pow F-9611133-=1

A Segmentation Algorithm for Noisy Images*

Ying Xu, Victor Olman, and Edward C. Uberbacher

Informatics Group
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

"The submitted manuscript has been

authorized by a contractor of the U.S.

Government under contract No. DE-
ACO05-960R22464. Accordingly. the U.S.

Government retains a nonexclusive,
royaity-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government

v MASTER

Submitted to the IEEE Symposium on Image, Speech, Natural Language Systems, Washington, D.C.,
November 4-6, 1996.

OISTRIBUTION O

5 UNIAATES

*Research was supported by the Office of Health and Environmental Research, U.S.
Department of Energy under contract No. DE-AC05-960R22464 with Lockheed Martin Energy
Research Corporation.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal Labili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

A Segmentation Algorithm for Noisy Images

Ying Xu, Victor Olman,

and Edward C. Uberbacher

Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

Abstract

This paper presents a 2-D image segmentation
algorithm and addresses issues related to its per-
formance on noisy images. The algorithm seg-
ments an image by first constructing a mini-
mum spanning tree representation of the image
and then partitioning the spanning tree into sub-
trees representing different homogeneous regions.
The spanning tree is partitioned in such a way
that the sum of gray-level variations over all par-
titioned subtrees is minimized under the con-
straints that each subtree has at least a specified
number of pixels and two adjacent subtrees have
significantly different “average” gray-levels. Two
types of noise, transmission errors and Gaussian
additive noise, are considered and their effects on
the segmentation algorithm are studied. Evalu-
ation results have shown that the segmentation
algorithm is robust in the presence of these two
types of noise.

Introduction

Image segmentation is one of the most fundamental
problems in low-level image processing. The problem
1s to partition (segment) an image into connected re-
glons of similar textures or similar colors/gray-levels,
with adjacent regions having significant dissimilarity.
Many algorithms have been proposed to solve this
problem (see surveys {3, 4, 5, 7]). Most of these al-
gorithms fit into two classes: (1) boundary detection-
based approaches, which partition an image by discov-
ering closed boundary contours, and (2) region growing
and clustering-based approaches, which group “sim-
ilar” neighboring pixels into clusters. Region-based
approaches can be further divided into two classes,
those using global information in segmentation and
those using only local information. Many of the
global information-based segmentation algorithms are
very computationally time-consuming, while the local
information-based approaches are usually sensitive to
noise.

In this paper, we present an efficient region-based
segmentation algorithm based on a minimum spanning
tree representation of a gray-level image and a tree par-

titioning algorithm. With a tree representation, the al-
gorithm partitions an image into a number (not prede-
termined) of arbitrarily-shaped regions (represented as
subtrees) by globally minimizing the sum of gray-level
variations over all regions under constraints which pre-
vent partitioning a homogeneous region (a region with
similar gray levels) into smaller regions. A tree struc-
ture is simple enough to facilitate a fast segmentation
algorithm, and is also general enough to represent all
the hierarchical relationships among objects present in
an image. By combining the tree representation and
global optimization, our segmentation algorithm is ro-
bust even on very noisy images.

The basic idea of the algorithm can be described
as follows. It first builds a weighted planar graph
representation of the given gray-level image, and con-
structs a minimum spanning tree of the graph in such a
way that a connected homogeneous region corresponds
to one subtree of the spanning tree. Then the algo-
rithm partitions the spanning tree into a set of sub-
trees, whose vertices have similar gray levels. The
tree-partitioning is done by a fast dynamic program-
ming algorithm. If we use N, Z and L to represent
the number of pixels in the image, the number of gray
levels used, and the size of a smallest partitioned re-
gion, respectively, the algorithm segments an image in
O(max{(N — L), 1}Z(log(Z) + L?)) time and O(NLZ)
space. Hence in applications where 7 is a small con-
stant, the algorithm runs in O(max{(N — L),1}L?)
time and O(N L) space.

