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Summai'y

We discuss two classes of convergent algorithms for learning continuous functions (and also
regression functions) that are represented by FeedForward Networks (FFN). The first class
of algorithms, applicable to networks with unknown weights located only in the output
layer, is obtained by utilizing the potential function methods of Aizerman et al. [1]. The
second class, applicable to general feedforward networks, is obtained by utilizing the classical
Robbins-Monro style stochastic approximation methods [22]. Conditions relating the sample
sizes to the error bounds are derived for both classes of algorithms using martingale-type
inequalities. For concreteness, the discussion is presented in terms of neural networks, but the
results are applicable to general feedforward networks, in particular to wavelet networks. The
algorithms can also be directly applied to concept learning problems. A main distinguishing
feature of the this work is that the sample sizes are based on explicit algorithms rather than
information-based methods.

1 Introduction

The problem of learning a function or a set from a finite set of examples has been the fo-
cus of considerable research in areas such as pattern recognition, machine learning, neural
networks, etc. Recent density results indicate that finite-sized networks can approximate
continuous or indicator functions within a specified precision. These results enable us to for-
mulate the learning problem as one of estimating finite dimensional vectors (that typically
represent connection weights of a network). The learning methods that compute the con-
nection weights of a required network based on a finite sample have been extensively studied
recently both analytically and also by using implementation/experimentation. The recent
renewal of interest in such methods can be attributed, at least in part, to the success of neu-
ral networks in a wide variety of applications. Typically, the performance of such methods
depends on (a) the form of network employed, and (b) the learning algorithm that computes
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the parameters of the network. Our focus is on the performance of the algorithm when
applied to finite-sized samples. For most existing algorithms such results are not available,
yet they are needed and useful in practical applications, where the samples are always finite.
We illustrate the application of two well-known methods, the potential function methods
(Aizerman et al. [1]) and stochastic approximation (Polyak [17], Benveniste et al. [3]), to
obtain function learning algorithms implemented on two basic FFN architectures. The first
method is applicable only to FFN with unknown weights located only in the output layer,
and the second technique is applicable to general FFN.

A continuous function can be approximated by a finite-sized network of non-polynomial
units (with a single hidden layer) within a specified precision (Leshno et al. [13], and Mhaksar
and Micchelli [15]). When the units are sigmoid functions, the networks are called the
feedforward artificial neural networks with a single hidden layer (Cybenko [5], Funahashi [9],
Barron [2]). These density properties can be utilized for approximating arbitrary continuous
mappings or concepts by networks whose parameters (in the form of connection welghts) are
to be determined by the function being approximated.

For the tasks of learning functions from a finite sample, the utility of the above density
results critically depends on the availability of suitable learning (or training) algorithms.
There are several algorithms that train the networks of sigmoidal units based on a sample
(Werbos [29], van der Smagt [25], Tang and Koehler [24]). The performance of such algo-
rithms is known only to a limited extent, and moreover, in cases where the performance has
been analyzed, the results are typically asymptotic.

The aim of this paper is to provide a comprehensive framework for designing learning
algorithms based on finite-sized samples. Our contributions include the following:

(a) combination of empirical estimation and potential function (or stochastic approxima-
tion) methods to obtain finite sample results for function and regression estimation;

(b) application of Lyapunov methods of Polyak [17] to obtain finite sample results for
learning algorithms based on stochastic approximation;

(¢) combination of density results of FFN with the Hilbert space methods of Revesz {21] to
obtain learning algorithms for FFN;

(d) constructive algorithms for solving several classes of Probably and Approximately Cor-
rect (PAC) concept learning problems; and

(e) finite sample results for concept and for function learning algorithms based on ‘wavelet
networks.

Our sample estimates are based on algorithms which distinguishes them from information
based estimates (for example those in Haussler [10]). This is an extended summary of Rao
et al. [19], which contains the detailed proofs and various extensions and variations.

