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ABSTRACT

The phase diagram of layered superconductors is explored by Monte-Carlo simulations of the

three-dimensional uniformly frustrated XY model. Two regimes of behavior were observed

depending on the anisotropy. At high anisotropy, the melting occurs as a strong first order

phase transition and is accompanied g the destruction of vortex lines and the disappearance

of superconductivity along the field direction. At low anisotropies melting is shallow and

al}e vgrtex crystal melts into a liquid of vortex lines with superconductivity along the field
irection.
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INTRODUCTION

The thermodynamic and transport properties of Type II superconductors in magnetic field
are essentially properties of the “vortex matter”. A peculia.rit{ of high T superconductorsis a
very high amplitude of thermal fluctuations in the vortex state. This leads to the destruction
of the low temperature vortex crystal state well below the mean field upper critical field.
Fluctuations are especially strong in la{ered materials where the vortex lines consist of weakly
coupled “pancakes” due to weak coupling between superconducting planes .

Understanding the field-temperature phase diagram of layered superconductors is very im-
portant for both fundamental science and applications. At low fields the vortex lattice has
to melt into a liquid of well defined vortex lines. Whether or not the line liqud phase differs
qualitatively from the normal phase is the fundamental and unresolved question (see, e.g.
[1,2]). If it represents a distinct phase thah another phase transition should exist at higher
temperatures, at which this intermediate phase transforms into the normal phase. It is also of
fundamental importance to know if the line liquid preserves phase coherence along the field?
Exact positions of the possible transitions in the field-temperature plane and their thermody-
namic characteristics are unknown at present. Quantitative analysis is possible only by large
scale numerical simulations.

Experimentally, a sharp transition has been observed in clean high-T, samples at which both
the resistance (3] and the equilibrium magnetization [4] jump discontinuously . While this
transition has generally been interpreted as a first order melting of the vortex line lattice, the
apparent entropy jump (as much as 2-6 kp per vortex per layer in BigSrgCaCuyO, near the
zero field transition [45 seems to be larger tgan such a melting transition would suggest.

The melting transition at low fields can be adequately described by a simple model of vor-
tex lines with pair interactions [5]. However this model is not sufficient for investigatin

the processes of thermal disintegration of vortex lines and crossover/transition to the norm

phase. To study these issues, one-has to use some field model, in which vortex lines aippear
as singularities in the distribution of the order parameter. The simplest realization of such
a field model is the model of interactixZF phases ?miformly frustrated XY model) [6,7]. This
model keeps the most essential phase degree of freedoms of the superconductor and neglects
less important fluctuations of the order parameter amplitude and the field. As far as ther-
modynamic properties are concerned the uniformly frustrated XY model is equivalent to the
three dimensional Josephson junction array. I addition, dynamic simulations of the latter
model (9,10} allow investigation the electric transport near the transitions. The important
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arameter of the model is the fraction of grid sites b filled by vortices (see Section 2), which
ﬁas to be very small to provide a realistic description of the superconductor in the 1.ondon
limit. Simulations show that for b < 1 { 15 the vortex crystal transforms into the normal state
through the intermediate line liquid phase in the isotropic [6] and moderately anisotropic [8}
cases. On the other hand for larger filling factors (b = 1/6), the vortex crystal was found to
transform directly into the normal phase as a result of a strong first order phase transition
[7,10]. Alternatively, the phase transitions in the London regime have been explored by the
‘lines and loops” model [11-13], which is dual to the frustrated XY model with the Villain
type of interaction between neighboring phases. Very similar behavior have been found, i.e.,
c{ilrect melting into the normal state for moderate b, b = 1/4,1/8 [11], and transitions through
the intermediate phase for very small § [12,13].

The vortex phases in layered superconductors was also investigated within the so-called the
lowest Landau level (LiL) approximation which is valid near the upper critical field H
[14,15). In the parameter ran{fe corresponding to the compound Y BayCu3O; [14] the melt-
ing was found to be weakly first order phase transition. The liquid J)h.ase emerging above
the melting transition does not have superconductivity along the field direction and merges
smoothly into the normal state.

