

Monday, August 26, 1996

CONF- 9610249--1

Spiral order in $\text{Ba}_2\text{CuGe}_2\text{O}_7$.

A. Zheludev^a, G. Shirane^a, Y. Sasago^b, N. Koide^b, and K. Uchinokura^b.

RECEIVED

FEB 06 1997

OSTI

^a Brookhaven National Laboratory, USA.

^b Department of Applied Physics, The University of Tokyo, Japan.

The quasi 2-dimensional square-lattice antiferromagnet $\text{Ba}_2\text{CuGe}_2\text{O}_7$ was studied by neutron scattering and bulk magnetic techniques. An incommensurate magnetic spiral structure with the propagation vector $(1+\xi, 1+\xi, 0)$ ($\xi=0.027$) was observed below $T_N=3.26$ K. The spin dynamics can be adequately described by conventional spin-wave theory with two exchange constants: nearest-neighbor in-plane antiferromagnetic coupling $J_1\approx 0.48$ meV and interplane ferromagnetic interaction $J_2\approx 0.013$ meV. This set of exchange parameters apparently fails to explain the spiral order. The non-centrosymmetric crystal structure suggests that the incommensurate phase may be the result of a Dzyaloshinskii-Moriya instability of the Neel ground state.

Keywords: Antiferromagnetism, Spin waves, Chiral systems

Corresponding author: Andrey Zheludev, Ph. D.

Address: Physics Depoartment, bld. 510-B, Box 5000, Brookhaven Natinal Lab, Upton, NY 11973-5000, USA.

e@mail: zhelud@solids.phy.bnl.gov

fax: (516)-344-29-18

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

AF arrangement) by an angle $\phi=9.7^\circ$ in spin space ($\phi=0$ would corresponds to Neel order). ξ is given by $\xi=\phi/(2\pi)$.

As a rule, spiral order is caused by competing exchange interactions [4]. To verify the applicability of this hypothesis to $\text{Ba}_2\text{CuGe}_2\text{O}_7$ we performed inelastic neutron scattering measurements of the spin wave dispersion relation, that was measured in constant-Q scans along the $(1,0,0)$, $(1,1,0)$ and $(0,0,1)$ directions. We have worked out the classical spin-wave dispersion law assuming the relevant Heisenberg exchange parameter are 1-nn and 2-nn in-plane AF coupling constants J_1 and J_2 , as well as the 1-nn interplane FM exchange J_3 . The model produces good fits to our data with $J_1=0.482$ (0.003) meV, $J_2/J_1=0.01$ (0.04) and $J_3=0.013$ (0.001) meV. Two immediate conclusions can be drawn: i) the system is indeed strongly 2-dimensional with $J_1/J_3=37$ and ii) 2-nn interactions in the Cu-planes are negligible. The Neel ground state for a 2-D square-lattice AF is known to be stable in a wide range of J_2/J_1 [5] and thus *competing interactions can not explain the spiral order* in $\text{Ba}_2\text{CuGe}_2\text{O}_7$.

So, what causes the spiral phase? We believe the answer lies in the non-centric nature of the crystal structure, as is the case for MnSi [6,7] and FeGe [7], for example. The absence of inversion center allows Dzyaloshinskii- Moriya (DM) terms [8] in the Hamiltonian. These are proportional to the *vector* product of nearest-neighbor spins. A symmetry analysis by S. Maslov and P. Bak shows that it is exactly the observed type of spiral structure that must be stabilized by DM interactions in the particular symmetry of $\text{Ba}_2\text{CuGe}_2\text{O}_7$. Additional valuable information on the DM transition was obtained in high-field experiments, that are beyond the scope of this paper.

This study was supported in part by NEDO International Joint Research Grant and the U.S.-Japan Cooperative Program on Neutron Scattering. Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-76CH00016, Division of Material Science, U.S. Department of Energy.

Figure captions:

Fig. 1 Square-lattice arrangement of the magnetic Cu-sites in the (a,b) plane of $\text{Ba}_2\text{CuGe}_2\text{O}_7$ and a schematic view of the spiral magnetic structure.