2 Preliminaries

2.1 Function and Regression Learning Problems

A training n-sample of a function f : [0,1)¢ — R is given by (z1, f(x1)), (22, f(z2)), -

. ey

(Zn, f(z,)) where the random variables z1,zs,...,2Zn, z; € [0,1]%, are independently and




identically generated according to a distribution Py (X = [0,1]¢). The function learning
problem is to estimate a function f : [0,1]¢ — R, based on the sample, such that f(z)
“closely” approximates f(z). More precisely, we consider either the expected square error

1(f) = [1f(2) — f(=)dPx (2.1.1a)

or the expected absolute error

/lf z))|dPx (2.1.1b)

which is to be minimized over a family of functions F based on the given n- sample Let
f. € F minimize I(f) (or J(f)) over all f € F. In general, f, cannot be computed from
(2.1.1a) or (2.1.1b) since the underlying probability distribution is unknown. We obtain
conditions under which an approximation f to f. can be computed such that for a sufficiently
large sample we have R

PlI(H—-I(fu)> € <6 (2.1.2a)
or )

PUUH=J(f)>e<é (2.1.2b)
corresponding to (2.1.1a) and (2.1.1b) respectively for arbitrarily specified ¢ > 0 and ¢,
0 < 6 < 1, where P = P} is the product measure on the set of all independently and
identically distributed n-samples. Here € and ¢ are called the precision and confidence
parameters respectively, and the pair (¢, ) is called the performance pair.

A more general problem is regression learning. Namely, we are given a training sample
(z1,%1), (z2,Y2), - - -, (Tn, yn) generated independently and identically according to the prob-
ability distribution Pxy (X = [0,1]9,Y = R) such that f(z) is equal to the conditional
expectation E(y|z). The problem is to compute an estimate f of the regression function f
that satisfies the condition (2.1.2a) or (2.1.2b) with P = P} .

2.2 Approximation by Neural Networks

The general architecture of a multilayer FFN consists of an input layer with d units and
output layer with m units, and one or more hidden layers. We shall first consider FFN
with a single hidden layer and a single output unit. The hidden unit j has a weight vector
b; € R? and a threshold t; € R. The output of the jth hidden unit is o(b7z — t;), where
z = (z',2%...2%) is the input vector, bf = denotes the scalar product, and o : ® — R is
called an activation function (usually a sigmoid function). The output of the output node is

given by
M
= Z aja(b?x - tj) (221)
=1
where @ = (a1, as,...,ap) is the weight vector of the output node, M is the number of

neurons in the hidden layer, and w denotes the parameter or weight vector of the network
that consists of a, by, bs,...,bn, and ¢1,ts,...,¢p. Then h(w,z) is called the output of the
neural network with the weight vector w.

For sigmoids functions o, Cybenko [5] showed that any continuous and bounded function
f:[0,1]¢ — R can be approximated by a function A(w,z) of the form (2.2.1) in the sense
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|f(z) = h(w,z)| < € for all z € [0,1]%. Here the training of a neural network corresponds to
computing a suitable weight vector w based on a sample. The unknowns a;’s correspond to
the weights of the last layer, but the b;’s correspond to weights of the hidden layer. Networks
with unknown weights located only in the last layer are amenable to learning algorithms
based on potential functions. Such networks are proposed by Kurkova [11] who showed that

any continuous function can be represented within an arbitrarily specified precision € in the
form

M
> amni(z) (2.2.2)

i=1

where the functions 7;(.) are universal and the weights a;’s depend on the function being
approximated.

2.3 Stochastic Approximation and Potential Function Methods

One of the simplest of stochastic approximation algorithms takes the following form

Wng1 = Wn + YnSn(wn, () (2.3.1)

where the real vector w, is an estimate of the parameter of interest at nth step, {7,} is
a sequence of scalars, {(,} is a sequence of random variables, and s,(w,, (,) is a random
variable called the update rule. For example, in solving n}‘i)n f(w), where gradient estimates

of f(.) involve random error terms, s,(.) could correspond to the noisy estimate of the
gradient. The convergence conditions of this type of algorithm have been extensively studied
(Kushner and Clark [12], Benveniste et al. [3], Wasan [28]); typically the convergence results
are asymptotic. Notice that the algorithm (2.3.1) incrementally estimates a vector of fixed
dimension, and the function and regression learning problems involve estimation of functions.
The density results of last section enable us to approximate continuous functions by finite
dimensional vectors. Thus at the expense of settling only for an approximation, the stochastic
approximation algorithms can be used for function estimation.