In spite of considerable numerical efforts, the issues of the thermodynamics of the transitions

and their evolution with increasing anisotropy still remain open. In this paper, we extend the

simulations of the uniformly frustrated XY model to monitor the evolution of the phase dia-

gram with the increase of the anisotropy parameter I'. In the London limit, thermodynamic

properties depend only upon the reduced magnetic field BI's?/®y, which means that an in-

crease of anisotropy is equivalent to an increase of magnetic field. We use realistic parameters -
in order to extract quantitative information about the phase transitions and the nature of

the vortex phases.

DESCRIPTION OF THE MODEL

Phenomenologically, any state of a layered superconducor is characterized by a distribution
of the complex order parameter ¥, = p, exp (i¢,) and the vector-potential A. At fields much
smaller than the upper critical field (London regime), the amplitude of the order parameter
pPn is suppressed only in the vicinity of the vortex cores, i.e. over a very small fraction of the
total volume. In this regime a simplified description in terms of phase ¢, and the vector-
potential distributions is possible. Vortex positions R;, are defined as singular points in the
phase distribution, (V.V, ~ V,V.) ¢, = £; 6 (r — Rin). The energy of a superconductor in
the London regime can be written as

2rse
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where IV, is the total number of pancake vortices, . i8 the energy of the core region,
and the integral in the second term avoids the core regions. The system is characterized by
two energetic parameters: the phase stiffness constant J and the Josqghson coupling ener,
E;. These parameters can be connected with experimentally accessible parameters by the
relations
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where s is the interlayer spacing, A is the London penetration depth, and ~ is the anisotropy
factor. In general, the vector potential consists o? the contribution coming from the exter-
nal magnetic field Ap and the extra contribution coming from supercurrents A;. At hiﬁh
fields the supercurrent contribution is small and influences only weakly the properties of the
“vortex matter.” Keeping only A g, we obtain the “frozen field” approximation. In this ap-
proximation, the system 1s totally characterized by the phase distribution and the statistical
mechanics is determined by the partition function Z = [ D¢, exp (—~ E[@n, Ap]/T). From the
structure of the free energy functional él) one can derive a very important scaling property
of the free energy per layer, f = —(T/S)}InZ. A natural energy scale of the problem is the




phase stiffness J. It can be also observed that the only relevant field scale is the crossover field
Ber = ®¢/T's? with I' = 42, and the field contribution to the free energy fz = f(B) — f(0)
can be represented as

(2)

Thermodynamic properties are determined by the scaling function g,., which depends upon
the dimensionless temperature and field. Important consequence of the scaling (2) 1s that ther-

modynamic properties of superconductors do not depend separately upon field and anisotropy

but only upon thé combination Bg:z. This means that the phase diagram plotted in coordi-

nates T'/J and B—g:—’ has to be universal for all layered superconductors.

B T BrI's?
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For numerical simulations one has to discretize the continuum distribution, ¢,(r) — é(n)
with n = (n,, ny, n,), where the continuous coordinates r = (z,y) have been replaced by
the indices (n.,n,) and the index n is replaced by n,. The phases ¢(n) are defined at the
sites of the rectangle 1 < n,,n, < Ni,1 < n, < N, with periodic boundary conditions in all
directions. The energy of interacting phases is given by

E=% ( 2 V(é(n+d.) ~ ¢(n) - aa(n)) - %COS (¢(n+9.) - ¢(n))) (3)

B \a={(zy)