We have studied how two types of noise, transmis-
sion errors and Gaussian additive noise, affect the per-
formance of this segmentation algorithm. We have
shown that (1) both types of noise have very little effect
on the minimum spanning tree construction algorithm,
i.e., the property that an originally homogeneous re-
gion corresponds to one subtree of the spanning tree
will generally not be affected by noise; (2) transmission
errors, in general, have less effect on the performance of
the tree-partitioning algorithm than Gaussian additive
noise does; (3) averaging improves the performance of
the segmentation algorithm when having Gaussian ad-
ditive noise while does the opposite in the presence of

transmission errors.

The development of this algorithm is a part of the
visGRAIL project at Oak Ridge National Lab [8]. vis-
GRAIL is a multi-sensor/neural network based satel-
lite imagery processing/pattern recognition system.
The system recognizes areas of significant structure in
satellite imagery by recognizing regular features from
edge detection and geometric shapes and by combin-
ing the features using a neural network system. In vis-
GRAIL, the region segmentation algorithm serves as a
front-end of the shape recognition subsystem and also
serves as a robust edge-detection subsystem (bound-
aries of partitioned regions).

Segmentation Algorithm

This section first presents a minimum spanning tree
representation of a gray-level image, and then gives a
fast tree-partitioning algorithm®.

Spanning tree representation of an image

We assume that an image is given as a p x ¢ array
and each pixel has an integral gray level € [0,K].
For a given image I, we define a weighted (undi-
rected) planar graph G(I) = (V,E) as follows: The
vertex set V' = { all pixelsof I } and the edge set
E = {(u,v)|u,v € V and distance(u,v) < v/2 }, with
distance(u. v) representing the Euclidean distance in
terms of the coordinates of the image array; Each edge
(u,v) € E has a weight w(u,v) = |G(u) — G(v)|, with
G(x) € [0,X] representing the gray level of a pixel
rel

A spanning tree T of a connected graph G(I) (note
that G(I) is counected) is a connected subgraph of
G(I) such that (1) T contains every vertex of G(I), and
{2) T does not contain cycles. A minimum spanning
tree is a spanning tree with a minimum total weight.

A minimum spanning tree of a weighted graph can
be found using greedy methods [1], as illustrated by the
following strategy: the initial solution is a singleton set
containing an edge with the smallest weight, and then
the current partial solution is repeatedly expanded by
adding the next smallest weighted edge (from the un-
considered edges) under the constraint that no cycles
are formed until no more edges can be added. For the
above defined planar graph G(I), a minimum spanning
tree can be constructed in O(]|V|}1og(||V(])) time and
in O(}]V1]) space, where || - || denotes the cardinality of
a set.

We have used Kruskal’s algorithm [6] to construct
a minimum spanning tree. An important property of
a minimum spanning tree representation obtained by
Kruskal’s algorithm is that it tends to group neigh-
boring pixels of similar gray levels together, which is
summarized by the following lemma and Theorem 2 in
Section 3.

!For a more complete description of the algorithm, we
refer the reader to [9].

Lemma 1 If each object (background) is represented
by a connected region and each object (background) has
a untform gray-level (assuming that adjacent objects
have different gray levels), the pizels representing each
object form one (connected) subtree of the minimum
spanning tree obtained by Kruskal’s algorithm. O

Tree partitioning algorithm

The goal of tree-partitioning is to partition a tree
into subtrees so that each homogeneous region (pos-
sibly corresponding to an object) of an image is rep-
resented by a partitioned subtree. One way to achieve
this is to partition the tree into subtrees so that the
sum of gray-level variations over all partitioned sub-
trees is minimized under the constraint that two ad-
Jacent partitioned subtrees have significantly different
average gray-levels (and also that the smallest subtree
has at least a specified number of vertices). But it is
computationally intractable to directly implement this
strategy since it involves explicitly calculating averages
of partitioned subtrees. To overcome this, we have
used the following approximation method. Instead of
calculating averages explicitly, we divide the K gray
levels into Z equally-sized intervals, and use the cen-
ters {¢1,...,cz} of those intervals to approximate the
averages- .

