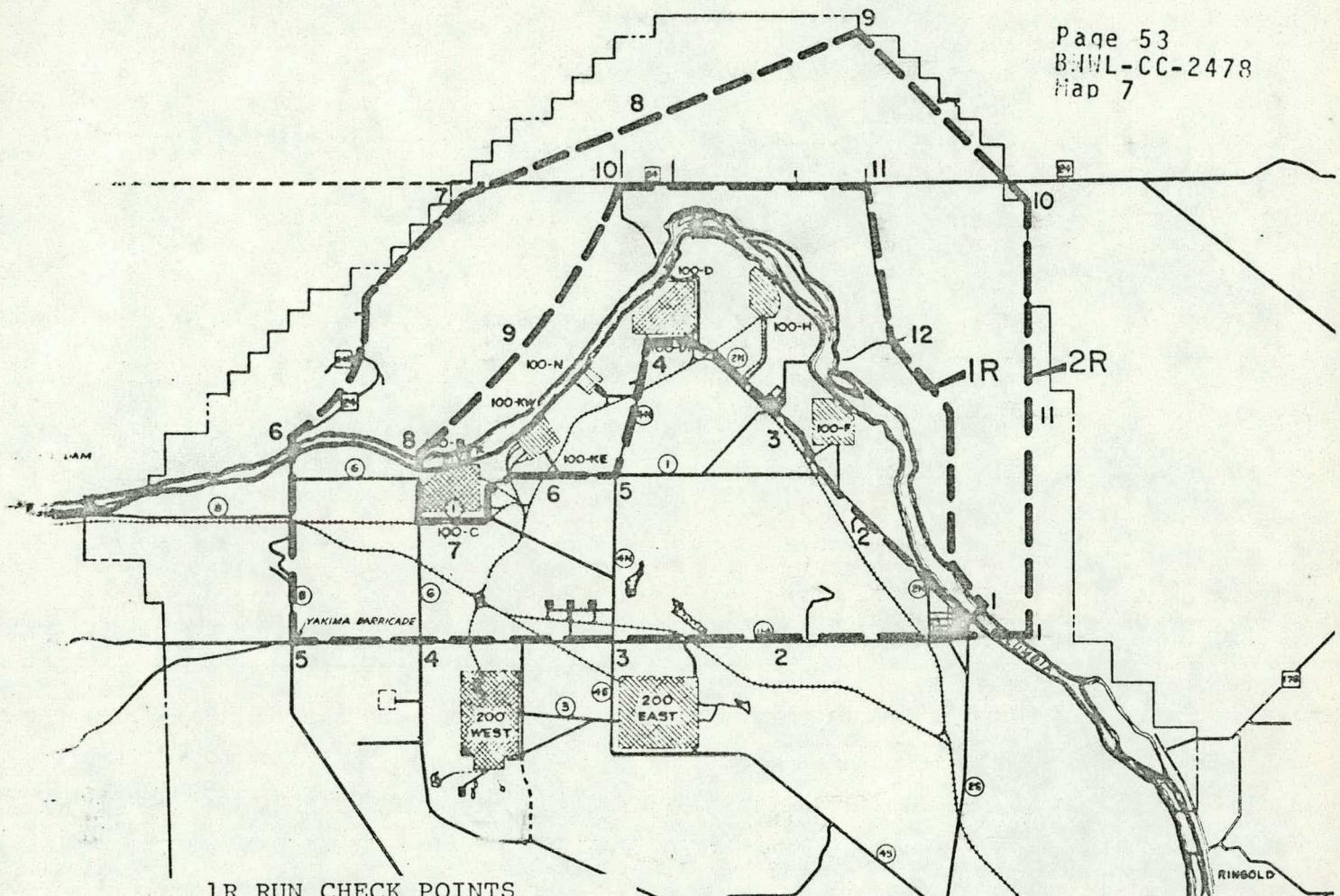
#### 4. Waste Disposal Sites

Retired waste burial grounds and areas where surface contamination is known to exist are inspected periodically for general physical condition and evidence of disturbance. The locations of such sites outside plant areas are shown in Map 6. During the first half of 1969, inspections were made of all the indicated areas.

No unusual radiation levels were observed, however, the following conditions were noted and appropriate personnel were notified.

February:

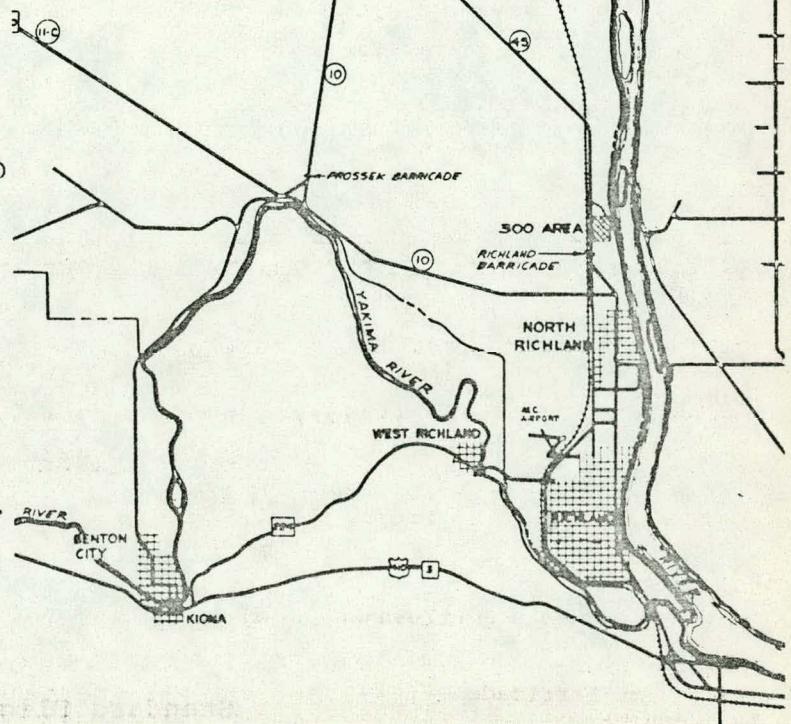

On February 20, steam leaks were noted along the 100-C effluent line. At 100-F Area, the southwest burial ground had an open chain fence and open old slag disposal holes. The biology burial ground was open and uncovered. At Gable Mountain storage vault, the southwest corner was washed out. Signs were faded along the uranium transfer lines. Trash was blowing outside the chain at the 300 West Burial Ground.


April:

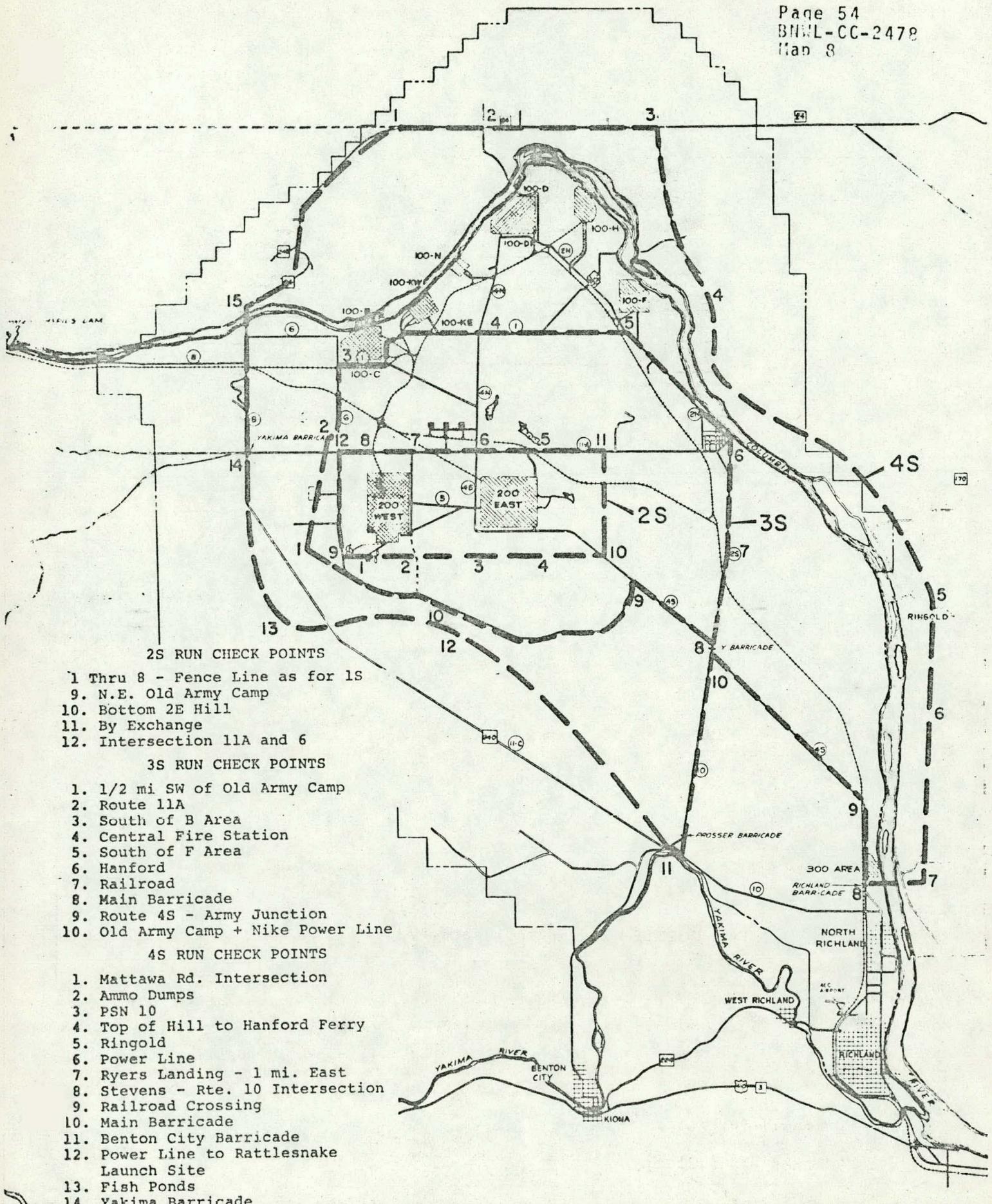
On April 15, a leak was noted along the 100-B-C effluent lines. Sign appeared to be in need of repair. At 100-F Area, the Lewis Canal was not well-marked (chain and signs were down).

#### 5. Aerial Surveys

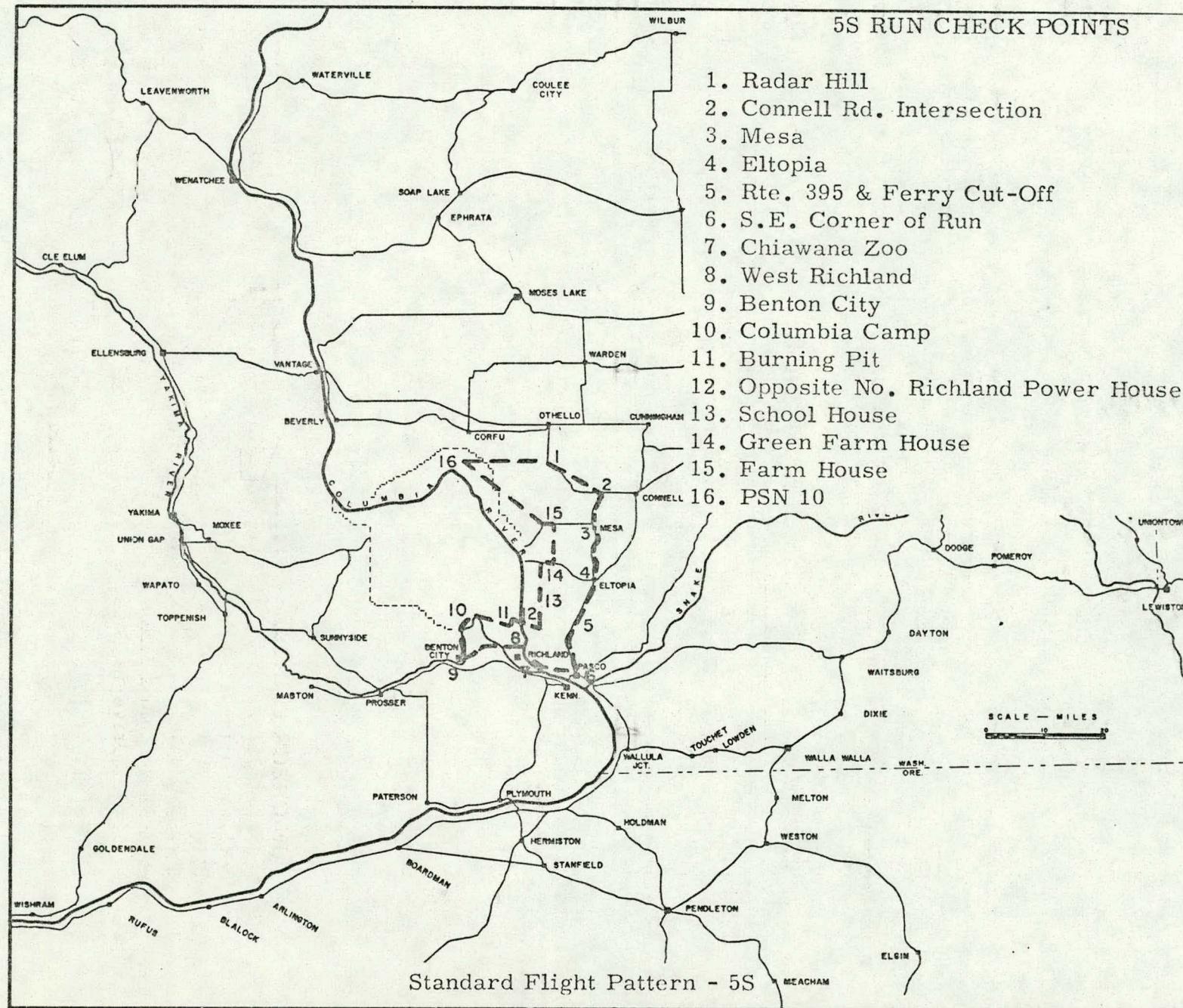
Aerial surveys can be used to detect contamination which is spread over a large land area. Like road and control plot surveys, aerial surveys are only qualitative in nature, but through routine use of this technique, a capability for rapid assessment of an emergency situation is maintained. All surveys are conducted at an altitude of 150 meters (500 feet) using a three inch by five inch NaI (Tl) scintillation crystal detector. Aerial survey flights made during the period January-June, 1969, are shown on Maps 7-14. Two flight patterns cover the Columbia River from Priest Rapids Dam to the Pacific Ocean, and two other flight patterns cover the Richland-Pendleton-Spokane "triangle" and the Richland-