The periodic interaction function V/(8) determines the in-plane phase stiffness. The choice
of the low angle asymptotics V() ~ —1 + 6%/2 fixes the energy and temperature scale
to J. In most simulations V() is simply taken as —cos(eg. The influence of the grid
can be reduced significantly by optimization the shape of V(#). We chose V(0) as V(8) =
~3r/4—(1—r) cos FG)- (r/4) cos(1210), and adjust the coefficient r to minimize the energy barrier
for the vortex jump to the neighbor site wixich ives r = 0.37565. The dimensionless vector
potential aq(n) = (27s/®g)As (@ = 2,y, 2 ) istaken in the Landau gauge a,(n,) = 27bn,, the
dimensionless magnetic field b = Bs?/®, determines the fraction of the grid sites occupied by
the vortices. We have used N; = 72 and b = 1/36 which gives 144 vortex lines. The strength
of interlayer coupling is determined by the anisotropy parameter I. The number of layers N,
has been varied from 4 to 40 to check for the finite size effects at different anisotropies. Most
simulations were done with [V, = 10. The strength of coupling between the two dimensional
lattices in the Ia(f'ers is determined by the scaled magnetic field ['s?>B/®; = I'b. This means
that the phase diagram can be probed by.varying either the field or a.nisotrop{. Therefore
the anisotropy parameter I' should not be considered as the anisotropy of real layered su-
}ferconductors but rather as a parameter which allows one to va? the scaled magnetic field.

o study the thermodynamic properties, we applied the standard Metropolis algorithm. For
each temperature-anisotropy point we use typically 5 - 10 Monte Carlo sweeps for eguilibra.-
tion and (1 < 3) - 10° sweeps for calculation of thermodynamic properties (up to 10% sweeps
near phase transitions). The vortex positions are determined by a calculation of the phase
circumference around each square cell @, 34 = b+ (¢(n,) — ¢(maz — a(n,)), where the sum
is taken counterclockwise along four bonds surrounding a given cell. Vortices are located in
the sites with s, = 27, Fig. 1 s%ows a typical phase con%guration and vortex positions at low
temperatures. The model does not reproduce correctly the structure of vortex cores. However
this structure has a very weak influence on the nature of vortex phases and the transitions
between them. The model should correctly describe the thermorf namics_of real supercon-
ductors at low fields and temperatures not too close to T, provided the filling fraction b is
chosen to be small enough to minimize the influence of discretization.

The important advantage of numerical simulations is the possibility of calculating many
different properties and establishing correlations between them. Properties of the system can
be classified as thermodynamic properties, responses of the system to external perturbations
and properties characterizing the order in the vortex system. Thermodﬁamics is describe
by the temperature dependencies of the internal energy per site U = ff. with N = NIN,
being the total number of sites. Another important thermodynamic parameter is the average
Josephson energy E; = -lf(cos (¢(n+4,) — ¢#(n))), which can be used as a measure of the
effective coupling between neighboring layers.




The superconducting state is characterized by a nonzero value of the superfluid response or
helicity modulus Q, which determines the linear response of the supercurrent to the external
vector potential A.z;, j; = Q:Aere. The thermodynamic expression for Q, is given by [6]

_ {Tacos (¢(n + 6.) — ¢(n))) ([E.. sin(¢(n +8,) — ¢(n))]*) — (T sin ($(n +4,) — $(n)))’
- NT - TNT?

Q- 4)

We will characterize the order in the vortex lattice by the concentration of lattice defects ng.s
obtained by the Delauney triangulation (fraction of particles with the coordination numbers
different from 6) and the in-plane density correlation function. Alignment of pancake vortices
can be characterized by the density correlation function for adjacent points belonging to
neighboring layers gu = {(p(n)p(n + 4,)) /b. We will refer to gqs as the alignment parameter.
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FIG. 1. Typical phase and vortex configuration at low temperatures. Phases at the sites of grid are represented
by the tilting angles of arrows » _

FIG. 2. Temperature dependencies of the defect concentration ng.s (a), superfluid response Q,(b), and excess
internal energy U(B) — U(0)(c) at different anisotropies I' (scaled magnetic fields). The number of layers is 4
for ' = 800 and 10 for other values of T '