Now we give the definition of the tree partitioning
problem. For a given tree T and an attached gray
level G(v) € [0,K] for each vertex v of T, we want
to find a partition 7' = |J, 7T; and a mapping ¢ from
T’s subtrees to {c1,...,cz} (called g-mapping), so the
following function is minimized3:

minimize 37, 3" (9(Ti) ~ G(x1))?
subject to: (1) [|T3]] > L, for each T;,

(2) l9(T:) — ¢(Tiv)| > D, for
all adjacent subtrees T; and T;..

(P)

where Lf is the j** vertex of 7}, and L and D are two
(application-dependent) parameters, both of which are
positive numbers.

A dynamic programming algorithm is developed to
solve this optimization problem. The algorithm first
converts the given tree into a rooted tree by selecting an
arbitrary vertex as the root. Hence the parent-children
relation is defined. For each tree vertex, the algorithm
constructs a minimum solution (to (P)) on the subtree
rooted at the vertex based on the minimum solutions
to the subtrees rooted at its children. It extends a
partial solution in such a bottom-up fashion and stops
when it reaches the root.

*Note that the larger T is, the more accurate the ap-
proximation and the longer time it takes to compute.

30ur algorithm is general enough to deal with any objec-
tive function in the form of)", EJ. F(g(Ty),6(z7)), where

F() is a function computable in O(1) time.

We assume that the vertices of 7" are labeled con-
secutively from 1 to ||T|| with the tree root labeled as
1. We use T* to denote the subtree rooted at vertex .
Note the difference between T? and T;, the latter denot-
ing one of the partitioned subtrees. Let score(i,k, g)
denote the minimum value of the objective function of
(P) among all possible partitions and all possible g-
mappings on subtree 7% which satisfy both constraints
(1) and (2) except that the partitioned subtree con-
taining ¢ has at least k vertices and is mapped to a
fixed g, where k € [0, L] and g € {c1,...,cz}. If we de-
fine scores() to be +oc for all undefined triples (7, &, g)
(note scores() is not defined everywhere by the above
definition) we have the following lemma, which essen-
tially describes how an optimum partition on a subtree
rooted at a vertex is related to the optimum partitions
on subtrees rooted at this vertex’s children.

Lemma 2 (a) Ifiy,i,...,1, are the children of vertez
. n<8and 1 <k <L, we have

score(i, k,g) = min 2;1:1 score(i;, ki, g) + (g — G(1))?

fork =377 ki k; >0, when ||| > L
y S =G (1T =%
scores(i, k,g) = Lpepn(9 — 9] |l ;
ko= 1% I # &
when ||T°|| < L

where D(i) is the set of all i’s descendants, i is defined
to be € D(i) and score(i;,0,g) s defined to be
min

» I>Dsc0re(ij,L,g').
9' =412

(b) ming score(1, L, g) is a minimum solution of (P),
where 1 represents the tree root. O

Based on Lemma 2, we can solve the optimization
problem (P) by calculating score() for each tree ver-
tex in a bottom-up fashion using the recurrence from
Lemma 2(a}, and stopping at the tree root.

The pseudo-code to calculate score()’s is given
below. The input to the algorithm is the mini-
mum spanning tree 7 obtained by Kruskal’s algo-
rithm. To efficiently calculate the recurrence of Lemma
2(a), we need to inmtroduce an auxiliary quantity
scoreremp(t, k, g) for each (i, %, g).

Procedure cal_scores(?)
1. if vertex 7 has at least L descendants then
2. begin
3. for each of the n children, {;, of i do call
cal_scores(i;);
4. set scoresemp(t, k,g) — 0, for all k € [0, L], and
g €{cr, ... ex};
for j=1step +1 until n do
for g =1step +1 until 7 do
begin
for k=1step +1until L do
5COT€semp (i, k, g) — min{score;emp (i, k1, g)+
score(ij, ko, g)}, for k = ki + ko, k1, k2 > 0;

© w3

¥

10. for k=1step +1 until L do

11. score(i, k, g) — min;>{score;emy (s, , 9)+
(g - G()7;

12. for g=1step +1 until 7 do

13. set score(i,0, g) — minscore(i, L, g'), for
lg, - g‘ 2 D’g’ € {cly "')CI}-

14. end

15. end

16. else

17. begin

18. for g=1step +1 until 7 do

19. for k=1step +1until L do

20. if k= ||T?|| then set score(i,k,g) —
ZpE’D(z')(g - g(P))z;

21. elseset score(i,k, g) — +co.