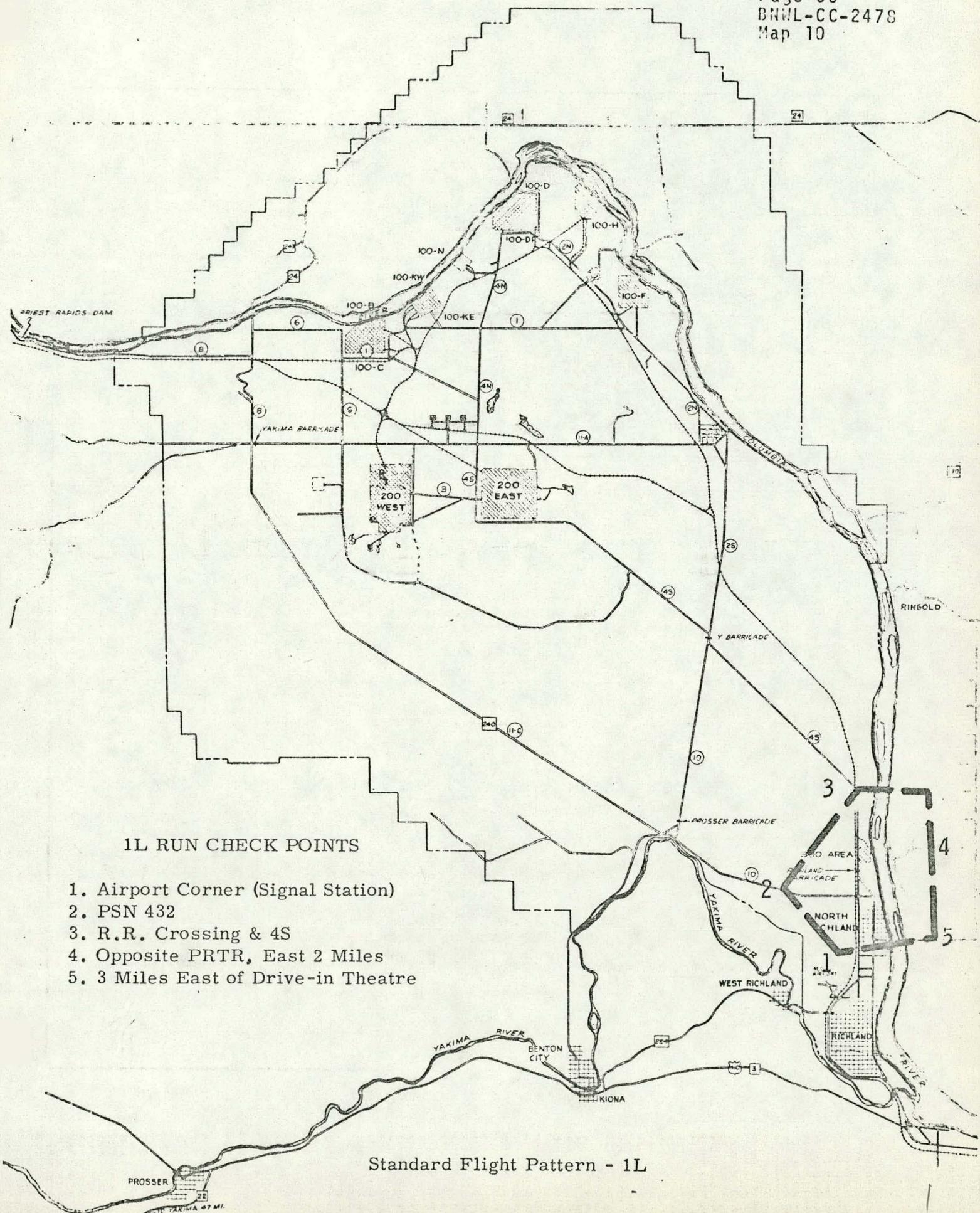






1. Hanford Ferry
2. So. of F Area, Main Rd. Inter.
3. White Bluffs
4. Main Road to 100-D
5. Central Fire Station
6. So. of K Area, Main Rd. Inter.
7. 100-B Area
8. North of B Area, Old House
9. North of 100-K Area
10. County Line Rd., North of 100-D
11. PSN 10
12. MP 16

2R RUN CHECK POINTS

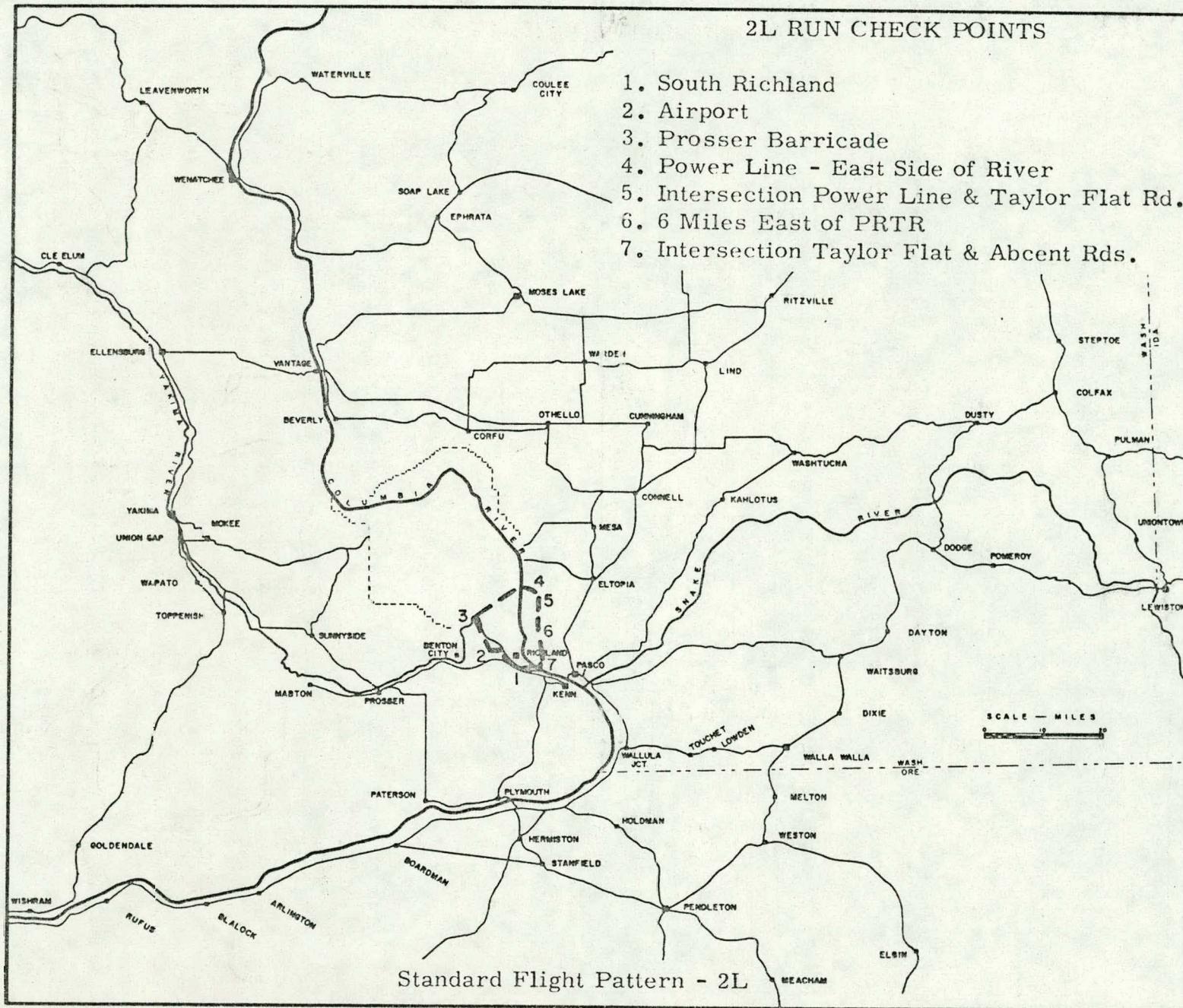

1. S.E. Corner of Run
2. By Exchange
3. Intersection 11A and 4S
4. Intersection 11A and 6
5. Yakima Barricade
6. Vernita Ferry
7. Mattawa Rd. and County Line Rd.
8. Army Position 91
9. 06-C - Saddle Mountain
10. MP 30
11. Over 7 Trees in a Clump