For illustration we consider an algorithm based on the potential functions of Aizerman et
al. [1] (see also Fisher and Yakowitz [8]). Consider a function of the form

M
f(z) =3 aigi(x) (2.3.2)

=1

where ¢;(z) form a linearly independent set of functions. For some real A, Aq, ..., Apr let
M
K(y,z) = ) _ M i(y)i(2). (2.3.3)
=1

Given an n-sample (z1, f(z1)), (22, f(22)), .-, (Zn, f(zn)), and for A> %mg;c K(y,y) con-
v
sider the following algorithm

1

(@) = (@) + 51 @) = @)K (2, 20) (234)

that can be easily expressed in terms of the coefficients a; and actually used to update
these coefficients. The conditions under which f"(.) converges to f(.) have been studied
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extensively. A survey of these results is provided in [1]; our application involves the results
shown by Braverman and Pjatnickii [4], which deal with the case where M is finite. The
density results of Kurkova [11] enable us to apply these results to wide classes of learning
algorithms. Notice that these results are not directly applicable to the functions of the form
(2.2.1) since the parameters a;, b;, and ¢; all depend on the function being approximated;
these functions can be handled by the stochastic approximation methods.

2.4 Empirical Estimation

For family {A,},er, Ay C A, and for a finite set {a1,as,...,a,} C A we define:
H{A-,}({ala Az,y..., an}) = {{al, gz, ..., an} N A’Y}‘YEF’

{ay(n) = max - Ma,3({a1, a2, .., a.})l.

.....

The following identity is established in [26].

2" iftn<k
<15% ifn>k

May(n) = {

Notice that for a fixed k, the right hand side increases exponentially with n until it reaches
k and then varies as a polynomial in n with fixed power k. This quantity k is called the
Vapnik-Chervonenkis dimension of the family of sets A,.

For a set of functions, the capacity [27] is defined as the largest number h of pairs (z;, ;)
that can be subdivided in all possible ways into two classes by means of rules of the form
{8[(y — f(2))* + Bl} 1, where

1 ifz>0

@(z)::{o fz<0.

Formally, the capacity of a family of functions F is the Vapnik-Chervonenkis dimension of
the set of indicator functions {O[(y — f(z))® + B}(s.0)eFxx-
Consider f, € F that minimizes the expected error in

Q)= [ lv—f@)apxy (2.4.1)

XY

over all f € F based on a finite sample (z1,11), (z2,%2), - - -, (T, Yn) generated independently

and identically according to the probability distribution Pxy. Let f = fen, minimize the
empirical error

Slyi - (e (2.4.2)

over all f € F. The closeness of fen, to f. is specified by the parameters precision € and
confidence & in the condition P[Q(femp) — Q(fs) > €] < 6 where P = P}y is the product
measure on the set of all independently and identically distributed n-samples. In order to
ensure the (¢, §)-condition, two types of conditions are to be satisfied [26]: (a) the capacity
of F must be bounded; and (b) the error I(.) must be bounded.

Theorem 2.1 Suppose that the error is bounded as sup(y — f(m))2 <7 for ]E eF.
oy, f




(i) Let h be the capacity of F. Then given n examples, we have

h
PIQUans) ~ QUE) 2 27s] < 920k et
(it) Let the hypothesis space be finite in that F = {fi(z), fo(z),... fs(z)}. Then given n
ezamples, we have P [Q(fomp) — Q(fu) > 27&] < 18sne™*" /4,

Parts (i) and (ii) of this theorem directly follow from Theorem 7.1 and 7.3 of Vapnik [26]
respectively. Similar results can be shown under the conditions of bounded error and simpler
solution conditions (see Rao [18]). The required boundedness results of sigmoidal FFN are
established in Macintyre and Sontag [14]. Note that the results of this theorem are mainly
existential in nature in that they do not directly yield computational methods to obtain the

required fe,,. Some methods to compute fem, or its approximation will be needed in order
to utilize the results of this theorem in learning algorithms.