22. end

Theorem 1 summarizes the computational efficiency
of the tree partitioning algorithm. To get the tree par-
tition corresponding to min, score(1, L, g), some sim-
ple bookkeeping needs to be done while calculating
score()’s. This can be done within the asymptotic time
and space bounds of Theorem 1.

Theorem 1 ming score(1,L,g) can be correctly cal-
culated by the above algorithm in O(max{{||T}]
—L),1}Z(log(Z) + L?)) time and in O(||\T||LZ) space.
a

For many practical applications, Z is a small con-
stant. Hence the computational resources used by the
algorithm become O(max{(||T|| — L), 1}L?}) in time
and O(||T||L) in space.

Segmentation on Noisy Images

This section evaluates how noise affects the perfor-
mance of our image segmentation algorithm. The goals
are two-fold: (1) to study how well the segmentation
algorithm performs on real-life images, which can be
considered as ideal images (each object has a uniform
gray-level) with variations on each pixel’s gray level,
and (2) to understand why different types of noise af-
fect the performance of the algorithm differently as we
have observed in our tests. Potentially noise affects
the algorithm’s performance in both stages of the al-
gorithm: spanning tree construction and tree parti-
tioning. We will show that noise has greater effects on
the performance in the tree partitioning stage than in
the spanning tree construction stage. In this study,
we consider two types of noise: transmission errors
and Gaussian additive noise. Studies on other types
of noise are under way.

The model for generating transmission errorsis de-
fined as follows: each pixel of the image has a probabil-
ity P to keep its original gray level during transmission
and the probability 1 — P to randomly change to an-
other gray level € [0,K). Gaussian additive noise adds

/

{a) (b)

Figure 1: A schematic of an image, an object A in the
image, a cutset C and a by-pass P.

to each pixel independently a random normal value
(using the floor function for real-to-integer conversion)
according to a normal distribution N(0,0?) censored

to [-K/2,K/2).

Spanning tree construction on noisy
images

One basic premise for our image segmentation algo-
rithm to be effective is that each object, given as a
homogeneous region in an image, is represented as one
subtree of the spanning tree representation. Lemma 1
has shown that this is true in the ideal situation. In
the following, we show how noise affects this property.

Consider an object A in a given image I. Let G{I)
be the planar graph representation of I (as defined in
Section 2.1) and T be its minimum spanning tree ob-
tained by Kruskal’s algorithm. We use G(A) to denote
the subgraph of G(I) induced by the pixels of A. An
edge set C of G(A) is called a cutset if deleting C di-
vides G(A) into two unconnected parts. Theorem 2
generalizes Lemma 1 on noisy images.

Theorem 2 [n the presence of possible noise, A 1is
represented by more than one subtree? in T if and only
if there exist a cutset C of G(A) and a path P that has
its two end vertices on two sides of the cut of G(A)
and has its remaining vertices outside of G(A) such
that every edge of P has smaller® weight than every
edge of C. O :

Figure 1(a) illustrates the idea of Theorem 2. Note
that Theorem 2 is a true generalization of Lemma 1
since the if-and-only-if condition can never be true in a
situation of no noise, and hence A is always represented
as one subtree of T in the ideal situation.

To estimate how probable the if-and-only-if condi-
tion in Theorem 2 is we have conducted the following
computer simulation. The experiment is done on a

*Note that pixels of A corresponds to one subtree of T'
if and only if for any pair of pixels of A, the path between
them in T only contains pixels of A.

5We ignore the case of equality for the simplicity of
discussion.