Standard Flight Pattern 1R and 2R

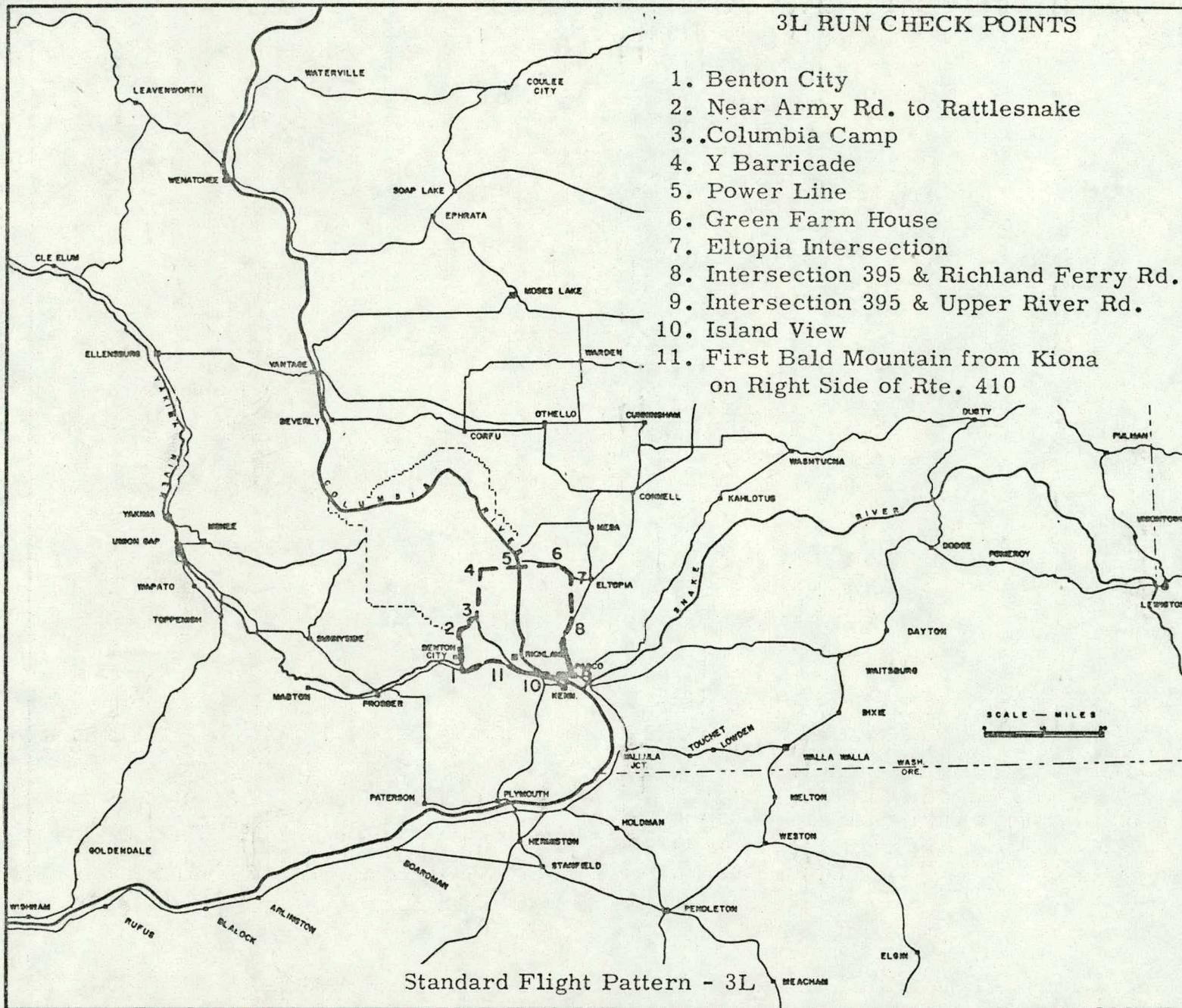


Standard Flight Patterns 2S, 3S and 4S



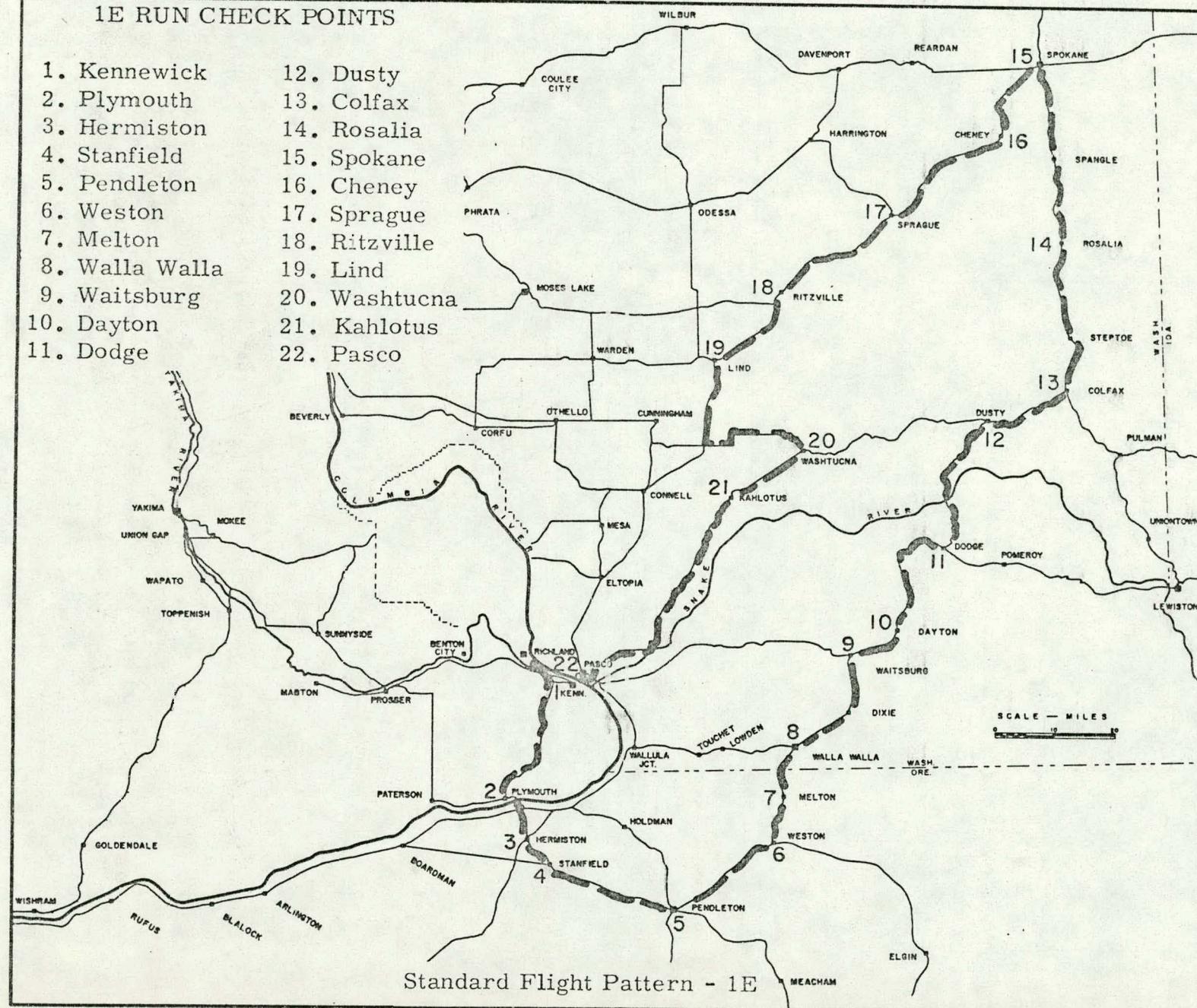


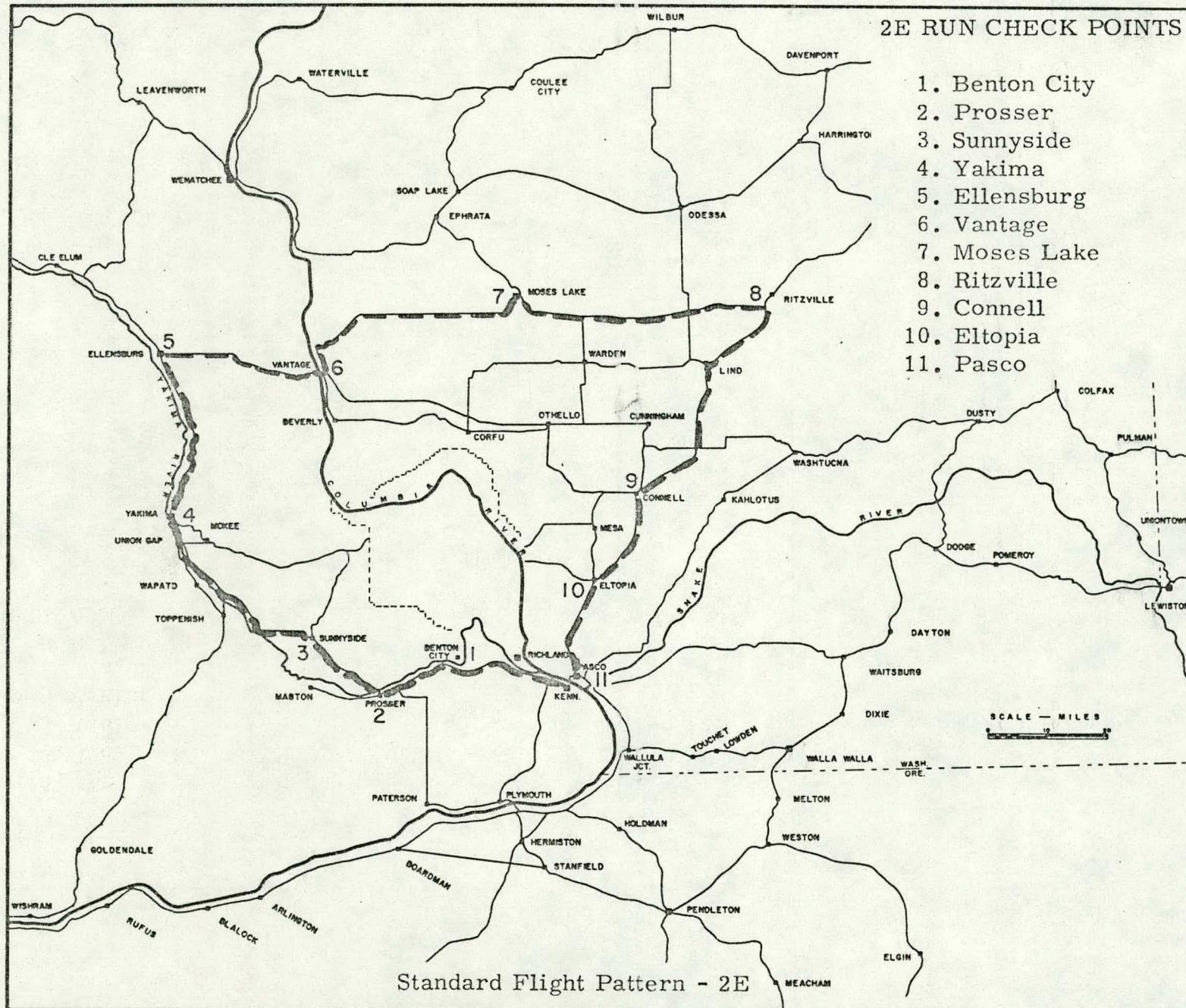

### Standard Flight Pattern - 1L


## 2L RUN CHECK POINTS

1. South Richland
2. Airport
3. Prosser Barricade
4. Power Line - East Side of River
5. Intersection Power Line & Taylor Flat Rd.
6. 6 Miles East of PRTR
7. Intersection Taylor Flat & Abcent Rds.




### 3L RUN CHECK POINTS


1. Benton City
  2. Near Army Rd. to Rattlesnake
  3. Columbia Camp
  4. Y Barricade
  5. Power Line
  6. Green Farm House
  7. Eltopia Intersection
  8. Intersection 395 & Richland Ferry Rd.
  9. Intersection 395 & Upper River Rd.
  10. Island View
  11. First Bald Mountain from Kiona  
on Right Side of Rte. 410



1E RUN CHECK POINTS

1. Kennewick
2. Plymouth
3. Hermiston
4. Stanfield
5. Pendleton
6. Weston
7. Melton
8. Walla Walla
9. Waitsburg
10. Dayton
11. Dodge
12. Dusty
13. Colfax
14. Rosalia
15. Spokane
16. Cheney
17. Sprague
18. Ritzville
19. Lind
20. Washtucna
21. Kahlotus
22. Pasco





Ellensburg-Ritzville "triangle". Nine flight patterns are located within and near the Hanford project perimeter.

A single anomalous reading over the 100 Areas Central Fire Station was attributed to reactor effluent vapors. All other flight patterns flown in May and June detected no unusual conditions.

#### 6. Other

All railroad tracks outside the area fences were surveyed with the gamma scintillator normally used for road monitoring. No particulate contamination was found in spite of increased liquid waste transport by rail, between the 300 and 200 Areas.

A special radiological survey of a small land area in the southwest portion of the reservation was performed in March to determine its suitability for release for public use. As expected, no unusual radioactivity was noted. Samples of the desert vegetation were analyzed for gamma emitters. The maximum concentration of the major gamma emitter,  $^{137}\text{Cs}$ - $^{137}\text{mBa}$  was 2.0 pCi/g on vegetation collected near the intersection of the Emergency Relocation Center road and the boundary fence. Other radionuclides present were  $^{7}\text{Be}$ ,  $^{40}\text{K}$ ,  $^{46}\text{Sc}$ ,  $^{54}\text{Mn}$ ,  $^{95}\text{Zr-Nb}$ ,  $^{103}\text{Ru}$ ,  $^{106}\text{Ru-Rh}$ ,  $^{125}\text{Sb}$ ,  $^{140}\text{Ba-La}$ ,  $^{141}\text{Ce}$ ,  $^{144}\text{Ce-Pr}$ ,  $^{154}\text{Eu}$ ,  $^{155}\text{Eu}$ ,  $^{208}\text{Tl}$ ,  $^{212}\text{Bi}$ , and  $^{212}\text{Pb}$ . Concentrations of  $^{137}\text{Cs}$ - $^{137}\text{mBa}$  in samples collected from Sections 8, 10, and 18 (T10N, R27E) ranged from 0.3 to 1.7 pCi/g and in samples collected along Highway 240 ranged from 0.1 to 1.1 pCi/g.

