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GENERAL FEATURES OF HUGONIOTS—II
by
J. D. Johnson

ABSTRACT

I'have derived a differential version of the principal Hugoniot jump relations for a

shock wave. From this algebraic equation, relating equation of state and U -U,

Hugoniot variables, 1 explain the general features of the Hugoniot, including two

regions of linearity, limiting forms, and insensitivity to shell structure.




Introduction

There has been continuing interest in the behavior of shock Hugoniots for high
pressures, in particular for particle velocities greater than 10 km/s. Data has been obtained
for such mainly through laser and nuclear shock experiments [1-4]. These data, plotted
either as shock velocity U, of a sample material versus U, of an assumed standard material
or as U, versus the particle velocity U, of the sample, are remarkably linear. Modeling, as
represented by the SESAME database [5], shows the same behavior. A general

understanding of this high pressure linearity and of the Hugoniot as a whole is needed.

Formalism
Rather than go to detailed, complex modeling, I use only the Hugoniot jump conditions

and thermodynamics to explain the linear regime and all general features of the Hugoniot. 1

assume that I have the hydrodynamic equation of state P(p,E) and the three Hugoniot

relations [6]

P=p,UJU, , (1a)
p/pa=Us/(Us_Up) s (lb)

1.2
and E=1U;. (1c)

Here P is pressure, p is density, and E is internal energy per gram. Starting from an

initial point p,, P,=0, and E, =0, and solving P(p,E) and Eq. (1c) for P(p), one obtains

the pressure versus density principal Hugoniot. Then from Egs. (1a) and (1b) follows the

U,-U, curve. I instead derive a differential form of the jump conditions. First differ-

entiate Egs. (1a), (1b), and (1c) with respect to U, along the Hugoniot, and then express

the derivative of P in terms of density and energy derivatives with the use of the partial

chain rule. After some algebra and thermodynamic relations, I finally obtain the exact

equation




B /P-x=3s—1+s(2s=2~y)/x. (2)

Here, x=c/U_,y= 1oP , and poP = B,/ P-y, where the isentropic bulk modulus is
b poE), Pdp),

B, =p 3—::] . The lower case s is the slope of the local tangent line of the U, -U , curve at

s

U,, and c¢ is the U, =0 intercept of the tangent. All quantities in Eq. (2) are on the
Hugoniot and thus are to be thought of as functions of U, or another Hugoniot variable.
This equation is a complex algebraic relation among s, ¢, U,, ¥, P, and B, but it is quite

manageable and we can learn from it.

Orientation

Before 1 give results from the above, let me present the generic behavior of a metal
Hugoniot with only phase transitions with small volume change. I use our latest Mo
equation of state (solid line in graphs) as an example [5]. The structures will seem small,

but this is the reality of U, ~U, curves. Ilook at two figures. In Fig. 1 we see the lower

Hugoniot which is given very accurately by two dashed straight lines, one with slope
1.245, the other with 1.196. There is clearly a break between them at U, =5 km/s. This is
typical for many materials, as it is usually between 3 and 7 km/ s, but the break is a little
small because for Mo the lower slope is close to the upper value of 1.196. In other
materials, such as in Figs. 3 and 4, the initial slope is larger. Figure 2 shows a larger scale
with the same dashed line fit to the upper part of Fig. 1. From U, =6 km/s to over
100 km/s, it is an excellent fit. The two chain-dashed lines are straight lines through the
origin, the upper with slope 4/3, the lower with slope 1.228. The upper is the ideal gas

limit which the physical Hugoniot must ultimately approach. The lower is the lowest slope

tangent line to the U, - U, curve that goes through the origin. In such a circumstance ¢ =0.
Then from Eq. (1b), p is not varying, so the density derivative of P is infinite. In my

example this point on the Hugoniot is the turnaround point, or point ¢, and is the maximum
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density on the Hugoniot. In the case of Mo, U,, =262 km/s. For stronger shocks, c<0,
and the density is decreasing as U, increases. At any point where ¢=0, P has infinite
slope, and, since x =0, then from Eq. (2), 5,=1+7,/2. Also from Eq. (lb),
p.!p,=s,1(s,—1). Typically for many materials p, / p, ranges between 5 and 6.2 implying
that 1.19 <5, < 1.25 and 0.38 <y, < 0.5. The slope of the very linear section between

U, =10 and maybe 100 km/s or more ranges between 1.14 and 1.22. Finally, one sees that

the approach to the ideal gas line of slope 4/3 is very slow. The Mo Hugoniot is only

approaching the ideal gas by U, = 2000 km/s.