The minimization of (2.4.1) is intimately connected to the estimation of a regression
function f(z) = E(y|z). The function (2.4.1) can be rewritten as follows [26]

Q) = [ lv— f@FdPey + [1f(z) — f@)dPx = [ 1f(z) - f@)ly ~ F(e)ldPxy.
X,Y X XY
The last term can be expanded as f[f(m) — f(z)] {f[y — f(.’l?)]dPy'X] dPx where Pyx is

the distribution of the conditional random variable Y given X. This term is zero since
the quantity inside square brackets is zero. Thus, the minimum of Q( f) is achieved at the
regression function f = f since the first term of Q( f) is independent of .

3 Learning Algorithms Based on Potential Functions

3.1 Function Estimation

The following condition is utilized for the method of potential functions.
M
Condition 3.1 For a fized M, any function f € F is given by f(z) = X a;¢;(z), where w
=
M
is the parameter vector with components a; such that Y- a? # 0, and [ f*(z)dPx > 0.
J=1 X

This condition is satisfied if f(.) is continuous and vanishes at no more than a finite
number of points. This condition implies that the M X M matrix [fX di(z)dj(z)p(x)dz] =

[p:;] is positive definite. Thus we have r Z a? < z E aipija; < R z a? where r and R are

=1 =1 j3=1 z_=1
the smallest and largest eigenvalues of the matrix [p;;].

Theorem 3.1 Under Condition 3.1, for f € F and f™ produced by the algorithm (2.3.4),
we have P[I(f") < €] > 1 =8 for sufficiently large sample size n = In(é¢/RC) /In(1 — ra)

max K (z,z)

where C = }: a? anda = % |2 - -’-§-’$A—— , with 1 —ra >0, r and R are the smallest and
=1

largest eigenvalues of the matriz [p;;], and A is a free parameter chosen such that a > 0.
Furthermore I(f™) converges to 0 with probability one.
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Outline of Proof: Braverman and Pyatnitskii (Theorem 1 of [4]) showed that E[I(f")] <
RC(1 —ra)™, which is combined with the Chebyshev’s inequality to show the theorem. The
detailed proof can be found in [19]. O

The algorithm (2.3.4) uses constant step-size y, which is referred to as the learning rate
in the context of neural network algorithms. Similar results can be obtained for variable
step-size as in the following algorithm:

@) = f(2) + sign(f(@nsr) = [ (@na)] K (2, 2n41) (3.1.1)

where 4, is a sequence of positive numbers such that Z ~; — oo and Z 72 < oo,
=1 =1
We now address the question of using the algorithm of the form (2.3. 4) based on functions

of the form f(z) = Z a;$i(z), to approximate a function of the form g(z) = E cixi(z). The
i=1

question is answered in the affirmative by Theorem 3.2 in [19].

3.2 Regression Estimation

Now consider the problem of minimizing Q(f) = [ [f(z) — y]2dPxy over all f € F based

]

on a finite sample. From Section 2.4, the regression function f(z) minimizes Q( f ), since

Q)= [y - f@dPxy +1())
Xy

and I(f) = 0. By treating the sample as if it had been generated by a function f.n., (i.e.
Yi = femp(zi) for 1 = 1,2,...,n), we compute an approximation fcmp t0 femp such that

P[I(femp) > eemp] <é

by using the potential function method. Then we show that femp is close to the regression
function f(z) in the following theorem under Condition 3.1. We now state a more general

result applicable to the case when there is no f € F consistent with the sample.

Theorem 3.2 Let f* = min I(f, f) and € = I(f*, f). Under Condition 3.1 together with
fer

suPzy.1(y — f(2))? < 7 and finite capacity of F, and § = 9 e=<*16™ aqnd f(.) = f produced
by algorithm (3.1.1), we have

< (VE+ Vet )] > 18

for sufficiently large sample size n such that €emp = §(1 —ra)™, where ¢ and r are constants.

4 Learning Algorithms Based on Stochastic Approximation

We now consider the problem of learning parameters of the network of the form (2.2.1) for
which the potential function methods are not directly applicable.