For comparison, vegetation samples collected from Finley, Benton City, Big Pasco, Island View, and Plymouth had similar radionuclides but somewhat less activity.  $^{137}\text{Cs}$ - $^{137}\text{mBa}$  concentrations in samples from these locations ranged from <0.05 to 0.7 pCi/g. A fresh influx of weapons testing fallout in January and February probably contributed to the observed levels of activity at all locations.

#### External Exposure Rates

##### 1. Exposure Rates On-Plant

Trends in external radiation exposure rates were determined from pencil-type ionization chambers located (in clusters of three) within buildings designated "614" (Map 15) where air samples were also collected. At three locations (100-N WPPSS, Rt. 10 Mile 1.6, and 700 Area), Victoreen stray radiation chambers were also used. The average results for the first half of 1969 are presented in Table 12 below with data from offsite locations and from previous years for

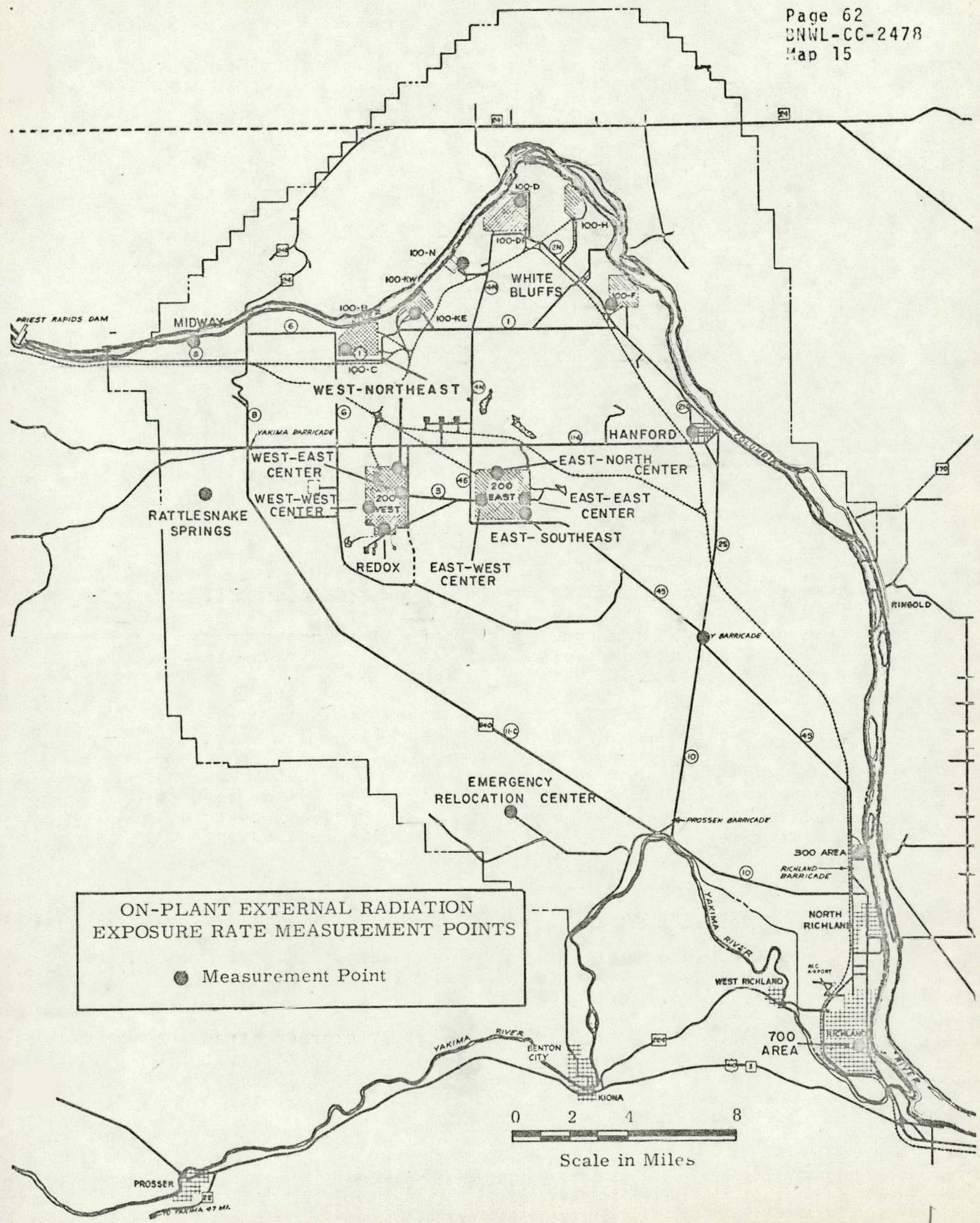



TABLE 12  
AVERAGE EXTERNAL GAMMA EXPOSURE RATES (January-June, 1969)  
(mR/day)

| Location                       | 1969<br>Jan-June    | 1968<br>July-Dec | 1968<br>Jan-June | 1967<br>July-Dec | 1967<br>Jan-June |
|--------------------------------|---------------------|------------------|------------------|------------------|------------------|
| <b>100 Areas</b>               |                     |                  |                  |                  |                  |
| Midway                         | --(1)               | 0.60             | 0.57             | 0.67             | 0.53             |
| 100-B                          | 1.03                | 0.69             | 0.72             | 0.89             | 0.56             |
| 100-K                          | 1.35                | 1.65             | 1.94             | 1.69             | 1.35             |
| 100-N                          | 1.05 <sup>(2)</sup> | 0.91             | 1.20             | 0.92             | 0.73             |
| *100-N (WPPSS)                 | 0.54 <sup>(3)</sup> | --               | --               | --               | --               |
| 100-D                          | 0.95                | 0.41             | 0.48             | 0.51             | 0.65             |
| 100-F                          | 1.06                | 0.43             | 0.42             | 0.42             | 0.35             |
| Hanford                        | 1.12                | 0.56             | 0.71             | 0.60             | 0.56             |
| <b>200 West Area</b>           |                     |                  |                  |                  |                  |
| Redox                          | 0.53                | 0.61             | 0.56             | 0.56             | 0.62             |
| West Center                    | 0.60                | 0.43             | 0.41             | 0.51             | 0.40             |
| East Center                    | 0.56                | 0.41             | 0.41             | 0.49             | 0.42             |
| West-Northeast                 | 0.84                | 0.48             | --               | --               | --               |
| <b>200 East Area</b>           |                     |                  |                  |                  |                  |
| North Center                   | 0.94                | 0.58             | --               | --               | --               |
| West Center                    | 0.44                | 0.42             | 0.52             | 0.45             | 0.34             |
| Southeast                      | 0.56                | 0.46             | 0.50             | 0.50             | 0.35             |
| East Center                    | 1.92                | 0.53             | 0.46             | 0.58             | 0.56             |
| <b>Other</b>                   |                     |                  |                  |                  |                  |
| Rattlesnake Springs            | 0.56                | 0.42             | 0.40             | 0.46             | 0.40             |
| Emergency Relocation<br>Center | 0.65                | 0.41             | 0.40             | 0.43             | 0.33             |
| Wye Barricade                  | 0.51                | 0.62             | 0.62             | 0.65             | 0.55             |
| *Rt. 10, Mile 1.6              | 0.31*               | 0.34*            | 0.38*            | 0.34*            | 0.36*            |
| 300 Area                       | 0.92 <sup>(4)</sup> | 0.63             | 0.55             | 0.54             | 0.44             |
| 700 Area                       | 0.53                | 0.62             | 0.31             | 0.75             | 0.52             |
| *700 Area                      | 0.26*               | 0.29*            | 0.28*            | 0.27*            | 0.26*            |

TABLE 12 (Continued)

| Location             | 1969<br>Jan-June | 1968<br>July-Dec | 1968<br>Jan-June | 1967<br>July-Dec | 1967<br>Jan-June |
|----------------------|------------------|------------------|------------------|------------------|------------------|
| <b>Off-Plant</b>     |                  |                  |                  |                  |                  |
| Berg Ranch           | 0.59             | 0.74             | --               | --               | --               |
| Wahluke              | 0.82             | 0.48             | 0.46             | --               | --               |
| New Moon             | 0.75             | 0.64             | 0.40             | --               | --               |
| Eltopia              | 0.91             | 0.62             | 0.54             | --               | --               |
| Ringold Fish Station | 0.70             | 0.55             | 0.42             | --               | --               |
| Byers Landing        | 0.49             | 0.33             | 0.27             | --               | --               |
| Pasco                | 0.89             | 0.46             | 0.38             | --               | --               |
| Benton City          | 0.62             | 0.57             | 0.38             | --               | --               |
| Finley               | 0.94             | 0.55             | --               | --               | --               |
| McNary               | 0.62             | 0.61             | 0.47             | --               | --               |

\* Average measurements with stray radiation chambers.

1. Data from Midway were invalid.
2. This represents only data for January-March because the 100-N location was moved at the end of March and stray radiation chambers substituted for the pocket dosimeters.
3. Measurements with stray radiation chambers at the WPPSS location within 100-N include April-June only.
4. The 300 Area sampling location was moved from the south-central location to a west-central location in late March.

comparison (note correction of previously published numerical averages of 100 Areas data for January-June, 1968). However, data early this year may not be wholly comparable to past data due to dosimeter reader problems and consequent changes in equipment, procedures, and calibrations during the first half of 1969. In addition, the pencils are subject to error due to mechanical shock, heat, humidity and other types of leakage. The results are presented primarily as trend indicators and are only semi-quantitative measurements of exposure rates.

Increased exposure rates were generally attributed to increased fallout. Increased releases of radionuclides to the environs at 200 East Area were partially responsible for increases in pencil readings at that location.

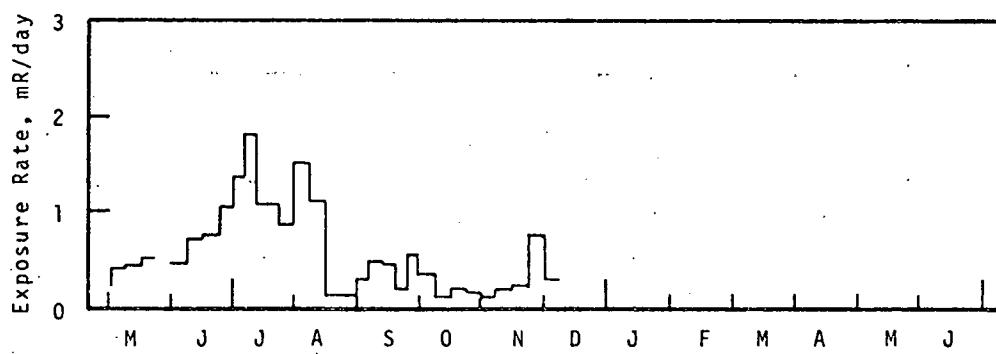
The maximum exposure rate averaged over the first six months of 1969 was 1.9 mR/day at 200-East East Center, a location where higher than normal concentrations of airborne radioactive particulates were observed and exposure to radiation sources is also known to occur.

An unusual average exposure rate 6.2 mR/day was noted at 200-East East Center during 6-2 to 6-9. Transient exposure rates during that week could have been significantly higher than 6.2 mR/day. ARICO personnel were notified.

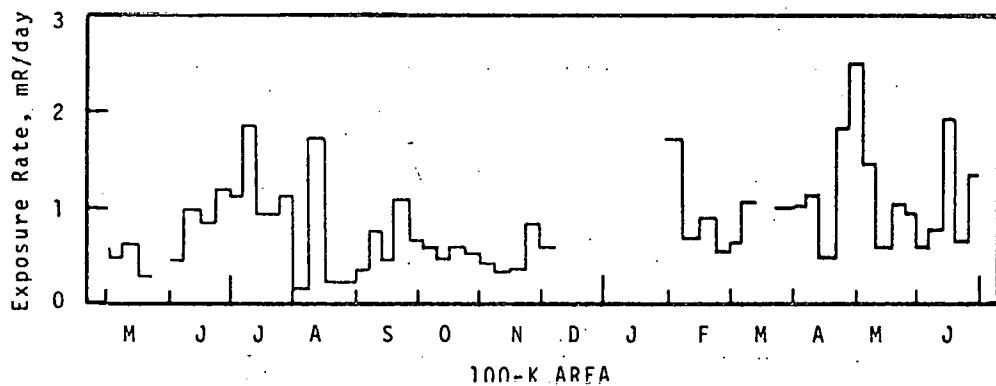
Other locations where the average exposure rate during the first half of 1969 was about 1 mR/day or greater were 100-B, 100-D, 100-K, 100-N, 100-F, and Hanford, possibly as a result of reactor effluent vapors. Locations where the average exposure rate during the first half of 1969 was in the range 0.8 to 0.9 mR/day were the following: 200-East North Center, 300 Area\*, 200-West Northeast (on-plant); and Kennewick, Pasco, Wahluke, Eltopia, and New Moon. For comparison, exposure rates at all off-plant locations with the exceptions of Kennewick and Eltopia averaged less than 0.5 mR/day during the first half of 1968. Partial cause for the increased readings during 1969 was attributed to faulty dosimeter reader performance during the early part of 1969.