Results

Now follows some analysis using my equation. If one takes the U, — 0 limit of

Eq. (2), I obtain the very initial slope and curvature of the Hugoniot as the Taylor series

2 . . .
Uylc,=1+5,U,/c,+e(U,/c,) ... (One must in all analysis of the formalism carefully

expand all quantities self-consistently.) After a few thermodynamic manipulations, I obtain
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1 oB 9B e . . 4 .
s,=—|1+—==| |and e=|0.5p,—== | +s,(2+7,-s,)|/6. The initial slope is directly given
N N

dpoP

by the pressure derivative of the bulk modulus at constant entropy, and the curvature is
given by the higher constant entropy derivative of the B, with y, first entering the
expansion at this order. It is common, my Mo is an example, that the Hugoniot out to the
break is very linear. This form for e partially explains why. The two terms for e are
dimensionless quantities and in magnitude should lie between one and ten. The sign of the
first is negative, the second positive with resulting cancellation. After dividing by six, one
expects e to be small with resulting linear U, -U,. For Nb, I estimate that e=0.16 [7].
The natural variables that follow from the analysis of Eq. (2) for the series are U, /¢, and
U,!c,, where ¢, is the bulk sound velocity at U, =0. This implies that the break should
occur for U, ~¢,. We will see later that U, =1.6 ¢, predicts the break quite well.

One can do large U, expansions to find the approach to ideal gas. If it is assumed that




Debye-Hiickel theory [8] describes the very high temperature gas, for large
U, y~%-—b/Uf,,b>0. Then from Egq. (2), s~§+a/u,%—2b/u,§,c~—2a/Up+3b/U$,,

and P~12p,a/(p/p,—4) with a>0. The parameter a is given by the sum of cohesive,
ionization, and dissociation energies in going from ambient to T — .

I can expand around point ¢ and find the curvature. Letting U, =s5U,+ o,(U,-U W)z,
a, is given by o, =7y"(1+y,/2)/(2B,,/P,-y,). It is a good approximation that
a=y12. (r,V=dy/dU,atr) Using numbers from the Mo equation of state,
a, ~107s/km, and U, is well approximated by the quadratic form for IU ,=U p‘,| < 100 km/s.

At this point I already have an argument for the U, -U, curve to be very linear for
10SU,<200 km/s or even higher. There has to be an inflection point between 10 and
262 km/s. I estimate for Mo from Eq. (2) that it is at U, =125 km/s. There « is zero and
should continue for smaller U, to be small and negative. (Think of a Taylor series around
the inflection point.) Thus the curvature is very small and the curve is close to linear. 1
actually did not even need to estimate o, because the slow approach of the U, -U, curve to
the ideal gas behavior implies it is small.

But I can go into more detail with Eq. (2). For that I need the qualitative behavior of y
and B;/P as functions of U, which is obtained from the SESAME database, where the
relevant physics comes from either TFD models or the Inferno model [9-10]. The two
models are compatible to the level I need, and one can see that the predicted features of y
and B,/ P are physical. Atlow U,y is high, say 1.5. For U, between 3 and 7 km/s, for
which the temperature is between 10*and 3 x 104 K, y drops fairly rapidly toward 0.4.
Once U, is greater than 7 km/s or so, y goes through a very broad minimum with y®
being very small. Ultimately, at large U,y slowly rises to go to the ideal gas limit of 2/3.
The physics of the decline of y is that the electronic thermal excitations are starting to
dominate the equation of state at the U, -U, break point. They pull y down below the

ideal gas value through the region the electrons are ionizing. For small U,, B, /P diverges




as 1/U,, but, as U, increases, B, /P decreases to y+1.

The physics of all this is that for smaller U, < 7 km/s the equation of state is dominated
by the zero temperature isotherm and the phonons. Here, to avoid the left-hand side of
Eq. (2) being large, c is constrained to be approximately equal to c,, thus making the
U,-U, linear. As U, increases and goes through the break the thermal excitations, the
electrons, come into play. The left-hand side of Eq. (2) is now not important, and the 1/ x
term constrains s=1+y/2. Thus y determines s, and the electrons are pulling y down

toward 0.4. All this causes the break. Putting this together in Eq. (2), I have that s is well

approximated by s=1+y/2 for U, from just above the break at 3-7 km/s to well above the
turnaround. With y = 0.4, s =1.2 for the region between 10 and 100 km/s, quite in line with

my earlier statement of between 1.14 and 1.22. Thus the break and high pressure linearity

are explained.