Condition 4.1 For a fized M, any function f € F is given by a FFN of single hidden layer
M

f(z) = h(w,z) = % aja(bfm +t;) where o(x) is a sigmoid function and w is the parameter
J=1

vector of the network that consists of a, by, ba, ..., b, and t1,tq,... 6.
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The basic structure of the algorithm is based on iteratively updating the weight vector of
the network as follows

W1 = Wn + Laf|A(Wn, Tas1) = f(@nt1)l] (4.1)

where w,, wny; € RV, each component of T', € RV consists of scalar +, (same in all com-
ponents of T',) called the step size, and (z,, f(z,)) is the nth example. The expression
|h(wn, zn) — f(zn)| is the update rule. In the context of neural networks, algorithms simi-
lar to (4.1) have been studied by Nedeljkovic [16], Finnoff [7], Darken and Moody [6], and
Stankovic and Milosavljevic [23]; the results are typically asymptotic.

Note J(w) = [|h(w, X) — f(X)|dPx denotes the expected absolute error made by the
hypothesis (corresponding to a FFN with parameter w) and E[(|h(wn, zs) — f(2r)])|wa] =
J(w,). The performance of the stochastic algorithms of type described in (4.1), can be
characterized in terms of a Lyapunov function V(w,) as described in Polyak [17]; here, by
the specific choice of the update rule, J(w) plays the same role as V(w) of [17]. In order
to ensure the convergence of the algorithm (4.1), we utilize the following conditions on the
probability measure generated by Py.

Condition 4.2 Let J(w) be differentiable and let its gradient satisfy the following Lipschitz
condition: for all u,v € RV, there exists a positive constant L such that

| v J(w) =7l < Llju = vl|.

Condition 4.3 There ezists a scalar 8 such that for any w and N-dimensional vector
U(w) = (J(w),...,J(w))T, we have

VI ()T (w) > 0 (w),

where 7J(w)T = (agfv’“;’),.. . 88{51;)). Let us denote by 1 the column vector with all entries

equal to 1. Then the above condition implies \7J(w)T1 > 8, everywhere ezcept at J(w) = 0.

Theorem 4.1 Under Conditions 4.1-4.8, algorithm (4.1) satisfies the following properties.

(i) (a) Under the condition f v} < o0, the sequence of random variables {J(w.)} gener-
3=0
ated by the algorithm (4.1) converges to a finite random variable J,.
(b) Under the conditions v, — 0 and § ¥ — 00, as n — oo we have E[J(w,)] — 0 as

i=1
n — o0.

(¢) In addition to conditions in (b), under the condition 1}i—>r{olo%('7n1+l — ;1;) >y >1,
we have J(w,) — 0 with probability one.

(it) For 4, < 1/6 for all n, we have P[J(w,) < €] > 1 — § for sufficiently large sample of

n—1 e— LN
size n given by [] (1 —v;0) = i—_—fj_{-. The required sample size can also be given by
i j=0 262

=l 1 1-25
T =i ().
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(iii) Under the additional conditions: v, < 8, v, — 0, § v; = 00, and 1/vp41 — 1/ 2>
7=0
pf > 0, we have P[J(w;) < e for all j] > 1 — & for sufficiently large sample of size n
. n—1 1+m
given by 3 v, =In (—6”—(1 + 1/5)) .
j=0

Outline of Proof: Almost super-martigale results are used to obtain bounds on the expec-
tation of J(w,), which are combined with Chebyshev’s inequality to obtain the sample sizes
[19]. O

Part (i) of this theorem characterizes the asymptotic behavior of the algorithm (4.1). The
condition (i)(b) corresponds to the Robbins-Monro conditions. Part (ii) and (iii) yield the
sample sizes needed to ensure (¢, §)-condition at the n step of the algorithm. The condition
ensured in (ii) is just on J(w,) at the nth step, and this condition might not have been
satisfied before the nth step, whereas the condition (iii) is valid uniformly for all n, and
hence is stronger than (ii).