## 2. 100-N Area

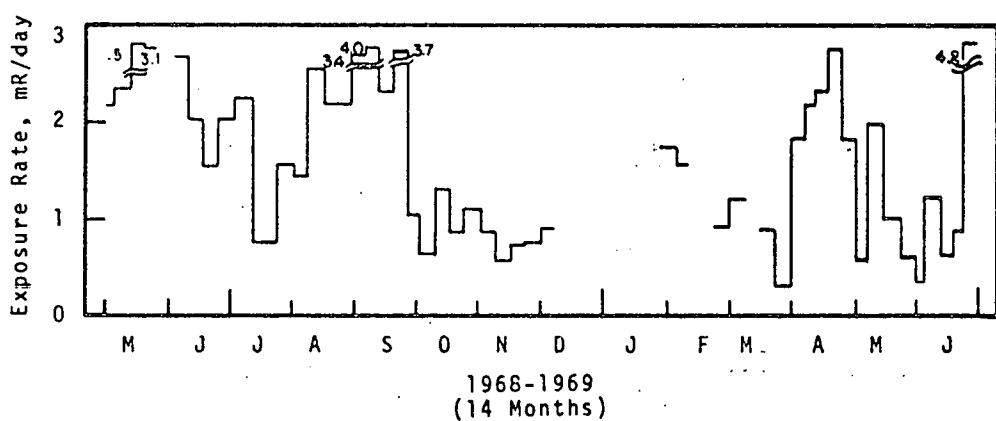
Victoreen stray radiation chambers were substituted for the pocket-type dosimeters at 100-N Area at the end of March and the sampling location was moved in order to obtain data.


---

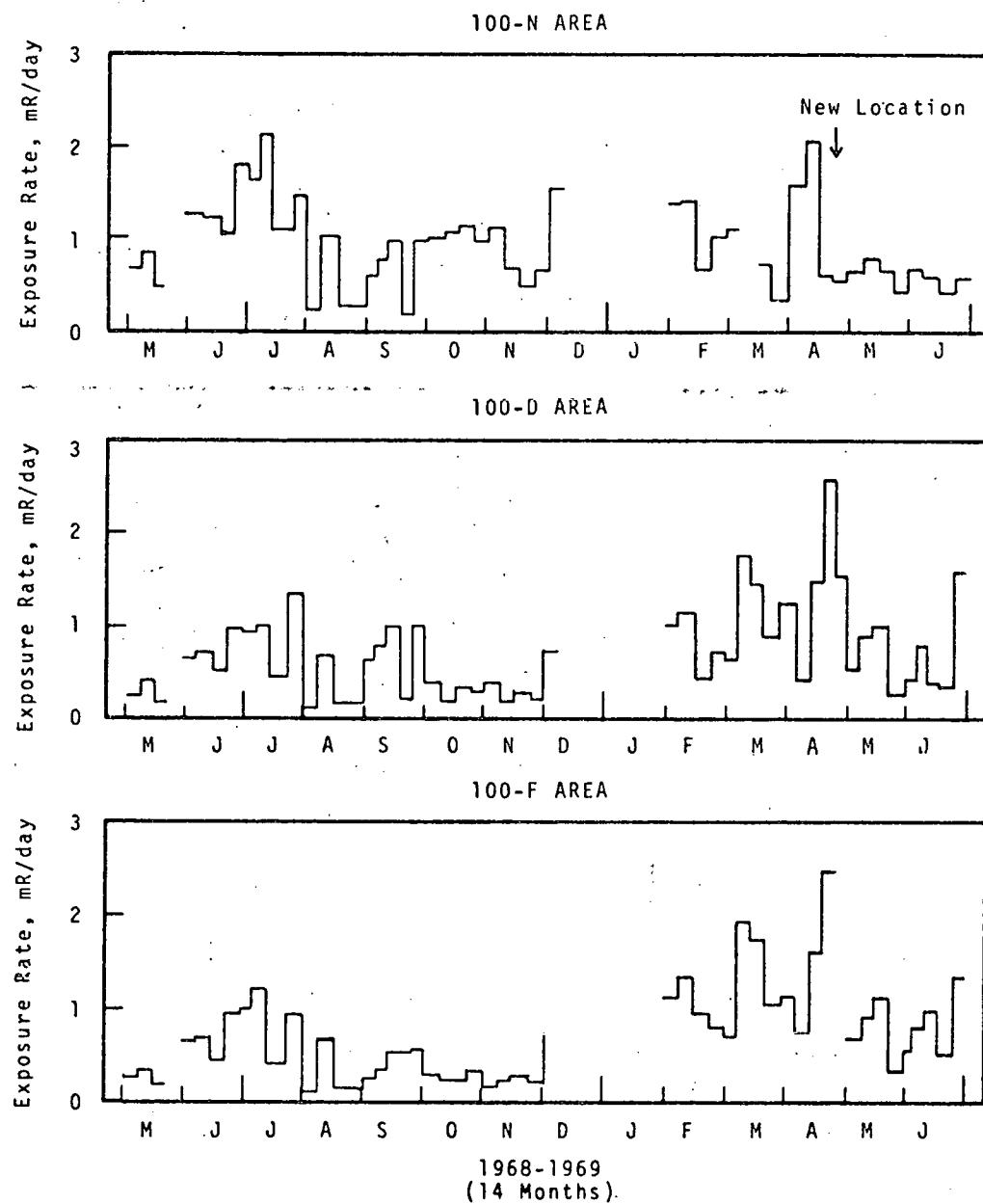
\* 300 Area location is exposed to accelerator "sky shine".


suitable for estimating the potential exposure of WPPSS personnel. The appropriate radiation dose limits for this group are those for members of the general public. Based on measurements with stray radiation chambers at 100-N and Richland during March, April, and May, the exposure rate at 100-N was approximately twice that observed at Richland (0.54 compared to 0.26 mR/day). Based on the net exposure rate (0.28 mR/day) and assuming exposure for 40 hours per week (50 weeks/yr), the potential annual whole body dose to WPPSS personnel from Hanford sources of external radiation at 100-N would be 23 mrem/yr (about 5 percent of the limit for individuals non-occupationally exposed).

EXTERNAL RADIATION ON PLANT  
100 AREAS AND VICINITY

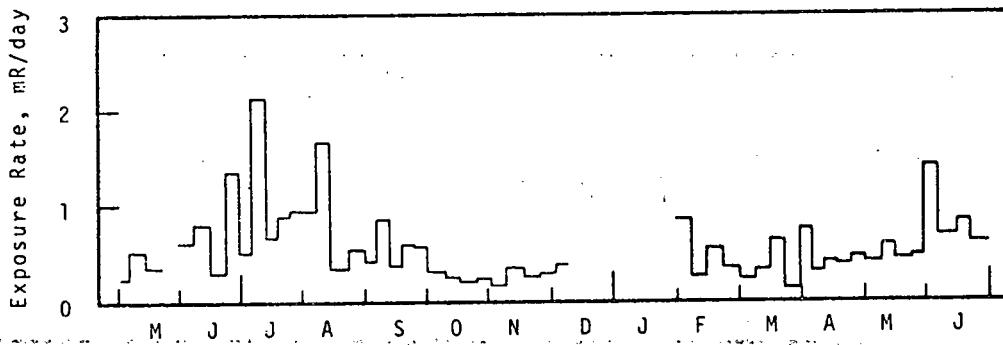

MIDWAY



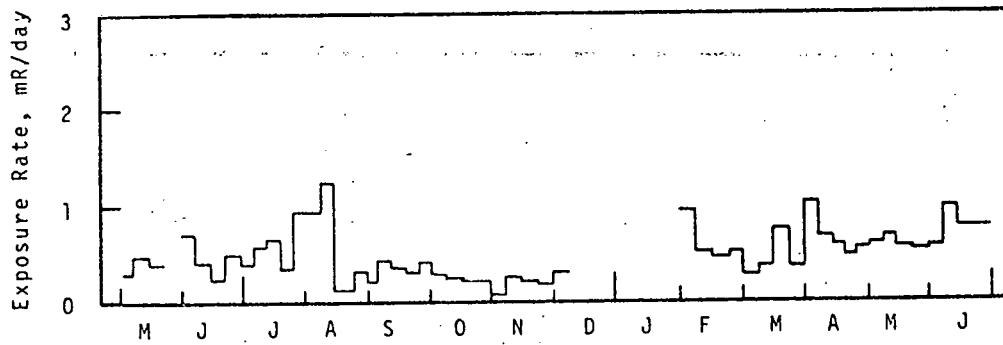

100-B AREA



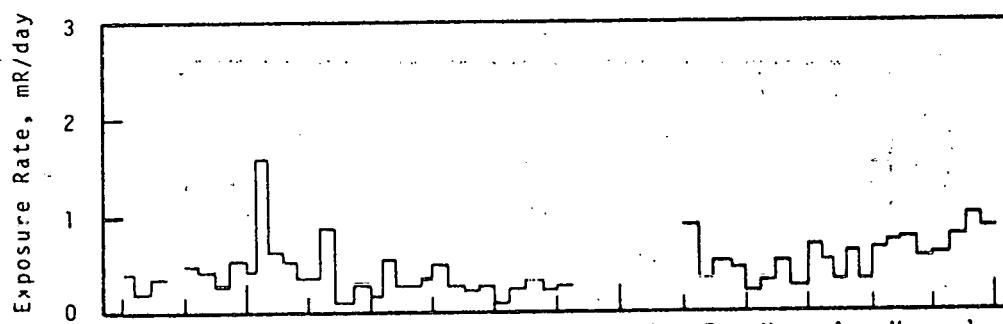
100-K AREA




EXTERNAL RADIATION ON PLANT  
100 AREAS AND VICINITY



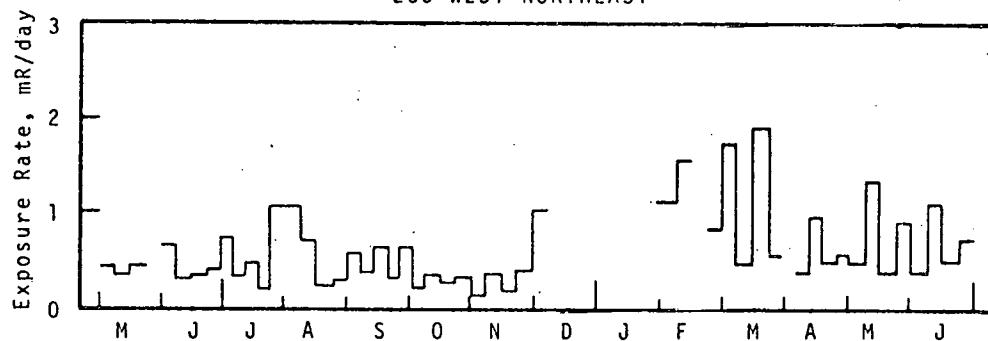

EXTERNAL RADIATION ON PLANT  
200 AREAS


200-WEST REDOX

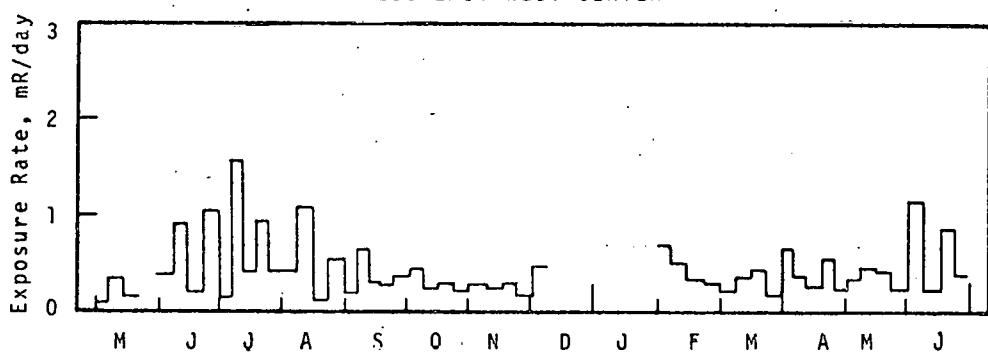


200-WEST WEST CENTER

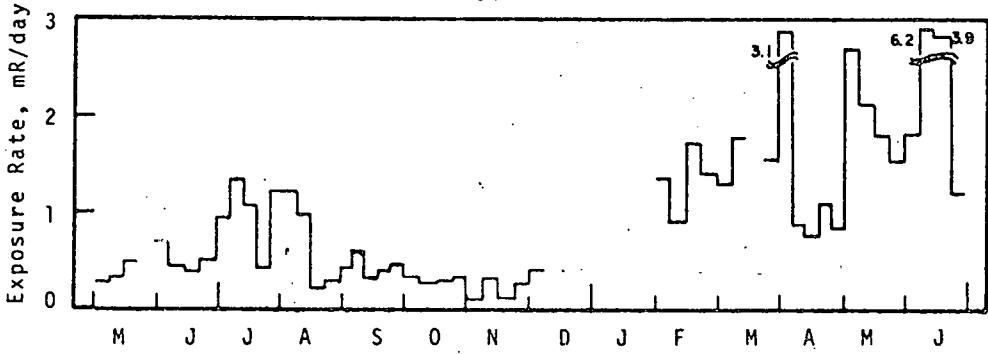



200-WEST EAST CENTER




1968-1969  
(14 Months)