Experimental Comparison

All of what I have said fits very well with the detailed modeling that goes into the
SESAME database, both TFD and Inferno. It also agrees very well with experiment.
Figure 3 shows data for iron and two straight line, least-square fits to the upper and lower
portions of the data. I do not show all the lower data, as it then would be too dense; it is
very linear with a fitted slope of 1.553. The other line, fitted to the upper five crosses, has
a slope of 1.213, in excellent agreement with all I have said. The uppermost cross, one of
the pair next down, and the fourth and sixth crosses down are absolute measurements. The

X's are data of Ragan [1] with Mo as a standard, and the remaining two high U, crosses are

measured assuming lead as a standard. The error bars on the uppermost point are *2% in

both U, and U,. The high U, crosses and some of the low U, come from the Russian

literature [11]. The rest of the low data points are from the Los Alamos Shock Compen-
dium [12]. T have also looked at Cu, Bi, Sn, Ar, Xe and Al, which all show the break with
slopes above it of 1.170, 1.203, 1.162, 1.144, 1.166, and 1.149, respectively [12-14].
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These data do not go to as high a U, as that of the iron, but they do strongly support the

existence of the break and the linearity. Figure 3 shows Cu, and Fig. 4 presents Bi, Fe,
Cu, Sn, Ar and Xe.

I look now to the break and define it by the intersection of the linear fits to the higher
and lower portions of the U -U,. In Fig. 5, I plot the location of the break as a function
of ¢, for Al, Fe, Cu, Sn, Bi, Ar, and Xe, going down from the highest points to the
lowest. The solid curve is a fit with a straight line through the origin; the slope is 1.6.

There are data on N5, a molecular system, which show a break, and also there is a
model showing a negative y in the dissociation region [14, 15]. I am pushing a little to
compare here, but the slope above the break is 0.985 and y = -0.03. Dissociation pulls

the y down lower than ionization.

Shell Structure

I now discuss the effect of shell structure on the Hugoniot above the break. Here shell
structure enters in two ways. One is through the variation in p, in going through the
periodic table. This, in particular, varies the Jocation of the turnaround point. But I do not
want to focus on this. Ilook to the shell structure from the thermal part of the equation of
state. I obtain upper bounds on the variation of y and B,/ P-y due to shell structure from
Inferno. Isee no shell structure in B,/ P -y, and, as this is a density derivative, this makes
sense. SoIdrop B,/ P-y-1 from the equations, and I can argue that this is a conservative
approximation for the size of the variation in s. For Al and elements with higher atomic
numbers, the maximum variation in y is £0.1, with a functional form that is quadratic in
InU, and a width guided by Inferno.

From Eq. (2), the variation in s is As=(Ay—Ac/ U,,)/z, and Ac can be obtained in
terms of Ay, So one finds the variation in s, but what is of interest is AU, which is an
integral of As. Carrying all this out, I find that for the £0.1 in y, U, varies by *2%, quite

in line with what is seen in full SESAME equations of state based on Inferno. These are
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conservative approximations, and this is a maximum variation at an gxact U,. It will be
extremely difficult to see shell structure above the break. If one goes to the P(p) Hugoniot
and looks in the neighborhood of the turnaround, the small wiggles in U, are amplified by

the presence of the singularity and appear large. But experiments are not known that can

measure P and p directly, so this is not relevant.

Summary

I have presented a number of results. First is Eq. (2), which relates Hugoniot variables
and thermodynamic quantities. From it I have expansions of the Hugoniot for
U,—0, U, >, and U, at turnaround. From simple features of the equation of state, the
linear region above the break is understood, and the slope and the location of the break are
estimated. The perturbation of thermal shell structure is quantified.

I have focused in this paper on elemental metals, and certainly I feel the ideas are valid

there. (I am not referring here to the exact results, such as Eq. (2), but to the approximate

results.) For all other substances, if one is high enough up the Hugoniot that all molecules
are dissociated, then all these ideas should be applicable. Further down, the details of my
picture will be altered for molecular systems and insulators. An example here is Nj.
Furthermore, below the break where thermal excitations do not dominate, phase transitions
with large volume changes introduce structure. Also, for the alkali metals there are shell

structure effects for small U,. But even with these caveats, I have a very powerful

overview.
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Fig. 1. Mo Hugoniot—Ilower portion around break. The solid line is the Mo Hugoniot. The
two dashed lines are straight line fits to the two linear portions of the Hugoniot. (The dashed
lines might appear to the eye as one straight line since their slopes are almost the same. Their

intersection is around 5km/s.)
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Fig. 2. Mo Hugoniot— U, out through turnaround. The dashed line is from the fit above the

break. It shows that the straightness of the solid Hugoniot curve persists to quite high U,,.
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Fig. 3. Fe and Cu Hugoniot data. We see clearly the linearity of the upper data and a well-

defined break. The Cu data and curves have been shifted upwards.
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Fig. 4. Bi, Fe, Cu, Sn, Ar, and Xe Hugoniot data from bottom to top. Shifts have been

introduced to avoid overlaps.
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Fig. 5. Breakpoint as a function of «c,.