256-gray-level image I having one object A in the cen-
ter of the image (see Figure 1(b)). 7 is a 256 x 256
image and A is a 30 x 30 square. The background has
a uniform gray level 100 and A has a uniform gray level
150. We add transmission errors and Gaussian addi-
tive noise, respectively, to I as follows. When adding
transmission errors, each pixel of I has a probability
0.3 to keep its original gray level and the probability
0.7 to randomly and uniformly change to another gray
level € [0, 255]. When adding Gaussian additive noise,
each pixel of I is added by a value {§ + 1/2] (modulo
256), where é is random number generated according
to the normal distribution N (0, a%) censored to [-128,
128] with o = 40.

For each type of noise, we estimated the probability
that there exist a path P connecting two pixels a and
b, and a cutset C of A separating a and b (see Figure
1(b)) such that every edge of P has smaller weight
than every edge of C, where a and b are two randomly
chosen pixels both of which are 5-pixels from the left
boundary of A and are at least 5 pixels from the lower
and upper boundaries of A%, and P has at least 20
edges.

We have observed, for this particular experiment,
that the probability that there exist such a P and a
cutset C is very small (< 1073), for both types of
noise. This experiment suggested that both types of
noise have very little effect on the property that a ho-
mogeneous region corresponds to one subtree of the

minimum spanning tree constructed by Kruskal’s al-
gorithm.

Tree partitioning on noisy images
Though both types of noise have little effect on the
property that a homogeneous region corresponds to
one subtree of the spanning tree representation they
could affect the tree partitioning result in a form we
call corrosions. Consider an objéct A in a given im-
age and its representing subtree T4. With noise, T4
may contain a subtree (or subtrees) that has a (sig-
nificantly) different average gray level than the rest of
T4, and contains more than enough vertices (> L. See
the definition of tree-partitioning problem (P)) to be
partitioned into a separate region (see Figure 2). This
subsection presents a comparative study on how the
two types of noise affect the formation of corrosions.
Let g(A) be the (uniform) gray level of A before
noise is added. We compare the probabilities, P; and
P,, that a connected region A’ of A will have its gray
level changed to the same value g(A)+k, for any k£ # 0,
when transmission errors and Gaussian additive noise
are added, respectively. Let pj denote the probability
that one pixel of A’ changes its gray level from g(A4) to
g(A) + k& when Gaussian additive noise is added. For
the simplicity of discussion, we assume that g(A) =0,

%The reason for choosing ¢ and b inside A instead of
on the boundary of A is to avoid errors caused boundary
“corrosions”.

(a) (0

Figure 2: A schematic of “corrosion”. (a) Object A
in an image with its “corroded” subregion A’. (b) A’s
subtree representation and A’’s subtree representation.

hence k € [1,K]. We define pp = 1 — Zlepk. Recall
P denotes the probability that a pixel keeps its original
gray level in the presence of transmission errors. It can
be shown by a simple calculation that

1=P n K
— —_— — —_— n
P = <IC—1> (K-1), and Pg_kz—lpk,

where n = ||A’|| (note that P, = Zlepg is true for
any type of noise). Theorem 3 shows the relationship
between Py and Ps, which can be proved using Jensen’s
inequality [2] (page 433).

Theorem 3 For any N' € [2,K] and n > 0, when
Etfzopk =1 and pg =P,

N n
1-P
Sotz (372) W-D.
k=1

(]

Theorem 3 implies that transmission errors are the
least possible to form corrosions among all possible
forms of noises (including Gaussian additive noise)
when P or pg is fixed. Computer simulations have
shown that when the noise levels generated by the two
noise models are visually “similar”,

N n
. 1-P
;pk >> (m) (N—-l).

Test results on real images confirm this inequality.

Computer simulation results have shown that the
probability of keeping a pixel’s original gray level is
the dominating factor in the formation of corrosions in
the presence of any type of noise. Note that in the case
of Gaussian additive noise,

1/2
. / e'E%dt,
2no -1/2

po(o) =

represented explicitly as a function of the standard de-
viation o, is a decreasing function of ¢. Hence the
averaging operation, which decreases ¢ when done on

Figure 3: An aerial image of 202x503 pixels and its
segmentation result.

a small neighborhood (e.g. a 3 x 3 square around
each pixel), will improve the performance of the tree
partitioning algorithm when having Gaussian additive
noise.