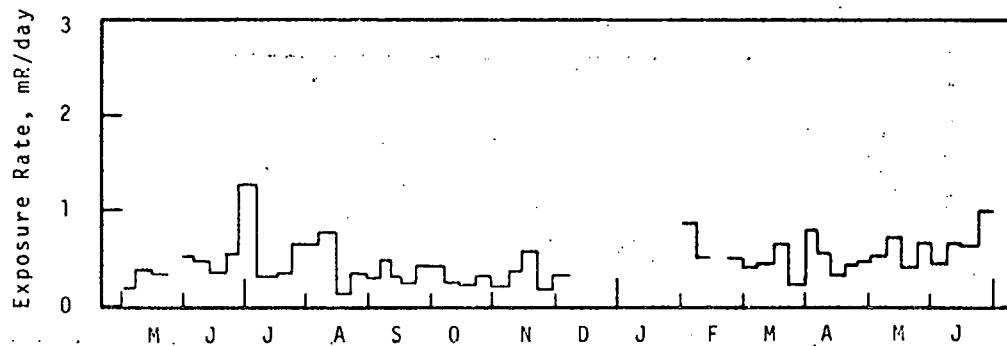
EXTERNAL RADIATION ON PLANT  
200 AREAS


200-WEST NORTHEAST

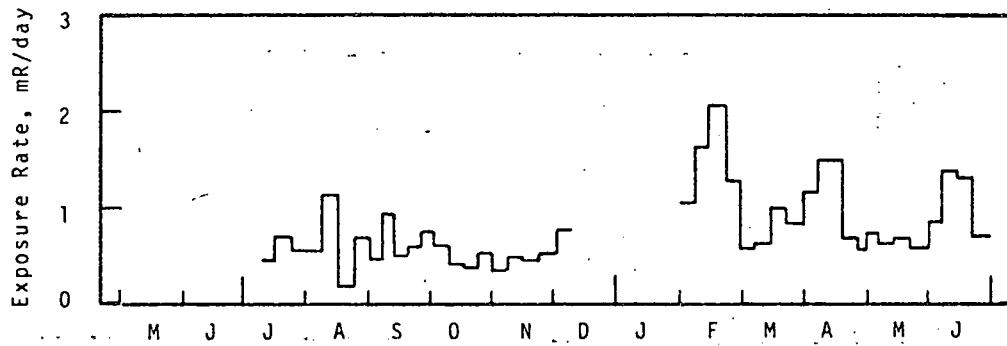


200-EAST WEST CENTER

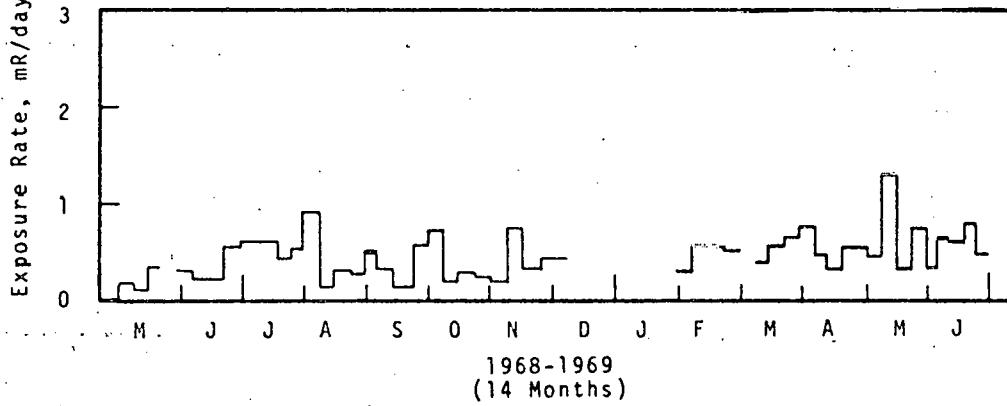



200-EAST EAST CENTER



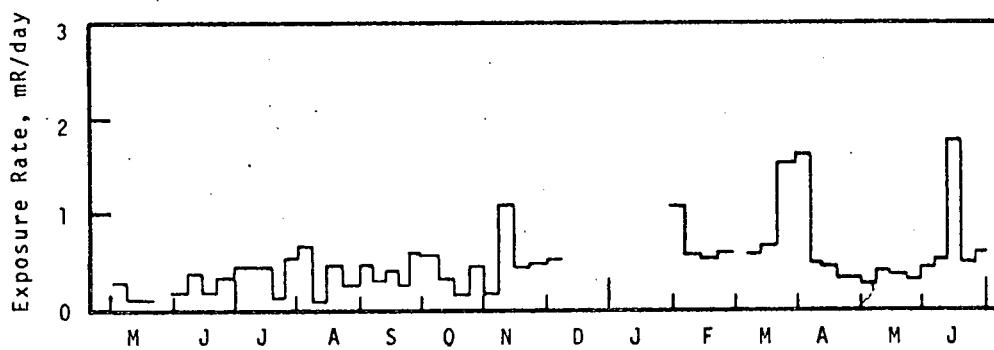

1968-1969  
(14 Months)

EXTERNAL RADIATION ON PLANT  
200 AREAS AND INTERMEDIATE AREAS

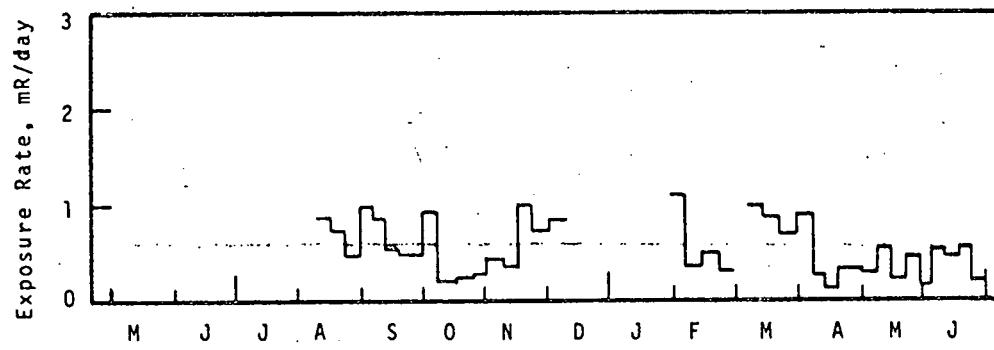

200-EAST SOUTHEAST



200-EAST NORTH CENTER




RATTLESNAKE SPRINGS



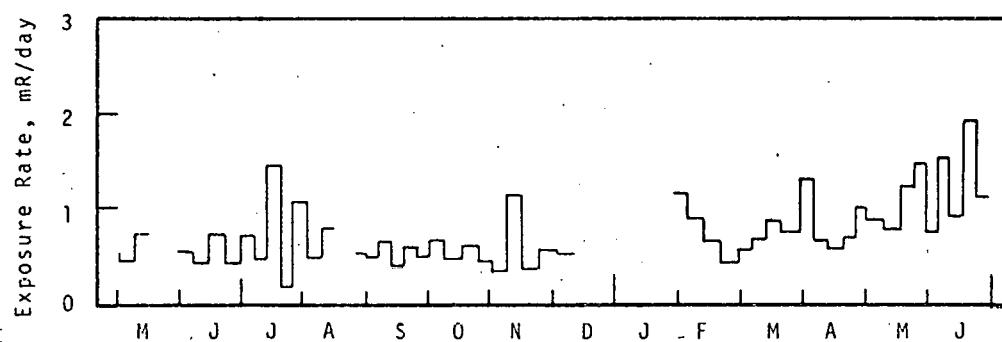

EXTERNAL RADIATION ON PLANT INTERMEDIATE AREAS

EMERGENCY RELOCATION CENTER

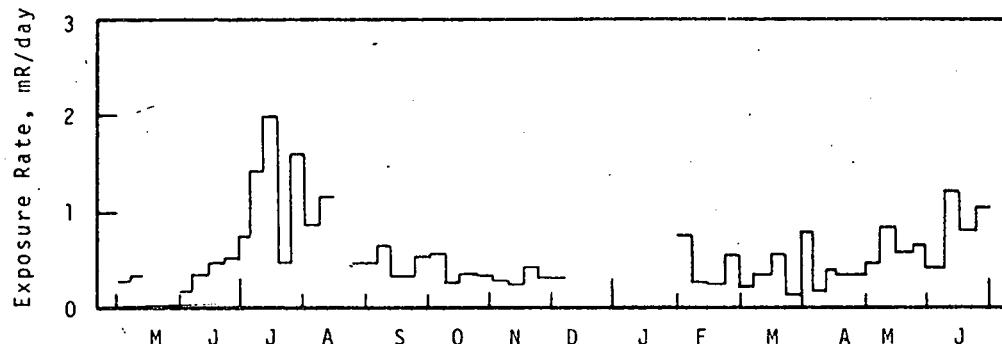


WYE BARRICADE




HANFORD




1968-1969  
(14 Months)

EXTERNAL RADIATION ON PLANT  
300 AREA AND 700 AREA

300 AREA



700 AREA

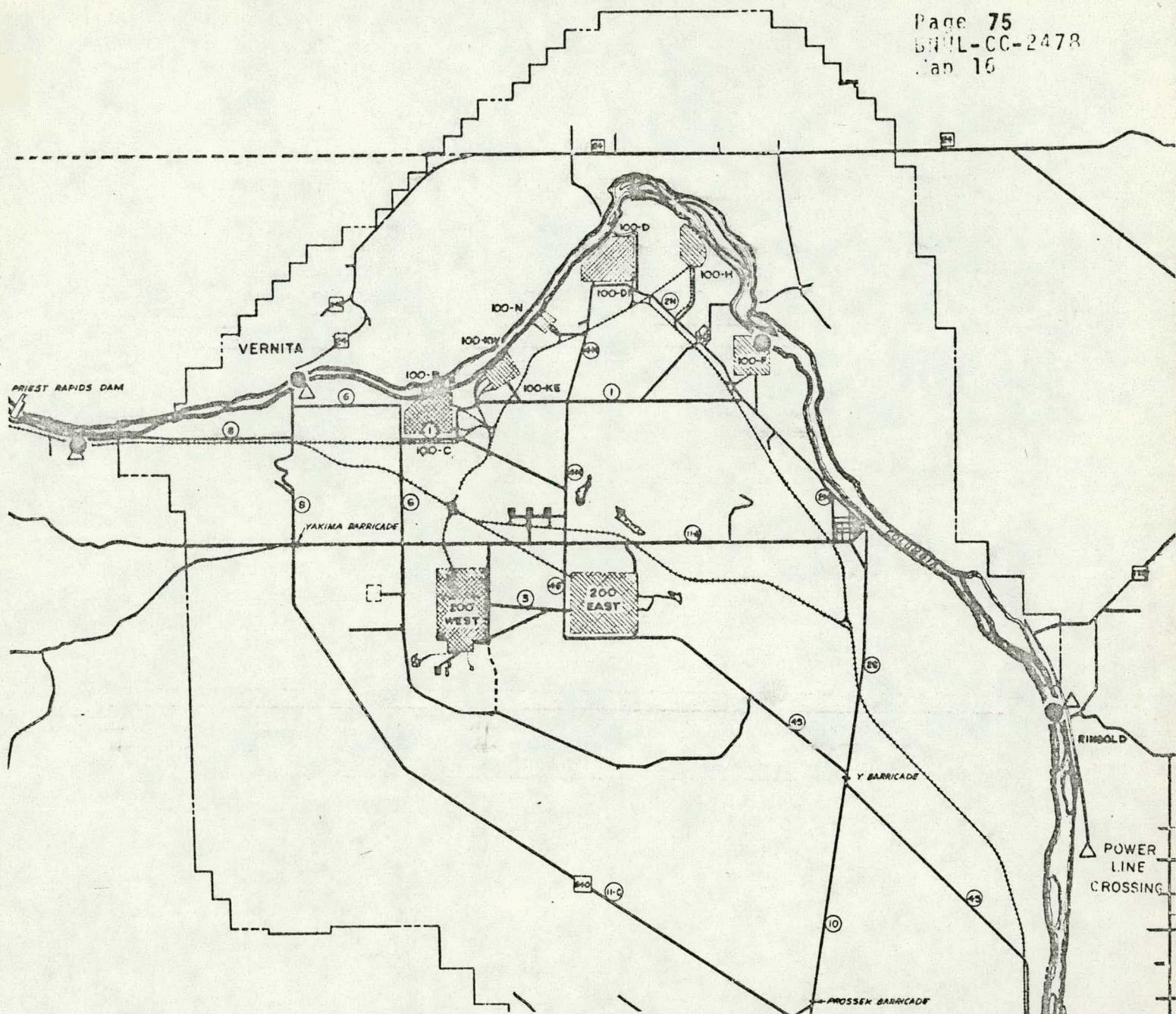


1968-1969  
(14 Months)