RESULTS AND DISCUSSION

We studied the temperature de{endence of various parameters at different values of the
anisotropy parameter I'. Figure 2 shows plots of the defect concentration ng4.z, the superfluid
response Q., and the difference between the internal energy per site U and the internal
ener§y in the Meissner state U(0) = —2 — 1/T + 0.5T. The melting of the lattice manifests
itself as a steep increase of n4.s in narrow temperature range, which is accompanied by a
jump in U. The behavior near the melting transition is hysteretic. Nevertheless, slowly
cooling_the system does produce the triangular lattice of aligned pancake vortices. The
lattice is usually incommensurate with the numerical grid and contains a small amount of
frozen dislocations. Different cooling circles produce vortex lattices oriented at different angles
with respect to the grid. As one can see from Fig. 2 at least two types of behavior can be
distinguished depending upon the anisotropy parameter. At high anisotropies the system
looses the crystalline order simultaneously with superconductivity along the field direction as
a result of the strong first order phase transition. 'Fhe melting transition is accompanied by a




strong supgression of pancake alignment. Nevertheless, the influence of the interlayer coupling
on the melting transition gersists up to su;prisin%ly high anisotropies. For example, for
I' = 800, corresponding to B = 22.2B,,, melting still takes J)la.ce at the temperature 1.5 times

higher than the melting temperature of single 2D layer T2° [16](in our units 722 = 0.045).

At lower anisotropies the melting transition becomes weaker. Above the melting temperature
the gancake vortices in different layers are still strongly aligned so that the vortex lines
can be easily traced. This phase is characterized by the superconductivity along the field,
as was first observed in Ref. [6]. The transition between these two regimes takes place at
B =~ (3+5)B.r. Alignment of pancakes in neighbor layers can be quantitatively characterized
by the “alignment parameter” gy defined in previous Section. Fig. 3 shows the temperature
dependencies of this parameter at different I'. As one can see, the melting transition at high
anisotropy is indeed accompanied by steep drop of pancake alignment, indicating a transition
into the pancake liquid state. In contrast, at low anisotropies the Ea,nca.ke alignment does
not show any singularity at the melting point and decreases smoothly with the increase of
temperature. The internal energy U experiences a jump AU at the melting transition. The
strength of the first order transition can be characterized by the entropy jum ger vortex
per layer AS, AS = AU/(bTp,) [7]. We found that at high anisotropies §h1g elds) this
parameter is large (0.3-0.4 kp pa.nca.kie], indicating a strong transition. At low anisotropies,

in the line melting regime, AS steeply drops to very small values (< 0.05 kg/ tpan_fia.éce). _Stqch
tquid transition

small values are in agreement with the entropy jumps for the crystal — line ansiti
obtained in the model of interacting lines [5] and in the lowest Landau level approximation
[14]. The field dependence of the entropy jump is shown in Fig. 4.
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_FIG. 3. Temperature dependencies of the alignment parameter for different anisotropies. Dashed horizontal
line go1 = b corresponds to completely misaligned pancake liquids in neighbor layers.

FIG. 4. Field dependence of the entropy jump at the melting transition

To check for the universality suggested by Eq. gZ), we performed simulations for two different
sets of parameters preserving the same ratio B/B,, (system size, anisotropy and field have
been taken as 72x72x10, 100, 1/36 and 128x128x16, 178, 1/64). Fig. (5) shows temperature
dependence of the defect concentrations and helicity modulus for these systems. One can see
that both parameters have an almost identical the temperature dependence and the melting
transitions occur at exactly the same point. This confirms an universality of the phase diagram
plotted in the reduced variables. Simulation results are summarized in the field-temperature
phase diagram (Fig. 6). At fields > 3B,,, the melting line separates the vortex crystal and
the ;l)anca e liquid phases. At lower fields the crystalline state transfers into the intermediate
line liquid state which becomes normal at higher temperatures.
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FIG, 6. Field-temperature phase diagram obtained from simulations
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