The averaging operation does just the opposite when
having transmission errors as test results have shown.
The main reason for this behavior is that averaging
decreases P and hence increases the probability

1-P\"
()c = 1) *=1
of forming corrosions.

The following gives three examples of the segmen-
tation results of our image segmentation algorithm.
Segmentations are done on a SPARC-20 workstation,
and none of the three images take more than 1.5 CPU
minutes. Figure 3 is an aerial image along with its seg-
mentation. Figure 4 gives the segmentation result on
an image with transmission errors added, and Figure 5
shows the segmentation result on the same image with
Gaussian additive noise added. Corrosions can be seen
from the segmentation results of Figures 4 and 5.

Summary

We have developed an efficient and effective computer
algorithm for 2-D image segmentation. Segmentations
are done by essentially dividing an image into regions
so that the sum of gray-level variations over all divided

Figure 4: An image of letters “T” and “E” with trans-
mission errors added and its segmentation result. Each
pixel has a probability 0.3 to keep its original value and
the probability 0.7 to randomly change to another gray
level € [0, 255]. The image has 256 x 256 pixels.

Figure 5: An image of letters “T” and “E” with Gaus-
sian additive noise with ¢ = 40, and its segmentation
result. The image has 256 x 512 pixels and consists of
256 gray levels.

regions is minimized under the constraint that adja-
cent regions have significantly different “average” gray
levels. The computational efficiency is achieved based
on three key ideas: (1) a tree representation of an im-
age which keeps the topological relationships among
objects in the image, (2) an approximation method
to avoid calculating averages explicitly, and (3) recur-
rence relationships among partial optimum solutions
defined on a tree. Both computer simulations and tests
on real images have shown that the algorithm is robust
even on very noisy images, which is further confirmed
by our mathematical analysis.

Acknowledgements

This research was supported by the United States
Department of Energy, under contract DE-AC05-
840R21400 with Lockheed Martin Energy Systems,
Inc.

The authors would like to thank Dr. Reinhold C.
Mann for many helpful discussions related to the work
presented in this paper.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman
(1974), The Design and Analysis of Computer Al-
gorithms, Readings, MA, Addison-Wesley Publishing
Company.

[2] P. J. Bickel and K. A. Doksum (1977), Mathe-
matical Statistics: Basic Ideas and Selected Topics,
Holden-Day Inc.

[3] R. O. Duda and P. E. Hart (1973), Patiern Clas-

sification and Scene Analysis, New York, John Wiley
and Sons.

[4] R. C. Gonzalez and P. Wintz (1987), Digital Image
Processing (second edition), Readings, MA, Addison-
Wesley Publishing Company.

[5] R. M. Haralick and L. G. Shapiro (1985), “Image
Segmentation Techniques”, Computer Vision, Graph-
ics, and Image Processing, Vol. 29, pp. 100 - 132.

(6] J. B. Jr. Kruskal (1956), “On the shortest span-
ning subtree of a graph and the traveling salesman
problem”, Proc. Amer. Math Soc, Vol. 7, No. 1, pp.
48 - 50.

[7] N. Pal and S. Pal (1993), “A review on image
segmentation techniques”, Pattern Recognition, Vol.
26, No. 9, pp. 1277 - 1294.

[8] E. C. Uberbacher, Y. Xu, R. W. Lee, C. W. Glover,
M. Beckerman, and R. C. Mann (1995), “visGRAIL
— Image Exploitation Using Multi-sensor/Neural Net-
work Systems”, Lockheed Martin Technical Report
K/NSP-338-95.

[91 Y. Xu and E. C. Uberbacher (1996), “2-D Image
Segmentation Using Minimum Spanning Trees”, Im-
age and Vision Computing, in press.