### 3. Exposure Rates at the Columbia River Shoreline

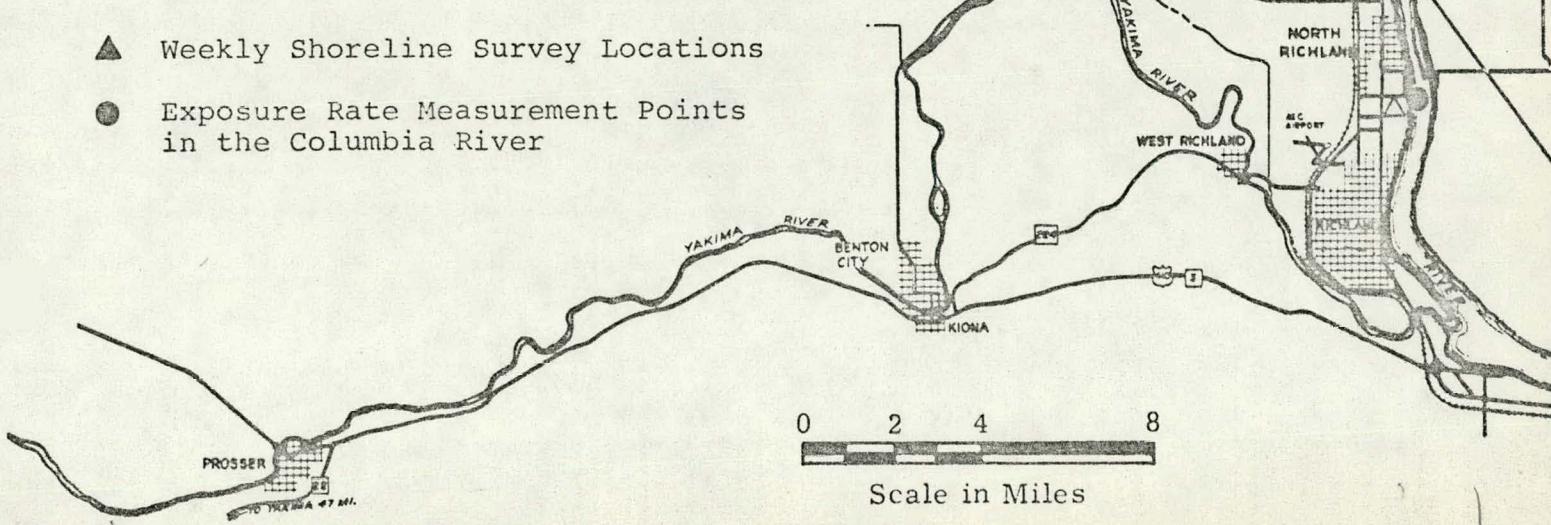
Radiation exposure rates are measured at 3 feet above the river shoreline with a 40-liter ionization chamber whose response is calibrated in  $\mu\text{R}/\text{hr}$  (radium gamma). Measurements at 3 feet approximate the exposure rate to the gonads of a person standing on the riverbank.

The weekly measurements of exposure rates at five sampling locations shown on Map 16 and at Sacajawea Park and McNary Dam (Washington shore) appear in Figures 27-28. Additional monthly shoreline surveys covering the reach of the river from the reactors to Richland include both the exposure rate at 3 feet and the levels of surface contamination as measured with a portable GM survey meter. These data appear in Table 13.


During the first six months of 1969, exposure rates on the Columbia River shoreline were generally lower than in the spring of 1968. Only one of the scheduled weekly surveys was made at Powerline Crossing due to its inaccessibility from land, however monthly surveys (by boat) indicated no unusually high exposure rates at this location during the period.

The maximum shoreline exposure rates during January-June, 1969, were measured on the far side of D Island ( $210 \mu\text{R}/\text{hr}$ ) and on the plant shore below 181-KE ( $200 \mu\text{R}/\text{hr}$ ) on March 13. For comparison, the maximum shoreline exposure rate measured during 1968 was  $1550 \mu\text{R}/\text{hr}$  below 181-KE on February 21, 1968 and several other locations had exposure rates during the spring of 1968 that exceeded  $200 \mu\text{R}/\text{hr}$ .

Levels of shoreline surface contamination at sampling locations below the plant boundary during the first six months of 1969 were generally less than  $300 \text{ c/m (GM)}$ . A maximum reading of  $5000 \text{ c/m (GM)}$  was obtained on foam at the shoreline near the Richland water plant pumphouse on March 6. The general reading somewhat back from the water's edge was  $500 \text{ c/m}$ .


### 4. Exposure Rates Below the Surface of the Columbia River

Exposure rates in the river (Figures 29-30) were determined from a cluster of five pocket dosimeters contained within submerged plastic bottles at the locations shown in Map 16. Missing data were the result of lost containers or equipment malfunction. (Note comments on page 66 regarding data acquisition based on the dosimeter reader during the first half of 1969.)



COLUMBIA RIVER SHORELINE SURVEY LOCATIONS  
AND EXPOSURE RATE MEASUREMENT POINTS

- ▲ Weekly Shoreline Survey Locations
- Exposure Rate Measurement Points  
in the Columbia River



0 2 4 8

Scale in Miles

TABLE 13

MAXIMUM READINGS (1) FROM MONTHLY SHOPELINE SURVEYS 1969  
( $\mu$ R/hr with c/m in parentheses)

## A. COLUMBIA RIVER - PLANT SHORE

| <u>Date</u> | <u>#4 1/2 mile<br/>Below 100-B</u> | <u>#6 1 mile<br/>Below 100B</u> | <u>#8 1 1/2 miles<br/>Below 100-B</u> | <u>#10 Above<br/>181 KW</u> | <u>#13 Below<br/>181 KE</u> |
|-------------|------------------------------------|---------------------------------|---------------------------------------|-----------------------------|-----------------------------|
| Mar 13      | 52(200)                            | 28(100)                         | 24(150)                               | 30(200)                     | 200(1200)                   |
| Apr 25      | -                                  | -                               | -                                     | 50(350)                     | 71(550)                     |
| Jun 4       | -                                  | -                               | -                                     | 60(200)                     | 120(600)                    |

| <u>Date</u> | <u>#17 Above<br/>181 NE</u> | <u>#25 Below<br/>181 NE</u> | <u>#29 Below<br/>181 D</u> | <u>#39 Below<br/>181 H</u> | <u>#44 White<br/>Bluffs<br/>Ferry</u> |
|-------------|-----------------------------|-----------------------------|----------------------------|----------------------------|---------------------------------------|
| Mar 13      | 130(1000)                   | 140(800)                    | 130(900)                   | 125(1000)                  | 100(850)                              |
| Apr 25      | 40(450)                     | 120(7000)                   | 114(2500)                  | 118(5500)                  | 110(800)                              |
| Jun 4       | 26(150)                     | 58(400)                     | 64(1800)                   | 60(400)                    | 65(400)                               |

| <u>Date</u> | <u>Hanford</u> | <u>Powerline<br/>Crossing</u> | <u>PRTR</u> | <u>Richland(2)<br/>Ferry</u> |
|-------------|----------------|-------------------------------|-------------|------------------------------|
| Mar 13      | 85(1500)       | 120(2000)                     | 62(550)     | 40(400)                      |
| Apr 25      | 72(800)        | 43(650)                       | 28(300)     | 28(200)                      |
| Jun 4       | 44(350)        | 33(250)                       | 32(200)     | 30(200)                      |

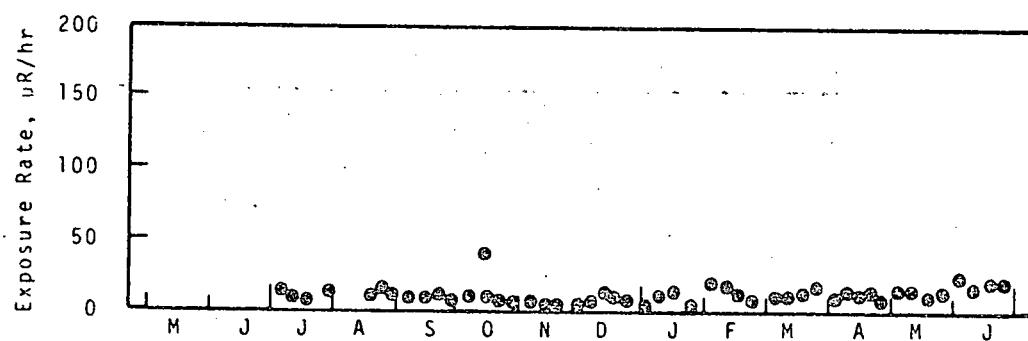
TABLE 13 (Continued)

B. COLUMBIA RIVER - FAR SHORE

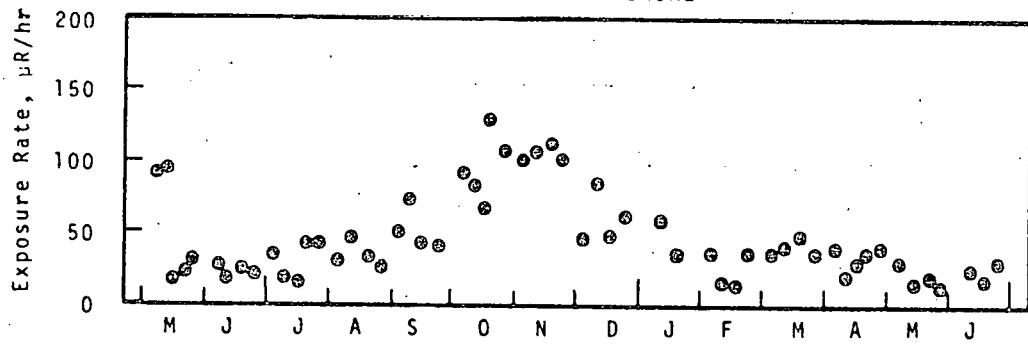
| <u>Date</u> | <u>#18 Below<br/>181 KE</u> | <u>#13 Above<br/>181 D</u> | <u>#1 D<br/>Island</u> | <u>#16 Below<br/>DR. Outfall</u> | <u>#25 White<br/>Bluffs<br/>Ferry</u> |
|-------------|-----------------------------|----------------------------|------------------------|----------------------------------|---------------------------------------|
| Mar 13      | 42(200)                     | 34(200)                    | 210(1500)              | 36(200)                          | 52(500)                               |
| Apr 25      | 19(100)                     | 18(100)                    | -                      | 22(300)                          | 120(1000)                             |
| Jun 4       | 22(150)                     | 15(150)                    | -                      | 16(150)                          | 46(300)                               |

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

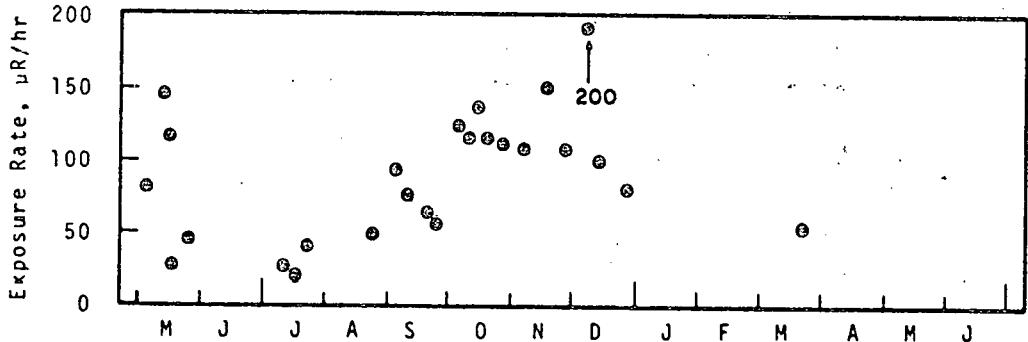
| <u>Date</u> | <u>Hanford (3)</u> | <u>Ringold (3)</u> | <u>Powerline (2)<br/>Crossing</u> | <u>Byers (2)<br/>Landing</u> |
|-------------|--------------------|--------------------|-----------------------------------|------------------------------|
| Mar 13      | 115(1500)          | 63(600)            | 67(500)                           | 68(400)                      |
| Apr 25      | 64(500)            | 25(150)            | 28(100)                           | 32(400)                      |
| Jun 4       | 28(200)            | 24(200)            | 25(250)                           | 38(250)                      |


1. Measurements reported in  $\mu\text{R}/\text{hr}$  are taken with a 40-liter ionization chamber, the center of the chamber 3 ft above ground and 3 ft back from the water's edge. Measurements reported in () are the maximum c/m found with a GM in the immediate area of the water's edge.
2. Point open to the general public during the entire year.
3. Point only open to the general public on Wednesdays, Saturdays, and Sundays, during the hunting season.