More generally, the algorithm of the form (4.1) based on functions of the form f(z) =

M
h(w,z) = % aja(bjrx + t;) can be used to approximate a function of the form g(z) =
i=1

M,
Y. cjo(dTz + e;) as described in the extended version [19].
i=1

4.1 Regression Estimation

We consider a different class of algorithms based on the Hilbert space methods of Revesz
[21]. The applicability of the stochastic approximation methods based on kernel functions
for regression estimation problem is established by Revesz [21]. Now consider the algorithm

(n 4+ Dras Tntl

U (a) = (@) + e K ( - ) (st = (=) (41.1)

where e, = n7® (0 < a < 1) and kernel function K(z) is an arbitrary density function.
In order to convert (4.1.1) into an algorithm for a neural network of fixed size, the update
function o +1;r,.+1 K (z::::”) (yn+1 — f™(x)) must be converted to a form that can be used
to change the weights of the network representing f*(n). In general, such computation may
not be possible because the update function may require more than M terms to be expressed
exactly as a sum of units. We impose additional conditions on the sigmoidal functions used
in Condition 4.1 to facilitate this update.

Condition 4.4 Under Condition 4.1, let the family of functions = = {ao(bTz+t)|a € R,b €
R4t € R}, which consists of translated and scaled versions of sigmoid function o(.), be closed
with respect to the product operation such that for any o(b¥z +,) € Z, o(blz +1t,) € =, we
have the sum ayo(bTz + t1) + a20(bfz +1;) € = and product ajaz0(bTz +t1)o(blz +1,) € =.

For the case of the sigmoid function employed in Cybenko [5] this condition is satisfied. We

, M
choose the Kernel function as K(z) = 3 c;o(d¥z + ¢;) such that it corresponds to a density

1=1
function (note that in view of Condition 4.4, any K(z) expressed as a sum of M; terms can




be converted into this form). The implementation of algorithm (4.1.1) for a network that
satisfies Conditions 4.1 and 4.4 leads to an explicit recursive formula [19]. Then one can
prove the following result.

Theorem 4.2 Under Conditions 4.1 and 4.4, additionally suppose that (i) f(y) is measur-
able and bounded, (ii) z has an absolutely continuous distribution with density p(x) for which

1/2 < p(z) < oo, (iit) y is bounded with probability 1. For f(z) € F we have for f = f"

P[I(f,f) > €] < & for sufficiently large sample size n such that n = (C! 111(1/6))11—" where
C is a function of only € and p.

Outline of Proof: The proof is similar to that in Theorem 4.1 except that bounds of Revesz
[21] are used for the expectations.

5 Discussion

5.1 PAC Learning

Let f be an indicator function (which is not necessarily a continuous function) of any finite
measurable set of [0,1]¢. For any ¢ > 0, for some M, there exists [5] a function g(z) of the
form (2.2.1) and a set D C [0, 1]? with Lebesgue measure of at least 1—¢ and |g(z)— f(x)| < €
for z € D. We impose a condition analogous to Condition 4.1 as follows:

Condition 5.1 Let X = [0,1]¢ and for a fized M, the set of functions of form h(w,z) =
M
Y ajo(bTz —1t;) approzimate the set of indicator functions {1c(.)}cec of the concept class C
J=1

such that for each 1.(.) and € > 0, there exists some h(w,.) such that |1.(z) — h(w,z)| < ¢
for all x € D C X such that the Lebesque measure of D is at least 1 — €.

By employing stochastic approximation methods of Section 4, hypothesis h{w,) can be
computed such that P{u(h(w,)Ac) < €] > 1 — § for a sufficiently large sample under Condi-
tions 4.2, 4.3 and 5.1 (note here J{h(w,.)] = [ |h(w, X) —1.(X)|dPx = p(RAC)). A detailed
derivation of this class of algorithms can be found in Rao et al. [20]. The relationship be-
tween PAC learning and neural network methods is well-known (Haussler [10]); the present
work provides an algorithmic framework for these aspects.

5.2 Wavelet Networks

Consider the wavelet network of Zhang and Benveniste [30] of the form

M
h(w,z) = Za,-t/)(D;w —t)+§ _ (5.2.1)

=1

where a; € R, ¥ : R? — R is a wavelet function t; € R¢, g € R, and D; is d x d diagonal
matrix with the diagonal entries given by d; € R¢. Stochastic approximation algorithms of
last section can be applied to these networks. Also wavelets can be employed to play the
similar role of sigmoids in the networks proposed by Kurkova [11], thus they are amenable
to the potential function methods.
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