The exposure rates in the river during the spring of 1969 were generally higher than comparable data for the spring of 1968. Increases were probably due to the unusually high concentrations of the short-lived ( $2.58\text{ hr}$ )  $^{56}\text{Mn}$  observed in the river. Other river water concentrations during the first half of 1969 were below the comparable 1968 values.


Observed exposure rates downstream from the reactor outfalls during May 1969 were generally higher than during April, possibly as a result of increased river flow and consequent scouring of river sediments.

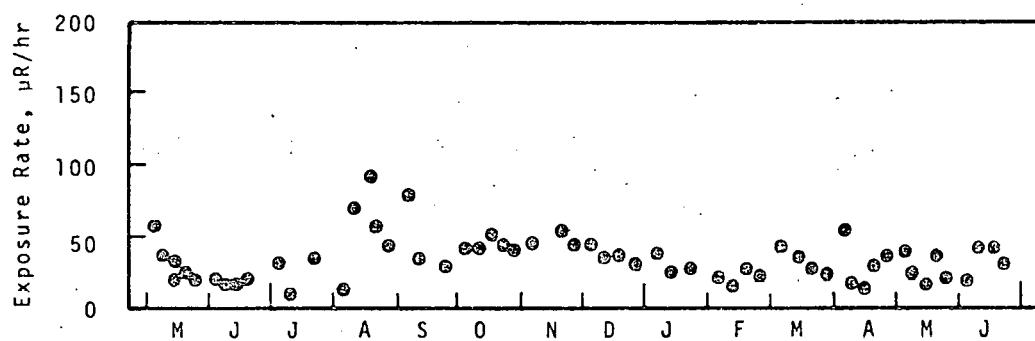
### EXTERNAL RADIATION AT THE COLUMBIA RIVER SHORELINE


PRIEST RAPIDS GAUGE STATION

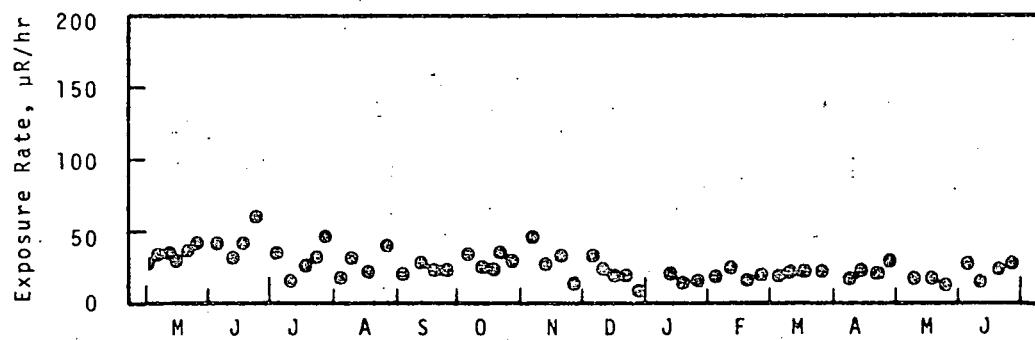


RINGOLD FAR SHORE

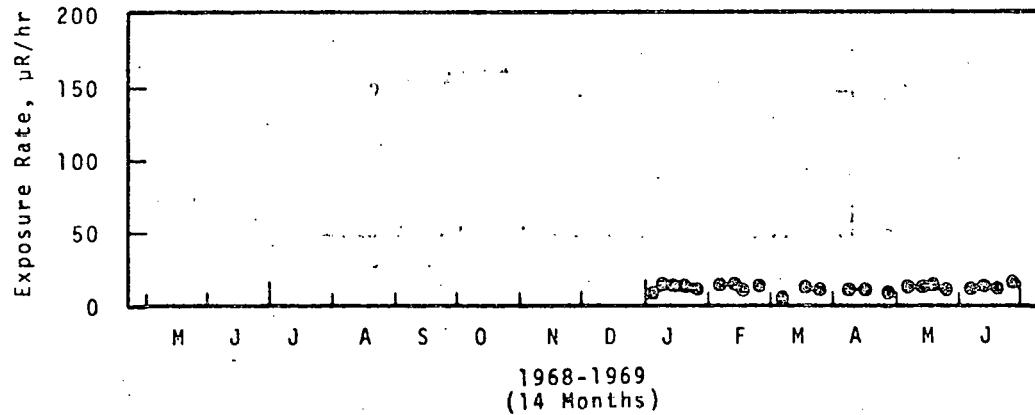



POWERLINE CROSSING FAR SHORE



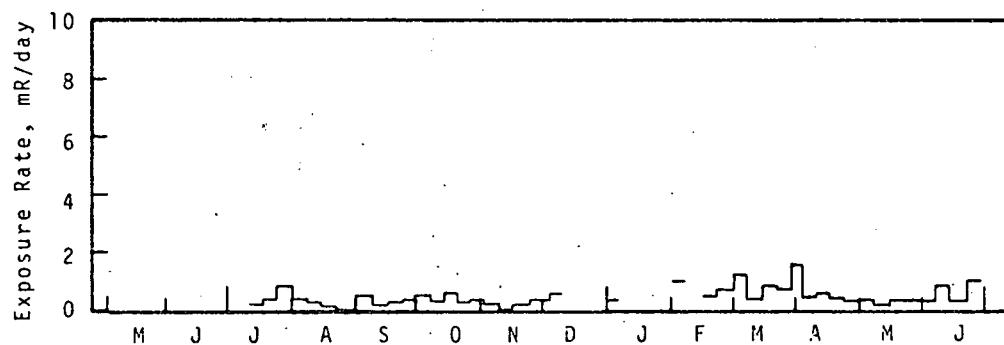

1968-1969  
(14 Months)

EXTERNAL RADIATION AT THE COLUMBIA RIVER SHORELINE

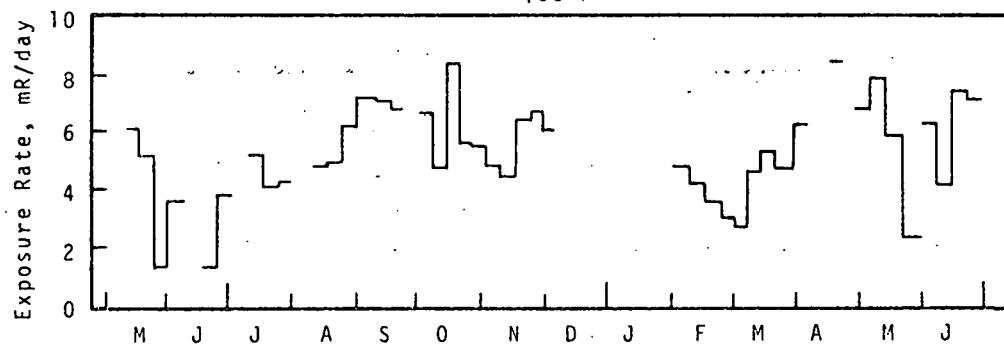

RICHLAND PUMP PLANT



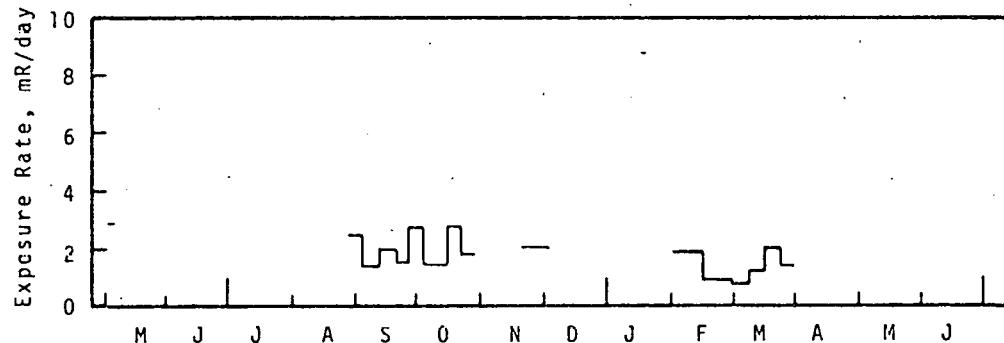
SACAJAWEA PARK




MCNARY DAM



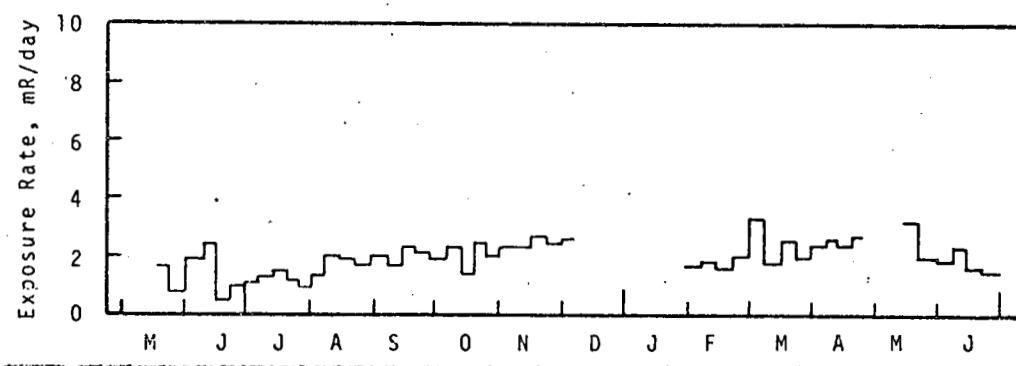

EXTERNAL RADIATION BELOW THE SURFACE OF THE COLUMBIA RIVER


PRIEST RAPIDS GAUGE STATION

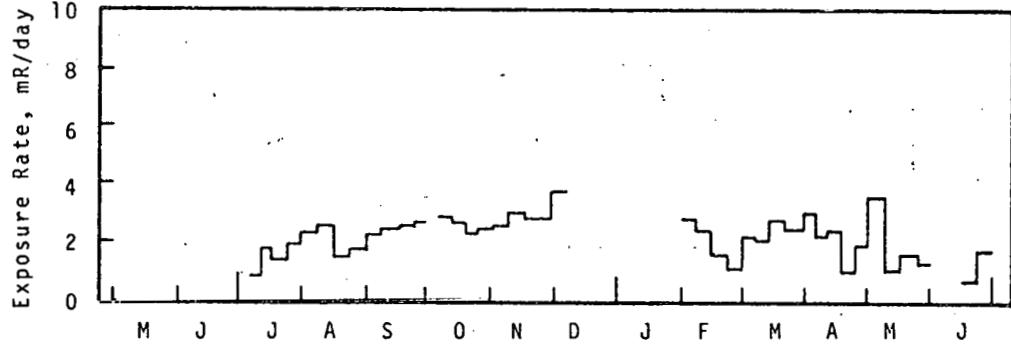


100-F




RINGOLD FAR SHORE




1968-1969  
(14 Months)

EXTERNAL RADIATION BELOW THE SURFACE OF THE COLUMBIA RIVER

RICHLAND PUMPHOUSE



PASCO PUMPHOUSE



1968-1969  
(14 Months)